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Abstract. Generation theory was developed as a tool for studying self-reproducing

systems. In this paper we show that this theory can be applied to a search for

common ancestors of living organisms.
We give two algorithms with flowcharts in pseudocode for finding common

ancestors of a set of microbes and describe the connections with the genography

problem.

Introduction.
This paper describes certain aspects of Genography, which proposes on the basis

of fossil and genetic evidence to make specific statements on the origin of groups
and species. Examples of such statements are: all modern members of group X
living in location L descend from N individuals that lived Y years ago in location
M , or species X and species Y have a common ancestor from which they branched
Z years ago. An instance of the first statement is implied in [13], which claims that
all European humans are descendants of seven women who lived in Africa 45,000
years ago. An instance of the second statement is implied in [14], which claims
that gorillas and chimpanzees have a common ancestor, from which they branched
around 5,000,000 years ago.

Genography is motivated by a deep-seated human search for the origin of species.
In the case of humans, IBM and the National Geographic Magazine are running
the Genographic project, about which information is available at the National Ge-
ographic website [16]. The study published by the Genography Consortium in [1]
contains extensive bibliography supporting the project.

However, in spite of the numerous appearances in popular science publications,
Genography has not received rigorous scientific scrutiny. Even though there is a
number of papers criticizing the genography project on moral and ethical grounds
(see, for example, [15]), the author had not been able to find scientific analysis of
the project in print. The purpose of this paper is to fill this gap.

We exhibit a careful mathematical analysis of the plausibility of the basic claims
made by Genography and show that the problem is mathematically ill-posed. This
analysis is novel and constitutes the original contribution of this paper. The analysis
is especially interesting in view of a current discovery, reported in [5], of another
new hominin species, namely australopithecus deyiremeda, which lived about 3.5
millions years ago.

In the nineteenth century, mathematician Jacques Hadamard defined a well-
posed problem as a mathematical model of physical phenomena with the following
properties:

(1) A solution exists.
(2) The solution is unique.
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(3) The solution depends continuously on data in some reasonable topology.

Problems that are not well-posed in the above sense are said to be ill-posed. Well-
posedness is an important technical concept because data are often corrupted by
random measurement errors. Hence, when a problem is ill-posed, such measurement
errors, even though they may be small, can cause large changes in the solution,
making it meaningless. On the other hand, when a problem is well-posed, its
solution can be reliably computed using a stable numerical algorithm, in spite of
small measurement errors in the data. A common method for dealing with ill-posed
problems is to reformulate them with additional assumptions in a process known
as regularization, to make them well-posed.

The technical approach of this paper uses Generation Theory, which was intro-
duced in [7] to analyze self-reproducing systems. Within the framework of Gener-
ation Theory the following original results are obtained about Genography:

(1) Genography is ill-posed.
(2) It is possible to regularize the original Genography problem so that it be-

comes well-posed.
(3) We exhibit two algorithms for the solution.

The remainder of this paper is as follows: we present an overview of Generation
Theory and introduce a problem, called Microbes in a jar, which shows that Genog-
raphy is ill-posed. Then we formulate a regularized Microbes in a jar problem, and
give two algorithms with flowcharts in pseudocode for solving it.

Background in Self-Reproducing Systems.
The paper [7] is devoted to a study of self-reproducing systems. The idea goes

back to von Neumann, who discussed cellular automata capable of building other
cellular automata in [9]. The subject proved to be a fruitful ground for research. For
a survey of existing literature and current developments see [3], [8], [10], and [12].
In the framework of generation theory, the entities that can potentially reproduce
are called machines, regardless of their physical nature (e.g. robots, microbes, or
lines of computer code). Reproduction is achieved by the action of a machine on
available resources, producing an outcome that may or may not be a machine itself.

A generation system is defined as a quadruple (U,M,R,G), where U is a uni-
versal set that contains machines, resources, and outcomes of attempts at self-
reproduction. M ⊆ U is a set of machines, R ⊆ U is a set of resources that can be
used for self-reproduction, and G : M ×R→ U is a generation function that maps
a machine and a resource into an outcome.

The generation sets are defined as follows: M0 = M is the set of all machines
and Mi+1 is the set of all machines that are capable of producing a machine in Mi.

It was shown in [7] that the generation sets are nested, i.e. M0 ⊇M1 ⊇M2 ⊇ · · · ,
which leads to the definition: M∞ = ∩Mi. All self-reproducing machines belong to
M∞.

In this paper we show that generation theory can be applied to study repro-
duction of microbes and describe the connections with the genography problem.

Levenstein metric.
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For our purposes a living organism is represented by its DNA. We assume that a
DNA is a finite sequence of symbols chosen from the alphabet of 4 letters: A,C,G,
and T .

Levenstein metric ρ, which is a generalization of the Hamming metric, on a set
of DNA is defined as follows.

(1) For any two sequences of equal lengths S = (s1, · · · , sn) andR = (r1, · · · , rn)
define ρ(S,R) = 0 if si = ri for all 1 ≤ i ≤ n. Define ρ(S,R) = 1 if the
sequences differ in exactly one coordinate. Define ρ(S,R) = m if the se-
quences S and R differ in exactly m coordinates.

(2) If S can be obtained from R by either deleting or inserting one coordinate,
define ρ(S,R) = 1.

(3) If the sequence S can be obtained from R by changing k coordinates and
deleting or inserting m coordinates, define ρ(S,R) = min(k + m), where
the minimum is taking over all possible choices of k and m.

Example 1. Let S = ACCGCA and R = CTGA. By observation, the shortest
way to obtain R from S is to delete the first and the fifth letters in S and to change
the third letter from C to T . Hence ρ(S,R) = 3.

It is easy to see that for any sequences S and R, ρ(S,R) = 0 if and only if S = R.
Moreover, as ρ(S,R) = ρ(R,S), it follows that ρ is symmetric.

Note that ρ satisfies the triangle inequality. Indeed, if S,R, and T are sequences
with ρ(S,R) = m and ρ(R, T ) = n, we can transform S into R in m steps, and R
into T in n steps, where a step consists of either deleting or inserting a coordinate,
or of changing a coordinate. Hence we can transform S into T in m + n steps,
therefore ρ(S, T ) ≤ m+n, proving the triangle inequality. So ρ is, indeed, a metric
on the set of DNA sequences.

Note that if S and R have equal lengths, then ρ(S,R) is the Hamming distance
between S and R.

The motivation for the use of the Levenstein metric comes from the fact the two
most common types of mutations in DNA are deletion or insertion of a letter in
the sequence, or substitution of a different letter for a given one. The first type of
mutation is called a frame-shift mutation and the second type of mutation is called
a point mutation. The letters in the DNA sequences are called the nucleotides. For
more information on mutations see [4] and [6].

To simplify the exposition we would like to define an induced semi-metric on the
set of living organisms by ρ(O1, O2) = ρ(DNA(O1), DNA(O2)), where O1 and O2

are any organisms. This is a semi-metric because distinct organisms can, a priori,
have identical DNA.

Microbes in a jar
Consider a sealed jar containing liquid, whose chemical composition and tem-

perature do not depend on time. This liquid is the set of resources R, so R is a
singleton. Let M be the set of DNA of all microbes, i.e. one-celled organisms,
which ever lived in this jar. M is the set of all machines in the problem. M has a
decomposition M = Ma ∪Md, into subsets of alive and dead microbes. We define
a generation function G : Ma×R −→ (Md×M ×M) by G(ma, r) = (md,m1,m2).
So the generation process takes a living microbe ma and produces, by division,
two new microbes m1 and m2. The original microbe ma dies in the process, so
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the output of the generation function contains md, to remind us that the original
microbe does nor survive the reproduction. We require the following property.

The Small Mutations Property.
Assume that there exists a constant ε = ε(M) > 0, which does not depend on

a particular m in M , such that if G(m, r) = (md,m1,m2) then ρ(m,m1) < ε and
ρ(m,m2) < ε. This requirement reflects an accepted empirical fact that in the
absence of radiation mutations are not large. For example, such mutations cannot
produce a two-celled organism, so an offspring of a microbe is a microbe. Note
that two different microbes might have identical DNA, and as a consequence, we
cannot identify microbes with their DNA, so any metric on the DNA will be only a
semi-metric on the set of microbes. It implies that identical twins and genetic loops
are theoretically possible. (A genetic loop will appear if a sequence of generations
starting from some machine m will produce m.)

Problem formulation and a connection with Genography.
We want to know how many microbes were in the set M∗ that generated M ,

what was their genetic makeup, and how many generations passed between M∗ and
M . We are given the set Ma of all microbes currently alive and a subset Mf of
Md, which is a set of fossils. Mf is usually very small relative to Md. In addition,
for another small subset M ′ of M we are given the set G−1(M ′, R), so M ′ is the
set of microbes for which we know the parent. This is exactly the description of
the genography problem. We know humans that are currently alive in a certain
location, we know some of their ancestors, we know some of the family trees, and
we want to obtain data about the first humans in this location.

Remarks.

(1) Only alive microbes can reproduce, however their offspring might die at
birth.

(2) In this simple model we allow a microbe to die either at birth or after
reproduction. No microbe survives reproduction.

(3) M∗ can be characterized as follows: m ∈ M∗ ⇔ {m has no parent in the
jar}.

Note that the length of the DNA of a virus is about 4 · 104 nucleotides, for the
microbe E. coli it is about 4.7 ·106, and for humans it is about 3 ·109. Under typical
laboratory conditions E. coli reproduces every 20 min.

For E. coli the number of errors in DNA per replication under normal laboratory
conditions before the error correction code starts working is about 1. The error
correction code is very efficient and under normal laboratory conditions it results
in one mistake per about 1000 replications, so a single mutation appears every 2
days.

An Approach to the Solution.
This problem is a typical example of reverse modeling, when we are given con-

ditions in the present, and need to reconstruct the conditions in the past. It
is well-known that the usual statistical methods are reasonably reliable only for
short time intervals, so the first task is to estimate the time interval involved.
Assume that the original microbes belong to a single species, so they reproduce
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at the same time interval T . Recall that the diameter of a set X is defined as
diam(X) = sup ρ{(xi, xj)|xi, xj ∈ X}.

We assume that the small mutation property holds.
Let Diam(M∗) = µ ≥ 0, and let ε be as in the definition of the small mutation

property. Then if m1 and m2 are microbes in the jar, and n1 and n2 are their
respective parents, the triangle inequality implies that ρ(m1,m2) ≤ ρ(m1, n1) +
ρ(n1, n2) + ρ(m2, n2). The small mutation property states that ρ(m1, n1) < ε and
ρ(m2, n2) < ε, hence with each generation the diameter of the set of microbes in
the jar increases by at most 2ε. So the diameter of the K-th generation is bounded
by µ+K · 2ε.

Determine all the pairwise distances between the elements of Ma and, consecu-
tively, the diameter of Ma.

If diam(Ma) = µ+ J · 2ε, then the lowest bound on the number of generations
in the jar is J . Hence the original population lived at least J · T [time units] ago,
where T is the time interval between microbe divisions. (For example, T = 20 min
for amebae.)

This estimate is very crude and it is easy to build models for which it is arbitrarily
poor.

Example 2. If each replication produces one dead microbe and one alive microbe
with the exact DNA of the parent, then diam(Ma) = diam(M∗) = µ, and the above
estimate implies that J = 0, however, the number of generations may be arbitrarily
large.

So Example 2 illustrates that genography is ill-posed.

Example 3. Assume that the replication is exact, and Ma contains exactly 8 mi-
crobes with identical DNA. We cannot decide whether M∗ consisted of 4 microbes
and J = 1, or M∗ contained one microbe and J = 3.

Example 3 shows once more that genography is ill-posed and that we need to
make a guess either about M∗ or about J , or about both.

Assume that we have established the values of J and of diam(M∗).
In order to describe the set M∗, we assume that it is located in the center of

the set Ma and that Ma is approximately a metric ball. Statistically speaking, we
assume that all mutations have equal probability and that the lethal mutations are
random.

A naive way to find the center of Ma is to consider a pair of elements m1 and
m2 such that the distance between them equals to the diameter of Ma, and find
an element or elements in Ma whose distance to each of m1,m2 is closest to the
half of the diameter of Ma. This procedure would usually produce several answers.
The next example shows that, unfortunately, the possible centers obtained in this
way might be as far apart as the original points.

Example 4. Consider the sequences (0000) and (1111). As ρ((0000), (1111)) =
4, ρ((0011), (0000)) = 2, and ρ((0011), (1111)) = 2, the sequence (0011) is half-way
between (0000) and (1111). However, ρ((1100), (1111)) = 2, and ρ((1100), (0000)) =
2, so the sequence (1100) is also half-way between (0000) and (1111).

But ρ((1100), (0011)) = 4.

Assume that we have found possible centers of the set M . Run J iterations of
the generating function G on a metric ball of diam(M∗) around each candidate
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6 RITA GITIK

center, then check which output fits the set Ma best. Alternatively, consider the
frequencies of the DNA in Ma and assume that the most frequent ones define the
center. However, it is possible that each DNA in Ma is carried by only one microbe.
Then we might want to check DNA frequencies of small balls in Ma, but at the
end we will need to make a guess about M∗ and to run forward simulations.

Remarks.

(1) The sets Mf and M ′ are used to check the model. They are useful in
estimating J . It will be shown in the next section that if these sets are
maximal, then the problem has an exact solution.

(2) As the accuracy of the statistical methods involved declines when J grows,
many genography-type results are not widely accepted by the scientific
community.

(3) The assumption that all mutations have the same probability to be lethal
is unrealistic. It seems that the lethal mutations should be localized in
certain directions.

Regularization of the Problem. In order to regularize the problem we need
to introduce a very strong assumption.

Condition UI (Uniqueness of Individual).
We assume that ρ, defined above, is a metric on the set of living organisms, and

not just a semi-metric, i.e. ρ(O1, O2) = 0 ⇔ O1 = O2, so the function from the
set of organisms to the set of DNA is injective. Alternatively, we can define an
individual as an equivalence class, but such approach is rather non-intuitive.

We consider the same setting as before, namely, there exists a jar in the lab-
oratory which contains liquid, and the chemical composition and temperature of
the liquid do not depend on time. This liquid is the set of resources R. Let M be
the set of DNA of all microbes which ever lived in this jar. However, we demand
that the system satisfies condition UI. Consecutively, to simplify the exposition, we
identify a DNA sequence with its carrier.

We consider the same set of machines and the same generating function, G :
Ma×R→ (Md×M ×M) given by G(ma, r) = (md,m1,m2). Note that condition
UI implies that md 6= m1 6= m2.

We want to identify the set M∗ of microbes which started M , i.e. the first
microbes which appeared in the jar.

The following approach to the solution of the problem was developed by the
author in [2].

Assume we know all the microbes which ever lived in the jar and their offspring.
To be precise, we are given the set M = {m1, · · · ,mN}, as an ordered list. We also
are given the set r(M) = G(M,R) as the ordered list of L pairs {(mi, ni)} ∈M×M ,
ordered by the first coordinate, where mi is a parent of ni. As each microbe in the
jar has either 2 offspring or no offspring at all (the latter happens for microbes in
Ma), any mi ∈ M can appear as the first coordinate of a pair on the list r(M)
exactly twice. As each microbe in the jar has at most one parent in the jar (the
microbes without a parent in the jar are exactly the set M∗), any ni ∈ M can
appear as the second coordinate of the list at most once.
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We solve the problem by constructing the following graph Γ: the set of vertices
of Γ is M and there is a directed edge from m1 to m2 if and only if m1 is a parent
of m2. Recall that the degree of a vertex in a graph is the number of edges attached
to it. Also recall that a graph is a tree if it does not contain loops.

Assume Γ is constructed. As condition UI implies that there are no genetic
loops, Γ is a forest, i.e. a collection of disjoint trees. Note that if m is alive, it has
not reproduced yet, so for any live microbe deg(ma) = 1. In other words, the only
edge attached to any living microbe in Γ is the edge connecting it to its parent.
The same is true if m was born dead, thus could not reproduce. Also note that
deg(m) = 2⇔ m ∈M∗, because only in this case m has 2 offspring, but no parent
in the jar. In all other cases deg(m) = 3.

We offer two algorithms for the construction of Γ. The algorithms will output
the set M∗ as an ordered list.

Solution 1: Going forward in time.
This solution does not use the small mutation property and is very general.

Choose any m1 ∈ M , check who are its offspring, if any, and connect m1 to each
of its offspring by a directed edge. Repeat this procedure with the offspring of
m1. At each step the number of offspring may grow exponentially, but still there
are only finitely many of them. After a finite number of iterations we will stop,
constructing a graph Γ1. If the set of vertices of Γ1 is M , then Γ1 = Γ. In this case
Γ is a tree, and M∗ = m1. Otherwise, choose m2 which is not a vertex of Γ1 and
repeat the process. After a finite number of steps we construct Γ, and we know
that deg(m) = 2⇔ m ∈M∗.

Below is a flowchart of this algorithm in pseudocode, where L is the length of
the list r(M), and (mi, ni) are elements of r(M).

Start

input: M, r(M)

i = 1

i > L

Connect mi to ni
by a directed edge

Output

i = i + 1

yes

no
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Solution 2: Going backward in time.
This solution uses the small mutation property. We assume that we can generate

balls of radius ε in M , meaning that for any mi ∈ M we are given an ordered list
Bi of all bij in an ε-ball around mi. Clearly the length of each Bi is bounded by
the length of M . Choose any m1 ∈ M and check who is its parent. The small
mutation property implies that the parent belongs to the list B1, so to find the
parent we need to check the offspring of all microbes in B1. Connect the parent
to m1 and repeat the step with the parent of m1. The process terminates after
finitely many steps, when we arrive at a microbe without a parent. Such microbe
is an element of M∗. Call the graph constructed in the process Γ1. If Γ1 = Γ, then
the set M∗ is a singleton. Otherwise, choose m2 which is not a vertex of Γ1 and
repeat the process. After a finite number of steps we construct Γ, and we know
that deg(m) = 2⇔ m ∈M∗.

Below is a flowchart of this algorithm in pseudocode, where L is the length of
r(M), and bij ∈ Bi.
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Start

input: M, r(M), and all Bi

i = 1

i > L Output

j = 1

j > Length(Bi)i = i + 1

(bij ,mi) ∈ r(M)

Connect bij to mi

by a directed edge

j = j + 1

Yes

No

Yes

No

No

Yes

The output for both algorithms is given by identical pseudocode shown below.
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Start

Output=NULL

j = 1

j > L Stop

deg(mj) = 2

Output=
Output∪mj

j = j + 1

Yes

No

Yes

No
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