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Abstract 20	

 21	

Fusarium verticillioides is recognized as an important stalk rot pathogen of maize 22	

worldwide, but our knowledge of genetic mechanisms underpinning this pathosystem is limited. 23	

Previously, we identified a striatin-like protein Fsr1 that plays an important role in stalk rot. To 24	

further characterize transcriptome networks downstream of Fsr1, we performed next-generation 25	

sequencing (NGS) to investigate relative read abundance and also to infer co-expression 26	

networks utilizing the preprocessed expression data through partial correlation. We used a 27	

probabilistic pathway activity inference strategy to identify functional subnetwork modules 28	

likely involved in virulence. Each subnetwork modules consisted of multiple correlated genes 29	

with coordinated expression patterns, but the collective activation levels were significantly 30	

different in F. verticillioides wild type versus the mutant. We also identified putative hub genes 31	

from predicted subnetworks for functional validation and network robustness studies through 32	

mutagenesis, virulence and qPCR studies. Our results suggest that these genes are important 33	

virulence genes that regulate the expression of closely correlated genes, demonstrating that these 34	

are important hubs of their respective subnetworks. Lastly, we used key F. verticillioides 35	

virulence genes to computationally predict a subnetwork of maize genes that potentially respond 36	

to fungal genes by applying cointegration-correlation-expression strategy. 	37	

 38	
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Introduction 43	

 44	

Maize stalk rot is a complex disease, primarily caused by a series of fungal pathogens. 45	

Charcoal rot (by Macrophomina phaseolina), Fusarium stalk rot (by Fusarium verticillioides), 46	

Gibberella stalk rot (by F. graminearum) and Anthracnose stalk rot (by Colletotrichum 47	

graminicola) are the major stalk rots that devastate maize-growing regions in the US 1,2. Losses 48	

due to stalk rot come in several different forms including stalk breakage, lodging, premature 49	

death of the plant, and the interruption of the normal grain filling process. Pathogens typically 50	

overwinter in the crop residue from the previous year and produce spores in the next growing 51	

season that will serve as the primary inoculum source.  It is generally perceived that when crops 52	

experience abiotic stress, particularly at the end of the growing season, pathogens take advantage 53	

and colonize vulnerable stalk tissues 2-4. But overall, we still lack a clear understanding of how 54	

these stalk rot fungi colonize and progress through pathogenesis. 55	

To better understand the mechanism of pathogenesis, we screened for loss-of-virulence F. 56	

verticillioides mutants and identified a gene, FSR1, that is responsible for the deficiency 5. 57	

Microscopic examination of inoculated stalks revealed the wild-type fungus vigorously 58	

colonizing vascular bundles and causing rot, whereas the mutant showed limited colonization 59	

and rot in stalks. FSR1 encodes a protein that shares high similarity with striatins, a group of 60	

proteins found in eukaryotes that form complexes with kinases and phosphatases to regulate 61	

diverse cellular functions 6-8. Recent studies have demonstrated important cellular and 62	

physiological roles of striatin proteins in Sordaria macrospora, Neurospora crassa, Aspergillus 63	

nidulans, and C. graminicola 9-12.	Our laboratory also revealed the importance of the coiled-coil 64	

motif of Fsr1 in virulence and demonstrated how Fsr1 forms a complex with other proteins to 65	
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regulate stalk rot virulence 13,14. These discoveries collectively support our hypothesis that 66	

Fsr1/striatin-mediated signal transduction plays a critical role in regulating stalk rot pathogenesis.  67	

One of the intriguing questions we are aiming to answer is the impact of Fsr1 in cellular 68	

signaling associated with F. verticillioides virulence. To unravel the complex web of genetic 69	

interactions in F. verticillioides and maize, we decided to take advantage of next-generation 70	

sequencing (NGS) and explore the transcriptomic subtnetwork modules underpinning FSR1-71	

mediated fungal virulence by computational network-based analysis. Our goal was to develop 72	

probabilistic and systematic models to investigate the interrelationship between genes rather than 73	

relying on quantitative comparison of transcript abundance as a measure of significance. Our 74	

NGS study was designed to capture dynamic changes in gene expression during maize stalk 75	

colonization by F. verticillioides wild type and fsr1 mutant. To capture dynamic changes in 76	

transcriptome, samples were harvested from three distinct phases of stalk pathogenesis: 77	

establishment of fungal infection, colonization and movement into the vascular bundles, and host 78	

destruction and collapse 15.  A total of six independent biological replications were prepared and 79	

analyzed for each sample, since increasing the number of replicates was important for us to 80	

implement our computational analysis for identifying subnetwork modules that show strong 81	

differential expression.  82	

As described in our previous work 15, our strategy is to first construct the co-expression 83	

network of F. verticillioides using partial correlation, and search through these networks to 84	

detect subnetwork modules that are differentially expressed in the two F. verticillioides strains. 85	

Subsequently, we use the probabilistic pathway activity inference scheme 16 to predict the 86	

activity level of potential subnetworks, followed by applying a computationally efficient branch-87	

out technique to find the subnetworks that display the largest differential expression. Through 88	
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this computational pipeline, we can identify potential pathogenic modules, which consist of 89	

genes that show coordinated behavior in F. verticillioides but also behaving differently in the 90	

wild type and the mutant. We can also screen for potential gene modules that contain orthologs 91	

of well-known virulence genes in other phytopathogenic fungi.  92	

 Biological functions, including virulence, are executed through elaborate collaboration 93	

of various biomolecules, and there has been increasing interest in the computational 94	

identification of functional modules from large-scale experimental data. In this study, we 95	

performed a comparative analysis of two distinct F. verticillioides RNA-Seq datasets, where one 96	

set was obtained from wild-type F. verticillioides and the other set from a loss-of-virulence fsr1 97	

mutant. For a systematic analysis of the infection transcriptome, we first predicted the co-98	

expression network of the fungus. Subsequently, we identified functional subnetwork modules in 99	

the co-expression network consisting of interacting genes that display strongly coordinated 100	

behavior in the respective datasets. A probabilistic pathway activity inference method was 101	

adopted to identify three subnetwork modules likely to be involved in F. verticillioides virulence. 102	

Each subnetwork consisted of multiple genes with coordinated expression patterns, but more 103	

importantly we targeted subnetworks whose collective activation level is significantly different 104	

in the wild type versus the mutant. We then applied a series of mathematical criteria to predict 105	

the hub gene in each network and functionally tested their role in F. verticillioides virulence and 106	

the maintenance of network robustness. 107	

 108	

RESULTS  109	

 110	

NGS data preparation and relative expression analysis 111	
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We performed NGS using Illumina HiSeq 2000 and generated 36 independent libraries (i.e., 112	

six libraries per each time point - 3 dpi [infection], 6 dpi [colonization], and 9 dpi [rot] - for wild 113	

type and the fsr1 mutant). For analysis and prediction in this study, we used 24 sample libraries 114	

from the last two time points (6 dpi and 9 dpi) to focus on gene regulation mechanism in the 115	

latter stages of maize-fungal interaction. Acquisition of read counts of all F. verticillioides genes 116	

was completed by mapping NGS reads to F. verticillioides strain 7600 reference genome 17 using 117	

Bowtie2	 18,19 and Samtools 20. Through filtering process, we eliminated genes with insignificant 118	

expression and therefore 9446 genes were selected for downstream analysis. We normalized the 119	

read counts of these genes by their corresponding gene length and also based on relative 120	

expression quantification against two β-tubulin genes (FVEG_04081 and FVEG_05512). 121	

Percentages of the two β-tubulin read abundance were traced over 24 replicates in 6 dpi & 9 dpi 122	

to examine their expression consistency. Mean (µ) and standard deviation (σ) of the percentages 123	

for b-tubulins were µ=0.058%, σ=0.0056 for FVEG_04081 and µ=0.035%, σ=0.0044 for 124	

FVEG_05512. The general information of our NGS datasets is shown in Fig. 1A. From these 125	

genes, we selected 324 most significantly differentially and highly expressed genes either in wild 126	

type or fsr1 mutant from our datasets, where all replicates were normalized and analyzed for 127	

their individual relative expression levels at three different time points.  As shown in a heat map 128	

with three distinct time points (Fig. 1D), 155 genes (red) are expressed significantly higher in the 129	

wild type and 169 genes (blue) are expressed significantly higher in fsr1 mutant (Fig 1D. and 130	

Table S1). As explained earlier, the relative abundance was acquired by the two-step 131	

normalization by each gene length as well as β-tubulin genes, and was selected by t-test statistics 132	

score measurement (|t-test score| > 3.5). However, this common NGS analysis focuses on 133	
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relative expression of individual genes but does not allow us to predict gene-gene associations 134	

and system-level changes across correlated genes during pathogenesis.   135	

 136	

Identification of F. verticillioides subnetwork modules 137	

We developed a computational workflow that allows us to build co-expression networks 138	

from F. verticillioides NGS datasets 15.  We first inferred the co-expression networks for the wild 139	

type as well as the fsr1 mutant utilizing the preprocessed gene expression data by using the 140	

partial correlation 21 (Supplementary Information). In this co-expression network, we applied 141	

five distinct thresholds (0.965, 0.97, 0.975, 0.98, and 0.985), thereby constructing five different 142	

co-expression networks. The number of genes and edges between genes are shown in Fig. 1B. 143	

When these co-expression networks are illustrated with all member genes and possible edges, we 144	

can generate a complex web of scale-free networks (Fig. 1C). However, the aim of our proposed 145	

network-based NGS data analysis is to search through these co-expression networks to identify 146	

subnetwork modules that are differentially activated between the F. verticillioides wild type and 147	

fsr1 mutant, that can considerably differ in terms of virulence potentials (Fig. 2).  148	

 By following this proposed strategy, we developed two potential subnetwork modules 149	

differentially activated during F. verticillioides pathogenesis. We performed additional analyses 150	

with six different characteristics for selecting hubs and their modules followed by our network-151	

based comparative analysis approach15 (Fig. 3). In the subnetwork module fine-tuning process, 152	

two modules in Fig. 4 showed the minimum discriminative power increase for the entire module 153	

adjustment as 22% and 27% while over 90% of modules displayed smaller than 20% increase. 154	

Note that our approach probabilistically focuses on generating subnetwork modules whose 155	

member genes have high likelihood of showing associated expression patterns to each other 156	
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across all replicates using the log-likelihood-ratio (LLR) matrix that demonstrates how likely 157	

each gene would express in F. verticillioides wild type or the mutant. As a result, our network-158	

based computational analysis approach found potential subnetwork modules that show 159	

harmonious coordination of member genes as well as strong differential activity between the two 160	

strains. 161	

 162	

Computational characterization of two key F. verticillioides subnetwork modules 163	

From our network-based comparative analysis, we identified two potential pathogenicity-164	

associated subnetwork modules differentially activated between the wild-type and fsr1 mutant 165	

strains (Fig. 4). Module A was composed of ten F. verticillioides genes, where 80% of these 166	

were annotated with a significant GO term cytoplasmic component (GO:0044444) 167	

(http://biit.cs.ut.ee/gprofiler/index.cgi) 22. However, it is important to note that majority of these 168	

genes have no known function and these GO functions were chosen solely based on predicted 169	

protein motifs (Table S2). Module B was comprised of fifteen genes, where four (FVEG_07930, 170	

FVEG_00890, FVEG_11886, and FVEG_00594) were annotated with a significant GO term 171	

transport (GO:0006810). The eleven other genes were hypothetical proteins with some 172	

knowledge of their functional domains. But this module showed relatively higher percentage of 173	

genes with no GO terms and no functional protein domains compared to module A (Table S2). 174	

Once we defined these subnetwork modules, we analyzed all member genes in silico to predict 175	

potential hub genes that may hold a key role in F. verticillioides pathogenicity. 176	

In module A, we selected FVEG_11622 as a potential pathogenicity-associated hub gene 177	

based on following observations: i) FVEG_11622 deteriorated the differential probabilistic 178	

activity level of its given module from wild type to mutant by 26% (the mean of other member 179	
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genes was 16%), ii) correlation coefficients of FVEG_11622 decreased from wild type to mutant 180	

by 0.26 and 0.34 for Pearson’s and Spearman rank, respectively (the mean of other member 181	

genes was 0.14 and 0.19), iii) FVEG_11622 contained four edges to other member genes (the 182	

mean of other member genes was 2.8), iv) FVEG_11622 demonstrated significant expression 183	

decrease from wild type to mutant (t-score of 4.4), and v) orthologous gene of FVEG_11622 in 184	

Botrytis cinerea (BC1G) is recognized as having a role in fungal virulence.  The predicted hub 185	

gene FVEG_11622, which was tentatively designated as FvEBP1, encodes a putative 238-AA 186	

hypothetical protein that harbors Emopamil-binding protein (EBP) domain (pfam05241). In 187	

mammalian systems, this protein family is known to be associated with endoplasmic reticulum 188	

and plays a critical role in sterol isomerization and lipoprotein internalization 23. An emopamil 189	

binding protein BcPIE3 in Botrytis cinerea which shares significant structural similarities to 190	

mammalian EBPs was shown to be important for virulence 24. FvEBP1 has four direct edges to 191	

FVEG_03416, FVEG_04142, FVEG_08818 and FVEG_09111.  FVEG_03416 is an alginate 192	

lyase gene, and contains an alginate lyase domain which is important for fructose and mannose 193	

metabolism. FVEG_04142 is a V-type proton ATPase subunit F. V-type ATPases have 194	

hydrogen-exporting ATPase activity and are involved in ATP hydrolysis coupled proton 195	

transport. FVEG_09111 is a hypothetical protein, containing a PX-associated domain. The 196	

function of this protein is unknown, but its N-terminus is always found to be associated to a PX 197	

domain which is involved in targeting of proteins to cell membranes. FVEG_08818 is a 198	

hypothetical protein with a methyltransferase domain. 199	

 Using the same approach, we identified FVEG_00594 as the potential pathogenicity-200	

associated hub gene in module B  based on following observations: i) FVEG_00594 reduced the 201	

differential probabilistic activity level of its detected module from wild type to mutant by 24% 202	
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(the mean of other member genes was 13%); ii) correlation coefficient difference of 203	

FVEG_00594 between wild type and mutant was 0.34 and 0.4 for Pearson’s and Spearman rank, 204	

respectively (the mean of other member genes was 0.24 and 0.2); iii) FVEG_00594 included four 205	

edges to other member genes (the mean of other member genes was 3.7); iv) the difference of 206	

expression level of FVEG_00594 was higher in wild type although it did not show high 207	

significance (t-score as 0.8), and v) the ortholog of FVEG_00594 in F. graminearum (FG) is 208	

recognized as having a role in fungal virulence.  FVEG_00594, designated FvSYN1, encodes a 209	

putative 377 amino-acid protein that harbors two well-recognized domains: syntaxin N-terminal 210	

domain (cd00179) and SNARE domain (cd15849). In budding yeast, the SNARE protein 211	

complex is involved in membrane fusion and protein trafficking for new synthesis and recycling 212	

of organelles 25. SNAREs were originally classified into v-SNAREs and t-SNAREs according to 213	

their vesicle or target membrane localization 26. Syntaxins belong to t-SNARE proteins and are 214	

shown to play an important role in membrane fusion in eukaryotic cells 27,28. Syntaxins are 215	

known as a family of membrane-associated receptors for intracellular transport vesicles. 216	

Syntaxin and SNAREs are also known to anchor these newly synthesized and recycled proteins 217	

to the cytoplasmic surface 29. SNARE proteins play critical and conserved roles in intracellular 218	

membrane fusion in eukaryotic cells 30. They were known to mediate membrane fusion during all 219	

trafficking steps of the intracellular communication process, including the secretory and 220	

endocytic pathways 31. FvSYN1 has four directly associated genes in the subnetwork module: 221	

FVEG_03392, FVEG_04259, FVEG_09144 and FVEG_13321. Three of these genes 222	

(FVEG_03392, FVEG_04259, FVEG_09144) encode hypothetical proteins with no known 223	

functional motif thus making it difficult to predict their role. While FVEG_13321 is a 224	
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hypothetical protein, it does contain a fungal Zn2Cys2 binuclear cluster domain, which is 225	

typically found in the family of fungal zinc cluster transcription factors 32,33 .  226	

 227	

Functional characterization of predicted hub genes associated with virulence 228	

To test our hypothesis that FvEBP1 (FVEG_11622) and FvSYN1 (FVEG_00594) are 229	

putative hub genes of subnetwork modules A and B, respectively, and that they are important for 230	

F. verticillioides virulence. We generated gene knockout mutants ∆fvebp1 and ∆fvsyn1 through 231	

homologous recombination following our standard split marker protocol 34. Hygromycin B 232	

phosphotransferase (HPH) was used as the selective marker, and homologous recombination 233	

outcomes were confirmed by PCR (data not shown) and Southern blots (Fig. S1). We first 234	

compared vegetative growth of these mutants on synthetic media (PDA, V8 agar and defined 235	

medium agar). While ∆fvsyn1 strain showed reduced colony growth, ∆fvebp1 strain exhibited no 236	

growth defect (Fig. 5A).  The mutant ∆fvsyn1 showed restricted radial vegetative grow while 237	

exhibiting more dense and fluffier mycelial growth on solid media when compared to the wild 238	

type (Fig. 5B). When cultures were harvested from YEPD broth, we did not observe a significant 239	

difference in fungal mass production (Fig. 5C). For spore production on V8 plates, ∆fvsyn1 240	

produced significantly reduced spores when compared to other strains (Fig. 5D).   241	

To test virulence, we inoculated B73 maize seedling mesocotyls with spore suspension of 242	

wild-type, ∆fvebp1, and ∆fvsyn1 strains (along with water as a negative control) following the 243	

previously described procedure 35. When symptoms were observed after a 2-week incubation 244	

period, ∆fvebp1 and ∆fvsyn1 mutants showed significantly decreased levels of rot when 245	

compared with the wild-type progenitor (Fig. 4E). Mutants ∆fvebp1 and ∆fvsyn1 showed 246	

approximately 70% and 60% reduction in virulence when analyzed by average mesocotyl rot 247	
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area (Fig. 5E). In order to test whether the mutant phenotype is due to a targeted gene 248	

replacement, we generated complementation strains of ∆fvebp1 and ∆fvsyn1 by co-transforming 249	

each mutant protoplasts with the respective wild-type gene (FvEBP1 and FvSYN1 with their 250	

native promoter and terminator) along with the geneticin-resistance gene. PCR was performed to 251	

confirm reintroduction of wild-type genes in complemented strains. FvSYN1C strain showed 252	

complete restoration of virulence on maize seedlings whereas FvEBP1C showed partial (~75%) 253	

recovery (Fig. 5E).  These results suggested that FvEBP1 and FvSYN1 play an important role in 254	

virulence on maize seedling rot, and further convinced us that these two genes serve as the 255	

predicted hub gene of their respective subnetwork module.  256	

 257	

Testing network robustness in gene deletion mutants 258	

A very important feature of these subnetwork modules is having robustness, i.e. the 259	

ability to respond to and withstand the external as well as internal stimuli while maintaining its 260	

normal behavior	36. However, it is reasonable to predict that when we eliminate or disable a 261	

critical node (i.e. a hub gene), the network could be disrupted and shattered into isolated nodes.  262	

If a hub gene is eliminated from the subnetwork, we can hypothesize that other member genes, 263	

particularly those sharing direct edges, will exhibit disparate expression patterns.  264	

We first tested correlated gene expression patterns in the wild type versus ∆fvebp1 265	

mutant by qPCR.  We learned that gene expression levels of FVEG_03416, FVEG_04142, and 266	

FVEG_08818 were drastically lowered in the ∆fvebp1 mutant than those observed in the wild-267	

type progenitor (Fig. 6A). Furthermore, the FVEG_09111 gene expression level was not 268	

detectable in the mutant. Particularly, FVEG_04142 and FVEG_09111 showed higher levels of 269	

expression in the ∆fsr1 mutant when compared to the wild type, and in ∆fvebp1 that expression 270	
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pattern is now reversed (Fig. 6B).  These results show that when FvEBP1 is no longer present in 271	

the subnetwork, expression levels of these genes, FVEG_03416, FVEG_04142, and 272	

FVEG_08818, and FVEG_09111, are drastically suppressed (Fig. 6A and B), suggesting 273	

FvEBP1 is critical for proper regulation of these neighboring genes.  274	

In the ∆fvsyn1 strain, we comparatively studied the expression pattern of four genes that 275	

directly share edges with FvSYN1.   Three of the four genes tested, FVEG_03392, FVEG_04259 276	

and FVEG_09144 showed a significant difference in expression levels between the wild type and 277	

∆fvsyn1 mutant. Significantly, FVEG_03392 and FVEG_04259, which showed lower expression 278	

level in the wild type when compared with ∆fsr1 mutant, reversed its course and showed higher 279	

expression in the wild type when compared with ∆fvsyn1 (Fig. 6C). FVEG_09144, which 280	

showed no difference in expression between wild type and ∆fsr1, showed significantly higher 281	

expression in ∆fvsyn1.  FVEG_13321, which showed higher expression in wild type compared 282	

to ∆fsr1, now exhibits statistically similar expression in wild-type and ∆fvsyn1 (Fig. 6C and D).  283	

Collectively these data showed that FvSYN1 and FvEBP1 are important for regulating the 284	

expression of closely correlated genes, further providing evidence that these are important hub 285	

genes of their respective subnetworks.   286	

 287	

DISCUSSION 288	

 289	

In this study, we assembled a streamlined computational network analysis pipeline to 290	

investigate the system-level coordinated changes across differentially activated genes rather than 291	

simply focusing on differential transcript abundance of individual genes, and to detect subtle 292	

processes that are not likely to be revealed by examining a small list of highly significant genes 293	
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in this host-pathogen interaction. To generate meaningful prediction from limited datasets, 294	

comprehensive and rigorous investigation was needed. Thus, we mainly searched for comparable 295	

expression patterns probabilistically using a log-likelihood ratio matrix over replicates instead of 296	

just considering differential expression for identifying potential subnetwork modules. Also, we 297	

analytically investigated the given subnetwork modules with multidirectional analysis 298	

considering factors such as probabilistic impact, and differential correlation. Significantly, this 299	

comprehensive approach can help identify novel virulence-associated subnetwork modules as 300	

well as the key functional “hub” genes in fungal pathogens, such as F. verticillioides. This 301	

assembly of tool will be instrumental as we continue our effort to harness new and meaningful 302	

information from NGS data as we try to better understand complex pathosystems. 303	

Our study mainly focused on analyzing the underlying transcriptional regulation in host-304	

pathogen interactions.  However, we do recognize that complex intercellular web of interactions 305	

in a living cell, not to mention between a host and its pathogen, are not limited to gene-gene 306	

association. Numerous constituents of the cell, e.g. DNA, RNA, protein, and metabolites, 307	

contribute to the structure and the dynamics of cellular network and ultimately behavior. 308	

However, in contrast to DNA and RNA, the resources available for us to generate systems-level 309	

proteome and metabolome datasets for network analyses are currently limited.  In addition to this 310	

challenge, majority of host-pathogen systems have very limited genetic information available. 311	

For instance, as one can see from our three predicted modules majority of member genes encode 312	

hypothetical proteins with unknown, and vaguely predicted, functions. We primarily focused on 313	

developing this computational approach with the intent of investigating not-well defined 314	

biological systems with minimal bias toward existing genetic information, i.e. allocating higher 315	

scores toward known virulence genes in given species.  316	
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Furthermore, there is a greater challenge in refining subnetwork module development for 317	

host organisms that typically has larger and more complex genomes.  Over 95% of our NGS data 318	

generated in this study came from maize, suggesting that maize stalk is actively responding to 319	

the pathogen invasion and colonization at transcriptional level 37.  In our earlier study, we 320	

developed a computational analysis pipeline, including the cointegration-correlation-expression 321	

approach, to predict potential maize defense-associated genes that show strong differential 322	

activation and coordination with known F. verticillioides virulence genes 37. Here, we selected 323	

three F. verticillioides pathogenicity genes identified from our current work (FVEG_11622, 324	

FVEG_00594, and FVEG_09767 [FSR1]) to predict maize response subnetworks.  An 325	

illustration of the potential subnetwork module associated with maize defense response against 326	

the F. verticillioides pathogenicity genes is shown in Fig. 7. We followed the procedure from 327	

narrowing down maize genes using the cointegration-correlation-expression approach to 328	

branching out potential defense-associated modules on maize co-expression networks 37. The 329	

subnetwork module associated with maize defense system was composed of 28 maize genes, 330	

where genes relatively significantly expressed in wild type-infected are indicated in red and 331	

genes relatively significantly expressed in mutant type-infected are indicated in blue (Table S3). 332	

In this potential maize defense gene subnetwork module, we noticed that five maize genes 333	

(GRMZM2G102760_T01, GRMZM5G870932_T01, GRMZM2G001421_T02, 334	

GRMZM2G001696_T01, and GRMZM2G137535_T01) were annotated with a significant GO 335	

term defense response/incompatible interaction (GO:0009814), defined as “a response of a plant 336	

to a pathogenic agent that prevents the occurrence or spread of disease”.  However, as seen in F. 337	

verticillioides subnetwork modules, we recognize that a large percentage of member genes 338	

encode hypothetical proteins and that transcriptional coordination does not always result in 339	
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functional correlation. In addition, unlike F. verticillioides genes we characterized in this study, 340	

generating null mutants and performing network robustness assays are more strenuous for maize.  341	

While difficulties mentioned above remain as obstacles, our effort demonstrates that the 342	

proposed network-based analysis pipeline can improve our understanding of the biological 343	

mechanisms that underlie host-pathogen interactions, and that it has the potential to unveil novel 344	

genetic subnetwork modules and hub genes critical for virulence in fungal pathogens.  We are 345	

currently in the process of improving our computational pipeline with computational network 346	

querying that can estimate node correspondence probabilities to find novel functional pathways 347	

in biological networks 38-41. This gene subnetwork approach can lead to the discovery of new 348	

quantifiable cellular subnetworks that can bridge the knowledge gaps in the maize-F. 349	

verticillioides system and be further applied to other plant-microbe pathosystems. 350	

 351	

METHODS 352	

 353	

Fungal strains, maize line, and RNA sample preparation 354	

F. verticillioides strain 7600 17 and fsr1 mutant 5 were cultured at 25°C on V8 juice agar 355	

(200 ml of V8 juice, 3 g of CaCO3 and 20 g of agar powder per liter). Maize inbred B73, a 356	

progenitor of numerous commercial hybrids with no inherent resistance to stalk rot, was 357	

inoculated with F. verticillioides wild type and fsr1 mutant spore suspension as described 358	

previously 5,35.  Maize stalk samples were collected 3, 6, and 9 dpi using manual sectioning, and 359	

microscopically inspected to identify host tissue damage and/or fungal colonization, particularly 360	

in the vascular bundles. For each sample, sectioning was performed on at least three independent 361	

stalk samples from each stage of infection, and isolated tissues were pooled for RNA extraction 362	
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with TRIzol reagent (Invitrogen).  For each time point, we collected six pooled samples, thus 363	

thirty-six RNA samples in total. Standard QA/QC procedure for RNA samples was implemented 364	

at the Texas A&M AgriLife Research Genomics and Bioinformatics Service (College Station, 365	

TX) prior to sequencing. 366	

 367	

RNA Sequencing and data preprocessing 368	

RNA sequencing was processed at the Texas A&M AgriLife Research Genomics and 369	

Bioinformatics Service using Illumina HiSeq 2000 as described previously 37. We sequenced a 370	

total of 36 sample libraries, i.e. six libraries per each time point (3 dpi, 6 dpi, and 9 dpi) for wild 371	

type and the mutant inoculated maize stalks, but it is worth noting that, in this study, we only 372	

used sequencing data for the last two time points in this study (6 dpi and 9 dpi, hence 24 sample 373	

libraries in total) to focus on gene regulation mechanism in the latter stages of maize-Fusarium 374	

interaction. Next, acquiring read counts of all F. verticillioides genes was completed as described 375	

in our earlier reports 15,37 by i) aligning the RNA-seq reads  to the reference genome of F. 376	

verticillioides strain 7,600 obtained from the Broad Institute (http://www.broadinstitute.org) 377	

using Bowtie2 19 and Samtools 20, ii) filtering out genes insignificantly expressed over most of 378	

the replicates, thereby keeping 9446 genes for downstream analysis, iii) normalizing the read 379	

counts of these genes by their corresponding gene length and also based on expression levels of 380	

β-tubulin genes (i.e. FVEG_04081 and FVEG_05512) to have relative expression quantification 381	

across all replicates.   382	

 383	

Prediction of F. verticillioides subnetwork modules associated with stalk rot 384	
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A procedure of identifying candidate functional subnetwork modules follows 385	

computational analysis pipeline described earlier 15 with some modifications, and additional 386	

detail is provided in the Supplementary Information. From the preprocessed gene expression data, 387	

we performed conversion into log likelihood ratio (LLR) matrix, construction of co-expression 388	

networks tbased on partial correlation, and selection of the most significantly differentially 389	

expressed genes (i.e., top 1%) between the two strains (wild type vs. mutant) as seed genes. 390	

Based on this preparation, we applied computationally efficient branching out searching from a 391	

seed gene until it does not meet minimum discriminative power increase for each subnetwork 392	

module. The entire searching process was reiterated for every seed gene and for the five co-393	

expression networks (Supplementary Information). Note that our approach probabilistically 394	

searches for subnetwork modules whose member genes have highly likely coordinated 395	

expression patterns to each other over all the replicates using the LLR matrix that demonstrates 396	

how likely each gene would be regulated in wild type or fsr1 mutant. As a result, our network-397	

based computational analysis approach found candidate subnetwork modules that show 398	

harmonious coordination of member genes as well as strong differential activity between the 399	

wild type and fsr1 mutant. 400	

 401	

Prediction strategy for hub genes in each subnetwork module  402	

Our proposed computational approach in this study simultaneously inferred potential F. 403	

verticillioides pathogenicity-associated hub or key functional genes in each subnetwork module 404	

while branching out the modules by performing multidirectional analysis on the detected 405	

candidate subnetwork modules with six different criteria, as depicted in Fig. 3B. First, we 406	

investigated how each gene is probabilistically impactful in its subnetwork module utilizing the 407	
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probabilistic inference strategy applied in our previous work 15. We estimated probabilistic 408	

differential activity of each gene by comparing discriminative power on the two phenotypes 409	

(wild type vs. fsr1 mutant) between its given module with and without the gene. As described in 410	

our previous study 15, we computed discriminative power difference (estimated by t-test statistics) 411	

between both activity levels (one with the gene and the other without the gene) by supposing 𝜻 =412	

{𝒈𝟏, 𝒈𝟐, … , 𝒈𝒏}, member genes in a subnetwork module, and 𝒆 = {𝒆𝟏, 𝒆𝟐, … , 𝒆𝒏}, expression 413	

levels of the given genes. The discriminative power difference 𝑫 𝒅  was calculated as follows. 414	

𝑫 𝒅 = 𝒍𝒐𝒈
𝒇𝟏𝒌(𝒆𝒌)
𝒇𝟐𝒌(𝒆𝒌)

𝒏

𝒌4𝟏 𝜻

𝒕6𝒕𝒆𝒔𝒕	𝒔𝒄𝒐𝒓𝒆

− 𝒍𝒐𝒈
𝒇𝟏𝒌(𝒆𝒌)
𝒇𝟐𝒌(𝒆𝒌)

𝒏

𝒌4𝟏 𝜻−{𝒈𝒅}

𝒕6𝒕𝒆𝒔𝒕	𝒔𝒄𝒐𝒓𝒆

 415	

where 𝒍𝒐𝒈 𝒇𝟏
𝒌(𝒆𝒌)
𝒇𝟐
𝒌(𝒆𝒌)

 is the log-likelihood ratio (LLR), and 𝒇𝒌(𝒆) is each conditional probability 416	

density functions (i.e., either wild or mutant). We subsequently considered genes whose 417	

discriminative power deterioration 𝑫 𝒅  relatively larger as candidate key genes. Second, we 418	

examined differential correlation of each gene with its connected gene in each module between 419	

the wild type versus the mutant using two correlation methods, i.e. Pearson’s correlation and 420	

Spearman rank correlation. We selected genes whose correlation coefficients with its 421	

neighboring genes were not only relatively significantly different between the two different 422	

networks, but also higher in the wild-type network as candidate hub genes. Third, we calculated 423	

number of edges of each gene to other member genes in each module since it is reasonable to 424	

predict that genes with more edges will exhibit more meaningful influence on the module. Fourth, 425	

we investigated expression difference of each gene in a given module between the two strains 426	

since we predict that altered expression of genes downstream of FSR1 can follow that of FSR1. 427	

We selected genes that were significantly differentially expressed between the two conditions 428	

and relatively highly expression in in the wild type.  Fifth, we listed orthologs of known 429	
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pathogenicity genes in other well-studied fungal species such as F. graminearum (FG), F. 430	

oxysporum (FO), Aspergillus fumigatus (AF), Botrytis cinerea (BC1G), Magnaporthe grisea 431	

(MGG), Ustilago maydis (UM), and Cryptococcus neoformans (CNAG). We noted genes in a 432	

given module shown in the list of pathogenic genes as potential key genes. Finally, we 433	

considered whether each gene in a given module was associated with a significant GO term. We 434	

applied p-values of Benjamini-Hochberg false discovery rate (FDR) method 42 to find the most 435	

relevant GO term to each gene and its given module based on g:Profiler 436	

(http://biit.cs.ut.ee/gprofiler/index.cgi) 22. We chose genes annotated with a GO term that is the 437	

most significantly associated term with the given module as candidate key genes.  438	

After identifying a candidate hub (or key functional) gene in its given subnetwork 439	

module, we performed additional fine-tuning procedure for more robust and reliable module 440	

prediction. Briefly, once we identified a candidate gene satisfying the abovementioned six 441	

criteria through subnetwork module extension process with 10% minimum discriminative power 442	

enhance, we performed module adjustment process by implementing the whole module 443	

extension for the given module as well as identifying the same potential gene by escalating the 444	

minimum discriminative power enhance by 1%. We repeatedly applied this fine-tuning process 445	

until the predicted hub (or key functional) gene did not meet all conditions. This process also 446	

stopped when the given subnetwork module grew smaller down to the arbitrary set minimum 447	

size of seven genes. 448	

 449	

Nucleic acid manipulation, polymerase chain reaction (PCR), and fungal transformation  450	

Standard molecular manipulations, including PCR and Southern hybridization, were 451	

performed as described previously 34.  Fungal genomic DNA was extracted using the OminiPrep 452	
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genomic DNA extraction kit (G Biosciences, Maryland heights, MO, USA).  The constructs for 453	

transforming F. verticillioides were generated with a split-marker approach described earlier 34.  454	

Briefly, DNA fragments of 5’ and 3’ flanking regions of each gene were PCR amplified from 455	

wild-type genomic DNA. Partial Hygromycin B phosphotransferase (HPH) gene (HP- and -PH) 456	

fragments were amplified from pBS15 plasmid. 5’ and 3’ flanking region fragments were then 457	

fused with PH- and -HP fragments by single-joint PCR, respectively. The single-joint PCR 458	

products were transformed into wild-type fungal protoplast.  For complementation, respective 459	

wild-type genes driven by its native promoter was co-transformed with a geneticin-resistant gene 460	

(GEN) into mutant protoplasts. All primers used in this study were listed in Table S4.  F. 461	

verticillioides protoplast were generated and transformed following standard protocol 34 with 462	

minor modifications. Murinase (2 mg/ml) was replaced with Driselase (5 mg/ml) (Sigma, St 463	

Louis, MO, USA) in the protoplast digestion solution. Transformants were regenerated and 464	

selected on regeneration medium containing 100 µg/ml of hygromycin B (Calbiochem, La Jolla, 465	

CA, USA) and/or 150 µg/ml G418 sulfate (Cellgro, Manassas, VA, USA) as needed. Respective 466	

drug-resistant colonies were screened by PCR and further verified by Southern analysis. 467	

 468	

Maize infection assays 469	

Maize seedling rot pathogenicity assay was performed on 2-week old maize inbred lines 470	

B73 seedlings as previously described 35 with minor modifications. Briefly, 1x108/ml spore 471	

suspensions in YEPD broth along with YEPD control were inoculated on maize B73 mesocotyls. 472	

Plant mesocotyls were first slightly wounded by a syringe needle about 3cm above the soil. A 5-473	

µl spore suspension was applied to the wound site. The seedlings were immediately covered with 474	

a plastic cover to create a high moisture environment suitable for infection and colonization. The 475	
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seedlings were collected and analyzed after a 2-week growth period in the dark room. At least 476	

three biological and three technical replicates were performed for each fungal strain.  477	

 478	

Expression analysis of subnetwork member genes linked to predicted hub genes  479	

Total RNA extractions were conducted by using RNeasy plant mini kit (Qiagen) 480	

according to manufacturer’s specifications and was quantified by Nanodrop. RNA was converted 481	

into cDNA using the Verso cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA) 482	

following the manufacturer’s protocol. qRT-PCR analyses were performed using the SYBR 483	

Green Dynamo Color Flash qPCR kit (Thermo Fisher Scientific) on an Applied Biosystems 7500 484	

Real-Time PCR system.  The F. verticillioides β-tubulin gene (TUB-2) was used as the 485	

endogenous calibrator. The amplification data analysis was done according to the manufacturer’s 486	

protocol. 487	

 488	

Identification of potential maize defense subnetwork module 489	

We followed our previous analysis strategy 37 to identify potential subnetwork modules 490	

associated with maize defense response against F. verticillioides virulence genes. We began 491	

searching for maize modules possibly responsible for its defense mechanism through 492	

cointegration-correlation-expression analysis: i) Cointegration was applied to track an 493	

interrelationship of expression levels between maize and F. verticillioides over all replicates. We 494	

applied the Engle-Granger correlation method to measure single cointegrating relations and p-495	

value <= 0.05 was used to identify candidate maize genes that appear to have significant 496	

association with the identified F. verticillioides pathogenicity-associated genes,  ii) correlation 497	

was utilized to trace patterns of expression levels between maize and F. verticillioides over all 498	
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replicates. We used Pearson’s correlation coefficients to estimate their linear relationship and 499	

condensed maize genes into candidates whose expression patterns are highly correlated with that 500	

of F. verticillioides pathogenicity-associated genes (i.e., p-value <= 0.005), iii) We considered 501	

expression levels of maize genes over replicates and filtered out insignificantly expressed maize 502	

genes (i.e., maize genes whose mean expression levels were in the bottom 20% or not expressed 503	

in at least one replicate). We adjusted p-values of the cointegration-correlation-expression 504	

approach to have 50% of candidate maize genes predicted from a given F. verticillioides 505	

pathogenicity-associated gene were also among the candidates inferred from other given F. 506	

verticillioides gene. Based on the maize genes narrowed down through the cointegration-507	

correlation-expression analysis, we identified subnetwork modules associated with maize 508	

defense response using our network-based comparative analysis approach. 509	
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Figure legends 635	

 636	

Fig. 1. NGS statistics of significantly differentially expressed genes.  637	

A) General statistics of next-generation sequencing (NGS) datatsets. Reads from wild type and 638	

mutant (6 dpi and 9dpi) were mapped to F. verticillioides reference genome. B) Co-expression 639	

network of wild type and mutant F. verticillioides. We applied five distinct threshold levels to 640	

generate five different co-expression networks. The table shows number of genes and all possible 641	

edge combinations in each co-expression network. C) Schematic depiction of wild type and 642	

mutant co-expression networks at threshold level 0.985. D) The heat map provides a schematic 643	

overview of 324 most significantly differentially expressed genes at three distinct time points. A 644	

total of 155 genes are expressed significantly higher in the wild type (red) while a total of 169 645	

genes are expressed significantly higher in the mutant (blue). In this selection, genes whose 646	

absolute t-test statistics score is higher than 3.5 were chosen, where the relative abundance was 647	

acquired by the two-step normalization which considers each gene length as well as relative 648	

expression against beta-tubulin genes over all the time points (3 dpi, 6 dpi, and 9 dpi). Next, t-649	

test scores of the selected genes were again measured over relative expression levels normalized 650	

at each time point, and displayed in colors. 651	

 652	

 653	

Fig. 2. Schematic overview of our network-based NGS data analysis.  654	

Our aim is to search through large co-expression networks to identify subnetwork modules that 655	

are differentially activated between two different conditions (e.g. wild type versus mutant). 656	

Initial selection of seed genes (i.e. top 1% differentially expressed genes) is followed by a series 657	
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of computational procedures described previously 15. Through this process, we can identify 658	

subnetwork modules that show significant difference in virulence potentials. 659	

 660	

Fig. 3. Computational prediction procedure for identifying key potential pathogenicity 661	

genes.   662	

A) Raw NGS datasets are preprocessed, i.e. alignment, filtering, and normalization, before they 663	

are applied for inferring F. verticillioides co-expression networks by means of partial correlation. 664	

In addition, these datasets were also converted into a log-likelihood ratio (LLR) matrix for 665	

downstream analysis. Next, subnetwork modules are extended from seed genes, significantly 666	

differentially expressed between the two different conditions (F. verticillioides wild type vs. 667	

mutant), as long as they keep sufficient strength of differential activity between the two strains 668	

[1-2]. B) Each potential hub (virulence-associated) gene is predicted in its detected subnetwork 669	

module based on several criteria: i) highly impactful in a probabilistic manner, ii) relatively 670	

differentially correlated between two strains (wild vs. mutant), iii) relatively more connected in 671	

the given module, iv) relatively significantly differentially expressed, v) orthologous to known 672	

pathogenicity-associated genes of other fungal species, vi) annotated to significant GO terms 673	

with other member genes. Through this proposed analysis approach, we identified potential 674	

functional genes showing significant differential activity between the two conditions as well as 675	

strong association with virulence. 676	

 677	

Fig. 4. Potential subnetwork modules associated with the F. verticillioides pathogenicity. 678	

Our network-based comparative analysis identified three potential virulence-associated 679	

subnetwork modules differentially activated between the two strains (F. verticillioides wild type 680	
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vs. mutant). Module A is composed of ten F. verticillioides genes, where 80% of them were 681	

annotated to a significant GO term GO:0044444 “cytoplasmic part”. Module B is comprised of 682	

fifteen genes, where four of them (FVEG_07930, FVEG_00890, FVEG_11886, and 683	

FVEG_00594) were annotated to a significant GO term GO:0006810 “transport”. The node sizes 684	

are directly proportional to their number of edges and the node colors vary according to their 685	

discriminative power measured by t-test scores.  686	

 687	

Fig. 5. Functional characterization of F. verticillioides FvSYN1 and FvEBP1.  688	

A) Vegetative growth of wild-type (WT), DFvsyn1, DFvebp1 and their complementation strains 689	

(FvSYN1C and FvEBP1C) were examined on V8, 0.2XPDA, and Myro agar plates. Strains were 690	

point inoculated with an agar block (0.5 cm in diameter) and incubated for 6 days at 25 °C under 691	

14 h light/10 h dark cycle. B) Spores (2×107) of WT, Dfvsyn1 and Fvsyn1C were inoculated in 692	

the center of V8 plates for 6 days at 25 °C under 14 h light/10 h dark cycle. Vegetative growth of 693	

WT, DFvsyn1 and FvSYN1C on V8 agar plates, strain growth condition was the same as 694	

described above. Agar plates were cut into half and pictures were taken from a side view. C) 695	

Fungal mass production of WT, DFvsyn1 and FvSYN1C strains was tested in YEPD broth. 100 696	

µl spores (108/ml concentration) were inoculated and incubated for 4 days at 25 °C and shaking 697	

at 150 rpm. Fungal mass production was quantified by weighing wet and dry fungal mass. The 698	

data presents the average and standard deviation of three independent experiments. D) Spore 699	

production of of WT, DFvsyn1, FvSYN1C, DFvebp1and FvEBP1C on V8 agar plates, strain 700	

growth condition was the same as described above. Spores were collected from agar plates and 701	

counted. E) One-week-old B73 seedlings were inoculated with 108/ml spore suspension of fungal 702	

strains on mesocotyls. Lesion areas were quantified by Image J software after 2-week incubation. 703	
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Asterisk above the column indicates statistically significant difference (P<0.05) analyzed by t-704	

Test. 705	

 706	

Fig. 6. Altered expression of select neighboring genes as detected by qPCR.  707	

A) Relative quantification (RQ) of four neighboring genes (FVEG_3391, FVEG_9144, 708	

FVEG_13321, FVEG_4259) to predicted hub FvSYN1 (FVEG_0594) in wild type (WT) versus 709	

ΔFvsyn1.  RQ levels of four genes in WT were normalized to 1. B) Schematic overview of 710	

transcriptional changes of four neighboring genes (highlighted) of FvSYN1 (FVEG_0594) 711	

observed in WT versus ΔFvsyn1. C) Relative quantification (RQ) of four neighboring genes 712	

(FVEG_4142, FVEG_8818, FVEG_3416, FVEG_9111) to predicted hub FvEBP1 713	

(FVEG_11622) in wild type (WT) versus ΔFvebp1. D) Schematic overview of transcriptional 714	

changes of four neighboring genes (highlighted) of FvEBP1 (FVEG_11622) observed in WT 715	

versus ΔFvebp1. 716	

 717	

Fig. 7. Potential subnetwork module associated with maize defense response 718	

Our network-based comparative analysis of maize genes applied cointegration-correlation-719	

expression strategy to identify a potential maize subnetwork module differentially activated 720	

between the two strains (F. verticillioides wild type vs. mutant). This predicted maize module is 721	

comprised of 28 member genes, and five were annotated to a significant GO term GO:0009814 722	

“defense response, incompatible interaction”. These five genes were indicated by diamond-723	

shaped illustration. 724	

 725	

 726	
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