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Summary

The prediction of anticancer drug response is crucial for achieving a more effective and
precise treatment of patients. Models based on the analysis of large cell line collections have
shown potential for investigating drug efficacy in a clinically-meaningful, cost-effective
manner. Using data from thousands of cancer cell lines and drug response experiments, we
propose a drug sensitivity prediction system based on a 47-gene expression profile, which
was derived from an unbiased transcriptomic network analysis approach. The profile reflects
the molecular activity of a diverse range of cancer-relevant processes and pathways. We
validated our model using independent datasets and comparisons with published models.
A high concordance between predicted and observed drug sensitivities was obtained,
including additional validated predictions for four glioblastoma cell lines and four drugs. Our
approach can accurately predict anti-cancer drug sensitivity and will enable further pre-
clinical research. In the longer-term, it may benefit patient-oriented investigations and

interventions.
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Introduction

The unbiased, large-scale prediction of anticancer drug activity using tumor-derived
molecular data is crucial to deliver on the promise of a more personalized, precise treatment
of cancer patients (Caponigro and Sellers, 2011; Ross and Wilson, 2014). The prediction of
drug sensitivity based on the analysis of large collections of cell lines offers significant
opportunities for investigating clinical efficacy in a biologically-meaningful, cost-effective
manner (Geeleher et al.,, 2014; Goodspeed et al., 2016; Wilding and Bodmer, 2014).
Computational models for predicting anticancer drug sensitivity can aid in the selection and
prioritization of candidate compounds for pre-clinical research (Costello et al., 2014; Rees

et al., 2016; Reinhold et al., 2012; Stetson et al., 2014).

Although cell line-based models may not fully recapitulate tumor biology, appropriately
validated models may accelerate patient-oriented research, and have already shown
potential to generate clinically-relevant predictions in different oncology domains. Such
models may complement and in some cases offer an early substitute for in vivo models that
tend to be expensive, time consuming and less scalable. In the short-term, this could enable
the generation of novel biological hypotheses in the lab and, in the longer term, guide

therapeutic decision-making in the clinic.

Over the past few years, the investigation of cell line-based computational models for anti-
cancer drug sensitivity prediction has been accelerated by publicly-funded efforts of large
research consortia (Barretina et al., 2012; lorio et al., 2016b; Reinhold et al., 2012; Yang et
al., 2013). In particular, the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012)

and the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et al., 2012; Yang et al.,
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2013) projects represented significant steps forward for the oncology and
pharmacogenomics research communities. These projects have generated and shared
(untreated) molecular data from thousands of cancer cell lines and their accompanying
treatment sensitivity measurements for hundreds of experimental and clinically-approved
drugs. To date, computational models have mainly emphasized the application of different
widely-investigated multivariable statistical and machine learning models, such as linear
models and support vector machines, with various versions of feature selection
methodologies (Dong et al., 2015; Haverty et al., 2016; Jang et al., 2014). Despite their
potential for accurately predicting drug sensitivity across multiple types of cancer cell lines,
less attention has been given to the investigation of biological importance of the proposed
drug sensitivity markers, which have ranged from one to hundreds of gene-based features.
Moreover, the majority of reported models have not been evaluated on independently
generated datasets (Azuaje, 2017). Although different studies have tested the resulting
prediction models on independent cell line datasets, e.g., models trained and tested on the
GDSC and CCLE dataset respectively, there is a lack of studies that experimentally validate
predicted anticancer sensitivity on independent biological samples, including cell lines that
were not included in the training and initial testing datasets (Cortes-Ciriano et al., 2016;

Gupta et al., 2016; Jang et al., 2014).

Here, we present Dr.Paso: Drug response prediction and analysis system for oncology
research (Figure 1A). Dr.Paso predicts drug sensitivity responses based on the (baseline)
expression patterns of 47 genes, which represented “hubs” in a pan-cancer transcriptomic
network extracted from more than 1K cell lines and are substantially implicated in a diversity
of cancer-relevant biological processes. A computational prediction model based on the

multiple-linear regression of the 47-gene expression values measured in hundreds of cell
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lines provided both accurate and robust prediction performance. First, the model was trained
and cross-validated on a (discovery) dataset consisting of more than 10K cell line-drug
experiments for 24 (targeted and cytotoxic) drugs. Next, the resulting model was tested on
a second, more recently-released, (validation) dataset comprising almost 10K cell line-drug
experiments that included 16 drugs also found in the discovery dataset. Dr.Paso’s prediction
performance is comparable to, and in some cases outperforms, previously published
computational models. Motivated by these findings, Dr.Paso next predicted sensitivity
scores for 4 glioblastoma (GBM) cell lines, including three (stem-like) cell lines that were not
included in the discovery and validation datasets, against 24 drugs. We selected the top
three drugs predicted as highly effective together with a drug predicted as lowly effective
(negative control), and performed in vitro tests on the 4 cell lines. As in the case of the public
datasets, the sensitivity scores estimated by Dr.Paso were highly concordant with the
observed in vitro responses. To further facilitate research, we offer Dr.Paso through a Web-
based interface that allows users to predict drug sensitivity scores for their own samples and
expression data. The following sections will describe in detail these research phases, which

are outlined in Figure 1B.
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Figure 1. Dr.Paso: Overview of problem, application scenario and methodologies
investigated. A. Outline of the general problem and application scenarios envisioned for the
application of Dr.Paso. B. Workflow of the discovery phase, model generation and validation

steps reported in this article.

Results

Hubs in a pan-cancer transcriptomic network display drug sensitivity predictive

potential

Motivated by evidence indicating the drug sensitivity prediction power of gene expression

profiles (Barretina et al., 2012; lorio et al., 2016a), we investigated the predictive potential
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of such data in the context of a pan-cancer transcriptomic correlation network. Our
hypothesis was that genes highly connected within such networks, i.e., hubs, may be
reflective of molecular activity across biological processes and tissue sites. To test this
hypothesis, we analyzed the CCLE gene expression dataset, which was derived from 1037
(untreated) cell lines representing different cancer types in 18 tissue sites. To reduce
network complexity while aiming at preserving potentially relevant information across all
samples, we selected genes with highly variable expression pattern across cell lines (i.e.,
177 genes with standard deviation of expression values across cell lines located above the
99" percentile). Using the pan-cancer expression profiles from these genes, we calculated
all the between-gene (Pearson) correlation values and merged them into a fully-connected
weighted network (Figure 2A), which included 177 nodes and more than 15K edges
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Figure 2. Hubs in a pan-cancer transcriptomic network display drug sensitivity predictive

potential. A. Snapshot of a (fully connected) weighted gene correlation network. Nodes and
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edges representing genes and their correlations respectively. Network hubs and non-hubs
are colored in red and white respectively. A zoom-in view of examples of hub and non-hub
nodes. The color intensity of edges reflect the expression correlations between such nodes
and others in the network. B. Graphical summary of (non-redundant) Gene Ontology terms
statistically over-represented in the list of 47 hub genes. Terms are projected onto a
semantic similarity space with REVIGO (Supek et al., 2011), in which similar terms are
positioned closer to each other. Each term is represented by a bubble with color and size
indicating the term’s level of statistical enrichment in our list and frequency in the GO
database respectively. C. Comparison of hubs vs. non-hubs on the basis of their individual
associations with drug sensitivity. The boxplot depicts the mean correlation between the
gene expression and the AA values across CCLE cell lines. Box notches indicate 95%
confidence interval for each median value. D. Cell line-drug experiments are visualized in
terms of the 47-gene expression data. The panel above the gene expression heatmap
illustrates the AA values observed for selected sets of cancer cell lines (grouped by tissue

site) and two compound examples (Erlotinib and Paclitaxel) for illustration purposes.

We identified network hubs by extracting those genes with statistically detectable
connectivity scores (i.e., weighted degree values) using WiPer (Azuaje, 2014). This resulted
in 47 hubs (WiPer adjusted-P < 0.05, online resource and Figure S1), one of which (ANAX1)
is illustrated in Figure 2A together with an example of a non-hub node (HCLS1). The 47 hub
genes are significantly implicated in a wide diversity of biological processes and pathways
of relevance to cancer progression and therapeutic response. They include cell proliferation,
death, migration, adhesion, angiogenesis, kinase signaling and the extracellular matrix

(Figures 2B and S1).
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Next, we analyzed drug sensitivity data (activity areas, AA) associated with these cell lines
(11670 cell line-drug experiments) available in the CCLE. The AA, which is inversely
correlated with the IC50 (the drug concentration at which an inhibition of 50% of cell viability
is achieved), was defined by the CCLE to approximate the efficacy and potency of a drug
simultaneously (Barretina et al., 2012). We stress that such data were not considered during
the network generation and analysis steps. For each gene in the network, we calculated the
correlation between gene expression and AA across all available (cell line-drug) data, and
observed that: a. hubs tend to be anti-correlated with drug sensitivity, and b. such an anti-
correlation is significantly stronger than in the case of non-hub genes. Moreover, such an
association is considerably different to that displayed by non-hubs (Figure 2C). The 47 hub
genes did not include previously reported markers of drug sensitivity: ALK, BRAF, ERBB2,
EGFR, HGF, NQO1, MDM2, MET and VEGFRs (Barretina et al., 2012; Safikhani, 2017). To
further demonstrate the potential relevance of these genes, we clustered the samples
(available cell line-drug experiment data) based on their 47-gene (baseline) expression
profiles and verified that these genes could, in principle, segregate samples according to
cancer types (tissue sites) and highlight differential drug responses across samples (Figure
2D). Using an alternative visualization and (unsupervised) clustering technique (Figure S2),
we verified the potential of these 47 genes’ expression data to segregate samples in terms
of their drug sensitivity. Overall, these results suggest that our 47 hubs represented a

potentially novel, biologically-meaningful gene set with drug sensitivity prediction potential.
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Predicting drug sensitivity based on the network-derived 47-gene expression profiles

We used the expression values from the 47 network hubs and drug sensitivity data (n =
10981, cell line-drug experiments, i.e., samples, with full expression and AA data available)
to generate a drug sensitivity prediction model based on multiple linear regression
(Methods). For a given sample (47-gene expression profile) and drug (identity of one of the
24 CCLE drugs), the model estimates a sensitivity score that approximates the AA values
observed in the CCLE. For model training and testing, we used separate datasets
respectively through a 10-fold cross-validation sampling procedure. Prediction capability
was evaluated with multiple performance indicators that compare the predicted and
observed sensitivity values: Pearson, Spearman and Kendall correlations, root-mean-

squared errors (RMSE) and a concordance index (Figure 3).
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Figure 3. Alternative views of our model’s predictive capacity on the CCLE dataset using

alternative performance indicators. A. Density plot of predicted vs. actual sensitivity values

(n=10981). Pearson, Spearman and Kendall, correlations coefficients: 0.86, 0.73 and 0.54

respectively. B. Plot of root-mean-square errors (RMSE) observed for each drug. C.

Concordance indices between the predicted and the observed AA values for a selected set

of drugs. An index value = 0.5 is the expected value from random prediction. Error bars:

95% confidence interval (Cl) of the estimated concordance index.
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Figures 3A and S3 show that the predicted and actual AA values are positively correlated
(Pearson, Spearman and Kendall, correlations coefficients: 0.86, 0.73 and 0.54
respectively), which corroborates the predictive potential of our model. Such performance
measures are comparable to, and in many cases outperform, those obtained from other
published models trained and cross-validated on the same dataset. For example, a
comprehensive analysis of different machine learning techniques (Jang et al., 2014), e.g.,
multiple-linear regression techniques, support vector machines and random forests,
displayed (median) Pearson correlation coefficients falling into the range from 0.4 to 0.6,
including top-performing models generated with gene expression data or their combination

with other data types (Jang et al., 2014).

Figure 3B offers an alternative assessment of our model’s prediction capability based on the
RMSE obtained for each CCLE drug. This plot offers two key insights: 1. There are drugs
for which our model can make relatively very accurate sensitivity predictions (e.g., Nutlin-3,
an inhibitor of p53-Mdm2 complexes, and Sorafenib, a muti-kinase inhibitor) in comparison
to other drugs (e.g., PD-0325901, a MEK inhibitor, and Paclitaxel, a mitotic inhibitor). 2. Our
model’s (drug-specific) prediction performance is competitive in relation to other published
approaches trained and tested on the same dataset. For example, our model made
predictions with a median RMSE = 0.70 (range: [0.47, 1.40]), which compares well with top-
performing machine learning models that have reported median and minimum RMSE values
above 0.80 and 0.65 respectively (Neto et al., 2014). For drugs such as Sorafenib, Nutlin-3
and PHA-665752, Dr.Paso tends to outperform models based on elastic-net and other
variations of multiple-linear regression (Neto et al., 2014). Conversely, such models tend to
offer relatively more accurate predictions for drugs such as Irinotecan and PD-0325901.

These results corroborate previous findings about the lack of generalized solutions for highly

12
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accurately predicting sensitivity across all types of drugs (Fersini et al., 2014; Haverty et al.,

2016; Jang et al., 2014).

To provide further insights into our model's prediction capacity, Figure 3C displays the
concordance index for a selected set of drugs. For a random pair of samples, the
concordance index estimates the probability of correctly predicting the relative sensitivities
of such samples (e.g., sample X is more sensitive than sample Y) in relation to the actual
observed relative sensitivities. Perfect and random prediction performances are indicated
by concordance indices equal to 1 and 0.5 respectively. Our model reported concordance
indices with median values above 0.5, which compares favorably with the results obtained
by (Papillon-Cavanagh et al., 2013) with different alternative models, including multiple
linear regression with elastic net, and applied to the same dataset. For instance, Papillon-
Cavanagh et al. obtained concordance indices lower than 0.7, including predictions with
concordance indices falling below 0.5 for different drugs (e.g., Nutlin-3 and TAE684). These
results suggest that our model can accurately predict drug sensitivity and provide, in relation
to previously published models, promising predictive capability that we further investigated

as follows.

Model evaluation on an independent dataset

We tested our 47-gene sensitivity prediction model on the 2016 release of the GDSC dataset
(lorio et al., 2016a). To allow our CCLE-derived model to make predictions on this dataset,
we focused on the 16 drugs that are found in both datasets. First, as in the case of the CCLE
data, we show that the (baseline) expression profiles of the 47 genes can, in principle,

cluster the GDSC samples according to cancer types (tissue sites) and highlight differential
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drug responses across samples (Figure 4A) in an unsupervised manner. Note that in the
GDSC dataset drug sensitivity is represented as the logarithm of IC50 (LNIC50) values (AA
values were not provided in this dataset). Using an alternative visualization and
(unsupervised) clustering technique (Figure S2), we verified the potential of these 47 genes’

expression data to segregate GDSC cell line-drug samples in terms of drug sensitivity.

Next, we applied our (CCLE-derived) prediction model to the GDSC data and made
sensitivity predictions (AA values) for all the samples (cell line-drug experiments) available
(Methods). The resulting predictions were then compared with the actual sensitivity values
in the GDSC dataset (Figures 4B and S3). The predicted (AA) and actual sensitivity
(LNIC50) values for these samples (n = 9984) are anti-correlated (Pearson, Spearman and
Kendall, correlations coefficients: -0.72, -0.71 and -0.50 respectively). This indicates that our
model is, in general, estimating sensitivity values that are in agreement with those observed
in the test dataset, i.e., higher predictive agreement is reached when high AA (prediction)

relates to a low LNIC50 (actual) values, and vice versa.
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Figure 4. Alternative views of our model’s prediction capacity on the GDSC dataset. A. Cell
line-drug experiments are visualized in terms of the 47-gene expression data. The panel
above the gene expression heatmap illustrates the LNIC50 (uM) values observed for
selected sets of cancer cell lines (grouped by tissue site) and two compounds (Erlotinib and
Paclitaxel). B. Application of CCLE-derived model to the GDSC data. Density plot of
predicted (AA) vs. actual sensitivity (LNIC50) values for drugs that are common between
the CCLE and GDSC (n =9984). Pearson, Spearman and Kendall, correlations coefficients:
-0.72,-0.71 and -0.50 respectively. C. Concordance indices between the predicted and the
observed sensitivity values. An index value = 0.5 is the expected value from random

prediction. Indices are corrected to account for the notion that higher concordance is
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reached when high AA (prediction) corresponds to a low LNIC50 (observed) values, and

vice versa. Error bars: 95% confidence interval (CI) of the estimated concordance index.

Figure 4C summarizes the assessment of our model’s predictive performance on the GDSC
dataset based on drug-specific concordance indices, as done for the CCLE dataset (Figure
3). Concordance indices > 0.5 were obtained for twelve out of the 16 drugs, and (among
those 12 drugs) concordance estimates for 9 drugs can be reliably interpreted as larger than
0.5 (95% confidence intervals of the estimated indices). The predictive performances for
several drugs (e.g., Nilotinib, Nutlin-3 and Sorafenib) are very similar to those estimated in
the CCLE dataset. As in the CCLE dataset, the sensitivity observed in samples treated with
AZDO0530 and Lapatinib proved to be more difficult to accurately to predict. Although
concordance indices > 0.5 were obtained for Irinotecan and Paclitaxel predictions, this
represented a reduction of prediction performance in comparison to the predictions made
for CCLE samples. The prediction performance of 17-AAG, PD-0325901 and TAE684 were
also diminished. A previous study, which also used the GDSC dataset, consistently reported
concordance indices < 0.5 for Sorafenib (Papillon-Cavanagh et al., 2013). Moreover, in
comparison to that study’s models, our model reported comparable or higher concordance
indices for other drugs, such as Nilotinib and PF-2341066 (Crizotinib). Conversely, such a
previous study reported better prediction performances for 17-AAG, Lapatinib and PD-
0325901. Such comparisons should, nevertheless, be interpreted with caution as Papillon-
Cavanagh et al.’s concordance indices were obtained with an older version of the GDSC
dataset, which was used for both model training and testing. Overall, our findings further
corroborate the predictive potential of our model, and highlight strengths and challenges in

a drug-specific context.
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Independent in vitro validation on several cell lines and compounds

To further validate our model’'s predictive capability on independently-generated data, we
generated predictions and performed in vitro tests for several GBM cell lines and
compounds. First, we measured the (baseline) expression profiles of 4 GBM cell lines that
have been well-characterized in our lab: U87, NCH644, NCH601 and NCH421k (Methods).
While the CCLE and GDSC datasets included U87, the latter three are stem-like GBM cell

lines that were not included in the previous model training and test phases.

Although genome-wide expression (microarray) data can appropriately cluster multiple
samples (biological replicates) from such cell lines, we found that the expression profiles of
our model’s 47 genes are sufficient to achieve the same biologically-meaningful segregation
while offering a clearer, fine-grained view of their differences (Figure S4). We also verified
the platform-independent replicability of these results with another 47-gene expression
dataset derived from 3 of these cell lines measured with qPCR (Figure S4). These results
corroborate the biologically-relevant discriminatory capacity and reproducibility of our

model’s 47-gene expression patterns.

Next, our model predicted the sensitivity of our 4 GBM cell lines (18 samples in total,
Methods) against the 24 drugs included in our model. The 47-gene (microarray) expression
profiles of these cells were input to the prediction model (6 U87, 3 NCH644, 3 NCH601 and
6 NCH421k gene expression profiles). Figure 5A summarizes the 432 predicted sensitivity
(AA) values according to drug (18 predictions per drug). To investigate such predictions in
vitro, we focused on the top-3 drugs associated with the highest predicted sensitivities

(Paclitaxel, Panobinostat and 17-AAG), as well as on Erlotinib, which was predicted as a
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relatively ineffective compound. These drugs correspond to four different drug classes:
cytotoxic, histone deacetylase inhibitor, antibiotic derivative and an EGFR inhibitor
respectively. In the case of Erlotinib, the predictions are consistent with the fact that the
tested cells do not (NCH644, NCH421Kk) or very lowly (U87, NCH601) express EGFR. The
Figures 5B and S5 show a more focused view of the predicted sensitivity values for our

samples against these 4 drugs.
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Figure 5. Drug sensitivity predictions and in vitro validation for different glioblastoma cell
lines and compounds. A. Sensitivity predictions (horizontal axis) for 24 drugs (vertical axis).

Box plot summarizes the (432) predicted sensitivity (AA, as defined in the prediction model)
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values for 4 glioblastoma cell lines: U87, NCH644, NCH601 and NCH421k. The 47-gene
expression profiles of multiple biological replicates (18 samples in total) were input to the
prediction model (6 U87, 3 NCH644, 3 NCH601 and 6 NCH421k samples). B. Alternative
boxplot summary of the prediction results for 4 drugs (Erlotinib, 17-AAG, Panobinostat and
Paclitaxel) and the different cell lines. These drugs, which were selected for subsequent in
vitro tests, were predicted to be relatively highly (17-AAG, Panobinostat and Paclitaxel) and
lowly (Erlotinib) effective against the 4 cell lines. C. Summary of in vitro test results. The
selected drugs were tested on each cell line in triplicates, relative viability (vs. vehicle-treated
samples) was measured for 8 drug concentration values (UM) and IC50 values were
estimated for each drug-sample experiment. The boxplot shows the resulting LNIC50 values
obtained. Drug response data for NCH601 samples and Erlotinib are not available, and for
NCH644 samples and Erlotinib not shown because of lack of effect. Boxes show the median,

the 25" and 75™ percentiles (lower and upper hinges), and (1.5 x) inter-quartile ranges.

We tested the selected drugs on each cell line, in triplicates, and measured their response
based on their relative viability (i.e., normalized to vehicle-treated samples) for 8 drug
concentration values (uUM). For each treated cell line, we estimated the IC50 values and
compared them on the basis of cell line and drug groups. Figure 5C summarizes the results
with boxplots showing the LNIC50 values. Drug response data for NCH601 samples and
Erlotinib were not available (not tested), and data for NCH644 samples and Erlotinib are not
shown due to lack of effect. Figure S6 includes all the drug response curves and additional

details.

As predicted by our model, all our cell lines exhibited the lowest sensitivity, i.e., the highest

IC50 values, when treated with Erlotinib (median LNIC50 = 0.74 uM). U87 was the least
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sensitive cell line in relation to all 4 drugs (median LNIC50 = -1.27 uM across all sample-
drug experiments), in full agreement with the predictions. Our model consistently predicted
NCH601 as the most sensitive cell line against all drugs (Figures S6). Our in vitro tests
showed that NCH421k tended to be more sensitive than NCH601 (median loglC50: -1.64
vs. -1.54 uM). Despite this particular discrepancy, we found global agreement between
predicted and observed sensitivities on the basis of cell type (Spearman correlation between
the median sensitivity values, predicted (AA) vs. observed (LNIC50) in the 4 cell line groups:

-0.40).

In accordance with the predictions, Paclitaxel was the most effective drug across all treated
samples (median LNIC50 = -2.35 uM). Lesser agreement between predicted and observed
sensitivities were obtained in the case of the remaining two drugs. For all samples, our
model predicted overall higher sensitivity for Panobinostat than for 17-AAG (Figure 5B). In
vitro, relatively similar responses were obtained for Panobinostat (median LNIC50 = -1.29)
and 17-AAG (median LNIC50 = -1.33 uM), though a larger variability of sensitivity was
observed in the former case. Nevertheless, predictions and in vitro tests concordantly
showed that NCH421k and U87 samples treated with Panobinostat were consistently more
sensitive than all samples treated with 17-AAG (Figures 5C and S6). Taken together, these
results provide further evidence of the predictive capacity of our model. The resulting

system, Dr.Paso, will enable the community to conduct further investigations.

Dr.Paso online

To share our model and enable further research, we developed a web-accessible tool that

allows researchers to upload their own gene expression data, make sensitivity predictions
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and visualize results in a few steps (Figure 6). The Help section of the website offers a
guided application example using CCLE data. Users provide their input data as a text file
containing the (baseline) 47-gene expression for different samples, and then can select all
or specific drugs for making predictions (Figure 6A). Dataset re-scaling (feature
standardization with means and standard deviations equal to 0 and 1 respectively) can be
applied to harmonize the input dataset with the feature representation used in our model.
Prediction results are presented with graphical displays and tables in different panels.
Moreover, users can control the amount and focus of information at the drug and sample
levels (Figure 6B to 6D). Results can be saved in different graphical and tabular file formats.

The tool is freely available at www.drpaso.lu.
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Figure 6. Dr.Paso online: a Web-based tool for predicting drug sensitivity and enabling
further research. Screenshots of: A. Main page with user input and analysis options; B:
Global view of predicted sensitivity values for a given input gene expression dataset and all
drugs available in the CCLE; C: Alternative view of predictions focused on a specific input
sample and all drugs; D. Tabular-based view of results. All views can be selected and

downloaded according to user requirements.

Discussion

The development of computational models for estimating drug sensitivity based on the
analysis of large and diverse collections of cancer cell lines is important to support pre-
clinical research, and provides a basis for future clinically-oriented applications. Access to
such models and their user-friendly application will enable new research across oncology
domains and additional computational investigations. Our Drug Response Prediction and
Analysis System for Oncology research, Dr.Paso, addresses such needs through the
integration of network-based and statistical modeling approaches. For a given drug, our
system predicts an anti-cancer sensitivity score based on the gene expression profile of 47
genes, which were shown to represent hubs in a pan-cancer transcriptomic network and to
be prominently implicated in a variety of cancer-relevant biological processes. Dr.Paso was
generated and evaluated on independent datasets, including our own in vitro validations of
several cell line-compound combinations, and showed promising results in terms of
predictive accuracy and concordance. Future research can apply Dr.Paso to 47-gene
expression signatures from patient samples to investigate its potential relevance in the

clinical setting.
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Our study and other previous research highlight the challenges faced and complementary
predictive capacity exhibited by different modeling approaches (Costello et al., 2014;
Papillon-Cavanagh et al.,, 2013). No single model can consistently make accurate
predictions for all drugs and cell lines available in the CCLE and GDSC datasets, including
models that include genomic data (Gupta et al., 2016; Jang et al., 2014; Menden et al.,
2013). Different models can offer more, or less, accurate predictions for certain drugs, and
there is no conclusive evidence about the dominance of a particular modeling technique
(Azuaje, 2017). Such limitations may be partially explained by a lack of sufficient molecular
information to account for the complexity of cell lines and their drug responses, choice of
surrogate measures of drug sensitivity and inconsistencies of sensitivity data between the
CCLE and GDSC (Haverty et al., 2016; Investigators, 2015; Safikhani, 2017). The latter may
also partly explain the overall degradation of predictive performance when training models

on the CCLE and testing them on the GDSC.

Dr.Paso generates sensitivity scores based on a multiple linear regression model. We, as
others elsewhere, have shown that relatively less complex regression models can offer
comparable, and in some cases better, prediction performance than those models based on
larger sets of learning parameters. Dr.Paso’s predictive capacity is grounded in an unbiased
network-guided selection of model inputs (47 genes) prior to the fitting of the regression
model. Such a discovery process was shown to be both statistically- and biologically-
meaningful. Apart from our multiple linear regression, we applied other regression
techniques, e.g., support vector machines and neural networks, but decided to focus our
investigation on a model with relatively lower complexity. Collectively, Dr.Paso is based on
a biomarker discovery and prediction-making methodology that is both biologically-driven

and statistically-powerful. New investigations, motivated by new datasets and clinically-
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oriented questions, are certainly envisaged and are expected to include new biomarker

discovery and prediction modeling strategies.

Notwithstanding recent advances in the field, there is a need to make executable models
accessible to the research community to enable new investigations, including new
applications and comparative analyses among different techniques. Here we offer Dr.Paso
as a publicly-accessible online tool. While further investigations are needed, our study offers
further evidence of the potential of computational models for predicting anti-cancer
sensitivity. In the short-term, our findings will enable new pre-clinical research applications

and may provide a new perspective for bringing such models closer to the clinic.

Methods

Identification of 47 genes with drug sensitivity predictive potential

The published pre-processed CCLE (microarray) gene expression and drug sensitivity
datasets were obtained from the CCLE website. In the gene expression dataset, we focused
on genes with symbols, calculated their standard deviation (SD) across all samples (1037)
and ranked them based on their SD. For further analyses, we selected the most variable
genes: 177 genes with SD values above the 99" percentile of the SD value distribution. We
computed the gene-gene (Pearson) correlation coefficients between all the 177 genes and
merged them into a single gene expression correlation network. We applied WiPer (Azuaje,
2014) to this fully-connected weighted network to detect highly connected nodes (hub
genes). For each network node, WiPer computes the weighted degree and a corresponding

P-value to assess the significance of the observed values, and adjusts it for multiple testing.
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Genes exhibiting (Bonferroni adjusted) P< 0.05 were considered hubs (47 genes). Drug
sensitivity information was not used to select hubs. The resulting 47 genes were examined
with different Gene Ontology (GO) and biological pathway analysis tools (below). For each
hub gene, we estimated the correlation of its expression profile (across all samples) with the
activity area (AA) values available from all sample-drug combinations. The AA was
formulated by the CCLE to approximate the efficacy and potency of a drug simultaneously
and is inversely correlated with the IC50 (Barretina et al., 2012). We compared hubs and
non-hubs on the basis of such individual expression-sensitivity correlations. Visualizations
and unsupervised clustering of hubs and cell lines described by hub expression values were

implemented with different open-source tools (below).

Training and testing of prediction model

We represented each CCLE sample (cell line-drug combination) with the expression values
of the 47 hub genes and their corresponding AA values. We focused on samples with
complete expression and AA data. The resulting set of 10981 samples was used for training
and testing regression models. The dataset was standardized by re-scaling each gene so
that each gene has mean and standard deviation of 0 and 1 respectively. For each model,
we implemented 10-fold cross-validation (CV) for separating training from testing and for
assessing prediction performance. We also used leave-one-out CV (LOOCV) and similar
prediction performance results were obtained. Diverse regression techniques with different
levels of complexity were investigated. We focused on a multiple linear regression model
with Ridge regularization (Ridge parameter = 1E-08) because its performance (regression
errors) was better than or comparable to those obtained with other techniques, such as

support vector machines and k-nearest neighbors, and because of its interpretability in
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comparison to relatively more complex models. The accuracy of model predictions was
assessed by measuring their (Pearson, Spearman and Kendall) correlations with the
observed values in the CCLE, the root-mean-squared error (RMSE) and a concordance
index. The latter approximates, for a random pair of samples, the probability of correctly
predicting which sample is more (or less) sensitivity than the other (Harrell et al., 1996). A
concordance index equal to 0.5 indicates that the model's performance is comparable to

that from a random predictor, while an index equal to 1 represents the perfect predictor.

Independent evaluation on the GDSC dataset

Raw expression data were obtained from the ArrayExpress database (accession number E-
MTAB-3610) and drug sensitivity (natural logarithm of the IC50 in uM, LNIC50) were
downloaded from GDSC database (http://www.cancerrxgene.org, release-5.0). We
normalized raw expression data with the RMA function of R/oligo package (Carvalho and
Irizarry, 2010). Then we averaged the resulting log2 probe-set intensities to estimate the
expression of each gene. Associations between probe-sets and gene symbols were
obtained through the hgu219.db annotation package (Carlson, 2016). For each cell line-
drug experiment available (sample), we retrieved the expression data for the 47 genes used
as inputs to our prediction model and retrieved the corresponding drug sensitivity. We
focused on the 16 drugs found in both this and the CCLE dataset. This resulted in a dataset
consisting of 9984 samples, each one represented by 47 gene expression values and one
LNIC50 value. We standardized expression data as in the case of the CCLE dataset,
reformatted the file and input it to the CCLE-derived prediction model (further information
below). For each sample in the dataset, the model predicted a drug sensitivity score

(approximation of AA). We compared predicted vs. observed values using the indicators
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applied to the CCLE dataset analysis. We adapted the concordance index to account for the
fact that AA and LNIC50 are expected to be anti-correlated, i.e., for a given sample,
concordance is achieved when a high (predicted) AA value corresponds to a low (observed)

LNIC50 value, and vice versa.

GBM cell lines and expression data for in vitro validations

U87 cells were obtained from the ATCC (Rockville, USA) and were cultured as monolayers
in DMEM containing 10% FBS, 2 mM L-Glutamine and 100 U/ml Pen-Strep (Lonza). GBM
stem-like cultures (NCH421k, NCH601 and NCH644) were kindly provided by Christel
Herold-Mende (University of Heidelberg, Germany) and were cultured as 3D non-adherent

spheres as previously described (Abdul Rahim et al., 2017; Sanzey et al., 2015).

We measured the (baseline) gene expression of 4 GBM cell lines using microarrays (6 U87,
6 NCH421k, 3 NCH644 and 3 NCH601 biological replicates), as reported in (Sanzey et al.,
2015). For our model’s 47 genes, we also replicated gene expression measurements using
gPCR for U87, NCH421k and NCH644 cell lines (each one in triplicate). RNA was extracted
from 10° cells using TRI Reagent® (Sigma-Aldrich). RNA isolated in the aqueous phase with
a Phase lock gel-Heavy (5 Prime) was precipitated with 100% isopropanol and purified using
RNeasy® Mini kit combined with an on-column DNase treatment (Qiagen). For the gPCR,
RNA was reverse-transcribed into cDNA using Superscript [II™ (Invitrogen) following
manufacturer’s instructions. gqPCR was performed in 96-well plates using SYBR® Green
Master Mix (Bio-Rad) and CFX-96 thermal cycler (Bio-Rad). Normalized gene expression
levels were calculated using the CFX manager 3.1 software (Bio-Rad) via the delta-delta Cq

method with “Hspcb, Rps13, 18sRNA” as reference genes and taking into account the
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calculated amplification efficiency for each primers pair. We provide a MIQE-compliance

checklist table as a supplemental item.

Drug sensitivity predictions and in vitro validation on GBM cell lines

The gene (microarray) expression dataset was standardized as above. Each sample,
represented by a 47-gene (microarray) expression profile, was input to the prediction model
and a drug sensitivity value was predicted for each one of them (18 samples in total), for
each of the 24 drugs included in the model. Predicted values were compared between them
to determine their relative differences in terms of cell lines and drugs. Next, these predictions
were compared to the in vitro sensitivity values that were obtained as follows. We tested 4
drugs: Paclitaxel (Sigma-Aldrich), Panobinostat, 17-AAG and Erlotinib (Selleck Chemicals)
independently on the selected 4 GBM cell lines with 8 drug concentrations. For each cell
line and dose, we performed treatment experiments in triplicate (i.e., 3 treated biological
replicates / dose). As a measurement of drug sensitivity, WST-1 (Sigma-Aldrich) cell viability
assays were implemented. U87, NCH421k, NCH644 and NCH601 cell lines were seeded
into 96-well plates at densities of 1,500, 5,000, 4,000, 6,000 cells per well, in appropriate
culture medium (Sanzey et al., 2015). Cells were incubated, 24h hours after seeding, with
the 8 different drug concentrations ranging from 10uM to 6.1 x 10-4 uM, with a final volume
of DMSO not exceeding 0.1% and each condition was tested with 6 technical replicates.
After 72h incubation, WST-1 reagent was added in medium to a final concentration of 10%.
Adherent cell line (U87) was incubated at 37°C for 2 hours and 3D sphere stem-like cell
lines (NCH421k, NCH644 and NCH601) were incubated at 37°C for 6-8 hours. Absorbance
was measured against a background control at 450nm on a FLUOstar OPTIMA Microplate

Reader (BMG LABTECH). Using the normalized viability measurements, we generated drug
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dose-response curves and estimated IC50 values (uM) for each sample-drug combination.
The dose-response curves were fitted with a four-parameter logistic regression model,

whose parameters were calculated using GraphPad Prism 7 (GraphPad).

Software and Dr.Paso’s Web-based tool

We used the R statistical environment for data analysis and visualization (www.r-
project.org), packages: ggplot2, pheatmap, MASS and SNFtool (Wang et al., 2014).
Concordance indexes (Harrell et al., 1996) were calculated based on rescaled Kendall rank
correlation coefficients, which were also used to estimate confidence intervals (by Fisher’s
transformation). For network analyses, we applied Cytoscape for visualization (Shannon et
al., 2003), MINE for similarity exploration (Reshef et al., 2011) and WiPer for network hub
identification (Azuaje, 2014). REVIGO (Supek et al., 2011) and g:Profiler (Reimand et al.,
2007) were applied for biological process and pathway enrichment analyses. The Weka
workbench was used for building and testing regression models (Frank, 2016; Hall, 2009),
and GraphPad Prism ( ) for analyzing drug response curves. We provide
researchers with a Web-based application to enable them to predict anticancer drug
sensitivity using their own (47-gene) transcriptomic data. The tool is based on the R/Shiny
package ( ). Although this package offers useful functionality for
generating an interactive user interface, we customized available code using the R/Shinyjs
package ( ). Users can input pre-processed expression
datasets. Alternatively, our application can also implement z-score rescaling of the input
data. Figures containing the prediction results can be downloaded and stored as either png
or jpeg files. Results are also shown as tables with sample-specific predictions (in rows) with

their corresponding drugs (in columns), and may be stored as either csv or tsv files.
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Figure S1. Statistical enrichment analysis of biological processes and pathways in
the set of 47 network hubs. Related to Figure 2B. An alternative visualization of functional
enrichments using G:Profiler (Reimand et al., 2007). As shown in Figure 2B, our set of 47
hub genes (columns) is significantly associated (at corrected P-value = 0.05) with a diversity
of biological processes and pathways (rows). Each colored cell represents the association
between an individual gene and a functional annotation. Colors are used to specify the
evidence type of the observed association: & Inferred from experiment, BlEll: Direct assay
/ Mutant phenotype, ¥ Traceable author, [l: Electronic annotation, additional information
at http://biit.cs.ut.ee/gprofiler.
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Figure S2. Alternative visualizations and unsupervised clustering of CCLE and GDSC
cell lines on the basis of their 47-gene profiles. Related to Figures 2D and 4A. Spectral
clustering analysis was applied using the SNFtool (Wang et al., 2014) to independently
explore the potential of the 47 genes’ expression data to segregate (cell line-drug
experiment) samples. A. CCLE and B. GDSC results. In A. and B., rows and columns in
each heatmap represent samples and genes respectively, and color represents gene
expression intensity. To facilitate visualization, clustering results for different numbers of
clusters (K) are provided as independent plots. Note that the order of the rows in each
clustering (plot) is not preserved. In each plot, additional columns (right side) representing
the drug sensitivity of the samples against Erlotinib ad Paclitaxel are illustrated.

23
88


https://doi.org/10.1101/237727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237727; this version posted December 21, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o
9
k3!
el
e
o

2-

0- _ Correlation: 0.86 (p-value: < 0.00001)

Adjusted R-squared: 0.73 %)-value: <2.2e-16)
RMSE: 0.80
0 2 4 6 8
Actual
B

64

"
gl
2
3
o

0
Actual_IC50

Figure S3. Predicted vs. actual sensitivity values in the CCLE and GDSC datasets
Related to Figures 3A and 4B. Alternative visualization to those shown in Figure 3A. A.
CCLE plot (n=10981). B. GDSC plot (n=9984).
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Figure S4. The 47-gene signature distinguishes cell types and is reproducible.
Related to section: “Independent in vitro validation on several cell lines and
compounds”. Gene expression of 47 genes in 3 GBM cell lines using microarrays and
gPCR. Analysis peformed to verify the robustness and platform-independent replicability of
the 47-gene expression data and its capacitiy to distinguish between cell lines.
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Figure S5. Boxplot summary of prediction results for 4 drugs (Erlotinib, 17-AAG,
Panobinostat and Paclitaxel) and 4 GBM cell lines. Related to Figure 5B. Ech cell line
type comprises multiple biological replicates (18 samples in total): 6 U87, 3 NCH644, 3

NCH601 and 6 NCH421k samples.
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Figure S6. Drug response curves for the 4 drugs tested on the 4 GBM cell lines.
Related to Figure 5C. Drugs were tested on each cell line in triplicates, and relative viability
(vs. vehicle-treated samples) was measured for 8 drug concentration values (shown here

as Log[uM])).


https://doi.org/10.1101/237727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237727; this version posted December 21, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ITEM TO CHECK IMPORTANCE CHECKLIST

Definition of experimental and control groups UB7, NCH421k, NCH644 cell lines

Number within each group
‘Assay carried out by core lab or investigator's lab?
Acknow\edgemen\ of authors’contributions

n=3

olo|m|m

Descnp\mn U87. NCH421k. NCH644 cell lines cf. Sanzev M et al. PLoS One 2015 article.
of sample processed 2] 1 x10° cells per sample
or NIA
Processing procedure Cells were washed and counted in PBS_(without Ca++ and Mg++). 1 x 106 cells were in TRI Reagent®, snap-frozen and then stored at -80°C
iffrozen - how and how quickly? Samples were snap-frozen in TRI Reagent® and stored at -80°C

Iffixed - with what, how quickly? NIA
Sample storage conditions and duration (especially for FFPE samples) Samples were stored in TRI Reagent® at -80°C until RNA extraction
[ NUCLEIC ACID EXTRACTION

Total RNA was extracted from 1 x 10° cells with a TRI Reagent® (Sigma-Aldrich) isolation protocol. Aqueous phase was isolated with Phase lock gel-Heavy (5 Prime, Gaithersburg, MD). Total]

Procedure and/or instrumentation E RNA was precipitated with 100% isopropanol and purified with a RNeasy® Mini kit combined with an on-column DNase treatment following the manufacturer's instructions(Qiagen, Valencia,
CA).
Name of kit and details of any E TRI Reagent® - RNeasy® Mini kit_combined with an on-column DNase treatment following the truct
Source of additional reagents used D Chloroform (Merck); Ispropanol (Merk); Ethanol (Merck); Nuclease free water (Life T
Detais of DNase o RNAse reaiment RNeasy® Mini kit_combined with an on-column DNase treatment following the
(DNA or RNA) DNase treatement + Bioanalyzer + primers flanking intron + Negative controle (RT & GPCR)
Nuclewc acid Nanodrop
Instrument and method Nanodrop
Purity (A260/A280) D AIRNA sample :_Purity (A260/A280) =2
Yield D
RNA integrity E Bioanalyzer
RIN/RQI or Cq 0(3‘ and 5 transcripts E AIRNA sample : RIN29
D
inhibition testing (Cq dnumns spike or other) E The standard curve perfomed o check primers efficiency has been considerred surmem 10 rule out the presence of inhibitors of reverse transcrition activity or PCR.

1pg of RNA were reverse transcribed into cDNA using the SuperScript lll (Invitrogen, Carlsbad, CA) reverse transcriptase with the following protocol: RNAs were mixed with random primers,
oligo (dT)12-18 and dNTPs in a total volume of 13yl. Samples were heated to 65°C for 5 min and incubated on ice for at least 1min. Then the 5X RT buffer, DTT, RNaseOUT and SuperScript
Iil was added to a total volume of 20pl. RT was allowed at 50°C for 60 min. and was followed by enzyme inactivation at 70°C for 15 min. Final concentrations were: 100ng of oligo(dT)12-18,

Complete reaction conditions E 50ng of random primers, 0.5mM dNTPs, 50mM Tris-HCI, 75mM KCI, 3mM MgCI2, 5mM DTT, 40U of RNaseOUT and 200U of SuperScript lll. To remove RNA complementary to the cDNA,

2U of E.coli RNaseH was added and incubated at 37°C for 20 minutes. In each RT-PCR a no template control (no RNA in RT) were performed.

Amount of RNA and reaction volume E 1319 RNA 204 reaction volume

Priming (if using GSP) and E Random primers : 2.5ng/l Oligo(dT),»..s : 5na/ul (final

Reverse and E il (invitrogen) : 10U/l (final
RNASs were mixed with random primers, oligo (dT)12-18 and dNTPs in a total volume of 13pl. Samples were heated to 65°C for 5 min and incubated on ice for at least 1min. Then the 5X RT

Temperature and time E buffer, DTT, RNaseOUT and SuperScript il was added to a total volume of 20l RT was allowed at 50°C for 60 min. and was followed by enzyme inactivation at 70°C for 15 min. To remove
RNA 1o the cDNA, 2U of E.coli RNaseH was added and incubated at 37°C for 20 minutes.

Vanutacturer of reagents and catalogue numbers o Life Technologies : SuperScript il (Cat. 18080-085), Oligo(dT) .1, primer (18418-012), Random primers (Cat. 48190-011), 10mM dNTP Mix (18427-013), RNaseOUT 40U/l (10777-019),

E.coli RNaseH (AM2293)
Cas with and without RT D‘ N/A - DNase iealement + primers flanking inron + Melt Curve
Storage conditions of CDNA
|GPCR TARGET INFORMATION
If multiplex, efficiency and LOD of each assay.
Sequence accession number
Location of amplicon

Amplicon length

In silico_soecificitv screen (BLAST. etc)

or other homologs?

%
S
S

NIA
see additional file X-A
see additional file X-A
see additional file X-A
Beacon Desianer Pro 8.10 software (Premier Biosoft) + NCBI BLAST tool

Sequence alignment
‘Secondary structure analysis of amplicon
anaﬂnn of each primer by exon or intron (if applicable)
hat splice variants are targeted?
qFLR OLIGONUCLEOTIDES

see additional file X-A
see additional file X-A_cf. Accession number

m|m|o|o|o|m|m|o|m|m

Primer sequences see additional file X-A
RTPrimerDB Number D
Probe sequences D™ NIA

ocation and Adenmy ofany

EUROGENTEC (Seraing, Belgium)
RP-Cartridge - Gol

o|o|m

Purification me!hud

cDNAS obtained from RT of RNA were diluted 10-fold and 4pL were mixed with SYBR®Green Master Mix (Bio-Rad, Nazareth, Belgium) to a final volume of 20uL containing 300nM of each

primer. Amplification was carried out i the CFX96 thermal cycler (Bio-Rad) under the following conditions: heating for 3 minutes at 95°C, 40 cycles of denaturation for 30 seconds at 95°C,
Complete reaction conditions E followed by an annealingfextension for 1 min. After each run a Melting curve analysis was performed, ramping from 55°C to 95°C in 20min. A negative control without cDNA template was run
in every assay and measures were performed in duplicates.
Reaction volume and amount of cONAIDNA 4 cDNa diluted 10fold / 20, reaction volume
Primer, (probe), Mg+ and dNTP. 300nM of each primer + SYBREGreen st i
Polymerase Adenmy and Tag DNA polymerase in fin 5 Ujml
3u“97/kll \demlty SYBR®Green Master Mix (Biorad, Nazarelh Belgium) (Cal 1708885)
ical consfitution of the buffer D 2xqPCR mix contains : dNTPs, 50 U/ml iTag DNA 6 mM MqCI2. SYBR Green |, enhancers, stabilizers, 20 nM fluorescein
Addmves (SVBR Green |, DMISO, etc.) E
and catalog number ) BioRad - HSP9655
heating for 3 minutes at 95°C, 40 cycles : denaturation for 30 seconds at 95°C, followed by an annealinglextension for 1 min
Complete thermocycling parameters E o After each run a MZIIHL] curve analysis was performed, ramping from 55”Cy 10 95°C in Z%mm
Reaction setup D
Manufacturer of GPCR instrument E CFX thermal cic\er iEluRad
Evidence of (from gradients) Anneling aradients
Gene-specific amplification was confirmed by a single band in 4% E-Gel” (Life technologies).
Specificity (gel, sequence, melt or digest) E Melt Curve analysis were performed in each assay.
No template controls(no cDNA in GPCR) were run for each gene to detect unspecific and primer
For SYBR Green I, Cq of the NTC E No amplificion sianal detected
Standard curves with slope and y-intercept E see additional file X-A
PCR efficiency calculated from slope E see additional file X-A
Confidence interval for PCR efficiency or standard error )
12 of standard curve E see additional file X-A
Linear dynamic range E see additional file X-A
Cq variation at lower fimit E see additional file X-A
Confidence intervals throughout range )
Evidence for limit of detection E see additional file X-A
e shicenc adlob e £

DATA ANALYSIS

Z
>

aPCR analys\s program (source, version) CFX manager 3.1 software (Bio-Rad)

Caq method determination The threshold is determined using the regression method.

‘This mode applies a multi-variable, non-linear regression model to individual well races and then uses this model to compute an optimal Cq value.

Outler identification and disposition ad replicates were retested and below LOD were discar
Results of NTCs No amplifiction sianal detected
Justification of number and choice of reference genes 8 reference aenes were tested. Data was carried out against three reference aenes: Hsoch. Rps13, 18SRNA. see additional file X-B
Description of normalisation method Normalized expression was calculated using the CFX manager 3.1 software (Biorad) via the AA-Cq method,

taking into account the calculated efficiency for each primers pair,

Number and concordance of biological replicates
Number and stage (RT or GPCR) of technical replicates

GPCR reactions were performed in duplicates
For each sample, standard deviation (SD) for the Cq variation between replicates has been used to express intra-assay variation
Instrument and liquid handeling variations were shown to be minimal

Repeatability (intra-assay variation)

Reproducibility (inter-assay variation, %CV)

Power analysis
Statistical methods for result

Software (source, version)

Cq of raw data submission using RDML

Refer to Methods section of article
Refer to Methods section of article

o|m|m|ojo| m |mlo| m |m|m|{m| m |m

Table 1. MIOE checklist for authors, reviewers and editors. All essential information (E) must be submitted with the manuscript. Desirable
information (D) should be submitted if available. ff using primers obtained from RTPrimerDB, information on qPCR target, oligonucleotides,
protocols and validation is available from that source.

*: Assessing the absence of DNA using a no RT assay is essential when first extracting RNA. Once the sample has been validated as
RDNA-free, inclusion of a no-RT control is desirable, but no longer essential.

= Disclosure of the probe sequence is highly desirable and strongly encouraged. However, since not all commercial pre-designed assay
vendors provide this information, it cannot be an essential requirement, Use of such assays is advised against.
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A- MIQE gPCR primers informations

Gene Name Accession number Foward primer sequence (5'>3) Reverse primer sequence (5'>3") Primers location Amplicon (pb) Standard curves PCR efficiency (%) r2
18sRNA NR 003286 CAGGATTGACAGATTGAT TTATCGGAATTAACCAGAC only one exon 97 y=2.977 x -3.175 106.50% 0.999
AMIGO2 NM 001143668, NM_181847 TTCTGGATTCTGAGTGGATTC TGCTGGTGATGTTGTTATGA F : E2(ou3) - R: E2(0ou3) (same exon) 78 y=19.694 x -3.325 99.90% 0.996
ANXAL NM 000700 TCGCAGAGTGTTTCAGAA TCTCAATGTCACCTTTCAAC F:E8/9 (Intron 887pb) - R:E9 86 y=11.534 x -3.189 105.80% 0.999
ARHGAP29 NM_004815 AAGAACACTGACTCTATCG CTCCAATTCCAAGTTAAGC F:E7 - R:E7/8 (Intron 1066pb) 108 y=18.879 x -3.448 95.00% 0.998
C190rf33 NM 033520 TCCAAAGCAAGGACACCA TGGGACTTCACATCCGTG F:E 2/3 (Intron 133pb) - R:E3/4 (Intron 158pb) 75 y= 18.655 x -3.268 102.30% 0.996
CAV1 NM_001172895; NM_001172896; AGATCGACCTGGTCAACC GCAATCACATCTTCAAAGTCAATC F:E 2(ou 1) - R:E 2/3 (oul/2) (Intron 32256pb) 76 y=14.398 x -3.308 100.60% 0.999

NM_001172897; NM_001753
NM_001206747; NM_001206748; . . . _
CAV2 NM:001233; NM_195212 CAAGTCTATAATGTGAGTAGT TTATTCCAGTTCAATCATCA F:E3-R:E3 (3UTR) 190 y=18.621 x -3.566 90.70% 0.997
COL4A1 NM 001845 AGGGACAAATGGGCTTAA TTCTTGAACTTGAGCTTGT F:E11/12 (Intron 501pb) - R:E13 (Intron 1359pb) 101 y= 18.405 x -3.331 99.60% 0.998
CTGF NM_001901 GCTGACCTGGAAGAGAAC AAACTTGATAGGCTTGGAGAT F:E4 - R:ES (Intron 388ph) 75 y=17.593 x -3.42 96.10% 0.996
CXCR4 NM _001008540; NM 003467 GAGGCAGATGACAGATAT AATACCAGGCAGGATAAG F : E1(ou2) - R: E1(ou?) (same exon) 105 y=17.432 x -3.254 102.90% 0.996
CYR61 NM_001554 AATGAATTGATTGCAGTTG TGTAAAGGGTTGTATAGGA F:E3 - R:E4 (Intron 131pb) 89 y=17.355 x -3.158 107.30% 0.998
DKK1 NM 012242 TATCACACCAAAGGACAA GTCTAGCACAACACAATC F:E3-4 (Intron 118pb) - R:E4 76 y=19.432 x -3.335 99.50% 0.999
DKK3 e aM-01325%: AAAGCATCATCAGAAGTG TGTTGGTTATCTTGTGAAT F:E3 - RE3/4 (Intron 3520pb) 124 y= 17.042 x -3.292 101.30% 0.999
EMP1 NM_001423 AATGTCTGGTTGGTTTCC GCATCTTCACTGGCATAT F:E2/3(Intron 1890pb) - R:E3/4 (Intron 105pb) 104 y=13.964 x -3.231 104.00% 0.999
F3 NM 001178096; NM 001993 CGTCAATCAAGTCTACAC TTCACATCCTTCACAATC F:E2 - R:E3 (Intron 4092pb) 117 y=19.464 x -3.087 110.80% 0.998
NM_001039492; NM_001450; . . _
FHL2 NM_201555; NM 201557 AGACTGCTATTCCAACGA CCTTGTACTCCATCTTGC F:E3/4/5 - R:E 4/5/6 (Intron 5819pb) 86 y=15.448 x -3.295 101.20% 0.999
FOSL1 NM 005438 TCCCTAACTCCTTTCACC CTGCTACTCTTGCGATGA F:E4-R:E4 86 y= 13.047x -3.245 103.30% 0.999
NM_001042481; NM_001267046; . . _
FRMD6 NM:001267047; NM:152330 CTACATCACAGAGGACAT GACCCAATTTCTTTCACA F:E3/12/13 - R:E 4/13/14 (Intron 3698pb) 75 y=18.423 x -3.454 94.80% 0.999
FSTL1 NM 007085 CTGCCATCAATATTACAAC TTCATCAGACAGTTCAAT F:E7 - R:E8 (Intron 1498pb) 92 y=15.296 x -3.351 98.80% 0.992
GNG11 NM_004126 GAAGATTTGCCAGAGAAG ACATTTAGACACTTGTTGT F:E1 - R:E1/2 (Intron 3857ph) 90 y=12.903 x -3.283 101.60% 1.000
GPRC5A NM 003979 CTCAACTCGTGAAGAAGA GAAAATGTGTGGAATAGGG F:E2 - R:E3 (Intron 2912pb) 117 y=18.350 x -3.274 102.00% 0.999
GPX8 NM_ 001008397 CTTCCACAAGATTAAGATTC GTTGACAAGATACTTCCA F:E2 - R:E3 (Intron 2799pb) 109 y=15.841 x -3.334 99.50% 0.999
NM_001271969; NM_001271970;
HSPCB NM_001271971; NM_001271972; |AAGCATTCTCAGTTCATA TCTTCTTCTTATCCTTACC F:E5 - R:E 6 (Intron 136) 193 y=11.415x -3.323 99.90% 0.999
NM_007355
HTRA1 NM 002775 ATCATCAACTATGGAAAC GATACCAATATACTTCTTCT F:E4 - R:E6 (Intron 484-1253pb) 192 y= 15.354x -3.368 98.10% 1.000
IGFBP3 NM_000598; NM_ 001013398 CGGGAGACAGAATATGGT CAGCACATTGAGGAACTT F:E2-3 (Intron 545pb) - R:E3 75 y=19.317 x -3.354 98.70% 0.999
IGFBP6 NM 002178 CCCTCCCAGCCCAATTCT CAGCACTGAGTCCAGATGTCT F:E2 - R:E3 (Intron 183pb) 75 y= 14.322 x -3.307 100.60% 1.000
LAMB1 NM 002291 ATTATCTGACACAACTTC AATACTTGGTAATGCTATC F:E26 - R:E27 (Intron 1436pb) 164 y=15.632 x -3.315 100.30% 0.999
LGALS3 NM_001177388;, NM_002306 ATGCTGATAACAATTCTGG CAAACAATGACTCTCCTG F:E4 - R:E5 (Intron 2220pb) 131 y=14.376 x -3.436 95.50% 0.999
NM_001130172; NM_001130173;
NM_001161656; NM_001161657; . .
MYB NM:001161658; NM:001161659; CAACGACTATTCCTATTACC CTGAGGGACATTGACTAT F:E6 - R:E7 (Intron 1279pb) 100 y=16.785 x -3.308 100.60% 0.998
NM_001161660; NM_005375
MYOF NM_013451; NM_133337 ATAGAAGACACGAGATACAC GCTTTCGGATCTGAGTAT F:E21/22 (Intron 2367pb) - R:E 22 79 y=15.903 x -3.228 104.10% 1.000
NNMT NM 006169 CAGTGGTGACCTATGTGT CCTGTCTCAACTTCTCCT F:E4 - R:E5 (Intron 13886pb) 75 y=17.363 x -3.312 100.40% 1.000
NTS5E NM_001204813; NM_002526; GGAATCGTTGGATACACT ACTTATCTACTTCAGGTTGT F:E2 - R:E3 (Intron 3954ph) 106 y= 95.10% 1.000
NTN4 NM 021229 CTGGAAGATGATGTTGTC GGTTCTCTGTATCGTATG F:E2 - R:E3 (Intron 48794pb) 121 y= 100.40% 0.994
PLK2 NM_006622; NM_001252226 GGATGCTATTCGGATGAT ATGGTACTGTCTTCAAGG F:E10 - R:E11 (Intron 246pb) 78 y=17.666 x -3.423 95.90% 0.997
PLOD2 NM 182943; NM 000935 CTAGCAGACAAGTATCCT GAACTATACGGTTGACATAT F:E4 - R:E5 (Intron 3640pb) 94 y=16.960 x -3.311 100.40% 0.999
NM_001136025; NM_001172335;
PLS3 NM_001282337;, NM_001282338; GCTGATGAGAAGATATACC CTCTGAATGGAAGTTGAT F:E13/14 (Intron 1014pb) - R:E14 129 y=15.001 x -3.349 98.90% 0.999
NM 005032
PRSS23 NM_007173 CTCGGCGCGGAACAG CCAACAGCACAGAGCAGAA F:E1/2 (Intron 6979pb) - R:E2 79 y=18.777 x -3.346 99.00% 0.997
NM_001146108; . . _
PTGR1 NM_001146109;NM 012212 GTTGGCTATCCTACTAAT CATCATTGTATCACCTTC F:E2 - R:E4 (Intron 3049/1239pb) 153 y=15.472 x -3.356 98.60% 0.999
PTX3 NM 002852 TGAATTTGGACAACGAAATAGAC ATTCCGAGTGCTCCTGAC F:E1 - R:E2 (Intron 449pb) 84 y=20.26 x -3.573 90.50% 0.997
RND3 NM_001254738; NM_005168 TGTTAGTACATTAGTAGAG AGCATTCGATATAAGTAG F:E5 - R:E6 (Intron 1388pb) 107 y=18.532 x -3.148 107.80% 0.996
RPS13 NM 001017 GTCCCCACTTGGTTGAAG CCATGTGAATCTCTCAGGAT F:E2-3 (Intron182) - R:E 3 113 y=12.185 x -3.344 99.10% 1.000
S100A2 NM_005978 CAAGTTCAAGCTGAGTAAG CTCCTCATCCACTTTCTC F:E2 - R:E3 (Intron 2142pb) 85 y=18.328 x -3.244 103.40% 0.999
SERPINE1 NM 000602 TAGAGAACCTGGGAATGAC GAGGCTCTTGGTCTGAAA F:E6 - R:E 6/7 (Intron 120pb) 75 y=14.046 x -3.274 102.00% 1.000
SNAI2 NM_003068 ACACATACAGTGATTATTTCC GTAGTCCACACAGTGATG F:E1-2/2-3 (Intron 745pb) - R:E2/3 113 y=15.391 x -3.262 102.60% 1.000
SPARC NM 003118 AGGTGACTGAGGTATCTGT TGGTTCTGGCAGGGATTT F:E 3/4 (Intron 1395pb) - R:E4/5 (Intron 1434pb) 115 y=13.713 x -3.308 100.60% 0.996
NM_001170750; NM_001170751; ) . _
SRPX NM7001170752; NM7006307 ATTCTTACTGATGTCATTCT TCTGTCATAGACTGTGTA F:E 4/5 (Intron 3714pb) - R.EE 5 90 y=14.738 x -3.142 108.10% 0.999
TGFBI NM_000358 AGAAGGTTATTGGCACTAAT GCTGATGACTGTTGATTTG F:E2 - R:E 2/3 (Intron 10196pb) 89 y=14.290 x -3.345 99.00% 0.999
TM4SF1 NM 014220 ATTGTGGAATGGAATGTATC ATATTGCTGTTGGTGAGA F:E4 - R:E4/5 (Intron 1806pb) 138 y=15.462 x -3.278 101.90% 0.999
TUBB6 NM_032525 AGAGAATCAACGTCTACTACAATG GGCTCTAAGTCCACCAGG F:E2 - R:E3 (Intron 2147pb) 76 y=14.063 x -3.346 99.00% 1.000
VEGFC NM 005429 AAGGACAGAAGAGACTAT CACATCTATACACACCTC F:E2 - R:E3 (Intron 1564pb) 118 y=16.637 x -3.374 97.90% 0.999

B- MIQE data analysis informations
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Target Stability

Target Coefficient Variance M-Value

Hspcb 0.136 0.333

Rps13 0.119 0.319
18sRNA 0.162 0.371

Average Coefficient Variance: : 0.139
Average M-Value: : 0.341

Coefficient of Variation (CV) of normalized reference gene relative quantities. A lower CV value denotes higher stability
M-value. A measure of the reference gene expression stability
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Linear dynamic range

Cq variation at lower limit

from 1.00E-01 cDNA dilution to 1.00E-08 28.24 +0.389
from 1.00E-01 cDNA dilution to 1.56E-03 28.97 +£0.242
from 1.00E-01 cDNA dilution to 2.96E-05 25.89 + 0.061
from 1.00E-01 cDNA dilution to 1.56E-03 28.52 +0.097
from 1.00E-01 cDNA dilution to 3.91E-04 29.64 +0.258
from 1.00E-01 cDNA dilution to 1.00E-05 30.91 £0.323
from 1.00E-01 cDNA dilution to 3.91E-04 30.57 £ 0.095
from 1.00E-01 cDNA dilution to 1.56E-03 27.67 £0.007
from 1.00E-01 cDNA dilution to 3.91E-04 29.05+0.198
from 1.00E-01 cDNA dilution to 3.91E-04 28.35 + 0.255
from 1.00E-01 cDNA dilution to 7.72E-05 30.17 +0.209
from 1.00E-01 cDNA dilution to 1.56E-03 28.75 £ 0.093
from 1.00E-01 cDNA dilution to 1.60E-04 29.61 £ 0.057
from 1.00E-01 cDNA dilution to 1.00E-04 26.82+ 0.109
from 1.00E-01 cDNA dilution to 3.91E-04 29.89 +£0.118
from 1.00E-01 cDNA dilution to 7.72E-05 29.07 £0.121
from 1.00E-01 cDNA dilution to 1.00E-05 29.27 £0.35
from 1.00E-01 cDNA dilution to 3.91E-04 30.2 £0.140
from 1.00E-01 cDNA dilution to 1.00E-05 32.48 £ 0.861
from 1.00E-01 cDNA dilution to 1.00E-05 29.32 £ 0.249
from 1.00E-01 cDNA dilution to 8.00E-04 28.51 + 0.063
from 1.00E-01 cDNA dilution to 1.95E-04 28.18 £ 0.26
from 1.00E-01 cDNA dilution to 1.98E-06 30.55 +0.236
from 1.00E-01 cDNA dilution to 1.95E-04 27.81 + 0.046
from 1.00E-01 cDNA dilution to 3.91E-04 30.69 + 0.038
from 1.00E-01 cDNA dilution to 1.00E-04 27.54 +0.008
from 1.00E-01 cDNA dilution to 1.95E-04 27.89 +0.209
from 1.00E-01 cDNA dilution to 7.72E-05 28.58 +£0.21
from 1.00E-01 cDNA dilution to 1.60E-04 29.31+0.285
from 1.00E-01 cDNA dilution to 2.44E-05 30.81 +0.018
from 1.00E-01 cDNA dilution to 8.00E-04 27.59 +0.083
from 1.00E-01 cDNA dilution to 1.00E-05 30.7+£0.112
from 1.00E-01 cDNA dilution to 3.70E-03 28.81 +0.324
from 1.00E-01 cDNA dilution to 3.91E-04 29.34 +0.337
from 1.00E-01 cDNA dilution to 7.72E-05 30.7 +£0.098
from 1.00E-01 cDNA dilution to 7.72E-05 28.83 +£0.049
from 1.00E-01 cDNA dilution to 3.91E-04 30.12 + 0.089
from 1.00E-01 cDNA dilution to 7.72E-05 29.21+0.25
from 1.00E-01 cDNA dilution to 6.25E-03 28.81 +£0.23
from 1.00E-01 cDNA dilution to 8.00E-04 28.43 +0.042
from 1.00E-01 cDNA dilution to 1.00E-04 25.61 +0.076
from 1.00E-01 cDNA dilution to 1.60E-04 30.51 +£0.112
from 1.00E-01 cDNA dilution to 7.72E-05 27.47 £0.162
from 1.00E-01 cDNA dilution to 1.95E-04 27.51+0.144
from 1.00E-01 cDNA dilution to 1.00E-05 30.33 £ 0.855
from 1.00E-01 cDNA dilution to 7.72E-05 27.65+0.171
from 1.00E-01 cDNA dilution to 1.00E-05 31+0.249

from 1.00E-01 cDNA dilution to 1.95E-04 27.54 £0.116
from 1.00E-01 cDNA dilution to 7.72E-05 27.76 + 0.036
from 1.00E-01 cDNA dilution to 4.63E-04 27.78 £ 0.026
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