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ABTRACT

The heterochromatin spreading reaction is a central contributor to the formation of gene-repressive
structures, which are re-established with high fidelity following replication. The high fidelity of this
process is not obviously encoded in the primary spreading reaction. To resolve origins of stable
inheritance of repression, we probed the intrinsic fidelity of spreading events in fission yeast using a
system that quantitatively describes the spreading reaction in live single cells. We show that spreading
from RNAI-nucleated elements is stochastic, multimodal, and fluctuates dynamically across time. In
contrast, a second form of spreading, nucleated by the cis-acting element REIII, is deterministic, has high
memory capacity and acts as the source of locus fidelity. REIII enables fidelity in part by endowing the
locus with resistance to perturbations. Together, our results suggest that epigenetic capacity may not be
intrinsically encoded in the spreading reaction, but rather requires collaboration with specialized memory

elements.
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INTRODUCTION

The formation of gene-repressive heterochromatin domains is critical for genome integrity and for the
establishment and maintenance of cell identity. Most heterochromatin formation occurs by a sequence-
indifferent spreading reaction that propagates heterochromatic marks, structural proteins, and associated
effector proteins outwards from nucleation sites. While this reaction can be treated like the formation of a
template-guided polymer (chromatin), it differs from other cellular polymers because the precise extent of
its formation has critical heritable consequences for cell identity. For example, in early pluripotent
precursors, pre-existing heterochromatin domains spread, sometimes over megabases, to repress
specifiers of inappropriate cell types. Importantly, the final extent of spreading from a locus appears to be
dependent on the lineage pathway and thus varies across different precursors (Wen et al., 2009; Zhu et al.,
2013). Imprecise spreading within a lineage can lead to differentiation defects or disease (Ceol et al.,
2011). Similarly, spreading also specifies cell type in yeasts, where the cell type is maintained by
repressing the mating cassettes at the mating type loci (Ekwall et al., 1991). Despite the centrality of the
spreading reaction in shaping cell identity, its native and intrinsic cellular characteristics, as well as

mechanisms for its inter-generational propagation, have remained opaque.

We have some understanding of how cells inherit silencing at nucleation sites, i.e. the DNA-sequence
driven component of heterochromatin. Recent results in heterochromatin systems signaled by Histone 3
Lysine 9 and Lysine 27 methylation (H3K9me and H3K27me) indicate that several mechanisms act
together to ensure intergenerational inheritance: continuous DNA-mediated recruitment of the histone
methylase (Audergon et al., 2015; Laprell et al., 2017; Ragunathan et al., 2015; Wang and Moazed,
2017) low histone turnover (Taneja et al., 2017) as well as the positive “read-write” feedback loop for
histone methylases. Additionally, studies suggest that either the histone mark (Gaydos et al., 2014) or the

histone methylases (Petruk et al., 2012) can persist trans-generationally.

These insights concerning nucleation sites do not necessarily account for how regions of heterochromatin
distal to these sites are maintained at high fidelity. Unlike nucleation, which depends on DNA based
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enzyme recruitment (Bayne et al., 2010; Verdel et al., 2004), spreading depends on the ability of the
system to propagate along the chromosome, independent of the underlying DNA sequence. Such
propagation requires the “read-write” positive feedback function of the system (Al-Sady et al., 2013;
Margueron et al., 2009; Muller et al., 2016; Noma et al., 2004; Zhang et al., 2008). The reliance on DNA-
sequence indifferent spreading for propagating the heterochromatic state takes on special importance in
situations where modified nucleosomes are less likely to persist. This is the case in the fission yeast
H3K9me-signaled system. Like other model systems, it lacks DNA methylation and, additionally, even
antagonizes persistence of the modified state. This is due to the presence of a putative H3K9me histone
demethylase, Epel, which rapidly erases H3K9 methylation, and thus the heterochromatic state
(Audergon et al., 2015; Ragunathan et al., 2015). Therefore, the domain must be re-formed by spreading
from the original nucleation site every cell cycle (Chen et al., 2008), leaving unresolved the question of

how high-fidelity formation of heterochromatin structures is accomplished.

Resolving this question is further complicated by the lack of consensus on the intrinsic character of the
spreading reaction in cells. It is not certain whether spreading is deterministic (where spreading is
executed to its maximal extent every time nucleation is successful) or stochastic (where only some
nucleation events result in a spreading event). In either case, the outcome may or may not yield intrinsic
stability, where the heterochromatin state persists through divisions. Both hypotheses have support: For
example, early experiments indicated that genetically-disrupted heterochromatin domains are stochastic in
their nucleation or spreading behavior in both flies and in fission yeast (Elgin and Reuter, 2013; Muller,
1930; Nimmo et al., 1994). In contrast, theoretical work suggests that fission yeast heterochromatin
displays fundamentally bistable behavior, indicating that the ‘ON’ and ‘OFF’ states are intrinsically stable
(Dodd et al., 2007). Similar bistable behavior has also been experimentally observed in plants (Angel et

al., 2011; Angel et al., 2015).

To reconstruct how heterochromatin domains reform by spreading with high fidelity, and thereby

maintain cell identity, we have to determine both the intrinsic capacity of the spreading reaction in vivo
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and the cellular pathways that may exist to tune its behavior. The simplified heterochromatin systems in
yeasts, especially S. pombe, are ideal for dissecting how heterochromatin spreading can form and
maintain epigenetic states at loci critical to specifying cellular identity. In this work, we utilized the S.
pombe system to examine heterochromatin formation with a “heterochromatin spreading sensor” (HSS),
which examines spreading separately from nucleation. This advances prior efforts, where only
nucleation-proximal silencing events were detected with one or two reporters (Bintu et al., 2016;
Hathaway et al., 2012; Obersriebnig et al., 2016; Osborne et al., 2009; Xu et al., 2006). Our system
enables precise, quantitative, and specific documentation of both nucleation and spreading reactions in
single cells of S. pombe, allowing us to monitor the intrinsic behaviors of both reactions. Using the HSS,
we show that different nucleators trigger distinct classes of spreading, and collaborate to form a high
fidelity domain. The type of strategy we uncover has important implications for how heterochromatin
spreading achieves and maintains “epigenetic” character and can safeguard cell identity against

environmental perturbations.
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RESULTS

A single cell heterochromatin spreading sensor (HSS) controls for nucleation and cellular noise.

To assess the intrinsic behavior of heterochromatin spreading and its fidelity, we employed
transcriptionally encoded fluorescent reporters to read silencing by heterochromatin at a given locus, as
previously reported. Several critical improvements over prior systems enable documentation of the
spreading reaction at high sensitivity (Bintu et al., 2016; Hathaway et al., 2012; Obersriebnig et al., 2016;
Osborne et al., 2009; Xu et al., 2006). First, our system has high signal to noise and minimized delay
from epigenetic changes to fluorescent output. We accomplish this using the weak, well-characterized
ade6 gene promoter (ade6p) (Allshire et al., 1994; Kagansky et al., 2009) to drive production of bright,
fast-folding fluorescent proteins (XFPs) (Al-Sady et al., 2016). Second, our system provides separate
sensors for nucleation, spreading, and cellular noise. We used ade6p-driven recoded super-folder GFP
(Pedelacq et al., 2006) (“green”) and monomeric Kusabira Orange (Sakaue-Sawano et al., 2008)
(“orange”) to report on nucleation and spreading, respectively (Figure 1A). A third XFP, ade6p-driven
triple fusion of E2Crimson (Strack et al., 2009) (“red”, noise filter), is fully uncoupled from
heterochromatin and inserted in a euchromatic locus. Here it reports on intrinsic or extrinsic noise that
arises from cell-to-cell variation in the content of specific and general transcription factors and also
translational efficiency (Figure 1A). To validate this reporter system, we characterized the non-
heterochromatic state, via null mutation of clr4 (4clr4), encoding the only S. pombe H3K9
methyltransferase. We show that in the absence of heterochromatin, expression of the noise reporter
(“red”) correlates well with that of reporters for both nucleation (“green”) and spreading (“orange”)
(Figure S1A). Thus, cellular noise is controlled by dividing the signals from the proximal “green” and
distal “orange” heterochromatic reporters by the signal of the “red”, euchromatic reporter (“green”/“red”;

“orange”/“red”). Together, these elements constitute our heterochromatin spreading sensor (HSS).
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Spreading from ectopic RNAI nucleators is stochastic and produces intermediate states

To isolate heterochromatin formation from the influence of any regulatory elements that might influence
the reaction, we first studied heterochromatin spreading in an ectopic context. We constructed the initial
ectopic HSS based on a strain where a part of the centromeric RNAI- driven nucleation element (dh) is
inserted proximal to the endogenous ura4 gene (Canzio et al., 2011; Marina et al., 2013). We replaced
the ura4+ ORF with “green” to track nucleation. To monitor spreading, the “orange” spreading sensor
was inserted at one of several downstream sites from “green” (ura4::dhHSS™, ura4::dhHSS*®,
ura4::dhHSS*® ura4::dnHSS™, Figure 1B). The noise filter (“red”) was inserted between SPBC1711.11
and SPBC1711.12, a bona fide euchromatic region (Garcia et al., 2015). All strains were initially
constructed in a 4clr4 background, and we initiated heterochromatin formation by crossing in clr4+. We
assessed heterochromatin formation after ~ 80-100 generations by quantifying the production of “green”
and “orange” as proxies for nucleation and spreading. This period is significantly longer than ~ 25
generations timeframe required for full formation of a heterochromatic domain (Obersriebnig et al.,

2016), ensuring that the population is at equilibrium.

To quantitatively assess the states produced by spreading, we performed steady-state flow cytometry on
log-phase cells, which were size-gated for small, recently divided cells (~91% G2, Figure S1B and
supplemental experimental materials) to remove size- and cell cycle-related effects. We observed that
cells populate a wide range of nucleation states rather than a single state, with the distribution of repressed
states varying among the HSS distance sensor strains (ura4::dhHSS**, Figures 1C and S1C). To
specifically examine cells that have fully nucleated, we applied a computational *“nucleation clamp” that
isolates cells with a “green” signal that is lower than the mean plus two standard deviations of wild-type
cells containing no XFPs (see Supplemental Methods). We find that spreading is stochastic in fully
nucleated cells, with some cells exhibiting full repression, but others partial or no repression of the
spreading reporter. The proportion of cells that are fully repressed by spreading declines linearly with

distance (Figure 1C; compare with scheme in Figure 1B). Intriguingly, cells that are not fully repressed
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usually exhibit intermediate levels of repression, where the mean repression shifts progressively towards

maximal de-repression as a function of distance in an analog manner.

We next assessed the nature of these intermediate states in the 3kb distance reporter strain, where ~30%
of cells had maximal repression at the “orange” locus and the remainder had intermediate states ranging
from strongly to weakly repressed. Using Fluorescent Activated Cell Sorting (FACS), we gated for
successful nucleation in the “green” channel and then binned the “orange” channel for fully repressed
(low), intermediate and de-repressed (high) populations (Figure 1D, cartoon). We queried each bin for
molecular events associated with heterochromatin formation, using RT-gPCR to determine the expression
levels of “orange”, and Chromatin Immunoprecipitation (ChIP) to query the presence of the marks
H3K9me2 and H3K4me3. These marks are thought to be mutually exclusive, associating with repressed
heterochromatin and active promoters, respectively (Noma et al., 2001). The message level of “orange” is
tightly repressed in the “low” population (0.05 of max), partially repressed in the intermediate population
(0.3 of max), and nearly fully “de-repressed” (0.8 of max) in the “high” population. Thus, cells with
intermediate fluorescence also exhibit partial gene repression, demonstrating that these two parameters
are correlated (Figure 1D, RT primers indicated in diagram in 1C, solid line). Histone modification
levels also correlated well with the HSS signals (Figure 1E, ChIP primers indicated in diagram in 1C,
dashed line). The “low” fluorescence population has high H3K9me2 (0.9 of dh, positive control) and low
H3K4me3 (0.09 of actin, positive control); the intermediate population had intermediate H3K9me2 (0.49
of dh) and H3K4me3 (0.23 of actin), and the high population had low H3K9me2 (0.2 of dh) and higher
H3K4me3 (0.44 of actin). Hence, successfully nucleated cells with intermediate fluorescence also exhibit
intermediate amounts of the MRNA for “orange” and histone marks reflecting heterochromatin
(H3K9me2) and transcriptional activity (H3K4me3). These results support the notion that intermediate

states of repression observed by cytometry represent intermediate states of spreading.

These observations are not due to the particularities of the ectopic site chosen or the behavior of the

XFPs, as our results are recapitulated at the his1 locus (his1::dhHSS®*®, Figure S1C), which contains
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only one gene (rec10) in the “spreading zone”, rather than several transcriptional units. Additionally,
switching the nucleation and spreading reporter fluorophores produced similar results (Figure S1C).
These results suggest that RNAi-driven heterochromatin spreading is intrinsically stochastic and
multimodal, producing intermediate states of repression. This behavior is not compatible with the

epigenetic behavior of endogenous heterochromatin loci.
RNAI- and Atf1/Pcrl nucleate two types of spreading reactions at MAT.

We next examined spreading behavior at the endogenous mating type locus (MAT), which has the
hallmarks of a bona fide high-fidelity locus. This locus is very tightly repressed (Grewal and Klar, 1997;
Thon et al., 2002) and is able to faithfully propagate its gene expression state even when partially
disrupted (Grewal and Klar, 1996). The MAT locus has two known heterochromatin nucleators: the
RNAi-dependent cenH element, homologous to the dh fragment we inserted at ura4 and his1, and the
RNAi-independent element termed REIII (Jia et al., 2004; Thon et al., 1999). At REIII, two stress-
responsive transcription factors, Atfl and Pcrl, which form a heterodimer (Wahls and Smith, 1994),
recognize two DNA binding sites within REIII, and directly recruit H3K9 methylase Clr4 and Swi6/HP1
(Jia et al., 2004; Kim et al., 2004). We validated that MAT retains its well-documented tight repression
following insertion of the HSS, placing the “green” reporter within the cenH nucleator, and the “orange”
reporter proximal to the REIII nucleator. Both colors were fully repressed in the large majority of cells
(Figure 2A), which is reproduced when the color orientations are reversed (Figure S2A). However, for
both reporter configurations, the REIII proximal color showed a small proportion of cells that are slightly
de-repressed compared to the cenH internal color, consistent with previous findings (Thon and Friis,

1997). We conclude that the HSS can be used to dissect spreading at the MAT locus.

We then examined spreading in cells nucleated solely by the cenH RNAi-element. The REIII nucleator
was inactivated either by deleting the critical cis-acting Atf1/Pcrl binding sites, to create a strain
designated AREIII™SS (Figure 2B), or by disrupting the trans-acting factor encoded by the pcrl gene
(Figure S2B). Both inactivated REIII strains behaved similarly, but our further analysis uses only
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AREIII™S to avoid complications from inactivating the pcrl-dependent stress response (Watanabe and
Yamamoto, 1996). To our surprise, given the high-fidelity character of the MAT locus, cenH RNAI
nucleated spreading in the AREIII strain behaved almost exactly like spreading from the ectopic RNAI-
driven strains. Spreading was highly stochastic, largely forming intermediate states (Figure 2B). The
higher nucleation efficiency in cenH relative to the ectopic RNAI sites likely reflects the different
placement of the “green” nucleation reporter, within the cenH nucleation element for the MATSS strain
but adjacent to the nucleation element for ectopic reporters. Thus, the two site mutations abrogating
REIII-mediated nucleation, convert the MAT locus from a high-fidelity site to a stochastic, multimodal

locus.

To examine spreading from the intact REIII element, we used the historical 4K strain, where the entire
cenH nucleation element is deleted and replaced with a ura4+ reporter (Grewal and Klar, 1996). We
introduced the HSS into this context (1K™, Figure 2C), using the REIII proximal “green” reporter to
detect nucleation and the distally placed “orange” reporter to detect spreading. Although AKSS has very
weak nucleation compared to strains with intact RNAI elements, its distribution is sharply bimodal: Cells
were either repressed (‘OFF’, lower left corner) or de-repressed (‘ON’, upper right corner; Figure 2C).
The tightly repressed nature of the “orange” spreading reporter is even more obvious when we consider
only fully nucleated cells (green®; Figure 2C inset), where all cells showed a Gaussian distribution
around the value of maximal repression (defined similarly as for the “nucleation clamp” Supplemental
Methods and Figure 2C). This experiment indicates that spreading from the REIII element is
deterministic without detectable intermediate states. Interestingly, REIII is not capable of effective
nucleation and spreading at an ectopic site (Figure S2D). Due to the nature of the cenH deletion in the AK
strain, the REII element, which triggers silencing in an H3K9me-independent fashion (Hansen et al.,
2011), is significantly closer to the “orange” color than in AREIII™SS, To investigate whether REII
contributes to AKHSS behavior, we replaced the REII element with the Saccharomyces cerevisiae LEU2

auxotrophy gene in the AK™SS strain. Importantly, spreading remains deterministic in AK"S AREII:: LEU2
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(Figure S2C), suggesting that REII does not contribute to the AK™S spreading phenotype. We conclude

that deterministic spreading is a hallmark of REIII at the MAT locus.
Multi-generational single cell imaging reveals RNAI-driven spreading to be unstable.

Our measurements thus far cannot reveal the dynamics of transitions between states. This requires long-
term imaging of cells over a substantial number of generations (>20), which is difficult with traditional
microscopy because of cell crowding effects. Here, we use the Fission Yeast Lifespan Micro-dissector
(FYLM) microfluidic device (Spivey et al., 2017; Spivey et al., 2014), which traps the old pole of a rod
shaped S. pombe cell at the bottom of a chamber well for its entire lifetime. Sibling cells generated at the
new pole by medial fission eventually exit the chamber. We continuously image the old-pole cell with
fluorescence microscopy for up to 60hrs (Figure 3A). We note that unlike Saccharomyces cerevisiae, S.
pombe does not execute an aging program but rather dies stochastically (Coelho et al., 2013; Nakaoka and
Wakamoto, 2017; Spivey et al., 2017). Thus, imaging S. pombe over long timescales avoids the
confounding effects of aging on epigenetic behavior (Guarente, 2000; Li et al., 2017). To capture the
long-range dynamics of spreading, we imaged approximately one hundred cell of each strain
concurrently. Cells that maintained nucleation were analyzed further to address spreading (see Figure
S3B for a summary of cell fates). For each cell, we imaged all three channels continuously, and
performed similar normalizations as for the flow cytometry data (supplemental experimental procedures).
We first imaged the HSS distance sensor strain (ectopic ura4::dhHSS®) (Figure S3A). This strain shows
unstable nucleation, consistent with our flow cytometry data (Figure 1C). However, over time intervals
where nucleation persists, we observed dynamic fluctuations in the distal “orange” color without a fixed
temporal pattern (Figure S3A and SVideo 1 and 2), which is not due to the repression state of “green”

(Figure S3F).

Next, we analyzed the MAT locus strains and selected cells that maintained nucleation for their entire
measured lifespan (supplementary methods). Under this constraint, the three strains exhibit vastly
different behaviors (Figure 3B). Wild-type MATHSS cells maintained “orange” repression for the
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majority of their measured lifespans (Figure 3C, S3C and SVideo 3). However, we documented transient
loss of “orange” silencing for 20% of the cells. (Figure 3B and 3C). In contrast, while most cells stay
similarly nucleated in AREINISS (Figure 3D, S3D) 83% of the cells imaged experienced at least half-
maximal “orange” de-repression at some time points (Figure 3B). For this strain, 30% of the cells
transited through the fully ON state (Figure 3B, 3D, S3D and SVideo 4). In fact, cells sampled a wide
range of values from OFF to fully ON, indicating that cells do not occupy ON or OFF states exclusively,
but adopt intermediate values across time (Figure 3D). Importantly, AREI1S cells, just as
ura4::dnHSS®® cells, fluctuate in their “orange” values, indicating that spreading adopts a random walk
type behavior. To analyze AK"SS cells, which exist predominantly in fully “green” and “orange” ON state
(Figure 2C), we isolated OFF AK"SS cells by first streaking for single OFF colonies. OFF-enriched AK"SS
behaved markedly differently from AREINIFSS: in all of the cells analyzed, “green” and “orange” reporters
remained OFF throughout the whole time course (Figure 3B, 3E, S3E and SVideo 5). These data indicate
that maximal spreading in these cells is fully maintained in a tight manner up to 25 generations, revealing

a fundamentally different dynamic behavior in the spreading from cenH or REIII.
Memory formation at MAT is dependent on REIII.

To probe memory capacity (i.e., the ability of cells to retain information of an ancestral state established
many generations prior) we compared cells containing an intact MAT locus to those lacking either RNAI-
or REIlI-nucleated spreading. We established two ancestral states (Figure 4A) with either unperturbed
heterochromatin or with fully-disrupted heterochromatin using the HDAC inhibitor trichostatin A (TSA,;
full erasure after 10 generations of treatment, Figure S4). Following production of the ancestral states, we
grew cells either in rich media alone or in a TSA concentration gradient for 25 generations and then
measured the fraction of fully nucleated cells that effectively silence the “orange” spreading marker
(Figure 4A). If the fraction of the population with full spreading (“orange”°) depends on the ancestral
state, then cells exhibit memory. Memory is indicated by separation of the unperturbed (light orange) and

perturbed (red) lines, whereas no memory is indicated by convergence of the two lines (graphs in Figure
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4B-D). We further defined the relative “persistence” of the heterochromatin spreading as the degree to
which a strain maintains “orange”°"F along the TSA concentration gradient. Persistence is quantified as
the TSA concentration at which the fraction of cells with “orange”° " declines to 50% of the no TSA
pretreatment value (analogous to an EC* value). This experimental setup allows us to directly measure

the balance between history dependence, or memory, and sensitivity to perturbation.

As expected, wild-type MAT"SS exhibited obvious memory at 25 generations (Figure 4B), which was still
weakly evident even at 35 generations (Figure S4C). Among fully nucleated (“green”°"F) cells, those that
derived from untreated ancestral cells showed a greater fraction of silencing (“orange”°") than those
derived from treated cells throughout the entire TSA gradient, with a half-persistence point of ~2 uM
(Figure 4B). Thus, wild-type MATHSS memory is robust in the face of perturbations of the

heterochromatic state.

In sharp contrast, when spreading exclusively nucleates from RNAi (AREIIIMSS strain), memory of
silencing (“orange” off) is significantly weaker. History dependence collapsed beyond low TSA
concentrations (> 0.2 UM TSA), with the red and orange lines coinciding for much of the gradient. Even
at 0 uM TSA, history dependence was erased at 35 generations (Figure S4C). Interestingly, the half-
persistence point was ~0.2 uM, 10-fold lower than that of WT MAT (Figure 4C). As cenH-nucleated
spreading in REIN"SS produces little memory capacity and lacks persistence, the memory capacity at

MAT therefore does not derive from RNAi-nucleated spreading.

The high persistence and memory capacity of MATHSS appears to derive specifically from REIII nucleated
spreading (4K"SS strain). This strain has a half-persistence point of ~ 3 uM TSA (Figure 4D), similar to
the intact locus. Significantly, REIII nucleated spreading produces a very strong history dependence:
whereas untreated ancestral cells maintained repression, ancestral cells pretreated with TSA were
completely unable to repress “green” or “orange” above the Aclr4 background even at 0 uM TSA.
Remarkably, the extreme difference observed at 0 uM TSA is maintained up to about 1 pM TSA (Figure
4D), and does not decline at 35 generations (Figure S4C). Together these results indicate that REIII-
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spreading possesses an extraordinary type of memory, and suggest that the history dependence at MAT is

conferred by REIII.

REII imposes epigenetic behavior under environmental stress conditions.

Resistance to physiologically relevant environmental perturbation is necessary to maintain epigenetic
states in naturally changing environments. We examined heterochromatin persistence at different
temperatures in wild-type MAT, and derivatives lacking either RNAi-nucleated (4REIIITSS) or REIII-
nucleated spreading (4K+SS). Heterochromatin is significantly lost at elevated temperatures in the wild-
type MAT and RNAi-mediated (AREIIIMSS) strains, with both strains losing 50% of repression by
spreading at 36°C, and almost all repression at 38°C (Figure 5A). This finding is consistent with
relocation of RNAI nucleation factors to the cytosol at these temperatures (Woolcock et al., 2012). In
contrast, spreading in the REIlI-nucleated (1K) strain is remarkably persistent, retaining 60-70% of
spreading even at 40°C. Since a large number of 4K"SS do not nucleate (~80%, Figure 2C) and are

removed from the analysis, this result only reflects cells that are REIII nucleated.

We next studied how REIII contributes to retaining or reforming the heterochromatin state after a
transient exposure to elevated temperature (38°C, 10 doublings) followed by return to growth at 32°C
(Schematic, Figure 5B). As expected from our steady state experiments above, REIll-mediated spreading
(4K*SS cells) is only minimally affected by the perturbation and regains full spreading rapidly (Figure
5D, F), whereas wild-type MAT and RNAi-nucleated (4REIIITSS) strains lose a significant amount of
spreading (Figures 5C, E) and nucleation (Figure insets). Both strains regain nucleation at cenH rapidly
(1 day after return to 32°C; Figure S5), but are discrepant in their Kinetics of spreading restoration: the
RNAi-nucleated strain (AREI1SS) requires significantly more time than wild-type MAT to recover to the
32°C extent of spreading (Figure 5F). Indeed, compared to wild-type MAT, AREIIIMSS exhibits 20 hours

of lag before reaching 50% of the initial state, and plot fitting reveals a half-life (t1,) difference of ~22hrs,
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or ~9-10 generations (Figure 5F). Therefore, REIII- is required for efficient recovery to the fully

repressed state after heat perturbation.

Together, these data suggest that a central role of the REIII element is to ensure that memory of the

epigenetic state at MAT predominates over environmental perturbations in the wild.

14


https://doi.org/10.1101/237479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237479; this version posted December 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

Cell identity depends on formation of a genome partitioning pattern by heterochromatin. The ability to
maintain identity depends on “remembering” the positional extent of heterochromatin spreading, rather
than its nucleation, since in many systems spreading is the dominant contributor to the pattern (Schultz,
1939; Schwartz et al., 2006; Wen et al., 2009). Yet, how intergenerational fidelity that is required for
memory is linked to the intrinsic properties of the spreading reaction itself has remained opaque.
Surprisingly, by directly probing the fidelity of spreading in S. pombe with single cell assays, we found
that RNAi-nucleated and REIII-nucleated spreading differ in their capacity for memory. RNAi-nucleated
spreading is labile and lacks significant memory capacity despite being the most prevalent form of
heterochromatin spreading and present at the MAT locus. Instead, memory formation at MAT relies on
the REIII nucleation element, which triggers a second form of spreading that is deterministic and highly
persistent. We discuss how these two qualitatively different elements at the MAT locus collaborate to
sculpt a high fidelity heterochromatin locus and more broadly, how utilizing distinct forms of spreading
with different epigenetic characteristics enables the organism to engineer heterochromatin elements for

different biological needs.

Different types of heterochromatin spreading exist in S. pombe.

We have shown that REIII element- and RNAI- nucleated heterochromatin spreading events differ. The
deterministic spreading from REIII is highly efficient, forming no intermediate states (Figure 2C, 3E),
always fully switching off the spreading reporter. This type of spreading correlates with extreme memory
capacity, which allows faithful intergenerational propagation of spreading that is evident in both
population (Figure 4D) and single cell tracking experiments (Figure 3E), and which is consistent with
previously documented bistable behaviors ascribed to the overall locus (Dodd et al., 2007; Grewal and

Klar, 1996).
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In contrast, RNAi-mediated nucleation leads to stochastic spreading that only occurs in some cells
(Figure 1, 2B, 3D and S1C), more consistent with position effect variegation at genetically disrupted
systems (Elgin and Reuter, 2013; Nimmo et al., 1994). RNAi-nucleated spreading produces intermediate
states (Figure 2B, 3D, S2B and S3A) with a distinct molecular signature (Figure 1D, E). Our single cell
tracking data indicates that cells can adopt intermediate levels of fluorescence for extended periods
(Figure 3D, S3A and S3D), arguing that observed intermediates may not be a result of OFF-ON
oscillations, but instead represent distinct intermediate states. Possibly, intermediate states have reduced
H3K9me3, which, while not required for assembly of heterochromatin structures, is required to enact
gene silencing (Jih et al., 2017). Alternatively, intermediate states might represent heterochromatin with
interspersed unmethylated tails, creating “gaps” that would reduce recruitment of silencing factors via
chromodomain proteins (Fischer et al., 2009) and disrupt Swi6/HP1’s oligomerization (Canzio et al.,

2011; Canzio et al., 2013), resulting in lowered nucleosome stability (Yamane et al., 2011).

The proximal cause for the divergent behaviors of RNAI- and REIII —driven spreading is likely that they
differ in stability. RNAI- spreading is very labile to both chemical (Figure 4C) and environmental
(Figure 5A) perturbations, while REIII-originating structures are extraordinarily persistent under those
conditions (Figure 4D and 5A). We propose that high stability heterochromatin structures are more likely
to undergo high-fidelity re-formation in subsequent generations, resulting in deterministic behaviors. We

discuss molecular models that account for these distinct stabilities in the supplemental discussion.

Collaboration of RNAi dependent and independent mechanisms in the formation of a high-fidelity

locus.

Almost all MAT"™S cells faithfully propagate and remember both the spatial extent and the degree of
repression at the locus as measured by our reporters, and are able to either maintain repression or quickly
re-establish it after a perturbation (Figure 2A, 3C, 4B and 5F). This behavior cannot be explained by
cenH and REIII elements acting independently, as each alone is significantly defective in either spreading
(cenH; Figures 2C and 3D) or nucleation (REII; Figure 2D and S2C). Therefore, the two elements must
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collaborate, most likely by cenH stimulating REIII nucleation (model, Figure 5G). Recent findings
indicate that Atf1/Pcrl are present at REIII even in unsilenced, non-heterochromatic AK-type cells (Wang
and Moazed, 2017). We speculate that heterochromatin originating from cenH stabilizes Atf1/Pcrl-
dependent recruitment of silencing factors such as Clr4 (Jia et al., 2004). Given the bistable behavior of
AK heterochromatin shown here (Figure 2C and 3E) and in the literature (Grewal and Klar, 1996),

stabilized recruitment likely becomes self-sustaining, not requiring cenH for maintenance.

This hypothesis is reinforced by comparing cells with the wild type MAT-locus to REIII-nucleated
(4K*SS) cells during TSA recovery. Whereas 4K™S cells very rarely renucleate (Figure 4D), REIII at the
intact MAT locus does renucleate, as the heterochromatin reformed after erasure has much higher
persistence than that nucleated from RNAI (cenH) (red lines in Figure 4B vs C). In contrast, we note that
in continuous growth at high temperatures, heterochromatin spreading at the wildtype MAT locus
resembles that of RNAI heterochromatin (Figure 5A). This may result from RNAI factors becoming
cytosolic at high temperatures (Woolcock et al., 2012), interfering with the normal collaboration between

the two elements.

While the presence of cenH helps raise REIII nucleation in steady state, REIII steps in under perturbation
conditions to protect or quickly re-establish the heterochromatin state (Figure 4B and 5F). The heat
recovery experiment indicates that it is spreading controlled by REIII, and not effects on nucleation
(Figure S5A vs. B), that take on a special role in recovery of heterochromatin lost by the collapse of
cenH spreading (model, Figure 5G). Furthermore, recovery occurs 9-10 generations faster with REIII
than without REIII (Figure 5F). REII can also act to prevent the loss of heterochromatin structures in the
first place, as is evident under TSA perturbation (Figure 4B and C). The ability to stabilize
heterochromatin against perturbation by TSA, a histone deacetylase (HDAC) inhibitor, is likely due to the
ability of REIII-bound Atf1/Pcrl to directly recruit key HDACs (CIr3, CIr6) involved in heterochromatin
formation (Kim et al., 2004; Yamada et al., 2005). We propose that in this case REIII increases the

persistence of heterochromatin by raising the local inhibitory TSA dose.
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Together, these results indicate a dynamic collaboration between two types of elements at the MAT locus
to enable high fidelity, where cenH raises intrinsically weak REIII nucleation and REIII stabilizes or
quickly re-establishes heterochromatin at the locus when cenH becomes compromised during

perturbations (model, Figure 5G).

Implications for the maintenance of heterochromatin spreading.

Here we propose a model based on our data that explains why a division of labor between elements such
as cenH and REIII is required for maintenance of heterochromatin spreading with high fidelity, which
may extend to other systems. If heterochromatin spreading is not inherently capable of stable
maintenance, auxiliary functions have to be built into heterochromatin loci to permit high fidelity. REIII,
but not RNAI-nucleators, show indications of such auxiliary control. While RNAI nucleators behave like
an autonomous element that can be transposed to any genomic context and induce spreading (Figure 1,
S1C and 2), REIII does not (Figure S2D, (Wang and Moazed, 2017). This inability to function outside
its endogenous context points to REIII operating under a local chromatin structural constraint, although
other models accounting for REIII behavior cannot be excluded (supplemental discussion). Chromatin
structure formation often depends on chromosomal context as it may involve interactions with distal
elements (Bonev and Cavalli, 2016; Dekker and Heard, 2015), possibly explaining the hon-autonomous
nature of the REIIT memory element. Importantly, formation of folded chromatin structures has been
associated with high memory in the polycomb pathway (Bantignies and Cavalli, 2011). Further, local
chromatin loops have been proposed to favor memory formation (Erdel and Greene, 2016). “Memory”
elements formed by adoption of specialized structures may not always be sufficient for high fidelity
however, since loci capable of memory can exist in a stable ON state, as shown in S. pombe and plants
(Angel et al., 2015; Dodd et al., 2007) (Figure 2B). Thus, high fidelity also requires coupling to highly
efficient nucleators. The very high efficiency of RNAi-nucleators (Figure 2A and 2B) render them a
suitable partner. The reasons that these nucleators are not themselves capable of memory formation (at

least in S. pombe) remain to be determined.
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Data from other systems point to interactions of multiple elements enabling stable repression. In budding
yeast, silencers can collaborate to stably repress a heterochromatin domain (Boscheron et al., 1996). In
plants, the spreading and nucleation regions collaborate to confer epigenetic stability (Yang et al., 2017).
Interestingly, in this system, unlike in S. pombe, it is the spreading reaction that proceeds to stabilize

nucleation-induced silencing.

Organisms that feature pervasive heterochromatin, such as mammals and plants, may additionally require
linking spreading to high-fidelity cellular processes, such as DNA methylation. DNA methylation is
linked to DNA replication in metazoans (Arita et al., 2008) and can be directly connected to H3K9
methylation (Esteve et al., 2006; Sarraf and Stancheva, 2004). Its absence leads to destabilized and
apparently stochastic H3K9 methylation in plants (Mathieu et al., 2007). However, even in mammalian
systems that feature DNA methylation, intergenerational stability of heterochromatin spreading requires
continuous presence of the non-enzymatic subunits of the spreading enzyme complex, including, for
example, methyl histone reader proteins (Tchasovnikarova et al., 2015). Further, loci repressed by
spreading are vulnerable to euchromatin invasion (Narendra et al., 2015). This implies that, even in
mammalian systems, spreading is not intrinsically self-sustaining once initially triggered. Thus, in these
systems linkages to DNA replication likely represent an additional level of stabilization beyond a core of
collaboration between multiple elements. Overall, we propose that fidelity is not encoded in the spreading
reaction, but rather can be achieved by synergistic action of separate elements, and additionally stabilized

by connection to higher fidelity processes.

Distinct forms of heterochromatin for different biological needs.

We hypothesize that the ancestral form of heterochromatin served primarily in regulation of chromosome
structure and genome defense, and thus is not under a tight epigenetic fidelity constraint, which likely
emerged to safeguard cell identity. The majority of heterochromatin nucleation in S. pombe is RNAi-
driven (Hansen et al., 2006) and localizes to the pericentromeres and subtelomeric regions.
Pericentromeric heterochromatin, in fission yeast and metazoans, fulfills a structural and genome defense
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role, safeguarding proper chromosome segregation and keeping repetitive elements in check (Bernard et
al., 2001; Saksouk et al., 2015) . The precise role of subtelomeric heterochromatin is less clear, but given
its highly repetitive nature (chromosome I11) and homology across chromosomes (I and I1) in S. pombe, it
may protect against genomic instability by suppressing recombination (Cooper et al., 1997; Nimmo et al.,
1998) . Especially at pericentromeres, high-efficiency in establishing repression, which is intrinsic to
RNAi-nucleators (Figure 2B), may be much more critical than high fidelity. The stochasticity of RNAI-
spreading (Figure 1C and 2B) is circumvented at the pericentromere by the placement of repetitive

nucleators (Nakaseko et al., 1986), obviating the need for memory capacity at these sites.

Epigenetic fidelity likely arose with emergence of cell types. In simple eukaryotes, such as yeasts, cell
identity specification is restricted to one site, the mating type locus. Co-expression of the silent cassettes
in the repressed MAT locus, in addition to the information expressed stably from mat1, can result in
haploid meiosis and production of low spore viability or death (Kelly et al., 1988), hence high fidelity at
these sites is critical for organismal fitness. We believe this is why in addition to RNAi-nucleated

spreading, the REIII element has also emerged at MAT.

Intergenerational repression of cell type specifier regions must be able to handle variations in the
environment, so that identity is robust against perturbations. Heterochromatin spreading, unlike DNA
replication, is in principle much more vulnerable to environmental changes. This is because the protein-
protein and protein-DNA association and enzyme catalytic rates that define spreading vary with chemical
conditions and temperature. In Drosophila, temperature has long been known to affect the degree of
position-effect variegation, which relies on heterochromatin spreading (Chen, 1948); in S. pombe,
temperature has been shown to affect the efficiency of RNAi- mediated nucleation (this study and
Woolcock et al., 2012). We propose that specialized memory elements, such as REIII, evolved to

safeguard cell identity loci against environmentally induced variegation.

In summary, we show that heterochromatin spreading initiated by the dominant and evolutionary
conserved RNAI- elements is untethered from epigenetic capacity and is more reminiscent of other
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cellular polymers, such as cytoskeletal fibers. The need to tether heterochromatin to memory likely arose
in evolution with the appearance of unique cell identities. Formation of epigenetic memory requires
specialized and stabilized forms of spreading and auxiliary activities that exploit high fidelity cellular

processes, such as DNA replication.
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MATERIALS AND METHODS

Strain Construction:

Plasmid/construct construction:

Plasmids to generate constructs for genomic integration were generated by standard methods including
Gibson assembly and in vivo recombination. S. pombe transformants were selected directly on dropout
media for auxotrophic markers or onto rich media (YES) for 24 hours followed by selective media YES+
G418, YES+hygromycin or YES+nourseothricin).

Ura4 replacement method:

To avoid interference of selection cassettes with heterochromatin function in our HSS, we produced
“scarless” genomic integrations, lacking selection markers. To do so we marked the insertion site first
with a ura4 cassette by genomic integration and then replaced this cassette either with a XFP cassette or
altered genomic sequence for site mutations. ura4 replacements were isolated by 5-FOA counter-selection
and confirmed by genomic PCR. This method was used to generate the atf/creb site deletions in PAS331,
PAS332. ura4 was targeted to the region between Mat3M and cenH, specifically including the two 7 base
atf/creb binding sites (sl and s2, and (Wang and Moazed, 2017)). The entire ura4 cassette was then
replaced with a construct containing the two 7 base pair deletions of s1 and s2. Point mutations and

restoration of the pre-substitution locus was confirmed by PCR and sequencing.

Flow Cytometry and FACS sorting:

For standard flow cytometry experiments, cells were grown overnight in rich media (YES) and then
diluted in the morning to OD=0.1 in minimal media plus supplements (EMM complete) and grown 4-6
hours before analysis by flow cytometry. Flow cytometry was performed using Fortessa X20 Dual or
LSRII instruments (Becton Dickinson, San Jose, CA, U.S.A). Samples sizes ranged from ~10,000-

100,000 cells depending on strain growth. Compensation was performed using cells expressing no XFPs
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and single color controls expressing 1 XFP each. Compensated data was used for all downstream
analysis. Fluorescence was detected for each color as described (Al-Sady et al., 2016).

For FACS sorting experiments, cells were grown overnight from OD=0.025 in YES and the in the
morning concentrated into a smaller volume to achieve a flow rate of ~5000 events/second on the
cytometer. Sorting was performed using either Aria2 or Aria3u machines (Becton Dickinson). Prior to
sorting cells were strained through a 35-40 um mesh (Corning) to reduce clogs. Sorting criteria included a
gate for size (forward (FSC) and side (SSC) scatter), removal of doublets, a gate for “green”°"F (“green”
signal within the range of an unstained control and then gated into Low, Intermediate, High “orange”
signal defined by the following: Low encompassed signal overlapping that of an unstained control and
High encompassed signal overlapping that of the 4clr4 no heterochromatin control strain PAS355.
Intermediate gate was set in between Low and High with about 100 fluorescence units of a gap
(representing ~2% of the full range of captured fluorescence) to ensure reliable separation. The entire
range of fluorescence detected was ~2.5 orders of magnitude. At least 8x10° cells were collected for each
population for Chromatin Immunoprecipitation and 2x10° cells for RT-gPCR. Immediately after sorting,
the final populations were subjected to the appropriate treatment for either Chromatin

Immunoprecipitation or RT-qPCR.

Sytox Green Staining and Cell Cycle Analysis:

Cell cycle analyses were performed essentially as described (Knutsen et al., 2011). Briefly, cells were
fixed with 70% ethanol, washed with 20 mM EDTA pH 8.0, and treated with RNaseA for 3 hours at
37°C. Immediately before analysis by flow cytometry, 2 uM Sytox Green (Invitrogen) in 20mM EDTA
pH 8.0 was used to resuspend pelleted cells. Cells were excited with a 488 nm laser and FSC-A, SSC-A,
Sytox Green-A (Area) and Sytox Green-W (Pulse Width) data were collected. Sytox Green signal was
detected with a 505 nm longpass filter and a 530/30 bandpass filter. Analysis was performed in the

FlowJo Software (Tree Star Inc, Ashland, Oregon, U.S.A.). Cells were gated in FSC/SSC to isolate
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single, small cells. A plot of Sytox Green-W vs Sytox Green-A was generated and the fraction of cells in

each cell cycle phase (G2, S, and G1+M) within the FSC/SSC gate were calculated.

Trichostatin A (TSA) gradient experiment:

Cells were taken from fresh plates, and then grown overnight with shaking (EImi) in 96-well plates
containing 150 uL YES (Day -1). The next day (Day 0), cells were diluted into YES and measured by
cytometry. At the end of Day 0, cells were passaged into YES+ DMSO (0uM TSA) or YES+ 50 uM TSA
overnight. The next day (Day 1), cells were diluted and grown briefly into the same pretreatment
conditions and the 50 uM TSA pre-treated cells were checked for complete de-repression by flow
cytometry. Complete de-repression was defined as a qualitative overlap of WT and Aclr4 profiles, with no
evidence of repression. Both OuM and 50uM TSA pretreated cells were then diluted into a gradient of
TSA of eleven two-fold dilutions from 50 uM along with a twelfth 0 pM (DMSO) point. Cells were
measured after ~6hrs and then passaged into the same TSA gradient conditions to continue growth.

The next day (Day 2) cells were diluted from overnight growth into the same gradient as above, measured
~ 6hrs later by flow cytometry and passaged into the same gradient again overnight. The same protocol
was followed for Days 3 and 4. The full experiment was performed twice at different times (biological
replicate). Given the lengthy continuous growth, contamination was occasionally observed in <1% of

wells. The replicate shown was chosen based on lacking contamination.

Heat recovery experiment:

Cells were taken from fresh plates, and then grown overnight with shaking (EImi) at either 32°C or 38°C
(Day-1) in 96-well plates containing 200 uL YES medium per well. In the morning, cells were diluted
into 200uL YES and grown ~6hrs at the same temperature before measurement by flow cytometry (Day
0). At the end of Day 0 all cells were all diluted again into YES and grown at 32°C. The next day (Day 1)
cells were diluted from overnight growth into YES at 32°C, measured ~ 6hrs later by flow cytometry and

passaged into the same temperature overnight. The same protocol was followed for Days 2, 3, and 4.
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Chromatin Immunoprecipitation (ChlP) and quantification:

We found that sonication of a small number of cells such as can be collected by FACS leads to a marked
increase in background signal from negative control regions that was absent when ChlP was performed
with larger log phase cultures (>50x10° cells). To address this, ChIP was performed on each of the sorted
populations with the addition of 42 x10° formaldehyde fixed cells of S. cerevisiae W303 strain as a
carrier. Additionally, ChIP was performed on a sample of W303 alone, which only produced signal
equivalent to background. Sorted populations and W303 cells were fixed and pre-processed for ChIP
separately, then mixed together immediately prior to lysis. Cells were crosslinked and lysates prepared for
ChIP as described (Canzio et al., 2011) with the following exceptions: After lysis, the chromatin fraction
was resuspended in 350puL lysis buffer and sonication performed using a Diagenode Bioruptor Pico
machine at 4°C, with 16 rounds of 30 seconds ON, 30 seconds rest. ChIP was essentially as described,
with the total lysate split into 4 equal technical replicate samples (after ~8% set aside as input fraction)
and ChIP performed in 800 uL per sample. For two replicate samples 1 pL of anti-H3K9me2 (Abcam
ab1220) antibody or 1 pL of anti-H3K4me3 (Active Motif 39159) antibody was added and the sample
agitated on a Nutator overnight at 4°C. Immune complexes were collected for 3 hrs with 15 uLL washed
protein A Dynabead slurry (Invitrogen). Washing and downstream processing steps were essentially as
described, except the “wash buffer” wash was performed once. Samples were purified using a Machery-
Nagel PCR purification kit and NTB buffer for SDS containing samples. DNAs were quantified by RT-
gPCR (see below).

H3K9me2 and H3K4me3 enrichments were calculated as follows: 1P/input values for amplicons of
interest were calculated for technical triplicates and normalized to the IP/Input values for positive controls

for each antibody, dh for H3K9me2 and the actin promoter for H3K4me3.

RNA Extraction and mRNA quantification:
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After sorting, samples were spun at 5000xg, supernatant decanted and pellets flash frozen in liquid
nitrogen and stored at -80°C. For the Aclr4 strain PAS335, cells were grown into log phase and then cell
pellets were isolated in the same fashion. Total RNA was extracted in technical duplicates from the same
cell pellets using the “MasterPure- Yeast RNA Purification Kit” (Epicentre), including a 30 minute
DNAse treatment step post-RNA isolation. Reverse Transcription was performed with SuperScript 111 RT
(Invitrogen), using the supplied protocol and 1.5-2ug of RNA and an oligo dT primer. Following cDNA
synthesis the reaction was treated with RNAse H (New England Biolabs). cDNA samples were quantified
by RT-gqPCR in technical triplicates. For each sorted sample mKO2 cDNA values were normalized to

actin and then divided by the max value calculated similarly from PAS355 (4clr4).

RT-gPCR:

Real time quantitative PCR was performed using a BioRad CFX-384 machine. 15uL reactions were
prepared, each containing 7.5uL of Applied Biosystems SYBR Select Master Mix, 4.5uL 3.3M betaine,
1.2uL of 2.5uM oligo mix, 0.8uL water, and 1uL template. The thermocycler protocol was: 2min at 50°C
then 2min at 95°C followed by 40 cycles of 15sec at 95°C and then 1min at 60°C followed by a plate
read. Lastly a melt curve was generated. Standards were generated with 5 fold dilutions of genomic DNA

containing templates for all PCR products.

Single-cell Microscopy:

Single cells of strains PAS 387, 389, 391 and 244 (see strain table; E2Crimson under actl promoter) were
captured in microfluidic devices as described (Spivey et al., 2017). Multi-channel fission yeast lifespan
microdissectors (multFYLM) contained six independent devices (channels), each of which is capable of
capturing up to 392 cells. In brief, the devices were cast in polydimethylsiloxane (PDMS, Sylgard 184,
Dow Corning) using conventional soft lithography methods. Master structures were fabricated from P-
doped silicon wafers (ID#452, University Wafers) and SU-8 photoresists 3005 and 2010 (Microchem,
Westborough, MA). MultFYLMs were cleaned and adhered to glass coverslips (48 x 65 mm #1, Gold
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Seal), and then connected to syringes (60 mL, Becton-Dickson) containing YES 225 liquid media
(Sunrise Science) via PFA tubing and microfluidic fittings (IDEX Health and Science). The multFYLM
was maintained at 30°C in a custom staged-mounted environmental chamber on an inverted microscope
(Eclipse Ti, Nikon) equipped with NIS Elements software (Nikon), a 60X air objective (CFI Plan Apo A,
0.95 NA, Nikon) fitted with an objective heater (Bioptechs), a motorized stage (Proscan I, Prior), and an
active feedback-based focusing system (Perfect Focus System, Nikon). An LED lamp (Sola Il,
Lumencorp) and a scientific-grade CMOS camera (Zyla 5.5, Andor) were used for fluorescent imaging.
Multi-color fluorescent imaging of sfGFP, mKO2 and E2Crimson fluorophores was carried out by
alternating between three filter sets mounted in a computer-controlled filter ring (Chroma 49002, 49010
and 49015, respectively). To help with the semi-automated cell identification, each channel was imaged
every ten minutes via brightfield imaging (100 ms exposure, both in focus and 4 pm below the focal
plane). Fluorescent images of each of the three fluorophores were taken every thirty minutes (150 ms
exposure). This illumination scheme was well below the phototoxicity limit, as described previously (Al-
Sady et al., 2016). Raw images were saved as uncompressed 16 bit ND2 files and further analyzed using a
custom-written image analysis pipeline (see below).

Cells were grown overnight (30°C with 225 rpm shaking) to saturation in YES media, then diluted in
YES to an optical density at 600 nm (ODsoo) of 0.1 and allowed to grow for approximately 5 hours to
reach an ODggo of 0.5. Cells (60 uL at OD 0.5 in YES+2% Bovine Serum Albumin, BSA) were loaded at
the entry port of the multFYLM. After cells entered individual channels, media lines were reattached and
YES media was pumped through on a pulse cycle (14 min: 5 pLmin, 1 min: 55 uLmin?) for the entire
experiment. This flow regime was optimized to flush out occasional cell clumps that grew at the device
inlets and other fluidic interfaces. Four genotypes were imaged simultaneously for 60 hours in each
channel of a multFYLM device to ensure identical imaging and growth conditions. In all cases, we only
analyze the innermost cell, which was the oldest cell pole (see below). Cells that were ejected or died

within the first 12 hours after loading were not included in the downstream analysis.
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Single-cell image analysis:

Single-cell imaging data was processed using an updated version of the custom-written FYLM Critic
analysis package (Spivey et al., 2017). The source-code is available via GitHub
(https://github.com/finkelstenlab/fylm). FYLM Critic performs the following automated processing on the
raw images: (1) rotation; (2) jitter removal via a cross-correlation algorithm; and (3) generation of
kymograph and individual cell images. The latter were used to create videos of individual cells in Fiji
(Schindelin et al., 2012). The final outputs of FYLM critic are the position and contour of each dividing
cell, as well as the time-dependent fluorescence intensities for each cell. These fluorescence intensities are
obtained by averaging the intensity across all pixels that fall within the cell volume, as defined by the
bright field images. This normalization also ensures that the fluorescence intensity is corrected for the size
of the rapidly dividing cells. Time-dependent fluorescent intensities were analyzed via custom-written
MATLAB scripts (version 2017a Mathworks, available upon request). Background fluorescence from the
PDMS device was subtracted using catch tubes that did not receive a cell. The maximum heterochromatin
reporter (GFP, mKO2) fluorescence intensity was calculated using Aclr4 cells in the same reporter
construct background. To control for expression variation across the cell cycle, the fluorescence from
heterochromatin reporters was also reported as a ratio of the control fluorophore, E2Crimson. Similarly,
cells fluorescing in the clamp channel were removed from analysis for MAT locus derived strains (see

supplemental methods).

Single cell images generated by the FYLM Critic analysis were compiled into stacked movies using Fiji.
Images in bright field and for each color channel were processed separately in batch and then later
combined into a vertical stack. For each channel, 0.2% of pixels were allowed to become saturated and
pixel values were normalized to the maximum range for the whole sequence in that channel. For bright
field, every third image was included to match the imaging frequency of the fluorescent channels. Movies
were edited for length to only include contiguous imaging sequences without loss of focus and for size to

remove non-cellular debris and cells from the opposite side of the channel that entered the field of view.
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After combining all color channels and bright field, the brightness and contrast were increased for cell
407 to match the red channel brightness of the other strains. Image sequences were saved as

uncompressed .avi files with a rate of 15 frames per second.
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Table 1: Yeast strains used in this study

Strain Genotype

PASO075 | Locus2::ade6p::3xE2C:hygMX at Locus2 (between SPBC1711.11 andSPBC1711.12)

PMO03 Wild type strain: h(+); ura4-D18; leul-32; ade6-M216; his7-366

PM1035 ) )
urad::natMX:dh fragment 1, clr4::KAN as in (Marina et al., 2013)

PAS111 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 7kb, ade6p:3xE2C: hygMX at Locus2

PAS112 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 7kb, ade6p:3xE2C: hygMX at Locus2;

clr4::kanMX

PAS133 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 1kb, ade6p:3xE2C: hygMX at Locus2;

clr4::kanMX

PAS134 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 1kb, ade6p::3xE2C: hygMX at Locus2

PAS135 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, ade6p::3xE2C: hygMX at Locus2;

clr4::kanMX

PAS136 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, ade6p::3xE2C: hygMX at Locus2

PAS141 |ura4::natMX:dh:ade6p:SF-GFP , ade6p:mKO2 5kb, ade6p::3xE2C: hygMX at Locus2

PAS142 |ura4::natMX:dh:ade6p: SF-GFP, ade6p:mKO2 5kb; ade6p::3xE2C: hygMX at Locus2;

clr4::kanMX
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PAS192 | AK::ade6p:mKO2; ade6p: SF-GFP between REIII and mat3M; ade6p:3xE2C: hygMX at

Locus2, h(-)

PAS193 | AK::ade6p:mKO2; ade6p:SF-GFP between REIII and mat3M; ade6p:3xE2C: hygMX at

Locus2; clr4::kanMX, h(-)

PAS216 |cenH::ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ade6p:3xE2C: hygMX at

Locus2; clrd::kanMX, h90

PAS217 |cenH: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ade6p:3xE2C: hygMX at

Locus2, h90

PAS218 |cenH::ade6p:mKO2 (Kint2); mat3m(EcoRV):: ade6p:SF-GFP; ade6p:3XE2C: hygMX at

Locus2; in clr4::kanMX, h90

PAS219 |cenH: ade6p:mKO2 (Kint2); mat3m(EcoRV):: ade6p:SF-GFP; ade6p:3xE2C: hygMX at

Locus2, h90

PAS231 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, leul::ade6p:3xE2C: hygMX

PAS237 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, actlp::gxE2C: hygMX at Locus2;

clrd::kanMX

PAS243 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, actlp::1XE2C: hygMX at Locus2;

clr4::kanMX

PAS244 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, actlp::1xE2C: hygMX at Locus2

PAS264 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ade6p:3xE2C: hygMX at

Locus2, pcrl::kanMX, h90
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PAS268 |4K:: ade6p:mKO2; adebp:SF-GFP between REIII and mat3M; ade6p:3xE2C: hygMX at

Locus2, REII::LEU2, h(-)

PAS269 |4K:: ade6p:mKO2; ade6p:SF-GFP between REIII and mat3M; ade6p:3xE2C:hygMX at

Locus2; clr4::kanMX, REII::LEU2, h(-)

PAS331 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ade6p:3xE2C:hygMX at

Locus2; AREIII::REIII(As1, As2) in clr4::kanMX, h90

PAS332 | cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ade6p:3xE2C:hygMX at

Locus2; AREIII::REII(As1, As2) , h90

PAS348 |ura4::hygMX:REIlIl:ade6p:SF-GFP; ade6p:mKO2 5kb, ade6p:3xE2C:natMX at Locus?2

PAS350 |ura4::hygMX:REIlIl:ade6p:SF-GFP; ade6p:mKO2 5kb, ade6p:3xE2C:natMX at Locus?2

dcrl::kanMX

PAS355 |ura4::natMX:dh:ade6p:SF-GFP, ade6p:mKO2 3kb, leul::ade6p:3xE2C:hygMX;

clr4::kanMX

PAS385 |4K:: ade6p:mKO2; adebp:SF-GFP between REII and mat3M; actlp:1xE2C:hygMX at

Locus2; clr4::kanMX, h(-)

PAS387 | AK:: ade6p:mKO2; ade6p: SF-GFP between REIII and mat3M; actlp:1xE2C: hygMX at

Locus2, h(-)

PAS388 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ura4 at Locus2;

leul::actlp:1XE2C:hygMX, clr4::kanMX, h90
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PAS389 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ura4 at Locus2;

leul::actlp:1xE2C:hygMX, h90

PAS390 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ura4 at Locus2;

AREIN::REII(As1, As2), leul::actlp:1XE2C:hygMX, in clr4::kanMX, h90

PAS391 |cenH:: ade6p:SF-GFP (Kint2); mat3m(EcoRV):: ade6p:mKO2; ura4 at Locus2;

AREINI::REII(As1, As2), leul::actlp:1XxE2C:hygMX, h90

PAS398 | hisl::natMX:dh:ade6p:mKO2; ade6p:SF-GFP 3kb, ade6p::3xE2C:hygMX at Locus?2,

clr4::kanMX, ura4::phyB.

PAS399 | hisl::natMX:dh:ade6p:mKO2; ade6p:SF-GFP 3kb, ade6p::3xE2C:hygMX at Locus2,

urad::phyB.
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FIGURE LEGENDS

Figure 1: Heterochromatin spreading from RNAi-nucleated elements is stochastic and
produces intermediate states. A. Overview of heterochromatin spreading sensor. Three
transcriptionally encoded fluorescent proteins are inserted in the genome: The “clamp” site
enables isolation of successful nucleation events, the “sensor” reports on spreading events and
the “noise filter” normalizes for cell-to-cell noise. B. Overview of the ura4::dhHSS*7*" strains.
Genes downstream of the “green” nucleation color are annotated. C. Spreading from ura4::dh
visualized by the HSS with “orange” inserted at different distances shown in B. The “red”-
normalized “orange” fluorescence distribution of “green”°fF cells plotted on a histogram. Inset:
2D density hexbin plot showing red-normalized “green” and “orange” fluorescence within the
size gate, with no “green” or “orange” filtering. The “green”°™ population is schematically
circled. The x-axis is normalized to =1 for the Aclr4 derivate of each strain. D. TOP: cartoon
overview of the FACS experiment for D. and E. “green”fF cells collected from the
ura4::dhHSS3* were separated in three populations (“Low”, “Intermediate” and “High”) as shown
schematically based on the “orange” fluorescence. BOTTOM: “orange” RT-gPCR signal for the
indicated populations. The y-axis is scaled to =1 based on the “orange” signal in Aclr4. Error
bars indicate standard deviation of two replicate RNA isolations. E. ChlIP for H3K9me2 and
H3K4me3 in the same populations as D. Each ChlIP is normalized over input and scaled to =1
for a positive control locus (dh repeat for H3K9me2 and actl promoter for H3K4me3). Error bars
indicate standard deviation of two technical ChIP replicates. Primer pairs for RT-gPCR and

ChIP are indicated by solid and dashed line, respectively, in the C. ura4::dhnHSS®® diagram.
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Figure 2: RNAi- and REIlI- nucleators trigger qualitatively different spreading reactions in
the MAT locus. A. TOP: diagram of the reporters within MATHSS, BOTTOM: 2D-density hexbin
plot showing the “red”-normalized “green” and “orange” fluorescence for wild-type MAT"SS cells.
Scale bar shows every other bin cutoff as a fraction of the bin with the most cells. The smallest
bin starts at one cell and the maximal bin contains 498-531 cells. Inset: histogram of the “red”-
normalized “orange” fluorescence distribution of “green”°"* cells. B. TOP: diagram of the
reporters within ARE/IIMSS, which contains two 7bp Atf1/Pcrl binding site deletions within the
REIII nucleation element. BOTTOM: 2D-density hexbin plot and inset as above, where the
maximal bin contains 200-213 cells. C. TOP: diagram of the reporters within AK"SS. The cenH
nucelator and additional 5’ sequence is deleted and replaced by “orange”. “green” is located
directly proximal to REIIl and serves as the nucleation clamp. 2D- density hexbin plot and inset

as above, where the maximal bin contains 773-824 cells. The Aclr4 derivative of each strain was

used to normalize the X- and Y-axes to =1.

Figure 3: Single cell analysis of nucleation and spreading using a Fission Yeast Lifespan
Microdissector (FYLM). A. Overview of the FYLM-based heterochromatin spreading assay.
The old-pole cell is trapped at the bottom of one of hundreds of wells in the FYLM microfluidic
device and is continuously imaged in brightfield (to enable cell annotation), green, orange and
red channels. Hypothetical example traces are shown. B. Maximum values attained by each
nucleated cell for normalized “orange” plotted against normalized “green”. Solid horizontal lines
correspond to y=0 and y=0.5. Dashed line corresponds to an ON cutoff determined by mean
less 3 standard deviations for each strain’s matched Aclr4 strain. Percentage of cells between
each line was calculated. C. FYLM analysis of wild type MATHSS cells. CELL TRACES: 60hrs of
normalized “green” (left) and “orange” (right) fluorescence in cells that maintained nucleation
with the same 5 cells overlaid in different gray line styles in both plots. Gaps indicate loss of

focus. HEATMAP: Up to 36 hours of normalized “orange” fluorescence for 30 cells that
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maintained nucleation is represented from blue (0) to yellow (1). X-Y FLUORESCENCE PLOT:
for one representative sample cell, plot of normalized “green” and “orange” fluorescence across
its measured lifetime (grayscale). D. FYLM analysis of AREI/II"SS cells as in C. The example cell

in the kymograph is marked with an asterisk(*) on the orange traces E. FYLM analysis of AK"SS

as in C., D. All cells were normalized to Acir4 (max, 1).

Figure 4: RNAi-nucleated spreading exhibits low history dependence and weak
persistence compared to REIIl. A. Experimental schematic for history dependence and
persistence. Cells in log phase were treated with TSA (50 uM) for 10 generations to erase all
heterochromatin (de-repressed, yellow) or kept untreated (repressed, gray). Both populations
are then grown in a gradient of TSA concentration from 0 to 50 uM for 25 generations. B. The
wild-type MAT locus exhibits history dependence in silencing “orange” throughout the TSA
gradient. The fraction of “green”°" cells that fully silence “orange” normalized to the no TSA
pre-treatment, 0 uM TSA point are plotted for each TSA concentration. Red line: cell ancestrally
TSA pre-treated; Orange line: cells without pre-treatment. C. Spreading from cenH exhibits
weak history dependence and low persistence. Cell populations as above. D. Spreading from
REIII exhibits extreme history dependence and high persistence. The fraction of “orange”°"" for
all cells is plotted, because in the TSA pre-treatment almost no “green”* cells can be detected.
As spreading is deterministic for REIII, all “orange”®™* cells are also “green”®"*. Dotted lines
indicate the half-persistence points:TSA concentration at which 50% of non-pretreated cells fail
to spread heterochromatin to “orange” . History dependence is the difference between orange

and red lines. One of two full biological repeats of the experiment is shown.

Figure 5: REIIl element resists environmental perturbation and facilitates epigenetic
memory by enabling rapid reacquisition of pre-perturbation state. A. The persistence of
the heterochromatin state from 32-40°C in wild-type MAT locus"SS, AKHSS, and AREIIIFSS. The
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fraction of cells that fully repress both “orange” and “green” (full spreading) at each temperature
is plotted normalized to the given strains value at 32°C. B. Experimental schematic for heat
stress and recovery. Cells were grown at either 32°C or 38°C for 10 generations and strains
subsequently grown continuously for 96 hours at 32°C. C-E. Histograms of “red”-normalized
“orange” fluorescence distribution in “green”F cells are shown for cells grown at both 32°C
(light orange) and 38°C (dark orange). Insets: 2D density hexbin plots, “green”°" cells are
schematically circled. C.-E. represent t=0 in panel F. F. The fraction of cells with full spreading
after 38°C exposure and recovery normalized to the fraction of cells with full spreading at 32°C
for each strain is plotted over time. Full spreading is defined as in A. For wild-type MAT locus™sS
and AREIII"SS strains, we fit a simple sigmoidal dose response curve and determined a ti.
value. The difference in ty. values or Atyzis ~22hrs or ~9 generations. G. Model for
collaboration of cenH and REIIIl in establishing and maintaining the high fidelity MAT locus.
(LEFT, TOP) During initial establishment, cenH heterochromatin raises the nucleation frequency
at REIIl (green arrow). (LEFT, BOTTOM). This heterochromatin may then adopt a specialized
chromatin structure (indicated by looping, other models remain possible). REIII heterochromatin
stabilizes heterochromatin at MAT (green arrows). (RIGHT) A perturbation disrupts labile cenH-
nucleated spreading. REIII assists in reestablishment of the initial state either by accelerating
spreading from cenH (blue dashed arrow, TOP), or expanding heterochromatin spreading from

REIIl (BOTTOM).

Supplemental Figure 1: Validation of ectopic heterochromatin spreading sensor.

A. Correlation of ade6p:SFGFP or ade6p:mKO2 with ade6p:3XE2C (Red) or act1p:1XE2C
(High Red) in Aclr4 HSS size-gated (see B.) cells. LEFT: Plots of green vs. red channel signals
of size-gated PAS 135 and 237 (both Aclr4, Red and High Red respectively). The Pearson

correlation between “green” and “red” is shown. RIGHT: Plots of orange vs. red channel signals
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of size-gated strains as in LEFT. The Pearson correlation between “orange” and “red” is shown.
B. Cell cycle stage of HSS and wild type cells by flow cytometry. Wild-type cells (PMO03, see
strain table) were fixed, stained with Sytox green DNA stain, and analyzed by flow cytometry.
LEFT: side vs. forward scatter plot. Dotted line: The approximate size gate encompassing all
experiments reported. Pink area: cells analyzed in the experiment shown. RIGHT: Plot of area
vs. width parameter for the Sytox green channel, gates are drawn to denote cell cycle phases,
G2 (red), G1 and M (Blue), S (purple) as described (Knutsen et al., 2011). C. Stochastic
spreading and intermediate states produced by RNAi-driven nucleators are replicated at a
second ectopic site. LEFT: Overview of the his1::dhHSS®. The colors are reversed relative to
the ura4::dnHSS>7%* with “orange” as the “nucleation clamp” and “green” as the “sensor”.
“Orange” replaces the hisl gene and “green” is located 3kb downstream within the rec10 open
reading frame. RIGHT: histogram of “red’-normalized “green” fluorescence distribution of

“orange”°fF cells. Inset: 2D density hexbin plot.

Supplemental Figure 2: Heterochromatin spreading characteristics of nucleation
elements at the tightly repressed MAT locus. A. The MAT"SS documents tight repression of
the wild type MAT locus. As in Figure 2A, with “green” and “orange” switched. The smallest bin
starts with one cell and the maximal bin contains 429-458 cells. B. pcrl::KAN leads to
stochastic spreading with intermediate states. Pcrl transcription factor was knocked-out in the
PAS217 wild-type MAT"SS, Plot and inset as in Figure 2B, where the maximal bin contains 167-
178 cells. C. REIl does not contribute to bimodal distribution seen for AK"SS. The REII locus
(1kb) was replaced with the LEU2 gene before clr4+ was introduced by cross. The smallest bin
starts with one cell and the maximal bin contains 969-1034 cells. D: REIIl is a weak nucleating
element and unable to establish spreading at an ectopic site. 2D density hexbin plots of
ura4::REIIHSS®® (PAS348), where the maximal bin contains 96-102 cells. Normalized green

and orange are near 1.0, indicating a failure to repress both reporters. Inset: 2D density hexbin
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plots of ura4::REIIHSS®® dcrl::KAN (PAS350). Dcrl was deleted to release extra

heterochromatin factors from RNAI- repressed loci. No additional silencing is detected.

Supplemental Figure 3: Single cell analysis of nucleation and spreading using a Fission
Yeast Lifetime Machine (FYLM). A. FYLM analysis of ura4::dhHSS®* cells. TOP LEFT: 60hrs
of normalized “green” fluorescence for all cells; 5 example cells are overlayed in gray each with
different line types. BOTTOM LEFT: 60hrs of normalized “orange” fluorescence for all cells with
the same 5 cells overlayed in gray. *, # represent two example cells. RIGHT: for two
representative sample cells imaged, plots of normalized “green” and “orange” across its
measured lifetime (grayscale). The corresponding cells are marked in the orange traces on
LEFT. B. Categorization of cell longevity of all cells analyzed in the FLYM experiment.
Measured lifespan ends when a cell dies or is ejected from its capture channel. C. For wild-type
MATHSS TOP: “green” fluorescence heatmap (blue (0) to yellow (1)) for the same 30 cells as in
3C. BOTTOM: 60 hours of traces for “orange” divided by “green” for the five example cells
indicated in 3C. D. “green” fluorescence heatmap and “orange”/"green” traces for AREIII"SS as in
C. E. “green” fluorescence heatmap AK"SS as in C. F. “orange”/’green” traces for ura4::dhHSS3®

asin C.

Supplemental Figure 4: Behaviors of spreading during TSA treatment and after 35
generations. A. 2D density hexbin plots of wild-type MAT"SS, AREININSS, and AKSS strains
grown 10 generations without TSA. For all panels, the smallest bin starts with one cell and the
maximal bins from top to bottom contain 181-193, 97-103, 444-473 cells respectively. B. 2D
density hexbin plots of wild-type MAT locusHSS, AREININSS, and AKSS strains grown 10
generations in 50 uM TSA. For all panels, the smallest bin starts with one cell and the maximal
bins from top to bottom contain 63-67, 60-64, 197-210 cells respectively. The density
distributions are near 1.0 in all strains indicating complete erasure of heterochromatin. C.

History dependence at 35 generations after pretreatments. The fraction of cells with full
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spreading (wild-type MAT and AREIII) or fraction of cells with orange®™ (4K) normalized to the
highest value for ancestrally untreated cells (=1) is shown for the 0 uM TSA point. TSA
pretreated cells for AREIII"SS show higher repression than untreated cells. We interpret this to
indicate experimental variations in silencing in the absence of memory. This is because for all
other circumstances, TSA treatment results in reduced spreading, including for AREIII"SS at 25

generations post treatment.

Supplemental Figure 5: cenH nucleation is recovered within 24 hours at 32°C. A. 1-D
histogram showing the distribution of green fluorescence in wild-type MAT locus"SS cells grown
either for 48hrs continuously at 32°C (left y-axis, light green) or heat stressed for 24hrs at 38°C

followed by 24hrs growth at 32°C (right y-axis, dark green). B. For AREIII"SS “green” histograms

plotted as in A.
Supplementary videos:

SVideo 1: Cell #274 from strain PAS244

This movie consists of imaging in 4 channels, listed from top to bottom: Bright field, “green”,
“orange”, and “red” for cell #274 from the strain PAS244 ura4HSS®*, X-Y fluorescence plot for
this cell is shown in Figure S3A, TOPRIGHT.

SVideo 2: Cell #271 from strain PAS244

This movie consists of imaging in 4 channels, listed from top to bottom: Bright field, “green”,
“orange”, and “red” for cell #271 from the strain PAS244 ura4HSS®®, X-Y fluorescence plot for
this cell is shown in Figure S3A, BOTTOMRIGHT.

SVideo 3: Cell #350 from strain PAS389

This movie consists of imaging in 4 channels, listed from top to bottom: Bright field, “green”,
“orange”, and “red” for cell #350 from the strain PAS389 WT MAT"SS, X-Y fluorescence plot for
this cell is shown in Figure 3C.

SVideo 4: Cell #407 from strain PAS391
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This movie consists of imaging in 4 channels, listed from top to bottom: Bright field, “green”,
“orange”, and “red” for cell #407 from the strain PAS391 AREIIINSS, X-Y fluorescence plot for this
cell is shown in Figure 3D.

SVideo 5: Cell #123 from strain PAS387

This movie consists of imaging in 4 channels, listed from top to bottom: Bright field, “green”,
“orange”, and “red” for cell #123 from the strain PAS387 AK"SS, X-Y fluorescence plot for this
cell is shown in Figure 3E.
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Supplemental discussion

Evidence in support of memory resulting from a TSA imprint at REIII.

In principle, the difference between ancestrally TSA exposed and non-exposed wild-type MAT cells
along the TSA concentration gradient (Figure 4B) could be explained by independent action of cenH and
REIII. In this scenario, REIII does not re-nucleate following TSA pretreatment in wild-type cells, as is the
case for REIII only (Figure 4D). Two lines of evidence argue against this model: First, the distribution of
nucleated cells does not appear bimodal with respect to spreading, which would be expected in a
population of REIII nucleated and non-nucleated cells (data not shown). Second, wild-type cells
descended from TSA-treated ancestors are much more persistent in the TSA gradient than AREIII cells
(Figure 4B versus 4C). Therefore, history dependence is unlikely to be accounted for simply by poor
REIII re-nucleation. Further, we show that the presence of cenH dramatically increases REIII nucleation
(see main discussion). Instead, we believe that TSA treatment leaves an imprint at the REIII locus that
reduces its ability to stabilize spreading.

Models for mechanistic differences in RNAI- and REIII- spreading and its inheritance.

Our results show that spreading fidelity is dramatically increased for REIII- versus RNAI- mediated
nucleation. Additionally, our results imply that when REIII heterochromatin is ancestrally erased, it is
altered by a stable “imprint” that reduces REIII’s ability to support spreading in wild-type MAT (see
above and main discussion). We propose two possible, but non- exclusive models to account for the

molecular underpinnings of these observations: Different heterochromatin composition. REIII-induced

spreading may contain different protein factors, which may stabilize the heterochromatin structure and
modulate the efficiency of spreading. It is already understood that certain factors are recruited
differentially and/or loaded by multiple mechanisms at the different endogenous heterochromatin
elements in the cell (Cam et al., 2005; Ekwall et al., 1999; Petrie et al., 2005; Sugiyama et al., 2007).
Some of those may act for example to modulate the production of the H3K9me3 mark by Suv39/Clr4,

which is critical for spreading (Al-Sady et al., 2013; Jih et al., 2017). In support of this model, the loss of
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ClIr3, which is directly recruited by Atfl/Pcrl to REIII, reduces H3K9me3 (Yamada et al., 2005).
Persistence in the face of perturbations as well as high likelihood of inheriting positional information in
the next generation, could be achieved if this specialized heterochromatin is protected from histone loss
and demethylation by Epel. REIII and cenH spreading may attract different concentrations of factors
described to antagonize histone loss (Taneja et al., 2017; Yamane et al., 2011) and/or antagonize Epel
(Braun et al., 2011). An imprint at REIIl by TSA treatment could be explained by opposing antagonistic
positive feedback loops, which are commonly associated with hysteresis, or memory, in cellular reactions
(Bagowski and Ferrell, 2001). One possible example of a molecular implementation is maintenance of
reduced nucleosome occupancy: The loss of components of the SHREC complex, some of which are
directly recruited at REIII by Atf1/Pcrl (Kim et al., 2004), induce nucleosome free regions (NFRs) near
REIII (Garcia et al., 2010). NFRs or low nucleosome occupancy in general is known to disfavor spreading
(Garcia et al., 2010; Yamane et al., 2011). If, next to REIII, a TSA-induced NFR or lower nucleosome

occupancy is maintained by positive feedback, it could serve as a memory imprint. Specialized three

dimensional structure. It is conceivable that REIII- but not RNAi- mediated heterochromatin spreading

adopts a specialized and highly stable structure, distinct from models for the isolation of overall
heterochromatin sites, such as the entire MAT locus (Noma et al., 2001). The formation of a local
structure is consistent with our findings and those of others (Wang and Moazed, 2017) that REIII-
nucleated spreading, unlike RNAi-spreading (Figure 1C, 2B and S1C), cannot be re-capitulated outside
MAT at the ura4 locus (Figure S2D), even when additional heterochromatin factors are made available
by compromising RNAi-nucleation (Figure S2D, inset). If this structure were for example a compact
loop, only across a few kilobases, it would account for deterministic spreading, as looping would facilitate
reaching all nucleosomes within this structure, as has been proposed (Bantignies and Cavalli, 2011). In
this model, memory would not require retention of methylated histones, as there would be a strong bias to
reconstitute spreading after S-phase at the locus if the structure was formed. But memory would require a
strong bias to replicate this structure after S-phase with history dependence also resulting from a

significant energetic barrier to form the structure de novo. Given this postulated barrier to loop formation,
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a TSA imprint would simply require TSA to favor dissolution of the loop, which would then be
maintained and weaken spreading. Mechanisms of loop formation are poorly understood in S. pombe, but
may involve the chromatin organizing TFIIIC complex, which is recruited as part of the spreading
boundary adjacent to REINI (Noma et al., 2006). In support of this overall model, looping in
heterochromatin spreading has been predicted to lead to the more robust inter-generational persistence

that we witness here (Erdel and Greene, 2016) for REIII-mediated spreading.

Alternative formal model for cenH and REIII interaction.

In the main discussion, we propose that cenH stimulates REIII nucleation to account for the high
proportion of the spreading in wild-type MAT cells. Another formal possibility remains that non-
nucleated, Atf1/Pcrl-bound, REIII raises cenH spreading efficiency. In the AREIII strain, Atfl/Pcrl
binding sites have been fully deleted, it is possible that when bound but not in a heterochromatin state,
Atf1/Pcrl act in some manner to encourage more efficient spreading out of cenH, possibly by directing

the locus to a more spreading competent location.
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Supplemental Methods

Basic 3 color HSS Analysis in R:

Reading in the data:

Standard flow cytometry data files (.fcs) were converted to readable “dataframes” (spreadsheets) using
the read.FCS() and exprs() functions in the R package flowCORE (Bioconductor,
https://www.bioconductor.org/packages/release/bioc/html/flowCore.html).

Generating cell size gate:

Forward Scatter Area (FSC) and Side Scatter Area (SSC) parameters were extracted for each sample and
a scatter plot of FSC vs SSC was generated. As shown in Figure S1B, a gate was determined for small
single cells of predominantly G2 phase. A function was created to isolate the data in the dataframe for
each sample within the FSC and SSC parameters identified.

Isolating successfully nucleated cells:

For all flow cytometry experiments done at standard temperature and without TSA, successfully
nucleated cells were determined as follows. A strain closely matched in genetic background to HSS
strains but containing no XFPs was analyzed under the same flow cytometry conditions in each
experiment. This “unstained” control was gated for cell size in the same manner as analysis strains and
both the mean fluorescence and standard deviation determined in Green or Orange Channels (the signal
from the ade6p:SF-GFP, ade6p:mKO2 or ade6p:E2C transcriptional units is referred to here as “green”,
“orange” or “red”). A nucleation cutoff (“green” for all experiments except S1C and S2A) was set for a
value corresponding to the mean of fluorescence units in the green channel plus two standard deviations
from this unstained control. Only cells for each analysis strain having a “green” (or “orange” in S1C,
S2A) signal less than this value were considered for post nucleation analysis.

Normalizing to max fluorescence values from Acir4 strains:

Max values in Aclr4 strains were determined by calculating the median raw fluorescence in each color
channel after gating for cell size. For each cell of each strain for analysis, the signal in each channel was
divided by this max value for the corresponding Acir4 strain.

Normalizing to constitutive red signal:

After normalizing to the max values in each channel, for each cell of each strain, the “green” and “orange”
values were divided by the “red” value. The normalized values range from 0 to 1, where 1 corresponds to
the Acir4 (max) value. As this value is derived from the mean of a cell distribution, with Acir4 cells

falling above and below the mean, we plotted out to 1.5 to capture cells with ratio values above 1.0.

Hexbin (2-D Histogram) Analysis:

All cells within the FSC/SSC gate were plotted as a “green”/“red” and “orange”/“red” hexbin (or 2-D
histogram) plot where density is color-coded in grayscale. Data points within x=0-1.5 and y=0-1.5 were
isolated and a hexbin plot was generated using n=40 bins. Hexbin plots were generated using the R
package hexbin (https://CRAN.R-project.org/package=hexbin)

Spreading Analysis with Nucleation Clamp:

Cells within the FSC/SSC gate and with a nucleation color signal below the cutoff value were plotted in a
1-D histogram where the points in the middle of the histogram bins were plotted connected by a line. In
Figure 1, 1-D histograms were generated using n=100 bins. In the remaining figures where more data
was collected or where there were more cells within the nucleation gate plots were generated with n=200-
300 bins.
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Modifications for S1 A:

After reading in the .fcs file and gating for cell size, the raw fluorescence in Green vs Red and Orange vs
Red were plotted for each cell in either PAS135 or PAS237. Color negative cells were removed. Pearson
correlation for each color pair in each strain was calculated.

Modifications for Figure 4:

For every TSA concentration and pre-condition (O uM or 50 uM) each strain was normalized to the
median fluorescence of a 4clr4 strain grown under the same treatment. Both “green” and “orange” cutoff
values for each analysis strain were generated by determining mean and two standard deviations in each
color from PAS217 at 0 uM TSA from the 0 uM TSA precondition normalized to the appropriate Aclr4
strain for each analysis strain. Previous analysis had demonstrated both colors in PAS217 to be fully
repressed, as evident in the mean for each channel. Values for “green”/*“red” and “orange”/“red” were
divided by “green”/“red” and “orange”/*“red” values for each 4cl/r4 strain at each TSA concentration and
pre-condition, yielding the cutoff value as described above. For 4B and 4C we calculated at each TSA
concentration the fraction of cells with green signal below the “green” cutoff that have an orange signal
below the “orange” cutoff. This yields a fraction of nucleated cells which have “full spreading” as
measured by the sensitivity of our reporters. For 4D we calculated at each concentration of TSA the
fraction of all cells with orange signal below the “orange” cutoff, as in the 50 uM TSA pre-condition,
insufficient cells exist that are below the cutoff for “green” to perform above analysis. This line plotted
however is co-incident with the fraction of all cells with “green” signal below the “green” cutoff along the
TSA concentration gradient (data not shown).

Modifications for Figure 5:

In Figure 5A for each temperature a different FSC/SSC gate was determined as the size and shape of
cells are affected by changes in temperature. A corresponding “red only” (PAS75) was also grown at that
temperature and subjected to the same FSC/SSC gate. Nucleation (green) and spreading (orange) cutoff
values were determined based on the ratios of this “red only” strain normalized to 4cir4. For each strain at
each temperature, we calculated the fraction of all cells in the FSC/SSC gate that had “green” signal less
than the “green” cutoff AND *“orange” signal less than the “orange” cutoff. These values were normalized
to the fraction calculated for cells of that strain at 32°C.

In Figure 5 C, D, E the 1-D histograms and hexbin plot insets were calculated as above with the
modification that the “green” cutoff values were generated as in Figure 5A.

In Figure 5F we calculated the fraction of gated cells that had “green” signal less than the “green” cutoff
AND orange signal less than the “orange” cutoff. This value was normalized a similar fraction calculated
for that strain at 32°C on day 0 of the experiment.

Fitting ti, for 38°C spreading recovery:
To derive a ty2, which is the time required to recover to 50% of the full spreading observed at 32°C, we fit
the data to a simple sigmoidal dose-response variable slope model:

t™ * (Top — Bottom)
th+t 5

fraction all cells with full spreading = Bottom +
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where Bottom is the starting fraction of cells with full spreading at t=0, Top =1, tis time in hrs. n
represents a Hillslope.

FYLM data analysis:
Initial data calculations:

Loss of focus was identified by red fluorescence measurements below a cutoff of one standard deviation
from the mean of all collected values of red for all cells. This loss of focus data was removed from
analysis. Background fluorescence from the PDMS device at each time point was then subtracted using
catch tubes that did not receive a cell. For each MAT strain, its matched Aclr4 strain was also imaged and
a mean and standard deviation were calculated. In each strain cells were normalized to this mean Aclr4
value (defined as “max’") and to their own red values as in the flow cytometry data analysis. An ON gate
(used in Figure 3B) for cells that reached maximal de-repression was calculated for each strain from the
Aclr4 strain mean less 3 standard deviations. For the ectopic locus strain where both colors reach full de-
repression at various points throughout the experiment, the “max” was calculated differently. For each
cell of this strain green and orange values were each divided by the red value at every timepoint. To
determine max = 1 for orange, a Gaussian mixture model with two components was fit to an array of all
of the orange/red values. The higher mean of was used as the “max” value and all orange data points were
normalized to this. For green “max” was set to the maximum green/red value measured within the first 12
hours of the experiment.

Calculating nucleation gates:

As seen by flow cytometry and visual inspection of collected movies, the vast majority of MAT locus
cells have a repressed nucleation reporter (green), which allowed us to formulate a very strict nucleation
cutoff from the collected FYLM data itself. This cutoff was the mean plus two standard deviations of all
measured values of all cells. Only cells that maintained a green signal less than this cutoff for their entire
measured lifespan were included for further analysis in Figure 3. We did not apply this nucleation gate to
the ectopic strain, as only 2 cells maintained “green” tightly repressed throughout their measured lifespan.
Instead, we decided to show all the cells in the traces plot and highlight in grey example cells that remain
nucleated or mostly nucleated throughout their measure lifespans.

Rescaling orange to fix negative values:

Due to background subtraction (see above) a significant fraction of cells experienced negative values for
their adjusted fluorescence in the orange channel. To account for this, the data was rescaled by
determining the lowest value measured (minVal) and adding the difference between that value and 0 to
every timepoint of every cell. Values for all timepoints were then divided by 1+minVal to rescale back to
1 = max.

Data smoothing:
For trace plots and heatmaps data was smoothed using a moving average of the two-nearest neighbor data
points before and after. This number was chosen as it represents the timeframe of one cell division and is

on the timescale of the expression and maturation of the XFPs used in these strains.

Traces:
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Individual cell traces represent the red normalized and smoothed, green and orange fluorescence data
plotted over time. Traces begin and end at whatever time a cell entered or exited the channel or died.
Therefore, not all traces start at x = 0 or end at x = 60. Curated example cells were also plotted as
overlays using gray lines. For these curated cells similar trace plots for orange divided by green was
plotted in Figure S3C BOTTOM, S3D BOTTOM and S3F.

Heatmaps:

Points with red values greater than 50% of the mean were removed. For cells that remained nucleated
throughout their measured lifespan, up to 36 hours of measurements of normalized green or orange was
plotted as a heat map from blue (0) to yellow (1) for 30 of the longest imaged cells. White gaps indicate
transient loss of focus of less than 2 hours (4 timepoints). Heatmaps were no longer plotted for any cell
that had a loss of focus event for more than 4 timepoints.

X-Y fluorescence plots:

For one or two selected cells per strain an X-Y fluorescence plot was generated that plots the orange vs
green values for every third timepoint imaged. Points are colored in a grayscale that is generated based on
the measured lifespan of that cell. The first measured point is represented in black, the last in white and
the number of remaining points set by the total measured lifespan of the cell.

Cell fate pie charts:

The number of measured timepoints for each cell was determined and converted to hours (1 fluorescence
image per 30 minutes). Cells were then binned into lifetime groups of <12hrs, 12-36hrs, or >36hours.
Within these bins the cells were separated based on whether they died as annotated in FYLM Critic or if
their traces were cut short due to late entry into or ejection from the catch channel.
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Supplemental Figure 2
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Supplemental Figure 3
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Supplemental Figure 5
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