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Abstract

Objective: We sought to assess whether genetic risk factors for atrial fibrillation can

explain cardioembolic stroke risk.

Methods: We evaluated genetic correlations between a prior genetic study of AF and
AF in the presence of cardioembolic stroke using genome-wide genotypes from the
Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and
28,026 referents). We tested whether a previously-validated AF polygenic risk score
(PRS) associated with cardioembolic and other stroke subtypes after accounting for

AF clinical risk factors.

Results: We observed strong correlation between previously reported genetic risk for
AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and
0.76, respectively, across SNPs with p < 4.4 x 10* in the prior AF meta-analysis). An
AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke
(odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45x108), explaining
~20% of the heritable component of cardioembolic stroke risk. The AF PRS was also
associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no

other primary stroke subtypes (all p > 0.1).

Conclusions: Genetic risk for AF is associated with cardioembolic stroke, independent
of clinical risk factors. Studies are warranted to determine whether AF genetic risk

can serve as a biomarker for strokes caused by AF.


https://doi.org/10.1101/239269
http://creativecommons.org/licenses/by-nc-nd/4.0/

0o N o a b~ W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

bioRxiv preprint doi: https://doi.org/10.1101/239269; this version posted August 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Introduction

Atrial fibrillation affects nearly 34 million individuals worldwide! and is associated with
a five-fold increased risk of ischemic stroke,? a leading cause of death and disability.3*
Atrial fibrillation promotes blood clot formation in the heart which can embolize
distally, and is a leading cause of cardioembolism. Secondary prevention of
cardioembolic stroke is directed at identifying atrial fibrillation as a potential cause,
and initiating anticoagulation to prevent recurrences. Yet atrial fibrillation can remain
occult even after extensive workup owing to the paroxysmal nature and fact that it
can be asymptomatic. Since both atrial fibrillation and stroke are heritable, and since
there is a compelling clinical need to determine whether stroke survivors have atrial
fibrillation as an underlying cause, we sought to determine whether genetic risk of
cardioembolic stroke can be approximated by measuring genetic susceptibility to

atrial fibrillation.

Recent genome-wide association studies (GWAS) have demonstrated that both atrial
fibrillation® and ischemic stroke®” are complex disorders with polygenic architectures.
The top loci for cardioembolic stroke, on chromosome 4q25 upstream of PITX2 and
on 16922 near ZFHX3, are both leading risk loci for atrial fibrillation.81% Despite
overlap in top risk loci, the genetic susceptibility to both atrial fibrillation and
cardioembolic stroke is likely to involve the aggregate contributions of hundreds or

thousands of loci, consistent with other polygenic conditions.!!

To understand whether genetic risk for atrial fibrillation is an important and
potentially useful determinant of overall cardioembolic stroke risk, we analyzed
13,390 ischemic stroke cases and 28,026 referents from the NINDS-Stroke Genetics
Network (SiGN)!? with genome-wide genotyping data. First, we assessed whether
stroke patients with atrial fibrillation have a genetic predisposition to the arrhythmia,
leveraging additional GWAS data from the Atrial Fibrillation Genetics Consortium
(AFGen). Second, we compared genetic risk factors for atrial fibrillation and stroke to
ascertain the extent to which heritable risk of cardioembolic stroke is explained by

genetic risk factors for atrial fibrillation.
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Methods

The Stroke Genetics Network (SiGN)

The Stroke Genetics Network (SiGN) was established with the aim of performing the
largest genome-wide association study (GWAS) of ischemic stroke to date. The study
design has been described previously!? and is summarized in the Supplementary
Methods. Briefly, subjects in SiGN were classified into stroke subtypes using the
Causative Classification System (CCS), which subtypes cases through an automated,
web-based system that accounts for clinical data, test results, and imaging
information.31* Within CCS, there are two sub-categories: CCS causative, which
does not allow for competing subtypes in a single sample; and CCS phenotypic, which
does. Additionally, ~74% of samples were subtyped using the TOAST subtyping
system.?> After quality control (QC), the SiGN dataset comprised 16,851 ischemic
stroke cases and 32,473 stroke-free controls (Supplementary Methods and
Supplementary Table 1). Here, we analyze only the European- and African-

ancestry samples (13,390 cases and 28,026 controls).
Standard Protocol Approvals, Registrations, and Patient Consents

All cohorts included in the SiGN dataset received approval from the cohort-specific
ethical standards committee. Cohorts received written informed consent from all
patients or guardians of patients participating in the study, where applicable. Details

on sample collection have been described previously.!?

Identifying atrial fibrillation cases and controls

We defined atrial fibrillation in SiGN on the basis of five variables available in the CCS
phenotyping system: (i) atrial fibrillation, (ii) paroxysmal atrial fibrillation, (iii) atrial
flutter, (iv) sick sinus syndrome, and (v) atrial thrombus. This definition yielded 3,190

atrial fibrillation cases for analysis. We also defined a strict case set based on “atrial
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fibrillation” only (N = 1,751 cases) for sensitivity analyses (Supplementary

Methods and Supplementary Figure 1).

From the 28,026 controls, we established a set of 3,861 control individuals in whom
atrial fibrillation was indicated as not present. For the remaining subjects, we
assumed that individuals did not have atrial fibrillation since atrial fibrillation status

for most control samples in SiGN is unknown.

Genome-wide association testing of ischemic stroke subtypes and atrial fibrillation in
SiGN

We merged genotype dosages together and kept SNPs with imputation quality > 0.8
and minor allele frequency (MAF) > 1% (Supplementary Methods). We performed
association testing using a linear mixed model implemented in BOLT-LMM.!® We
adjusted the model for the top ten principal components (PCs) and sex, in addition
to the genetic relationship matrix (GRM; Supplementary Methods).'® We
performed GWAS in atrial fibrillation and each of the stroke subtypes available in
SiGN. Results were unadjusted for age, as adjusting for age in the atrial fibrillation
GWAS gave results highly concordant with the age-unadjusted results

(Supplementary Results).

Heritability calculations

We calculated additive SNP-based heritability estimates for ischemic stroke, stroke
subtypes, and atrial fibrillation using restricted maximum likelihood implemented in
BOLT-REML (Supplementary Methods).®

Genetic correlation between atrial fibrillation and ischemic stroke subtypes

We used summary-level data from a prior Atrial Fibrillation Genetics (AFGen)

Consortium meta-analysis of atrial fibrillation® to calculate a z-score for each SNP in
that GWAS. Additionally, we calculated a z-score for each SNP from our SiGN GWAS
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of each stroke subtype and atrial fibrillation. As a null comparator, we downloaded
SNP z-scores from a GWAS of educational attainment!” available through LDHub

(http://ldsc.broadinstitute.org/, accessed 11-1-2017). We calculated Pearson’s r

between z-scores from two traits to evaluate correlation (Supplementary Methods

and Supplementary Figure 3).

Constructing an atrial fibrillation polygenic risk score

To construct an atrial fibrillation polygenic risk score (PRS), we used SNPs from a
previously-derived atrial fibrillation PRS (Supplementary Methods).!® Briefly, the
PRS was derived from an atrial fibrillation GWAS of 17,931 cases and 115,142
controls.®> This PRS comprised 1,168 SNPs with p < 1 x 10 and LD pruned at an r?
threshold of 0.5.'® Of these 1,168 SNPs, we identified 934 SNPs in the SiGN dataset
with imputation info > 0.8 and MAF > 1%. We used these 934 SNPs to construct the
atrial fibrillation PRS in the SiGN dataset. Additional details on the PRS construction

can be found in the Supplementary Methods.

Testing an atrial fibrillation polygenic risk score in ischemic stroke subtypes

We tested for association between the atrial fibrillation PRS and stroke subtypes using
logistic regression (Supplementary Methods). We included sex and the top 10 PCs
as additional covariates. We optionally adjusted the association tests for age,
diabetes mellitus, cardiovascular disease, smoking status (current smoker, former

smoker, or never smoked), and hypertension.

We calculated the variance explained by the atrial fibrillation PRS in cardioembolic
stroke by constructing a model in BOLT-REML that consisted of: (1) a variance
component made up of SNPs for the GRM, and (2) a variance component made up of
SNPs from the PRS (Supplementary Methods).

Data availability
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Code, supporting data, and downloadable supplemental tables are available here:

https://github.com/UMCUGenetics/Afib-Stroke-Overlap. The Supplementary

Information contains additional information regarding data access, methods, and

links to summary-level data.
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Results

We began by testing our ability to rediscover known atrial fibrillation genetic
associations in the SiGN dataset, assembled to study the genetics of ischemic stroke.
We ran a genome-wide association study (GWAS) in SiGN using 3,190 cases with
atrial fibrillation or paroxysmal atrial fibrillation, as well as other diagnoses suggestive
of underlying atrial fibrillation'®*° (Methods, Table 1 and Supplementary Table 1)
and 28,026 controls (Supplementary Figure 1). We found the top-associated SNPs
to be highly concordant with a prior GWAS of atrial fibrillation performed by the Atrial
Fibrillation Genetics (AFGen) Consortium (Supplementary Table 2). Adjusting the
GWAS for age did not substantially change our findings (r = 0.83 between SNP effects
from the age-unadjusted and age-adjusted GWAS).

Extending our analysis beyond these top associations, we next assessed whether
stroke patients with atrial fibrillation have a similar overall genetic predisposition to
the arrhythmia as seen in the independent AFGen GWAS. Additionally, we assessed
the overlap between genetic predisposition to atrial fibrillation and each stroke
subtype, allowing for the known phenotypic concordance between cardioembolic
stroke and atrial fibrillation (89.5% of cardioembolic stroke cases in SiGN also have
atrial fibrillation, Supplementary Table 1). We performed a series of GWAS in the
SiGN data for atrial fibrillation and each of the stroke subtypes using BOLT-LMM?®
(Methods), and calculated the z-score (beta/standard error) of each SNP in each
phenotype. We then used summary-level results available from the prior
(independent) GWAS of atrial fibrillation® (from AFGen) and calculated the z-score for
each SNP in that dataset.

Measuring Pearson’s correlation (r) between AFGen z-scores and z-scores from the
atrial fibrillation GWAS in SiGN, we found only a modest correlation (r = 0.07 across
~7.8M SNPs, Figure 1). However, when we iteratively subsetted the AFGen GWAS
results by the (absolute values of) z-scores of the SNPs, we found that correlation
with the atrial fibrillation GWAS in SiGN increased as the z-score threshold became

more stringent. For example, for those ~4.5M SNPs with |z| > 1 in AFGen, correlation
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with atrial fibrillation SNPs in SiGN was 0.12; for those ~1.9M SNPs with |z| > 3.5 in
AFGen, correlation with the SiGN atrial fibrillation GWAS rose to 0.77 (Figure 1 and
Supplementary Table 3). These correlations, calculated to include even modestly-
associated SNPs, indicate that atrial fibrillation in AFGen and atrial fibrillation in stroke
(SiGN) share a large proportion of genetic risk factors. Removing £2Mb around the
PITX2 and ZFHX3 loci only modestly impacted the correlation between AFGen and
atrial fibrillation in SiGN (r = 0.63 for SNPs with |z| > 3.5; Supplementary Figure
2 and Supplementary Table 3). Correlations between AFGen and cardioembolic
stroke in SiGN were unsurprisingly highly similar to that of the results with atrial
fibrillation in SIGN (r = 0.77 for AFGen SNPs with |z| > 3.5), likely due to the high
concordance between the atrial fibrillation and cardioembolic stroke phenotypes

(Figure 1 and Supplementary Figure 3).


https://doi.org/10.1101/239269
http://creativecommons.org/licenses/by-nc-nd/4.0/

0O NOoO Ok, WN =

-
o ©

- A
w N =

Figure 1 | Genetic correlation between atrial fibrillation in the Atrial Fibrillation Genetics (AFGen)
Consortium meta-analysis and atrial fibrillation and ischemic stroke subtypes analysed in SiGN. Pearson’s
r correlation between SNP z-scores in the AFGen GWAS of atrial fibrillation and in GWAS of selected traits performed
in the SiGN data. (a) GWAS of atrial fibrillation in AFGen and in SiGN correlate with increasing strength as SNP z-
scores in AFGen increase. Correlation with educational attainment (performed separately, shown here as a null
comparator) remains approximately zero across all z-score thresholds. (b) SNP effects in AFGen also correlate strongly
with cardioembolic stroke in SiGN, but not with the other primary stroke subtypes. (c) Undetermined subtypes of
stroke also show modest correlation to the genetic architecture of atrial fibrillation in AFGen. Panels d-f show genome-
wide z-score distributions underlying correlations.
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Continuing this analysis across the other stroke subtypes (large artery
atherosclerosis, small artery occlusion, and undetermined stroke; Figure 1), we
found near-zero correlation between AFGen and either large artery atherosclerosis or
small artery occlusion (Figure 1) indicating no genetic overlap between the
phenotypes. However, the correlation between atrial fibrillation and the
undetermined stroke subtypes (a highly heterogeneous subset of cases?!?? that
cannot be classified with standard subtyping systems!31°) increased steadily as we
partitioned the AFGen data by z-score (all undetermined vs. AFGen r = 0.04 for
AFGen SNPs with |[z] > 1 and r = 0.16 for AFGen SNPs with |z| > 3.5; Figure 1 and
Supplementary Table 3), indicating that genome-wide, there is residual genetic
correlation between atrial fibrillation and the undetermined stroke categories, some
of which could represent causal atrial fibrillation stroke mechanisms in that subgroup.
As an additional null comparator, we performed correlations between the AFGen
results with z-scores derived from the latest GWAS of educational attainment!” and
found that correlation remained at approximately zero regardless of the z-score

threshold used (Figure 1 and Supplementary Table 3).

To further understand the overlap between genetic risk factors for atrial fibrillation
and cardioembolic stroke and to evaluate the degree to which cardioembolic stroke
is comprised of risk factors beyond those for atrial fibrillation, we performed a
restricted maximum likelihood analysis implemented in BOLT-REML!® to estimate
SNP-based heritability of atrial fibrillation and cardioembolic stroke. Using
phenotypes derived from the CCS subtyping algorithm?* (Methods), we estimated
heritability of atrial fibrillation and cardioembolic stroke at 20.0% and 19.5%,
respectively. These estimates are consistent with previous estimates in larger
samples (Supplementary Figure 4),°*2°> and the similar heritabilities suggest that
cardioembolic stroke does not have a substantial heritable component beyond the
primary atrial fibrillation risk factor. For comparison, we calculated heritability in the
other stroke subtypes?!> and found estimates to be similarly modest (range: 15.5% -

23.0%; Supplementary Figures 4-6 and Supplementary Table 4).
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Up to this point, our results indicated that atrial fibrillation in ischemic stroke is
genetically similar to that discovered in prior genetic studies of atrial fibrillation alone,
and that the bulk of the genetic risk for cardioembolic stroke appears attributable to
atrial fibrillation genetic risk factors. Next, we sought to explicitly test what proportion
of cardioembolic stroke risk could be explained by atrial fibrillation loci, independent
of known clinical risk factors for atrial fibrillation. First, we identified SNPs from an
atrial fibrillation polygenic risk score (PRS) independently derived from the AFGen
GWAS® (Methods). Of the 1,168 SNPs used to generate this pre-established PRS,
we identified 934 in the SiGN dataset with imputation quality > 0.8 and minor allele
frequency >1%. We computed the PRS per individual (Methods), weighting the
imputed dosage of each risk allele by the effect of the SNP (i.e., the beta coefficient)

as reported in AFGen?®.

We tested the association of the atrial fibrillation PRS with cardioembolic stroke, using
a logistic regression and adjusting for the top ten principal components and sex
(Methods). As expected from our earlier results, we found the PRS to be strongly
associated with cardioembolic stroke (odds ratio (OR) per 1 standard deviation (sd)
of the PRS = 1.93 [95% confidence interval (CI): 1.34 - 1.44], p = 1.01 x 10°%5;
Figure 2 and Supplementary Table 5), confirming the high genetic concordance
of these phenotypes across SNPs which, individually, confer only a modest average
association with atrial fibrillation. Next, we adjusted the association model for clinical
covariates associated with atrial fibrillation including age, diabetes mellitus,
cardiovascular disease, smoking, and hypertension.?® Using a (smaller) set of cases
and controls with complete clinical risk factor information, we found that inclusion of
these clinical risk factors in the model only modestly reduced the PRS signal in
cardioembolic stroke (OR per 1 sd = 1.40 [95% CI: 1.34 - 1.47], p = 1.45 x 10%;
Supplementary Tables 5-7). These results indicate a strong relationship between
atrial fibrillation genetic risk factors and cardioembolic stroke risk, independent of the
clinical factors that associate with atrial fibrillation. Expanding the set of SNPs used
to construct the PRS to the original 934 SNPs £25kb, £50kb, and £100kb (Methods)
revealed a persistently strong, though somewhat attenuated, association between
the PRS and cardioembolic stroke (PRS including SNPs within 100kb, p = 4.47 x 10°
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44 Supplementary Table 6). None of the other stroke subtypes were significantly
associated with the atrial fibrillation PRS (all p > 0.013, Figure 2 and
Supplementary Figure 6).

Because atrial fibrillation status was missing for most controls in the SiGN dataset,
we performed sensitivity analyses using only the 3,861 controls confirmed as having
no atrial fibrillation. While reducing the set of controls to this refined group did not
substantially change results for the primary stroke subtypes, we found the atrial
fibrillation PRS was modestly associated (p < 5 x 1073, after adjusting for five
subtypes and two control groups) with the overall undetermined subtype (OR per 1
sd = 1.07 [95% CI: 1.02 - 1.13], p = 4.15 x 103) (Figure 2 and Supplementary
Table 5). Further examination of the two mutually exclusive subgroups of the
undetermined group revealed that the PRS associated significantly with the
incomplete/unclassified categorization (OR per 1 sd = 1.09 [95% CI: 1.03 - 1.16], p
= 3.17 x 103) (Figure 2) but not with cryptogenic/cardioembolic minor (OR per 1 sd
= 1.06 [95% CI: 1.00 - 1.13], p = 5.10 x 1072). Correcting for clinical covariates only
modestly changed the signal in the incomplete/unclassified phenotype (p = 9.7 x 10°
3, Figure 2), supporting the robustness of the observed association, independent of

clinical risk factors.

Lastly, we created a model in BOLT-LMM, fitting two genetic variance components:
one component including SNPs for the genetic relationship matrix, and the second
component including the original PRS SNPs from the atrial fibrillation PRS (including
+100kb around these SNPs, to include a sufficient number of markers to estimate
variance explained). We found that the SNPs from the atrial fibrillation PRS explained
4.1% of the total (20.0%) heritability in atrial fibrillation. In evaluating variance
explained in cardioembolic stroke, we found a nearly identical result: the component
representing the atrial fibrillation risk score explained 4.5% (s.e. = 1.00%) of the
total 19.5% genetic heritability in cardioembolic stroke. Thus, atrial fibrillation
genetic risk accounts for 23.1%, or approximately one-fifth, of the total heritability

of cardioembolic stroke.
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Figure 2 | Association of atrial fibrillation polygenic risk score in ischemic stroke subtypes. We constructed
an independent polygenic risk score (PRS) from atrial fibrillation-associated SNPs identified in the AFGen GWAS, and
tested associations between this PRS and ischemic stroke subtypes using (a) all available referents (N = 28,026) and
(b) referents without atrial fibrillation (N = 3,861). The PRS strongly associated with cardioembolic stroke in both sets
of samples. In the atrial fibrillation-free set of controls (panel b) we observed association of the PRS (p < 5 x 1073,
after adjusting for five subtypes and two sets of referents; indicated by the dashed dark blue line) with
incomplete/unclassified stroke as well.
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Discussion

Our results suggest that individuals with cardioembolic strokes have an enrichment
for atrial fibrillation genetic risk, despite the fact that cardioembolic stroke often
affects older adults with multiple clinical comorbidities?” that could increase risk for
atrial fibrillation due to non-genetic factors. The fact that cardioembolic stroke and
atrial fibrillation share a highly-similar genetic architecture extends our
understanding of the morbid consequences of heritable forms of the arrhythmia.
Furthermore, the observation that atrial fibrillation genetic risk was only associated
with cardioembolic stroke, and (consistently) lacked association in large artery
atherosclerosis or small artery occlusion,?® raises the possibility that atrial fibrillation
genetic risk may be informative in the management of ischemic stroke survivors in

whom the mechanism may be unclear.

The use of polygenic risk scores for complex traits has proved an efficient means of
understanding how genetic predisposition to diseases can overlap. Given the
onslaught of genotyping data available for common diseases, PRS’s can now be used
to stratify patients by risk (e.g., in breast cancer?®3°) or predict outcome (e.g., in
neuropsychiatric disease?®). More recently, PRS’s have been used to identify
individuals in the general population with a four-fold risk for coronary disease,3!
proposed for inclusion in clinical workups of individuals with early-onset coronary
artery disease,3’ and used to identify patients for whom lifestyle changes or statin
intervention would be beneficial.333* While previous work has also shown an
association between an atrial fibrillation PRS and cardioembolic stroke,?® we have
extended this work to formally quantify the extent to which an atrial fibrillation PRS
captures genetic risk for cardioembolic stroke. These findings lay the groundwork for
future work that can potentially leverage this overlap to develop atrial fibrillation
PRS’s that could be used to predict individuals at highest risk of cardioembolic stroke
(to improve diagnostic resource allocation) or help distinguish between clinical

subtypes of stroke.
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Though our analysis was aimed at understanding the genetic overlap between
cardioembolic stroke and atrial fibrillation, we additionally observed genetic
correlation between atrial fibrillation and undetermined stroke, a finding not observed
in a previous investigation of atrial fibrillation PRS in ischemic stroke subtypes, albeit
in a smaller sample.?® Perhaps contrary to expectation, we specifically found the atrial
fibrillation polygenic risk score to be more strongly associated with the subset of
etiology-undetermined strokes with an incomplete clinical evaluation, as opposed to
those with cryptogenic stroke of a presumed, but not demonstrated, embolic source.
These associations could be due to physician biases in diagnostic workups, rather
than supporting a low prevalence of occult atrial fibrillation in presumed embolic
strokes of undetermined source. Identifying stroke patients with atrial fibrillation is
an important clinical challenge, as occult atrial fibrillation is well-known to cause
strokes,3>:3® and since such patients are at high risk for recurrent stroke, which is
preventable with anticoagulation.3’3® Together, our findings indicate that atrial
fibrillation genetic risk may augment clinical algorithms to determine stroke etiology,

but will require further study.

The work presented here benefits from a number of improvements, including
increased sample size; analysis of samples from a multicenter consortium, potentially
enhancing the generalizability of the findings; and use of the CCS subtyping system,
which provides more nuanced phenotyping, particularly in the cryptogenic subtype.
Nevertheless, some limitations remain. Stroke is a heterogeneous condition that
occurs later in life and has high lifetime prevalence (>15%3°), features that can
reduce statistical power. Further, sample sizes have lagged behind other GWAS
efforts, a challenge further compounded by subtyping (nearly one-third of all cases
are categorized as undetermined?3®). Reduced sample sizes impact power for
discovery and make other analytic approaches - such as standard approaches for
measuring trait correlation® - unfeasible. Also, our sample is primarily comprised of
Euroepan-ancestry samples, and work in non-Europeans, particularly in African-
ancestry samples where risk of stroke is double that of European samples, is crucial.
Finally, the current analysis does not analyze rare variation, which also likely

contributes to disease susceptibility.>
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We have shown that the cumulative genetic risk for atrial fibrillation in individuals
with a stroke is similar to that reported in a larger population-based cohort.?>
Genome-wide variation related to atrial fibrillation is substantially associated with
cardioembolic stroke risk. Moreover, atrial fibrillation genetic risk was specific for
cardioembolic stroke, and was not associated with the other primary stroke subtypes.
The observation that atrial fibrillation genetic risk associated with strokes of
undetermined cause supports the notion that undetected atrial fibrillation underlies
a proportion of stroke risk in these individuals. Further work will need to incorporate
emerging discoveries of rare genetic variants in atrial fibrillation, and explore the
potential for genetic risk tools, including PRS’s performed via clinical-grade

genotyping, to assist in the diagnostic workup of individuals with ischemic stroke.



Tables

1
2
3 Table 1 | Atrial fibrillation and stroke cases in SiGN. Of the 13,390 stroke cases
4 available in the SiGN dataset, a total of 3,190 cases had atrial fibrillation or other
5 suggestive diagnoses. While the majority of these cases were subtyped as having a
6 cardioembolic stroke, a fraction was distributed among the other stroke subtypes.
7 Samples can appear more than once per row (i.e., have more than one atrial
8 fibrillation diagnosis), but totals represent the number of unique atrial fibrillation
9 samples in each stroke subtype. There are no subjects with atrial fibrillation or
10 equivalent subtyped as “cryptogenic/cardioembolic minor” because such a diagnosis
11 would remove them from this category.
12
Phenotype | Total Ischemic stroke subtype
Primary subtypes Undetermined subtypes
Large arte Small arte Incomplete/ Cryptogenic/
Cardioembolic 9 4 ery pe cardioembolic
atherosclerosis occlusion unclassified )
minor
Atrial |y 959 1,495 63 32 151 0
fibrillation
Paroxysm
al atrial 1,315 1,088 52 23 138 0
fibrillation
Left atrial
thrombus 48 37 3 3 4 0
Sick sinus 79 65 5 3 4 0
syndrome
Atrial
Flutter 106 90 4 2 10 0
Total
atrial =~ | 3499 2,684 123 61 298 0
fibrillation
cases
No atrial - 316 2,262 2,201 1,982 2,294
fibrillation
13

14
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Supplementary Figures

Supplementary Figure 1 | Genome-wide association study (GWAS) of atrial
fibrillation in SiGN. (A) We performed a GWAS of 3,190 cases with atrial fibrillation, or
paroxysmal atrial fibrillation, as well as other diagnoses suggestive of underlying atrial
fibrillation, including left atrial thrombus, sick sinus syndrome, and atrial flutter. We
additionally included 28,026 referents. We used a linear mixed model and adjusted the model
for principal components and sex. The majority of atrial fibrillation risk loci identified through
previous GWAS efforts were identified here at nominal significance or better (see
Supplementary Table 2). The Manhattan plot only shows QC-passing SNPs with minor allele
frequency > 1% and imputation quality score > 0.8. (B) Quantile-quantile (QQ) plot indicating
SNPs stratified by minor allele frequency and the corresponding genomic inflation factor
(lambda, A) for each stratum. (C) QQ plot showing SNPs stratified by imputation quality and
the corresponding lambda for each stratum. Figures D-F are identical to those of A-C, but for
the analysis performed in atrial fibrillation cases only (N = 1,751). We performed this is an
internal sensitivity analysis only, to ensure that more broadly defining the atrial fibrillation
phenotype was not introducing additional phenotypic noise.
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Supplementary Figure 2 | Genetic correlations between atrial fibrillation and
ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and
ischemic stroke subtypes, we calculated Pearson's r between SNP z-scores in the AFGen GWAS
of atrial fibrillation and in GWAS of ischemic stroke subtypes and atrial fibrillation performed
here in the SiGN data. Here, we present data identical to that shown in Figure 2 of the main
manuscript, but removing £2Mb around the two most significant loci discovered in atrial
fibrillation and cardioembolic stroke: the region around PITX2 (chromosome 4) and the region
around ZFHX3 (chromosome 16). (a) Genome wide, atrial fibrillation in AFGen and in SiGN
correlate with increasing strength as the z-score in AFGen increases. Educational attainment
is included here as a null comparator. (b) Genetic signal in cardioembolic stroke also correlates
strongly with atrial fibrillation genetic signal in AFGen, but we do not observe correlation
between atrial fibrillation and the other primary stroke subtypes. (c) Removing the PITX2 and
ZFHX3 regions leaves only somewhat modest correlation between the incomplete/unclassified
undetermined subtype and atrial fibrillation. Panels (d-f) show underlying data.

Correlations restricted to those SNPs used in the polygenic risk score for atrial fibrillation
were: AFGen vs atrial fibrillation in SiGN, r = 0.78; AFGen vs. cardioembolic stroke in SiGN,
r=0.75.
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Supplementary Figure 3 | Genetic correlation and phenotypic correlation of atrial
fibrillation and stroke subtypes in SiGN. (a) Using genome-wide SNP effects extracted
from GWAS of atrial fibrillation, all stroke, and stroke subtypes, we calculated the Pearson’s
correlation (r) between each pair of available phenotypes (blue indicates strong negative
correlation; orange indicates strong positive correlation). Here, we show all correlations.
Correlations are indicated by circle size in the upper half of the square, and the exact
correlation values are shown in the lower half of the square.

CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER,
undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl,
cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST,
TOAST subtyping system.

a.
S
g g o W o o
: 5 S2EE
£25883335383528856 3
Atrial fibrillation R
All stroke o
CE
CE L o6
" - 0.4
LAA
WA - 0.2
LAA
SAO -0
SAO .,
SAO
UNDETER ' oa
INCUNC »
CRYPTCE
Cryptoincl o8

UNDETER



b. Same correlation calculations as in (a), but this time using the phenotypic data only (and looking in cases only, as all controls
have the same phenotype). Note that the atrial fibrillation phenotypes and cardioembolic stroke phenotypes are highly correlated
in the SiGN data (r = 0.83 between atrial fibrillation and cardioembolic stroke as determined by the CCS Causative subtype
system).



CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined; INCUNC,

incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS

Phenotypic subtyping system; TOAST, TOAST subtyping system.
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Supplementary Figure 4 | Estimated heritability of ischemic stroke subtypes and
atrial fibrillation. Using all available stroke cases in SiGN, we estimated SNP-based
heritability of the ischemic stroke subtypes (as sub-typed by the CCS Causative subtyping
system) and atrial fibrillation (using the subset of 3,190 cases with atrial fibrillation) using
BOLT-LMM and a genetic relationship matrix of high-quality SNPs converted to best-guess
genotypes (imputation quality > 0.8, minor allele frequency > 0.01, and pruned at a linkage
disequilibrium threshold of 0.2). We assumed a trait prevalence of 1% for all phenotypes. We
found heritability estimates in cardioembolic stroke (green) and atrial fibrillation (yellow) to
be approximately similar.
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Supplementary Figure 5 | Heritability of ischemic stroke, its subtypes, and atrial fibrillation. We computed the SNP-
based heritability of all stroke, all stroke subtypes, and atrial fibrillation using BOLT-LMM (top row) and GCTA (bottom row). All
SNPs used for analysis had a minor allele frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were
converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes and tested the robustness of hg
estimates to SNPs included in the GRM by using four different GRMs: (a) genotyped SNPs only; (b) genotyped, pruned, and
filtered (see Supplemental Methods); (c) imputed; and (d) imputed, pruned, and filtered. We converted the imputed SNPs to
hard-call genotypes before performing heritability analyses. Estimates are shown below, including error bars. The underlying data
for these figures are provided in Supplementary Table 3.



LAA, large artery atherosclerosis; CE, cardioembolic stroke; SAO, small artery occlusion; UNDETER, undetermined; INCUNC,
incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative subtyping system; CCSp, CCS
Phenotypic subtyping system; TOAST, TOAST subtyping system.
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Supplementary Figure 6 | Comparison of heritability estimates from BOLT-LMM and
GCTA. We computed the heritability of all stroke, all stroke subtypes, and atrial fibrillation
using BOLT-LMM and GCTA, as shown in Supplementary Figure 2. Below, you will find a
comparison of the two methods, with BOLT-REML on the x-axis and GCTA estimates on the
y-axis. Error bars are shown for the respective estimates.

AF, atrial fibrillation; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery
occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic/CE
minor; ¢, CCS Causative; p, CCS Phenotypic; t, TOAST.
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Supplementary Figure 7 | Association of atrial fibrillation polygenic risk score in ischemic stroke
subtypes. We constructed a polygenic risk score (PRS) from atrial fibrillation-associated SNPs, and tested
for association between the score and ischemic stroke subtypes using (a) all available controls (N = 28,026)
and (b) controls without atrial fibrillation (N = 3,861). All subtypes from all available subtyping systems are
shown here. The PRS strongly associated to cardioembolic stroke (subtypes highlighted in green font) in both
sets of controls. In the atrial fibrillation-free set of controls (b) we observed nominal association of the PRS
to incomplete/unclassified stroke. Undetermined subtypes are indicated in blue font.

CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery occlusion; UNDETER, undetermined;
INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE minor; Cryptoincl, cryptogenic; CCSc, CCS Causative
subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST subtyping system.
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Supplementary Tables

Supplementary Table 1 | Atrial fibrillation cases and controls available from the

Stroke Genetics Network (SiGN) Consortium.

As classified by the CCS Causative system (note that this table is a repeat of Table 1 from
the main manuscript):

Large artery
Phenotype | Total | Cardioembolic athero- Small artery Undetermined
. occlusion
sclerosis

Incomplete/ Cryptogenic/

unclassified CE minor
Atrial 1,751 1,495 63 32 151 0
fibrillation
Paroxysmal
atrial 1,315 1,088 52 23 138 0
fibrillation
Left atrial
thrombus 48 37 3 3 4 0
Sick sinus
syndrome 79 65 5 3 4 0
Atrial
Flutter 106 90 4 2 10 0
Total 3,190 2,684 123 61 298 0




As classified by the CCS Phenotypic system (note that this
classified into more than one subtype):

system allows a case to be

Phenotype Total Cardioembolic a ilz_l'?e:?oesglret?or.z:is Sr;cillluzzgiry Undetermined
Atrial fibrillation 1,751 1,751 161 58 0
paroxysmal atrial 1,315 1,315 126 61 0
Left atrial thrombus 48 48 7 4 0
Sick sinus syndrome 79 79 8 4 0
Atrial Flutter 106 106 11 3 0
Total 3,190 3,190 302 126 0




As classified by the TOAST system:

. . Large artery Small artery .
Phenotype Total Cardioembolic atherosclerosis occlusion Undetermined
Atrial fibrillation | 1,751 1,254 26 23 170
Paroxysmal
atrial fibrillation | 131° 880 25 19 178
Left atrial
thrombus 48 35 1 1 2
Sick sinus
syndrome 79 48 0 1 13
Atrial Flutter 106 75 2 3 12
Total 3,190 2,207 54 47 371




Overlap of atrial fibrillation and cardioembolic stroke in the three subtyping systems in SiGN
(CCSc, CCS Causative; CCSp, CCS Phenotypic; TOAST):

Phenotype CCSc Cardioembolic CCSp Cardioembolic TOAST Cardioembolic

Atrial fibrillation 1,495 1,751 1,254
paroxysmal atrial 1,088 1,315 880
Left atrial thrombus 37 48 35
Sick sinus syndrome 65 79 48
Atrial Flutter 90 106 75
gﬁeargit%zgri”a“°” 316 418 903
Total 3,000 3,608 3,333




Supplementary Table 2 | Look-up of previously-associated atrial fibrillation SNPs in
SiGN. After performing a GWAS of atrial fibrillation in the SiGN data, we looked up the 26
known genetic risk loci for atrial fibrillation, as identified in the latest GWAS.! Twenty-four of
the 25 signals present in the SiGN data were directionally consistent with the previous GWAS.
The only signal not directionally consistent was discovered through eQTL analysis. One signal,
a rare variant burden signal, was absent from our data (all SNPs here have allele frequency
> 1%).

Supplementary Table 2 is provided as a separate, downloadable Excel spreadsheet as well as
a tab-delimited text available at the project GitHub repository (download:
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SupplementaryTable2.afib.hits.SiGN-lookup.txt). The first 14 columns
are taken from Christophersen, et al.? Those columns are:

SNP single-nucleotide polymorphism; rs identifier

CHR chromosome

BP basepair (hg19)

Genes Closest gene(s)

Location Where the SNP resides relative to the listed gene

Risk Risk allele

Ref Reference allele

RAF Risk allele frequency

OR Odds ratio

CI95_ 1 95% confidence interval for the odds ratio (lower bound)
CI95_2 95% confidence interval for the odds ratio (upper bound)
Pval Association p-vlaue

Mean_imp Imputation quality

Analysis The analysis the variant or gene was discovered in (EXWAS,

expression QTL analysis; Meta, meta-analysis; RVAS, rare
variant association study)

The remaining columns provided are data points extracted from the atrial fibrillation GWAS in
SiGN. They are:

SiGN_RAF Risk allele frequency in SiGN

SiGN_INFO Imputation quality (info score) in SiGN

SiGN_BOLT_BETA Beta of the SNP taken from BOLT-LMM; note that this is a beta
that results from a linear mixed model

SiGN_LIAB_BETA The beta, converted to the liability scale

SiGN_OR Odds ratio in SiGN

SiGN_SE Standard error of SIGN_BOLT_BETA

SiGN_P_BOLT P-value from BOLT-LMM (for the infinitesimal model only)



Supplementary Table 3 | Genetic correlations between atrial fibrillation and
ischemic stroke subtypes. To estimate genetic correlation between atrial fibrillation and
ischemic stroke subtypes, we calculated Pearson's r between SNP z-scores in the Atrial
Fibrillation Genetics (AFGen) GWAS of atrial fibrillation and in GWAS of ischemic stroke
subtypes and atrial fibrillation performed here in the SiGN data. The correlation calculations
are provided in this table, which is split into two parts and is available to download in text
format here:

Part A: correlations calculated across all genome-wide SNPs
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SuppTable4.partA.SiGN.AFGen.trait.correlations.txt

Part B: correlations calculated across all genome-wide SNPs except those £2Mb from the
PITX2 and ZFHX3 index SNPs provided in Supplementary Table 2
https://github.com/saralpulit/Afib-Stroke-
Overlap/blob/master/SuppTable4.partB.SiGN.AFGen.trait.correlations.drop-pitx2-zfhx3.txt

The headers of the two files are exactly the same:

Column Definition

Z.threshold Z-score threshold used to subset AFGen SNPs

EduYrs.Z Correlation with z-scores from educational attainment GWAS

afib.broad.Z Correlation with z-scores from atrial fibrillation (broadly defined phenotype) GWAS
allstroke.Z Correlation with z-scores from all stroke GWAS

CCScCEmajor.Z
CCScCRYPTCE.Z
CCScINCUNC.Z
CCScLAA.Z
CCScSA0.Z
CCScUNDETER.Z
CCSpCEmajincl.Z
CCSpCryptoincl.Z
CCSpLAAmajincl.Z
CCSpSAOmajincl.Z
toastCE.Z
toastLAA.Z
toastSAO.Z
toastUNDETER.Z

Correlation with z-scores from CCSc CE GWAS
Correlation with z-scores from CCSc CRYPTCE GWAS
Correlation with z-scores from CCSc INCUNC GWAS
Correlation with z-scores from CCSc LAA GWAS
Correlation with z-scores from CCSc SAO GWAS
Correlation with z-scores from CCSc UNDETER GWAS
Correlation with z-scores from CCSp CE GWAS
Correlation with z-scores from CCSp Cryptogenic GWAS
Correlation with z-scores from CCSp LAA GWAS
Correlation with z-scores from CCSp SAO GWAS
Correlation with z-scores from TOAST CE GWAS
Correlation with z-scores from TOAST LAA GWAS
Correlation with z-scores from TOAST SAO GWAS
Correlation with z-scores from TOAST UNDETER GWAS

CCSc, CCS Causative subtyping system; CCSp, CCS Phenotypic subtyping system; TOAST, TOAST
subtyping system; CE, cardioembolic stroke; LAA, large artery atherosclerosis; SAO, small artery
occlusion; UNDETER, undetermined; INCUNC, incomplete/unclassified; CRYPTCE, cryptogenic and CE
minor.



Supplementary Table 4 | Heritability calculations in atrial fibrillation and ischemic
stroke subtypes. (a) We calculated the SNP-based heritability (hj) of atrial fibrillation, all
ischemic stroke, and the stroke subtypes using GCTAZ2. All SNPs used had minor allele
frequency > 1% and imputation quality > 0.8 (for imputed SNPs). Imputed SNPs were
converted to best-guess genotypes. We assumed a trait prevalence of 1% for all phenotypes
and tested the robustness of hZ estimates to SNPs included in the GRM by using four different

GRMs:

(i) genotyped only;

(ii) genotyped, pruned, and filtered (see Supplemental

Methods); (iii) imputed; and (iv) imputed, pruned, and filtered. (b) We performed the exact
same analysis but using BOLT-LMM to estimate hj. BOLT-LMM estimates were converted to

the liability scale (see Supplemental Methods).

Geno, genotyped; SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic

a. hZ estimates in GCTA

Subtyping 5 Geno, filtered hZ2 Imputed, filtered
Geno h? (SE g 2
Subtype system Cases 2 (SE) (SE) Imputed h? (SE) K2 (SE)
CCSc 2,385| 0.115 (0.020) 0.124 (0.020) 0.127 (0.020) 0.160 (0.024)
Large artery
athero- CCSp 2,449| 0.117 (0.020) 0.113 (0.019) 0.140 (0.020) 0.149 (0.023)
sclerosis
TOAST 2,318| 0.139 (0.021) 0.135 (0.021) 0.169 (0.022) 0.282 (0.025)
CCSc 3,000| 0.166 (0.017) 0.139 (0.016) 0.172 (0.017) 0.219 (0.019)
Cardio-
embolic CCSp 3,608| 0.145 (0.014) 0.125 (0.014) 0.136 (0.014) 0.181 (0.016)
TOAST 3,333| 0.139 (0.015) 0.115 (0.015) 0.156 (0.016) 0.224 (0.018)
CCSc 2,262| 0.118 (0.021) 0.114 (0.020) 0.121 (0.021) 0.144 (0.024)
Small artery ccsp 2,419| 0.106 (0.020) 0.097 (0.019) 0.114 (0.019) 0.122 (0.022)
occlusion
TOAST 2,631| 0.122 (0.019) 0.120 (0.018) 0.135 (0.019) 0.162 (0.021)
CCSc 4,574| 0.087 (0.012) 0.077 (0.011) 0.120 (0.012) 0.168 (0.014)
CCSc (INCUNC) 2,280( 0.123 (0.021) 0.118 (0.021) 0.205 (0.022) 0.284 (0.024)
Undeter-
mined CCSc (CRYPTCE) 2,294 0.092 (0.021) 0.086 (0.020) 0.109 (0.021) 0.179 (0.025)
CCSp 1,096| 0.132 (0.042) 0.091 (0.040) 0.159 (0.041) 0.249 (0.050)
TOAST 3,479| 0.096 (0.015) 0.089 (0.014) 0.141 (0.015) 0.214 (0.017)
- All stroke 13,390| 0.069 (0.005) 0.059 (0.005) 0.082 (0.005) 0.107 (0.006)

Atrial fibrillation

3,190

0.182 (0.016)

0.156 (0.015)

0.178 (0.016)

0.228 (0.019)




b. hZ estimates in BOLT-LMM

Subtyping 5 Geno, filtered hZ2 Imputed, filtered
Geno hZ (SE Y 2
Subtype system Cases 2 (SE) (SE) Imputed h? (SE) K2 (SE)
CCSc 2,385| 0.116 (0.020) | 0.120(0.020) | 0.120 (0.020) | 0.155 (0.024)
Large artery
athero- CCSp 2,449| 0.121(0.020) | 0.119(0.019) | 0.142 (0.020) | 0.152 (0.023)
sclerosis
TOAST 2,318| 0.130(0.021) | 0.121(0.020) | 0.145(0.021) | 0.241 (0.025)
CCSc 3,000| 0.157 (0.017) | 0.129(0.016) | 0.159 (0.017) | 0.195 (0.019)
Cardio-
embolic CCSp 3,608| 0.138 (0.014) | 0.117 (0.014) | 0.127 (0.014) | 0.164 (0.016)
TOAST 3,333| 0.131(0.015) | 0.108 (0.015) | 0.144 (0.015) | 0.210 (0.018)
CCSc 2,262| 0.147 (0.021) | 0.151(0.020) | 0.179 (0.022) | 0.230 (0.026)
Small artery ccsp 2,419| 0.133(0.020) | 0.127(0.019) | 0.161(0.020) | 0.196 (0.024)
occlusion
TOAST 2,631| 0.142 (0.019) | 0.142 (0.018) | 0.168 (0.019) | 0.211 (0.022)
CCSc 4,574| 0.090 (0.012) | 0.086 (0.011) | 0.130 (0.012) | 0.182 (0.014)
CCSc (INCUNC) 2,280| 0.133(0.021) | 0.118 (0.021) | 0.128 (0.021) | 0.282 (0.024)
Undeter-
mined CCSc (CRYPTCE) 2,294| 0.112 (0.021) | 0.112 (0.021) | 0.143 (0.021) | 0.237 (0.026)
CCSp 1,096| 0.159 (0.042) | 0.136 (0.041) | 0.213(0.042) | 0.341 (0.052)
TOAST 3,479| 0.101(0.015) | 0.099 (0.014) | 0.153 (0.015) | 0.228 (0.017)
- All stroke 13,390 0.169 (0.012) 0.059 (0.005) | 0.084 (0.005) | 0.114 (0.006)

Atrial fibrillation

3,190

0.169 (0.016)

0.140 (0.015)

0.156 (0.016)

0.200 (0.018)




Supplementary Table 5 | Association between the atrial fibrillation polygenic risk
score and ischemic stroke subtypes. We tested the association between a polygenic risk
score (PRS) constructed from atrial fibrillation-associated SNPs and all stroke subtypes. The
results of those association tests are shown here. We used two groups of controls: all available
controls (N = 28,026 in the model without clinical covariates; N = 14,357 in the model with
clinical covariates) and all controls that were free of atrial fibrillation (AF, N = 3,860 in the
model without clinical covariates; N = 3,786 in the model with clinical covariates). All analyses
were adjusted for sex and principal components (PCs). Regression analyses were optionally
adjusted for clinical covariates (age, cardiovascular disease, type 2 diabetes status, smoking
status, and hypertension).

Significant results (p = 0.0062, Bonferroni-corrected for four subtype groups and two
independent subtyping classifications -- CCS and TOAST -- are bolded).

SE, standard error; CCSc, CCS Causative; CCSp, CCS Phenotypic; covar, covariates.

Large artery atherosclerosis (LAA):
All controls included in model without clinical covariates, N = 28,026, with clinical covariates, N = 14,357
Non-AF controls included in model without clinical covariates, N = 3,860, with clinical covariates, N = 3,786

Case Control Cases Logistic regression, adjusted for | Logistic regression, adjusted for
definition definition PCs and sex PCs, sex, and clinical covariates
w/out with
clinical clinical Beta SE P-value Beta SE P-value
covars covars
CCSc LAA Non-AF controls 2,385 2,093 0.008 0.015 0.600 0.002 0.018 0.929
CCSc LAA All controls 2,385 2,093 -0.002 0.012 0.885 -0.004 0.013 0.786
CCSp LAA Non-AF controls 2,449 2,149 0.016 0.016 0.315 0.010 0.018 0.570
CCSp LAA All controls 2,449 2,149 0.004 0.011 0.694 0.002 0.013 0.850
TOAST LAA [Non-AF controls 2,318 1,884 0.010 0.016 0.528 0.000 0.018 0.980
TOAST LAA |All controls 2,318 1,884 -0.006 0.012 0.594 -0.008 0.014 0.550

Results after standardizing PRS to a z-score

CCSc LAA Non-AF controls 2,385 2,093 0.016 0.030 0.600 0.003 0.035 0.929
CCSc LAA All controls 2,385 2,093 -0.003 0.022 0.885 -0.007 0.026 0.786
CCSp LAA Non-AF controls 2,449 2,149 0.031 0.030 0.315 0.020 0.035 0.570
CCSp LAA All controls 2,449 2,149 0.009 0.022 0.694 0.005 0.026 0.850
TOAST LAA |Non-AF controls 2,318 1,884 0.019 0.031 0.528 -0.001 0.036 0.980
TOAST LAA |All controls 2,318 1,884 -0.012 0.023 0.594 -0.016 0.027 0.550




Cardioembolic stroke (CE):

All controls included in model without clinical covariates, N = 28,026, with clinical covariates, N = 14,357
Non-AF controls included in model without clinical covariates, N = 3,860, with clinical covariates, N = 3,786

Qa;e; ;qqtrol Cases Logistic regression, adjusted for | Logistic regressi'or'l, adjusteq for

definition definition (N) PCs and sex PCs, sex, and clinical covariates
Beta SE P-value Beta SE P-value

CCSc CE Non-AF (3,869) 3,000 2,725 0.187 0.014| 1.59E-42 0.218 0.018| 1.40E-34
CCSc CE All (28,026) 3,000 2,725 0.169 0.010| 1.01E-65 0.173 0.012| 1.45E-48
CCSp CE Non-AF (3,869) 3,608 3,281 0.178 0.013| 6.98E-43 0.203 0.017| 8.34E-34
CCSp CE  |All (28,026) 3,608 3,281 0.161 0.009| 2.43E-70 0.163 0.011| 1.05E-49
TOAST CE [Non-AF (3,869) 3,333 3,074 0.171 0.013| 3.17E-37 0.172 0.015| 3.22E-29
TOAST CE |All (28,026) 3,333 3,074 0.149 0.009| 3.00E-56 0.146 0.011| 4.43E-41
Results after standardizing PRS to a z-score
CCSc CE Non-AF (3,869) 3,000 2,725 0.365 0.027| 1.59E-42 0.425 0.035| 1.40E-34
CCSc CE All (28,026) 3,000 2,725 0.329 0.019| 1.01E-65 0.337 0.023| 1.45E-48
CCSp CE Non-AF (3,869) 3,608 3,281 0.348 0.025| 6.98E-43 0.397 0.033| 8.34E-34
CCSp CE  |All (28,026) 3,608 3,281 0.315 0.018| 2.43E-70 0.318 0.021| 1.05E-49
TOAST CE [Non-AF (3,869) 3,333 3,074 0.334 0.026| 3.17E-37 0.335 0.030| 3.22E-29
TOAST CE |All (28,026) 3,333 3,074 0.291 0.018| 3.00E-56 0.284 0.021| 4.43E-41

Small artery occlusion (SAQ):
All controls included in model without clinical covariates, N = 28,026, with clinical covariates, N = 14,357
Non-AF controls included in model without clinical covariates, N = 3,860, with clinical covariates, N = 3,786

Case Control Cases Logistic regression, adjusted for | Logistic regression, adjusted for
definition definition (N) PCs and sex PCs, sex, and clinical covariates
Beta SE P-value Beta SE P-value
CCSc SAO [Non-AF (3,869) 2,262 2,124 0.023 0.017 0.170 0.026 0.019 0.163
CCSc SAO |All (28,026) 2,262 2,124 0.002 0.012 0.842 0.006 0.013 0.660
CCSp SAO |Non-AF (3,869) 2,419 2,267 0.025 0.016 0.124 0.029 0.018 0.109
CCSp SAO |All (28,026) 2,419 2,267 0.003 0.012 0.787 0.007 0.013 0.602
TOAST SAO |Non-AF (3,869) 2,631 2,415 0.021 0.016 0.209 0.019 0.018 0.289
TOAST SAO |All (28,026) 2,631 2,415 0.001 0.011 0.902 0.003 0.013 0.826
Results after standardizing PRS to a z-score
CCSc SAO |Non-AF (3,869) 2,262 2,124 0.046 0.033 0.170 0.051 0.036 0.163
CCSc SAO |All (28,026) 2,262 2,124 0.005 0.023 0.842 0.012 0.026 0.660
CCSp SAO [Non-AF (3,869) 2,419 2,267 0.049 0.032 0.124 0.057 0.035 0.109
CCSp SAO |All (28,026) 2,419 2,267 0.006 0.023 0.787 0.013 0.025 0.602
TOAST SAO [Non-AF (3,869) 2,631 2,415 0.040 0.032 0.209 0.037 0.035 0.289
TOAST SAO |All (28,026) 2,631 2,415 0.003 0.022 0.902 0.005 0.025 0.826




Undetermined strokes:
All controls included in model without clinical covariates, N = 28,026, with clinical covariates, N = 14,357
Non-AF controls included in model without clinical covariates, N = 3,860, with clinical covariates, N = 3,786

Case definition Control(ﬁe)zfinition Cases Logisticf:ol;egéis:Lo dn’s :)?jUSted Lofgc;ft:’%:gs;is,'s;onné :;‘I(ijrjliucia\tled
covariates
Beta SE P-value Beta SE P-value

CCSc UNDETER [Non-AF (3,869) 4,574 4,169 0.036 0.013 0.004 0.031 0.014 0.022
CCSc UNDETER  |All (28,026) 4,574 4,169 0.021 0.009 0.013 0.021 0.010 0.030
CCSc INCUNC Non-AF (3,869) 2,280 2,093 0.046 0.016 0.003 0.045 0.017 0.010
CCSc INCUNC All (28,026) 2,280 2,093 0.028 0.012 0.015 0.029 0.013 0.025
CCSc CRYPTCE [Non-AF (3,869) 2,294 2,076 0.030 0.016 0.051 0.026 0.017 0.124
CCSc CRYPTCE |All (28,026) 2,294 2,076 0.015 0.012 0.212 0.017 0.013 0.192
CCSp Crypto Non-AF (3,869) 1,096 972 0.035 0.020 0.090 0.029 0.022 0.195
CCSp Crypto All (28,026) 1,096 972 0.019 0.016 0.258 0.021 0.018 0.245
TOAST UNDETER [Non-AF (3,869) 3,479 3,216 0.033 0.013 0.015 0.028 0.014 0.055
TOAST UNDETER [All (28,026) 3,479 3,216 0.021 0.010 0.027 0.022 0.011 0.042
Results after standardizing PRS to a z-score

CCSc UNDETER [Non-AF (3,869) 4,574 4,169 0.071 0.025 0.004 0.061 0.027 0.022
CCSc UNDETER  |All (28,026) 4,574 4,169 0.041 0.017 0.013 0.041 0.019 0.030
CCSc INCUNC Non-AF (3,869) 2,280 2,093 0.090 0.030 0.003 0.088 0.034 0.010
CCSc INCUNC All (28,026) 2,280 2,093 0.055 0.023 0.015 0.056 0.025 0.025
CCSc CRYPTCE [Non-AF (3,869) 2,294 2,076 0.059 0.030 0.051 0.051 0.033 0.124
CCSc CRYPTCE |All (28,026) 2,294 2,076 0.028 0.023 0.212 0.033 0.025 0.192
CCSp Crypto Non-AF (3,869) 1,096 972 0.068 0.040 0.090 0.057 0.044 0.195
CCSp Crypto All (28,026) 1,096 972 0.036 0.032 0.258 0.041 0.035 0.245
TOAST UNDETER [Non-AF (3,869) 3,479 3,216 0.064 0.026 0.015 0.054 0.028 0.055
TOAST UNDETER [All (28,026) 3,479 3,216 0.042 0.019 0.027 0.042 0.021 0.042

UNDETER, undetermined; INCUNC, incomplete and unclassified; CRYPTCE, cryptogenic and CE minor;

Crypto, cryptogenic




Supplementary Table 6 | Sensitivity analysis for the atrial fibrillation polygenic risk
score. As a sensitivity analysis for the polygenic risk score (PRS), we constructed 3 additional
PRSs, including SNPs +/- 25kb, +/- 50kb, and +/- 100kb from the SNPs included in the
original score. All scores remain highly significant when tested for association with
cardioembolic stroke (using a logistic regression model). P-values after additionally adjusting
for clinical covariates are also shown. Clinical covariates: age, cardiovascular disease, type 2

diabetes status, smoking status, and hypertension.

PCs, principal components; MAF, minor allele frequency; INFO, imputation (info) score.

Info > 0.8

PRS SNPs Filters Total SNPs PRS p-value
Adjusted for PCs, sex | Adjusted for PCs, sex,
clinical covariates
Original SNPs mg e éf’g’ 975 1.01 x 1065 1.44 x 1048
Original SNPs +/- 25kb mg e éf’g’ 146,631 9.13 x 105 1.32 x 10°%7
Original SNPs +/- 50Kb mg e éf’g’ 258,870 5.76 x 10-48 1.40 x 103
Original SNPs +/- 100kb | MAF > 1% | 465 146 4.47 x 104 1.77 x 1032




Supplementary Table 7 | Clinical covariates available in the SiGN data. We adjusted
our analyses of a polygenic risk score for a series of clinical covariates that are associated
with atrial fibrillation. Summary-statistics on these covariates are shown below for those
samples classified as (a) cardioembolic stroke or (b) undetermined stroke. The number of

samples with missing data are provided in parentheses where relevant.

Cardioembolic

Phenotype CCS Causative CCS Phenotypic TOAST
Female 1,588 1,859 1,618
Male 1,247 1,541 1,520
Age: mean (sd) 74.7 (12.4) 74.5 (12.3) 71.0 (15.1)
Hypertensive (missing) 2,195 (18) 2,665 (21) 2,272 (16)
Diabetes mellitus (missing) 763 (26) 950 (29) 799 (8)
CAD (missing) 989 (64) 1206 (83) 911 (119)
Smoking

Current 379 468 513

Former 694 865 776

Never 1,737 2,055 1,905
Total 3,000 3,608 3,333

Undetermined

Fremelipe CaEsg?:ive CaEsg?:ive CaEsg?:ive Pheﬁgtsypic oy
Female 1,880 1,024 856 420 1,445
Male 2,151 1,014 1,137 543 1,635
Age: mean (sd) 63.9 (15.4) | 67.7 (13.9)| 69.0(15.9)| 58.9 (15.7)| 63.7 (16.1)
Hypertensive (missing) 2,833 (23)| 1,512 (14) 1,321 (9) 612 (3)| 2,110 (29)
(Drfiggitfgs)me”itus 958 (26) 513 (14) 445 (12) 202 (4) 708 (25)
CAD (missing) 739 (169) 421 (86) 318 (83) 115 (46) 573 (100)
Smoking

Current 1,090 582 508 239 813

Former 1,050 516 534 235 772

Never 2,202 1,081 1,121 548 1,711
Total 4,574 2,280 2,294 1,096 3,479




Supplementary Table 8: Variance explained by the atrial fibrillation polygenic risk
score in cardioembolic stroke. To determine the variance explained by the atrial fibrillation
polygenic risk score (PRS) in cardioembolic stroke, we constructed a model in BOLT-LMM that
consisted of two variance components: (1) a variance component made up of SNPs for the
genetic relationship matrix, and (2) a variance component made up of SNPs from the PRS.
After computing the estimated variance explained for each component in BOLT-LMM, we
converted the estimate to the liability score. Below is variance explained for each of the
cardioembolic stroke phenotypes as determined by the three subtyping systems available in
SiGN: CCS Causative, CCS Phenotypic, and TOAST. Standard errors of each estimate appear
in parentheses. Explained variance is shown for a PRS including the PITX2 (chromosome 4)
and ZFHX3 (chromosome 16) loci, as well as excluding £2Mb around these loci (see
https://github.com/UMCUGenetics/Afib-Stroke-Overlap for lists of SNPs that fall in these
regions). Because a large number of SNPs is needed to construct a variance component to
calculate variance explained, we performed the calculation using the atrial fibrillation PRS
including SNPs +100kb from the original PRS SNPs, and then pruning SNPs a linkage
disequilibrium of 0.2.

CE, cardioembolic; PRS, polygenic risk score; AF, atrial fibrillation

Subtyping
System

hZ atrial fibrillation PRS Proportion of CE hZ

h2 CE strok
g & Stroke +100kb explained by AF PRS

PRS including the PITX2 and ZFHX3 loci

CCSc 0.195 (0.019) 0.045 (0.010) 23.1%
CCSp 0.164 (0.016) 0.040 (0.008) 24.4%
TOAST 0.210 (0.018) 0.051 (0.01) 24.3%

PRS excluding the PITX2 and ZFHX3 loci

CCSc 0.195 (0.019) 0.037 (0.010) 19.0%

CCSp 0.164 (0.016) 0.032 (0.008) 19.5%

TOAST 0.210 (0.018) 0.044 (0.009) 21.0%




Supplementary Methods

GitHub repository and data availability
1. GitHub repository and additional supporting data

Relevant code for the analyses performed in this paper can be found here:
https://github.com/saralpulit/Afib-Stroke-Overlap.

This repository primarily consists of:

Call to BOLT-LMM to run GWAS
Call to GCTA and BOLT-LMM to calculate heritability
Call to PLINK3*# to calculate the polygenic risk score (PRS)

An R script for converting observed heritability in BOLT-LMM to the liability scale
(see below)

A script in R to check association between the PRS and various phenotypes.
A call to PLINK3* to calculate a GRM to run GCTA
Sample identifiers for those individuals analyzed in this paper

SNP identifiers and weights for those markers included in the construction of the
polygenic risk score

A complete README accompanies the GitHub repository.
2. Sample and SNP identifiers used in these analyses
A file containing:

the dbGaP sample identifiers
the cohort the sample is drawn from

the continental group the sample is in (as determined in the first SIGN GWAS
effort®)

a list of quality control-passing SNPs used in the initial GWAS

is available on this paper’s GitHub repository.

3. Downloadable summary-level genome-wide association study data



The summary-level data from the original SiIGN GWAS has been made publicly
available through the Cerebrovascular Disease Knowledge Portal, which can be
accessed here: http://www.cerebrovascularportal.org/

These summary-level results are available for cardioembolic stroke (CE), large artery
atherosclerosis (LAA), small artery occlusion (SAO), and undetermined (UNDETER)
stroke, for three different subtyping systems (TOAST, CCS Causative, CCS
Phenotypic).

The summary-level results for the atrial fibrillation genome-wide association studies
(performed in broadly-defined or strictly-defined cases versus all controls) are
available here:

Broadly-defined atrial fibrillation cases vs. all referents:

https://doi.org/10.5281/zenodo.1035871

Strictly-defined atrial fibrillation cases vs. all referents:

https://doi.org/10.5281/zenodo.1035873

The Stroke Genetics Network (SiGN) and genome-wide association study of
ischemic stroke subtypes

The full list of cohorts that are included in the SiGN genome-wide association study
can be found in the Supplementary Material of “Loci associated with ischaemic stroke
and its subtypes (SiGN): a genome-wide association study,” which can be accessed
here: https://paperpile.com/shared/nvNXQf.

SiGN is comprised of several case cohorts with pre-existing genotyping data. Newly-
collected cases, as well as a small number of matched referents, were genotyped on
the Illumina 5M array®. The majority of referents included were drawn from publicly-
available genotyping data.



1. Referent (control) datasets

Referent datasets downloaded from the Database of Genotypes and Phenotypes
(dbGaP) are:

dbGAP accession #

Genetics Resource with the Health and Retirement Study phs000428.v2.p2

Whole Genome Association Study of Visceral Adiposity in the HABC study | phs000169.v1.p1

2. Case datasets

A large number of cases and a small number of controls (from Belgium and Poland)
were genotyped at the initiation of the SIGN GWAS. These data have been uploaded
to dbGaP and are available here:

The National Institute of Neurological Disorders and Stroke (NINDS) Stroke
Genetics Network (SiGN) (phs000615.v1.p1)

3. Phenotyping in SiGN

There are three primary subtype definitions of ischemic stroke: cardioembolic stroke,
large artery atherosclerotic stroke, and small artery occlusion. The SiGN consortium
used the CCS system to attempt to assign each case to one of these three categories.
Additionally, ~74% of cases were also classified using the Trial of Org 10 172 in Acute
Stroke Treatment (TOAST)’® system, which classifies stroke cases based on clinical
decision-making and clinically-ascertained information. The CCS and TOAST
subtyping systems yield moderately-to-strongly correlated phenotyping results
(Supplementary Figure 5)°. Use of these traits in a GWAS setting also yields
concordant association results, as previously shown 6. These subtypes are similarly
defined in CCS and TOAST, though determined differently across the two subtyping
systems.

In addition to the three primary subtypes, both the CCS and TOAST classification
systems generate two additional subtypes: “undetermined” and “other.” The “other”
classification was small in sample size (Ncases = 595, 719 and 374 in CCS Causative,
CCS Phenotypic and TOAST, respectively), and was therefore not included in the
original SIGN GWAS and was not tested here®. The “undetermined” classification,
though named the same in CCS and TOAST, is defined differently across the two
subtyping systems®10, In TOAST, patients with conflicting subtype classifications are



placed in the undetermined category®®. In contrast, the CCS undetermined
classification includes patients with cryptogenic embolism, other cryptogenic cases,
patients with an incomplete evaluation, or samples with competing subtypes?°.

4. Brief summary of data quality control in SiGN

SiGN samples represent three continental populations (European-ancestry; African-
ancestry; and non-European ancestry and non-African ancestry samples, primarily of
admixed ancestry from Latin American populations, labelled ‘Hispanic’). In total, the
study contains 13 case-referent analysis groups: 10 of European ancestry, two of
African ancestry, and one Hispanic®.

For quality control (QC) and downstream association testing, cases and referents
were matched by genotyping array and PCA-determined ancestry. European-ancestry
samples were imputed with IMPUTE2!! using a reference panel built from whole-
genome sequence data collected by the 1000 Genomes Project (Phase 1)!? and the
Genome of the Netherlands!? project; African-ancestry and Hispanic samples were
imputed with the 1000 Genomes Project data only.'? Due to data-sharing restrictions
regarding the referents used for the Hispanic set of samples, only the European- and
African-ancestry samples were analyzed here, totaling 13,390 cases and 28,026
referents distributed across 12 case-control analysis groups.

Before performing genome-wide association testing, for those SNPs that were
genotyped in a subset of the SiGN study strata but imputed in others, we compared
the frequency of the SNP across the various strata. We removed any SNP with a
frequency difference > 15% within ancestral group or >50% across ancestral groups
comparing imputed and genotyped data, likely induced by sequencing errors in the
imputation reference panel(s).

Constructing a genetic relationship matrix for genome-wide association
testing in BOLT-LMM

To construct the genetic relationship matrix (GRM) implemented in BOLT-LMM, we
used SNPs that were (i) common (MAF > 5%), (ii) with missingness < 5%, (iii)
linkage disequilibrium (LD) pruned at an r? threshold of 0.2, (iv) on the autosomal
chromosomes only, (v) and not in stratified areas of the genome (i.e., not in the
major histocompatibility complex (MHC), the inversions on chromosomes 8 and 17,
or in the lactase (LCT) locus on chromosome 2). After association testing, we
additionally removed SNPs with imputation quality (info score) < 0.8, due to excess
inflation of the test statistic in those SNPs (Supplementary Figure 1).

Running a genome-wide association study using BOLT-LMM



We implemented a linear mixed model to perform association testing using BOLT-
LMM.** Linear mixed models can account for structure in the data, such as that due
to (familial or cryptic) relatedness and population structure, while improving power
for discovery.!>"'7 Due to extensive structure in the SiGN data,® induced by both study
design and population ancestry, we adjusted the BOLT-LMM model for the top ten
principal components (PCs) and sex, in addition to the genetic relationship matrix
used as a random effect in the linear mixed model.'* We calculated PCs in
EIGENSTRAT!® using a similar set of SNPs to that used in the genetic relationship
matrix but using a missingness threshold of 0.1%. To construct the GRM, we first
identified the set of SNPs with imputation quality > 0.8 and MAF > 1%. More than
5.5M SNPs passed these QC criteria, so we randomly selected 20% of the data
(~1.1M SNPs) for computational efficiency in calculating the GRM. We also identified
SNPs outside the MHC and LCT regions, outside the inversions on chromosomes 8
and 17, and LD pruned (r?> = 0.2). These filtering steps resulted in ~250,000 SNPs
available for the GRM. We used Plink 1.93“ to convert imputed dosages to best-guess
genotypes and then compute the GRM.

SNP-based heritability calculations in GCTA and BOLT-LMM

We used the GRM from our GWAS analyses (described in the section above) to
estimate heritability. We adjusted all heritability analyses for 10 PCs and sex. To test
the robustness of our heritability estimates, we calculated three additional GRMs to
re-estimate heritability, and additionally estimated heritability using a second
software (GCTA?).

To check the robustness of the heritability calculations to the SNPs included in the
GRM, we calculated heritability using the GRM described above, as well as three
additional GRMs: (i) using the ~1.1M SNPs with imputation quality > 0.8 and MAF >
1% (and without LD pruning); (ii) using the SNPs that were genotyped across all
study strata (~155,000 SNPs); and (iii) the set of genotyped SNPs with the MHC,
LCT locus, inversions on chromosomes 8 and 17 removed, and LD pruned at r> = 0.2.

Additionally, we computed heritability in GCTA? using the same GRMs and assuming
a trait prevalence of 1%. We compared the results to the BOLT-based hﬁ estimates
(Supplementary Table 3 and Supplementary Figures 2-3). As genome-wide
heritability estimates need a large number of SNPs to be accurate, we report in the
paper all estimates using a GRM containing imputed, pruned SNPs. Estimates
resulting from all GRMs are presented here, in the Supplementary Information.

To test the effect of changing the GRM (referred to by the --bfile and ‘modelSNPs’
option in BOLT-LMM), we selected SNPs for the GRM in four ways:

(1) Genotyped SNPs only (minor allele frequency > 1%) (115,553 SNPs total)



(2) Genotyped SNPs, pruned at a linkage disequilibrium threshold (r2 threshold)
of 0.2, and removing the MHC, LCT locus, and two chromosomal inversions.
(60,432 SNPs total)

(3) Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8)
converted to best-guess genotypes. (1,128,985 SNPs total)

(4) Imputed SNPs (minor allele frequency > 1% and imputation info > 0.8);
pruned at a linkage disequilibrium threshold (r2 threshold) of 0.2; removing
the MHC, LCT locus, and two chromosomal inversions; and converted to best-
guess genotypes. (250,209 SNPs total)

The GRM in (4) is the GRM used for all heritability results presented in the main
manuscript.

As calculating GRMs in GCTA can be extremely computationally intensive, we
calculated the GRMs using PLINK 1.9 and then used those GRMs to estimate
heritability. A script that shows how to do this is included in the GitHub repository
noted above.

The genomic locations (hg19) for excluded markers are as follows:

The lactase (LCT) locus Chromosome 2
positions 129,883,530 - 140,283,530

The major histocompatibility Chromosome 6
complex (MHC) positions 24,092,021 - 38,892,022
Inversion 1 Chromosome 8

positions 6,612,592 - 13,455,629

Inversion 2 Chromosome 17
positions 40,546,474 - 44,644,684

All non-autosomal SNPs --

BOLT-LMM produces heritability estimates on the observed scale. To convert to the
liability scale (i.e., the scale on which GCTA produces heritability estimates) we
performed a conversion in R. Running the conversion requires knowing the trait
prevalence, total cases analyzed, total controls analyzed, and the heritability on the
observed scale. This code snippet is available in the accompanying GitHub repository
for this paper.



Quality control in genome-wide data for correlation calculations

We used summary-level data from the latest Atrial Fibrillation Genetics (AFGen)
Consortium meta-analysis of atrial fibrillation® to calculate a z-score for each SNP in
that GWAS. Additionally, we calculated a z-score for each SNP in a GWAS of each
stroke subtype in SiGN as well as in the GWAS of atrial fibrillation we performed in
the SiGN data. Finally, as a null comparator, we downloaded SNP z-scores from a
GWAS of educational attainment?® available through LDHub
(http://Idsc.broadinstitute.org/, accessed 11-1-2017). We aligned z-score signhs
based on the risk allele reported in each study. SNPs with an allele frequency
difference >5% between AFGen and SiGN (all stroke analysis) were removed from
the AFGen data (25,784 SNPs); similarly, SNPs with an allele frequency difference
>5% between the educational attainment GWAS and SiGN (all stroke) were also
removed (27,866 SNPs). Finally, we calculated Pearson’s r between z-scores from
two traits to evaluate correlation.

Constructing an atrial fibrillation polygenic risk score

To construct an atrial fibrillation polygenic risk score (PRS), we used SNPs from a
previously-derived atrial fibrillation PRS.?° Briefly, the PRS was derived using results
from a recent GWAS of atrial fibrillation, comprised of 17,931 cases and 115,142
referents! and testing various sets of SNPs based on their p-value from that GWAS
(varying from p < 5 x 108 to p < 0.001) and using varied linkage disequilibrium
thresholds (0.1 - 0.9).2° These sets of SNPs were used to generate various PRSs,
which were then independently tested for association to atrial fibrillation in an
independent sample from the UK Biobank; the best-performing PRS (defined as the
PRS with the lowest Akaike’s Information Criterion) comprised 1,168 SNPs with p <
1 x 10*in the atrial fibrillation GWAS and LD pruned at an r? threshold of 0.5.%°

Of these 1,168 SNPs, we identified 934 SNPs in the SiGN dataset with imputation info
> 0.8 and MAF > 1%. We used these 934 SNPs to construct the atrial fibrillation PRS
in the SiGN dataset by weighting the imputed number of risk-increasing alleles carried
by an individual at a given SNP (i.e., 0-2 risk-increasing alleles) and then weighting
the dosage by the effect of the allele, as determined by the most recent GWAS.! We
computed the final PRS for each individual by summing across all of the weighted
genotypes and performed association testing in R.

We calculated the odds ratio of the PRS for an increase of one standard deviation in
the score by first converting the PRS per individual to a z-score, where:

PRS — mean(PRS)
standard deviation(PRS)

PRS;-score =

We then recalculated the association between PRS..score and the phenotype, and
converted the resulting regression coefficients (i.e., betas) of the PRS to odds ratios.



To ensure that our analyses of the PRS were robust to ancestral heterogeneity, we
additionally tested the PRS in the subset of European-ancestry samples only (the

data were essentially identical to our finding in the complete sample and are therefore
not provided).



Supplementary Results

Including age as a covariate in the GWAS of atrial fibrillation

To check for the effects of age on our initial GWAS findings, we ran a GWAS of atrial
fibrillation including age as a covariate. Controls without age information were
dropped from this analysis. Given the structure of the SiGN dataset -- which includes
groups of cases and controls that have been carefully matched on genotyping array
and ancestry -- we also dropped the cases for which their matched controls were
missing age information.

Our age-adjusted analysis included 2,487 atrial fibrillation cases and 22,072 controls.
We performed the GWAS in BOLT-LMM, adjusting for 10 PCs, sex and age. We then
checked the correlation between the SNP effects (betas) from the GWAS unadjusted
for age and the SNP effects from the GWAS adjusted for age. Correlation was strong
(r = 0.83).



Appendix I

Members of the Atrial Fibrillation Genetics (AFGen) Consortium

Please note that the AFGen Consortium participants evolve over time. Further
information on the AFGen Consortium can be found at www.afgen.org.
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