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Gene regulation is one of the most ubiquitous processes in biology. But while the catalog of bacterial genomes
continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At
present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused
efforts using low-throughput methods. Here we show how a combination of massively parallel reporter assays, mass
spectrometry, and information-theoretic modeling can be used to dissect bacterial promoters in a systematic and
scalable way. We demonstrate this method on both well-studied and previously uncharacterized promoters in the enteric
bacterium Escherichia coli. In all cases we recover nucleotide-resolution models of promoter mechanism. For some

promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical

models describing input-output relationships.

This method opens up the possibility of exhaustively dissecting the

mechanisms of promoter function in E. coli and a wide range of other bacteria.

The sequencing revolution has left in its wake an enormous
challenge: the rapidly expanding catalog of sequenced genomes
is far outpacing a sequence-level understanding of how the
genes in these genomes are regulated. This ignorance extends
from viruses to bacteria to archaea to eukaryotes. Even in
E. coli, the model organism in which transcriptional regula-
tion is best understood, we still have no indication if or how
more than half of the genes are regulated (Fig. S1; see also
RegulonDB (1) or EcoCyc (2)). In other model bacteria such
as Bacillus subtilis, Caulobacter crescentus, Vibrio harveyit,
or Pseudomonas aeruginosa, far fewer genes have established
regulatory mechanisms (3-5).

New approaches are needed for studying regulatory archi-
tecture in these and other bacteria. Although an arsenal of
genetic and biochemical methods have been developed for
dissecting promoter function at individual bacterial promoters
(reviewed in Minchin et al. (6)), these methods are not readily
parallelized. As a result, they will likely not lead to a com-
prehensive understanding of full regulatory genomes anytime
soon. RNA sequencing, chromatin immunoprecipitation, and
other high-throughput techniques are increasingly being used
to study gene regulation in E. coli (7-11), but these methods
are incapable of revealing either the nucleotide-resolution loca-
tion of all functional transcription factor binding sites, or the
way in which interactions between DNA-bound transcription
factors and RNA polymerase modulate transcription.

In recent years a variety of massively parallel reporter
assays have been developed for dissecting the functional ar-
chitecture of transcriptional regulatory sequences in bacteria,
yeast, and metazoans. These technologies have been used to
infer biophysical models of well-studied loci, to characterize
synthetic promoters constructed from known binding sites,
and to search for new transcriptional regulatory sequences (12—
18). CRISPR assays have also shown promise for identifying

longer range enhancer-promoter interactions in mammalian
cells (19). However, no approach for using massively parallel
reporter technologies to decipher the functional mechanisms of
previously uncharacterized regulatory sequences has yet been
established.

Here we describe a systematic and scalable approach for
dissecting the functional architecture of previously uncharac-
terized bacterial promoters at nucleotide resolution using a
combination of genetic, functional, and biochemical measure-
ments. First, a massively parallel reporter assay (Sort-Seq
(12)) is performed on a promoter in multiple growth conditions
in order to identify functional transcription factor binding sites.
DNA affinity chromatography and mass spectrometry (20, 21)
are then used to identify the regulatory proteins that recognize
these sites. In this way one is able to identify both the func-
tional transcription factor binding sites and cognate transcrip-
tion factors in previously unstudied promoters. Subsequent
massively parallel assays are then performed in gene-deletion
strains to provide additional validation of the identified regu-
lators. The reporter data thus generated is also used to infer
sequence-dependent quantitative models of transcriptional reg-
ulation. In what follows, we first illustrate the overarching
logic of our approach through application to four previously
annotated promoters: lacZYA, relBE, marRAB, and yebG.
We then apply this strategy to the previously uncharacterized
promoters of purT, zylE, and dgoRKADT, demonstrating the
ability to go from complete regulatory ignorance to explicit
quantitative models of a promoter’s input-output behavior.

Results

To dissect how a promoter is regulated, we begin by performing
Sort-Seq (12). As shown in Fig. 1A, Sort-Seq works by first
generating a library of cells, each of which contains a mutated
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promoter that drives expression of GFP from a low copy
plasmid (5-10 copies per cell (22)) and provides a read-out
of transcriptional state. We use fluorescence-activated cell
sorting (FACS) to sort cells into multiple bins gated by their
fluorescence level and then sequence the mutated plasmids
from each bin. We found it sufficient to sort the libraries
into four bins and generated data sets of about 0.5-2 million
sequences across the sorted bins (Fig. S3A-D). To identify
putative binding sites, we calculate 'expression shift’ plots that
show the average change in fluorescence when each position of
the regulatory DNA is mutated (Fig. 1B, top plot). Mutations
to the DNA will in general disrupt binding of transcription
factors (23), so regions with a positive shift are suggestive of
binding by a repressor, while a negative shift suggests binding
by an activator or RNA polymerase (RNAP).

The identified binding sites are further interrogated by
performing information-based modeling with the Sort-Seq
data. Here we generate energy matrix models (12, 24) that
describe the sequence-dependent energy of interaction of a
transcription factor at each putative binding site. For each
matrix, we use a convention that the wild-type sequence is
set to have an energy of zero (see example energy matrix in
Fig. 1B). Mutations that enhance binding are identified in blue,
while mutations that weaken binding are identified in red. We
also use these energy matrices to generate sequence logos (25)
which provides a useful visualization of the sequence-specificity
(see above matrix in Fig. 1B).

In order to identify the putative transcription factors, we
next perform DNA affinity chromatography experiments using
DNA oligonucleotides containing the binding sites identified
by Sort-Seq. Here we apply a stable isotopic labeling of cell
culture (SILAC (26)) approach, which enables us to perform
a second reference affinity chromatography that is simultane-
ously analyzed by mass spectrometry. We perform chromatog-
raphy using magnetic beads with tethered oligonucleotides
containing the putative binding site (Fig. 1C). Our reference
purification is performed identically, except that the binding
site has been mutated away. The abundance of each protein
is determined by mass spectrometry and used to calculate
protein enrichment ratios, with the target transcription factor
expected to exhibit a ratio greater than one. The reference pu-
rification ensures that non-specifically bound proteins will have
a protein enrichment near one. This mass spectrometry data
and the energy matrix models provide insight into the identity
of each regulatory factor and potential regulatory mechanisms.
In certain instances these insights then allow us to probe the
Sort-Seq data further through additional information-based
modeling using thermodynamic models of gene regulation. As
further validation of binding by an identified regulator, we also
perform Sort-Seq experiments in gene deletion strains, which
should no longer show the associated positive or negative shift
in expression at their binding site.

Sort-Seq recovers the regulatory features of well-char-
acterized promoters.

To first demonstrate Sort-Seq as a tool to discover regulatory
binding sites de novo we began by looking at the promoters
of lacZYA (lac), relBE (rel), and marRAB (mar). These pro-
moters have been studied extensively (27—29) and provide a
useful testbed of distinct regulatory motifs. To proceed we con-
structed libraries for each promoter by mutating their known
regulatory binding sites. (See Supplemental Information Sec-
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Fig. 1. Overview of approach to characterize transcriptional
regulatory DNA, using Sort-Seq and mass spectrometry. (A)
Schematic of Sort-Seq. A promoter plasmid library is placed upstream
of GFP and is transformed into cells.
by FACS and after regrowth, plasmids are purified and sequenced. The
entire intergenic region associated with a promoter is included on the
plasmid and a separate downstream ribosomal binding site sequence is
used for translation of the GFP gene. The fluorescence histograms show
the fluorescence from a library of the rel promoter and the resulting
sorted bins. (B) Regulatory binding sites are identified by calculating
the average expression shift due to mutation at each position. In the
schematic, positive expression shifts are suggestive of binding by re-
pressors, while negative shifts would suggest binding by an activator or
RNAP. Quantitative models can be inferred to describe the associated
DNA-protein interactions. An example energy matrix that describes
the binding energy between an as yet unknown transcription factor to
the DNA is shown. By convention, the wild-type nucleotides have zero
energy, with blue squares identifying mutations that enhance binding
(negative energy), and where red squares reduce binding (positive en-
ergy). The wild-type sequence is written above the matrix. (C) DNA
affinity chromatography and mass spectrometry is used to identify the
putative transcription factor (TF) for an identified repressor site. DNA
oligonucleotides containing the target binding site are tethered to mag-
netic beads and used to purify the target transcription factor from cell
lysate. Protein abundance is determined by mass spectrometry and a
protein enrichment is calculated as the ratio in abundance relative to a
second reference experiment where the target sequence is mutated away.

The cells are sorted into four bins

tion B and Fig. S3E,F for additional characterization). We
begin by considering the lac promoter, which contains three lac
repressor (Lacl) binding sites, two of which we consider here,
and a cyclic AMP receptor (CRP) binding site. It exhibits the
classic catabolic switch-like behavior that results in diauxie
when E. coli is grown in the presence of glucose and lactose
sugars (27). Here we performed Sort-Seq with cells grown in
M9 minimal media with 0.5% glucose. The expression shifts
at each nucleotide position are shown in Fig. 2A, with anno-
tated binding sites noted above the plot. The expression shifts
reflect the expected regulatory role of each binding site, show-
ing positive shifts for Lacl and negative shifts for CRP and
RNAP. The difference in magnitude at the two Lacl binding
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Fig. 2. Characterization of the regulatory landscape of the lac,
rel, and mar promoters. (A) Sort-Seq of the lac promoter. Cells were
grown in M9 minimal media with 0.5% glucose at 37° C. Expression shifts
are shown, with annotated binding sites for CRP (activator), RNAP
(-10 and -35 subsites), and Lacl (repressor) noted. Energy matrices
and sequence logos are shown for each binding site. (B) Sort-Seq of
the rel promoter. Cells were also grown in M9 minimal media with
0.5% glucose at 37°C. The expression shifts identify the binding sites of
RNAP and RelBE (repressor), and energy matrices and sequence logos
are shown for these. (C) Sort-Seq of the mar promoter. Here cells were
grown in lysogeny broth (LB) at 30°C. The expression shifts identify
the known binding sites of Fis and MarA (activators), RNAP, and MarR
(repressor). Energy matrices and sequence logos are shown for MarA
and RNAP. Annotated binding sites are based on those in RegulonDB.

sites likely reflect the different binding energies between these
two binding site sequences, with Lacl O3 having an in vivo
dissociation constant that is almost three orders of magnitude
weaker than the Lacl O1 binding site (27, 30).

Next we consider the rel promoter that transcribes the
toxin-antitoxin pair RelE and RelB. It is one of about 36 toxin-
antitoxin systems found on the chromosome, with important
roles in cellular physiology including cellular persistence (31).
When the toxin, RelE, is in excess of its cognate binding
partner, the antitoxin RelB, the toxin causes cellular paralysis
through cleavage of mRNA (32). Interestingly, the antitoxin
protein also contains a DNA binding domain and is a repressor
of its own promoter (33). We similarly performed Sort-Seq,
with cells grown in M9 minimal media. The expression shifts
are shown in Fig. 2B and were consistent with binding by
RNAP and RelBE. In particular, a positive shift was observed
at the binding site for RelBE, and the RNAP binding site
mainly showed a negative shift in expression.

The third promoter, mar, is associated with multiple an-
tibiotic resistance since its operon codes for the transcription
factor MarA, which activates a variety of genes including the
major multi-drug resistance efflux pump, ArcAB-tolC, and
increases antibiotic tolerance (29). The mar promoter is itself
activated by MarA, SoxS, and Rob (via the so-called mar-
box binding site), and further enhanced by Fis, which binds
upstream of this marbox (34). Under standard laboratory
growth it is under repression by MarR (29). We found that
the promoter’s fluorescence was quite dim in M9 minimal me-
dia and instead grew libraries in lysogeny broth (LB) at 30°C
(35). Again, the different features in the expression shift plot
(Fig. 2C) appeared to be consistent with the noted binding
sites. One exception was that the downstream MarR binding
site was not especially apparent. Both positive and negative
expression shifts were observed along its binding site, which
may be due to overlap with other features present including
the native ribosomal binding site. There have also been re-
ported binding sites for CRP, Cra, CpxR/CpxA, and AcrR (1).
However the studies associated with these annotations either
required overexpression of the associated transcription factor,
were computationally predicted, or demonstrated through in
vitro assays and not necessarily expected under the growth
condition considered here.

While each promoter qualitatively showed the expected reg-
ulatory behavior in each expression shift plot, it was important
to show that we could also recover the quantitative features of
binding by each transcription factor. Here we inferred energy
matrices and associated sequence logos for the binding sites of
RNAP, Lacl, CRP, RelBE, MarA, and Fis. These are shown in
Fig. 2A-C and Fig. 5S4, and indeed, agreed well with sequence
logos generated from known genomic binding sites for these
transcription factors (Pearson correlation coefficient 7=0.5-0.9;
see Supplemental Information Section C). For the repressors
RelBE and MarR, there was no data available that character-
ized their sequence specificity with which to compare against.
Here, instead, we validated our data by performing Sort-Seq in
strains where the relBE or marR genes were deleted. In each
case this resulted in a loss of the expression shift associated
with binding by these repressors (Fig. 3), suggesting that the
observed features are due to binding by these transcription
factors.
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Fig. 3. Expression shifts relfect binding by regulatory proteins.
(A) Expression shifts for the rel promoter, but in a Arel genetic back-
ground. Cells were grown in conditions identical to Fig. 2B but do
not show a positive expression shift across the entire RelBE binding
(B) Expression shifts for the mar promoter, but in a AmarR
genetic background. The positive expression shift observed where MarR
is expected to bind is no longer observed. Binding site annotations are
identified in blue for RNAP sites, green for repressor sites, yellow for
activator sites, and gray for ribosomal binding site and start codons.
These annotations refer to the binding sites noted on RegulonDB that
were observed in the Sort-Seq data.

site.

Identification of transcription factors with DN A affin-
ity chromatography and quantitative mass spectrom-
etry.

It was next important to show that DNA affinity chromatog-
raphy could be used to identify transcription factors in E. coli.
In particular, a challenge arises in identifying transcription
factors in most organisms due to their very low abundance.
In E. coli the cumulative distribution in protein copy number
shows that more than half have a copy number less than 100
per cell, with 90% having copy number less than 1,000 per
cell. This is several orders of magnitude below that of many
other cellular proteins (36).

We began by applying the approach to known binding sites
for Lacl and RelBE. For Lacl, which is present in E. coli
in about 10 copies per cell, we used the strongest binding
site sequence, Oid (in vivo K4 ~ 0.05 nM), and the weakest
natural operator sequence, O3 (in vivo Kq =~ 110 nM) (27,
30, 37). In Fig. 4A we plot the protein enrichments from each
transcription factor identified by mass spectrometry. Lacl was
found with both DNA targets, with fold enrichment greater
than 10 in each case, and significantly higher than most of
the proteins detected (indicated by the shaded region, which
represents the 95% probability density region of all proteins
detected, including non-DNA binding proteins). Purification
of Lacl with about 10 copies per cell using the weak O3 binding
site sequence are near the limit of what would be necessary
for most E. coli promoters.

To ensure this success was not specific to Lacl, we also
applied chromatography to the RelBE binding site. RelBE
provides an interesting case since the strength of binding by
RelB to DNA is dependent on whether RelE is bound in com-
plex to RelB (with at least a 100 fold weaker dissociation
constant reported in the absence of RelE (38, 39)). As shown
in Fig. 4B, we found over 100 fold enrichment of both proteins
by mass spectrometry. To provide some additional intuition
into these results we also considered the predictions from a

statistical mechanical model of DNA binding affinity (See
Supplemental Information Section D). As a consequence of
performing a second reference purification, we find that fold en-
richment should mostly reflect the difference in binding energy
between the DNA sequences used in the two purifications, and
be much less dependent on whether the protein was in low or
high abundance within the cell. This appeared to be the case
when considering other E. coli strains with Lacl copy numbers
between about 10 and 1,000 copies per cell (Fig. S5C). Further
characterization of the measurement sensitivity and dynamic
range of this approach is noted in Supplemental Information
Section E.

Sort-Seq discovers regulatory architectures in unan-
notated regulatory regions.

Given that more than half of the promoters in E. coli have no
annotated transcription factor binding sites in RegulonDB, we
narrowed our focus by using several high-throughput studies
to identify candidate genes to apply our approach (40, 41).
The work by Schmidt et al. (41) in particular measured the
protein copy number of about half the E. coli genes across
22 distinct growth conditions. Using this data, we identified
genes that had substantial differential gene expression pat-
terns across growth conditions, thus hinting at the presence
of regulation and even how that regulation is elicited by en-
vironmental conditions (see further details in Supplemental
Information Section A and Fig. S2A-C). On the basis of this
survey, we chose to investigate the promoters of purT, zylE,
and dgoRKADT. To apply Sort-Seq in a more exploratory man-
ner, we considered three 60 bp mutagenized windows spanning
the intergenic region of each gene. While it is certainly pos-

(B)

(A) DNA-TF binding

energy RelB, RelE
103 0\
®
£ 10 Lacl £ 10
g / e target region ¢ N
10!
S .0 ® S
c o s/ /£ 100
GCJ 109 @ ‘ lacZYA promoter z o
= . o 1077 H
Jél : [ / / 6 °
510 relBE promoter a 102
102 107
03 Oid

Lacl target (K, 0id) < K,(03)) RelBE target

Fig. 4. DN A affinity purification and identification of Lacl and
RelBE by mass spectrometry using known target binding sites.
(A) Protein enrichment using the weak O3 binding site and strong
synthetic Oid binding sites of Lacl. Lacl was the most significantly
enriched protein in each purification. The target DNA region was based
on the boxed area of the lac promoter schematic, but with the native O1
sequence replaced with either O3 or Oid. Data points represent average
protein enrichment for each detected transcription factor, measured
from a single purification experiment. (B) For purification using the
RelBE binding site target, both RelB and its cognate binding partner
RelE were significantly enriched. Data points show the average protein
enrichment from two purification experiments. The target binding site is
similarly shown by the boxed region of the rel promoter schematic. Data
points in each purification show the protein enrichment for detected
transcription factors. The gray shaded regions shows where 95% of all
detected protein ratios were found.
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sible that regulatory features will lie outside of this window,
a search of known regulatory binding sites suggest that this
should be sufficient to capture just over 70% of regulatory
features in E. coli and provide a useful starting point (Fig. S6).

The purT promoter contains a simple repression architecture
and is repressed by PurR.

The first of our candidate promoters is associated with expres-
sion of purT, one of two genes found in F. coli that catalyze
the third step in de novo purine biosynthesis (42, 43). Due to a
relatively short intergenic region, about 120 bp in length that
is shared with a neighboring gene yebG, we also performed
Sort-Seq on the yebG promoter (oriented in the opposite direc-
tion (44); see schematic in Fig. 5A). To begin our exploration
of the purT and yebG promoters, we performed Sort-Seq with
cells grown in M9 minimal media with 0.5% glucose. The
associated expression shift plots are shown in Fig. 5A. While
we performed Sort-Seq on a larger region than shown for
each promoter, we only plot the regions where regulation was
apparent.

For the yebG promoter, the features were largely consistent
with prior work, containing a binding sites for LexA and RNAP.
However, we found that the RNAP binding site is shifted 9
bp downstream from what was identified previously through a
computational search (44), demonstrating the ability of our
approach to identify and correct errors in the published record.
We were also able to confirm that the yebG promoter was
induced in response to DNA damage by repeating Sort-Seq
in the presence of mitomycin C (a potent DNA cross-linker
known to elicit the SOS response and proteolysis of LexA (45);
see Fig. STA, B, and D).

Given the role of purT in the synthesis of purines, and the
tight control over purine concentrations within the cell (42),
we performed Sort-Seq of the purT promoter in the presence
or absence of the purine, adenine, in the growth media. In
growth without adenine (Fig. 5A, right plot), we observed two
negative regions in the expression shift plot. Through inference
of an energy matrix, these two features were identified as the
-10 and -35 regions of an RNAP binding site. While these two
features were still present upon addition of adenine, as shown
in Fig. 5B, this growth condition also revealed a putative
repressor site between the -35 and -10 RNAP binding sites,
indicated by a positive shift in expression (green annotation).

Following our strategy to find not only the regulatory se-
quences, but also their associated transcription factors, we
next applied DNA affinity chromatography using this putative
binding site sequence. In our initial attempt however, we
were unable to identify any substantially enriched transcrip-
tion factor (Fig. S7C). With repression observed only when
cells were grown in the presence of adenine, we reasoned that
the transcription factor may require a related ligand in order
to bind the DNA, possibly through an allosteric mechanism.
Importantly, we were able to infer an energy matrix to the
putative repressor site whose sequence-specificity matched that
of the well-characterized repressor, PurR (r=0.82; see Fig. S4).
We also noted ChIP-chip data of PurR that suggests it might
bind within this intergenic region (43). We therefore repeated
the purification in the presence of hypoxanthine, which is a
purine derivative that also binds PurR (46). As shown in
Fig. 5C, we now observed a substantial enrichment of PurR
with this putative binding site sequence. As further validation,
we performed Sort-Seq once more in the adenine-rich growth
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Fig. 5. Sort-Seq distinguishes directional regulatory features and
uncovers the regulatory architecture of the purT promoter. (A)
A schematic is shown for the approximately 120 bp region between the
yebG and purT genes, which code in opposite directions. Expression
shifts are shown for 60 bp regions where regulation was observed for
each promoter, with positions noted relative to the start codon of each
native coding gene. Cells were grown in M9 minimal media with 0.5%
glucose. The -10 and -35 RNAP binding sites of the purT promoter
were determined through inference of an energy matrix and are iden-
tified in blue. (B) Expression shifts for the purT promoter, but in
M9 minimal media with 0.5% glucose supplemented with adenine (100
pg/ml). A putative repressor site is annotated in green. (C) DNA
affinity chromatography was performed using the identified repressor
site and protein enrichment values for transcription factors are plotted.
Cell lysate was produced from cells grown in M9 minimal media with 0.5
% glucose. Binding was performed in the presence of hypoxanthine (10
pg/ml). Error bars represent the standard error of the mean, calculated
using log protein enrichment values from three replicates, and the gray
shaded region represents 95% probability density region of all protein
detected. (D) Identical to (B) but performed with cells containing a
ApurR genetic background. (E) Summary of regulatory binding sites
and transcription factors that bind within the intergenic region between
the genes of yebG and purT. Energy weight matrices and sequence logos
are shown for the PurR repressor and RNAP binding sites. Data was
fit to a thermodynamic of simple repression, yielding energies in units
of kB T.

condition, but in a ApurR strain. In the absence of PurR, the
putative repressor binding site disappeared (Fig. 5D), which
is consistent with PurR binding at this location.

In Fig. 5E we summarize the regulatory features between
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Fig. 6. Sort-Seq identifies a set of activator binding sites that drive expression of RNAP at the zylE promoter. (A) Expression shifts
are shown for the zylE promoter, with Sort-Seq performed on cells grown in M9 minimal media with 0.5% xylose. The -10 and -35 regions of an
RNAP binding site (blue) and a putative activator region (orange) are annotated. (B) DNA affinity chromatography was performed using the
putative activator region and protein enrichment values for transcription factors are plotted. Cell lysate was generated from cells grown in M9
minimal media with 0.5% xylose and binding was performed in the presence of xylose supplemented at the same concentration as during growth.
Error bars represent the standard error of the mean, calculated using log protein enrichment values from three replicates. The gray shaded region
represents 95% probability density region of all proteins detected. (C) An energy matrix was inferred for the region upstream of the RNAP binding
site. The associated sequence logo is shown above the matrix. Two binding sites for XylR were identified (see also Fig. S4 and Fig. S7F) along
with a CRP binding site. (D) Summary of regulatory features identified at zylE promoter, with the identification of an RNAP binding site and

tandem binding sites for XylR and CRP.

the coding genes of purT and yebG, including the new features
identified by Sort-Seq. With the appearance of a simple repres-
sion architecture (47) for the purT promoter, we extended our
analysis by developing a thermodynamic model to describe
repression by PurR. This enabled us to infer the binding ener-
gies of RNAP and PurR in absolute kg7 energies (48), and
we show the resulting model in Fig. 5E (see additional details
in Supplemental Information Section Information H.3.4).

The xzylE operon is induced in the presence of xylose, mediated
through binding of XylR and CRP.
The next unannotated promoter we considered was associated
with expression of zylE, a xylose/proton symporter involved in
uptake of xylose. From our analysis of the Schmidt et al. (41)
data, we found that zylE was sensitive to xylose and proceeded
by performing Sort-Seq in cells grown in this carbon source.
Interestingly, the promoter exhibited essentially no expression
in other media (Fig. STE). We were able to locate the RNAP
binding site between -80 bp and -40 bp relative to the zylE gene
(Fig. 6A, annotated in blue). In addition, the entire region
upstream of the RNAP appeared to be involved in activating
gene expression (annotated in orange in Fig. 6A), suggesting
the possibility of multiple transcription factor binding sites.
We applied DNA affinity chromatography using a DNA
target containing this entire upstream region. Due to the
stringent requirement for xylose to be present for any mea-
surable expression, xylose was supplemented in the lysate
during binding with the target DNA. In Fig. 6B we plot the
enrichment ratios from this purification and find XylIR to be
most significantly enriched. From an energy matrix inferred
for the entire region upstream of the RNAP site, we were able
to identify two correlated 15 bp regions (dark yellow shaded
regions in Fig. 6C). Mutations of the XylR protein have been
found to diminish transport of xylose (49), which in light of
our result, may be due in part to a loss of activation and ex-
pression of this xylose/proton symporter. These binding sites
were also similar to those found on two other promoters known
to be regulated by XylR (zylA and zylF promoters), whose
promoters also exhibit tandem XylR binding sites and strong

binding energy predictions with our energy matrix (Fig. S7F).

Within the upstream activator region in Fig. 6A there still
appeared to be a binding site unaccounted for with these tan-
dem XylR binding sites. From the energy matrix, we were
further able to identify a binding site for CRP, which is noted
upstream of the XylR binding sites in Fig. 6C. While we did
not observe a significant enrichment of CRP in our protein pu-
rification, the most energetically favorable sequence predicted
by our model, TGCGACCNAGATCACA, closely matches the
CRP consensus sequence of TGTGANNNNNNTCACA. In
contrast to the lac promoter, binding by CRP here appears
to depend more on the right half of the binding site sequence.
CRP is known to activate promoters by multiple mechanisms
(50), and CRP binding sites have been found adjacent to the
activators XylR and AraC (49, 51), in line with our result.
While further work will be needed to characterize the spe-
cific regulatory mechanism here, it appears that activation of
RNAP is mediated by both CRP and XylR and we summarize
this result in Fig. 6D (and considered further in Supplemental
Information Section H.3.4).

The dgoRKADT promoter is auto-repressed by DgoR, with
transcription mediated by class II activation by CRP.

As a final illustration of the approach developed here, we con-
sidered the unannotated promoter of dgoRKADT. The operon
codes for D-galactonate-catabolizing enzymes; D-galactonate
is a sugar acid that has been found as a product of galac-
tose metabolism (52). We began by measuring expression
from a non-mutagenized dgoRKADT promoter reporter to
glucose, galactose, and D-galactonate. Cells grown in galac-
tose exhibited higher expression than in glucose, as found by
Schmidt et al. (41), and even higher expression when cells
were grown in D-galactonate (Fig. S8A). This likely reflects
the physiological role provided by the genes of this promoter,
which appear necessary for metabolism of D-galactonate. We
therefore proceeded by performing Sort-Seq with cells grown
in either glucose or D-galactonate, since these appeared to
represent distinct regulatory states, with expression low in
glucose and high in D-galactonate. Expression shift plots from
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Fig. 7. The dgoRKADT promoter is induced in the presence of D-galactonate due to loss of repression by DgoR and activation by
CRP. (A) Expression shifts due to mutating the dgoRKADT promoter are shown for cells grown in M9 minimal media with either 0.5% glucose
(top) or 0.23% D-galactonate (bottom). Regions identified as RNAP binding sites (-10 and -35) are shown in blue and putative activator and
repressor binding sites are shown in orange and green, respectively. (B) DNA affinity purification was performed targeting the region between -145
to -110 of the dgoRKADT promoter. The transcription factor DgoR was found most enriched among the transcription factors plotted. Error
bars represent the standard error of the mean, calculated using log protein enrichment values from three replicates, and the gray shaded region
represents 95% probability density region of all proteins detected. (C) Sequence logos were inferred for the most upstream 60 bp region associated
with the upstream RNAP binding site annotated in (A). Multiple RNAP binding sites were identified using Sort-Seq data performed in a AdgoR
strain, grown in M9 minimal media with 0.5% glucose. (further detailed in Fig. S8). Below this, a sequence logo was also inferred using data
from Sort-Seq performed on wild-type cells, grown in D-galactonate, identifying a CRP binding site (class II activation (50)). (D) Expression
shifts are shown for the dgoRKADT promoter when performed in a AdgoR genetic background, grown in 0.5% glucose. This resembles growth in
D-galactonate, suggesting D-galactonate may act as an inducer for DgoR. (E) Summary of regulatory features identified at dgoRKADT promoter,
with the identification of multiple RNAP binding sites, and binding sites for DgoR and CRP. The interaction energy between CRP and RNAP,
ei, was inferred to be —7. 3+1 ngT where the superscripts and subscripts represent the upper and lower bounds of the g5th percentile of the
parameter value distribution.

the AdgoR strain grown in glucose, we no longer observe the
positive expression shift between -140 bp and -110 bp. This
suggests that DgoR may be induced by D-galactonate or a re-
lated metabolite. However, in comparison with the expression
shifts in the AdgoR strain grown in glucose, there were some
notable differences in the region between -160 bp and -140
bp. Here we find evidence for another CRP binding site. The
sequence logo identifies the sequence TGTGA (Fig. 7C, bot-
tom logo), which matches the left side of the CRP consensus
sequence. In contrast to the lac and zylE promoters however,
the right half of the binding site directly overlaps with where
we would expect to find a -35 RNAP binding site. This type
of interaction by CRP has been previously observed and is
defined as class II CRP dependent activation (50), though this
sequence-specificity has not been previously described.

each growth conditions are shown in Fig. 7TA.

We begin by considering the results from growth in glucose
(Fig. 7A, top plot). Here we identified an RNAP binding site
between -30 bp and -70 bp, relative to the native start codon
for dgoR (Fig. 7B). Another distinct feature was a positive
expression shift in the region between -140 bp and -110 bp,
suggesting the presence of a repressor binding site. Apply-
ing DNA affinity chromatography using this target region we
observed an enrichment of DgoR (Fig. 7B), suggesting that
the promoter is indeed under repression, and regulated by
the first coding gene of its transcript. As further validation
of binding by DgoR, the positive shift in expression was no
longer observed when Sort-Seq was repeated in a AdgoR strain
(Fig. 7D and Fig. S8C). We also were able to identify addi-
tional RNAP binding sites that were not apparent due to
binding by DgoR. While only one RNAP -10 motif is clearly
visible in the sequence logo shown Fig. 7C (top sequence logo;
TATAAT consensus sequence), we used simulations to demon-
strate that the entire sequence logo shown can be explained
by the convolution of three overlapping RNAP binding sites

In order to isolate and better identify this putative CRP
binding site we repeated Sort-Seq in E. coli strain JK10, grown
in 500 uM cAMP. Strain JK10 lacks adenlyate cyclase (cyaA)
and phosphodiesterase (cpdA), which are needed for cAMP
synthesis and degradation, respectively, and is thus unable to

(See Supplemental Information Section D and Fig. S8F).

Next we consider the D-galactonate growth condition
(Fig. 7TA, bottom plot). Like in the expression shift plot for

control intracellular cAMP levels necessary for activation by
CRP (derivative of TK310 (37)). Growth in the presence of
500 uM cAMP provided strong induction from the dgoRKADT
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promoter and resulted in a sequence logo at the putative CRP
binding site that even more clearly resembled binding by CRP
(Fig. S8E). This is likely because expression is now dominated
by the CRP activated RNAP binding site. Importantly, this
data allowed us to further infer the interaction energy between
CRP and RNAP, which we estimate to be -7.3 kg7 (further
detailed in Supplemental Information Section H.3.4). We
summarize the identified regulatory features in Fig. 7E.

Discussion

We have established a systematic procedure for dissecting the
functional mechanisms of previously uncharacterized regula-
tory sequences in bacteria. A massively parallel reporter assay,
Sort-Seq (12), is used to first elucidate the locations of func-
tional transcription factor binding sites. DNA oligonucleotides
containing these binding sites are then used to enrich the
cognate transcription factors and identify them by mass spec-
trometry analysis. Information-based modeling and inference
of energy matrices that describe the DNA binding specificity
of regulatory factors provide further quantitative insight into
transcription factor identity and the growth condition depen-
dent regulatory architectures.

To validate this approach we examined four previously
annotated promoters of lac, rel, mar, and yebG, with our results
consistent with established knowledge (12, 27, 29, 30, 35, 39).
For the yebG promoter, however, our approach corrected an
error in a previous annotation. Importantly, we find that
DNA affinity chromatography experiments on these promoters
were highly sensitive. In particular, Lacl was unambiguously
identified with the weak O3 binding site, even though Lacl is
present in only about 10 copies per cell (30). Emboldened by
this success, we then studied promoters having little or no prior
regulatory annotation: purT, zylE, and dgoR. Here our analysis
led to a collection of new regulatory hypotheses. For the purT
promoter, we identified a simple repression architecture (47),
with repression by PurR. The zylF promoter was found to
undergo activation only when cells are grown in xylose, likely
due to allosteric interaction between the activator XylR and
xylose, and activation by CRP (49, 51). Finally, in the case
of dgoR, the base-pair resolution allowed us to tease apart
overlapping regulatory binding sites, identify multiple RNAP
binding sites along the length of the promoter, and infer further
quantitative detail about the interaction between the newly
identified binding sites for CRP and RNAP. We view these
results as a critical first step in the quantitative dissection of
transcriptional regulation, which will ultimately be needed for
a predictive understanding of how such regulation works.

An important aspect of the presented approach is that it
is readily parallelized and scalable. There are a number of
ways to increase the resolution and throughput. Microarray-
synthesized promoter libraries should allow multiple loci to
be studied simultaneously. Landing pad technologies for chro-
mosomal integration (53) should enable massively parallel
reporter assays to be performed in chromosomes instead of on
plasmids. Techniques that combine these assays with transcrip-
tion start site readout (54) may further allow the molecular
regulators of overlapping RNAP binding sites to be decon-
volved, or the contributions from separate RNAP binding
sites, like those observed on the dgoR promoter, to be better
distinguished. Although our work was directed toward reg-
ulatory regions of E. coli, there are no intrinsic limitations

that restrict the analysis to this organism. Rather, it should
be applicable to any bacterium that supports efficient trans-
formation by plasmids. And although we have focused on
bacteria, our general strategy should be feasible in a number
of eukaryotic systems — including human cell culture — using
massively parallel reporter assays (13-15) and DNA-mediated
protein pull-down methods (20, 21) that have already been
established.

Materials and Methods

See Supplemental Information Section I for extended experi-
mental details.

Bacterial strains.

All E. coli strains used in this work were derived from K-12
MG1655, with deletion strains generated by the lambda red
recombinase method (55). In the case of deletions for lysA
(AlysA::kan), purR (ApurR:kan), and zylE (AzylE::kan),
strains were obtained from the Coli Genetic Stock Center
(CGSC, Yale University, CT, USA) and transferred into a
fresh MG1655 strain using P1 transduction. The others were
generated in house and include the following deletion strains:
AlaclZY A, Arel BE::kan, AmarR::kan, AdgoR::kan (see Sup-
plemental Information Section I.1 for details on strain con-
struction).

Sort-Seq.

Mutagenized single-stranded oligonucleotide pools were pur-
chased from Integrated DNA Technologies (Coralville, TA),
with a target mutation rate of 9%. Note that in the case of
the lacZ promoter, the library is identical to that used in the
experiments of Razo-Mejia et al. (56), and had a mutation
rate of approximately 3%. Library oligonucleotides were PCR,
amplified and inserted into the PCR amplified plasmid back-
bone (i.e. vector) of pJK14 (SC101 origin) (12) by Gibson
assembly and electroporated into cells following drop dialysis
in water.

Cells were grown to saturation in LB and then diluted
1:10,000 into the appropriate growth media for the promoter
under consideration. Upon reaching an OD600 of about 0.3,
the cells were washed two times with chilled PBS by spinning
down the cells at 4000 rpm for 10 minutes at 4°C and diluted
to an OD of 0.1-0.15. A Beckman Coulter MoFlo XDP cell
sorter was used to sort cells by fluorescence, with 500,000 cells
collected into each of the four bins. Sorted cells were then
re-grown overnight in 10 ml of LB media, under kanamycin
selection. The plasmid in each bin were miniprepped following
overnight growth (Qiagen, Germany) and PCR was used to
amplify the mutated region from each plasmid for Illumina
sequencing (see Supplemental Information Section 1.3 and 1.4
for additional Sort-Seq and sequencing details, respectively).
Details on constructing expression shift plots and the model
inference that was performed are provided in Supplemental
Information Section H.

DNA affinity chromatography.

SILAC labeling (26) was implemented by growing cells in
either the stable isotopic form of lysine (**CgHi4'°N20O2),
referred to as the heavy label, or natural lysine, referred to as
the light label. Cell lysates were prepared using AlysA cells.
For each heavy and light labelled cells, 500 ml M9 minimal
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media was inoculated 1:5,000 with an overnight LB culture of
AlysA cells, and grown to an OD600 of ~ 0.6 (supplemented
with the appropriate lysine; 40 pg/ml). Cultures were pelleted,
lyse using a Cell Disruptor (CF Range, Constant Systems Ltd.,
UK) and concentrated to ~150 mg/ml using Amicon Ultra-15
centrifugation units (3kDa MWCO, Millipore).

DNA affinity chromatography was performed by incubat-
ing cell lysate with magnetic beads (Dynabeads MyOne T1,
ThermoFisher, Waltham, MA) containing tethered DNA. The
DNA was tethered through a linkage between streptavidin on
the beads and biotin on the DNA. Single-stranded DNA was
purchased from Integrated DNA Technologies with the biotin
modification on the 5’ end of the oligonucleotide sense strand.
Cell lysates were incubated on a rotating wheel with the DNA
tethered beads overnight at 4°C. Beads were washed three
times using lysis buffer and once more with NEB Buffer 3.1
(New England Biolabs, MA, USA). Both purifications (with
the target DNA and reference control) were combined by resus-
pending in 50 L. NEB Buffer 3.1, and the DNA was cleaved by
adding 10 pl of the restriction enzyme PstI (100,000 units/ml,
New England Biolabs targeting a CTGCAG sequence on the
DNA) and incubating for 1.5 hours at 25°C. The beads were
then removed and the samples prepared for mass spectrometry
by in-gel digestion with endoproteinase Lys-C.

LC-MS/MS analysis and protein quantitation.

Liquid chromatography tandem-mass spectrometry (LC-
MS/MS) experiments were carried out as previously described
(57) and further detailed in supplemental experimental de-
tails. Thermo RAW files were processed using MaxQuant (v.
1.5.3.30) (58). Spectra were searched against the UniProt E.
coli K-12 database (4318 sequences) as well as a contaminant
database (256 sequences). Additional details are provided in
Supplemental Information Section 1.5. To calculate the overall
protein ratio, the non-normalized protein replicate ratios were
log transformed and then shifted so that the median protein
log ratio within each replicate was zero (i.e., the median pro-
tein ratio was 1:1). The overall experimental log ratio was
then calculated from the average of the replicate ratios.

Code and data availability.

All code used for processing data and plotting, as well as the
final processed data are available upon request. Thermo RAW
files for mass spectrometry are available on the jJPOSTrepo
repository (59) under accession code PXD007892. Sort-Seq
sequencing files are available on the Sequence Read Archive
under accession code SRP121362.
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