bioRxiv preprint d0| https //d0| org/lO 1101/239012; this version posted April 2, 2018 The copyrlght holder for this preprlnt (which was not
certified b J nted eprin J available under

Preprlnt 8820 G SISO - \/Ia.ch 30, 2018

. Predicting resistance of clinical Abl

. mutations to targeted kinase inhibitors
. using alchemical free-energy

. calculations

s Kevin Hauser', Christopher Negron', Steven K. Albanese?3, Soumya Ray', Thomas
s Steinbrecher?, Robert Abel', John D. Chodera3, Lingle Wang'*

7 1Schrédinger, New York, NY 10036; 2Gerstner Sloan Kettering Graduate School, Memorial Sloan
s Kettering Cancer Center, New York, NY 10065; 3Computational and Systems Biology Program,

s Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;

0 4Schrédinger, GmbH, Q7 23, 68161 Mannheim, Germany

1 *For correspondence: lingle.wang@schrodinger.com (LW)

13 Abstract The therapeutic effect of targeted kinase inhibitors can be significantly reduced by intrinsic or
12 acquired resistance mutations that modulate the affinity of the drug for the kinase. In cancer, the majority of
15 missense mutations are rare, making it difficult to predict their impact on inhibitor affinity. This complicates
16 the practice of precision medicine, pairing of patients with clinical trials, and development of next-generation
17 inhibitors. Here, we examine the potential for alchemical free-energy calculations to predict how kinase
18 mutations modulate inhibitor affinities to Abl, a major target in chronic myelogenous leukemia (CML). We
19 find these calculations can achieve useful accuracy in predicting resistance for a set of eight FDA-approved
20 kinase inhibitors across 144 clinically-identified point mutations, achieving a root mean square error in
2 binding free energy changes of 1.1 kcal/mol (95% confidence interval) and correctly classifying mutations
22 as resistant or susceptible with 8823% accuracy. Since these calculations are fast on modern GPUs, this
23 benchmark establishes the potential for physical modeling to collaboratively support the rapid assessment
24 and anticipation of the potential for patient mutations to affect drug potency in clinical applications.

25

26 Targeted kinase inhibitors are a major therapeutic class in the treatment of cancer. A total of 38 selective
27 small molecule kinase inhibitors have now been approved by the FDA [1], including 34 approved to treat
28 cancer, and perhaps 50% of all current drugs in development target kinases [2]. Despite the success of
2 selective inhibitors, the emergence of drug resistance remains a challenge in the treatment of cancer [3-10]
30 and has motivated the development of second- and then third-generation inhibitors aimed at overcoming
31 recurrent resistance mutations [11-15].

32 While a number of drug resistance mechanisms have been identified in cancer (e.g., induction of splice
33 variants [16], or alleviation of feedback [17]), inherent or acquired missense mutations in the kinase domain
3¢« of the target of therapy are a major form of resistance to tyrosine kinase inhibitors (TKI) [10, 18, 19]. Oncology
35 is entering a new era with major cancer centers now deep sequencing tumors to reveal genetic alterations
3 that may render subclonal populations susceptible or resistant to targeted inhibitors [20], but the use of
37 this information in precision medicine has lagged behind. It would be of enormous value in clinical practice
33 if an oncologist could reliably ascertain whether these mutations render the target of therapy resistant or
39 susceptible to available inhibitors; such tools would facilitate the enrollment of patients in mechanism-based
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Figure 1. Relative alchemical free-energy calculations can be used to predict affinity changes of FDA-approved
selective kinase inhibitors arising from clinically-identified mutations in their targets of therapy. (a) Missense
mutation statistics derived from 10,336 patient samples subjected to MSK-IMPACT deep sequencing panel [20] show that
68.5% of missense kinase mutations in cancer patients have never been observed previously, while 87.4% have been
observed no more than ten times. (b) To compute the impact of a clinical point mutation on inhibitor binding free energy,
a thermodynamic cycle can be used to relate the free energy of the wild-type and mutant kinase in the absence (top)
and presence (bottom) of the inhibitor. (c) Summary of mutations studied in this work. Frequency of the wild-type (dark
green) and mutant (green) residues for the 144 clinically-identified Abl mutations used in this study (see Table 1 for data
sources). Also shown is the frequency of residues within 5 A (light blue) and 8 A (blue) of the binding pocket. The number
of wild-type Phe residues (n=45) and mutant Val residues (n=31) exceeded the limits of the y-axis.

basket trials [21, 22], help prioritize candidate compounds for clinical trials, and aid the development of
next-generation inhibitors.

The long tail of rare kinase mutations frustrates prediction of drug resistance

While some cancer missense mutations are highly recurrent and have been characterized clinically or
biochemically, a “long tail” of rare mutations collectively accounts for the majority of clinically observed
missense mutations (Figure 1a), leaving clinicians and researchers without knowledge of whether these
uncharacterized mutations might lead to resistance. While rules-based and machine learning schemes
are still being assessed in oncology contexts, work in predicting drug response to microbial resistance has
shown that rare mutations present a significant challenge to approaches that seek to predict resistance
to therapy [23]. Clinical cancer mutations may impact drug response through a variety of mechanisms
by altering kinase activity, ATP affinity, substrate specificities, and the ability to participate in regulatory
interactions, compounding the difficulties associated with limited datasets that machine learning approaches
face. In parallel with computational approaches, high-throughput experimental techniques such as MITE-
Seq [24] have been developed to assess the impact of point mutations on drug response. However, the
complexity of defining selection schemes that reliably correlate with in vivo drug effectiveness and long
turn-around times might limit their ability to rapidly and reliably impact clinical decision-making.

Alchemical free-energy methods can predict inhibitor binding affinities

Physics-based approaches could be complementary to machine-learning and experimental techniques
in predicting changes in TKI affinity due to mutations with few or no prior clinical observations. Modern
atomistic molecular mechanics forcefields such as OPLS3 [25], CHARMM [26], and AMBER FF14SB [27] have
reached a sufficient level of maturity to enable the accurate and reliable prediction of receptor-ligand binding
free energy. Alchemical free-energy methods permit receptor-ligand binding energies to be computed
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&2 rigorously, including all relevant entropic and enthalpic contributions [28]. Encouragingly, kinase:inhibitor
63 binding affinities have been predicted using alchemical free-energy methods with mean unsigned errors of
e 1.0 kcal/mol for CDK2, JNK1, p38, and Tyk2 [29, 30]. Beyond kinases, alchemical approaches have predicted
es the binding affinity of BRD4 inhibitors with mean absolute errors of 0.6 kcal/mol [31]. Alchemical methods
e have also been observed to have good accuracy (0.6 kcal/mol mean unsigned error for Tyk2 tyrosine kinase)
67 in the prediction of relative free energies for ligand transformations within a complex whose receptor
es geometry was generated using a homology model [32].

so Alchemical approaches can predict the impact of protein mutations on free energy

70 Alchemical free-energy calculations have also been used to predict the impact of mutations on protein-
71 protein binding [33] and protein thermostabilities [34]. Recent work has found that protein mutations can
72 be predicted to be stabilizing or destabilizing with a classification accuracy of 71% across ten proteins and 62
73 mutations [35]. The impact of Gly to D-Ala mutations on protein stability was predicted using an alchemical
74 approach with a similar level of accuracy [36]. Recently, one study has hinted at the potential utility of
75 alchemical free-energy calculations in oncology by predicting the impact of a single clinical mutation on the
76 binding free energies of the TKls dasatinib and RL45 [37].

77 Assessing the potential for physical modeling to predict resistance to FDA-approved TKils

78 Here, we ask whether physical modeling techniques may be useful in predicting whether clinically-identified
79 kinase mutations lead to drug resistance or drug sensitivity. We perform state-of-the-art relative alchemical
s free-energy calculations using FEP+[29], recently demonstrated to achieve sufficiently good accuracy to drive
s the design of small-molecule inhibitors for a broad range of targets during lead optimization [28-30, 38]. We
82 compare this approach against a fast but approximate physical modeling method implemented in Prime [39]
83 (an MM-GBSA approach) in which an implicit solvent model is used to assess the change in minimized
s¢ interaction energy of the ligand with the mutant and wild-type kinase. We consider whether these methods
ss can predict a ten-fold reduction in inhibitor affinity (corresponding to a binding free energy change of 1.36
s kcal/mol) to assess baseline utility. As a benchmark, we compile a set of reliable inhibitor AplICy, data for 144
&7 clinically-identified mutants of the human kinase Abl, an important oncology target dysregulated in cancers
ss  like chronic myelogenous leukemia (CML), for which six [1] FDA-approved TKis are available. While AplICs,
s Can approximate a dissociation constant AK, other processes contributing to changes in cell viability might
o affect ICy, in ways that are not accounted for by a traditional binding experiment, motivating a quantitative
o1 comparison between AplCy, and AK,. The results of this benchmark demonstrate the potential for FEP+ to
2 predict the impact that mutations in Abl kinase have on drug binding, and a classification accuracy of 88%3%
o3 (for all statistical metrics reported in this paper, the 95% confidence intervals (Cl) is shown in the form of

oa (X)), an RMSE of 1.07;35 kcal/mol, and an MUE of 0.79)2> kcal/mol was achieved.

s Results

% Free energy calculations can recapitulate the impact of clinical mutations on TKI affinity

97 Alchemical free-energy calculations utilize a physics-based approach to estimate the free energy of transform-
98 ing one chemical species into another, incorporating all enthalpic and entropic contributions in a physically
99 consistent manner [28, 40-42]. While relative alchemical free-energy calculations have typically been em-
10 ployed in optimizing small molecules for increased potency or selectivity [29, 38, 42, 43], a complementary
101 alchemical approach can be used to compute the impact of point mutations on ligand binding affinities.
102 Figure 1b depicts the thermodynamic cycle that illustrates how we used relative free energy calculations to
103 compute the change in ligand binding free energy in response to the introduction of a point mutation in the
104 Kkinase. In the bound leg of the cycle, the wild-type protein:ligand complex is transformed into the mutant
105 protein:ligand complex. In the unbound leg of the cycle, the apo protein is transformed from wild-type into
106 mutant. To achieve reliable predictions with short relative free-energy calculations, a reliable receptor:ligand
107 complex structure is required with the assumption that the binding mode of wild-type and mutant are
108 similar. In this work, high-resolution co-crystal structures of wild-type Abl bound to an inhibitor were utilized
100 when available. To assess the potential for using docked inhibitor poses, we also examined two systems for
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Table 1. Public ApICs, datasets for 144 Abl kinase mutations and eight tyrosine kinase inhibitors (TKIs) with
corresponding wild-type co-crystal structures used in this study.

(kcal/mol) (kcal/mol)

TKI N.. R S PDB |AG,,, — AG,;,| Source AGyr
axitinib 26 0 26 4wa9 2.05 [44] —8.35
bosutinib 21 4 17 3ue4 2.79 [45] -9.81
dasatinib 21 5 16 4xey 5.08 [45] -11.94
imatinib 21 5 16 1opj 2.16 [45] -9.19
nilotinib 21 4 17 3¢s9 3.88 [45] -10.74
ponatinib 21 0 21 3oxz 1.00 [45] -11.70
subtotal 131 18 113

erlotinib 7 1 6 Dock to 3ue4 1.73 [46] -9.77
gefitinib 6 0 6 Dock to 3ue4 1.79 [46] —8.84
total 144 19 125

N,...: Total number of mutants for which ApICy, data was available.

Number of Resistant, Susceptical mutants using 10-fold affinity change threshold.

PDB: Source PDB ID, or Dock to 3ue4, which used 3ue4 as the receptor for Glide-SP docking inhibitors without co-crystal
structure.

AGwr: Binding free energy of inhibitor to wild-type Abl, as estimated from ICy, data.

which co-crystal structures were not available (Abl:erlotinib and Abl:gefitinib) and used docking to generate
initial coordinates.

Compiled AplCs, data provides a benchmark for predicting mutational resistance
To construct a benchmark evaluation dataset, we compiled a total of 144 AplC,, measurements of Abl:TKI
affinities, summarized in Table 1, taking care to ensure all measurements for an individual TKI were reported
in the same study from experiments run under identical conditions. 131 AplC,, measurements were available
across the six TKls with available co-crystal structures with wild-type Abl—26 for axitinib and 21 for bosutinib,
dasatinib, imatinib, nilotinib, and ponatinib. 13 ApIC,, measurements were available for the two TKiIs for
which docking was necessary to generate Abl:TKI structures—7 for erlotinib and 6 for gefitinib. For added
diversity, this set includes TKiIs for which Abl is not the primary target—axitinib, erlotinib, and gefitinib. All
mutations in this benchmark dataset have been clinically-observed (Table S7). Due to the change in bond
topology required by mutations involving proline, which is not currently supported by the FEP+ technology for
protein residue mutations, the three mutations H396P (axitinib, gefitinib, erlotinib) were excluded from our
assessment. As single point mutations were highly represented in the IMPACT study analyzed in Figure 13,
we excluded double mutations from this work. However, the impact of mutations from multiple sites can
potentially be modeled by sequentially mutating each site and this will be addressed in future work.
Experimental AplCy, measurements for wild-type and mutant Abl were converted to AAG in order
to make direct comparisons between physics-based models and experiment. However, computation
of experimental uncertainties were required to understand the degree to which differences between
predictions and experimental data were significant. Since experimental error estimates for measured 1C5,s
were not available for the data in Table 1, we compared that data to other sources that have published
IC5,s for the same mutations in the presence of the same TKIs (Figure 2a,b,c). Cross-comparison of 97
experimentally measured AAGs derived from cell viability assay IC,, data led to an estimate of experimental
variability of 0.32(3¢ kcal/mol root-mean square error (RMSE) that described the expected repeatability of the
measurements. Because multiple factors influence the IC,, aside from direct effects on the binding affinity—
the focus of this study—we also compared AAGs derived from AplCy,s with those derived from binding
affinity measurements (AK,) for which data for a limited set of 27 mutations was available (Figure 2d);
the larger computed RMSE of 0.81!% kcal/mol represents an estimate of the lower bound of the RMSE to

0.59
the 1C,,-derived AAGs that we might hope to achieve with FEP+ or Prime, which were performed using
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Figure 2. Cross-comparison of the experimentally measured effects that mutations in Abl kinase have on ligand
binding, performed by different labs. AAG was computed from publicly available ApICs, or ApK,; measurements and
these values of AAG were then plotted and the RMSE between them reported. (a) AplCs, measurements (X-axis) from
[45] compared with AplCs, measurements (Y-axis) from [47]. (b) ApICs, measurements (X-axis) from [45] compared with
AplCs, measurements (Y-axis) from [48]. (c) AplCs, measurements (X-axis) from [47] compared with ApICs, measurements
(Y-axis) from [48]. (d) ApICs, measurements (X-axis) from [45] compared with ApK, measurements (Y-axis) from [46] using
non-phosphorylated Abl kinase. Scatter plot error bars in a,b,and c are +standard error (SE) taken from the combined 97
inter-lab AAGs derived from the ApICs, measurements, which was 0.3203%; the RMSE was 0.450] kcal/mol. Scatter plot
error bars in d are the +standard error (SE) of AAGs derived from AplCs, and ApK, from a set of 27 mutations, which is

0.74. 1.04
0. 580 e the RMSE was 0. 81059 kcal/mol.

139 non-phosphorylated models, when comparing sample statistics directly. In comparing 31 mutations for
120 which phosphorylated and non-phosphorylated AK,s were available, we found a strong correlation between
121 the AAGs derived from those data (r=0.94, Supplementary Figure S1); the statistics of that comparison are
142 similar to those of the inter-lab variability comparison.

13 Most clinical mutations do not significantly reduce TKI potency

124 The majority of mutations do not lead to resistance by our 10-fold affinity loss threshold: 86.3% of the
145 co-crystal set (n=113) and 86.8% of the total set (n=125). Resistance mutations, which are likely to resultin a
126 failure of therapy, constitute 13.7% of the co-crystal set (n=18) and 13.2% of the total set of mutations (n=19).
147 The AplCy,s for all 144 mutations are summarized in Table S2—Table 57 in the Supplementary Information.
s Two mutations exceeded the dynamic range of the assays (IC5, >10,000 nM); as these two mutations clearly
149 raise resistance, we excluded them from quantitative analysis (RMSE and MUE) but included them in truth
150 table analyses and classification metrics (accuracy, specificity, sensitivity).

11 How accurately does physical modeling predict affinity changes for clinical Abl mutants?

152 From prior experience with relative alchemical free-energy calculations for ligand design, good initial receptor-
153 ligand geometry was critical to obtaining accurate and reliable free energy predictions [29], so we first focused
154 on the 131 mutations in Abl kinase across six TKIs for which wild-type Abl:TKI co-crystal structures were
155 available. Figure 3 summarizes the performance of predicted binding free-energy changes (AAG) for all
156 131 mutants in this set for both a fast MM-GBSA physics-based method that only captures interaction
157 energies for a single structure (Prime) and rigorous alchemical free-energy calculations (FEP+). Scatter plots
158 compare experimental and predicted free-energy changes (AAG) and characterize the ability of these two
159 techniques to predict experimental measurements. Statistical uncertainty in the predictions and experiment-
160 to-experiment variability in the experimental values are shown as ellipse height and widths respectively.
161 The value for experimental variability was 0.32 kcal/mol, which was the standard error computed from the
162 Cross-comparison in Figure 2. For FEP+, the uncertainty was taken to be the standard error of the average
13 from three independent runs for a particular mutation, while Prime results are deterministic and are not
164 contaminated by statistical uncertainty (see Methods).

165 To better assess whether discrepancies between experimental and computed AAGs simply arise for
166 known forcefield limitations or might indicate more significant effects, we incorporated an additional error
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model in which the forcefield error was taken to be a random error o & 0.9 kcal/mol, a value established
form previous benchmarks on small molecules absent conformational sampling or protonation state
issues [25]. Thin error bars in Figure 2 represent the overall estimated error due to both this forcefield error
and experimental variability or statistical uncertainty.

To assess overall quantitative accuracy, we computed both root-mean-squared error (RMSE)—which is
rather sensitive to outliers, and mean unsigned error (MUE). For Prime, the MUE was 1.16!-7 kcal/mol and

0.96

the RMSE was 1.72*% kcal/mol. FEP+, the alchemical free-energy approach, achieved a significantly higher

level of quantitative accuracy with an MUE of 0.82(% kcal/mol and an RMSE of 1.11;29 kcal/mol. Notably,
alchemical free energy calculations come substantially closer than MMGBSA approach to the minimum

achievable RMSE of 0. 81(1)2‘9‘ kcal/mol (due to experimental error; Figure 2) for this dataset.

How accurately can physical modeling classify mutations as susceptible or resistant?
While quantitative accuracy (MUE, RMSE) is a principle metric of model performance, an application of
potential interest is the ability to classify mutations as causing resistance to a specific TKI. To characterize the
accuracy with which Prime and FEP+ classified mutations in a manner that might be therapeutically relevant,
we classified mutations by their experimental impact on the binding affinity as susceptible (affinity for mutant
is diminished by no more than 10-fold, AAG < 1.36 kcal/mol) or as resistant (affinity for mutant is diminished
by least 10-fold, AAG > 1.36 kcal/mol). Summary statistics of experimental and computational predictions of
these classes are shown in Figure 2 (bottom) as truth tables (also known as confusion matrices).

The simple minimum-energy scoring method Prime correctly classified 9 of the 18 resistance mutations

in the dataset while merely 85 of the 113 susceptible mutations were correctly classified (28 false positives).

In comparison, the alchemical free-energy method FEP+, which includes entropic and enthalpic contributions
as well as explicit representation of solvent, correctly classified 9 of the 18 resistance mutations while a
vast majority, 105, of the susceptible mutations were correctly classified (merely 8 false positives). Prime
achieved a classification accuracy of 0.72( 7, while FEP+ achieved an accuracy that is significantly higher (both
in a statistical sense and in overall magnitude), achieving an accuracy of 0.87)7:. Sensitivity (also called true
positive rate) and specificity (true negative rate) are also informative statistics in assessing the performance of
a binary classification scheme. For Prime, the sensitivity was 0.5007%, while the specificity was 0.75. To
put this in perspective, a CML patient bearing a resistance mutation in the kinase domain of Abl has an
equal chance of Prime correctly predicting this mutation would be resistant to one of the TKIs considered
here, while if the mutation was susceptible, the chance of correct prediction would be ~75%. By contrast,
the classification specificity of FEP+ was substantially better. For FEP+, the sensitivity was 0.50775 while the

specificity was 0.93(37. There is a very high probability that FEP+ will correctly predict that one of the eight

TKIs studied here will remain effective for a patient bearing a susceptible mutation.

How sensitive are classification results to choice of cutoff?

Previous work by O'Hare et al. utilized TKI-specific thresholds for dasatinib, imatinib, and nilotinib [49], which
were ~2 kcal/mol. Supplementary Figure S2 shows that when our classification threshold was increased
to a 20-fold change in binding (1.77 kcal/mol), FEP+ correctly classified 8 of the 13 resistant mutations
and with a threshold of 100-fold change in binding (2.72 kcal/mol), FEP+ correctly classified the only two
resistant mutations (T315l/dasatinib and T315I/nilotinib). With the extant multilayered and multinodal
decision-making algorithms used by experienced oncologists to manage their patients’ treatment, or by
medicinal chemists to propose candidate compounds for clinical trials, the resistant or susceptible cutoffs
could be selected with more nuance than the simple 10-fold affinity threshold we consider here. With a larger
affinity change cutoff, for example, the accuracy with which physical models predict resistance mutations
increases beyond 90% (Supplementary Figure S2). For the alchemical approach, the two-class accuracy was
0.920% when an affinity change cutoff of 20-fold was used while using an affinity change cutoff of 100-fold

0.87

further improved the two-class accuracy to 0.98;%°.

Bayesian analysis can estimate the true error
The statistical metrics—MUE, RMSE, accuracy, specificity, and sensitivity—discussed above are based on
analysis of the apparent performance of the observed modeling results compared with the observed
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Figure 3. Comparison of experimentally-measured binding free-energy changes (AAG) for 131 clinically observed
mutations and 6 selective kinase inhibitors for which co-crystal structures of wild-type kinase with inhibitor are
available. Top panel: Abl:TKI co-crystal structures used in this study with locations of clinical mutants for each inhibitor
highlighted (colored from blue to red for residues nearest to farthest from ligand) in relation to TKI (green sticks) on
the corresponding Abl:TKI wild-type crystal structure. Middle panel: Scatter plots show Prime and FEP+ computed AAG
compared to experiment, with ellipse widths and heights (+c) for experiment and FEP+ respectively. The red diagonal
line indicates when prediction equals experiment, while the yellow shaded region indicates area in which predicted
AAG is within 1.36 kcal/mol of experiment (corresponding to a ten-fold error in predicted affinity change). AAG <0
denotes the mutation increases the susceptibility of the kinase to the inhibitor, while AAG > 0 denotes the mutation
increases the resistance of the kinase to the inhibitor. The two mutations that were beyond the concentration limit of the
assay (T315l/dasatinib, L248R/imatinib) were not plotted; 129 points were plotted. Truth tables of classification accuracy,
sensitivity and specificity using two-classes. Bottom panel: Truth tables and classification results include T315I/dasatinib
and L248R/imatinib; 131 points were used. For MUE, RMSE, and truth table performance statistics, sub/superscripts
denote 95 % Cls. Variability in the experimental data is shown as ellipse widths and uncertainty in our calculations is shown
as ellipse heights. Experimental variability was computed as the standard error between IC5,-derived AAG measurements
made by different labs, 0.32 kcal/mol. The statistical uncertainty in the Prime calculations was zero because the method
is deterministic (o, = 0), while the uncertainty in the FEP+ calculations was reported as the standard error, o, of the
mean of the predicted AAGs from three independent runs. To better highlight true outliers unlikely to simply result
from expected forcefield error, we presume forcefield error (opr ~ 0.9 kcal/mol [25]) also behaves as a random error,

and represent the total estimated statistical and forcefield error (4 /a + o-exp/(.dl) as vertical error bars. The horizontal

error bars for the experiment (e,,,) was computed as the standard error between AplCs, and AK, measurements, 0.58
kcal/mol. For Prime, *MUE highlights that the Bayesian model yields a value for MUE that is noticeably larger than MUE
for observed data due to the non-Gaussian error distribution of Prime.
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experimental data via sample statistics. However, this analysis considers a limited number of mutants,
and both measurements and computed values are contaminated with experimental or statistical error.
To obtain an estimate of the intrinsic performance of our physical modeling approaches, accounting for
known properties of the experimental variability and statistical uncertainties, we used a hierarchical Bayesian
model (detailed in the Methods) to infer posterior predictive distributions from which expectations and 95%
predictive intervals could be obtained. The results of this analysis are presented in Figure 3 (central tables).

FEP+ is significantly better than Prime at predicting the impact of mutations on TKI binding affinities, as the
apparent performance (using the original observations) as well as the intrinsic performance (where Bayesian
analysis was used to correct for statistical uncertainty or experimental variation) were well-separated outside
their 95% confidence intervals in nearly all metrics. Applying the Bayesian model, the MUE and RMSE for
FEP+ was 0.79%%2 kcal/mol and 0.99!-1% kcal/mol respectively (N=129). For the classification metrics accuracy,

0.68 0.85

specificity, and sensitivity, the model yields 0.89)%2, 0.917%, and 0.69,% respectively (N=131). The intrinsic

RMSE and MUE of Prime was 1 76?22 kcal/mol and 1 40} gg kcal/mol (N=129) respectively, and the classification

accuracy, specificity, and sensitivity was 0.73)7%, 0.74777, and 0.57) 7 respectively (N=131). The intrinsic MUE of

Prime obtained by this analysis is larger than the observed MUE reflecting the non-Gaussian, fat-tailed error
distributions of Prime results.

Is the impact of point mutations on drug binding equally well-predicted for the six TKIs?

The impact of point mutations on drug binding are not equally well predicted for the six TKls. Figure 4
expands the results in Figure 3 on a TKI-by-TKI basis to dissect the particular mutations in the presence of
a specific TKI. Prime and FEP+ correctly predicted that most mutations in this dataset (N=26) do not raise
resistance to axitinib, though FEP+ predicted 4 false positives compared with 3 false positives by Prime. The

MUE and RMSE of FEP+ was excellent for this inhibitor, 0.7032* kcal/mol and 0.91!}4 kcal/mol respectively.

While the classification results for bosutinib (N=21) were equally well predicted by Prime as by FEP+, FEP+ was
still able to achieve superior, but not highly significant, predictive performance for the quantitative metrics

MUE and RMSE, which were 0.96/¢2 kcal/mol and 1.41;77 kcal/mol respectively (FEP+) and 1.13}# kcal/mol and

180252 kcal/mol respectively (Prime). For dasatinib, FEP+ achieved an MUE and RMSE of 0.76, > kcal/mol and

107,37 keal/mol respectively whereas the results were, as expected, less quantitatively predictive for Prime

(N=20). The results for imatinib were similar to those of dasatinib above, where the MUE and RMSE for FEP+
were 0.82)'1> kcal/mol and 1.095¢3 kcal/mol respectively (N=20). Nilotinib, a derivative of imatinib, led to nearly

identical quantitative performance results for FEP+ with an MUE and RMSE of 0.82;12 kcal/mol and 1.06,7
kcal/mol respectively (N=21). Similar to axitinib, ponatinib presented an interesting case because there were
no mutations in this dataset that raised resistance to it. Despite the wide dynamic range in the computed
values of AAG for other inhibitors, FEP+ correctly predicted a very narrow range of AAGs for this drug. This
is reflected in the MUE and RMSE of 0.87;1% kcal/mol and 1.09;75 kcal/mol respectively, which are in-line with
the MUEs and RMSEs for the other TKis.

Understanding the origin of mispredictions

Resistance mutations that are mispredicted as susceptible (false negatives) are particularly critical because
they might mislead the clinician or drug designer into believing the inhibitor will remain effective against
the target. Which resistance mutations did FEP+ mispredict as susceptible? Nine mutations were classified
by FEP+ to be susceptible when experimentally measured AplCs, data indicate the mutations should have
increased resistance according to our 10-fold affinity cutoff for resistance. Notably, the 95% confidence
intervals for five of these mutations spanned the 1.36 kcal/mol threshold, indicating these misclassifications
are not statistical significant when the experimental error and statistical uncertainty in FEP+ are accounted for:
bosutinib/L248R (AAGgp,=1.321%* kcal/mol), imatinib/E255K (AAG, ;p,=0.432% kcal/mol), imatinib/Y253F

0.70 -2.19

(AAGp,=0.95,5¢ kcal/mol), and nilotinib/Y253F (AAG 5, =0.89, % kcal/mol). The bosutinib/V299L mutation

was also not significant because the experimental AAG, 1.70732 kcal/mol, included the 1.36 kcal/mol cutoff;

the value of AAG predicted by FEP+ for this mutation was 0.91)% kcal/mol, the upper bound of the predicted

value was within 0.06 kcal/mol of the lower bound of the experimental value.
Four mutations, however, were misclassified to a degree that is statistically significant given their 95% con-
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fidence intervals: dasatinib/T315A, bosutinib/T315I, imatinib/E255V, and nilotinib/E255V. For dasatinib/T315A,
although the T315A mutations for bosutinib, imatinib, nilotinib, and ponatinib were correctly classified as
susceptible, the predicted free energy changes for these four TKIs were consistently much more negative
than the corresponding experimental measurements, just as for dasatinib/T315A, indicating there might be a
generic driving force contributing to the errors in T315A mutations for these five TKIs. Abl is known to be able
to adopt many different conformations (including DFG-in and DFG-out), and it is very likely that the T315A
mutation will induce conformational changes in the apo protein [50], which was not adequately sampled in
the relatively short simulations, leading to the errors for T315A mutations for these TKls. By comparison,
the T3151 mutations for axitinib, bosutinib, imatinib, nilotinib, and ponatinib were all accurately predicted
with the exception of bosutinib/T315I being the only misprediction, suggesting an issue specific to bosutinib.
The complex electrostatic interactions between the 2,4-dichloro-5-methoxyphenyl ring in bosutinib and the
adjacent positively charged amine of the catalytic Lys271 may not be accurately captured by the fixed-charge
OPLS3 force field, leading to the misprediction for bosutinib/T315] mutation.

Insufficient sampling might also belie the imatinib/E255V and nilotinib/E255V mispredictions because
they reside in the highly flexible P-loop. Since E255V was a charge change mutation, we utilized a workflow
that included a transmutable explicit ion (see Methods). The distribution of these ions in the simulation box
around the solute might not have converged to their equilibrium state on the relatively short timescale of
our simulations (5 ns), and the insufficient sampling of ion distributions coupled with P-loop motions might
lead to misprediction of these two mutations.

How accurately can the impact of mutations be predicted for docked TKIs?
To assess the potential for utilizing physics-based approaches in the absence of a high-resolution experimen-
tal structure, we generated models of Abl bound to two TKIs—erlotinib and gefinitib—for which co-crystal
structures with wild-type kinase are not currently available. In Figure 5, we show the Abl:erlotinib and
Abl:gefitinib complexes that were generated using a docking approach (Glide-SP, see Methods). These two
structures were aligned against the co-crystal structures of EGFR:erlotinib and EGFR:gefinitib to highlight the
structural similarities between the binding pockets of Abl and EGFR and the TKI binding mode in Abl versus
EGFR. As an additional test of the sensitivity of FEP+ to system preparation, a second set of Abl:erlotinib and
Abl:gefitinib complexes was generated in which crystallographic water coordinates were transferred to the
docked inhibitor structures (see Methods).

Alchemical free-energy simulations were performed on 13 mutations between the two complexes; 7
mutations for erlotinib and 6 mutations for gefitinib. The quantitative accuracy of FEP+ in predicting the
value of AAG was excellent—MUE and RMSE of 0.58)%¢ kcal/mol and 0.80; %, kcal/mol respectively if crystal

3
waters are omitted, and 0.50%7% kcal/mol and 0.69)3! (i<c3aI/moI if crystal Waters were restored after docking.
Encouragingly, these results indicate that our initial models of Abl bound to erlotinib and gefitinib were
reliable because the accuracy and dependability of our FEP+ calculations were not sensitive to crystallographic
waters. Our secondary concern was the accuracy with which the approach classified mutations as resistant
or susceptible.

While the results presented in (Figure 5) indicate that FEP+ is capable of achieving good quantitative
accuracy when a co-crystal structure is unavailable, it is important to understand why a mutation was
predicted to be susceptible but was determined experimentally to be resistant. F3171 was the one mutation
thatincreased resistance to erlotinib (or gefitinib) because it destabilized binding by more than 1.36 kcal/mol—
1.35167 kcal/mol (gefitinib) and 1.58;% kcal/mol (erlotinib), but the magnitude of the experimental uncertainty
means we are unable to confidently discern whether this mutation induces more than 10-fold resistance
to either TKI. Therefore, the one misclassification by FEP+ in Figure 5 is not statistically significant and the
classification metrics presented there underestimate the nominal performance of this alchemical free-energy

method.

Discussion
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Figure 4. Physical modeling accuracy in computing the impact of clinical Abl mutations on selective inhibitor
binding. Ligand interaction diagrams for six selective FDA-approved tyrosine kinase inhibitors (TKIs) for which co-crystal
structures with Abl were available (left). Comparisons for clinically-observed mutations are shown for FEP+ (right) and
Prime (left). For each ligand, computed vs. experimental binding free energies (AAG) are plotted with MUE and RMSE (units
of kcal/mol) depicted below. Truth tables are shown to the right. Rows denote true susceptible (S, AAG < 1.36 kcal/mol) or
resistant (R, AAG > 1.36 kcal/mol) experimental classes using a 1.36 kcal/mol (10-fold change) threshold; columns denote
predicted susceptible (s, AAG < 1.36 kcal/mol) or resistant (r, AAG > 1.36 kcal/mol). Correct predictions populate diagonal
elements (orange text), incorrect predictions populate off-diagonals. Accuracy, specificity, and sensitivity for two-class
classification are shown below the truth table. Elliptical point sizes and error bars in the scatter plots depict estimated
uncertainty/variability and error respectively (+o) of FEP+ values (vertical size) and experimental values (horizontal size).
Note: The sensitivity for axitinib and ponatinib is NA, because there is no resistant mutation for these two drugs.
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Figure 5. Predicting resistance mutations using FEP+ for inhibitors for which co-crystal structures with wild-type
kinase are not available. The docked pose of Abl:erlotinib is superimposed on the co-crystal structure of EGFR:erlotinib;
erlotinib docked to Abl (light gray) is depicted in green and erlotinib bound to EGFR (dark gray) is depicted in blue. The
docked pose of Abl:gefitinib is superimposed on the co-crystal structure of EGFR:gefitinib; gefitinib docked to Abl (light
gray) is depicted in green and gefitinib bound to EGFR (dark gray) is depicted in blue. The locations of clinical mutants for
each inhibitor are highlighted (red spheres). The overall RMSEs and MUEs for Prime (center) and FEP+ (right) and two-class
accuracies are also shown in the figure. Computed free energy changes due to the F317] mutation for erlotinib (-e) and
gefitinib (-g) are highlighted in the scatter plot. FEP+ results are based on the docked models prepared with crystal waters
added back while the Prime (an implicit solvent model) results are based on models without crystallographic water.
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Physics-based modeling can reliably predict when a mutation elicits resistance to therapy
The results presented in this work are summarized in Table 2. The performance metrics summarized in
Table 2 indicates that the set of 131 mutations for the six TKIs in which co-crystal structures were available is
on par with the complete set (144 mutations), which included results based on Abl:TKI complexes generated
from docking models. The performance results for the 13 mutations for the two TKiIs (erlotinib and gefitinib)
in which co-crystal structures were unavailable exhibited good quantitative accuracy (MUE and RMSE) and
good classification power.

Overall (N=144), the MM-GBSA approach Prime classified mutations with good accuracy (0.73%%) and

0.66

specificity (0.76) %) while the alchemical approach FEP+ was a significant improvement in classification

accuracy (0.88) %) and specificity (0.94)75). The quantitative accuracy with which Prime was able to predict the

experimentally measured change in Abl:TKI binding (N=142) characterized by RMSE and MUE was 1.70; 33

kcal/mol and 1.14} 3> kcal/mol respectively. In stark contrast, the quantitative accuracy of FEP+ was statistically

superior to Prime with an RMSE and an MUE of 1.07;3¢ kcal/mol and 0.79)7> kcal/mol respectively.

From the perspective of a clinician, classification rate would be an important metric to measure the
predictive power of technologies such as Prime and FEP+. To test the hypothesis that reducing the large
spread in Prime predictions could improve its classification rate, we scaled the computed relative free
energies (by 1/2, 1/3, and by 0.23, which was the optimal factor that gives lowest RMSE) and recalculated
the classification metrics (Table $8). As expected, the MUE and RMSE were improved but the specificity of
Prime was drastically diminished; as MUE and RMSE improved, it became increasingly unable to identify
resistance mutations. Scaling FEP+ eliminated its sensitivity and a naive model (where all free energies were
set to 0.00 kcal/mol) had zero sensitivity. Lastly, we constructed a consensus model in which free energies
were a weighted average of scaled Prime and FEP+. However, this model also had no sensitivity. It appears
difficult to improve upon the predictive power of FEP+ by statistical operations.

To address the impact of picking a cutoff to classify predicted free energies as resistant or sensitizing, we
computed ROC curves for the various predicted datasets: Prime (scaled and non-scaled), FEP+ (scaled and

non-scaled), naive model, and consensus model (constructed from scaled Prime and scaled FEP+, see above).

ROC curves are independent of a linear transformation on the predicted dataset. Therefore, ROC curves
and ROC-AUCs for scaled and non-scaled Prime were identical, as well as scaled and non-scaled FEP+. ROC
curves for these six sets of predictions are presented in Supplementary Figure S3. ROC-AUC for FEP+ was
0.75029 (n=144); ROC-AUC for Prime was 0.66)%) (n=144); ROC-AUCs for the naive model and consensus model

were 0.5003 (n=144) and 0.780%9 (n=144) respectively. These results show that Prime apparently has poor

discriminatory power (ROC-AUC in [0.6,0.7]) while FEP+ apparently has fair discriminatory power (ROC-AUC
in [0.7,0.8]).

Hierarchical Bayesian model estimates global performance (N=144)

A hierarchical Bayesian approach was developed to estimate the intrinsic accuracy of the models when the
noise in the experimental and predicted values of AAG was accounted for. Utilizing this approach, the MUE
and RMSE for Prime was found to be 1.39!3% kcal/mol and 1.75!% kcal/mol (N=142) respectively. The accuracy,

1.23 1.55

specificity, and sensitivity of Prime was found using this method to be 0.74)7°, 0.75)77, and 0.59)7% (N=144)

respectively. The MUE and RMSE of FEP+ was found to be 0.76)%7 kcal/mol and 0.95)% kcal/mol (N=142)
respectively, which is significantly better than Prime. Likewise, a clearer picture of the true classification
accuracy, specificity, and sensitivity of FEP+ was found—0.900%%, 0.9205°, and 0.68; % respectively.
Examining the physical and chemical features of outliers

Current alchemical approaches neglect effects that will continue to improve accuracy

The high accuracy of FEP+ is very encouraging, and the accuracy can be further improved with more accurate
modeling of a number of physical chemical effects not currently considered by the method. While highly
optimized, the fixed-charged OPLS3 [25] force field can be further improved by explicit consideration of
polarizability effects [51], as hinted by some small-scale benchmarks [52]. These features could be especially
important for bosutinib, whose 2,4-dichloro-5-methoxyphenyl ring is adjacent to the positively charged amine
of the catalytic Lys271. Many simulation programs also utilize a long-range isotropic analytical dispersion
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Table 2. Summary of FEP+ and Prime statistics in predicting mutational resistance or sensitivity to FDA-approved
TKis.

Dataset Method Nguane MUE RMSE N Accuracy Specificity ~ Sensitivity
(kcal/mol)  (kcal/mol)
all FEP+ 142 07909 107535 144 0.88)% 0.9452 0.47552
all Prime 142 11455 170,78 144 0.73)% 0.760% 0.53)7¢
xtals FEP+ 129 0.820% 11153 131 0.87)5 0.93097 0.50973
xtals Prime 129 11657 17279 131 07207, 0.750% 0.5007
axitinib FEP+ 26 0.700% 0.9154 26 0.850% 0.8507¢ NA
axitinib Prime 26 1.05;7 1.855%1 26 0.88;% 0.88;% NA
bosutinib  FEP+ 21 096, 141377 21 07605 0.88,99 0.25, 00
bosutinib  Prime 21 113% 1.803% 21 08109 0.824% 0.75,%
dasatinib ~ FEP+ 20 0.76, 10753 21 0.90;% 0.94,% 0.805%%
dasatinib  Prime 20 1.05)% 1.48192 21 0.86)% 0.881% 0.803%
imatinib FEP+ 20 0.82;1 10958 21 0.86;% 1.00; 00 0.4005
imatinib ~ Prime 20 1.32;% 1.6937° 21 04309 0.50%73 0.205¢7
nilotinib FEP+ 21 0.824% 106,72 21 0.86;% 0.945% 0.50550
nilotinib Prime 21 1.50;%7 1.86773 21 0489 0.5357> 0.25,0%
ponatinib  FEP+ 21 0.87;8 1093 21 1.00;% 1.00; 90 NA
ponatinib  Prime 21 094)% 15754 21 08199 0.810% NA
Glide FEP+ 13 05097 0.69937 13 0.92;% 1.00; 90 0.0005
Glide Prime 13 0913 14502 13 0.85,% 0.83,% 1.00,00
Nguant: Number of mutations for which quantitative metrics were evaluated; N,,,: Number mutations for which classifica-

tion metrics were evaluated; All: All mutations; xtals: All mutations for which co-crystal structures were available; Glide:
erlotinib and gefitinib

Accuracy, specificity, and sensitivity were computed to assess two-class prediction performance:

resistant (AAG > 1.36 kcal/mol) or susceptible (AAG < 1.36 kcal/mol).

95% Cls (sub-/superscripts) were estimated from 1000 bootstrap replicates. Note: The sensitivity for axitinib and ponatinib
is NA, because there is no resistant mutation for these two drugs.

correction intended to correct for the truncation of dispersion interactions at finite cutoff, which can induce
an error in protein-ligand binding free energies that depends on the number of ligand heavy atoms being
modified [53]; recently, efficient Lennard-Jones PME methods [54, 55] and perturbation schemes [53] have
been developed that can eliminate the errors associated with this truncation. While the currently employed
methodology for alchemical transformations involving a change in system charge (see Methods) reduces
artifacts that depend on the simulation box size and periodic boundary conditions, the explicit ions that were
included in these simulations may not have sufficiently converged to their equilibrium distributions in these
relatively short simulations. Kinases and their inhibitors are known to possess multiple titratable sites with
either intrinsic or effective pK,s near physiological pH, while the simulations here treat protonation states
and proton tautomers fixed throughout the bound and unbound states; the accuracy of the model can be
further improved with the protonation states or tautomers shift upon binding or mutation considered [56, 57].
Similarly, some systems display significant salt concentration dependence [58], while the simulations for
some systems reported here did not rigorously mimic all aspects of the experimental conditions of the cell
viability assays.

Experimentally observed IC5, changes can be caused by other physical mechanisms

While we have shown that predicting the direct impact of mutations on the binding affinity of ATP-competitive
tyrosine kinase inhibitors for a single kinase conformation has useful predictive capacity, many additional
physical effects that can contribute to cell viability are not currently captured by examining only the predicted
change in inhibitor binding affinity. For example, kinase missense mutations can also shift the populations
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of kinase conformations (which may affect ATP and inhibitor affinities differentially), modulate ATP affinity,
modulate affinity for protein substrate, or modulate the ability of the kinase to be regulated or bounded
by scaffolding proteins. These physical mechanisms might affect the IC,s of cell viability assays but not
necessarily the binding affinity of the inhibitors. While many of these effects are in principle tractable by
physical modeling in general (and alchemical free energy methods in particular), it is valuable to examine our
mispredictions and outliers to identify whether any of these cases is likely to induce resistance (as observed
by AplC,, shifts) by one of these alternative mechanisms.

Other physical mechanisms of resistance are likely similarly computable.

A simple threshold of 10-fold TKI affinity change is a crude metric for classifying resistance or susceptibility
due to the myriad biological factors that contribute to the efficacy of a drug in a person. Except for affecting
the binding affinity of inhibitors, missense mutations can also cause drug resistance through other physical
mechanisms including induction of splice variants or alleviation of feedback. While the current study only
focused on the effect of mutation on drug binding affinity, resistance from these other physical mechanisms
could be similarly computed using physical modeling. For example, some mutations are known to activate
the kinase by increasing affinity to ATP, which could be computed using the same thermodynamic cycle
utilized here for inhibitors.

Conclusion

Revolutionary changes in computing power—especially the arrival of inexpensive graphics processors
(GPUs)—and software automation have enabled alchemical free-energy calculations to impact drug discovery
and life sciences projects in previously unforeseen ways. In this communication, we tested the hypothesis
that FEP+, a fully-automated relative-alchemical free-energy workflow, had reached the point where it can
accurately and reliably predict how clinically-observed mutations in Abl kinase alter the binding affinity of
eight FDA-approved TKis. To establish the potential predictive impact of current-generation alchemical free
energy calculations—which incorporate entropic and enthalpic effects and the discrete nature of aqueous
solvation—compared to a simpler physics-based approach that also uses modern forcefields but scores a
single minimized conformation, we employed a second physics-based approach (Prime). This simpler physics-
based model, which uses an implicit model of solvation to score the energetic changes in interaction energy
that arise from the mutation, was able to capture a useful amount of information to achieve substantial
predictiveness with an MUE of 1.14!-3 kcal/mol (N=142), RMSE of 1.70!%% kcal/mol respectively (N=142), and

0.93 1.40

classification accuracy of 0.73)% (N=144). Surpassing these good results, we went on to demonstrate that

FEP+ is able to achieve superior predictive performance— MUE of 0.79) 7> kcal/mol (N=142), RMSE of 1.07;35

kcal/mol (N=142), and classification accuracy of 0. 888 g; (N=144). While future enhancements to the workflows
for Prime and FEP+ to account for additional physical and chemical effects are likely to improve predictive
performance further, the present results are of sufficient quality and achievable on a sufficiently rapid
timescale (with turnaround times ~6 hours/calculation) to impact research projects in drug discovery and the
life sciences. With exponential improvements in computing power, we anticipate the domains of applicability
for alchemical free-energy methods such as FEP+ will take on increasingly integrated roles to impact projects.
This work illustrates how the domain of applicability for alchemical free-energy methods is much larger
than previously appreciated, and might further be found to include new areas as research progresses:
aiding clinical decision-making in the selection of first- or second-line therapeutics guided by knowledge
of likely subclonal resistance; identifying other selective kinase inhibitors (or combination therapies) to
which the mutant kinase is susceptible; supporting the selection of candidate molecules to advance to
clinical trials based on anticipated activity against likely mutations; facilitating the enrollments of patients in
mechanism-based basket trials; and generally augmenting the armamentarium of precision oncology.

Methods

System preparation
All system preparation utilized the Maestro Suite (Schrédinger) version 2016-4. Comparative modeling to add
missing residues using a homologous template made use of the Splicer tool, while missing loops modeled
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without a template used Prime. All tools employed default settings unless otherwise noted. The Abl wild-type
sequence used in building all Abl kinase domain models utilized the ABL1_HUMAN Isoform IA (P00519-1)
UniProt gene sequence spanning S229-K512. Models were prepared in non-phosphorylated form. We used
a residue indexing convention that places the Thr gatekeeper residue at position 315 to match common
usage; an alternate indexing convention utilized in experimental X-ray structures for Abl:imatinib (PDB: 10P))
[59] and Abl:dasatinib (PDB: 4XEY) [60] was adjusted to match our convention.

Complexes with co-crystal structures. Chain B of the experimental structure of Abl:axitinib (PDB:
4WA9) [44] was used, and four missing residues at the N- and C-termini were added using homology
modeling with PDB 31K3 [61] as the template following alignment of the respective termini of the kinase
domain. Chain B was selected because chain A was missing an additional 3 and 4 residues at the N- and
C-termini, respectively, in addition to 3- and 20-residue loops, both of which were resolved in chain B. All
missing side chains were added with Prime. The co-crystal structure of Abl:bosutinib (PDB: 3UE4) [62] was
missing 4 and 10 N- and C-terminal residues respectively in chain A that were built using homology modeling
with 3IK3 as the template. All loops were resolved in chain A (chain B was missing two residues in the P-loop,
Q252 and Y253). All missing side chains were added with Prime. The co-crystal structure of Abl:dasatinib
(PDB: 4XEY) [60] was missing 2 and 9 N- and C-terminal residues, respectively, that were built via homology
modeling using 3IK3 as the template. A 3 residue loop was absent in chain B but present in chain A; chain
A was chosen. The co-crystal structure of Abl:imatinib (PDB: 10PJ) [59] had no missing loops. Chain B was
used because chain A was missing two C-terminal residues that were resolved in chain B. A serine was
present at position 336 (index 355 in the PDB file) and was mutated to asparagine using Prime to match
the human wild-type reference sequence (P00519-1). The co-crystal structure of Abl:nilotinib (PDB: 3CS9)
[63] contained four chains in the asymmetric unit all of which were missing at least one loop. Chain A was
selected because its one missing loop involved the fewest number of residues of the four chains; chain A
was missing 4 and 12 N- and C-terminal residues, respectively, that were built using homology modeling
with 3IK3 as the template. A 4-residue loop was missing in chain A (chain B and C were missing two loops,
chain D was missing a five residue loop) that was built using Prime. The co-crystal structure of Abl:ponatinib
(PDB: 30XZ) [64] contained only one chain in the asymmetric unit. It had two missing loops, one 4 residues
(built using Prime) and one 12 residues (built using homology modeling with 30Y3 [64] as the template).
Serine was present at position 336 and was mutated to Asn using Prime to match the human wild-type
reference sequence (P00519-1). Once the residue composition of the six Abl:TKI complexes were normalized
to have the same sequence, the models were prepared using Protein Preparation Wizard. Bond orders
were assigned using the Chemical Components Dictionary and hydrogen atoms were added. Missing side
chain atoms were built using Prime. Termini were capped with N-acetyl (N-terminus) and N-methyl amide
(C-terminus). If present, crystallographic water molecules were retained. Residue protonation states (e.g.
Asp381 and Asp421) were determined using PROPKA [65] with a pH range of 5.0-9.0. Ligand protonation
state was assigned using PROPKA with pH equal to the experimental assay. Hydrogen bonds were assigned
by sampling the orientation of crystallographic water, Asn and Gin flips, and His protonation state. The
positions of hydrogen atoms were minimized while constraining heavy atoms coordinates. Finally, restrained
minimization of all atoms was performed in which a harmonic positional restraint (25.0 kcal/mol/A%) was
applied only to heavy atoms. Table S9 summarizes the composition of the final models used for FEP.

Complexes without co-crystal structures. Co-crystal structures of Abl bound to erlotinib or gefitinib
were not publicly available. To generate models of these complexes, Glide-SP [66] was utilized to dock
these two compounds into an Abl receptor structure. Co-crystal structures of these two compounds bound
to EGFR were publicly available and this information was used to obtain initial ligand geometries and to
establish a reference binding mode against which our docking results could be structurally scored. The Abl
receptor structure bound to bosutinib was used for docking because its structure was structurally similar to
that of EGFR in the erlotinib- (PDB: 4H)O) [67] and gefitinib-bound (PDB: 4WKQ) [68] co-crystal structures.
Abl was prepared for docking by using the Protein Preparation Wizard (PPW) with default parameters.
Crystallographic waters were removed but their coordinates retained for a subsequent step in which they
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were optionally reintroduced. Erlotinib and gefitinib protonation states at pH 7.0+2.0 were determined using
Epik [69]. Docking was performed using the Glide-SP workflow. The receptor grid was centered on bosutinib.
The backbone NH of Met318 was chosen to participate in a hydrogen bonding constraint with any hydrogen
bond donor on the ligand. The hydroxyl of T315 was allowed to rotate in an otherwise rigid receptor. Ligand
docking was performed with enhanced sampling; otherwise default settings were used. Epik state penalties
were included in the scoring. The 16 highest ranked (Glide-SP score) poses were retained for subsequent
scoring. To determine the docked pose that would be subsequently used for free energy calculations, the
ligand heavy-atom RMSD between the 16 poses and the EGFR co-crystal structures (PDB IDs 4HJO and 4WKQ)
was determined. The pose in which erlotinib or gefitinib most structurally resembled the EGFR co-crystal
structure (lowest heavy-atom RMSD) was chosen as the pose for subsequent FEP+. Two sets of complex
structures were subjected to free energy calculations to determine the effect of crystal waters: In the first
set, without crystallographic waters, the complexes were prepared using Protein Prep Wizard as above. In
the second set, the crystallographic waters removed prior to docking were added back, and waters in the
binding pocket that clashed with the ligand were removed.

Force field parameter assignment

The OPLS3 forcefield [25] version that shipped with Schrédinger Suite release 2016-4 was used to parame-
terize the protein and ligand. Torsion parameter coverage was checked for all ligand fragments using Force
Field Builder. The two ligands that contained a fragment with a torsion parameter not covered by OPLS3
were axitinib and bosutinib; Force Field Builder was used to obtain these parameters. SPC parameters [70]
were used for water. For mutations that change the net change of the system, counterions were included to
neutralize the system with additional Na+ and Cl- ions added to achieve 0.15 M excess to mimic the solution
conditions of the experimental assay.

Prime (MM-GBSA)

Prime was used to predict the geometry of mutant side chains and to calculate relative changes in free energy
using MM-GBSA single-point estimates [39]. VSGB [71] was used as the implicit solvent model to calculate
the solvation free energies for the four states (complex/wild-type, complex/mutant, apo protein/wild-type,
and apo protein/mutant) and AAG calculated using the thermodynamic cycle depicted in Figure 1b. Unlike
FEP (see below), which simulates the horizontal legs of the thermodynamic cycle, MM-GBSA models the
vertical legs by computing the interaction energy between the ligand and protein in both wild-type and
mutant states, subtracting these to obtain the AAG of mutation on the binding free energy.

Alchemical free energy perturbation calculations using FEP+
Alchemical free energy calculations were performed using the FEP+ tool in the Schrédinger Suite version
2016-4, which offers a fully automated workflow requiring only an input structure (wild-type complex) and
specification of the desired mutation. The default protocol was used throughout: It assigns protein and
ligand force field parameters (as above), generates a dual-topology [72] alchemical system for transforming
wild-type into mutant protein (whose initial structure is modeled using Prime), generates the solvent-leg
endpoints (wild-type and mutant apo protein), and constructs intermediate windows spanning wild-type
and mutant states. Simulations of the apo protein were setup by removing the ligand from the prepared
complex (see System Preparation) followed by an identical simulation protocol as that used for the complex.
Charge-conserving mutations utilized 12 2 windows (24 systems) while charge-changing mutations utilized 24
A windows (48 systems). Each system was solvated in an orthogonal box of explicit solvent (SPC water [70])
with box size determined to ensure that solute atoms were no less than 5 A (complex leg) or 10 A (solvent leg)
from an edge of the box. For mutations that change the net charge of the system, counterions were included
to neutralize the charge of the system, and additional Na+ and Cl- ions added to achieve 0.15 M excess
NaCl to mimic the solution conditions of the experimental assay. The artifact in electrostatic interactions for
charge change perturbations due to periodic boundary conditions in MD simulations are corrected based on
the method proposed by Rocklin et al. [73].

System equilibration was automated. It followed the default 5-stage Desmond protocol: (i) 100 ps with
1 fs time steps of Brownian dynamics with positional restraints of solute heavy atoms to their initial geometry
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using a restraint force constant of 50 kcal/mol/A?; this Brownian dynamics integrator corresponds to a
Langevin integrator in the limit when r -0, modified to stabilize equilibration of starting configurations
with high potential energies; particle and piston velocities were clipped so that particle displacements were
limited to 0.1 A, in any direction. (ii) 12 ps MD simulations with 1 fs time step using Langevin thermostat at
10 K with constant volume, using the same restraints; (iii) 12 ps MD simulations with 1 fs time step using
Langevin thermostat and barostat [74] at 10 K and constant pressure of 1 atmosphere, using the same
restraints; (iv) 12 ps MD simulations with 1 fs time step using Langevin thermostat and barostat at 300 K
and constant pressure of 1 atmosphere, using the same restraints; (v) a final unrestrained equilibration
MD simulation of 240 ps with 2 fs time step using Langevin thermostat and barostat at 300 K and constant
pressure of 1 atmosphere. Electrostatic interactions were computed with particle-mesh Ewald (PME) [75]
and a 9 A cutoff distance was used for van de Waals interactions. The production MD simulation was
performed in the NPT ensemble using the MTK method [76] with integration time steps of 4 fs, 4 fs, and 8 fs
respectively for the bonded, near, and far interactions following the RESPA method [77] through hydrogen
mass repartitioning [78]. Production FEP+ calculations utilized Hamiltonian replica exchange with solute
tempering (REST) [79], with automated definition of the REST region. Dynamics were performed with
constant pressure of 1 atmosphere and constant temperature of 300 K for 5 ns in which exchanges between
windows was attempted every 1.2 ps.

Because cycle closure could not be used to reduce statistical errors via path redundancy [79], we
instead performed mutational free energy calculations in triplicate by initializing dynamics with different
random seeds. The relative free energies for each mutation in each independent run were calculated using
BAR [80, 81] The reported AAG was computed as the mean of the computed AAG from three independent
simulations. Triplicate simulations were performed in parallel using four NIVIDA Pascal Architecture GPUs
per alchemical free-energy simulation (12 GPUs in total), requiring ~6 hours in total to compute AAG.

Obtaining AAG from AplCy, benchmark set data

Reference relative free energies were obtained from three publicly available sources of AplCs, data (Table 7).

Under the assumption of Michaelis-Menten binding kinetics (pseudo first-order, but relative free energies are
likely consistent), the inhibitor is competitive with ATP (Equation 7). This assumption has been successfully
used to estimate relative free energies [37, 82-84] using the relationship between IC,, and competitive
inhibitor affinity K,
Ki
mm:f:@i' (1)
Ky

If the Michaelis constant for ATP (K,,) is much larger than the initial ATP concentration S, the relation in
Equation 1 will tend towards the equality IC,, = K,. The relative change in binding free energy of Abl:TKI
binding due to protein mutation is simply,

ICSO,WT

AAG = —RT In )

50,mut

where ICy, 1 is the IC5, value for the TKI binding to the wild-type protein and ICy,,,, is the ICy, value for the
mutant protein. R is the ideal gas constant and T is taken to be room temperature (300 K).

As alluded to above, relating ApICy,s to AAGs assumes that the Michaelis constant for ATP is much larger
than the initial concentration of ATP, and that the experimentally observed ApICs, change is solely from
changes in kinase:TKI binding affinity. In practice, not all of these assumptions may hold. For example, the
experimentally observed AplCy, might depend on the metabolism of drugs, and for drugs with different
mechanisms of action than directly binding to the kinase binding pocket (e.g., binding to the transition
structures of kinases, target gene amplification, up-/down-regulation of positive-/negative-feedback effectors,
diminished synergism of pro-apoptotic machinery, decoupling of the target from cell survival circuits) [85, 86],
their inhibition ability might not correlate well with binding affinity. However, the comparison between
AplC,, and AK, is presented in Figure 2d, and this comparison indicates the assumptions we used to relate
AplCy, to AAG are reasonable for the dataset we studied.
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s0  Assessing prediction performance

s Quantitative accuracy metrics

s72 Mean unsigned error (MUE) was calculated by taking the average absolute difference between predicted and
573 experimental estimates of AAG. Root-mean square error (RMSE) was calculated by taking the square root
s74  Of the average squared difference between predicted and experimental estimates of AAG. MUE depends
s75  linearly on errors such that large and small errors contribute equally to the average value, while RMSE
s76  depends quadratically on errors, magnifying their effect on the average value.

s77 Truth tables

s78  Two-class truth tables were constructed to characterize the ability of Prime and FEP+ to correctly classify
s79  mutations as susceptible (AAG < 1.36 kcal/mol) or resistant (AAG > 1.36 kcal/mol), where the 1.36 kcal/mol
sso0 threshold represents a 10-fold change in affinity. Accuracy was calculated as the fraction of all predictions
ss1 that were correctly classified as sensitizing, neutral, or resistant. Sensitivity and specificity were calculated
ss2  Using a binary classification of resistant (AAG > 1.36 kcal/mol) or susceptible (AAG < 1.36 kcal/mol). Specificity
ss3  was calculated as the fraction of correctly predicted non-resistant mutations out of all truly susceptible
s« mutations S. Sensitivity was calculated as the fraction of correctly predicted resistant mutations out of all
sss  truly resistant mutations, R. The number of susceptible mutations was 113 for axitinib, bosutinib, dasatinib,
ss6  imatinib, nilotinib and ponatinib, and 12 for erlotinib and gefitinib; the number of resistant mutations R was
ss7 18 for axitinib, bosutinib, dasatinib, imatinib, nilotinib, and ponatinib, and 1 for erlotinib and gefitinib.

sss  Consensus model

ss9  First, Prime and FEP+ (n=142) were scaled by minimizing their RMSE to experiment by optimizing slope using
s linear regression. The resulting (minimum) RMSE was used in a subsequent step to combine the scaled FEP+
ss1 - and scaled Prime free energies with inverse-variance weighted averaging.

s2 ROC

sos A ROC curve was generated by computing the true positive rate (sensitivity) and the true negative rate
sa  (specificity) when the classification cutoff differentiating resistant from sensitizing mutations is changed for
sos  (only) the predicted values of AAG. Cutoffs were chosen by taking the minimum and maximum value of AAG
so¢ for a data set (Prime or FEP+), and iteratively computing specificity and sensitivity in steps of 0.001 kcal/mol,
so7  which by this definition will be in the range [0,1]. Experimental positives and negatives were classified with
s the 1.36 kcal/mol cutoff. ROC-AUC was computed using the trapezoidal rule.

oo Estimating uncertainties of physical-modeling results

s0  95% symmetric confidence intervals (Cl, 95%) for all performance metrics were calculated using bootstrap by
so1 resampling all datasets with replacement, with 1000 resampling events. Confidence intervals were estimated
ez for all performance metrics and reported as x, ‘“g“ where x is the mean statistic calculated from the complete
03 dataset (e.g. RMSE), and x,,,, and x;,, are the values of the statistic at the 2.5"* and 97.5"* percentiles of the
e04 Vvalue-sorted list of the bootstrap samples. Uncertainty for AAGs was computed by the standard deviation
e0s between three independent runs (using different random seeds to set initial velocities), where the 95% Cl
606 Was [AAG—1.96Xcpgp,, AAG+1.96X0pp, ] kcal/mol. 16 used in plots for FEP+ and experiment; Oc for Prime.

sz Bayesian hierarchical model to estimate intrinsic error

es We used Bayesian inference to estimate the true underlying prediction error of Prime and FEP+ by making
eo Use of known properties of the experimental variability (characterized in Figure 2) and statistical uncertainty
s10 estimates generated by our calculations under weak assumptions about the character of the error.

611 We presume the true free energy differences of mutation i, AAG!™, comes from a normal background
612 distribution of unknown mean and variance,

AAG™  ~ N (ppr02,) i=1,.0., M 3)
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&3 where there are M mutations in our dataset. We assign weak priors to the mean and variance

Hmuwe ™~ U(-6,+6) (4)

Ot & 1 (5)

e«  where we limit ¢ > 0.

615 We presume the true computational predictions (absent statistical error) differ from the (unknown)
sis  true free energy difference of mutation AAG!™ by normally-distributed errors with zero bias but standard
¢17 deviation equal to the RMSE for either Prime or FEP+, the quantity we are focused on estimating:

AAGTE -~ N(AAG™,RMSE}, ) (6)
AAGTE,. ~ N(AAG™ RMSEL,) (7)
618 In the case of Prime, since the computation is deterministic, we actually calculate AAGYS  for each

e19 mutant. For FEP+, however, the computed free energy changes are corrupted by statistical error, which we
620 also presume to be normally distributed with standard deviation ¢,

calc,i’?
AAG gpp,  ~ N(AAGtFEP+’o-1FEP+) (8)

&1 Where AAG, pgp, is the free energy computed for mutant i by FEP+, and o, g, is the corresponding statistical
62 error estimate.
623 The experimental data we observe is also corrupted by error, which we presume to be normally dis-
s24  tributed with standard deviation o,,,

AAG,,, ~ N(AAG,.6>) 9)

1,eXp exp

65 Here, we used an estimate of K- and ICy,-derived AAG variation derived from the empirical RMSE of 0.81
26 kcal/mol, where we took o, ~ 0.81/4/2 = 0.57 kcal/mol to ensure the difference between two random
627 measurements of the same mutant would have an empirical RMSE of 0.81 kcal/mol.

628 Under the assumption that the true AAG is normally distributed and the calculated value differs from
69 the true value via a normal error model, it can easily be shown that the MUE is related to the RMSE via

MUE / dxlrue p(xlrue) / dxcalc p(xcalc|xtrue) |xcalc - xlruel (1 O)

1 ("calc’l‘lrue)2
/ dxlrue / dxcalc Zagalc X - (1 1 )
\/ 2ﬂ'o-tzruc \/ calc
\/E RMSE (12)
T

calc Xirue
630 The model was implemented using PyMC3 [87], observable quantities were set to their computed or
631 experimental values, and 5000 samples drawn from the posterior (after discarding an initial 500 samples to
632 burn-in) using the default NUTS sampler. Expectations and posterior predictive intervals were computed
633 from the marginal distributions obtained from the resulting traces.

(Xlrue —Muue>

u ue

¢ Data availability
e3s  Compiled experimental datasets, input files for Prime and FEP+ and computational results can be found at
e the following URL: https://goo.gl/6cC8Bu

«» Code availability
e  Scripts used for statistics analysis (including the Bayesian inference model) can be found at the following
630  URL: https://goo.gl/6cC8Bu
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Figure S1. Comparison of 31 mutations for which phosphorylated and non-phosphorylated AK s were available.
Scatter plot compares AAGs (derived from the AK,s) and contains the best-fit line with slope 0.77 and intercept 0.14.
Summary statistics for this comparison are also shown. The raw AAGs used for this comparison were adapted from [46];

kino-bead data for ponatinib was not available.
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Figure S2. TKI-by-TKI truth tables with increasingly large classification cutoffs. Truth tables for the six TKIs (axitinib,
bosutinib, dasatinib, imatinib, nilotinib, and ponatinib) using Prime (left, green) and FEP+ (right, blue) with classification
cutoff values defining whether mutations are susceptible (S, experiment; s, prediction) or resistant (R, experiment; r,
prediction). A mutation is susceptible if AAG < cutoff or resistant if AAG > cutoff.
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Figure S3. ROC curves for non-scaled and scaled FEP+, non-scaled and scaled Prime, a consensus model and a

naive model. ROC-AUC for scaled and non-scaled FEP+ was 0. 7582‘1’ (n=144); ROC-AUC for scaled and non-scaled Prime

was 06682; (n=144); ROC-AUCs for the naive model and consensus model were 0508 gg (n=144) and 07882‘7) (n=144)
respectively. Optimal scaling factors (a=0.34 for FEP+; a=0.23 for Prime) obtained using linear regression (m=142) were
applied to the full dataset (n=144), which was used in this ROC analysis. ROC-AUC interpretations: [0.50,0.60], failure;

[0.60,0.70], poor; [0.70,0.80], fair; [0.80,0.90], good; [0.90,1.00], excellent.
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Table S1.

AAG data derived from publicly available AplC5, measurements and sources of mutation clinical-
observation

Mutation axitinib bosutinib dasatinib imatinib nilotinib ponatinib gefitinib  erlotinib Source of

able under

AAG AAG AAG AAG AAG AAG AAG AAG  Clinical-Observation
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

M244v -0.11 0.43 0.00 0.21 -0.13 0.00 nd nd A
L248R 0.31 1.50 0.65 2.33 2.15 0.58 nd nd B
L248V 0.32 0.56 0.55 0.64 0.33 0.17 nd nd AC
G250E 0.27 0.11 0.41 1.01 0.60 0.30 nd nd ACD
Q252H 0.20 nd nd nd nd nd -0.44 -0.13 A
Y253F 0.26 -0.34 0.24 1.90 1.48 0.30 -0.17 0.00 C
Y253H 0.03 nd nd nd nd nd nd nd ACD
E255K 0.26 0.56 0.90 1.50 1.27 0.41 -0.11 -0.11  ACD
E255V 0.30 0.66 1.02 2.22 2.36 1.00 nd nd AC
D276G 0.18 nd nd nd nd nd nd nd C
E279K -0.03 nd nd nd nd nd nd nd C
E292L 0.03 nd nd nd nd nd nd nd E
V299L -0.88 1.70 1.24 0.23 0.28 0.17 nd nd @
T315A -0.45 0.32 2.02 0.51 0.72 0.17 nd nd C
T315I -1.27 2.45 5.08 2.32 3.75 0.41 nd -0.15 CD
T315V -1.73 nd nd nd nd nd nd nd B
F317C nd 0.50 1.86 0.28 0.04 0.00 nd nd A
F317I nd 0.71 1.79 0.17 0.30 0.51 1.35 158 C
F317L 0.23 0.09 0.96 0.72 0.20 0.17 0.29 040 CD
F317R 0.27 nd nd nd nd nd nd nd B
F317Vv 0.28 1.72 2.36 0.97 0.33 0.72 nd nd @
M343T 0.21 nd nd nd nd nd nd nd Fh
M351T -0.24 0.19 0.00 0.42 0.00 0.17 0.05 -0.08 ACD
E355A nd 0.02 0.24 0.47 0.11 0.51 nd nd C
F359C nd -0.01 0.00 0.77 0.68 0.41 nd nd @
F359I 0.10 0.04 0.24 0.28 0.86 0.77 nd nd A
F359Vv 0.07 -0.11 0.00 0.32 0.60 0.17 nd nd AC
L384M 0.06 nd nd nd nd nd nd nd Fi
H396R 0.25 -0.10 0.00 0.40 0.25 0.17 nd nd A
F486S 0.05 nd nd nd nd nd nd nd Ak
E459K nd 0.35 0.41 0.66 0.55 0.30 nd nd @

A: Gruber et al. ([88])

B: Redaelli et al. ([89])

C: Cortes et al. ([90])

D: Branford et al. ([91])

E: Press et al. ([92])

F: Shah et al. ([3])

8: F317C observed with A27-183

h: M343T observed as compound mutation with H396R
i1 L384M observed as compound mutation with M343T
J: H396R observed as compound mutation with F486S
k: F486S observed as compound mutation with H396R

30 of 37


https://doi.org/10.1101/239012
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint d0| https //d0| org/lO 1101/239012; this version posted Aprll 2, 2018 The copyrlght holder for this preprlnt (WhICh was not
) 1 eprin )
.‘ch 30, 201 8

certified b

Table S2. Axitinib: experimental IC;, values and alchemical free-energy AAGs for each mutation.

able under

Expt.
1Cs0
(nM)

Expt.
AAG

Prime
AAG

FEP+RunI
AAG

FEP+RunI
BAR err

FEP+Run2
AAG

FEP+RLm2
BAR err

FEP+Run3
AAG

FEP+Rurl3
BAR err

AAG,, SE
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type
M244V
L248R
L248V
G250E
Q252H
Y253F
Y253H
E255K
E255V
D276G
E279K
E292L
V299L
T315A
T315I
T315V
F317L
F317R
F317v
M343T
M351T
F359I
F359V
L384M
H396R
F486S

823
690
1393
1399
1295
1155
1275
867
1282
1350
1105
778
863
188
389
98
45
1220
1286
1320
1175
553
975
933
916
1247
897

-0.11
0.31

0.32
0.27
0.20
0.26
0.03
0.26
0.30
0.18
-0.03
0.03
-0.88
-0.45
-1.27
-1.73
0.23
0.27
0.28
0.21

-0.24
0.10
0.07
0.06
0.25
0.05

-0.10
-0.06
6.02
0.31

-0.18
1.1

4.65
0.12
-0.29
-0.01
-0.15
-0.00
-5.00
0.99
-2.30
-1.07
1.29
-2.46
2.29
-0.04
-0.07
-0.04
-0.07
-0.01
-0.02
-0.09

-0.40
213
-1.32
-0.35
0.07
0.77
1.14
1.30
0.98
0.03
0.06
0.53
-1.08
0.09
-1.26
-1.10
-0.64
2.64
0.45
-0.26
-0.25
1.89
2.68
-0.07
0.36
0.65

0.41
0.43
0.41
0.41
0.43
0.43
0.47
0.44
0.42
0.42
0.42
0.43
0.42
0.43
0.42
0.41
0.41
0.46
0.42
0.54
0.41
0.41
0.42
0.41
0.42
0.47

-0.35
242
-1.04
-0.71
0.30
0.23
0.38
0.63
1.04
0.64
-0.22
0.35
-1.39
0.24
-1.50
-1.32
-0.10
2.27
0.70
-0.50
-0.03
1.60
1.55
0.27
1.23
1.14

0.41
0.45
0.42
0.41
0.42
0.43
0.49
0.43
0.42
0.42
0.43
0.42
0.42
0.47
0.45
0.42
0.41
0.51
0.42
0.53
0.41
0.42
0.42
0.41
0.41
0.46

-0.43
2.46
-1.22
-0.74
0.29
1.15
-0.19
1.10
1.26
0.44
1.27
0.31

-1.37
0.31

=1.22)
-1.15
-0.38
1.38
0.75
-0.58
0.37
1.78
1.64
0.23
0.65
0.44

0.41
0.43
0.42
0.41
0.43
0.45
0.45
0.44
0.43
0.43
0.43
0.42
0.42
0.42
0.43
0.48
0.41
0.47
0.42
0.50
0.41
0.41
0.41
0.41
0.42
0.48

-0.39
2.34
=119
-0.60
0.22
0.72
0.44
1.01

1.09
0.37
0.37
0.40
-1.28
0.21

-1.38
-1.19
-0.37
2.10
0.63
-0.45
0.03
1.76
1.96
0.14
0.75
0.74

0.02
0.10
0.08
0.13
0.08
0.27
0.39
0.20
0.09
0.18
0.46
0.07
0.10
0.06
0.07
0.07
0.16
0.37
0.09
0.10
0.18
0.08
0.36
0.1
0.26
0.21

BAR err: Bennett Acceptance Ratio error.

AAG,,: Average of three independent FEP+ runs.

SE: Standard Error between three independent FEP+ runs.
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Table S3. Bosutinib: experimental ICy, values and alchemical free-energy AAGs for each mutation.

Preprlnt SEEH

=0 (e HG ITEE
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Expt.
1Cs0
(nM)

Expt.
AAG

Prime
AAG

FEP+RunI
AAG

FEP+ gy
BAR err

FEP+Rur12
AAG

FEP+ gumz
BAR err

FEP+Run3
AAG

FEP+Run3
BAR err

AAG,, SE
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type
M244V
L248R
L248V
G250E
Y253F
E255K
E255V
V299L
T315A
T315I
F317C
F317I
F317L
F317v
M351T
E355A
F359C
F359I
F359V
H396R
E459K

71
147
874
182

85

40
181
214

1228
122
4338
165
232
82
1280

97

74

70

76

59

60
127

0.43
1.50
0.56
0.1

-0.34
0.56
0.66
1.70
0.32
2.45
0.50
0.71

0.09
1.72
0.19
0.02
-0.01
0.04
-0.11
-0.10
0.35

0.02
3.67
5.77
-0.30
-0.03
0.49
0.11

-0.85
1.00
3.75
4.83
1.61

-0.71
4.12
0.02
0.13
-0.09
-0.06
-0.06
-1.07
0.26

-0.28
1.00
0.37
0.28
0.21

-1.01
-0.47
0.97
-1.61
-2.32
1.04
0.16
0.05
1.98
0.36
-0.20
3.02
0.66
0.98
0.62
-0.69

0.41
0.43
0.41
0.43
0.45
0.43
0.42
0.43
0.41
0.43
0.41
0.41
0.41
0.42
0.42
0.44
0.42
0.41
0.43
0.42
0.42

-0.11
1.63
0.72
0.63
0.02

-1.30

-0.51
0.90

-1.61

-2.21
1.27
0.07
0.47
1.50
0.82
0.13
2.51
1.74
1.69

-0.07
0.23

0.41
0.43
0.42
0.43
0.43
0.43
0.43
0.42
0.41
0.42
0.41
0.42
0.41
0.42
0.41
0.43
0.42
0.41
0.41
0.42
0.42

-0.08
1.33
0.38

-1.07
0.95

-1.01

-0.91
0.85

-1.97

-1.26
1.22
0.02
0.24
2.25
0.71
0.27
1.97
1.43
1.91

-0.93

-0.54

0.41
0.43
0.42
0.43
0.43
0.43
0.43
0.42
0.41
0.42
0.42
0.41
0.41
0.42
0.41
0.43
0.43
0.42
0.42
0.43
0.42

-0.16
1.32
0.49

-0.05
0.39

-1

-0.63
0.91

-1.73

-1.93
1.18
0.08
0.25
1.91
0.63
0.07
2.50
1.28
1.53

-0.13

-0.33

0.06
0.18
0.12
0.52
0.28
0.10
0.14
0.03
0.12
0.34
0.07
0.04
0.12
0.22
0.14
0.14
0.30
0.32
0.28
0.45
0.28

BAR err: Bennett Acceptance Ratio error.

AAG,,: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S4. Dasatinib: experimental ICy, values and alchemical free-energy AAGs for each mutation.

Prepnntqh

=0 (oG ITEE

able under

Expt.
ICs
(nM)

Expt.
AAG

Prime

AAG

FEP+RunI

AAG

FEP+ gy
BAR err

FEP+Ruﬂ2

AAG

FEP+ guma
BAR err
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

FEP+Run3

AAG

FEP+Run3
BAR err

AAG,,

SE

wild-type
M244V
L248R
L248V
G250E
Y253F
E255K
E255V
V299L
T315A
T315I
F317C
F3171
F317L
F317V
M351T
E355A
F359C
F359I
F359V
H396R
E459K

104

NN WN W

4

0.00
0.65
0.55
0.41
0.24
0.90
1.02
1.24
2.02
5.08
1.86
1.79
0.96
2.36
0.00
0.24
0.00
0.24
0.00
0.00
0.41

-0.10
-2.13
2.60
-0.00
0.00
-0.08
-0.08
0.01

5.09
-2.69
4.72
2.38
1.22
4.08
0.04
0.00
-0.03
-0.02
-0.03
2.53
0.00

0.05
1.40
0.58
-0.54
-0.21
-0.30
0.06
0.83
-1.74
5.63
2.63
1.94
1.26
3.12
0.04
-0.24
1.24
-0.50
-0.87
-0.76
-0.68

0.41
0.42
0.42
0.43
0.43
0.43
0.42
0.41
0.41
0.43
0.42
0.41
0.41
0.42
0.41
0.43
0.42
0.42
0.41
0.43
0.42

-0.37
1.50
0.70

-0.31

-0.24

-0.17

-0.80
0.36

-1.65
4.69
2.32
2.04
1.42
2.84
0.14

-0.87
0.68

-0.33
0.57

-0.09

-0.17

0.41
0.43
0.41
0.43
0.43
0.44
0.42
0.42
0.41
0.44
0.42
0.41
0.41
0.42
0.41
0.45
0.41
0.42
0.42
0.43
0.42

-0.43
1.51
0.79
0.01
-0.03
-1.05
-0.12
0.77
-1.23
5.50
2.62
1.94
1.08
2.68
0.00
-1.25
1.38
-1.14
-0.62
-0.06
-0.07

0.41
0.42
0.41
0.44
0.44
0.43
0.42
0.42
0.41
0.43
0.41
0.41
0.41
0.42
0.42
0.44
0.42
0.42
0.41
0.43
0.41

-0.25
1.47
0.69

-0.28

-0.16

-0.51

-0.29
0.65

-1.54
5.27
2.52
1.97
1.25
2.88
0.06

-0.79
1.10

-0.66

-0.31

-0.30

-0.31

0.15
0.04
0.06
0.16
0.07
0.27
0.26
0.15
0.16
0.29
0.10
0.03
0.10
0.13
0.04
0.29
0.21
0.25
0.44
0.23
0.19

T3151 was beyond the concentration limit of the assay (10,000 nM).

BAR err: Bennett Acceptance Ratio error.

AAG,,: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S5. Imatinib: experimental IC;, values and alchemical free-energy AAGs for each mutation.

Preprlnt SEEH

=0 (oG ITEE

able under

Expt.
AAG

Prime

AAG

FEP+RunI

AAG

FEP+ gy
BAR err

FEP+Ruﬂ2

AAG

FEP+ guma
BAR err
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

FEP+Run3

AAG

FEP+Run3
BAR err

AAG,,

SE

Expt.

ICs

(nM)
wild-type 201
M244V 287
L248R 10000
L248V 586
G250E 1087
Y253F 4908
E255K 2487
E255V 8322
V299L 295
T315A 476
T315I 9773
F317C 324
F3171 266
F317L 675
F317v 1023
M351T 404
E355A 441
F359C 728
F359I 324
F359V 346
H396R 395
E459K 612

0.21
2.33
0.64
1.01
1.90
1.50
2.22
0.23
0.51
2.32
0.28
0.17
0.72
0.97
0.42
0.47
0.77
0.28
0.32
0.40
0.66

-0.08
1.92
1.89
0.92
-0.02
0.25
0.24
-1.29
5.10
0.88
2.10
0.94
0.74
1.57
-0.02
0.29
2.43
1.95
2.53
2.76
0.24

0.15
1.92
-1.04
0.16
0.87
-0.12
-0.72
0.66
-1.39
4.23
0.27
0.59
0.58
0.71

1.72
0.13
0.88
-0.13
-0.66
-0.39
-0.09

0.41
0.43
0.41
0.41
0.43
0.44
0.42
0.41
0.41
0.43
0.42
0.41
0.41
0.42
0.41
0.43
0.42
0.41
0.41
0.41
0.43

0.43
2.52
-1.02
0.02
0.65
1.95
-0.02
0.26
-1.86
4.23
-0.18
0.66
0.53
0.79
1.03
0.08
0.47
-0.87
0.02
-0.38
-0.09

0.41
0.44
0.42
0.41
0.42
0.44
0.42
0.42
0.41
0.42
0.41
0.41
0.41
0.42
0.42
0.44
0.41
0.41
0.41
0.42
0.42

0.17
2.34
-1.20
0.12
1.34
-0.55
-0.53
-0.37
-2.09
3.14
0.45
0.48
0.38
0.80
1.20
0.14
0.33
0.08
-0.27
-0.39
-0.08

0.41
0.43
0.41
0.41
0.44
0.44
0.43
0.42
0.44
0.44
0.42
0.41
0.41
0.41
0.42
0.43
0.42
0.41
0.42
0.42
0.42

0.25
2.26
-1.09
0.10
0.95
0.43
-0.42
0.18
-1.78
3.87
0.18
0.58
0.50
0.77
1.32
0.12
0.56
-0.31
-0.30
-0.39
-0.09

0.09
0.18
0.06
0.04
0.20
0.77
0.21
0.30
0.21
0.36
0.19
0.05
0.06
0.03
0.21
0.02
0.17
0.29
0.20
0.00
0.00

T3151 was beyond the concentration limit of the assay (10,000 nM).

BAR err: Bennett Acceptance Ratio error.
AAG,,: Average of three independent FEP+ runs.

SE: Standard Error between three independent FEP+ runs.
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Table S6. Nilotinib: experimental IC5, values and alchemical free-energy AAGs for each mutation.

Preprlnt SEEH

=0 (e HG ITEE

able under

Expt.

1Csq

Expt.
AAG

Prime

AAG

FEP+RunI

AAG

FEP+ gy
BAR err

FEP+Rur12

AAG

FEP+ gumz
BAR err

FEP+Run3

AAG

FEP+Run3
BAR err

AAG,, SE

(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

wild-type
M244V
L248R
L248V
G250E
Y253F
E255K
E255V
V299L
T315A
T315I
F317C
F317I
F317L
F317v
M351T
E355A
F359C
F359I
F359V
H396R
E459K

15
12
549
26
41
179
127
784
24
50
8091
16
25
21
26
15
18
47
64
41
23
38

-0.13
2.15
0.33
0.60
1.48
1.27
2.36
0.28
0.72
3.75
0.04
0.30
0.20
0.33
0.00
0.11

0.68
0.86
0.60
0.25
0.55

-0.11
0.48
3.53
0.05
-0.27
0.41

-0.03
2.94
3.38
4.16
0.90
-0.18
1.74
0.77
0.09
-0.06
3.68
3.70
3.67
2.58
-0.00

0.15
2.05
-0.50
0.06
1.09
-2.24
0.31

-0.18
-1.33
4.29
1.34
1.24
1.03
1.16
-0.06
-0.46
1.32
1.05
1.00
-0.07
-0.17

0.41
0.43
0.42
0.41
0.43
0.48
0.42
0.41
0.41
0.43
0.41
0.41
0.41
0.41
0.41
0.43
0.41
0.41
0.41
0.42
0.42

-0.21
212
-0.39
-0.27
0.42
-1.52
-0.25
0.21

=121
5.00
0.88
1.17
1.07
0.68
-0.09
-1.01
1.44
1.13
1.08
0.21

-0.46

0.41
0.47
0.41
0.41
0.42
0.46
0.43
0.41
0.41
0.42
0.41
0.41
0.41
0.42
0.42
0.43
0.41
0.41
0.41
0.42
0.42

0.21
1.93
-0.92
-0.38
1.16
0.33
-0.55
0.15
=1.22)
4.34
0.60
0.82
1.09
1.07
-0.46
-0.32
1.52
0.74
1.38
0.03
-0.10

0.41
0.43
0.41
0.41
0.42
0.46
0.43
0.41
0.41
0.43
0.41
0.41
0.41
0.42
0.42
0.43
0.41
0.41
0.42
0.42
0.42

0.05
2.03
-0.60
-0.20
0.89
-1.14
-0.16
0.06
-1.34
4.54
0.94
1.08
1.06
0.97
-0.20
-0.60
1.43
0.97
1.15
0.06
-0.24

0.13
0.06
0.16
0.13
0.24
0.77
0.25
0.12
0.02
0.23
0.22
0.13
0.02
0.15
0.13
0.21
0.06
0.12
0.12
0.08
0.11

BAR err: Bennett Acceptance Ratio error.

AAG,,: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.
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Table S7. Ponatinib: experimental ICs, values and alchemical free-energy AAGs for each mutation.

posted April 2, 2018. The ¢

~ch 30, 2018

opyright holder for this preprint (w
Rreprint in perpety M

was not
ble under

Expt.
AAG

Prime
AAG

FEP+Runl

FEP+Runl

AAG BAR err

FEP_*‘RunZ

FEP+Run2

AAG BAR err AAG
(nM) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

FEP+Run3

FEP-"RMn}
BAR err

AAG,,

SE

Expt.

ICso
wild-type 3
M244v 3
L248R 8
L248V 4
G250E  0.021
Y253F 5
E255K 6
E255V 16
V299L 4
T315A 4
T315I 6
F317C 3
F3171 7
F317L 4
F317v 10
M351T 4
E355A 7
F359C 6
F359I 11
F359V 4
H396R 4
E459K 5

0.00
0.58
0.17
0.30
0.30
0.41
1.00
0.17
0.17
0.41
0.00
0.51
0.17
0.72
0.17
0.51
0.41
0.77
0.17
0.17
0.30

-0.13
2.48
2.48
0.17
0.05
1.05
-0.04
-0.29
-0.51
-5.42
1.45
0.62
0.57
1.14
-0.12
0.01

212
0.34
0.74
-0.04
-0.00

0.07
1.40
-1.82
-0.32
0.85
-0.27
1.19
-0.56
-2.90
0.51

0.44
-0.76
-1.08
0.05
0.89
0.12
0.25
-0.66
0.11

0.19
-0.51

0.41
0.43
0.42
0.43
0.43
0.48
0.43
0.41
0.41
0.42
0.41
0.41
0.41
0.41
0.41
0.44
0.42
0.41
0.41
0.49
0.42

-0.28
0.96
-1.23
-0.25
1.32
-0.66
0.94
-0.55
-3.15
0.90
0.98
-1.03
-0.83
-0.21
1.66
-0.52
-0.35
-0.38
-0.28
0.10
-0.78

0.41 0.12
0.43 1.10
0.42 -1.96
0.43 -0.71
0.44 0.77
0.48 0.03
0.43 -0.41
0.41 -1.42
0.41 -2.92
0.42 0.91

0.42 0.80
0.41 -1.02
0.41 -0.85
0.41 0.24
0.41 0.65
0.44 -0.55
0.43 0.73
0.41 0.06
0.41 0.08
0.45 -1.41
0.42 -0.63

0.41
0.44
0.42
0.46
0.43
0.47
0.43
0.41
0.41
0.42
0.41
0.41
0.41
0.42
0.41
0.43
0.42
0.41
0.42
0.48
0.42

-0.03
1.15
-1.67
-0.43
0.98
-0.30
0.57
-0.84
-2.99
0.77
0.74
-0.94
-0.92
0.03
1.07
-0.32
0.21
-0.33
-0.03
-0.37
-0.64

0.13
0.13
0.22
0.14
0.17
0.20
0.50
0.29
0.08
0.13
0.16
0.09
0.08
0.13
0.30
0.22
0.31
0.21
0.13
0.52
0.08

BAR err: Bennett Acceptance Ratio error.

AAG,,: Average of three independent FEP+ runs.
SE: Standard Error between three independent FEP+ runs.

Table S8. Summary of statistics of scaled predictions, a naive model, and a consensus model.

Method Scaling factor MUE RMSE Accuracy Specificity Sensitivity
(kcal/mol) (kcal/mol)

[N=142] [N=142] [N=144] [N=144] [N=144]
Prime 1.00 L4y 7oy 07308 0760% 053078
Prime 0.50 0.64010 09109 084070 0900 0420
Prime 0.33 0535 07605 0875, 09605 02600
Prime 0.23 0490750 07305 086), 09900 0.0000
FEP+ 1.00 0.790 4 1.07,5 08850  0.940°° 04707
FEP+ 0.34 055,% 07801 088 10070 0113
Naive — 057,% 0875 087y, 100700 0.00000
Consensus — 04753 07155 0875,  1.00750  0.0000
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