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Abstract 31 

     Impaired progesterone (P4) signaling is linked to endometrial dysfunction and infertility in 32 

women with polycystic ovary syndrome (PCOS). Here we report for the first time that 33 

elevated expression of progesterone receptor (PGR) isoforms A and B parallels increased 34 

estrogen receptor (ER) expression in PCOS-like rat uteri. The aberrant PGR-targeted gene 35 

expression in PCOS-like rats before and after implantation overlaps with dysregulated 36 

expression of Fkbp52 and Ncoa2, two genes that contribute to the development of uterine P4 37 

resistance. In vivo and in vitro studies of the effects of metformin on the regulation of the 38 

uterine P4 signaling pathway under PCOS conditions showed that metformin directly inhibits 39 

the expression of PGR and ER along with the regulation of several genes that are targeted 40 

dependently or independently of PGR-mediated uterine implantation. Functionally, metformin 41 

treatment corrected the abnormal expression of cell-specific PGR and ER and some PGR-42 

target genes in PCOS-like rats with implantation. Additionally, we documented how 43 

metformin contributes to the regulation of the PGR-associated MAPK/ERK/p38 signaling 44 

pathway in the PCOS-like rat uterus. Our data provide novel insights into how metformin 45 

therapy regulates uterine P4 signaling molecules under PCOS conditions. 46 

 47 

Key words: Metformin, progesterone receptor, MAPK/ERK/p38 signaling pathway, 48 

implantation, polycystic ovary syndrome  49 
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Introduction 51 

     Polycystic ovary syndrome (PCOS) is a clinically and etiologically heterogeneous 52 

hormone-imbalance disorder that is associated with multiple reproductive and metabolic 53 

abnormalities (Rosenfield and Ehrmann 2016). Women suffering from PCOS present with 54 

arrested folliculogenesis and chronic anovulation-linked infertility (Azziz et al. 2016; 55 

Rosenfield and Ehrmann 2016), and they also have more adverse reproductive risk as 56 

evidenced by an increase in the prevalence of implantation failure, recurrent miscarriage, 57 

spontaneous abortion, premature delivery, endometrial carcinoma (Goodarzi et al. 2011; 58 

Palomba et al. 2015; Shao et al. 2014b). In addition to the ovarian dysfunction (Azziz et al. 59 

2016; Rosenfield and Ehrmann 2016), it is assumed that the impairment of endometrial 60 

function also contributes to PCOS-associated infertility (Evans et al. 2016). Although 61 

progesterone (P4)-based oral contraceptive therapy is often efficacious (Lopes et al. 2014; 62 

Vrbikova and Cibula 2005), perturbations in endometrial P4 signaling that result from 63 

attenuated responsiveness and resistance to P4 are common in the endometrium of a PCOS 64 

patient (Li et al. 2014a; Piltonen 2016). P4 resistance is a condition in which tissues and cells 65 

do not respond appropriately to P4 (Chrousos et al. 1986), and this is evidenced by 66 

endometriosis and endometrial hyperplasia that may progress to endometrial carcinoma 67 

despite supplementation with P4 or its analogs (Gunderson et al. 2012; Shao et al. 2014a). 68 

Gene profiling experiments have shown that different endometrial genes are likely to act in 69 

concert in this abnormal condition in PCOS patients (Kim et al. 2009; Savaris et al. 2011); 70 

however, how changes in the expression of P4 signaling molecules contribute to the P4 71 

resistance in a PCOS patient’s endometrium is poorly understood. 72 

     P4 is an essential contributing factor in female reproductive tissues that regulates multiple 73 

physiological processes such as the menstrual cycle, implantation, pregnancy maintenance, 74 

and labor initiation (Evans et al. 2016). There are two major progesterone receptor (PGR) 75 
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isoforms, PGRA and PGRB, both of which are involved in a common P4 signaling pathway 76 

for uterine cell-specific proliferation and differentiation (Li et al. 2014a; Patel et al. 2015). P4 77 

binding activates both PGR isoforms and leads to translocation from the cytosol to the 78 

nucleus followed by binding to the P4-responsive elements of the target genes, resulting in 79 

alterations of PGR-targeted gene expression depending on the recruitment of co-regulators 80 

(Patel et al. 2015). It has been reported that endometrial PGR expression is elevated in PCOS 81 

patients who have anovulation compared to PCOS patients who still ovulate and to non-PCOS 82 

patients (Margarit et al. 2010; Quezada et al. 2006). Additionally, PGR activity is also 83 

modulated by the cytoplasmic mitogen-activated protein kinase (MAPK)/extracellular signal-84 

regulated kinase (ERK) signaling pathway (Gellersen and Brosens 2014; Patel et al. 2015). 85 

While high levels of ERK1/2 expression and activation reflect the P4-PGR signaling-induced 86 

decidualization status in human and rodent uteri (Lee et al. 2013; Tapia-Pizarro et al. 2017; 87 

Thienel et al. 2002), it remains to be determined whether suppression of MAPK/ERK 88 

signaling occurs in the endometrium and whether such dysregulation can negatively impact 89 

uterine function under PCOS conditions. 90 

     Metformin is an anti-diabetic drug that is a clinically approved treatment in PCOS patients 91 

worldwide (Naderpoor et al. 2015). Several diverse molecular mechanisms of metformin have 92 

been demonstrated in human endometrial carcinoma tissues in vivo and in different 93 

endometrial cancer cells in vitro (Shao et al. 2014b), and metformin’s therapeutic effects on 94 

endometrial function are evidenced by improvement of endometrial receptivity, enhancement 95 

of endometrial vascularity and blood flow, and reversion of endometrial hyperplasia and 96 

carcinoma into normal endometria in some women with PCOS (Jakubowicz et al. 2001; Li et 97 

al. 2014b; Palomba et al. 2006). Our recent studies using a PCOS-like rat model found that 98 

chronic treatment with metformin has significant anti-androgenic and anti-inflammatory 99 

impacts in the uterus (Zhang et al. 2017). Given the central role of P4 signaling in uterine 100 
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implantation (Evans et al. 2016; Patel et al. 2015) and the ability of metformin to rescue 101 

implantation failure in some PCOS-like rats by modulating the expression of multiple 102 

implantation-related genes in the uterus in vivo (Zhang et al. 2017), we speculated that the 103 

beneficial effects of metformin might be mechanistically linked to the uterine P4 signaling 104 

pathway under pathological conditions such as PCOS. To address this hypothesis, we 105 

analyzed PCOS-associated PGR isoform expression and the MAPK signaling network in 106 

human and rat uterine tissues. By combining a PCOS-like rat model (Zhang et al. 2016) and 107 

in vitro tissue culture approach (Li et al. 2015), we aimed to determine whether metformin 108 

directly reverses aberrant PGR-targeted and implantation-related gene expression in the 109 

PCOS-like rat uterus.  110 

Materials and Methods  111 

Study approval 112 

     All animal experiments were performed according to the National Institutes of Health 113 

guidelines on the care and use of animals and were approved and authorized by the Animal 114 

Care and Use Committee of the Heilongjiang University of Chinese Medicine, China (HUCM 115 

2015-0112).  116 

Experimental animals and tissue preparations 117 

     Adult female Sprague–Dawley rats (n = 134) were obtained from the Laboratory Animal 118 

Centre of Harbin Medical University, Harbin, China (License number SCXK 2013-001). 119 

Animals were housed in the animal care facility with free access to food and water and a 120 

controlled temperature of 22°C ± 2°C with a 12 h light/dark cycle. Estrous cycles were 121 

monitored daily by vaginal lavage according to a standard protocol (Feng et al. 2010). All rats 122 

(70 days old) with the different stages of estrous cycle used in this study were confirmed by 123 

examination of vaginal smears under a light microscope for two sequential cycles (about 8–10 124 
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days). Any PCOS-like (insulin+hCG-treated) rats that exhibited prolonged estrous cycles 125 

(more than 5 days) were excluded from the study. 126 

     Experiment 1: Rats were randomly divided into control (saline treatment, n = 20) and 127 

experimental (PCOS-like, n = 20) groups. The experimental group was treated with insulin 128 

plus hCG to induce a PCOS-like metabolic and reproductive phenotype, and the control rats 129 

were treated with an equal volume of saline (Zhang et al. 2018; Zhang et al. 2016). In brief, 130 

insulin was started at 0.5 IU/day and gradually increased to 6.0 IU/day between day 1 and the 131 

day 22 to induce hyperinsulinemia and insulin resistance, and 3.0 IU/day hCG was given on 132 

all 22 days to induce hyperandrogenism. Animals were treated with twice-daily subcutaneous 133 

injections until the end of the experiment. Rats with repeated insulin injections have not 134 

shown any hypoglycemic episodes (Bogovich et al. 1999; Damario et al. 2000; Poretsky et al. 135 

1992; Zhang et al. 2018). Detailed analysis of endocrine and metabolic parameters as well as 136 

the uterine morphology in these animals has been reported previously (Zhang et al. 2016). On 137 

day 23, each group of rats was divided into two subgroups of 10 rats each (Supplemental Fig. 138 

1A). For treatment, metformin was dissolved in saline and given as a daily oral dose of 500 139 

mg/kg by a cannula. The treatment time and tissue collection are described in our previous 140 

study (Zhang et al. 2017). 141 

     Experiment 2: Rats were randomly divided into control (saline treatment, n = 21) and 142 

experimental (PCOS-like, n = 15) groups and treated as described in Experiment 1 143 

(Supplemental Fig. 1B). After metformin treatment, control and PCOS-like rats were mated 144 

with fertile males of the same strain to induce implantation, which was determined by the 145 

presence of a vaginal plug (day 1 of pregnancy). The rats were sacrificed between 0800 and 146 

0900 hours on day 6 of pregnancy. To identify the implantation sites, rats were injected 147 

intravenously with a Chicago Blue B dye solution (1% in saline) and sacrificed 10 min later. 148 
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Uteri were dissected and assessed for clearly delineated blue bands as evidence of early 149 

implantation sites as described previously (Zhang et al. 2017).  150 

     Experiment 3: Rats were divided into control (saline treatment, n = 9) and experimental 151 

(PCOS-like, n = 39) groups and treated as described in the Experiment 1. On the 23rd day, the 152 

PCOS-like rats were divided into four subgroups and treated daily with P4 (4 mg/kg), RU486 153 

(6 mg/kg), or both for 3 days. For treatment, P4 and RU486 were dissolved in 100% ethanol 154 

and resuspended in sesame oil. All subcutaneous injections were in a volume of 100 µl. An 155 

equal volume of 100% ethanol and sesame oil was injected into both healthy control rats and 156 

PCOS-like rats as experimental controls (Supplemental Fig. 1C). The pharmacological doses 157 

and treatment time intervals of P4 and RU486 were chosen on the basis of previous studies 158 

(Kim et al. 2006; Knox et al. 1996). 159 

     After dissection, the uterine horns were trimmed free of fat and connective tissue. One side 160 

of the uterus in each animal was fixed in 10% neutral formalin solution for 24 h at 4ºC and 161 

embedded in paraffin for histochemical analysis. The other side was immediately frozen in 162 

liquid nitrogen and stored at −70ºC for Western blot and quantitative real-time PCR (qRT-163 

PCR) analysis.  164 

     Detailed description of the methods including the primary in vitro tissue culture and 165 

treatment, morphological assessment and immunostaining, protein isolation and Western blot 166 

analysis, RNA extraction and qRT-PCR analysis, and measurement of biochemical 167 

parameters used in this study are provided in Supplemental files. 168 

Statistical analysis  169 

     GraphPad Prism was used for statistical analysis and graphing. For all experiments, n-170 

values represent the number of individual animals. Data are represented as the means ± SEM. 171 

Statistical analyses were performed using SPSS version 24.0 statistical software for Windows 172 

(SPSS Inc., Chicago, IL). The normal distribution of the data was tested with the Shapiro–173 
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Wilk test. Differences between groups were analyzed by one-way ANOVA or two-way 174 

ANOVA, and this was followed by Tukey’s post-hoc test for normally distributed data or the 175 

Kruskal–Wallis test followed by the Mann–Whitney U-test for skewed data. All p-values less 176 

than 0.05 were considered statistically significant. 177 

Results  178 

Metformin alters PGR isoform and PGR-targeted gene expression in PCOS-like rats 179 

     The insulin+hCG-treated rats exhibit reproductive disturbances that mimic human PCOS 180 

(Zhang et al. 2017; Zhang et al. 2016). Prompted by these findings, we set out to investigate 181 

the impact of P4 signaling in this model. First, we showed that although the ratio of PGRA to 182 

PGRB was not significantly different between control and PCOS-like rats, the PCOS-like rats 183 

had increased levels of uterine PGRA and PGRB (Fig. 1A). While PGR immunoreactivity 184 

was primarily evidenced in control rat uterine luminal and glandular epithelia as well as in the 185 

stroma, the immunoreactivity of luminal epithelial PGR expression was associated with 186 

increased numbers of luminal epithelial cells and increased immunoreactivity of PGR in the 187 

stroma in PCOS-like rats (Fig. 1B). Metformin treatment did not significantly affect PGR 188 

isoform expression in control rats and PCOS-like rats compared to those rats treated with 189 

saline (Fig. 1A). However, we found that PGR immunoreactivity was decreased in the 190 

luminal and glandular epithelia by metformin treatment in both control rats and PCOS-like 191 

rats compared to those treated with saline (Fig. 1B). Conversely, intense immunoreactivity of 192 

PGR expression was detected in the stroma located close to the luminal epithelia in control 193 

and PCOS-like rats treated with metformin (Fig. 1B). In contrast to the epithelia and stroma, 194 

no significant changes in PGR expression in the myometrium were found in any of the groups 195 

(data not shown). Because a large body of evidence indicates that regulation of P4 signaling 196 

results in changes in the expression of several PGR-targeted genes in the uterus (Bhurke et al. 197 

2016), we profiled the expression of genes that are indicators for PGR activity in the rat uterus 198 
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by qRT-PCR. Quantitative data indicated that Smo, and Nr2f2 mRNA levels were increased in 199 

PCOS-like rats compared to control rats treated with saline. In contrast, the Fkbp52 mRNA 200 

level was decreased in PCOS-like rats compared to control rats (Fig. 1C). We next determined 201 

the actions of metformin treatment on PGR-targeted gene expression and showed that Ptch, 202 

Fkbp52, and Ncoa2 levels were increased in PCOS-like rats treated with metformin compared 203 

to PCOS-like rats treated with saline, while Smo and Nr2f2 mRNA levels were decreased on 204 

PCOS-like rats treated with metformin compared to those treated with saline (Fig. 1C).  205 

Metformin partially prevents implantation failure in parallel with regulation of PGR 206 

isoform and PGR-targeted gene expression in PCOS-like rats 207 

     Metformin has been shown to partially rescue the disruption of the implantation process in 208 

PCOS-like rats (Zhang et al. 2017), and the altered endocrine and metabolic parameters in 209 

these animals are shown in Supplemental Table 4. After metformin treatment, total 210 

testosterone levels, the ratio of total testosterone to androstenedione, and fasting insulin levels 211 

were all significantly higher in PCOS-like rats where implantation did not occur compared to 212 

those with implantation, as was insulin resistance as assessed by the homeostasis model 213 

assessment of insulin resistance, mirroring the endocrine and metabolic abnormalities in 214 

PCOS patients (Azziz et al. 2016; Rosenfield and Ehrmann 2016). Of note, PCOS-like rats 215 

that failed to implant embryos also exhibited decreased P4 levels. These data suggest that 216 

implantation failure in PCOS-like rats treated with metformin is due not only to 217 

hyperandrogenism and insulin resistance, but also to impairment of P4 signaling in the uterus. 218 

Further morphological characterization of metformin-treated PCOS-like rats with no 219 

implantation revealed the infiltration of immune cells into the glandular epithelial cell layer in 220 

a similar manner to when hormone imbalances were studied in a previous report (Wira et al. 221 

2005) (Supplemental Fig. 3, black arrowheads). To determine how impairment of P4 222 

signaling causes implantation failure, we subsequently analyzed PGR isoform and PGR-223 
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targeted gene expression in PCOS-like rats with no implantation. Although treatment with 224 

metformin increased PGR isoform expression in control and PCOS-like rats, neither the 225 

PGRA nor PGRB protein level was altered between PCOS-like rats with implantation and 226 

with failed implantation (Fig. 2A). As shown in Figure 2B, while PGR protein was expressed 227 

in the decidualizing stroma at the site of implantation in all groups, PGR immunoreactivity 228 

was increased in the stroma of the inter-implantation region in control rats treated with 229 

metformin. Furthermore, we found that the immunoreactivity of PGR was increased in the 230 

epithelia in PCOS-like rats without implantation despite metformin treatment. Thus, 231 

metformin appeared to participate in the regulation of uterine PGR expression in a cell type-232 

specific manner in PCOS-like rats before and after implantation. qRT-PCR data indicated that 233 

Ihh and Ncoa2 mRNAs were increased and that Ptch and Fkbp52 mRNAs were decreased in 234 

metformin-treated PCOS-like rats with no implantation compared to control rats treated with 235 

saline or metformin and to metformin-treated PCOS-like rats with implantation (Fig. 2C). 236 

Metformin directly regulates PGR isoform, PGR-target, and implantation-related gene 237 

expression in vitro 238 

     Based on these in vivo observations, we asked whether the effect of metformin was direct 239 

or indirect in the PCOS-like rat uterus. In vitro uterine tissue culture experiments revealed that 240 

Pgr and Pgrb, mRNA levels were higher in PCOS-like rats compared to control rats, in 241 

agreement with alteration of PGR isoform protein expression (Fig. 1C). Furthermore, 242 

metformin treatment increased Pgr and Pgrb mRNA levels in control and PCOS-like rats in a 243 

time-dependent manner (Fig. 3A). Consistent with the in vivo effects of metformin in PCOS-244 

like rats (Fig. 1C), Ihh, Smo, and Nr2f2 mRNA levels were increased in the PCOS-like rat 245 

uterus compared to the control rat uterus and were down-regulated by metformin treatment in 246 

vitro. While the Hand2 mRNA level was upregulated by metformin treatment at 48 h and 72 h, 247 
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we detected the upregulation of Ptch, Fkbp52, and Ncoa2 mRNA levels in the PCOS-like rat 248 

uterine tissues over a 72-h course after metformin treatment (Fig. 3A).  249 

     The expression of a number of implantation-related genes has been reported to be 250 

regulated by metformin treatment in PCOS-like rats during implantation (Zhang et al. 2017). 251 

These previous observations prompted further analysis of implantation-related gene 252 

expression by metformin treatment in vitro. In contrast to the different regulation patterns of 253 

Spp1, Lrh1, Sgk1, and Krt13 mRNAs under in vivo and in vitro conditions, the in vitro 254 

responses of uterine Prl, Igfbp1, Il11, Pc6, Maoa, Ednrb, Hoxa10, Hoxa11, and Hbegf mRNA 255 

levels to metformin (Fig. 3B) were coincident with the in vivo regulation of the expression 256 

pattern of these genes (Zhang et al. 2017). Our data indicated that metformin directly up-257 

regulates uterine Prl, Maoa, Ednrb, and Hbegf mRNA levels in PCOS-like rats during 258 

implantation in vivo. 259 

     To ascertain whether the modulation of uterine gene expression is P4-mediated and PGR-260 

dependent in PCOS-like rats, insulin+hCG-treated rats were injected subcutaneously with P4 261 

and/or RU 486 for three days. As shown in Figure 4, the increased PGR isoform protein levels 262 

(Fig. 1A) were confirmed by analysis of Pgr and Pgrb mRNA expression in the PCOS-like 263 

rat uterus. Although treatment with P4 and/or RU486 did not significantly affect Pgr mRNA 264 

expression, we found that Pgrb mRNA levels were decreased in PCOS-like rats compared to 265 

those rats with no treatment (Fig. 4). Among seven PGR-targeted genes (Fig. 1C), we found 266 

that Ptch, Hand2, and Fkbp52 mRNA levels were increased and that Ihh, Smo, and Nr2f2 267 

mRNA levels were decreased in PCOS-like rats treated with P4 compared to those rats with 268 

no treatment. We also observed that treatment with RU486 alone or combined with P4 269 

reversed the changes in Smo, Hand2, and Fkbp52 mRNA levels in PCOS-like rats (Fig. 4). No 270 

significant differences of uterine Ncoa2 mRNA expression were observed in PCOS-like rats 271 

regarding the different treatments. Based on our current experimental approaches, it is likely 272 
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that another regulatory mechanism contributes to the metformin-induced up-regulation of 273 

Ncoa2 mRNA levels in PCOS-like rats. 274 

Metformin regulates the MAPK signaling pathway in PCOS-like rats before and after 275 

implantation 276 

     In an attempt to understand the changes in PGR activation and function observed in PCOS 277 

patients (Patel et al. 2015), we performed a Western blot analysis to measure the expression 278 

of several proteins that are involved in the MAPK signaling pathway in the uterus after 279 

metformin treatment. As shown in Figure 5A, there was no significant difference in p-c-Raf, 280 

p-MEK1/2, p-ERK1/2, p-p38 MAPK, or p38 MAPK expression between saline-treated and 281 

metformin-treated rats. Quantitative protein data indicated that the expression of p-p38 282 

MAPK and p38 MAPK was significantly decreased in PCOS-like rats compared to control 283 

rats. Nevertheless, metformin treatment only reversed p-p38 MAPK protein expression in 284 

PCOS-like rats. 285 

     We next assessed whether the MAPK/ERK signaling pathway contributes to uterine 286 

implantation in control and PCOS-like rats treated with metformin. As shown in Figure 5B, 287 

although the p-MEK1/2 level was decreased in control rats treated with metformin compared 288 

to control rats treated with saline, no significant difference in p-c-Raf, p-ERK1/2, ERK1/2, p-289 

p38 MAPK, or p38 MAPK expression between these two groups was found. Furthermore, our 290 

data showed that p-c-Raf, p-MEK1/2, and p-ERK1/2 protein levels were down-regulated in 291 

PCOS-like rats treated with metformin regardless of the occurrence of implantation. We also 292 

found that after metformin treatment PCOS-like rats with implantation exhibited decreased p-293 

p38 MAPK, but not p38 MAPK, expression.  294 

Up-regulation of estrogen receptor (ER) expression in PCOS-like rats can be suppressed by 295 

metformin 296 
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     Because estrogen-ER signaling regulates uterine PGR expression and activity (Li et al. 297 

2014a; Patel et al. 2015) and because increased circulating E2 in PCOS-like rats can be 298 

inhibited by metformin treatment (Zhang et al. 2017), we sought to determine whether ER 299 

subtypes (ERα and ERβ) are involved in the regulation of aberrant PGR expression in PCOS-300 

like rats and, if so, if metformin possibly alters ER subtype expression. Our data showed that 301 

PCOS-like rats exhibited increased Esr1 (ERα) and Esr2 (ERβ) mRNA levels, which were 302 

suppressed by metformin treatment. As shown in Figure 6A, while nuclear ERα 303 

immunoreactivity was detected in the epithelia and stroma in control rats treated with saline 304 

(Fig. 6B1), immunoreactivity of ERα was increased in the glandular epithelia and stroma in 305 

PCOS-like rats (Fig. 6D1). Furthermore, treatment with metformin led to decreased ERα 306 

immunoreactivity in control (Fig. 6C1) and PCOS-like rats (Fig. 6E1). No obvious difference 307 

in ERα immunoreactivity was observed in the myometrium in any of the groups (Fig. 6B2-308 

E2). We also found that ERβ was mainly co-localized with ERα in the epithelia and stroma 309 

but not in the myometrium in control and PCOS-like rats regardless of the different 310 

treatments. Furthermore, with metformin treatment, we noted a significant increase in uterine 311 

Esr1 and Esr2 mRNAs in PCOS-like rats without implantation (Fig. 7A). 312 

Immunofluorescence staining revealed that, overall, immunoreactivities of both ERα and ERβ 313 

were diminished in the decidualizing stroma at the site of implantation (Fig. 7B1–D1), in the 314 

epithelia and stroma of the inter-implantation region (Fig. 7B2–D2) in control rats treated 315 

with saline or metformin (Fig. 7B2–C2), and in the inter-implantation site of PCOS-like rats 316 

treated with metformin (Fig. 7D2) compared to those rats before implantation (Fig 6. B1–E2). 317 

Interestingly, PCOS-like rats with no implantation exhibited sustained nuclear ERα 318 

immunoreactivity in the glandular epithelia and stroma (Fig. 7E1).  319 

Differential cell-specific expression of phospho-histone H3 in PCOS-like rats treated with 320 

metformin 321 
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     As previously demonstrated (Avellaira et al. 2006), p-histone H3 is of special interest 322 

because the endometrium of PCOS patients displays high levels of p-histone H3, which is 323 

associated with cellular processes such as mitosis (Brenner et al. 2003). Quantitative 324 

assessment of p-histone H3 indicated that no significant change in p-histone H3 325 

immunoreactivity was present in the epithelia or stroma in any of groups (Supplemental Fig. 326 

4E); however, metformin treatment decreased p-histone H3 immunoreactivity in the 327 

myometrium in PCOS-like rats compared to those treated with saline. Of note, intensely p-328 

histone H3-positive stromal cells close to the luminal and glandular epithelia were found in 329 

PCOS-like rats treated with metformin (Supplemental Fig. 4D2). Similarly, p-histone H3 330 

immunoreactivity was significantly increased in the stroma at the inter-implantation sites in 331 

PCOS-like rats treated with metformin independently of implantation (Supplemental Fig. 5E). 332 

In PCOS-like rats without implantation, p-histone H3 immunoreactivity was often detected in 333 

the luminal epithelia (Supplemental Fig. 5D1), although this was not statistically significant 334 

compared to PCOS-like rats with implantation (Supplemental Fig. 5E). It is thus likely that 335 

the regulation of mitotic activity by metformin is cell type-dependent in the uterus. 336 

Discussion 337 

     Reproductive dysfunction and infertility manifest noticeably in PCOS patients (Evans et al. 338 

2016). In striking contrast to the attention given to hyperandrogenism and insulin resistance in 339 

women with PCOS, the aberrant P4 signaling pathway resulting in uterine P4 resistance has 340 

received much less attention (Li et al. 2014a; Piltonen 2016). This study is the first to show 341 

that the therapeutic effects of metformin on the regulation of uterine function in PCOS-like 342 

rats is mediated through P4 signaling.   343 

     Elucidating the regulation of endometrial PGR levels under PCOS conditions is important 344 

clinically. Our data show that increased PGR expression is paralleled with elevated ER 345 

expression in PCOS-like rats. This expression pattern is associated with an increased 346 
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circulating E2 level (Zhang et al. 2016), suggests that E2-ER signaling contributes to the up-347 

regulation of PGR under PCOS conditions in vivo. Similar to PCOS patients (Hu et al. 348 

submitted), PCOS-like rats also displayed high levels of PGR isoforms and ER subtypes in 349 

the uterus. The induction of implantation is required for the activation of PGR, and 350 

implantation subsequently alters gene expression in the endometrium (Gellersen and Brosens 351 

2014; Patel et al. 2015); however, PGR-targeted gene expression in PCOS patients and 352 

PCOS-like rats has only been demonstrated to a limited degree. The current study shows that 353 

significantly decreased Fkbp52 gene expression parallels increased expression of Ihh, Smo, 354 

and Nr2f2 mRNAs without changes in Ncoa2 mRNA in PCOS-like rats. In addition, we also 355 

found that abnormal expression of PGR-target genes, including Fkbp52 and Ncoa2, is 356 

retained in PCOS-like rats with implantation failure. This is supported by in vivo studies 357 

showing that mice lacking Fkbp52 (Tranguch et al. 2007; Yang et al. 2006) or Ncoa2 358 

(Mukherjee et al. 2007; Mukherjee et al. 2006) demonstrate the absence of decidualization 359 

after P4 supplementation due to diminished P4 responsiveness. Previous studies have reported 360 

that women with endometriosis and endometrial hyperplasia/carcinoma who develop P4 361 

resistance have low levels of PGR expression (Gunderson et al. 2012; Shao et al. 2014a). 362 

Although it is currently unclear why differences exist in the regulation of uterine PGR 363 

expression between different diseases with P4 resistance, it is likely that uterine P4 resistance 364 

in PCOS-like rats is due to impaired PGR activity rather than PGR expression.  365 

Defects in PGR isoform-specific P4 signaling in the mouse uterus can give rise to distinct 366 

phenotypes of uterine impairment and implantation failure (Li et al. 2014a). Here we 367 

observed no changes in total Pgr mRNA levels but a reduction of Pgrb mRNA levels in 368 

PCOS-like rat uterus after treatment with P4 and/or RU486. This suggests that uterine Pgra 369 

mRNA levels are increased. Meanwhile, several PGR target genes (e.g., Ihh, Smo, Ptch, 370 

Nr2f2, Hand2, and Fkbp52) are significantly altered in PCOS-like rats after P4 treatment. 371 
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Thus, we speculate that changes in these P4-dependnent PGR target gene expression in 372 

PCOS-like rat uterus might be accounted for by an increase in Pgra mRNA expression. 373 

Studies of mutant mice lacking specific PGR isoform will clarify the functional differences 374 

between the two PGR isoforms in the progression of PCOS-induced uterine dysfunction.   375 

    P4-mediated and PGR-dependent regulation of ERK1/2 expression plays a critical role in 376 

humans and rodents during endometrial decidualization and implantation (Lee et al. 2013; 377 

Tapia-Pizarro et al. 2017; Thienel et al. 2002), but such regulation under PCOS conditions 378 

has not previously been reported. The inhibition of ERK1/2 expression and activation has 379 

been reported in ovarian granulosa and thecal cells in PCOS patients (Lan et al. 2015; Nelson-380 

Degrave et al. 2005), and we have previously shown that the expression and activation of 381 

uterine ERK1/2 is suppressed in rats treated with insulin and hCG to induce the PCOS 382 

phenotype (Zhang et al. 2016). The present study supports and extends this work. Here we 383 

observed no changes in p-ERK1/2 or ERK1/2 expression in the rat uterus after prolonged 384 

treatment with insulin and hCG. However, we observed that the levels of p-c-Raf and p-385 

MEK1/2, two upstream regulators of ERK1/2, were significantly decreased in PCOS-like rats 386 

after uterine implantation, establishing a tight link between different MAPK/ERK signaling 387 

molecules. Our data suggest that regulation of uterine ERK1/2 expression in vivo is time-388 

dependent (Lee et al. 2013; Tapia-Pizarro et al. 2017; Thienel et al. 2002), which is similar to 389 

the regulation of PGR isoforms and PGR-targeted gene expression. The MAPK/ERK/p38 390 

signaling pathway contributes to the regulation of inflammation and cytokine production 391 

(Arthur and Ley 2013; Cuadrado and Nebreda 2010), and the dysregulation of inflammation-392 

related molecules is associated with PCOS conditions (Matteo et al. 2010; Orostica et al. 393 

2016; Piltonen et al. 2013; Piltonen et al. 2015). Furthermore, like the activation of NFκB 394 

signaling that induces the transcriptional levels of inflammation-related gene expression in 395 

ovarian granulosa cells and in serum in PCOS patients (Liu et al. 2015; Zhao et al. 2015), our 396 
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previous study has shown that the sustained metformin treatment markedly suppresses uterine 397 

inflammatory gene expression, especially the Il-6 and TNFα mRNAs that are associated with 398 

inhibition of nuclear NFκB translocation in PCOS-like rats (Zhang et al. 2017). Importantly, 399 

p38 can antagonize ERK1/2 signaling mediated by protein phosphatase 2A and consequently 400 

down-regulate inflammatory cytokine and chemokine production (Cuadrado and Nebreda 401 

2010), and the anti-inflammatory effects of MAPK/p38 are involved in the regulation of 402 

NFκB activity (Arthur and Ley 2013). These observations further indicate that metformin 403 

inhibits NFκB-driven inflammatory processes through p38 activation rather than through 404 

ERK1/2 inhibition in the PCOS-like rat uterus.  405 

     The results of the present study permit us to draw the following conclusions (Figure 8). 1) 406 

With sustained low levels of P4, the expressions of both uterine PGR isoforms are elevated in 407 

PCOS-like rats in vivo. This is positively associated with the high levels of ERs in PCOS-like 408 

rats. Consistent with mouse knockout studies, altered expression of Fkbp52 and Ncoa2, two 409 

genes that contribute to uterine P4 resistance, is seen in PCOS-like rats before and after 410 

implantation. 2) Metformin directly suppresses uterine PGR isoform expression along with 411 

the correction of aberrant expression of PGR-targeted and implantation-related genes in 412 

PCOS-like rats. Abnormal cell-specific regulation of PGR and ER, paralleling the aberrant 413 

expression of PGR-targeted and implantation-related genes, is retained in PCOS-like rats with 414 

implantation failure. 3) Increased PGR expression is associated with inhibition of the 415 

MAPK/ERK/p38 signaling pathway, and the primary effect of metformin treatment is to 416 

restore the MAPK/p38 signaling pathway in the PCOS-like rat uterus. Taken together, our 417 

findings provide support for metformin therapy in the improvement of P4 signaling in PCOS-418 

like rats with uterine dysfunction and for its clinical relevance in the treatment of PCOS 419 

patients with P4 resistance. 420 

  421 
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Figure legends 1 

Figure 1. Chronic treatment with metformin alters PGR isoform protein expression and 2 

PGR-target gene expression in the rat uterus in vivo. A, Western blot analysis of protein 3 

expression in the rat uterus was performed. Representative images and quantification of the 4 

densitometric data (n = 8–9/group) of PGR isoforms are shown. B, Immunohistochemical 5 

detection of PGRA/B in control rats treated with saline or metformin and in insulin+hCG-6 

treated rats treated with saline or metformin. Representative images (n = 5/group) are shown. 7 

Lu, lumen; Le, luminal epithelial cells; Ge, glandular epithelial cells; Str, stromal cells. Scale 8 

bars (100 µm) are indicated in the photomicrographs. High magnification images are shown 9 

in the bottom panels. C, Uterine tissues from control rats treated with vehicle or metformin 10 

and insulin+hCG-treated rats treated with saline or metformin (n = 6/group) were analyzed for 11 

mRNA levels of Ihh, Ptch, Smo, Nr2f2, Hand2, Fkbp52, and Ncoa2 by qRT-PCR. The 12 

mRNA level of each gene relative to the mean of the sum of the Gapdh and U87 mRNA 13 

levels in the same sample is shown. Values are expressed as means ± SEM. Statistical tests 14 

are described in the Material and Methods. * p < 0.05; ** p < 0.01; *** p < 0.001. 15 

Figure 2. Chronic treatment with metformin alters PGR isoform protein expression and 16 

PGR-target gene expression in the rat uterus after implantation. A, Western blot analysis 17 

of protein expression in the rat uterus was performed. Representative images and 18 

quantification of the densitometric data of PR isoforms are shown (n = 5–7/group). B, 19 

Immunohistochemical detection of PGRA/B in the uterine implantation and inter-implantation 20 

sites. Representative images are shown (n = 5/group). DS, decidualized stroma; Lu, lumen; 21 

Le, luminal epithelial cells; Ge, glandular epithelial cells; Str, stromal cells. Scale bars (100 22 

µm) are indicated in the photomicrographs. C, Uterine tissues (n = 5–6/group) were analyzed 23 

for mRNA levels of Ihh, Ptch, Smo, Nr2f2, Hand2, Fkbp52, and Ncoa2 by qRT-PCR. The 24 

mRNA level of each gene is shown relative to the mean of the sum of the Gapdh and U87 25 
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mRNA levels in the same sample. Values are expressed as means ± SEM. Statistical tests are 26 

described in the Materials and Methods. * p < 0.05; ** p < 0.01; *** p < 0.001. 27 

Figure 3. Specific regulation of uterine PGR isoforms, PGR-targeted and implantation-28 

related gene expression by metformin treatment in vitro. Quantitative RT-PCR analysis of 29 

(A) Pgr, Pgrb, Ihh, Ptch, Smo, Nr2f2, Hand2, Fkbp52, and Ncoa2 and (B) Prl, Igfbp1, Lif, 30 

Il11, Pc6, Spp1, Maoa, Ednrb, Hoxa10, Hoxa11, Lrh1, Sgk1, Hbegf, and Krt13 mRNA levels 31 

in rat uterine tissues treated with either saline or 10 mM metformin for the indicated culture 32 

times (n = 6/group). mRNA levels were normalized to the average levels of Gapdh and U87 33 

mRNA in the same sample. Values are expressed as means ± SEM. Statistical tests are 34 

described in the Materials and Methods. * p < 0.05; ** p < 0.01; *** p < 0.001.  35 

Figure 4. Specific regulation of uterine PGR isoforms and PGR-targeted gene expression 36 

by treatment with P4 and/or RU486 in vivo. Uterine tissues (n = 5–6/group) were analyzed 37 

for mRNA levels of Pgr, Pgrb, Ihh, Ptch, Smo, Nr2f2, Hand2, Fkbp52, and Ncoa2 by qRT-38 

PCR. mRNA levels were normalized to the average levels of Gapdh and U87 mRNA in the 39 

same sample. Values are expressed as means ± SEM. Statistical tests are described in the 40 

Materials and Methods. * p < 0.05; ** p < 0.01; *** p < 0.001. 41 

Figure 5. Chronic treatment with metformin alters the MAPK signaling pathway in the 42 

rat uterus before and after implantation. Western blot analysis of protein expression in the 43 

rat uterus was performed. Representative images and quantification of the densitometric data 44 

for p-c-Raf, p-MEK1/2, p-ERK1/2, ERK1/2, p-p38 MAPK, and p38 MAPK are shown (n = 45 

6–9/group before implantation; n = 5–6/group after implantation). Values are expressed as 46 

means ± SEM. Statistical tests are described in the Materials and Methods. * p < 0.05; ** p < 47 

0.01. 48 

Figure 6. Chronic treatment with metformin alters ER subtype mRNA and protein 49 

expression in the rat uterus in vivo. A, Uterine tissues from control rats treated with saline 50 
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vehicle or metformin and insulin+hCG-treated rats treated with saline or metformin (n = 51 

6/group) were analyzed for mRNA levels of Esr1 (ERα) and Esr2 (ERβ) by qRT-PCR. The 52 

mRNA level of each gene relative to the mean of the sum of the Gapdh and U87 mRNA 53 

levels in the same sample is shown. Values are expressed as means ± SEM. Statistical tests 54 

are described in the Material and Methods. * p < 0.05; ** p < 0.01; *** p < 0.001. B, 55 

Immunofluorescence detection of ERα (red) and ERβ (green) in control rats treated with 56 

saline (B1-2) or metformin (C1-2) and in insulin+hCG-treated rats treated with saline (D1-2) 57 

or metformin (E1-2). Representative images are shown (n = 5/group). Cell nuclei were 58 

counterstained with DAPI (blue, lower panel). Lu, lumen; Le, luminal epithelial cells; Ge, 59 

glandular epithelial cells; Str, stromal cells. Scale bars (100 µm) are indicated in the 60 

photomicrographs. 61 

Figure 7. Chronic treatment with metformin alters ER subtype mRNA and protein 62 

expression in the rat uterus after implantation. A, Uterine tissues from control rats treated 63 

with saline or metformin and insulin+hCG-treated rats treated with saline or metformin (n = 64 

5/group) were analyzed for mRNA levels of Esr1 (ERα) and Esr2 (ERβ) by qRT-PCR. The 65 

mRNA level of each gene relative to the mean of the sum of the Gapdh and U87 mRNA 66 

levels in the same sample is shown. Values are expressed as means ± SEM. Statistical tests 67 

are described in the Materials and Methods. * p < 0.05; ** p < 0.01. B, Immunofluorescence 68 

detection of ERα (red) and ERβ (green) in control rats treated with saline (B1-2) or metformin 69 

(C1-2) and in insulin+hCG-treated rats treated with metformin with implantation (D1-2) or 70 

without implantation (E1). Representative images are shown (n = 5/group). Cell nuclei were 71 

counterstained with DAPI (blue, lower panel). DS, decidualized stroma; Lu, lumen; Le, 72 

luminal epithelial cells; Ge, glandular epithelial cells; Str, stromal cells. Scale bars (100 µm) 73 

are indicated in the photomicrographs. 74 
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Figure 8. Schematic representation of the actions of metformin on the uterine progesterone 75 

signaling in the PCOS-like rats. Note that bold symbol indicates metformin-regulated genes 76 

and proteins and asterisk indicates that treatment with metformin or progesterone share the 77 

same targeted genes and proteins. 78 

 79 

Supplementary Figure 1. Schematic representation of experimental groups and 80 

treatment protocol. n,  the final number of animals. 81 

Supplementary Figure 2. Photographs and illustration of the procedures for rat uterine 82 

tissue preparation and culture with and without metformin. Culture media with and 83 

without metformin treatment were changed daily. 84 

Supplementary Figure 3. Effects of metformin on uterine structure in rats after 85 

implantation. Female rats were mated individually with fertile male rats according to their 86 

estrous cycle stage. Representative photomicrographs of uteri collected on day 6 after 87 

pregnancy with implantation sites visualized by Chicago Blue B dye injection. Because the 88 

insulin+hCG-treated rats without a normal estrous cycle display implantation failure, these 89 

rats treated with saline were excluded from the analysis. Higher-magnification images of the 90 

different areas are shown on the rightmost three panels of each row. MD, mesometrial 91 

decidua; AD, antimesometrial decidua; En, endometrium; Myo, myometrium. Scale bars (100 92 

µm) are indicated in the photomicrographs. 93 

Supplementary Figure 4. Chronic treatment with metformin alters p-histone H3 (Ser10) 94 

protein expression in the rat uterus in vivo. Immunofluorescence detection of p-histone H3 95 

(red) in control rats treated with saline (A1-4) or metformin (B1-4) and in insulin+hCG-96 

treated rats treated with saline (C1-4) or metformin (D1-4). Cell nuclei were counterstained 97 

with DAPI (blue). Lu, lumen; Le, luminal epithelial cells; Ge, glandular epithelial cells; Str, 98 

stromal cells; M, myometrium. Scale bars (100 µm) are indicated in the photomicrographs. 99 
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The number of all p-histone H3-positive cells in whole luminal epithelial cells, glandular 100 

epithelial/stromal cells and myometrium)/uterine section/animal was counted. Semi-101 

quantitative immunofluorescence of p-histone H3 (Q-H score) in the different uterine cell 102 

types (n = 5/group) is shown in E. Values are expressed as means ± SEM. Statistical tests are 103 

described in the Material and Methods. * p < 0.05. 104 

Supplementary Figure 5. Chronic treatment with metformin alters p-histone H3 (Ser10) 105 

protein expression in the rat uterus after implantation. Immunofluorescence detection of 106 

p-histone H3 (red) in control rats treated with saline (A1-4) or metformin (B1-4) and in 107 

insulin+hCG-treated rats treated with metformin with implantation (C1-4) or without 108 

implantation (D1-2). Cell nuclei were counterstained with DAPI (blue). DS, decidualized 109 

stroma; Le, luminal epithelial cells; Ge, glandular epithelial cells; Str, stromal cells; M, 110 

myometrium. Scale bars (100 µm) are indicated in the photomicrographs. The number of all 111 

p-histone H3-positive cells in whole luminal epithelial cells, glandular epithelial/stromal cells 112 

and myometrium)/uterine section/animal was counted. Semi-quantitative immunofluorescence 113 

of p-histone H3 (Q-H score) in the different uterine cell types is shown in E. Uterine tissues 114 

were analyzed (n = 8/group; n = 5 for insulin+hCG-treated rats with metformin but without 115 

implantation). Values are expressed as means ± SEM. Statistical tests are described in the 116 

Materials and Methods. * p < 0.05; ** p < 0.01. 117 

 118 
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Figure 8 
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Suppl MM 

Materials and Methods 

Primary in vitro tissue culture and treatment  

     Uterine tissue culture and treatment was essentially carried out as described previously 

(Cui et al. 2015; Li et al. 2015). After rinsing in cold PBS, uterine tissues obtained from 

control (n = 5) and PCOS-like (n = 5) rats were divided into equal-sized explants and placed 

in 24-well tissue culture plates (Sarstedt, Newton, MA) containing RPMI-1640 medium with 

charcoal-stripped 10% fetal calf serum and 100 IU/ml penicillin/streptomycin (GIBCO-BRL, 

San Francisco, CA). Cultured tissues treated with sterile saline or metformin (10 mM in 

sterile saline) were incubated in a humidified incubator (37ºC, 95% O2, 5% CO2) and 

separately collected at 0 h, 24 h, 48 h, and 72 h after treatment (Supplemental Fig. 2). Each 

culture condition was performed in five replicates (five wells), and tissues from a minimum of 

five control rats and five PCOS-like (insulin+hCG-treated) rats were used. At the end of the 

experiments, cultured tissues were snap-frozen in liquid nitrogen and stored at –70°C. 

Morphological assessment and immunostaining  

     Uterine tissues were fixed in 10% formalin, embedded in paraffin, and sectioned for 

hematoxylin and eosin staining according to standard procedures. Immunohistochemistry and 

immunofluorescence were performed according to previously described methods (Zhang et al. 

2017; Zhang et al. 2016). The endogenous peroxidase and nonspecific binding were removed 

by incubation with 3% H2O2 for 10 min and with 10% normal goat serum for 1 h at room 

temperature. After incubation with the primary antibody (Supplemental Table 1) overnight at 

4°C in a humidified chamber, the sections were stained using the avidin-biotinylated-

peroxidase complex detection system (Vector Laboratories Inc., Burlingame, CA) followed 

by treatment with 3-amino-9-ethyl carbazole developing reagent plus High Sensitivity 

Substrate (SK-4200, Vector Laboratories). The sections were imaged on a Nikon E-1000 
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microscope (Japan) and photomicrographed using Easy Image 1 (Bergström Instrument AB, 

Sweden).  

     The other half of the uterine sections were incubated with primary antibody in 0.01 M 

Tris-buffered saline supplemented with Triton X-100 (TBST) containing 5% nonfat milk 

overnight at 4°C, and a secondary antibody was applied at room temperature for 1 h. After the 

sections were washed with TBST, they were re-suspended in mounting medium containing 

DAPI (4′,6′-diamidino-2-phenylindole; Vector Laboratories). Sections were examined under 

an Axiovert 200 confocal microscope (Zeiss, Jena, Germany) equipped with a laser-scanning 

confocal imaging LSM 710 META system (Carl Zeiss) and photomicrographed. Background 

settings were adjusted from the examination of negative control specimens. Images of positive 

staining were adjusted to make optimal use of the dynamic range of detection. The immune 

staining was quantified by semi-quantitative histogram scoring (Q-H score) as described 

previously (Mariee et al. 2012). All morphological and immunohistochemical assays were 

performed by at least two researchers in an operator-blinded manner. 

Protein isolation and Western blot analysis 

     A detailed explanation of the Western blot analysis protocol has been published (Zhang et 

al. 2017; Zhang et al. 2016). Total protein was isolated from whole uterine tissue by 

homogenization in RIPA buffer (Sigma-Aldrich) supplemented with cOmplete Mini protease 

inhibitor cocktail tablets (Roche Diagnostics, Mannheim, Germany) and PhosSTOP 

phosphatase inhibitor cocktail tablets (Roche Diagnostics). After determining total protein by 

Bradford protein assay, equal amounts (30 µg) of protein were resolved on 4–20% TGX stain-

free gels (Bio-Rad Laboratories GmbH, Munich, Germany) and transferred onto PVDF 

membranes. The membranes were probed with the primary antibody (Supplemental Table 1) 

in TBST containing 5% non-fat dry milk followed by HRP-conjugated secondary antibody. 

When necessary, the PVDF membranes were stripped using Restore PLUS Western blot 
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stripping buffer (Thermo Scientific, Rockford, IL) for 15 minutes at room temperature, 

washed twice in TBST, and then re-probed. Ultraviolet activation of the Criterion stain-free 

gel on a ChemiDoc MP Imaging System (Bio-Rad) was used to control for proper loading. 

Band densitometry was performed using Image Laboratory (Version 5.0, Bio-Rad).  

     In the present study, we used a novel stain-free technology – ultraviolet activation of the 

Criterion stain-free gel on a ChemiDoc MP Imaging System (Bio-Rad) – which was used to 

control proper loading (total protein normalization). This technology represents a significant 

advancement over existing stain-based total protein quantitation approaches such as 

Coomassie blue, Ponceau S, and others and gives accurate protein loading control data in a 

standardized manner without requiring lengthy optimization. The detection of proteins on 

stain-free gels is based upon trihalocompound modification of tryptophan residues in proteins 

run on stain-free gels, which are exposed to UV. The modified tryptophans give a fluorescent 

signal that can be readily detected by a CCD camera. In our study, band densitometry was 

performed using Image Laboratory. When quantified, the intensity of each protein band was 

normalized to the total protein in individual sample. This method has been commonly used in 

both human and animal tissues to semi-quantify concentrations of specific proteins in many 

studies. Please visit the link given below for review of previous publications using the same 

method and technology: 

(http://www.biorad.com/webroot/web/pdf/lsr/literature/Bulletin_6351.pdf). 

RNA extraction and qRT-PCR analysis 

     For RNA isolation, tissues from each rat were lysed using TRIzol Reagent (Life 

Technologies), and RNA was isolated following standard protocols. qRT-PCR was performed 

with a Roche Light Cycler 480 sequence detection system (Roche Diagnostics Ltd., Rotkreuz, 

Switzerland) as previously described (Zhang et al. 2017; Zhang et al. 2016). The PCR 

amplifications were performed with a SYBR green qPCR master mix (#K0252, Thermo 
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Scientific, Rockford, IL). Total RNA was prepared from the frozen whole uterine tissues, and 

single-stranded cDNA was synthesized from each sample (2 µg) with M-MLV reverse 

transcriptase (#0000113467, Promega Corporation, Fitchburg, WI) and RNase inhibitor (40 U) 

(#00314959, Thermo Scientific). cDNA (1 µl) was added to a reaction master mix (10 µl) 

containing 2× SYBR green qPCR reaction mix (Thermo Scientific) and gene-specific primers 

(5 µM each of forward and reverse primers). All primers are indicated in Supplemental Table 

2. All reactions were performed six times, and each reaction included a non-template control. 

The results for target genes were expressed as the amount relative to the average CT values of 

GAPDH + U87 in each sample. Relative gene expression was determined with the 2−∆∆CT 

method, and the efficiency of each reaction – as determined by linear regression – was 

incorporated into the equation.  

Measurement of biochemical parameters  

     Concentrations of gonadotropins (follicle stimulating hormone and luteinizing hormone), 

steroid hormones (17β-estradiol, progesterone, testosterone, 5α-dihydrotestosterone, and 

androstenedione), sex hormone-binding globulin, glucose, and insulin in rat serum samples 

were measured using commercially available assays (Cloud-Clone Corp., Houston, TX) as 

described previously (Zhang et al. 2017). All samples and standards were measured in 

duplicate. The intra- and inter-assay coefficients of variation are listed in Supplemental Table 

3. 
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Supplementary Table 1. Antibodies: species, clone/catalog number, method, dilution, and 

source. 

Antibody Species Cat. No. kDa Method Dilution Source 

PGR  Mouse MA1-410 B120

A94 

WB  

IHC 

1:500 

1:50 

Thermo Fisher (Rockford, IL) 

p-c-Raf Rabbit 9427 74 WB 1:500 Cell Signaling Technology 

(Danver, MA) 

p-MEK1/2 Rabbit 9154 45 WB 1:500 Cell Signaling Technology 

p-ERK1/2 Rabbit 4370 42,44 WB 1:1000 Cell Signaling Technology 

ERK1/2 Rabbit 4695 42,44 WB 1:2000 Cell Signaling Technology 

p-p38 MAPK Rabbit 4511 43 WB 1:300 Cell Signaling Technology 

p38 MAPK Rabbit 8690 40 WB 1:1000 Cell Signaling Technology 

p-JNK Rabbit 4668 46,54 WB 1:500 Cell Signaling Technology 

JNK Rabbit 9252 46,54 WB 1:1000 Cell Signaling Technology 

ERα Mouse 6F11  IHC, IF 1:50 Novocastra Laboratories Ltd. 

(Newcastle upon Tyne, UK) 

ERβ Rabbit Ab3577  IF 1:50 Abcam (Cambridge, UK) 

p-histone H3 

(Ser10) 

Rabbit 3377  IF 1:100 Cell Signaling Technology 

 

PGR, progesterone receptor; p-MEK1/2, phosphorylation-MAP2K1/2; ERK1/2, extracellular signal-regulated 

kinases 1/2; p38 MAPK, p38 mitogen-activated protein kinase; JNK, jun-amino-terminal kinase; ERα, estrogen 

receptor alpha; WB, western blot; IHC, immunohistochemistry; IF, immunofluorescence. 
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Supplementary Table 2. Sequences of primer pairs used for qRT-PCR measurement. 

 

Gene  Primer Size 

Ihh 

Forward CCTCGTAAACTCGTGCCTCT 

222 bp 

Reverse CAGTGAGTTCAGACGGTCCT 

Ptch 

Forward GAACAAGCAACTTCCCCAAA 

190 bp 

Reverse AATGTCGATGGGCTTGTCTC 

Smo 

Forward CAATGCGTGTTTCTTTGTGG 

253 bp 

Reverse CGAGAGAGGCTGGTAAGTGG  

Nr2f2 

Forward GTCGCCTTTATGGACCACAT 

145 bp 

Reverse CGTGGGCTACATCAGACAGA 

Hand2 

Forward CAGCTACATCGCCTACCTCA 

162 bp 

Reverse TTCTTGTCGTTGCTGCTCAC 

Fkbp5 

Forward GCTGCCATCGAAAGCTGTAA 

102 bp 

Reverse GTCAAAGTCATTCACGGCCA 

Ncoa2 

Forward GCGAATGTCACAGAGCACTT 

238 bp 

Reverse ACTGCCAATCATTCCTGTGC 

Pgr 

Forward GGTCTAAGTCTCTGCCAGGTTTCC 

182 bp 

Reverse CAACTCCTTCATCCTCTGCTCATTC 

Pgrb 

Forward GCATCGTCTGTAGTCTCGCCAATAC 

176 bp 

Reverse GCTCTGGGATTTCTGCTTCTTCG 

Prl 

Forward CAAGAAGAAGGGGCCAACCT 

100 bp 

Reverse CTGGTGGTGACTGTCCCTTC 

Igfbp1 

Forward TGTACTAGAACCTGCCGCAC 

126 bp 

Reverse AGCAGCTGTTCCTCTGTCAT 

Lif 

Forward CGCCCAACATGACGGATTTC 

226 bp 
Reverse TTGTTGCACAGACGGCAAAG 

Il11 

Forward GACTCCCTACCTACCTTGGC 

100 bp 
Reverse GCAACCACTGTACATGTCGG 
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Gene  Primer Size 

Pc6 

Forward GTGTGAGAATGGGTCGGAGA 

149bp 

Reverse TTTCTTTCCACTTTCGGCCG 

Spp1 

Forward CTGAAGCCTGACCCATCTCA 

143 bp 
Reverse TCGTCGTCATCATCGTCCAT 

Maoa 

Forward AGGAGCTAGGCATAGAGACCT 

219 bp 
Reverse TCTTGTCCCATTCCTGAGCG 

Ednrb 

Forward GGGTCTGCATGCTTAATCCC 

212 bp 
Reverse CTTGGCCACTTCTCGTCTCT 

Hoxa10 

Forward TCCGAAAACAGTAAAGCCTCTC 

127 bp 

Reverse GCGTCTGGTGCTTCGTGTAA 

Hoxa11 

Forward GACTCCCTACCTACCTTGGC 

100 bp 

Reverse GCAACCACTGTACATGTCGG 

Lrh1 

Forward CTGTGAAAGCTGCAAGGGTT 

154 bp 

Reverse CAGCTTCATTCCAACGTCGA 

Sgk1 

Forward GGGCCTTCACTTCTCTTTCC 

163 bp 

Reverse GTGCAGATAACCCAAGGCAC 

Hbegf 

Forward GCTCTTCCACCTGGCTCAAT 

120 bp 

Reverse CACAACCCACCCTGGGATAC 

Krt13 

Forward GTTTCGGAGCTGGTTCTTGC 

277 bp 

Reverse AGGCGGTCATTGAGGTTCTG 

Esr1 

Forward ACGCTCTGCCTTGATCACAC 

132 bp 

Reverse CCTGCTGGTTCAAAAGCGTC 

Esr2 

Forward AAAGTAGCCGGAAGCTGACA 

138 bp 

Reverse GCCTGACGTGAGAAAGAAGC 

Gapdh 

Forward TCTCTGCTCCTCCCTGTTCTA 

121 bp 

Reverse GGTAACCAGGCGTCCGATAC 

U87 

Forward CCAGGTGCAACAAAACCTGT 

188 bp 

Reverse GCTGGACCCAAAACAACGAG 
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Pgr, progesterone receptor; Ihh, Indian hedgehog; Ptch, patched; Smo, smoothened frizzled class receptor; 

Nr2f2, nuclear receptor subfamily 2 group F member 2; Hand2, heart and neural crest derivatives expressed 2; 

Fkbp5, FK506 binding protein 5; Ncoa2, nuclear receptor coactivator 2; Pgr, progesterone receptor; Pgrb, 

progesterone receptor B; Prl, prolactin; Igfbp1, insulin-like growth factor binding protein 1; Lif, leukemia 

inhibitory factor; Pc6, subtilisin/kexin type 6; Spp1, osteopontin/secreted phosphoprotein 1; Maoa, monoamine 

oxidase; Ednrb, endothelin receptor B; Hoxa10, homeobox A10; Lrh1, liver receptor homolog-1; Sgk1, serum-

and glucocorticoid-regulated kinase; Hbegf, heparin-binding EGF-like growth factor; Krt13, keratin 13; Esr1, 

estrogen receptor 1; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; U87, small nucleolar RNA, C/D box 

87(Snord87). 

  

�
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Supplementary Table 3. The intra-assay and inter-assay % CV for the rat gonadotropins, 

steroid hormones, and insulin. 

 

 Intra-assay % CV Inter-assay % CV 

FSH 6.4 6.8 

LH 6.4 6.6 

E2 6.5 6.8 

P4 6.4 6.6 

Total T 6.2 6.6 

A4 6.7 6.9 

DHT 6.2 6.7 

SHBG 6.4 6.8 

Insulin 6.3 6.6 

 

FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, 17β-estradiol; P4, progesterone;  

T, testosterone; A4, androstenedione; DHT, 5α-dihydrotestosterone; SHBG, sex hormone-binding globulin. 
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Supplementary Table 4. Effects of implantation on the endocrine and metabolic alterations in 

control rats treated with saline or metformin, and insulin+hCG-treated (PCOS-like) rats with 

metformin. 

 
 

Saline 

(n = 8) 

Met 

(n = 10) 

Insulin + hCG 

+ Met 

(implantation) 

(n = 10) 

Insulin + hCG 

+ Met  

(no implantation) 

(n = 5) 

FSH (ng/ml) 2.13 ± 0.04 2.06 ± 0.04    2.14 ± 0.04  2.14 ± 0.10 

LH (ng/ml) 2.00 ± 0.24 1.93 ± 0.11 2.31 ± 0.17  2.73 ± 0.36  

LH / FSH 0.94 ± 0.11 0.94 ± 0.05 1.08 ± 0.08 1.28 ± 0.18 

E2 (ng/ml) 1.31 ± 0.04 1.34 ± 0.03  1.23 ± 0.03  1.32 ± 0.05  

P4 (ng/ml) 6.88 ± 0.35 6.51 ± 0.37 8.95 ± 0.44 
a, c

 4.80 ± 0.11
 b, d, e

 

Total T (ng/ml) 5.11 ± 0.71 3.83 ± 0.22 3.78 ± 0.44  7.40 ± 0.09 a, c, e 

A4 (ng/ml) 0.142 ± 0.004 0.142 ± 0.006 0.162 ± 0.006  0.181 ± 0.016 
b, c

 

DHT (pg/ml) 102.97 ± 5.66 97.92 ± 9.28 102.00 ± 5.52  154.58 ± 8.39 a, c, e 

E2 / Total T 0.29 ± 0.04 0.36 ± 0.02 0.38 ± 0.05 0.18 ± 0.01
 d, f

 

Total T / DHT 0.051± 0.007 0.044 ± 0.006 0.038 ± 0.005 0.049 ± 0.003  

Total T / A4 36.37 ± 5.36 27.28 ± 1.77 23.26 ± 2.49  42.20 ± 3.52 d, e 

SHBG (ng/ml) 11.08 ± 0.33 10.89 ± 0.35 9.67 ± 1.16 10.91 ± 0.56 

Fasting glucose (mmol/l) 4.19 ± 0.09 3.92 ± 0.10 4.53 ± 0.19 
d
 4.98 ± 0.12

 a, c
 

Fasting insulin (pg/ml) 3.26 ± 0.05 3.17 ± 0.02 3.22 ± 0.04 3.42 ± 0.03 b, c, f 

HOMA-IR 0.61 ± 0.01 0.55 ± 0.01 0.65 ± 0.03
 c
 0.76 ± 0.02

 a, c, f
 

 

Met, metformin; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, 17α-estradiol; P4, 

progesterone; T, testosterone; A4, androstenedione; DHT, 5α-dihydrotestosterone; SHBG, sex hormone-binding 

globulin; HOMA-IR, Homeostasis model assessment of insulin resistance, HOMA-IR= fasting blood glucose 

(mmol/l) × fasting serum insulin (µU/ml) / 22.5. 

Values are Mean ±SEM. The multiple comparisons between data were performed using one-way ANOVA and 

Tukey’s post hoc test. A P-value less than 0.05 was considered statistically significant. 
a 
P＜0.01 versus Saline group. 

b
 P＜0.05 versus Saline group. 

c 
P＜0.01 versus Met group. 

d 
P＜0.05 versus Met group. 

e 
P＜0.01 versus Insulin + hCG + Met (implantation) group. 

f P＜0.05 versus Insulin + hCG + Met (implantation) group. 
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Suppl Figure 1 
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Suppl Figure 2 
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Suppl Figure 3 
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Suppl Figure 4 
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Suppl Figure 5 
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