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Abstract 1 
 2 

Objective: We sought to assess whether genetic risk factors for atrial fibrillation can 3 

explain cardioembolic stroke risk.  4 

 5 

Methods: We evaluated genetic correlations between a prior genetic study of AF and 6 

AF in the presence of cardioembolic stroke using genome-wide genotypes from the 7 

Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 8 

28,026 referents). We tested whether a previously-validated AF polygenic risk score 9 

(PRS) associated with cardioembolic and other stroke subtypes after accounting for 10 

AF clinical risk factors.    11 

 12 

Results: We observed strong correlation between previously reported genetic risk for 13 

AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 14 

0.76, respectively, across SNPs with p < 4.4 x 10-4 in the prior AF meta-analysis). An 15 

AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke 16 

(odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45x10-48), explaining 17 

~20% of the heritable component of cardioembolic stroke risk. The AF PRS was also 18 

associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no 19 

other primary stroke subtypes (all p > 0.1). 20 

 21 

Conclusions: Genetic risk for AF is associated with cardioembolic stroke, independent 22 

of clinical risk factors. Studies are warranted to determine whether AF genetic risk 23 

can serve as a biomarker for strokes caused by AF. 24 

 25 

  26 
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Introduction 1 
 2 

Atrial fibrillation affects nearly 34 million individuals worldwide1 and is associated with 3 

a five-fold increased risk of ischemic stroke,2 a leading cause of death and disability.3,4 4 

Atrial fibrillation promotes blood clot formation in the heart which can embolize 5 

distally, and is a leading cause of cardioembolism. Secondary prevention of 6 

cardioembolic stroke is directed at identifying atrial fibrillation as a potential cause, 7 

and initiating anticoagulation to prevent recurrences. Yet atrial fibrillation can remain 8 

occult even after extensive workup owing to the paroxysmal nature and fact that it 9 

can be asymptomatic. Since both atrial fibrillation and stroke are heritable, and since 10 

there is a compelling clinical need to determine whether stroke survivors have atrial 11 

fibrillation as an underlying cause, we sought to determine whether genetic risk of 12 

cardioembolic stroke can be approximated by measuring genetic susceptibility to 13 

atrial fibrillation. 14 

 15 

Recent genome-wide association studies (GWAS) have demonstrated that both atrial 16 

fibrillation5 and ischemic stroke6,7 are complex disorders with polygenic architectures. 17 

The top loci for cardioembolic stroke, on chromosome 4q25 upstream of PITX2 and 18 

on 16q22 near ZFHX3, are both leading risk loci for atrial fibrillation.8–10 Despite 19 

overlap in top risk loci, the genetic susceptibility to both atrial fibrillation and 20 

cardioembolic stroke is likely to involve the aggregate contributions of hundreds or 21 

thousands of loci, consistent with other polygenic conditions.11 22 

 23 

To understand whether genetic risk for atrial fibrillation is an important and 24 

potentially useful determinant of overall cardioembolic stroke risk, we analyzed 25 

13,390 ischemic stroke cases and 28,026 referents from the NINDS-Stroke Genetics 26 

Network (SiGN)12 with genome-wide genotyping data. First, we assessed whether 27 

stroke patients with atrial fibrillation have a genetic predisposition to the arrhythmia, 28 

leveraging additional GWAS data from the Atrial Fibrillation Genetics Consortium 29 

(AFGen). Second, we compared genetic risk factors for atrial fibrillation and stroke to 30 

ascertain the extent to which heritable risk of cardioembolic stroke is explained by 31 

genetic risk factors for atrial fibrillation.  32 
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Methods 1 
 2 

The Stroke Genetics Network (SiGN) 3 

 4 

The Stroke Genetics Network (SiGN) was established with the aim of performing the 5 

largest genome-wide association study (GWAS) of ischemic stroke to date. The study 6 

design has been described previously12 and is summarized in the Supplementary 7 

Methods. Briefly, subjects in SiGN were classified into stroke subtypes using the 8 

Causative Classification System (CCS), which subtypes cases through an automated, 9 

web-based system that accounts for clinical data, test results, and imaging 10 

information.13,14 Within CCS, there are two sub-categories: CCS causative, which 11 

does not allow for competing subtypes in a single sample; and CCS phenotypic, which 12 

does. Additionally, ~74% of samples were subtyped using the TOAST subtyping 13 

system.15 After quality control (QC), the SiGN dataset comprised 16,851 ischemic 14 

stroke cases and 32,473 stroke-free controls (Supplementary Methods and 15 

Supplementary Table 1). Here, we analyze only the European- and African-16 

ancestry samples (13,390 cases and 28,026 controls). 17 

 18 

Standard Protocol Approvals, Registrations, and Patient Consents 19 

 20 

All cohorts included in the SiGN dataset received approval from the cohort-specific 21 

ethical standards committee. Cohorts received written informed consent from all 22 

patients or guardians of patients participating in the study, where applicable. Details 23 

on sample collection have been described previously.12  24 
  25 
Identifying atrial fibrillation cases and controls 26 

 27 

We defined atrial fibrillation in SiGN on the basis of five variables available in the CCS 28 

phenotyping system: (i) atrial fibrillation, (ii) paroxysmal atrial fibrillation, (iii) atrial 29 

flutter, (iv) sick sinus syndrome, and (v) atrial thrombus. This definition yielded 3,190 30 

atrial fibrillation cases for analysis. We also defined a strict case set based on “atrial 31 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/239269doi: bioRxiv preprint 

https://doi.org/10.1101/239269
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 

Pulit, Page 7 of 25 

 

fibrillation” only (N = 1,751 cases) for sensitivity analyses (Supplementary 1 

Methods and Supplementary Figure 1). 2 

 3 

From the 28,026 controls, we established a set of 3,861 control individuals in whom 4 

atrial fibrillation was indicated as not present. For the remaining subjects, we 5 

assumed that individuals did not have atrial fibrillation since atrial fibrillation status 6 

for most control samples in SiGN is unknown.    7 

 8 
Genome-wide association testing of ischemic stroke subtypes and atrial fibrillation in 9 

SiGN 10 

 11 

We merged genotype dosages together and kept SNPs with imputation quality > 0.8 12 

and minor allele frequency (MAF) > 1% (Supplementary Methods). We performed 13 

association testing using a linear mixed model implemented in BOLT-LMM.16 We 14 

adjusted the model for the top ten principal components (PCs) and sex, in addition 15 

to the genetic relationship matrix (GRM; Supplementary Methods).16 We 16 

performed GWAS in atrial fibrillation and each of the stroke subtypes available in 17 

SiGN. Results were unadjusted for age, as adjusting for age in the atrial fibrillation 18 

GWAS gave results highly concordant with the age-unadjusted results 19 

(Supplementary Results).  20 

 21 

Heritability calculations 22 

 23 

We calculated additive SNP-based heritability estimates for ischemic stroke, stroke 24 

subtypes, and atrial fibrillation using restricted maximum likelihood implemented in 25 

BOLT-REML (Supplementary Methods).16 26 

 27 

Genetic correlation between atrial fibrillation and ischemic stroke subtypes 28 

 29 

We used summary-level data from a prior Atrial Fibrillation Genetics (AFGen) 30 

Consortium meta-analysis of atrial fibrillation5 to calculate a z-score for each SNP in 31 

that GWAS. Additionally, we calculated a z-score for each SNP from our SiGN GWAS 32 
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of each stroke subtype and atrial fibrillation. As a null comparator, we downloaded 1 

SNP z-scores from a GWAS of educational attainment17 available through LDHub 2 

(http://ldsc.broadinstitute.org/, accessed 11-1-2017). We calculated Pearson’s r 3 

between z-scores from two traits to evaluate correlation (Supplementary Methods 4 

and Supplementary Figure 3). 5 

 6 

Constructing an atrial fibrillation polygenic risk score 7 

 8 

To construct an atrial fibrillation polygenic risk score (PRS), we used SNPs from a 9 

previously-derived atrial fibrillation PRS (Supplementary Methods).18 Briefly, the 10 

PRS was derived from an atrial fibrillation GWAS of 17,931 cases and 115,142 11 

controls.5 This PRS comprised 1,168 SNPs with p < 1 x 10-4 and LD pruned at an r2 12 

threshold of 0.5.18 Of these 1,168 SNPs, we identified 934 SNPs in the SiGN dataset 13 

with imputation info > 0.8 and MAF > 1%. We used these 934 SNPs to construct the 14 

atrial fibrillation PRS in the SiGN dataset. Additional details on the PRS construction 15 

can be found in the Supplementary Methods. 16 

 17 

Testing an atrial fibrillation polygenic risk score in ischemic stroke subtypes 18 

 19 

We tested for association between the atrial fibrillation PRS and stroke subtypes using 20 

logistic regression (Supplementary Methods). We included sex and the top 10 PCs 21 

as additional covariates. We optionally adjusted the association tests for age, 22 

diabetes mellitus, cardiovascular disease, smoking status (current smoker, former 23 

smoker, or never smoked), and hypertension. 24 

 25 

We calculated the variance explained by the atrial fibrillation PRS in cardioembolic 26 

stroke by constructing a model in BOLT-REML that consisted of: (1) a variance 27 

component made up of SNPs for the GRM, and (2) a variance component made up of 28 

SNPs from the PRS (Supplementary Methods). 29 

 30 

Data availability 31 

 32 
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Code, supporting data, and downloadable supplemental tables are available here: 1 

https://github.com/UMCUGenetics/Afib-Stroke-Overlap. The Supplementary 2 

Information contains additional information regarding data access, methods, and 3 

links to summary-level data.  4 

 5 

  6 
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Results 1 

 2 

We began by testing our ability to rediscover known atrial fibrillation genetic 3 

associations in the SiGN dataset, assembled to study the genetics of ischemic stroke. 4 

We ran a genome-wide association study (GWAS) in SiGN using 3,190 cases with 5 

atrial fibrillation or paroxysmal atrial fibrillation, as well as other diagnoses suggestive 6 

of underlying atrial fibrillation19,20 (Methods, Table 1 and Supplementary Table 1) 7 

and 28,026 controls (Supplementary Figure 1). We found the top-associated SNPs 8 

to be highly concordant with a prior GWAS of atrial fibrillation performed by the Atrial 9 

Fibrillation Genetics (AFGen) Consortium (Supplementary Table 2). Adjusting the 10 

GWAS for age did not substantially change our findings (r = 0.83 between SNP effects 11 

from the age-unadjusted and age-adjusted GWAS). 12 

 13 

Extending our analysis beyond these top associations, we next assessed whether 14 

stroke patients with atrial fibrillation have a similar overall genetic predisposition to 15 

the arrhythmia as seen in the independent AFGen GWAS. Additionally, we assessed 16 

the overlap between genetic predisposition to atrial fibrillation and each stroke 17 

subtype, allowing for the known phenotypic concordance between cardioembolic 18 

stroke and atrial fibrillation (89.5% of cardioembolic stroke cases in SiGN also have 19 

atrial fibrillation, Supplementary Table 1). We performed a series of GWAS in the 20 

SiGN data for atrial fibrillation and each of the stroke subtypes using BOLT-LMM16 21 

(Methods), and calculated the z-score (beta/standard error) of each SNP in each 22 

phenotype. We then used summary-level results available from the prior 23 

(independent) GWAS of atrial fibrillation5 (from AFGen) and calculated the z-score for 24 

each SNP in that dataset.  25 

 26 

Measuring Pearson’s correlation (r) between AFGen z-scores and z-scores from the 27 

atrial fibrillation GWAS in SiGN, we found only a modest correlation (r = 0.07 across 28 

~7.8M SNPs, Figure 1). However, when we iteratively subsetted the AFGen GWAS 29 

results by the (absolute values of) z-scores of the SNPs, we found that correlation 30 

with the atrial fibrillation GWAS in SiGN increased as the z-score threshold became 31 

more stringent. For example, for those ~4.5M SNPs with |z| > 1 in AFGen, correlation 32 
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with atrial fibrillation SNPs in SiGN was 0.12; for those ~1.9M SNPs with |z| > 3.5 in 1 

AFGen, correlation with the SiGN atrial fibrillation GWAS rose to 0.77 (Figure 1 and 2 

Supplementary Table 3). These correlations, calculated to include even modestly-3 

associated SNPs, indicate that atrial fibrillation in AFGen and atrial fibrillation in stroke 4 

(SiGN) share a large proportion of genetic risk factors. Removing ±2Mb around the 5 

PITX2 and ZFHX3 loci only modestly impacted the correlation between AFGen and 6 

atrial fibrillation in SiGN (r = 0.63 for SNPs with |z| > 3.5; Supplementary Figure 7 

2 and Supplementary Table 3). Correlations between AFGen and cardioembolic 8 

stroke in SiGN were unsurprisingly highly similar to that of the results with atrial 9 

fibrillation in SiGN (r = 0.77 for AFGen SNPs with |z| > 3.5), likely due to the high 10 

concordance between the atrial fibrillation and cardioembolic stroke phenotypes 11 

(Figure 1 and Supplementary Figure 3). 12 

 13 
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Figure 1 | Genetic correlation between atrial fibrillation in the Atrial Fibrillation Genetics (AFGen) 1 
Consortium meta-analysis and atrial fibrillation and ischemic stroke subtypes analysed in SiGN. Pearson’s 2 
r correlation between SNP z-scores in the AFGen GWAS of atrial fibrillation and in GWAS of selected traits performed 3 
in the SiGN data. (a) GWAS of atrial fibrillation in AFGen and in SiGN correlate with increasing strength as SNP z-4 
scores in AFGen increase. Correlation with educational attainment (performed separately, shown here as a null 5 
comparator) remains approximately zero across all z-score thresholds. (b) SNP effects in AFGen also correlate strongly 6 
with cardioembolic stroke in SiGN, but not with the other primary stroke subtypes. (c) Undetermined subtypes of 7 
stroke also show modest correlation to the genetic architecture of atrial fibrillation in AFGen. Panels d-f show genome-8 
wide z-score distributions underlying correlations. 9 
 10 

 11 

 12 

 13 
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Continuing this analysis across the other stroke subtypes (large artery 1 

atherosclerosis, small artery occlusion, and undetermined stroke; Figure 1), we 2 

found near-zero correlation between AFGen and either large artery atherosclerosis or 3 

small artery occlusion (Figure 1) indicating no genetic overlap between the 4 

phenotypes. However, the correlation between atrial fibrillation and the 5 

undetermined stroke subtypes (a highly heterogeneous subset of cases21,22 that 6 

cannot be classified with standard subtyping systems13,15) increased steadily as we 7 

partitioned the AFGen data by z-score (all undetermined vs. AFGen r = 0.04 for 8 

AFGen SNPs with |z| > 1 and r = 0.16 for AFGen SNPs with |z| > 3.5; Figure 1 and 9 

Supplementary Table 3), indicating that genome-wide, there is residual genetic 10 

correlation between atrial fibrillation and the undetermined stroke categories, some 11 

of which could represent causal atrial fibrillation stroke mechanisms in that subgroup. 12 

As an additional null comparator, we performed correlations between the AFGen 13 

results with z-scores derived from the latest GWAS of educational attainment17 and 14 

found that correlation remained at approximately zero regardless of the z-score 15 

threshold used (Figure 1 and Supplementary Table 3). 16 

 17 

To further understand the overlap between genetic risk factors for atrial fibrillation 18 

and cardioembolic stroke and to evaluate the degree to which cardioembolic stroke 19 

is comprised of risk factors beyond those for atrial fibrillation, we performed a 20 

restricted maximum likelihood analysis implemented in BOLT-REML16 to estimate 21 

SNP-based heritability of atrial fibrillation and cardioembolic stroke. Using 22 

phenotypes derived from the CCS subtyping algorithm23 (Methods), we estimated 23 

heritability of atrial fibrillation and cardioembolic stroke at 20.0% and 19.5%, 24 

respectively. These estimates are consistent with previous estimates in larger 25 

samples (Supplementary Figure 4),24,25 and the similar heritabilities suggest that 26 

cardioembolic stroke does not have a substantial heritable component beyond the 27 

primary atrial fibrillation risk factor. For comparison, we calculated heritability in the 28 

other stroke subtypes15 and found estimates to be similarly modest (range: 15.5% - 29 

23.0%; Supplementary Figures 4-6 and Supplementary Table 4). 30 

 31 
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Up to this point, our results indicated that atrial fibrillation in ischemic stroke is 1 

genetically similar to that discovered in prior genetic studies of atrial fibrillation alone, 2 

and that the bulk of the genetic risk for cardioembolic stroke appears attributable to 3 

atrial fibrillation genetic risk factors. Next, we sought to explicitly test what proportion 4 

of cardioembolic stroke risk could be explained by atrial fibrillation loci, independent 5 

of known clinical risk factors for atrial fibrillation. First, we identified SNPs from an 6 

atrial fibrillation polygenic risk score (PRS) independently derived from the AFGen 7 

GWAS5 (Methods). Of the 1,168 SNPs used to generate this pre-established PRS, 8 

we identified 934 in the SiGN dataset with imputation quality > 0.8 and minor allele 9 

frequency >1%. We computed the PRS per individual (Methods), weighting the 10 

imputed dosage of each risk allele by the effect of the SNP (i.e., the beta coefficient) 11 

as reported in AFGen5.  12 

 13 

We tested the association of the atrial fibrillation PRS with cardioembolic stroke, using 14 

a logistic regression and adjusting for the top ten principal components and sex 15 

(Methods). As expected from our earlier results, we found the PRS to be strongly 16 

associated with cardioembolic stroke (odds ratio (OR) per 1 standard deviation (sd) 17 

of the PRS = 1.93 [95% confidence interval (CI): 1.34 - 1.44], p = 1.01 x 10-65; 18 

Figure 2 and Supplementary Table 5), confirming the high genetic concordance 19 

of these phenotypes across SNPs which, individually, confer only a modest average 20 

association with atrial fibrillation. Next, we adjusted the association model for clinical 21 

covariates associated with atrial fibrillation including age, diabetes mellitus, 22 

cardiovascular disease, smoking, and hypertension.26 Using a (smaller) set of cases 23 

and controls with complete clinical risk factor information, we found that inclusion of 24 

these clinical risk factors in the model only modestly reduced the PRS signal in 25 

cardioembolic stroke (OR per 1 sd = 1.40 [95% CI: 1.34 - 1.47], p = 1.45 x 10-48; 26 

Supplementary Tables 5-7). These results indicate a strong relationship between 27 

atrial fibrillation genetic risk factors and cardioembolic stroke risk, independent of the 28 

clinical factors that associate with atrial fibrillation. Expanding the set of SNPs used 29 

to construct the PRS to the original 934 SNPs ±25kb, ±50kb, and ±100kb (Methods) 30 

revealed a persistently strong, though somewhat attenuated, association between 31 

the PRS and cardioembolic stroke (PRS including SNPs within 100kb, p = 4.47 x 10-32 
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44, Supplementary Table 6). None of the other stroke subtypes were significantly 1 

associated with the atrial fibrillation PRS (all p > 0.013, Figure 2 and 2 

Supplementary Figure 6).  3 

 4 

Because atrial fibrillation status was missing for most controls in the SiGN dataset, 5 

we performed sensitivity analyses using only the 3,861 controls confirmed as having 6 

no atrial fibrillation. While reducing the set of controls to this refined group did not 7 

substantially change results for the primary stroke subtypes, we found the atrial 8 

fibrillation PRS was modestly associated (p < 5 x 10-3, after adjusting for five 9 

subtypes and two control groups) with the overall undetermined subtype (OR per 1 10 

sd = 1.07 [95% CI: 1.02 - 1.13], p = 4.15 x 10-3) (Figure 2 and Supplementary 11 

Table 5). Further examination of the two mutually exclusive subgroups of the 12 

undetermined group revealed that the PRS associated significantly with the 13 

incomplete/unclassified categorization (OR per 1 sd = 1.09 [95% CI: 1.03 - 1.16], p 14 

= 3.17 x 10-3) (Figure 2) but not with cryptogenic/cardioembolic minor (OR per 1 sd 15 

= 1.06 [95% CI: 1.00 - 1.13], p = 5.10 x 10-2). Correcting for clinical covariates only 16 

modestly changed the signal in the incomplete/unclassified phenotype (p = 9.7 x 10-17 
3, Figure 2), supporting the robustness of the observed association, independent of 18 

clinical risk factors. 19 

 20 

Lastly, we created a model in BOLT-LMM, fitting two genetic variance components: 21 

one component including SNPs for the genetic relationship matrix, and the second 22 

component including the original PRS SNPs from the atrial fibrillation PRS (including 23 

±100kb around these SNPs, to include a sufficient number of markers to estimate 24 

variance explained). We found that the SNPs from the atrial fibrillation PRS explained 25 

4.1% of the total (20.0%) heritability in atrial fibrillation. In evaluating variance 26 

explained in cardioembolic stroke, we found a nearly identical result: the component 27 

representing the atrial fibrillation risk score explained 4.5% (s.e. = 1.00%) of the 28 

total 19.5% genetic heritability in cardioembolic stroke. Thus, atrial fibrillation 29 

genetic risk accounts for 23.1%, or approximately one-fifth, of the total heritability 30 

of cardioembolic stroke. 31 
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Figure 2 | Association of atrial fibrillation polygenic risk score in ischemic stroke subtypes. We constructed 1 
an independent polygenic risk score (PRS) from atrial fibrillation-associated SNPs identified in the AFGen GWAS, and 2 
tested associations between this PRS and ischemic stroke subtypes using (a) all available referents (N = 28,026) and 3 
(b) referents without atrial fibrillation (N = 3,861). The PRS strongly associated with cardioembolic stroke in both sets 4 
of samples. In the atrial fibrillation-free set of controls (panel b) we observed association of the PRS (p < 5 x 10-3, 5 
after adjusting for five subtypes and two sets of referents; indicated by the dashed dark blue line) with 6 
incomplete/unclassified stroke as well. 7 
 8 
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Discussion 1 
 2 

Our results suggest that individuals with cardioembolic strokes have an enrichment 3 

for atrial fibrillation genetic risk, despite the fact that cardioembolic stroke often 4 

affects older adults with multiple clinical comorbidities27 that could increase risk for 5 

atrial fibrillation due to non-genetic factors. The fact that cardioembolic stroke and 6 

atrial fibrillation share a highly-similar genetic architecture extends our 7 

understanding of the morbid consequences of heritable forms of the arrhythmia. 8 

Furthermore, the observation that atrial fibrillation genetic risk was only associated 9 

with cardioembolic stroke, and (consistently) lacked association in large artery 10 

atherosclerosis or small artery occlusion,28 raises the possibility that atrial fibrillation 11 

genetic risk may be informative in the management of ischemic stroke survivors in 12 

whom the mechanism may be unclear. 13 

 14 

The use of polygenic risk scores for complex traits has proved an efficient means of 15 

understanding how genetic predisposition to diseases can overlap. Given the 16 

onslaught of genotyping data available for common diseases, PRS’s can now be used 17 

to stratify patients by risk (e.g., in breast cancer29,30) or predict outcome (e.g., in 18 

neuropsychiatric disease29). More recently, PRS’s have been used to identify 19 

individuals in the general population with a four-fold risk for coronary disease,31 20 

proposed for inclusion in clinical workups of individuals with early-onset coronary 21 

artery disease,32 and used to identify patients for whom lifestyle changes or statin 22 

intervention would be beneficial.33,34 While previous work has also shown an 23 

association between an atrial fibrillation PRS and cardioembolic stroke,28 we have 24 

extended this work to formally quantify the extent to which an atrial fibrillation PRS 25 

captures genetic risk for cardioembolic stroke. These findings lay the groundwork for 26 

future work that can potentially leverage this overlap to develop atrial fibrillation 27 

PRS’s that could be used to predict individuals at highest risk of cardioembolic stroke 28 

(to improve diagnostic resource allocation) or help distinguish between clinical 29 

subtypes of stroke. 30 

 31 
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Though our analysis was aimed at understanding the genetic overlap between 1 

cardioembolic stroke and atrial fibrillation, we additionally observed genetic 2 

correlation between atrial fibrillation and undetermined stroke, a finding not observed 3 

in a previous investigation of atrial fibrillation PRS in ischemic stroke subtypes, albeit 4 

in a smaller sample.28 Perhaps contrary to expectation, we specifically found the atrial 5 

fibrillation polygenic risk score to be more strongly associated with the subset of 6 

etiology-undetermined strokes with an incomplete clinical evaluation, as opposed to 7 

those with cryptogenic stroke of a presumed, but not demonstrated, embolic source. 8 

These associations could be due to physician biases in diagnostic workups, rather 9 

than supporting a low prevalence of occult atrial fibrillation in presumed embolic 10 

strokes of undetermined source. Identifying stroke patients with atrial fibrillation is 11 

an important clinical challenge, as occult atrial fibrillation is well-known to cause 12 

strokes,35,36 and since such patients are at high risk for recurrent stroke, which is 13 

preventable with anticoagulation.37,38 Together, our findings indicate that atrial 14 

fibrillation genetic risk may augment clinical algorithms to determine stroke etiology, 15 

but will require further study. 16 

 17 

The work presented here benefits from a number of improvements, including 18 

increased sample size; analysis of samples from a multicenter consortium, potentially 19 

enhancing the generalizability of the findings; and use of the CCS subtyping system, 20 

which provides more nuanced phenotyping, particularly in the cryptogenic subtype. 21 

Nevertheless, some limitations remain. Stroke is a heterogeneous condition that 22 

occurs later in life and has high lifetime prevalence (>15%39), features that can 23 

reduce statistical power. Further, sample sizes have lagged behind other GWAS 24 

efforts, a challenge further compounded by subtyping (nearly one-third of all cases 25 

are categorized as undetermined23). Reduced sample sizes impact power for 26 

discovery and make other analytic approaches – such as standard approaches for 27 

measuring trait correlation16 – unfeasible. Also, our sample is primarily comprised of 28 

Euroepan-ancestry samples, and work in non-Europeans, particularly in African-29 

ancestry samples where risk of stroke is double that of European samples, is crucial. 30 

Finally, the current analysis does not analyze rare variation, which also likely 31 

contributes to disease susceptibility.5   32 
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 1 

We have shown that the cumulative genetic risk for atrial fibrillation in individuals 2 

with a stroke is similar to that reported in a larger population-based cohort.25 3 

Genome-wide variation related to atrial fibrillation is substantially associated with 4 

cardioembolic stroke risk. Moreover, atrial fibrillation genetic risk was specific for 5 

cardioembolic stroke, and was not associated with the other primary stroke subtypes. 6 

The observation that atrial fibrillation genetic risk associated with strokes of 7 

undetermined cause supports the notion that undetected atrial fibrillation underlies 8 

a proportion of stroke risk in these individuals. Further work will need to incorporate 9 

emerging discoveries of rare genetic variants in atrial fibrillation, and explore the 10 

potential for genetic risk tools, including PRS’s performed via clinical-grade 11 

genotyping, to assist in the diagnostic workup of individuals with ischemic stroke. 12 

  13 
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Tables 1 
 2 
Table 1 | Atrial fibrillation and stroke cases in SiGN. Of the 13,390 stroke cases 3 
available in the SiGN dataset, a total of 3,190 cases had atrial fibrillation or other 4 
suggestive diagnoses. While the majority of these cases were subtyped as having a 5 
cardioembolic stroke, a fraction was distributed among the other stroke subtypes. 6 
Samples can appear more than once per row (i.e., have more than one atrial 7 
fibrillation diagnosis), but totals represent the number of unique atrial fibrillation 8 
samples in each stroke subtype. There are no subjects with atrial fibrillation or 9 
equivalent subtyped as “cryptogenic/cardioembolic minor” because such a diagnosis 10 
would remove them from this category. 11 
 12 

 Phenotype Total Ischemic stroke subtype 

   Primary subtypes Undetermined subtypes 

   Cardioembolic Large artery 
atherosclerosis 

Small artery 
occlusion 

Incomplete/ 
unclassified 

Cryptogenic/ 
cardioembolic 

minor 

 

Atrial 
fibrillation 1,751 1,495 63 32 151 0 

Paroxysm
al atrial 
fibrillation 

1,315 1,088 52 23 138 0 

Left atrial 
thrombus 48 37 3 3 4 0 

Sick sinus 
syndrome 79 65 5 3 4 0 

Atrial 
Flutter 106 90 4 2 10 0 

 

Total 
atrial 
fibrillation 
cases  

3,190 2,684 123 61 298 0 

 
No atrial 
fibrillation -- 316 2,262 2,201 1,982 2,294 

 13 
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Supplementary Figures 
 
Supplementary Figure 1 | Genome-wide association study (GWAS) of atrial 
fibrillation in SiGN. (A) We performed a GWAS of 3,190 cases with atrial fibrillation, or 
paroxysmal atrial fibrillation, as well as other diagnoses suggestive of underlying atrial 
fibrillation, including left atrial thrombus, sick sinus syndrome, and atrial flutter. We 
additionally included 28,026 referents. We used a linear mixed model and adjusted the model 
for principal components and sex. The majority of atrial fibrillation risk loci identified through 
previous GWAS efforts were identified here at nominal significance or better (see 
Supplementary Table 2). The Manhattan plot only shows QC-passing SNPs with minor allele 
frequency > 1% and imputation quality score > 0.8. (B) Quantile-quantile (QQ) plot indicating 
SNPs stratified by minor allele frequency and the corresponding genomic inflation factor 
(lambda, λ) for each stratum. (C) QQ plot showing SNPs stratified by imputation quality and 
the corresponding lambda for each stratum. Figures D-F are identical to those of A-C, but for 
the analysis performed in atrial fibrillation cases only (N = 1,751). We performed this is an 
internal sensitivity analysis only, to ensure that more broadly defining the atrial fibrillation 
phenotype was not introducing additional phenotypic noise. 
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Supplementary Figure 2 | Genetic correlations between atrial fibrillation and 
ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and 
ischemic stroke subtypes, we calculated Pearson's r between SNP z-scores in the AFGen GWAS 
of atrial fibrillation and in GWAS of ischemic stroke subtypes and atrial fibrillation performed 
here in the SiGN data. Here, we present data identical to that shown in Figure 2 of the main 
manuscript, but removing ±2Mb around the two most significant loci discovered in atrial 
fibrillation and cardioembolic stroke: the region around PITX2 (chromosome 4) and the region 
around ZFHX3 (chromosome 16). (a) Genome wide, atrial fibrillation in AFGen and in SiGN 
correlate with increasing strength as the z-score in AFGen increases. Educational attainment 
is included here as a null comparator. (b) Genetic signal in cardioembolic stroke also correlates 
strongly with atrial fibrillation genetic signal in AFGen, but we do not observe correlation 
between atrial fibrillation and the other primary stroke subtypes. (c) Removing the PITX2 and 
ZFHX3 regions leaves only somewhat modest correlation between the incomplete/unclassified 
undetermined subtype and atrial fibrillation. Panels (d-f) show underlying data.  
 
Correlations restricted to those SNPs used in the polygenic risk score for atrial fibrillation 
were: AFGen vs atrial fibrillation in SiGN, r = 0.78; AFGen vs. cardioembolic stroke in SiGN, 
r = 0.75. 
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Supplementary Figure 3 | Genetic correlation and phenotypic correlation of atrial 
fibrillation and stroke subtypes in SiGN. (a) Using genome-wide SNP effects extracted 
from GWAS of atrial fibrillation, all stroke, and stroke subtypes, we calculated the Pearson’s 
correlation (r) between each pair of available phenotypes (blue indicates strong negative 
correlation; orange indicates strong positive correlation). Here, we show all correlations. 
Correlations are indicated by circle size in the upper half of the square, and the exact 
correlation values are shown in the lower half of the square. 
 
CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, 
undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, 
cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, 
TOAST subtyping system. 
 
a. 
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b. Same correlation calculations as in (a), but this time using the phenotypic data only (and looking in cases only, as all controls 
have the same phenotype). Note that the atrial fibrillation phenotypes and cardioembolic stroke phenotypes are highly correlated 
in the SiGN data (r = 0.83 between atrial fibrillation and cardioembolic stroke as determined by the CCS Causative subtype 
system). 
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CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, 
incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS 
Phenotypic subtyping system; TOAST, TOAST subtyping system.
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Supplementary Figure 4 | Estimated heritability of ischemic stroke subtypes and 
atrial fibrillation. Using all available stroke cases in SiGN, we estimated SNP-based 
heritability of the ischemic stroke subtypes (as sub-typed by the CCS Causative subtyping 
system) and atrial fibrillation (using the subset of 3,190 cases with atrial fibrillation) using 
BOLT-LMM and a genetic relationship matrix of high-quality SNPs converted to best-guess 
genotypes (imputation quality > 0.8, minor allele frequency > 0.01, and pruned at a linkage 
disequilibrium threshold of 0.2). We assumed a trait prevalence of 1% for all phenotypes. We 
found heritability estimates in cardioembolic stroke (green) and atrial fibrillation (yellow) to 
be approximately similar. 
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Supplementary Figure 5 | Heritability of ischemic stroke, its subtypes, and atrial fibrillation. We computed the SNP-
based heritability of all stroke, all stroke subtypes, and atrial fibrillation using BOLT-LMM (top row) and GCTA (bottom row). All 
SNPs used for analysis had a minor allele frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were 
converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes and tested the robustness of ℎ"2 

estimates to SNPs included in the GRM by using four different GRMs: (a) genotyped SNPs only; (b) genotyped, pruned, and 
filtered (see Supplemental Methods); (c) imputed; and (d) imputed, pruned, and filtered. We converted the imputed SNPs to 
hard-call genotypes before performing heritability analyses. Estimates are shown below, including error bars. The underlying data 
for these figures are provided in Supplementary Table 3. 
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LAA, large artery atherosclerosis; CE, cardioembolic stroke; SAO, small artery occlusion; UNDETER, undetermined; INCUNC, 
incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS 
Phenotypic subtyping system; TOAST, TOAST subtyping system.    
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Supplementary Figure 6 | Comparison of heritability estimates from BOLT-LMM and 
GCTA. We computed the heritability of all stroke, all stroke subtypes, and atrial fibrillation 
using BOLT-LMM and GCTA, as shown in Supplementary Figure 2. Below, you will find a 
comparison of the two methods, with BOLT-REML on the x-axis and GCTA estimates on the 
y-axis. Error bars are shown for the respective estimates. 
 
AF, atrial fibrillation; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery 
occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic/CE 
minor; c, CCS Causative; p, CCS Phenotypic; t, TOAST. 
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Supplementary Figure 7 | Association of atrial fibrillation polygenic risk score in ischemic stroke 
subtypes. We constructed a polygenic risk score (PRS) from atrial fibrillation-associated SNPs, and tested 
for association between the score and ischemic stroke subtypes using (a) all available controls (N = 28,026) 
and (b) controls without atrial fibrillation (N = 3,861). All subtypes from all available subtyping systems are 
shown here. The PRS strongly associated to cardioembolic stroke (subtypes highlighted in green font) in both 
sets of controls. In the atrial fibrillation-free set of controls (b) we observed nominal association of the PRS 
to incomplete/unclassified stroke. Undetermined subtypes are indicated in blue font. 

 
CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; 
INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative 
subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system. 



 
 
Supplementary Information: Shared Genetic Contributions to Atrial Fibrillation and Ischemic Stroke Risk 

 Page 14 of 45 

 



 
 
Supplementary Information: Shared Genetic Contributions to Atrial Fibrillation and Ischemic Stroke Risk 

 Page 15 of 45 

Supplementary Tables 
 
Supplementary Table 1 | Atrial fibrillation cases and controls available from the 
Stroke Genetics Network (SiGN) Consortium. 
 
As classified by the CCS Causative system (note that this table is a repeat of Table 1 from 
the main manuscript): 
 

Phenotype Total Cardioembolic 
Large artery 

athero- 
sclerosis 

Small artery 
occlusion Undetermined 

     Incomplete/ 
unclassified 

Cryptogenic/ 
CE minor 

Atrial 
fibrillation 1,751 1,495 63 32 151 0 

Paroxysmal 
atrial 
fibrillation 

1,315 1,088 52 23 138 0 

Left atrial 
thrombus 48 37 3 3 4 0 

Sick sinus 
syndrome 79 65 5 3 4 0 

Atrial 
Flutter 106 90 4 2 10 0 

Total 3,190 2,684 123 61 298 0 
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As classified by the CCS Phenotypic system (note that this system allows a case to be 
classified into more than one subtype): 
 

Phenotype Total Cardioembolic Large artery 
atherosclerosis 

Small artery 
occlusion Undetermined 

Atrial fibrillation 1,751 1,751 161 58 0 

Paroxysmal atrial 
fibrillation 1,315 1,315 126 61 0 

Left atrial thrombus 48 48 7 4 0 

Sick sinus syndrome 79 79 8 4 0 

Atrial Flutter 106 106 11 3 0 

Total 3,190 3,190 302 126 0 

 
  



 
 
Supplementary Information: Shared Genetic Contributions to Atrial Fibrillation and Ischemic Stroke Risk 

 Page 17 of 45 

As classified by the TOAST system: 
 

Phenotype Total Cardioembolic Large artery 
atherosclerosis 

Small artery 
occlusion Undetermined 

Atrial fibrillation 1,751 1,254 26 23 170 

Paroxysmal 
atrial fibrillation 1,315 880 25 19 178 

Left atrial 
thrombus 48 35 1 1 9 

Sick sinus 
syndrome 79 48 0 1 13 

Atrial Flutter 106 75 2 3 12 

Total 3,190 2,207 54 47 371 
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Overlap of atrial fibrillation and cardioembolic stroke in the three subtyping systems in SiGN 
(CCSc, CCS Causative; CCSp, CCS Phenotypic; TOAST): 
 

Phenotype CCSc Cardioembolic CCSp Cardioembolic TOAST Cardioembolic 

Atrial fibrillation 1,495 1,751 1,254 

Paroxysmal atrial 
fibrillation 1,088 1,315 880 

Left atrial thrombus 37 48 35 

Sick sinus syndrome 65 79 48 

Atrial Flutter 90 106 75 

No atrial fibrillation 
phenotypes 316 418 903 

Total 3,000 3,608 3,333 
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Supplementary Table 2 | Look-up of previously-associated atrial fibrillation SNPs in 
SiGN. After performing a GWAS of atrial fibrillation in the SiGN data, we looked up the 26 
known genetic risk loci for atrial fibrillation, as identified in the latest GWAS.1 Twenty-four of 
the 25 signals present in the SiGN data were directionally consistent with the previous GWAS. 
The only signal not directionally consistent was discovered through eQTL analysis. One signal, 
a rare variant burden signal, was absent from our data (all SNPs here have allele frequency 
> 1%). 
 
Supplementary Table 2 is provided as a separate, downloadable Excel spreadsheet as well as 
a tab-delimited text available at the project GitHub repository (download: 
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SupplementaryTable2.afib.hits.SiGN-lookup.txt). The first 14 columns 
are taken from Christophersen, et al.1 Those columns are: 
 
SNP   single-nucleotide polymorphism; rs identifier 
CHR   chromosome 
BP   basepair (hg19) 
Genes   Closest gene(s) 
Location  Where the SNP resides relative to the listed gene 
Risk   Risk allele 
Ref   Reference allele 
RAF   Risk allele frequency 
OR   Odds ratio 
CI95_1  95% confidence interval for the odds ratio (lower bound) 
CI95_2  95% confidence interval for the odds ratio (upper bound) 
Pval   Association p-vlaue 
Mean_imp  Imputation quality 
Analysis  The analysis the variant or gene was discovered in (ExWAS,  

expression QTL analysis; Meta, meta-analysis; RVAS, rare  
variant association study) 

 
The remaining columns provided are data points extracted from the atrial fibrillation GWAS in 
SiGN. They are: 
 
SiGN_RAF  Risk allele frequency in SiGN 
SiGN_INFO  Imputation quality (info score) in SiGN 
SiGN_BOLT_BETA Beta of the SNP taken from BOLT-LMM; note that this is a beta  

that results from a linear mixed model 
SiGN_LIAB_BETA The beta, converted to the liability scale 
SiGN_OR  Odds ratio in SiGN 
SiGN_SE  Standard error of SIGN_BOLT_BETA 
SiGN_P_BOLT P-value from BOLT-LMM (for the infinitesimal model only) 
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Supplementary Table 3 | Genetic correlations between atrial fibrillation and 
ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and 
ischemic stroke subtypes, we calculated Pearson's r between SNP z-scores in the Atrial 
Fibrillation Genetics (AFGen) GWAS of atrial fibrillation and in GWAS of ischemic stroke 
subtypes and atrial fibrillation performed here in the SiGN data. The correlation calculations 
are provided in this table, which is split into two parts and is available to download in text 
format here: 
 
Part A: correlations calculated across all genome-wide SNPs 
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SuppTable4.partA.SiGN.AFGen.trait.correlations.txt 
 
Part B: correlations calculated across all genome-wide SNPs except those ±2Mb from the 
PITX2 and ZFHX3 index SNPs provided in Supplementary Table 2 
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SuppTable4.partB.SiGN.AFGen.trait.correlations.drop-pitx2-zfhx3.txt 
 
The headers of the two files are exactly the same: 
 
Column 

 
Definition 

Z.threshold Z-score threshold used to subset AFGen SNPs 
EduYrs.Z Correlation with z-scores from educational attainment GWAS 
afib.broad.Z Correlation with z-scores from atrial fibrillation (broadly defined phenotype) GWAS 
allstroke.Z Correlation with z-scores from all stroke GWAS 
CCScCEmajor.Z Correlation with z-scores from CCSc CE GWAS 
CCScCRYPTCE.Z Correlation with z-scores from CCSc CRYPTCE GWAS 
CCScINCUNC.Z Correlation with z-scores from CCSc INCUNC GWAS 
CCScLAA.Z Correlation with z-scores from CCSc LAA GWAS 
CCScSAO.Z Correlation with z-scores from CCSc SAO GWAS 
CCScUNDETER.Z Correlation with z-scores from CCSc UNDETER GWAS 
CCSpCEmajincl.Z Correlation with z-scores from CCSp CE GWAS 
CCSpCryptoincl.Z Correlation with z-scores from CCSp Cryptogenic GWAS 
CCSpLAAmajincl.Z Correlation with z-scores from CCSp LAA GWAS 
CCSpSAOmajincl.Z  Correlation with z-scores from CCSp SAO GWAS 
toastCE.Z Correlation with z-scores from TOAST CE GWAS 
toastLAA.Z Correlation with z-scores from TOAST LAA GWAS 
toastSAO.Z Correlation with z-scores from TOAST SAO GWAS 
toastUNDETER.Z Correlation with z-scores from TOAST UNDETER GWAS 
 
CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST 
subtyping system; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery 
occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE 
minor.  
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Supplementary Table 4 | Heritability calculations in atrial fibrillation and ischemic 
stroke subtypes. (a) We calculated the SNP-based heritability (ℎ"2) of atrial fibrillation, all 
ischemic stroke, and the stroke subtypes using GCTA2. All SNPs used had minor allele 
frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were 
converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes 
and tested the robustness of ℎ"2 estimates to SNPs included in the GRM by using four different 
GRMs: (i) genotyped only; (ii) genotyped, pruned, and filtered (see Supplemental 
Methods); (iii) imputed; and (iv) imputed, pruned, and filtered. (b) We performed the exact 
same analysis but using BOLT-LMM to estimate ℎ"2. BOLT-LMM estimates were converted to 
the liability scale (see Supplemental Methods).  
 
Geno, genotyped; SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic 
 

a. ℎ"2 estimates in GCTA 
 

Subtype 
Subtyping  

system 
Cases Geno ℎ"2 (SE) 

Geno, filtered ℎ"2 
(SE) 

Imputed h2 (SE) 
Imputed, filtered 

ℎ"2 (SE) 

Large artery 
athero- 
sclerosis 

CCSc 2,385 0.115 (0.020) 0.124 (0.020) 0.127 (0.020) 0.160 (0.024) 

CCSp 2,449 0.117 (0.020) 0.113 (0.019) 0.140 (0.020) 0.149 (0.023) 

TOAST 2,318 0.139 (0.021) 0.135 (0.021) 0.169 (0.022) 0.282 (0.025) 

Cardio- 
embolic 

CCSc 3,000 0.166 (0.017) 0.139 (0.016) 0.172 (0.017) 0.219 (0.019) 

CCSp 3,608 0.145 (0.014) 0.125 (0.014) 0.136 (0.014) 0.181 (0.016) 

TOAST 3,333 0.139 (0.015) 0.115 (0.015) 0.156 (0.016) 0.224 (0.018) 

Small artery 
occlusion 

CCSc 2,262 0.118 (0.021) 0.114 (0.020) 0.121 (0.021) 0.144 (0.024) 

CCSp 2,419 0.106 (0.020) 0.097 (0.019) 0.114 (0.019) 0.122 (0.022) 

TOAST 2,631 0.122 (0.019) 0.120 (0.018) 0.135 (0.019) 0.162 (0.021) 

Undeter- 
mined 

CCSc 4,574 0.087 (0.012) 0.077 (0.011) 0.120 (0.012) 0.168 (0.014) 

CCSc (INCUNC) 2,280 0.123 (0.021) 0.118 (0.021) 0.205 (0.022) 0.284 (0.024) 

CCSc (CRYPTCE) 2,294 0.092 (0.021) 0.086 (0.020) 0.109 (0.021) 0.179 (0.025) 

CCSp 1,096 0.132 (0.042) 0.091 (0.040) 0.159 (0.041) 0.249 (0.050) 

TOAST 3,479 0.096 (0.015) 0.089 (0.014) 0.141 (0.015) 0.214 (0.017) 

-- All stroke 13,390 0.069 (0.005) 0.059 (0.005) 0.082 (0.005) 0.107 (0.006) 

-- Atrial fibrillation 3,190 0.182 (0.016) 0.156 (0.015) 0.178 (0.016) 0.228 (0.019) 
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b. ℎ"2 estimates in BOLT-LMM 
 

Subtype 
Subtyping  

system 
Cases Geno ℎ"2 (SE) 

Geno, filtered ℎ"2 
(SE) 

Imputed h2 (SE) 
Imputed, filtered 

ℎ"2 (SE) 

Large artery 
athero- 
sclerosis 

CCSc 2,385 0.116 (0.020) 0.120 (0.020) 0.120 (0.020) 0.155 (0.024) 

CCSp 2,449 0.121 (0.020) 0.119 (0.019) 0.142 (0.020) 0.152 (0.023) 

TOAST 2,318 0.130 (0.021) 0.121 (0.020) 0.145 (0.021) 0.241 (0.025) 

Cardio- 
embolic 

CCSc 3,000 0.157 (0.017) 0.129 (0.016) 0.159 (0.017) 0.195 (0.019) 

CCSp 3,608 0.138 (0.014) 0.117 (0.014) 0.127 (0.014) 0.164 (0.016) 

TOAST 3,333 0.131 (0.015) 0.108 (0.015) 0.144 (0.015) 0.210 (0.018) 

Small artery 
occlusion 

CCSc 2,262 0.147 (0.021) 0.151 (0.020) 0.179 (0.022) 0.230 (0.026) 

CCSp 2,419 0.133 (0.020) 0.127 (0.019) 0.161 (0.020) 0.196 (0.024) 

TOAST 2,631 0.142 (0.019) 0.142 (0.018) 0.168 (0.019) 0.211 (0.022) 

Undeter- 
mined 

CCSc 4,574 0.090 (0.012) 0.086 (0.011) 0.130 (0.012) 0.182 (0.014) 

CCSc (INCUNC) 2,280 0.133 (0.021) 0.118 (0.021) 0.128 (0.021) 0.282 (0.024) 

CCSc (CRYPTCE) 2,294 0.112 (0.021) 0.112 (0.021) 0.143 (0.021) 0.237 (0.026) 

CCSp 1,096 0.159 (0.042) 0.136 (0.041) 0.213 (0.042) 0.341 (0.052) 

TOAST 3,479 0.101 (0.015) 0.099 (0.014) 0.153 (0.015) 0.228 (0.017) 

-- All stroke 13,390 0.169 (0.012)  0.059 (0.005) 0.084 (0.005) 0.114 (0.006) 

-- Atrial fibrillation 3,190 0.169 (0.016) 0.140 (0.015) 0.156 (0.016) 0.200 (0.018) 
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Supplementary Table 5 | Association between the atrial fibrillation polygenic risk 
score and ischemic stroke subtypes. We tested the association between a polygenic risk 
score (PRS) constructed from atrial fibrillation-associated SNPs and all stroke subtypes. The 
results of those association tests are shown here. We used two groups of controls: all available 
controls (N = 28,026 in the model without clinical covariates; N = 14,357 in the model with 
clinical covariates) and all controls that were free of atrial fibrillation (AF, N = 3,860 in the 
model without clinical covariates; N = 3,786 in the model with clinical covariates). All analyses 
were adjusted for sex and principal components (PCs). Regression analyses were optionally 
adjusted for clinical covariates (age, cardiovascular disease, type 2 diabetes status, smoking 
status, and hypertension). 
 
Significant results (p = 0.0062, Bonferroni-corrected for four subtype groups and two 
independent subtyping classifications -- CCS and TOAST -- are bolded). 
 
SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic; covar, covariates. 
 
Large artery atherosclerosis (LAA): 
All controls included in model without clinical covariates, N = 28,026; with clinical covariates, N = 14,357 
Non-AF controls included in model without clinical covariates, N = 3,860; with clinical covariates, N = 3,786 
 

Case 
definition 

Control 
definition Cases Logistic regression, adjusted for 

PCs and sex 
Logistic regression, adjusted for 
PCs, sex, and clinical covariates 

  
w/out 
clinical 
covars 

with 
clinical 
covars 

Beta SE P-value Beta SE P-value 

CCSc LAA Non-AF controls 2,385 2,093 0.008 0.015 0.600 0.002 0.018 0.929 

CCSc LAA All controls 2,385 2,093 -0.002 0.012 0.885 -0.004 0.013 0.786 

CCSp LAA Non-AF controls 2,449 2,149 0.016 0.016 0.315 0.010 0.018 0.570 

CCSp LAA All controls 2,449 2,149 0.004 0.011 0.694 0.002 0.013 0.850 

TOAST LAA Non-AF controls 2,318 1,884 0.010 0.016 0.528 0.000 0.018 0.980 

TOAST LAA All controls 2,318 1,884 -0.006 0.012 0.594 -0.008 0.014 0.550 

Results after standardizing PRS to a z-score 

CCSc LAA Non-AF controls 2,385 2,093 0.016 0.030 0.600 0.003 0.035 0.929 

CCSc LAA All controls 2,385 2,093 -0.003 0.022 0.885 -0.007 0.026 0.786 

CCSp LAA Non-AF controls 2,449 2,149 0.031 0.030 0.315 0.020 0.035 0.570 

CCSp LAA All controls 2,449 2,149 0.009 0.022 0.694 0.005 0.026 0.850 

TOAST LAA Non-AF controls 2,318 1,884 0.019 0.031 0.528 -0.001 0.036 0.980 

TOAST LAA All controls 2,318 1,884 -0.012 0.023 0.594 -0.016 0.027 0.550 
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Cardioembolic stroke (CE): 
All controls included in model without clinical covariates, N = 28,026; with clinical covariates, N = 14,357 
Non-AF controls included in model without clinical covariates, N = 3,860; with clinical covariates, N = 3,786 

 
Case 

definition 
Control 

definition (N) Cases  Logistic regression, adjusted for 
PCs and sex 

Logistic regression, adjusted for 
PCs, sex, and clinical covariates 

    Beta SE P-value Beta SE P-value 

CCSc CE Non-AF (3,869) 3,000 2,725 0.187 0.014 1.59E-42 0.218 0.018 1.40E-34 

CCSc CE All (28,026) 3,000 2,725 0.169 0.010 1.01E-65 0.173 0.012 1.45E-48 

CCSp CE Non-AF (3,869) 3,608 3,281 0.178 0.013 6.98E-43 0.203 0.017 8.34E-34 

CCSp CE All (28,026) 3,608 3,281 0.161 0.009 2.43E-70 0.163 0.011 1.05E-49 

TOAST CE Non-AF (3,869) 3,333 3,074 0.171 0.013 3.17E-37 0.172 0.015 3.22E-29 

TOAST CE All (28,026) 3,333 3,074 0.149 0.009 3.00E-56 0.146 0.011 4.43E-41 

Results after standardizing PRS to a z-score 

CCSc CE Non-AF (3,869) 3,000 2,725 0.365 0.027 1.59E-42 0.425 0.035 1.40E-34 

CCSc CE All (28,026) 3,000 2,725 0.329 0.019 1.01E-65 0.337 0.023 1.45E-48 

CCSp CE Non-AF (3,869) 3,608 3,281 0.348 0.025 6.98E-43 0.397 0.033 8.34E-34 

CCSp CE All (28,026) 3,608 3,281 0.315 0.018 2.43E-70 0.318 0.021 1.05E-49 

TOAST CE Non-AF (3,869) 3,333 3,074 0.334 0.026 3.17E-37 0.335 0.030 3.22E-29 

TOAST CE All (28,026) 3,333 3,074 0.291 0.018 3.00E-56 0.284 0.021 4.43E-41 

 
Small artery occlusion (SAO): 
All controls included in model without clinical covariates, N = 28,026; with clinical covariates, N = 14,357 
Non-AF controls included in model without clinical covariates, N = 3,860; with clinical covariates, N = 3,786 

 
Case 

definition 
Control 

definition (N) Cases  
Logistic regression, adjusted for 

PCs and sex 
Logistic regression, adjusted for 
PCs, sex, and clinical covariates 

    Beta SE P-value Beta SE P-value 

CCSc SAO Non-AF (3,869) 2,262 2,124 0.023 0.017 0.170 0.026 0.019 0.163 

CCSc SAO All (28,026) 2,262 2,124 0.002 0.012 0.842 0.006 0.013 0.660 

CCSp SAO Non-AF (3,869) 2,419 2,267 0.025 0.016 0.124 0.029 0.018 0.109 

CCSp SAO All (28,026) 2,419 2,267 0.003 0.012 0.787 0.007 0.013 0.602 

TOAST SAO Non-AF (3,869) 2,631 2,415 0.021 0.016 0.209 0.019 0.018 0.289 

TOAST SAO All (28,026) 2,631 2,415 0.001 0.011 0.902 0.003 0.013 0.826 

Results after standardizing PRS to a z-score 

CCSc SAO Non-AF (3,869) 2,262 2,124 0.046 0.033 0.170 0.051 0.036 0.163 

CCSc SAO All (28,026) 2,262 2,124 0.005 0.023 0.842 0.012 0.026 0.660 

CCSp SAO Non-AF (3,869) 2,419 2,267 0.049 0.032 0.124 0.057 0.035 0.109 

CCSp SAO All (28,026) 2,419 2,267 0.006 0.023 0.787 0.013 0.025 0.602 

TOAST SAO Non-AF (3,869) 2,631 2,415 0.040 0.032 0.209 0.037 0.035 0.289 

TOAST SAO All (28,026) 2,631 2,415 0.003 0.022 0.902 0.005 0.025 0.826 
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Undetermined strokes: 
All controls included in model without clinical covariates, N = 28,026; with clinical covariates, N = 14,357 
Non-AF controls included in model without clinical covariates, N = 3,860; with clinical covariates, N = 3,786 

 

Case definition Control definition 
(N) Cases  Logistic regression, adjusted 

for PCs and sex 

Logistic regression, adjusted 
for PCs, sex, and clinical 

covariates 

    Beta SE P-value Beta SE P-value 

CCSc UNDETER Non-AF (3,869) 4,574 4,169 0.036 0.013 0.004 0.031 0.014 0.022 

CCSc UNDETER All (28,026) 4,574 4,169 0.021 0.009 0.013 0.021 0.010 0.030 

CCSc INCUNC Non-AF (3,869) 2,280 2,093 0.046 0.016 0.003 0.045 0.017 0.010 

CCSc INCUNC All (28,026) 2,280 2,093 0.028 0.012 0.015 0.029 0.013 0.025 

CCSc CRYPTCE Non-AF (3,869) 2,294 2,076 0.030 0.016 0.051 0.026 0.017 0.124 

CCSc CRYPTCE All (28,026) 2,294 2,076 0.015 0.012 0.212 0.017 0.013 0.192 

CCSp Crypto Non-AF (3,869) 1,096 972 0.035 0.020 0.090 0.029 0.022 0.195 

CCSp Crypto All (28,026) 1,096 972 0.019 0.016 0.258 0.021 0.018 0.245 

TOAST UNDETER Non-AF (3,869) 3,479 3,216 0.033 0.013 0.015 0.028 0.014 0.055 

TOAST UNDETER All (28,026) 3,479 3,216 0.021 0.010 0.027 0.022 0.011 0.042 

Results after standardizing PRS to a z-score 

CCSc UNDETER Non-AF (3,869) 4,574 4,169 0.071 0.025 0.004 0.061 0.027 0.022 

CCSc UNDETER All (28,026) 4,574 4,169 0.041 0.017 0.013 0.041 0.019 0.030 

CCSc INCUNC Non-AF (3,869) 2,280 2,093 0.090 0.030 0.003 0.088 0.034 0.010 

CCSc INCUNC All (28,026) 2,280 2,093 0.055 0.023 0.015 0.056 0.025 0.025 

CCSc CRYPTCE Non-AF (3,869) 2,294 2,076 0.059 0.030 0.051 0.051 0.033 0.124 

CCSc CRYPTCE All (28,026) 2,294 2,076 0.028 0.023 0.212 0.033 0.025 0.192 

CCSp Crypto Non-AF (3,869) 1,096 972 0.068 0.040 0.090 0.057 0.044 0.195 

CCSp Crypto All (28,026) 1,096 972 0.036 0.032 0.258 0.041 0.035 0.245 

TOAST UNDETER Non-AF (3,869) 3,479 3,216 0.064 0.026 0.015 0.054 0.028 0.055 

TOAST UNDETER All (28,026) 3,479 3,216 0.042 0.019 0.027 0.042 0.021 0.042 

 
UNDETER, undetermined; INCUNC, incomplete and unclassified; CRYPTCE, cryptogenic and CE minor; 
Crypto, cryptogenic 
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Supplementary Table 6 | Sensitivity analysis for the atrial fibrillation polygenic risk 
score. As a sensitivity analysis for the polygenic risk score (PRS), we constructed 3 additional 
PRSs, including SNPs +/- 25kb, +/- 50kb, and +/- 100kb from the SNPs included in the 
original score. All scores remain highly significant when tested for association with 
cardioembolic stroke (using a logistic regression model). P-values after additionally adjusting 
for clinical covariates are also shown. Clinical covariates: age, cardiovascular disease, type 2 
diabetes status, smoking status, and hypertension. 
 
PCs, principal components; MAF, minor allele frequency; INFO, imputation (info) score. 
 

PRS SNPs Filters Total SNPs PRS p-value 

   Adjusted for PCs, sex Adjusted for PCs, sex, 
clinical covariates 

Original SNPs MAF > 1% 
Info > 0.8 975 1.01 x 10-65 1.44 x 10-48 

Original SNPs +/- 25kb MAF > 1% 
Info > 0.8 146,631 9.13 x 10-50 1.32 x 10-37 

Original SNPs +/- 50kb MAF > 1% 
Info > 0.8 258,870 5.76 x 10-48 1.40 x 10-36 

Original SNPs +/- 100kb MAF > 1% 
Info > 0.8 462,146 4.47 x 10-44 1.77 x 10-32 
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Supplementary Table 7 | Clinical covariates available in the SiGN data. We adjusted 
our analyses of a polygenic risk score for a series of clinical covariates that are associated 
with atrial fibrillation. Summary-statistics on these covariates are shown below for those 
samples classified as (a) cardioembolic stroke or (b) undetermined stroke. The number of 
samples with missing data are provided in parentheses where relevant. 
 
Cardioembolic 
 

Phenotype CCS Causative CCS Phenotypic TOAST 

Female 1,588 1,859 1,618 

Male 1,247 1,541 1,520 

Age: mean (sd) 74.7 (12.4) 74.5 (12.3) 71.0 (15.1) 

Hypertensive (missing) 2,195 (18) 2,665 (21) 2,272 (16) 

Diabetes mellitus (missing) 763 (26) 950 (29) 799 (8) 

CAD (missing) 989 (64) 1206 (83) 911 (119) 

Smoking 
  Current 
  Former 
  Never 

 
379 
694 

1,737 

 
468 
865 

2,055 

 
513 
776 

1,905 

Total 3,000 3,608 3,333 

 
Undetermined 
 

Phenotype CCS 
Causative 

CCS 
Causative 

CCS 
Causative 

CCS 
Phenotypic TOAST 

Female 1,880 1,024 856 420 1,445 

Male 2,151 1,014 1,137 543 1,635 

Age: mean (sd) 63.9 (15.4) 67.7 (13.9) 69.0 (15.9) 58.9 (15.7) 63.7 (16.1) 

Hypertensive (missing) 2,833 (23) 1,512 (14) 1,321 (9) 612 (3) 2,110 (29) 

Diabetes mellitus 
(missing) 958 (26) 513 (14) 445 (12) 202 (4) 708 (25) 

CAD (missing) 739 (169) 421 (86) 318 (83) 115 (46) 573 (100) 

Smoking 
  Current 
  Former 
  Never 

 
1,090 
1,050 
2,202 

 
582 
516 

1,081 

 
508 
534 

1,121 

 
239 
235 
548 

 
813 
772 

1,711 

Total 4,574 2,280 2,294 1,096 3,479 
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Supplementary Table 8: Variance explained by the atrial fibrillation polygenic risk 
score in cardioembolic stroke. To determine the variance explained by the atrial fibrillation 
polygenic risk score (PRS) in cardioembolic stroke, we constructed a model in BOLT-LMM that 
consisted of two variance components: (1) a variance component made up of SNPs for the 
genetic relationship matrix, and (2) a variance component made up of SNPs from the PRS. 
After computing the estimated variance explained for each component in BOLT-LMM, we 
converted the estimate to the liability score. Below is variance explained for each of the 
cardioembolic stroke phenotypes as determined by the three subtyping systems available in 
SiGN: CCS Causative, CCS Phenotypic, and TOAST. Standard errors of each estimate appear 
in parentheses. Explained variance is shown for a PRS including the PITX2 (chromosome 4) 
and ZFHX3 (chromosome 16) loci, as well as excluding ±2Mb around these loci (see 
https://github.com/UMCUGenetics/Afib-Stroke-Overlap for lists of SNPs that fall in these 
regions). Because a large number of SNPs is needed to construct a variance component to 
calculate variance explained, we performed the calculation using the atrial fibrillation PRS 
including SNPs ±100kb from the original PRS SNPs, and then pruning SNPs a linkage 
disequilibrium of 0.2. 
 
CE, cardioembolic; PRS, polygenic risk score; AF, atrial fibrillation 
 

Subtyping 
System ℎ"2 CE stroke  ℎ"2 atrial fibrillation PRS 

±100kb 
Proportion of CE ℎ"2 

explained by AF PRS 

PRS including the PITX2 and ZFHX3 loci 

CCSc 0.195 (0.019) 0.045 (0.010) 23.1% 

CCSp 0.164 (0.016) 0.040 (0.008) 24.4% 

TOAST 0.210 (0.018) 0.051 (0.01) 24.3% 

PRS excluding the PITX2 and ZFHX3 loci 

CCSc 0.195 (0.019) 0.037 (0.010) 19.0% 

CCSp 0.164 (0.016) 0.032 (0.008) 19.5% 

TOAST 0.210 (0.018) 0.044 (0.009) 21.0% 
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Supplementary Methods 
 
GitHub repository and data availability 
 

1. GitHub repository and additional supporting data 
 
Relevant code for the analyses performed in this paper can be found here: 
https://github.com/saralpulit/Afib-Stroke-Overlap.  
 
This repository primarily consists of: 
 

Call to BOLT-LMM to run GWAS 
Call to GCTA and BOLT-LMM to calculate heritability 
Call to PLINK3,4 to calculate the polygenic risk score (PRS) 
An R script for converting observed heritability in BOLT-LMM to the liability scale 
(see below) 
A script in R to check association between the PRS and various phenotypes. 
A call to PLINK3,4 to calculate a GRM to run GCTA 
Sample identifiers for those individuals analyzed in this paper 
SNP identifiers and weights for those markers included in the construction of the 
polygenic risk score 

 
A complete README accompanies the GitHub repository. 
 

2. Sample and SNP identifiers used in these analyses 
 
A file containing: 
 

the dbGaP sample identifiers 
the cohort the sample is drawn from 
the continental group the sample is in (as determined in the first SiGN GWAS 
effort5) 
a list of quality control-passing SNPs used in the initial GWAS  

 
is available on this paper’s GitHub repository. 
 

3. Downloadable summary-level genome-wide association study data 
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The summary-level data from the original SiGN GWAS has been made publicly 
available through the Cerebrovascular Disease Knowledge Portal, which can be 
accessed here: http://www.cerebrovascularportal.org/ 
 
These summary-level results are available for cardioembolic stroke (CE), large artery 
atherosclerosis (LAA), small artery occlusion (SAO), and undetermined (UNDETER) 
stroke, for three different subtyping systems (TOAST, CCS Causative, CCS 
Phenotypic). 
 
The summary-level results for the atrial fibrillation genome-wide association studies 
(performed in broadly-defined or strictly-defined cases versus all controls) are 
available here: 
 

Broadly-defined atrial fibrillation cases vs. all referents: 

https://doi.org/10.5281/zenodo.1035871 

 

Strictly-defined atrial fibrillation cases vs. all referents: 

https://doi.org/10.5281/zenodo.1035873 

 
The Stroke Genetics Network (SiGN) and genome-wide association study of 
ischemic stroke subtypes 
 
The full list of cohorts that are included in the SiGN genome-wide association study 
can be found in the Supplementary Material of “Loci associated with ischaemic stroke 
and its subtypes (SiGN): a genome-wide association study,”5 which can be accessed 
here: https://paperpile.com/shared/nvNXQf. 
 
SiGN is comprised of several case cohorts with pre-existing genotyping data. Newly-
collected cases, as well as a small number of matched referents, were genotyped on 
the Illumina 5M array6. The majority of referents included were drawn from publicly-
available genotyping data.   
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1. Referent (control) datasets 

 
Referent datasets downloaded from the Database of Genotypes and Phenotypes 
(dbGaP) are: 
 

 dbGAP accession # 

Genetics Resource with the Health and Retirement Study phs000428.v2.p2 

Whole Genome Association Study of Visceral Adiposity in the HABC study phs000169.v1.p1 

 
2. Case datasets 

 
A large number of cases and a small number of controls (from Belgium and Poland) 
were genotyped at the initiation of the SiGN GWAS. These data have been uploaded 
to dbGaP and are available here: 
 

The National Institute of Neurological Disorders and Stroke (NINDS) Stroke 
Genetics Network (SiGN) (phs000615.v1.p1) 

 
3. Phenotyping in SiGN 

 
There are three primary subtype definitions of ischemic stroke: cardioembolic stroke, 
large artery atherosclerotic stroke, and small artery occlusion. The SiGN consortium 
used the CCS system to attempt to assign each case to one of these three categories. 
Additionally, ~74% of cases were also classified using the Trial of Org 10 172 in Acute 
Stroke Treatment (TOAST)7,8 system, which classifies stroke cases based on clinical 
decision-making and clinically-ascertained information. The CCS and TOAST 
subtyping systems yield moderately-to-strongly correlated phenotyping results 
(Supplementary Figure 5)9. Use of these traits in a GWAS setting also yields 
concordant association results, as previously shown 6. These subtypes are similarly 
defined in CCS and TOAST, though determined differently across the two subtyping 
systems. 
 
In addition to the three primary subtypes, both the CCS and TOAST classification 
systems generate two additional subtypes: “undetermined” and “other.” The “other” 
classification was small in sample size (Ncases = 595, 719 and 374 in CCS Causative, 
CCS Phenotypic and TOAST, respectively), and was therefore not included in the 
original SiGN GWAS and was not tested here6. The “undetermined” classification, 
though named the same in CCS and TOAST, is defined differently across the two 
subtyping systems8,10. In TOAST, patients with conflicting subtype classifications are 
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placed in the undetermined category6,8. In contrast, the CCS undetermined 
classification includes patients with cryptogenic embolism, other cryptogenic cases, 
patients with an incomplete evaluation, or samples with competing subtypes10.  
 

4. Brief summary of data quality control in SiGN 
 
SiGN samples represent three continental populations (European-ancestry; African-
ancestry; and non-European ancestry and non-African ancestry samples, primarily of 
admixed ancestry from Latin American populations, labelled ‘Hispanic’). In total, the 
study contains 13 case-referent analysis groups: 10 of European ancestry, two of 
African ancestry, and one Hispanic6. 
 
For quality control (QC) and downstream association testing, cases and referents 
were matched by genotyping array and PCA-determined ancestry. European-ancestry 
samples were imputed with IMPUTE211 using a reference panel built from whole-
genome sequence data collected by the 1000 Genomes Project (Phase 1)12 and the 
Genome of the Netherlands13 project; African-ancestry and Hispanic samples were 
imputed with the 1000 Genomes Project data only.12 Due to data-sharing restrictions 
regarding the referents used for the Hispanic set of samples, only the European- and 
African-ancestry samples were analyzed here, totaling 13,390 cases and 28,026 
referents distributed across 12 case-control analysis groups. 
 
Before performing genome-wide association testing, for those SNPs that were 
genotyped in a subset of the SiGN study strata but imputed in others, we compared 
the frequency of the SNP across the various strata. We removed any SNP with a 
frequency difference > 15% within ancestral group or >50% across ancestral groups 
comparing imputed and genotyped data, likely induced by sequencing errors in the 
imputation reference panel(s).  
 
Constructing a genetic relationship matrix for genome-wide association 
testing in BOLT-LMM 
 
To construct the genetic relationship matrix (GRM) implemented in BOLT-LMM, we 
used SNPs that were (i) common (MAF > 5%), (ii) with missingness < 5%, (iii) 
linkage disequilibrium (LD) pruned at an r2 threshold of 0.2, (iv) on the autosomal 
chromosomes only, (v) and not in stratified areas of the genome (i.e., not in the 
major histocompatibility complex (MHC), the inversions on chromosomes 8 and 17, 
or in the lactase (LCT) locus on chromosome 2). After association testing, we 
additionally removed SNPs with imputation quality (info score) < 0.8, due to excess 
inflation of the test statistic in those SNPs (Supplementary Figure 1). 
Running a genome-wide association study using BOLT-LMM 
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We implemented a linear mixed model to perform association testing using BOLT-
LMM.14 Linear mixed models can account for structure in the data, such as that due 
to (familial or cryptic) relatedness and population structure, while improving power 
for discovery.15–17 Due to extensive structure in the SiGN data,6 induced by both study 
design and population ancestry, we adjusted the BOLT-LMM model for the top ten 
principal components (PCs) and sex, in addition to the genetic relationship matrix 
used as a random effect in the linear mixed model.14 We calculated PCs in 
EIGENSTRAT18 using a similar set of SNPs to that used in the genetic relationship 
matrix but using a missingness threshold of 0.1%. To construct the GRM, we first 
identified the set of SNPs with imputation quality > 0.8 and MAF > 1%. More than 
5.5M SNPs passed these QC criteria, so we randomly selected 20% of the data 
(~1.1M SNPs) for computational efficiency in calculating the GRM. We also identified 
SNPs outside the MHC and LCT regions, outside the inversions on chromosomes 8 
and 17, and LD pruned (r2 = 0.2). These filtering steps resulted in ~250,000 SNPs 
available for the GRM. We used Plink 1.93,4 to convert imputed dosages to best-guess 
genotypes and then compute the GRM. 
 
SNP-based heritability calculations in GCTA and BOLT-LMM 
 
We used the GRM from our GWAS analyses (described in the section above) to 
estimate heritability. We adjusted all heritability analyses for 10 PCs and sex. To test 
the robustness of our heritability estimates, we calculated three additional GRMs to 
re-estimate heritability, and additionally estimated heritability using a second 
software (GCTA2). 
 
To check the robustness of the heritability calculations to the SNPs included in the 
GRM, we calculated heritability using the GRM described above, as well as three 
additional GRMs: (i) using the ~1.1M SNPs with imputation quality > 0.8 and MAF > 
1% (and without LD pruning); (ii) using the SNPs that were genotyped across all 
study strata (~155,000 SNPs); and (iii) the set of genotyped SNPs with the MHC, 
LCT locus, inversions on chromosomes 8 and 17 removed, and LD pruned at r2 = 0.2.  
 
Additionally, we computed heritability in GCTA2 using the same GRMs and assuming 
a trait prevalence of 1%. We compared the results to the BOLT-based ℎ"2 estimates 
(Supplementary Table 3 and Supplementary Figures 2-3). As genome-wide 
heritability estimates need a large number of SNPs to be accurate, we report in the 
paper all estimates using a GRM containing imputed, pruned SNPs. Estimates 
resulting from all GRMs are presented here, in the Supplementary Information. 
 
To test the effect of changing the GRM (referred to by the --bfile and ‘modelSNPs’ 
option in BOLT-LMM), we selected SNPs for the GRM in four ways: 
 

(1)  Genotyped SNPs only (minor allele frequency > 1%) (115,553 SNPs total) 
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(2)  Genotyped SNPs, pruned at a linkage disequilibrium threshold (r2 threshold) 
of 0.2, and removing the MHC, LCT locus, and two chromosomal inversions. 
(60,432 SNPs total) 

 
(3)  Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8) 

converted to best-guess genotypes. (1,128,985 SNPs total) 
 

(4)  Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8); 
pruned at a linkage disequilibrium threshold (r2 threshold) of 0.2; removing 
the MHC, LCT locus, and two chromosomal inversions; and converted to best-
guess genotypes. (250,209 SNPs total) 

 
The GRM in (4) is the GRM used for all heritability results presented in the main 
manuscript. 
 
As calculating GRMs in GCTA can be extremely computationally intensive, we 
calculated the GRMs using PLINK 1.9 and then used those GRMs to estimate 
heritability. A script that shows how to do this is included in the GitHub repository 
noted above. 
 
The genomic locations (hg19) for excluded markers are as follows: 
 

The lactase (LCT) locus Chromosome 2 
positions 129,883,530 - 140,283,530 

The major histocompatibility 
complex (MHC) 

Chromosome 6 
positions 24,092,021 - 38,892,022 

Inversion 1 Chromosome 8 
positions 6,612,592 - 13,455,629 

Inversion 2  Chromosome 17 
positions 40,546,474 - 44,644,684 

All non-autosomal SNPs -- 

 
BOLT-LMM produces heritability estimates on the observed scale. To convert to the 
liability scale (i.e., the scale on which GCTA produces heritability estimates) we 
performed a conversion in R. Running the conversion requires knowing the trait 
prevalence, total cases analyzed, total controls analyzed, and the heritability on the 
observed scale. This code snippet is available in the accompanying GitHub repository 
for this paper. 
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Quality control in genome-wide data for correlation calculations 
 
We used summary-level data from the latest Atrial Fibrillation Genetics (AFGen) 
Consortium meta-analysis of atrial fibrillation1 to calculate a z-score for each SNP in 
that GWAS. Additionally, we calculated a z-score for each SNP in a GWAS of each 
stroke subtype in SiGN as well as in the GWAS of atrial fibrillation we performed in 
the SiGN data. Finally, as a null comparator, we downloaded SNP z-scores from a 
GWAS of educational attainment19 available through LDHub 
(http://ldsc.broadinstitute.org/, accessed 11-1-2017). We aligned z-score signs 
based on the risk allele reported in each study. SNPs with an allele frequency 
difference >5% between AFGen and SiGN (all stroke analysis) were removed from 
the AFGen data (25,784 SNPs); similarly, SNPs with an allele frequency difference 
>5% between the educational attainment GWAS and SiGN (all stroke) were also 
removed (27,866 SNPs). Finally, we calculated Pearson’s r between z-scores from 
two traits to evaluate correlation. 
 
Constructing an atrial fibrillation polygenic risk score 
 
To construct an atrial fibrillation polygenic risk score (PRS), we used SNPs from a 
previously-derived atrial fibrillation PRS.20 Briefly, the PRS was derived using results 
from a recent GWAS of atrial fibrillation, comprised of 17,931 cases and 115,142 
referents1 and testing various sets of SNPs based on their p-value from that GWAS 
(varying from p < 5 x 10-8 to p < 0.001) and using varied linkage disequilibrium 
thresholds (0.1 - 0.9).20 These sets of SNPs were used to generate various PRSs, 
which were then independently tested for association to atrial fibrillation in an 
independent sample from the UK Biobank; the best-performing PRS (defined as the 
PRS with the lowest Akaike’s Information Criterion) comprised 1,168 SNPs with p < 
1 x 10-4 in the atrial fibrillation GWAS and LD pruned at an r2 threshold of 0.5.20  
 
Of these 1,168 SNPs, we identified 934 SNPs in the SiGN dataset with imputation info 
> 0.8 and MAF > 1%. We used these 934 SNPs to construct the atrial fibrillation PRS 
in the SiGN dataset by weighting the imputed number of risk-increasing alleles carried 
by an individual at a given SNP (i.e., 0-2 risk-increasing alleles) and then weighting 
the dosage by the effect of the allele, as determined by the most recent GWAS.1 We 
computed the final PRS for each individual by summing across all of the weighted 
genotypes and performed association testing in R. 
 
We calculated the odds ratio of the PRS for an increase of one standard deviation in 
the score by first converting the PRS per individual to a z-score, where: 
 

PRSz-score = #$%	'	()*+(#$%)
./*+0*10	0)23*/34+(#$%) 

 
We then recalculated the association between PRSz-score and the phenotype, and 
converted the resulting regression coefficients (i.e., betas) of the PRS to odds ratios. 
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To ensure that our analyses of the PRS were robust to ancestral heterogeneity, we 
additionally tested the PRS in the subset of European-ancestry samples only (the 
data were essentially identical to our finding in the complete sample and are therefore 
not provided). 

 

 

  



 
 
Supplementary Information: Shared Genetic Contributions to Atrial Fibrillation and Ischemic Stroke Risk 

 Page 37 of 45 

Supplementary Results 
 
Including age as a covariate in the GWAS of atrial fibrillation 

 

To check for the effects of age on our initial GWAS findings, we ran a GWAS of atrial 
fibrillation including age as a covariate. Controls without age information were 
dropped from this analysis. Given the structure of the SiGN dataset -- which includes 
groups of cases and controls that have been carefully matched on genotyping array 
and ancestry -- we also dropped the cases for which their matched controls were 
missing age information.  
 
Our age-adjusted analysis included 2,487 atrial fibrillation cases and 22,072 controls. 
We performed the GWAS in BOLT-LMM, adjusting for 10 PCs, sex and age. We then 
checked the correlation between the SNP effects (betas) from the GWAS unadjusted 
for age and the SNP effects from the GWAS adjusted for age. Correlation was strong 
(r = 0.83). 
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Appendix I 
 

Members of the Atrial Fibrillation Genetics (AFGen) Consortium  
 
Please note that the AFGen Consortium participants evolve over time. Further  
information on the AFGen Consortium can be found at www.afgen.org. 
 
Ingrid E. Christophersen, MD, PhD1–3  
Michiel Rienstra, MD, PhD4  
Carolina Roselli, MSc1,5,6  
Xiaoyan Yin, PhD7,8  
Bastiaan Geelhoed, PhD4  
John Barnard, PhD9  

Honghuang Lin, PhD7,8  
Dan E. Arking, PhD10 
Albert V. Smith, PhD11,12  
Christine M. Albert, MD, MPH13  
Mark Chaffin, MSc1 
Nathan R. Tucker, PhD1,2  
Molong Li, MD2  
Derek Klarin, MD1  
Nathan A Bihlmeyer, BS,14  
Siew-Kee Low, PhD15  
Peter E. Weeke, MD, PhD16,17  
Martina Müller-Nurasyid, PhD5,18,19  
J. Gustav Smith, MD, PhD1,20  
Jennifer A. Brody, BA21  
Maartje N. Niemeijer MD22  
Marcus Dörr, MD23,24  
Stella Trompet, PhD25  
Jennifer Huffman, PhD26  
Stefan Gustafsson, PhD27  
Claudia Schurmann, PhD28,29  
Marcus E. Kleber, PhD30  
Leo-Pekka Lyytikäinen, MD31  
Ilkka Seppälä, MD31  
Rainer Malik, PhD32  
Andrea R. V. R. Horimoto, PhD33  
Marco Perez, MD34  
Juha Sinisalo, MD, PhD35  
Stefanie Aeschbacher, MSc36,37  
Sébastien Thériault, MD, MSc38,39  
Jie Yao, MS40  
Farid Radmanesh, MD, MPH1,41  
Stefan Weiss, PhD24,42  
Alexander Teumer, PhD24,43  
Seung Hoan Choi, PhD1  
Lu-Chen Weng, PhD1,2  
Sebastian Clauss, MD2,18  
Rajat Deo, MD, MTR44  
Daniel J. Rader, MD44  
Svati Shah, MD, MHS,45  
Albert Sun, MD45  
Jemma C. Hopewell, PhD46 

Stephanie Debette, MD, PhD47–50  
Ganesh Chauhan, PhD47,48  
Qiong Yang, PhD51  
Bradford B. Worrall, MD, MSc52 
Guillaume Paré, MD, MSc38,39 
Yoichiro Kamatani, MD, PhD15  
Yanick P. Hagemeijer, MSc4  
Niek Verweij, PhD4  

Joylene E. Siland, BSc,4  
Michiaki Kubo, MD, PhD53  
Jonathan D. Smith, PhD9  
David R. Van Wagoner, PhD9  
Joshua C. Bis, PhD21  
Siegfried Perz, MSc54 

Bruce M. Psaty, MD, PhD21,55–57  
Paul M. Ridker, MD, MPH13  
Jared W. Magnani, MD, MSc7,58  
Tamara B. Harris, MD, MS59  
Lenore J. Launer, PhD59  
M. Benjamin Shoemaker, MD, MSCI16  
Sandosh Padmanabhan, MD60  
Jeffrey Haessler, MS61  
Traci M. Bartz, MS62  
Melanie Waldenberger, PhD19,54,63  
Peter Lichtner, PhD64  
Marina Arendt, MSc65  
Jose E. Krieger, MD, PhD33  
Mika Kähönen, MD, PhD66  
Lorenz Risch, MD, MPH67  
Alfredo J. Mansur, MD, PhD68  
Annette Peters, PhD19,54,69  
Blair H. Smith, MD70  
Lars Lind, MD, PhD71  
Stuart A. Scott, PhD72  
Yingchang Lu, MD, PhD28,29 

Erwin B. Bottinger, MD28,73  

Jussi Hernesniemi, MD, PhD31,74  
Cecilia M. Lindgren, PhD75  
Jorge A Wong, MD76  
Jie Huang, MD, MPH77  
Markku Eskola, MD, PhD74  
Andrew P. Morris, PhD75,78  
Ian Ford, PhD79  
Alex P. Reiner, MD, MSc61,80  
Graciela Delgado, MSc30  
Lin Y. Chen, MD, MS81 

Yii-Der Ida Chen, PhD40  
Roopinder K. Sandhu, MD, MPH82  
Man Li, PhD83,84  
Eric Boerwinkle, PhD85  
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Appendix II 
 

Members of the International Stroke Genetics Consortium (ISGC) 
 
Please note that ISGC participants evolve over time. Further information on the ISGC 
can be found at http://www.strokegenetics.org/. 
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