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Summary 

 

The prediction of anticancer drug response is crucial for achieving a more effective and 

precise treatment of patients. Models based on the analysis of large cell line collections have 

shown potential for investigating drug efficacy in a clinically-meaningful, cost-effective 

manner. Using data from thousands of cancer cell lines and drug response experiments, we 

propose a drug sensitivity prediction system based on a 47-gene expression profile, which 

was derived from an unbiased transcriptomic network analysis approach. The profile reflects 

the molecular activity of a diverse range of cancer-relevant processes and pathways. We 

validated our model using independent datasets and comparisons with published models. 

A high concordance between predicted and observed drug sensitivities was obtained, 

including additional validated predictions for four glioblastoma cell lines and four drugs. Our 

approach can accurately predict anti-cancer drug sensitivity and will enable further pre-

clinical research. In the longer-term, it may benefit patient-oriented investigations and 

interventions. 
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Introduction 

 

The unbiased, large-scale prediction of anticancer drug activity using tumor-derived 

molecular data is crucial to deliver on the promise of a more personalized, precise treatment 

of cancer patients (Caponigro and Sellers, 2011; Ross and Wilson, 2014). The prediction of 

drug sensitivity based on the analysis of large collections of cell lines offers significant 

opportunities for investigating clinical efficacy in a biologically-meaningful, cost-effective 

manner (Geeleher et al., 2014; Goodspeed et al., 2016; Wilding and Bodmer, 2014). 

Computational models for predicting anticancer drug sensitivity can aid in the selection and 

prioritization of candidate compounds for pre-clinical research (Costello et al., 2014; Rees 

et al., 2016; Reinhold et al., 2012; Stetson et al., 2014).  

 

Although cell line-based models may not fully recapitulate tumor biology, appropriately 

validated models may accelerate patient-oriented research, and have already shown 

potential to generate clinically-relevant predictions in different oncology domains. Such 

models may complement and in some cases offer an early substitute for in vivo models that 

tend to be expensive, time consuming and less scalable. In the short-term, this could enable 

the generation of novel biological hypotheses in the lab and, in the longer term, guide 

therapeutic decision-making in the clinic.  

 

Over the past few years, the investigation of cell line-based computational models for anti-

cancer drug sensitivity prediction has been accelerated by publicly-funded efforts of large 

research consortia (Barretina et al., 2012; Iorio et al., 2016b; Reinhold et al., 2012; Yang et 

al., 2013). In particular, the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) 

and the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012; Yang et al., 
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2013) projects represented significant steps forward for the oncology and 

pharmacogenomics research communities. These projects have generated and shared 

(untreated) molecular data from thousands of cancer cell lines and their accompanying 

treatment sensitivity measurements for hundreds of experimental and clinically-approved 

drugs. To date, computational models have mainly emphasized the application of different 

widely-investigated multivariable statistical and machine learning models, such as linear 

models and support vector machines, with various versions of feature selection 

methodologies (Dong et al., 2015; Haverty et al., 2016; Jang et al., 2014). Despite their 

potential for accurately predicting drug sensitivity across multiple types of cancer cell lines, 

less attention has been given to the investigation of biological importance of the proposed 

drug sensitivity markers, which have ranged from one to hundreds of gene-based features. 

Moreover, the majority of reported models have not been evaluated on independently 

generated datasets (Azuaje, 2017). Although different studies have tested the resulting 

prediction models on independent cell line datasets, e.g., models trained and tested on the 

GDSC and CCLE dataset respectively, there is a lack of studies that experimentally validate 

predicted anticancer sensitivity on independent biological samples, including cell lines that 

were not included in the training and initial testing datasets (Cortes-Ciriano et al., 2016; 

Gupta et al., 2016; Jang et al., 2014). 

 

Here, we present Dr.Paso: Drug response prediction and analysis system for oncology 

research (Figure 1A). Dr.Paso predicts drug sensitivity responses based on the (baseline) 

expression patterns of 47 genes, which represented “hubs” in a pan-cancer transcriptomic 

network extracted from more than 1K cell lines and are substantially implicated in a diversity 

of cancer-relevant biological processes. A computational prediction model based on the 

multiple-linear regression of the 47-gene expression values measured in hundreds of cell 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237727doi: bioRxiv preprint 

https://doi.org/10.1101/237727
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

lines provided both accurate and robust prediction performance. First, the model was trained 

and cross-validated on a (discovery) dataset consisting of more than 10K cell line-drug 

experiments for 24 (targeted and cytotoxic) drugs. Next, the resulting model was tested on 

a second, more recently-released, (validation) dataset comprising almost 10K cell line-drug 

experiments that included 16 drugs also found in the discovery dataset. Dr.Paso’s prediction 

performance is comparable to, and in some cases outperforms, previously published 

computational models. Motivated by these findings, Dr.Paso next predicted sensitivity 

scores for 4 glioblastoma (GBM) cell lines, including three (stem-like) cell lines that were not 

included in the discovery and validation datasets, against 24 drugs. We selected the top 

three drugs predicted as highly effective together with a drug predicted as lowly effective 

(negative control), and performed in vitro tests on the 4 cell lines. As in the case of the public 

datasets, the sensitivity scores estimated by Dr.Paso were highly concordant with the 

observed in vitro responses. To further facilitate research, we offer Dr.Paso through a Web-

based interface that allows users to predict drug sensitivity scores for their own samples and 

expression data. The following sections will describe in detail these research phases, which 

are outlined in Figure 1B.  
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Figure 1. Dr.Paso: Overview of problem, application scenario and methodologies 

investigated. A. Outline of the general problem and application scenarios envisioned for the 

application of Dr.Paso. B. Workflow of the discovery phase, model generation and validation 

steps reported in this article.   

 

Results 

 

Hubs in a pan-cancer transcriptomic network display drug sensitivity predictive 

potential 

 

Motivated by evidence indicating the drug sensitivity prediction power of gene expression 

profiles (Barretina et al., 2012; Iorio et al., 2016a), we investigated the predictive potential 
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of such data in the context of a pan-cancer transcriptomic correlation network. Our 

hypothesis was that genes highly connected within such networks, i.e., hubs, may be 

reflective of molecular activity across biological processes and tissue sites.  To test this 

hypothesis, we analyzed the CCLE gene expression dataset, which was derived from 1037 

(untreated) cell lines representing different cancer types in 18 tissue sites. To reduce 

network complexity while aiming at preserving potentially relevant information across all 

samples, we selected genes with highly variable expression pattern across cell lines (i.e., 

177 genes with standard deviation of expression values across cell lines located above the 

99th percentile). Using the pan-cancer expression profiles from these genes, we calculated 

all the between-gene (Pearson) correlation values and merged them into a fully-connected 

weighted network (Figure 2A), which included 177 nodes and more than 15K edges 

(correlations). 

 

Figure 2. Hubs in a pan-cancer transcriptomic network display drug sensitivity predictive 

potential. A. Snapshot of a (fully connected) weighted gene correlation network. Nodes and 
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edges representing genes and their correlations respectively. Network hubs and non-hubs 

are colored in red and white respectively. A zoom-in view of examples of hub and non-hub 

nodes. The color intensity of edges reflect the expression correlations between such nodes 

and others in the network. B. Graphical summary of (non-redundant) Gene Ontology terms 

statistically over-represented in the list of 47 hub genes. Terms are projected onto a 

semantic similarity space with REViGO (Supek et al., 2011), in which similar terms are 

positioned closer to each other. Each term is represented by a bubble with color and size 

indicating the term’s level of statistical enrichment in our list and frequency in the GO 

database respectively. C. Comparison of hubs vs. non-hubs on the basis of their individual 

associations with drug sensitivity. The boxplot depicts the mean correlation between the 

gene expression and the AA values across CCLE cell lines. Box notches indicate 95% 

confidence interval for each median value. D. Cell line-drug experiments are visualized in 

terms of the 47-gene expression data. The panel above the gene expression heatmap 

illustrates the AA values observed for selected sets of cancer cell lines (grouped by tissue 

site) and two compound examples (Erlotinib and Paclitaxel) for illustration purposes.  

   

 

We identified network hubs by extracting those genes with statistically detectable 

connectivity scores (i.e., weighted degree values) using WiPer (Azuaje, 2014). This resulted 

in 47 hubs (WiPer adjusted-P < 0.05, online resource and Figure S1), one of which (ANAX1) 

is illustrated in Figure 2A together with an example of a non-hub node (HCLS1). The 47 hub 

genes are significantly implicated in a wide diversity of biological processes and pathways 

of relevance to cancer progression and therapeutic response. They include cell proliferation, 

death, migration, adhesion, angiogenesis, kinase signaling and the extracellular matrix 

(Figures 2B and S1).  
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Next, we analyzed drug sensitivity data (activity areas, AA) associated with these cell lines 

(11670 cell line-drug experiments) available in the CCLE. The AA, which is inversely 

correlated with the IC50 (the drug concentration at which an inhibition of 50% of cell viability 

is achieved), was defined by the CCLE to approximate the efficacy and potency of a drug 

simultaneously (Barretina et al., 2012). We stress that such data were not considered during 

the network generation and analysis steps. For each gene in the network, we calculated the 

correlation between gene expression and AA across all available (cell line-drug) data, and 

observed that: a. hubs tend to be anti-correlated with drug sensitivity, and b. such an anti-

correlation is significantly stronger than in the case of non-hub genes. Moreover, such an 

association is considerably different to that displayed by non-hubs (Figure 2C). The 47 hub 

genes did not include previously reported markers of drug sensitivity: ALK, BRAF, ERBB2, 

EGFR, HGF, NQ01, MDM2, MET and VEGFRs (Barretina et al., 2012; Safikhani, 2017). To 

further demonstrate the potential relevance of these genes, we clustered the samples 

(available cell line-drug experiment data) based on their 47-gene (baseline) expression 

profiles and verified that these genes could, in principle, segregate samples according to 

cancer types (tissue sites) and highlight differential drug responses across samples (Figure 

2D). Using an alternative visualization and (unsupervised) clustering technique (Figure S2), 

we verified the potential of these 47 genes’ expression data to segregate samples in terms 

of their drug sensitivity.  Overall, these results suggest that our 47 hubs represented a 

potentially novel, biologically-meaningful gene set with drug sensitivity prediction potential. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237727doi: bioRxiv preprint 

https://doi.org/10.1101/237727
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Predicting drug sensitivity based on the network-derived 47-gene expression profiles 

 

We used the expression values from the 47 network hubs and drug sensitivity data (n = 

10981, cell line-drug experiments, i.e., samples, with full expression and AA data available) 

to generate a drug sensitivity prediction model based on multiple linear regression 

(Methods). For a given sample (47-gene expression profile) and drug (identity of one of the 

24 CCLE drugs), the model estimates a sensitivity score that approximates the AA values 

observed in the CCLE. For model training and testing, we used separate datasets 

respectively through a 10-fold cross-validation sampling procedure. Prediction capability 

was evaluated with multiple performance indicators that compare the predicted and 

observed sensitivity values: Pearson, Spearman and Kendall correlations, root-mean-

squared errors (RMSE) and a concordance index (Figure 3).  
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Figure 3. Alternative views of our model’s predictive capacity on the CCLE dataset using 

alternative performance indicators. A. Density plot of predicted vs. actual sensitivity values 

(n=10981). Pearson, Spearman and Kendall, correlations coefficients: 0.86, 0.73 and 0.54 

respectively.  B. Plot of root-mean-square errors (RMSE) observed for each drug. C. 

Concordance indices between the predicted and the observed AA values for a selected set 

of drugs.  An index value = 0.5 is the expected value from random prediction. Error bars: 

95% confidence interval (CI) of the estimated concordance index. 
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Figures 3A and S3 show that the predicted and actual AA values are positively correlated 

(Pearson, Spearman and Kendall, correlations coefficients: 0.86, 0.73 and 0.54 

respectively), which corroborates the predictive potential of our model. Such performance 

measures are comparable to, and in many cases outperform, those obtained from other 

published models trained and cross-validated on the same dataset. For example, a 

comprehensive analysis of different machine learning techniques (Jang et al., 2014), e.g., 

multiple-linear regression techniques, support vector machines and random forests, 

displayed (median) Pearson correlation coefficients falling into the range from 0.4 to 0.6, 

including top-performing models generated with gene expression data or their combination 

with other data types  (Jang et al., 2014).  

 

Figure 3B offers an alternative assessment of our model’s prediction capability based on the 

RMSE obtained for each CCLE drug. This plot offers two key insights: 1. There are drugs 

for which our model can make relatively very accurate sensitivity predictions (e.g., Nutlin-3, 

an inhibitor of p53-Mdm2 complexes, and Sorafenib, a muti-kinase inhibitor)  in comparison 

to other drugs (e.g., PD-0325901, a MEK inhibitor, and Paclitaxel, a mitotic inhibitor). 2. Our 

model’s (drug-specific) prediction performance is competitive in relation to other published 

approaches trained and tested on the same dataset. For example, our model made 

predictions with a median RMSE = 0.70 (range: [0.47, 1.40]), which compares well with top-

performing machine learning models that have reported median and minimum RMSE values 

above 0.80 and 0.65 respectively (Neto et al., 2014). For drugs such as Sorafenib, Nutlin-3 

and PHA-665752, Dr.Paso tends to outperform models based on elastic-net and other 

variations of multiple-linear regression (Neto et al., 2014). Conversely, such models tend to 

offer relatively more accurate predictions for drugs such as Irinotecan and PD-0325901. 

These results corroborate previous findings about the lack of generalized solutions for highly 
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accurately predicting sensitivity across all types of drugs (Fersini et al., 2014; Haverty et al., 

2016; Jang et al., 2014). 

 

To provide further insights into our model’s prediction capacity, Figure 3C displays the 

concordance index for a selected set of drugs. For a random pair of samples, the 

concordance index estimates the probability of correctly predicting the relative sensitivities 

of such samples (e.g., sample X is more sensitive than sample Y) in relation to the actual 

observed relative sensitivities. Perfect and random prediction performances are indicated 

by concordance indices equal to 1 and 0.5 respectively. Our model reported concordance 

indices with median values above 0.5, which compares favorably with the results obtained 

by (Papillon-Cavanagh et al., 2013) with different alternative models, including multiple 

linear regression with elastic net, and applied to the same dataset. For instance, Papillon-

Cavanagh et al. obtained concordance indices lower than 0.7, including predictions with 

concordance indices falling below 0.5 for different drugs (e.g., Nutlin-3 and TAE684). These 

results suggest that our model can accurately predict drug sensitivity and provide, in relation 

to previously published models, promising predictive capability that we further investigated 

as follows. 

 

Model evaluation on an independent dataset   

 

We tested our 47-gene sensitivity prediction model on the 2016 release of the GDSC dataset 

(Iorio et al., 2016a). To allow our CCLE-derived model to make predictions on this dataset, 

we focused on the 16 drugs that are found in both datasets. First, as in the case of the CCLE 

data, we show that the (baseline) expression profiles of the 47 genes can, in principle, 

cluster the GDSC samples according to cancer types (tissue sites) and highlight differential 
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drug responses across samples (Figure 4A) in an unsupervised manner. Note that in the 

GDSC dataset drug sensitivity is represented as the logarithm of IC50 (LNIC50) values (AA 

values were not provided in this dataset). Using an alternative visualization and 

(unsupervised) clustering technique (Figure S2), we verified the potential of these 47 genes’ 

expression data to segregate GDSC cell line-drug samples in terms of drug sensitivity.   

 

Next, we applied our (CCLE-derived) prediction model to the GDSC data and made 

sensitivity predictions (AA values) for all the samples (cell line-drug experiments) available 

(Methods). The resulting predictions were then compared with the actual sensitivity values 

in the GDSC dataset (Figures 4B and S3). The predicted (AA) and actual sensitivity 

(LNIC50) values for these samples (n = 9984) are anti-correlated (Pearson, Spearman and 

Kendall, correlations coefficients: -0.72, -0.71 and -0.50 respectively). This indicates that our 

model is, in general, estimating sensitivity values that are in agreement with those observed 

in the test dataset, i.e., higher predictive agreement is reached when high AA (prediction) 

relates to a low LNIC50 (actual) values, and vice versa.  
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Figure 4. Alternative views of our model’s prediction capacity on the GDSC dataset. A.   Cell 

line-drug experiments are visualized in terms of the 47-gene expression data. The panel 

above the gene expression heatmap illustrates the LNIC50 (μM) values observed for 

selected sets of cancer cell lines (grouped by tissue site) and two compounds (Erlotinib and 

Paclitaxel). B. Application of CCLE-derived model to the GDSC data. Density plot of 

predicted (AA) vs. actual sensitivity (LNIC50) values for drugs that are common between 

the CCLE and GDSC (n = 9984). Pearson, Spearman and Kendall, correlations coefficients: 

-0.72, -0.71 and -0.50 respectively.   C. Concordance indices between the predicted and the 

observed sensitivity values. An index value = 0.5 is the expected value from random 

prediction. Indices are corrected to account for the notion that higher concordance is 
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reached when high AA (prediction) corresponds to a low LNIC50 (observed) values, and 

vice versa. Error bars: 95% confidence interval (CI) of the estimated concordance index. 

 

Figure 4C summarizes the assessment of our model’s predictive performance on the GDSC 

dataset based on drug-specific concordance indices, as done for the CCLE dataset (Figure 

3). Concordance indices > 0.5 were obtained for twelve out of the 16 drugs, and (among 

those 12 drugs) concordance estimates for 9 drugs can be reliably interpreted as larger than 

0.5 (95% confidence intervals of the estimated indices). The predictive performances for 

several drugs (e.g., Nilotinib, Nutlin-3 and Sorafenib) are very similar to those estimated in 

the CCLE dataset. As in the CCLE dataset, the sensitivity observed in samples treated with 

AZD0530 and Lapatinib proved to be more difficult to accurately to predict. Although 

concordance indices > 0.5 were obtained for Irinotecan and Paclitaxel predictions, this 

represented a reduction of prediction performance in comparison to the predictions made 

for CCLE samples. The prediction performance of 17-AAG, PD-0325901 and TAE684 were 

also diminished. A previous study, which also used the GDSC dataset, consistently reported 

concordance indices < 0.5 for Sorafenib (Papillon-Cavanagh et al., 2013). Moreover, in 

comparison to that study’s models, our model reported comparable or higher concordance 

indices for other drugs, such as Nilotinib and PF-2341066 (Crizotinib). Conversely, such a 

previous study reported better prediction performances for 17-AAG, Lapatinib and PD-

0325901. Such comparisons should, nevertheless, be interpreted with caution as Papillon-

Cavanagh et al.’s concordance indices were obtained with an older version of the GDSC 

dataset, which was used for both model training and testing. Overall, our findings further 

corroborate the predictive potential of our model, and highlight strengths and challenges in 

a drug-specific context. 
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Independent in vitro validation on several cell lines and compounds 

 

To further validate our model’s predictive capability on independently-generated data, we 

generated predictions and performed in vitro tests for several GBM cell lines and 

compounds. First, we measured the (baseline) expression profiles of 4 GBM cell lines that 

have been well-characterized in our lab: U87, NCH644, NCH601 and NCH421k (Methods). 

While the CCLE and GDSC datasets included U87, the latter three are stem-like GBM cell 

lines that were not included in the previous model training and test phases.  

 

Although genome-wide expression (microarray) data can appropriately cluster multiple 

samples (biological replicates) from such cell lines, we found that the expression profiles of 

our model’s 47 genes are sufficient to achieve the same biologically-meaningful segregation 

while offering a clearer, fine-grained view of their differences (Figure S4). We also verified 

the platform-independent replicability of these results with another 47-gene expression 

dataset derived from 3 of these cell lines measured with qPCR (Figure S4). These results 

corroborate the biologically-relevant discriminatory capacity and reproducibility of our 

model’s 47-gene expression patterns. 

 

Next, our model predicted the sensitivity of our 4 GBM cell lines (18 samples in total, 

Methods) against the 24 drugs included in our model. The 47-gene (microarray) expression 

profiles of these cells were input to the prediction model (6 U87, 3 NCH644, 3 NCH601 and 

6 NCH421k gene expression profiles). Figure 5A summarizes the 432 predicted sensitivity 

(AA) values according to drug (18 predictions per drug). To investigate such predictions in 

vitro, we focused on the top-3 drugs associated with the highest predicted sensitivities 

(Paclitaxel, Panobinostat and 17-AAG), as well as on Erlotinib, which was predicted as a 
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relatively ineffective compound. These drugs correspond to four different drug classes: 

cytotoxic, histone deacetylase inhibitor, antibiotic derivative and an EGFR inhibitor 

respectively. In the case of Erlotinib, the predictions are consistent with the fact that the 

tested cells do not (NCH644, NCH421k) or very lowly (U87, NCH601) express EGFR. The 

Figures 5B and S5 show a more focused view of the predicted sensitivity values for our 

samples against these 4 drugs. 

 

Figure 5. Drug sensitivity predictions and in vitro validation for different glioblastoma cell 

lines and compounds. A. Sensitivity predictions (horizontal axis) for 24 drugs (vertical axis). 

Box plot summarizes the (432) predicted sensitivity (AA, as defined in the prediction model) 
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values for 4 glioblastoma cell lines: U87, NCH644, NCH601 and NCH421k. The 47-gene 

expression profiles of multiple biological replicates (18 samples in total) were input to the 

prediction model (6 U87, 3 NCH644, 3 NCH601 and 6 NCH421k samples). B. Alternative 

boxplot summary of the prediction results for 4 drugs (Erlotinib, 17-AAG, Panobinostat and 

Paclitaxel) and the different cell lines.  These drugs, which were selected for subsequent in 

vitro tests, were predicted to be relatively highly (17-AAG, Panobinostat and Paclitaxel) and 

lowly (Erlotinib) effective against the 4 cell lines. C. Summary of in vitro test results. The 

selected drugs were tested on each cell line in triplicates, relative viability (vs. vehicle-treated 

samples) was measured for 8 drug concentration values (µM) and IC50 values were 

estimated for each drug-sample experiment. The boxplot shows the resulting LNIC50 values 

obtained. Drug response data for NCH601 samples and Erlotinib are not available, and for 

NCH644 samples and Erlotinib not shown because of lack of effect. Boxes show the median, 

the 25th and 75th percentiles (lower and upper hinges), and (1.5 x) inter-quartile ranges.   

 

We tested the selected drugs on each cell line, in triplicates, and measured their response 

based on their relative viability (i.e., normalized to vehicle-treated samples) for 8 drug 

concentration values (µM). For each treated cell line, we estimated the IC50 values and 

compared them on the basis of cell line and drug groups. Figure 5C summarizes the results 

with boxplots showing the LNIC50 values. Drug response data for NCH601 samples and 

Erlotinib were not available (not tested), and data for NCH644 samples and Erlotinib are not 

shown due to lack of effect. Figure S6 includes all the drug response curves and additional 

details.  

 

As predicted by our model, all our cell lines exhibited the lowest sensitivity, i.e., the highest 

IC50 values, when treated with Erlotinib (median LNIC50 = 0.74 µM). U87 was the least 
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sensitive cell line in relation to all 4 drugs (median LNIC50 = -1.27 µM across all sample-

drug experiments), in full agreement with the predictions. Our model consistently predicted 

NCH601 as the most sensitive cell line against all drugs (Figures S6). Our in vitro tests 

showed that NCH421k tended to be more sensitive than NCH601 (median logIC50: -1.64 

vs. -1.54 µM). Despite this particular discrepancy, we found global agreement between 

predicted and observed sensitivities on the basis of cell type (Spearman correlation between 

the median sensitivity values, predicted (AA) vs. observed (LNIC50) in the 4 cell line groups: 

-0.40).  

 

In accordance with the predictions, Paclitaxel was the most effective drug across all treated 

samples (median LNIC50 = -2.35 µM). Lesser agreement between predicted and observed 

sensitivities were obtained in the case of the remaining two drugs. For all samples, our 

model predicted overall higher sensitivity for Panobinostat than for 17-AAG (Figure 5B). In 

vitro, relatively similar responses were obtained for Panobinostat (median LNIC50 = -1.29) 

and 17-AAG (median LNIC50 = -1.33 µM), though a larger variability of sensitivity was 

observed in the former case. Nevertheless, predictions and in vitro tests concordantly 

showed that NCH421k and U87 samples treated with Panobinostat were consistently more 

sensitive than all samples treated with 17-AAG (Figures 5C and S6). Taken together, these 

results provide further evidence of the predictive capacity of our model. The resulting 

system, Dr.Paso, will enable the community to conduct further investigations.  

 

Dr.Paso online 

 

To share our model and enable further research, we developed a web-accessible tool that 

allows researchers to upload their own gene expression data, make sensitivity predictions 
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and visualize results in a few steps (Figure 6). The Help section of the website offers a 

guided application example using CCLE data.  Users provide their input data as a text file 

containing the (baseline) 47-gene expression for different samples, and then can select all 

or specific drugs for making predictions (Figure 6A). Dataset re-scaling (feature 

standardization with means and standard deviations equal to 0 and 1 respectively) can be 

applied to harmonize the input dataset with the feature representation used in our model.  

Prediction results are presented with graphical displays and tables in different panels. 

Moreover, users can control the amount and focus of information at the drug and sample 

levels (Figure 6B to 6D). Results can be saved in different graphical and tabular file formats. 

The tool is freely available at www.drpaso.lu.  
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Figure 6. Dr.Paso online: a Web-based tool for predicting drug sensitivity and enabling 

further research. Screenshots of: A. Main page with user input and analysis options; B: 

Global view of predicted sensitivity values for a given input gene expression dataset and all 

drugs available in the CCLE; C: Alternative view of predictions focused on a specific input 

sample and all drugs; D. Tabular-based view of results. All views can be selected and 

downloaded according to user requirements. 

  

Discussion 

 

The development of computational models for estimating drug sensitivity based on the 

analysis of large and diverse collections of cancer cell lines is important to support pre-

clinical research, and provides a basis for future clinically-oriented applications.  Access to 

such models and their user-friendly application will enable new research across oncology 

domains and additional computational investigations. Our Drug Response Prediction and 

Analysis System for Oncology research, Dr.Paso, addresses such needs through the 

integration of network-based and statistical modeling approaches. For a given drug, our 

system predicts an anti-cancer sensitivity score based on the gene expression profile of 47 

genes, which were shown to represent hubs in a pan-cancer transcriptomic network and to 

be prominently implicated in a variety of cancer-relevant biological processes. Dr.Paso was 

generated and evaluated on independent datasets, including our own in vitro validations of 

several cell line-compound combinations, and showed promising results in terms of 

predictive accuracy and concordance. Future research can apply Dr.Paso to 47-gene 

expression signatures from patient samples to investigate its potential relevance in the 

clinical setting. 
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Our study and other previous research highlight the challenges faced and complementary 

predictive capacity exhibited by different modeling approaches (Costello et al., 2014; 

Papillon-Cavanagh et al., 2013). No single model can consistently make accurate 

predictions for all drugs and cell lines available in the CCLE and GDSC datasets, including 

models that include genomic data (Gupta et al., 2016; Jang et al., 2014; Menden et al., 

2013). Different models can offer more, or less, accurate predictions for certain drugs, and 

there is no conclusive evidence about the dominance of a particular modeling technique 

(Azuaje, 2017). Such limitations may be partially explained by a lack of sufficient molecular 

information to account for the complexity of cell lines and their drug responses, choice of 

surrogate measures of drug sensitivity and inconsistencies of sensitivity data between the 

CCLE and GDSC (Haverty et al., 2016; Investigators, 2015; Safikhani, 2017). The latter may 

also partly explain the overall degradation of predictive performance when training models 

on the CCLE and testing them on the GDSC. 

 

Dr.Paso generates sensitivity scores based on a multiple linear regression model. We, as 

others elsewhere, have shown that relatively less complex regression models can offer 

comparable, and in some cases better, prediction performance than those models based on 

larger sets of learning parameters. Dr.Paso’s predictive capacity is grounded in an unbiased 

network-guided selection of model inputs (47 genes) prior to the fitting of the regression 

model. Such a discovery process was shown to be both statistically- and biologically-

meaningful. Apart from our multiple linear regression, we applied other regression 

techniques, e.g., support vector machines and neural networks, but decided to focus our 

investigation on a model with relatively lower complexity. Collectively, Dr.Paso is based on 

a biomarker discovery and prediction-making methodology that is both biologically-driven 

and statistically-powerful. New investigations, motivated by new datasets and clinically-
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oriented questions, are certainly envisaged and are expected to include new biomarker 

discovery and prediction modeling strategies.  

 

Notwithstanding recent advances in the field, there is a need to make executable models 

accessible to the research community to enable new investigations, including new 

applications and comparative analyses among different techniques. Here we offer Dr.Paso 

as a publicly-accessible online tool.  While further investigations are needed, our study offers 

further evidence of the potential of computational models for predicting anti-cancer 

sensitivity. In the short-term, our findings will enable new pre-clinical research applications 

and may provide a new perspective for bringing such models closer to the clinic. 

 

Methods 

 

Identification of 47 genes with drug sensitivity predictive potential 

 

The published pre-processed CCLE (microarray) gene expression and drug sensitivity 

datasets were obtained from the CCLE website. In the gene expression dataset, we focused 

on genes with symbols, calculated their standard deviation (SD) across all samples (1037) 

and ranked them based on their SD. For further analyses, we selected the most variable 

genes: 177 genes with SD values above the 99th percentile of the SD value distribution. We 

computed the gene-gene (Pearson) correlation coefficients between all the 177 genes and 

merged them into a single gene expression correlation network. We applied WiPer (Azuaje, 

2014) to this fully-connected weighted network to detect highly connected nodes (hub 

genes). For each network node, WiPer computes the weighted degree and a corresponding 

P-value to assess the significance of the observed values, and adjusts it for multiple testing. 
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Genes exhibiting (Bonferroni adjusted) P< 0.05 were considered hubs (47 genes). Drug 

sensitivity information was not used to select hubs. The resulting 47 genes were examined 

with different Gene Ontology (GO) and biological pathway analysis tools (below). For each 

hub gene, we estimated the correlation of its expression profile (across all samples) with the 

activity area (AA) values available from all sample-drug combinations. The AA was 

formulated by the CCLE to approximate the efficacy and potency of a drug simultaneously 

and is inversely correlated with the IC50 (Barretina et al., 2012). We compared hubs and 

non-hubs on the basis of such individual expression-sensitivity correlations. Visualizations 

and unsupervised clustering of hubs and cell lines described by hub expression values were 

implemented with different open-source tools (below).  

 

Training and testing of prediction model 

 

We represented each CCLE sample (cell line-drug combination) with the expression values 

of the 47 hub genes and their corresponding AA values. We focused on samples with 

complete expression and AA data. The resulting set of 10981 samples was used for training 

and testing regression models. The dataset was standardized by re-scaling each gene so 

that each gene has mean and standard deviation of 0 and 1 respectively. For each model, 

we implemented 10-fold cross-validation (CV) for separating training from testing and for 

assessing prediction performance. We also used leave-one-out CV (LOOCV) and similar 

prediction performance results were obtained. Diverse regression techniques with different 

levels of complexity were investigated. We focused on a multiple linear regression model 

with Ridge regularization (Ridge parameter = 1E-08) because its performance (regression 

errors) was better than or comparable to those obtained with other techniques, such as 

support vector machines and k-nearest neighbors, and because of its interpretability in 
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comparison to relatively more complex models. The accuracy of model predictions was 

assessed by measuring their (Pearson, Spearman and Kendall) correlations with the 

observed values in the CCLE, the root-mean-squared error (RMSE) and a concordance 

index. The latter approximates, for a random pair of samples, the probability of correctly 

predicting which sample is more (or less) sensitivity than the other (Harrell et al., 1996). A 

concordance index equal to 0.5 indicates that the model’s performance is comparable to 

that from a random predictor, while an index equal to 1 represents the perfect predictor. 

 

Independent evaluation on the GDSC dataset 

 

Raw expression data were obtained from the ArrayExpress database (accession number E-

MTAB-3610) and drug sensitivity (natural logarithm of the IC50 in μM, LNIC50) were 

downloaded from GDSC database (http://www.cancerrxgene.org, release-5.0). We 

normalized raw expression data with the RMA function of R/oligo package (Carvalho and 

Irizarry, 2010). Then we averaged the resulting log2 probe-set intensities to estimate the 

expression of each gene. Associations between probe-sets and gene symbols were 

obtained through the hgu219.db annotation package (Carlson, 2016).  For each cell line-

drug experiment available (sample), we retrieved the expression data for the 47 genes used 

as inputs to our prediction model and retrieved the corresponding drug sensitivity. We 

focused on the 16 drugs found in both this and the CCLE dataset. This resulted in a dataset 

consisting of 9984 samples, each one represented by 47 gene expression values and one 

LNIC50 value. We standardized expression data as in the case of the CCLE dataset, 

reformatted the file and input it to the CCLE-derived prediction model (further information 

below). For each sample in the dataset, the model predicted a drug sensitivity score 

(approximation of AA). We compared predicted vs. observed values using the indicators 
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applied to the CCLE dataset analysis. We adapted the concordance index to account for the 

fact that AA and LNIC50 are expected to be anti-correlated, i.e., for a given sample, 

concordance is achieved when a high (predicted) AA value corresponds to a low (observed) 

LNIC50 value, and vice versa. 

 

GBM cell lines and expression data for in vitro validations  

 

U87 cells were obtained from the ATCC (Rockville, USA) and were cultured as monolayers 

in DMEM containing 10% FBS, 2 mM L-Glutamine and 100 U/ml Pen-Strep (Lonza). GBM 

stem-like cultures (NCH421k, NCH601 and NCH644) were kindly provided by Christel 

Herold-Mende (University of Heidelberg, Germany) and were cultured as 3D non-adherent 

spheres as previously described (Abdul Rahim et al., 2017; Sanzey et al., 2015). 

 

We measured the (baseline) gene expression of 4 GBM cell lines using microarrays (6 U87, 

6 NCH421k, 3 NCH644 and 3 NCH601 biological replicates), as reported in (Sanzey et al., 

2015). For our model’s 47 genes, we also replicated gene expression measurements using 

qPCR for U87, NCH421k and NCH644 cell lines (each one in triplicate). RNA was extracted 

from 106 cells using TRI Reagent® (Sigma-Aldrich). RNA isolated in the aqueous phase with 

a Phase lock gel-Heavy (5 Prime) was precipitated with 100% isopropanol and purified using 

RNeasy® Mini kit combined with an on-column DNase treatment (Qiagen). For the qPCR, 

RNA was reverse-transcribed into cDNA using Superscript III™ (Invitrogen) following 

manufacturer’s instructions. qPCR was performed in 96-well plates using SYBR® Green 

Master Mix (Bio-Rad) and CFX-96 thermal cycler (Bio-Rad). Normalized gene expression 

levels were calculated using the CFX manager 3.1 software (Bio-Rad) via the delta-delta Cq 

method with “Hspcb, Rps13, 18sRNA” as reference genes and taking into account the 
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calculated amplification efficiency for each primers pair. We provide a MIQE-compliance 

checklist table as a supplemental item. 

 

Drug sensitivity predictions and in vitro validation on GBM cell lines 

 

The gene (microarray) expression dataset was standardized as above. Each sample, 

represented by a 47-gene (microarray) expression profile, was input to the prediction model 

and a drug sensitivity value was predicted for each one of them (18 samples in total), for 

each of the 24 drugs included in the model. Predicted values were compared between them 

to determine their relative differences in terms of cell lines and drugs. Next, these predictions 

were compared to the in vitro sensitivity values that were obtained as follows.  We tested 4 

drugs: Paclitaxel (Sigma-Aldrich), Panobinostat, 17-AAG and Erlotinib (Selleck Chemicals) 

independently on the selected 4 GBM cell lines with 8 drug concentrations. For each cell 

line and dose, we performed treatment experiments in triplicate (i.e., 3 treated biological 

replicates / dose). As a measurement of drug sensitivity, WST-1 (Sigma-Aldrich) cell viability 

assays were implemented. U87, NCH421k, NCH644 and NCH601 cell lines were seeded 

into 96-well plates at densities of 1,500, 5,000, 4,000, 6,000 cells per well, in appropriate 

culture medium (Sanzey et al., 2015). Cells were incubated, 24h hours after seeding, with 

the 8 different drug concentrations ranging from 10µM to 6.1 x 10-4 µM, with a final volume 

of DMSO not exceeding 0.1% and each condition was tested with 6 technical replicates. 

After 72h incubation, WST-1 reagent was added in medium to a final concentration of 10%. 

Adherent cell line (U87) was incubated at 37°C for 2 hours and 3D sphere stem-like cell 

lines (NCH421k, NCH644 and NCH601) were incubated at 37°C for 6-8 hours. Absorbance 

was measured against a background control at 450nm on a FLUOstar OPTIMA Microplate 

Reader (BMG LABTECH). Using the normalized viability measurements, we generated drug 
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dose-response curves and estimated IC50 values (μM) for each sample-drug combination. 

The dose-response curves were fitted with a four-parameter logistic regression model, 

whose parameters were calculated using GraphPad Prism 7 (GraphPad). 

 

Software and Dr.Paso’s Web-based tool 

 

We used the R statistical environment for data analysis and visualization (www.r-

project.org), packages: ggplot2, pheatmap, MASS and SNFtool (Wang et al., 2014). 

Concordance indexes (Harrell et al., 1996) were calculated based on rescaled Kendall rank 

correlation coefficients, which were also used to estimate confidence intervals (by Fisher’s 

transformation). For network analyses, we applied Cytoscape for visualization (Shannon et 

al., 2003), MINE for similarity exploration (Reshef et al., 2011) and WiPer for network hub 

identification (Azuaje, 2014).  REViGO (Supek et al., 2011) and g:Profiler (Reimand et al., 

2007) were applied for biological process and pathway enrichment analyses. The Weka 

workbench was used for building and testing regression models (Frank, 2016; Hall, 2009), 

and GraphPad Prism (www.graphpad.com) for analyzing drug response curves. We provide 

researchers with a Web-based application to enable them to predict anticancer drug 

sensitivity using their own (47-gene) transcriptomic data. The tool is based on the R/Shiny 

package (https://shiny.rstudio.com/). Although this package offers useful functionality for 

generating an interactive user interface, we customized available code using the R/Shinyjs 

package (http://deanattali.com/shinyjs/). Users can input pre-processed expression 

datasets. Alternatively, our application can also implement z-score rescaling of the input 

data. Figures containing the prediction results can be downloaded and stored as either png 

or jpeg files. Results are also shown as tables with sample-specific predictions (in rows) with 

their corresponding drugs (in columns), and may be stored as either csv or tsv files.  
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Figure S1. Statistical enrichment analysis of biological processes and pathways in 
the set of 47 network hubs. Related to Figure 2B. An alternative visualization of functional 
enrichments using G:Profiler (Reimand et al., 2007). As shown in Figure 2B, our set of 47 
hub genes (columns) is significantly associated (at corrected P-value = 0.05)  with a diversity 
of biological processes and pathways (rows). Each colored cell represents the association 
between an individual gene and a functional annotation. Colors are used to specify the 
evidence type of the observed association: : Inferred from experiment, : Direct assay 
/ Mutant phenotype,  Traceable author,  : Electronic annotation, additional information 
at http://biit.cs.ut.ee/gprofiler. 
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Figure S2. Alternative visualizations and unsupervised clustering of CCLE and GDSC 
cell lines on the basis of their 47-gene profiles. Related to Figures 2D and 4A. Spectral 
clustering analysis was applied using the SNFtool (Wang et al., 2014) to independently 
explore the potential of the 47 genes’ expression data to segregate (cell line-drug 
experiment) samples. A. CCLE and B. GDSC results. In A. and B., rows and columns in 
each heatmap represent samples and genes respectively, and color represents gene 
expression intensity. To facilitate visualization, clustering results for different numbers of 
clusters (K) are provided as independent plots. Note that the order of the rows in each 
clustering (plot) is not preserved. In each plot, additional columns (right side) representing 
the drug sensitivity of the samples against Erlotinib ad Paclitaxel are illustrated. 
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Figure S3. Predicted vs. actual sensitivity values in the CCLE and GDSC datasets 
Related to Figures 3A and 4B. Alternative visualization to those shown in Figure 3A. A. 
CCLE plot (n=10981). B. GDSC plot (n=9984). 
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Figure S4. The 47-gene signature distinguishes cell types and is reproducible. 
Related to section: “Independent in vitro validation on several cell lines and 
compounds”. Gene expression of 47 genes in 3 GBM cell lines using microarrays and 
qPCR. Analysis peformed to verify the robustness and platform-independent replicability of 
the 47-gene expression data and its capacitiy to distinguish between cell lines.  
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Figure S5. Boxplot summary of prediction results for 4 drugs (Erlotinib, 17-AAG, 
Panobinostat and Paclitaxel) and 4 GBM cell lines. Related to Figure 5B. Ech cell line 
type comprises multiple biological replicates (18 samples in total): 6 U87, 3 NCH644, 3 
NCH601 and 6 NCH421k samples. 
 
 
 

 
Figure S6. Drug response curves for the 4 drugs tested on the 4 GBM cell lines. 
Related to Figure 5C. Drugs were tested on each cell line in triplicates, and relative viability 
(vs. vehicle-treated samples) was measured for 8 drug concentration values (shown here 
as Log[µM]).  
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ITEM TO CHECK IMPORTANCE CHECKLIST

EXPERIMENTAL DESIGN

Definition of experimental and control  groups E U87, NCH421k, NCH644 cell lines                                                  

Number within each group E n=3

Assay carried out by core lab or investigator's lab? D

Acknowledgement of authors' contributions D

SAMPLE

Description E U87, NCH421k, NCH644 cell lines cf.  Sanzey M et al. PLoS One 2015 article.                             

     Volume/mass of sample processed D 1 x 10
6
 cells per sample

    Microdissection or macrodissection E N/A

Processing procedure E Cells were washed and counted in PBS  (without Ca++ and Mg++). 1 x 106 cells were resuspended in TRI Reagent®, snap-frozen and then stored at -80°C

     If frozen - how and how quickly? E Samples were snap-frozen in TRI Reagent® and stored at -80°C

     If fixed - with what, how quickly? E N/A

Sample storage conditions and duration (especially for FFPE samples) E Samples were stored in TRI Reagent® at -80°C until RNA extraction

NUCLEIC ACID EXTRACTION

Procedure and/or instrumentation E

Total RNA was extracted from 1 x 10
6

cells with a TRI Reagent® (Sigma-Aldrich) isolation protocol. Aqueous phase was isolated with Phase lock gel-Heavy (5 Prime, Gaithersburg, MD). Total

RNA was precipitated with 100% isopropanol and purified with a RNeasy® Mini kit combined with an on-column DNase treatment following the manufacturer’s instructions(Qiagen, Valencia,

CA).

     Name of kit and details of any modifications E TRI Reagent® - RNeasy® Mini kit  combined with an on-column DNase treatment following the manufacturer’s instructions.

     Source of additional reagents used D Chloroform (Merck); Ispropanol (Merk); Ethanol (Merck); Nuclease free water (Life Technologies)

Details of DNase or RNAse treatment E RNeasy® Mini kit  combined with an on-column DNase treatment following the manufacturer’s instructions.

Contamination assessment (DNA or RNA) E  DNase treatement + Bioanalyzer + primers flanking intron + Negative controle (RT & qPCR)

Nucleic acid quantification E Nanodrop

     Instrument and method E Nanodrop

     Purity (A260/A280) D All RNA sample :   Purity (A260/A280) ≈ 2 

     Yield D N/A

RNA integrity method/instrument E Bioanalyzer

    RIN/RQI or Cq of 3' and 5' transcripts E All RNA sample :   RIN ≥ 9

    Electrophoresis traces D N/A

 Inhibition testing (Cq dilutions, spike or other) E The standard curve perfomed to check primers efficiency has been considerred sufficient to rule out the presence of inhibitors of reverse transcrition activity or PCR.

REVERSE TRANSCRIPTION

Complete reaction conditions E

1µg of RNA were reverse transcribed into cDNA using the SuperScript III (Invitrogen, Carlsbad, CA) reverse transcriptase with the following protocol: RNAs were mixed with random primers, 

oligo (dT)12-18 and dNTPs in a total volume of 13μl. Samples were heated to 65°C for 5 min and incubated on ice for at least 1min. Then the 5X RT buffer, DTT, RNaseOUT and SuperScript 

III was added to a total volume of 20μl. RT was allowed at 50°C for 60 min. and was followed by enzyme inactivation at 70°C for 15 min. Final concentrations were: 100ng of oligo(dT)12-18, 

50ng of random primers, 0.5mM dNTPs, 50mM Tris-HCl, 75mM KCl, 3mM MgCl2, 5mM DTT, 40U of RNaseOUT and 200U of SuperScript III. To remove RNA complementary to the cDNA, 

2U of E.coli  RNaseH was added and incubated at 37°C for 20 minutes. In each RT-PCR a no template control (no RNA in RT) were performed.

     Amount of RNA and reaction volume E 1µg RNA / 20µl reaction volume

    Priming oligonucleotide (if using GSP) and concentration E Random primers : 2.5ng/µl  Oligo(dT)12-18  : 5ng/µl  (final concentration)

     Reverse transcriptase and concentration E SuperScript III (Invitrogen) : 10U/µl (final concentration)

     Temperature and time E

RNAs were mixed with random primers, oligo (dT)12-18 and dNTPs in a total volume of 13μl. Samples were heated to 65°C for 5 min and incubated on ice for at least 1min. Then the 5X RT 

buffer, DTT, RNaseOUT and SuperScript III was added to a total volume of 20μl. RT was allowed at 50°C for 60 min. and was followed by enzyme inactivation at 70°C for 15 min. To remove 

RNA complementary to the cDNA, 2U of E.coli  RNaseH was added and incubated at 37°C for 20 minutes.

     Manufacturer of reagents and catalogue numbers D
Life Technologies : SuperScript III (Cat.18080-085), Oligo(dT)12-18 primer (18418-012), Random primers (Cat. 48190-011), 10mM dNTP Mix (18427-013), RNaseOUT 40U/µl (10777-019), 

E.coli  RNaseH (AM2293)

Cqs with and without RT D* N/A - DNase treatement + primers flanking intron + Melt Curve

Storage conditions of cDNA D -20°C

qPCR TARGET INFORMATION

If multiplex, efficiency and LOD of each assay. E N/A

Sequence accession number E see additional file X-A

Location of amplicon D see additional file X-A

     Amplicon length E see additional file X-A

     In silico specificity screen (BLAST, etc) E Beacon Designer Pro 8.10 software (Premier Biosoft) + NCBI BLAST tool 

     Pseudogenes, retropseudogenes or other homologs? D

          Sequence alignment D

     Secondary structure analysis of amplicon D

Location of each primer by exon or intron (if applicable) E see additional file X-A

     What splice variants are targeted? E see additional file X-A  cf. Accession number

qPCR OLIGONUCLEOTIDES

Primer sequences E see additional file X-A

RTPrimerDB Identification Number D N/A

Probe sequences D** N/A

Location and identity of any modifications E N/A

Manufacturer of oligonucleotides D EUROGENTEC  (Seraing, Belgium)

Purification method D RP-Cartridge - Gold

qPCR PROTOCOL

Complete reaction conditions E

cDNAs obtained from RT of RNA were diluted 10-fold and 4μL were mixed with SYBR®Green Master Mix (Bio-Rad, Nazareth, Belgium) to a final volume of 20μL containing 300nM of each 

primer. Amplification was carried out in the CFX96 thermal cycler (Bio-Rad) under the following conditions: heating for 3 minutes at 95°C, 40 cycles of denaturation for 30 seconds at 95°C, 

followed by an annealing/extension for 1 min. After each run a Melting curve analysis was performed, ramping from 55°C to 95°C in 20min. A negative control without cDNA template was run 

in every assay and measures were performed in duplicates.

     Reaction volume and amount of cDNA/DNA E 4µl cDNa diluted 10fold / 20µl reaction volume

     Primer, (probe), Mg++ and dNTP concentrations E 300nM of each primer + SYBR®Green Master Mix

     Polymerase identity and concentration E  iTaq DNA polymerase in final concentration : 25 U/ml

     Buffer/kit identity and manufacturer E SYBR®Green Master Mix (Biorad, Nazareth, Belgium) (Cat. 1708885)

     Exact chemical constitution of the buffer D 2x qPCR mix contains : dNTPs, 50 U/ml iTaq DNA polymerase, 6 mM MgCl2, SYBR Green I, enhancers, stabilizers, 20 nM fluorescein

     Additives (SYBR Green I, DMSO, etc.) E N/A

Manufacturer of plates/tubes and catalog number D BioRad - HSP9655

Complete thermocycling parameters E
heating for 3 minutes at 95°C, 40 cycles : denaturation for 30 seconds at 95°C, followed by an annealing/extension for 1 min. 

After each run a Melting curve analysis was performed, ramping from 55°C to 95°C in 20min.

Reaction setup (manual/robotic) D

Manufacturer of qPCR instrument E CFX thermal cycler (BioRad) 

qPCR VALIDATION

Evidence of optimisation (from gradients) D Anneling temperature gradients 

Specificity (gel, sequence,  melt, or digest) E
Gene-specific amplification was confirmed by a single band in 4% E-Gel

®
 (Life technologies).

Melt Curve analysis were performed in each assay.

No template controls(no cDNA in qPCR) were run for each gene to detect unspecific amplification and primer dimerization.

For SYBR Green I, Cq of the NTC E No amplifiction signal detected

Standard curves with slope and y-intercept E see additional file X-A

     PCR efficiency calculated from slope E see additional file X-A

     Confidence interval for PCR efficiency or standard error D

     r2 of standard curve E see additional file X-A

Linear dynamic range E see additional file X-A

     Cq variation at lower limit E see additional file X-A

     Confidence intervals throughout range D

Evidence for limit of detection E see additional file X-A

If multiplex, efficiency and LOD of each assay. E N/A

DATA ANALYSIS

qPCR analysis program (source, version) E CFX manager 3.1 software (Bio-Rad) 

     Cq method determination E
The threshold is determined using the regression method. 

This mode applies a multi-variable, non-linear regression model to individual well traces and then uses this model to compute an optimal Cq value.

     Outlier identification and disposition E Bad replicates were retested and measurements below LOD were discard

Results of NTCs E No amplifiction signal detected

Justification of number and choice of reference genes E 8 reference genes were tested. Data normalization was carried out against three reference genes; Hspcb, Rps13, 18sRNA. see additional file X-B

Description of normalisation method E
Normalized expression was calculated using the CFX manager 3.1 software (Biorad) via the ∆∆-Cq method,

 taking into account the calculated amplification efficiency for each primers pair.

Number and concordance of biological replicates D

Number and stage (RT or qPCR) of technical replicates E qPCR reactions were performed in duplicates

Repeatability (intra-assay variation) E
For each sample, standard deviation (SD) for the Cq variation between replicates has been used to express intra-assay variation. 

Instrument and liquid handeling variations were shown to be minimal.

Reproducibility (inter-assay variation, %CV) D

Power analysis D

Statistical methods for result significance E Refer to Methods section of article

Software (source, version) E Refer to Methods section of article

Cq or raw data submission using RDML D

Table 1. MIQE checklist for authors, reviewers and editors. All essential information (E) must be submitted with the manuscript.  Desirable

information (D) should be submitted if available. If using primers obtained from RTPrimerDB, information on qPCR target, oligonucleotides,

protocols and validation is available from that source.

*: Assessing the absence of DNA using a no RT assay is essential when first extracting RNA. Once the sample has been validated as

 RDNA-free, inclusion of a no-RT control is desirable, but no longer essential.

**: Disclosure of the probe sequence is highly desirable and strongly encouraged. However, since not all commercial pre-designed assay

 vendors provide this information, it cannot be an essential requirement. Use of such assays is advised against.
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A- MIQE qPCR primers informations

Gene Name Accession number Foward primer sequence (5'>3') Reverse primer sequence (5'>3') Primers location Amplicon (pb) Standard curves PCR efficiency (%) r2 

18sRNA NR_003286 CAGGATTGACAGATTGAT TTATCGGAATTAACCAGAC only one exon 97 y= 2.977 x -3.175 106.50% 0.999

AMIGO2 NM_001143668; NM_181847 TTCTGGATTCTGAGTGGATTC TGCTGGTGATGTTGTTATGA F : E2(ou3) - R: E2(ou3) (same exon) 78 y= 19.694 x -3.325 99.90% 0.996

ANXA1 NM_000700 TCGCAGAGTGTTTCAGAA TCTCAATGTCACCTTTCAAC F:E8/9 (Intron 887pb) - R:E9 86 y= 11.534 x -3.189 105.80% 0.999

ARHGAP29 NM_004815 AAGAACACTGACTCTATCG CTCCAATTCCAAGTTAAGC F:E7 - R:E7/8 (Intron 1066pb) 108 y= 18.879 x -3.448 95.00% 0.998

C19orf33 NM_033520 TCCAAAGCAAGGACACCA TGGGACTTCACATCCGTG F:E 2/3 (Intron 133pb) - R:E3/4 (Intron 158pb) 75 y= 18.655 x -3.268 102.30% 0.996

CAV1
NM_001172895; NM_001172896; 

NM_001172897; NM_001753
AGATCGACCTGGTCAACC GCAATCACATCTTCAAAGTCAATC F:E 2(ou 1) - R:E 2/3 (ou1/2) (Intron 32256pb) 76 y= 14.398 x -3.308 100.60% 0.999

CAV2
NM_001206747; NM_001206748; 

NM_001233; NM_198212
CAAGTCTATAATGTGAGTAGT TTATTCCAGTTCAATCATCA F : E3 - R: E3  (3'UTR) 190 y= 18.621 x -3.566 90.70% 0.997

COL4A1 NM_001845 AGGGACAAATGGGCTTAA TTCTTGAACTTGAGCTTGT F:E11/12 (Intron 501pb) - R:E13 (Intron 1359pb) 101 y= 18.405 x -3.331 99.60% 0.998

CTGF NM_001901 GCTGACCTGGAAGAGAAC AAACTTGATAGGCTTGGAGAT F:E4 - R:E5 (Intron 388pb) 75 y= 17.593 x -3.42 96.10% 0.996

CXCR4 NM_001008540; NM_003467 GAGGCAGATGACAGATAT AATACCAGGCAGGATAAG F : E1(ou2) - R: E1(ou2) (same exon) 105 y= 17.432 x -3.254 102.90% 0.996

CYR61 NM_001554 AATGAATTGATTGCAGTTG TGTAAAGGGTTGTATAGGA F:E3 - R:E4 (Intron 131pb) 89 y= 17.355 x -3.158 107.30% 0.998

DKK1 NM_012242 TATCACACCAAAGGACAA GTCTAGCACAACACAATC F:E3-4 (Intron 118pb) - R:E4 76 y= 19.432 x -3.335 99.50% 0.999

DKK3
NM_015881; NM_013253; 

NM_001018057
AAAGCATCATCAGAAGTG TGTTGGTTATCTTGTGAAT F:E3 - R:E3/4 (Intron 3520pb) 124 y= 17.042 x -3.292 101.30% 0.999

EMP1 NM_001423 AATGTCTGGTTGGTTTCC GCATCTTCACTGGCATAT F:E2/3(Intron 1890pb) - R:E3/4 (Intron 105pb) 104 y= 13.964 x -3.231 104.00% 0.999

F3 NM_001178096; NM_001993 CGTCAATCAAGTCTACAC TTCACATCCTTCACAATC F:E2 - R:E3 (Intron 4092pb) 117 y= 19.464 x -3.087 110.80% 0.998

FHL2
NM_001039492; NM_001450; 

NM_201555; NM_201557
AGACTGCTATTCCAACGA CCTTGTACTCCATCTTGC F:E3/4/5 - R:E 4/5/6 (Intron 5819pb) 86 y= 15.448 x -3.295 101.20% 0.999

FOSL1 NM_005438 TCCCTAACTCCTTTCACC CTGCTACTCTTGCGATGA F : E4 - R: E4 86 y=  13.047x -3.245 103.30% 0.999

FRMD6
NM_001042481; NM_001267046; 

NM_001267047; NM_152330
CTACATCACAGAGGACAT GACCCAATTTCTTTCACA F:E3/12/13 - R:E 4/13/14 (Intron 3698pb) 75 y= 18.423 x -3.454 94.80% 0.999

FSTL1 NM_007085 CTGCCATCAATATTACAAC TTCATCAGACAGTTCAAT F:E7 - R:E8 (Intron 1498pb) 92 y= 15.296 x -3.351 98.80% 0.992

GNG11 NM_004126 GAAGATTTGCCAGAGAAG ACATTTAGACACTTGTTGT F:E1 - R:E1/2 (Intron 3857pb) 90 y= 12.903 x -3.283 101.60% 1.000

GPRC5A NM_003979 CTCAACTCGTGAAGAAGA GAAAATGTGTGGAATAGGG F:E2 - R:E3 (Intron 2912pb) 117 y= 18.350 x -3.274 102.00% 0.999

GPX8 NM_001008397 CTTCCACAAGATTAAGATTC GTTGACAAGATACTTCCA F:E2 - R:E3 (Intron 2799pb) 109 y= 15.841 x -3.334 99.50% 0.999

HSPCB

NM_001271969; NM_001271970; 

NM_001271971; NM_001271972; 

NM_007355

AAGCATTCTCAGTTCATA TCTTCTTCTTATCCTTACC F:E5  - R:E 6 (Intron 136) 193 y= 11.415 x -3.323 99.90% 0.999

HTRA1 NM_002775 ATCATCAACTATGGAAAC GATACCAATATACTTCTTCT F:E4 - R:E6 (Intron 484-1253pb) 192 y=  15.354x -3.368 98.10% 1.000

IGFBP3 NM_000598; NM_001013398 CGGGAGACAGAATATGGT CAGCACATTGAGGAACTT F:E2-3 (Intron 545pb) - R:E3 75 y= 19.317 x -3.354 98.70% 0.999

IGFBP6 NM_002178 CCCTCCCAGCCCAATTCT CAGCACTGAGTCCAGATGTCT F:E2 - R:E3 (Intron 183pb) 75 y= 14.322 x -3.307 100.60% 1.000

LAMB1 NM_002291 ATTATCTGACACAACTTC AATACTTGGTAATGCTATC F:E26 - R:E27 (Intron 1436pb) 164 y= 15.632 x -3.315 100.30% 0.999

LGALS3 NM_001177388; NM_002306 ATGCTGATAACAATTCTGG CAAACAATGACTCTCCTG F:E4 - R:E5 (Intron 2220pb) 131 y= 14.376 x -3.436 95.50% 0.999

MYB

NM_001130172; NM_001130173; 

NM_001161656; NM_001161657; 

NM_001161658; NM_001161659; 

NM_001161660; NM_005375

CAACGACTATTCCTATTACC CTGAGGGACATTGACTAT F:E6 - R:E7 (Intron 1279pb) 100 y= 16.785 x -3.308 100.60% 0.998

MYOF NM_013451; NM_133337 ATAGAAGACACGAGATACAC GCTTTCGGATCTGAGTAT F:E21/22 (Intron 2367pb) - R:E 22 79 y= 15.903 x -3.228 104.10% 1.000

NNMT NM_006169 CAGTGGTGACCTATGTGT CCTGTCTCAACTTCTCCT F:E4 - R:E5 (Intron 13886pb) 75 y= 17.363 x -3.312 100.40% 1.000

NT5E NM_001204813; NM_002526; GGAATCGTTGGATACACT ACTTATCTACTTCAGGTTGT F:E2 - R:E3 (Intron 3954pb) 106 y= 13.536 x -3.344 95.10% 1.000

NTN4 NM_021229 CTGGAAGATGATGTTGTC GGTTCTCTGTATCGTATG F:E2 - R:E3 (Intron 48794pb) 121 y= 20.842 x -3.313 100.40% 0.994

PLK2 NM_006622; NM_001252226 GGATGCTATTCGGATGAT ATGGTACTGTCTTCAAGG F:E10 - R:E11 (Intron 246pb) 78 y= 17.666 x -3.423 95.90% 0.997

PLOD2 NM_182943; NM_000935 CTAGCAGACAAGTATCCT GAACTATACGGTTGACATAT F:E4 - R:E5 (Intron 3640pb) 94 y= 16.960 x -3.311 100.40% 0.999

PLS3

NM_001136025; NM_001172335; 

NM_001282337; NM_001282338; 

NM_005032

GCTGATGAGAAGATATACC CTCTGAATGGAAGTTGAT F:E13/14 (Intron 1014pb) - R:E14 129 y= 15.001 x -3.349 98.90% 0.999

PRSS23 NM_007173 CTCGGCGCGGAACAG CCAACAGCACAGAGCAGAA F:E1/2 (Intron 6979pb) - R:E2 79 y= 18.777 x -3.346 99.00% 0.997

PTGR1
NM_001146108; 

NM_001146109;NM_012212
GTTGGCTATCCTACTAAT CATCATTGTATCACCTTC F:E2 - R:E4 (Intron 3049/1239pb) 153 y= 15.472 x -3.356 98.60% 0.999

PTX3 NM_002852 TGAATTTGGACAACGAAATAGAC ATTCCGAGTGCTCCTGAC F:E1 - R:E2 (Intron 449pb) 84 y= 20.26 x -3.573 90.50% 0.997

RND3 NM_001254738; NM_005168 TGTTAGTACATTAGTAGAG AGCATTCGATATAAGTAG F:E5 - R:E6 (Intron 1388pb) 107 y= 18.532 x -3.148 107.80% 0.996

RPS13 NM_001017 GTCCCCACTTGGTTGAAG CCATGTGAATCTCTCAGGAT F:E2-3 (Intron182)  - R:E 3 113 y= 12.185 x -3.344 99.10% 1.000

S100A2 NM_005978 CAAGTTCAAGCTGAGTAAG CTCCTCATCCACTTTCTC F:E2 - R:E3 (Intron 2142pb) 85 y= 18.328 x -3.244 103.40% 0.999

SERPINE1 NM_000602 TAGAGAACCTGGGAATGAC GAGGCTCTTGGTCTGAAA F:E6 - R:E 6/7 (Intron 120pb) 75 y= 14.046 x -3.274 102.00% 1.000

SNAI2 NM_003068 ACACATACAGTGATTATTTCC GTAGTCCACACAGTGATG F:E1-2/2-3 (Intron 745pb) - R:E2/3 113 y= 15.391 x -3.262 102.60% 1.000

SPARC NM_003118 AGGTGACTGAGGTATCTGT TGGTTCTGGCAGGGATTT F:E 3/4 (Intron 1395pb) - R:E4/5 (Intron 1434pb) 115 y= 13.713 x -3.308 100.60% 0.996

SRPX
NM_001170750; NM_001170751; 

NM_001170752; NM_006307
ATTCTTACTGATGTCATTCT TCTGTCATAGACTGTGTA F:E 4/5 (Intron 3714pb) - R:E 5 90 y= 14.738 x -3.142 108.10% 0.999

TGFBI NM_000358 AGAAGGTTATTGGCACTAAT GCTGATGACTGTTGATTTG F:E2 - R:E 2/3 (Intron 10196pb) 89 y= 14.290 x -3.345 99.00% 0.999

TM4SF1 NM_014220 ATTGTGGAATGGAATGTATC ATATTGCTGTTGGTGAGA F:E4 - R:E4/5 (Intron 1806pb) 138 y= 15.462 x -3.278 101.90% 0.999

TUBB6 NM_032525 AGAGAATCAACGTCTACTACAATG GGCTCTAAGTCCACCAGG F:E2 - R:E3 (Intron 2147pb) 76 y= 14.063 x -3.346 99.00% 1.000

VEGFC NM_005429 AAGGACAGAAGAGACTAT CACATCTATACACACCTC F:E2 - R:E3 (Intron 1564pb) 118 y= 16.637 x -3.374 97.90% 0.999

B- MIQE data analysis informations
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Target Stability 

Target Coefficient Variance M-Value

Hspcb 0.136 0.333

Rps13 0.119 0.319

18sRNA 0.162 0.371

Average Coefficient Variance: : 0.139 

Average M-Value: : 0.341 

Coefficient of Variation (CV) of normalized reference gene relative quantities. A lower CV value denotes higher stability

M-value. A measure of the reference gene expression stability
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Linear dynamic range Cq variation at lower limit

from 1.00E-01 cDNA dilution to 1.00E-08 28.24 ± 0.389

from 1.00E-01 cDNA dilution to 1.56E-03 28.97 ± 0.242

from 1.00E-01 cDNA dilution to 2.96E-05 25.89 ± 0.061

from 1.00E-01 cDNA dilution to 1.56E-03 28.52 ± 0.097

from 1.00E-01 cDNA dilution to 3.91E-04 29.64 ± 0.258

from 1.00E-01 cDNA dilution to 1.00E-05 30.91 ± 0.323

from 1.00E-01 cDNA dilution to 3.91E-04 30.57 ± 0.095

from 1.00E-01 cDNA dilution to 1.56E-03 27.67 ± 0.007

from 1.00E-01 cDNA dilution to 3.91E-04 29.05 ± 0.198

from 1.00E-01 cDNA dilution to 3.91E-04 28.35 ± 0.255

from 1.00E-01 cDNA dilution to 7.72E-05 30.17 ± 0.209

from 1.00E-01 cDNA dilution to 1.56E-03 28.75 ± 0.093

from 1.00E-01 cDNA dilution to 1.60E-04 29.61 ± 0.057

from 1.00E-01 cDNA dilution to 1.00E-04 26.82± 0.109

from 1.00E-01 cDNA dilution to 3.91E-04 29.89 ± 0.118

from 1.00E-01 cDNA dilution to 7.72E-05 29.07 ± 0.121

from 1.00E-01 cDNA dilution to 1.00E-05 29.27 ± 0.35

from 1.00E-01 cDNA dilution to 3.91E-04 30.2 ± 0.140

from 1.00E-01 cDNA dilution to 1.00E-05 32.48 ± 0.861

from 1.00E-01 cDNA dilution to 1.00E-05 29.32 ± 0.249

from 1.00E-01 cDNA dilution to 8.00E-04 28.51 ± 0.063

from 1.00E-01 cDNA dilution to 1.95E-04 28.18 ± 0.26

from 1.00E-01 cDNA dilution to 1.98E-06 30.55 ± 0.236

from 1.00E-01 cDNA dilution to 1.95E-04 27.81 ± 0.046

from 1.00E-01 cDNA dilution to 3.91E-04 30.69 ± 0.038

from 1.00E-01 cDNA dilution to 1.00E-04 27.54 ± 0.008

from 1.00E-01 cDNA dilution to 1.95E-04 27.89 ± 0.209

from 1.00E-01 cDNA dilution to 7.72E-05 28.58 ± 0.21

from 1.00E-01 cDNA dilution to 1.60E-04 29.31 ± 0.285

from 1.00E-01 cDNA dilution to 2.44E-05 30.81 ± 0.018

from 1.00E-01 cDNA dilution to 8.00E-04 27.59 ± 0.083

from 1.00E-01 cDNA dilution to 1.00E-05 30.7 ± 0.112

from 1.00E-01 cDNA dilution to 3.70E-03 28.81 ± 0.324

from 1.00E-01 cDNA dilution to 3.91E-04 29.34 ± 0.337

from 1.00E-01 cDNA dilution to 7.72E-05 30.7 ± 0.098

from 1.00E-01 cDNA dilution to 7.72E-05 28.83 ± 0.049

from 1.00E-01 cDNA dilution to 3.91E-04 30.12 ± 0.089

from 1.00E-01 cDNA dilution to 7.72E-05 29.21 ± 0.25

from 1.00E-01 cDNA dilution to 6.25E-03 28.81 ± 0.23

from 1.00E-01 cDNA dilution to 8.00E-04 28.43 ± 0.042

from 1.00E-01 cDNA dilution to 1.00E-04 25.61 ± 0.076

from 1.00E-01 cDNA dilution to 1.60E-04 30.51 ± 0.112

from 1.00E-01 cDNA dilution to 7.72E-05 27.47 ± 0.162

from 1.00E-01 cDNA dilution to 1.95E-04 27.51 ± 0.144

from 1.00E-01 cDNA dilution to 1.00E-05 30.33 ± 0.855

from 1.00E-01 cDNA dilution to 7.72E-05 27.65 ± 0.171

from 1.00E-01 cDNA dilution to 1.00E-05 31 ± 0.249

from 1.00E-01 cDNA dilution to 1.95E-04 27.54 ± 0.116

from 1.00E-01 cDNA dilution to 7.72E-05 27.76 ± 0.036

from 1.00E-01 cDNA dilution to 4.63E-04 27.78 ± 0.026
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