

1 **Characterizing co-expression networks underpinning maize stalk rot virulence in *Fusarium***
2 ***verticillioides* through computational subnetwork module analyses**

3

4 Man S. Kim^{1,2*}, Huan Zhang^{1*}, Huijuan Yan¹, Byung-Jun Yoon², and Won Bo Shim¹ [§]

5

6 ¹ Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX

7 77843

8 ² Department Electrical and Computer Engineering, Texas A&M University, College Station, TX

9 77843

10

11

12

13

14

15

16 * Contributed equally to this work

17

18 [§] For Correspondence: wbshim@tamu.edu, TEL: +1-979-458-2190, FAX: +1-979-845-6483

19

20 **Abstract**

21

22 *Fusarium verticillioides* is recognized as an important stalk rot pathogen of maize
23 worldwide, but our knowledge of genetic mechanisms underpinning this pathosystem is limited.
24 Previously, we identified a striatin-like protein Fsr1 that plays an important role in stalk rot. To
25 further characterize transcriptome networks downstream of Fsr1, we performed next-generation
26 sequencing (NGS) to investigate relative read abundance and also to infer co-expression
27 networks utilizing the preprocessed expression data through partial correlation. We used a
28 probabilistic pathway activity inference strategy to identify functional subnetwork modules
29 likely involved in virulence. Each subnetwork modules consisted of multiple correlated genes
30 with coordinated expression patterns, but the collective activation levels were significantly
31 different in *F. verticillioides* wild type versus the mutant. We also identified putative hub genes
32 from predicted subnetworks for functional validation and network robustness studies through
33 mutagenesis, virulence and qPCR studies. Our results suggest that these genes are important
34 virulence genes that regulate the expression of closely correlated genes, demonstrating that these
35 are important hubs of their respective subnetworks. Lastly, we used key *F. verticillioides*
36 virulence genes to computationally predict a subnetwork of maize genes that potentially respond
37 to fungal genes by applying cointegration-correlation-expression strategy.

38

39 **Key Words:** Next-generation sequencing, co-expression network, subnetwork module, hub gene,
40 cointegration-correlation-expression

41

42

43 **Introduction**

44

45 Maize stalk rot is a complex disease, primarily caused by a series of fungal pathogens.
46 Charcoal rot (by *Macrophomina phaseolina*), Fusarium stalk rot (by *Fusarium verticillioides*),
47 Gibberella stalk rot (by *F. graminearum*) and Anthracnose stalk rot (by *Colletotrichum
graminicola*) are the major stalk rots that devastate maize-growing regions in the US ^{1,2}. Losses
48 due to stalk rot come in several different forms including stalk breakage, lodging, premature
49 death of the plant, and the interruption of the normal grain filling process. Pathogens typically
50 overwinter in the crop residue from the previous year and produce spores in the next growing
51 season that will serve as the primary inoculum source. It is generally perceived that when crops
52 experience abiotic stress, particularly at the end of the growing season, pathogens take advantage
53 and colonize vulnerable stalk tissues ²⁻⁴. But overall, we still lack a clear understanding of how
54 these stalk rot fungi colonize and progress through pathogenesis.

56 To better understand the mechanism of pathogenesis, we screened for loss-of-virulence *F.*
57 *verticillioides* mutants and identified a gene, *FSR1*, that is responsible for the deficiency ⁵.
58 Microscopic examination of inoculated stalks revealed the wild-type fungus vigorously
59 colonizing vascular bundles and causing rot, whereas the mutant showed limited colonization
60 and rot in stalks. *FSR1* encodes a protein that shares high similarity with striatins, a group of
61 proteins found in eukaryotes that form complexes with kinases and phosphatases to regulate
62 diverse cellular functions ⁶⁻⁸. Recent studies have demonstrated important cellular and
63 physiological roles of striatin proteins in *Sordaria macrospora*, *Neurospora crassa*, *Aspergillus
nidulans*, and *C. graminicola* ⁹⁻¹². Our laboratory also revealed the importance of the coiled-coil
64 motif of Fsr1 in virulence and demonstrated how Fsr1 forms a complex with other proteins to
65

66 regulate stalk rot virulence ^{13,14}. These discoveries collectively support our hypothesis that
67 Fsr1/striatin-mediated signal transduction plays a critical role in regulating stalk rot pathogenesis.

68 One of the intriguing questions we are aiming to answer is the impact of Fsr1 in cellular
69 signaling associated with *F. verticillioides* virulence. To unravel the complex web of genetic
70 interactions in *F. verticillioides* and maize, we decided to take advantage of next-generation
71 sequencing (NGS) and explore the transcriptomic subnetwork modules underpinning *FSR1*-
72 mediated fungal virulence by computational network-based analysis. Our goal was to develop
73 probabilistic and systematic models to investigate the interrelationship between genes rather than
74 relying on quantitative comparison of transcript abundance as a measure of significance. Our
75 NGS study was designed to capture dynamic changes in gene expression during maize stalk
76 colonization by *F. verticillioides* wild type and *fsr1* mutant. To capture dynamic changes in
77 transcriptome, samples were harvested from three distinct phases of stalk pathogenesis:
78 establishment of fungal infection, colonization and movement into the vascular bundles, and host
79 destruction and collapse ¹⁵. A total of six independent biological replications were prepared and
80 analyzed for each sample, since increasing the number of replicates was important for us to
81 implement our computational analysis for identifying subnetwork modules that show strong
82 differential expression.

83 As described in our previous work ¹⁵, our strategy is to first construct the co-expression
84 network of *F. verticillioides* using partial correlation, and search through these networks to
85 detect subnetwork modules that are differentially expressed in the two *F. verticillioides* strains.
86 Subsequently, we use the probabilistic pathway activity inference scheme ¹⁶ to predict the
87 activity level of potential subnetworks, followed by applying a computationally efficient branch-
88 out technique to find the subnetworks that display the largest differential expression. Through

89 this computational pipeline, we can identify potential pathogenic modules, which consist of
90 genes that show coordinated behavior in *F. verticillioides* but also behaving differently in the
91 wild type and the mutant. We can also screen for potential gene modules that contain orthologs
92 of well-known virulence genes in other phytopathogenic fungi.

93 Biological functions, including virulence, are executed through elaborate collaboration
94 of various biomolecules, and there has been increasing interest in the computational
95 identification of functional modules from large-scale experimental data. In this study, we
96 performed a comparative analysis of two distinct *F. verticillioides* RNA-Seq datasets, where one
97 set was obtained from wild-type *F. verticillioides* and the other set from a loss-of-virulence *fsr1*
98 mutant. For a systematic analysis of the infection transcriptome, we first predicted the co-
99 expression network of the fungus. Subsequently, we identified functional subnetwork modules in
100 the co-expression network consisting of interacting genes that display strongly coordinated
101 behavior in the respective datasets. A probabilistic pathway activity inference method was
102 adopted to identify three subnetwork modules likely to be involved in *F. verticillioides* virulence.
103 Each subnetwork consisted of multiple genes with coordinated expression patterns, but more
104 importantly we targeted subnetworks whose collective activation level is significantly different
105 in the wild type versus the mutant. We then applied a series of mathematical criteria to predict
106 the hub gene in each network and functionally tested their role in *F. verticillioides* virulence and
107 the maintenance of network robustness.

108

109 **RESULTS**

110

111 **NGS data preparation and relative expression analysis**

112 We performed NGS using Illumina HiSeq 2000 and generated 36 independent libraries (*i.e.*,
113 six libraries per each time point - 3 dpi [infection], 6 dpi [colonization], and 9 dpi [rot] - for wild
114 type and the *fsr1* mutant). For analysis and prediction in this study, we used 24 sample libraries
115 from the last two time points (6 dpi and 9 dpi) to focus on gene regulation mechanism in the
116 latter stages of maize-fungal interaction. Acquisition of read counts of all *F. verticillioides* genes
117 was completed by mapping NGS reads to *F. verticillioides* strain 7600 reference genome ¹⁷ using
118 Bowtie2 ^{18,19} and Samtools ²⁰. Through filtering process, we eliminated genes with insignificant
119 expression and therefore 9446 genes were selected for downstream analysis. We normalized the
120 read counts of these genes by their corresponding gene length and also based on relative
121 expression quantification against two β -tubulin genes (FVEG_04081 and FVEG_05512).
122 Percentages of the two β -tubulin read abundance were traced over 24 replicates in 6 dpi & 9 dpi
123 to examine their expression consistency. Mean (μ) and standard deviation (σ) of the percentages
124 for β -tubulins were $\mu=0.058\%$, $\sigma=0.0056$ for FVEG_04081 and $\mu=0.035\%$, $\sigma=0.0044$ for
125 FVEG_05512. The general information of our NGS datasets is shown in Fig. 1A. From these
126 genes, we selected 324 most significantly differentially and highly expressed genes either in wild
127 type or *fsr1* mutant from our datasets, where all replicates were normalized and analyzed for
128 their individual relative expression levels at three different time points. As shown in a heat map
129 with three distinct time points (Fig. 1D), 155 genes (red) are expressed significantly higher in the
130 wild type and 169 genes (blue) are expressed significantly higher in *fsr1* mutant (Fig 1D. and
131 Table S1). As explained earlier, the relative abundance was acquired by the two-step
132 normalization by each gene length as well as β -tubulin genes, and was selected by *t*-test statistics
133 score measurement ($|t\text{-test score}| > 3.5$). However, this common NGS analysis focuses on

134 relative expression of individual genes but does not allow us to predict gene-gene associations
135 and system-level changes across correlated genes during pathogenesis.

136

137 **Identification of *F. verticillioides* subnetwork modules**

138 We developed a computational workflow that allows us to build co-expression networks
139 from *F. verticillioides* NGS datasets¹⁵. We first inferred the co-expression networks for the wild
140 type as well as the *fsr1* mutant utilizing the preprocessed gene expression data by using the
141 partial correlation²¹ (Supplementary Information). In this co-expression network, we applied
142 five distinct thresholds (0.965, 0.97, 0.975, 0.98, and 0.985), thereby constructing five different
143 co-expression networks. The number of genes and edges between genes are shown in Fig. 1B.
144 When these co-expression networks are illustrated with all member genes and possible edges, we
145 can generate a complex web of scale-free networks (Fig. 1C). However, the aim of our proposed
146 network-based NGS data analysis is to search through these co-expression networks to identify
147 subnetwork modules that are differentially activated between the *F. verticillioides* wild type and
148 *fsr1* mutant, that can considerably differ in terms of virulence potentials (Fig. 2).

149 By following this proposed strategy, we developed two potential subnetwork modules
150 differentially activated during *F. verticillioides* pathogenesis. We performed additional analyses
151 with six different characteristics for selecting hubs and their modules followed by our network-
152 based comparative analysis approach¹⁵ (Fig. 3). In the subnetwork module fine-tuning process,
153 two modules in Fig. 4 showed the minimum discriminative power increase for the entire module
154 adjustment as 22% and 27% while over 90% of modules displayed smaller than 20% increase.
155 Note that our approach probabilistically focuses on generating subnetwork modules whose
156 member genes have high likelihood of showing associated expression patterns to each other

157 across all replicates using the log-likelihood-ratio (LLR) matrix that demonstrates how likely
158 each gene would express in *F. verticillioides* wild type or the mutant. As a result, our network-
159 based computational analysis approach found potential subnetwork modules that show
160 harmonious coordination of member genes as well as strong differential activity between the two
161 strains.

162

163 **Computational characterization of two key *F. verticillioides* subnetwork modules**

164 From our network-based comparative analysis, we identified two potential pathogenicity-
165 associated subnetwork modules differentially activated between the wild-type and *fsr1* mutant
166 strains (Fig. 4). Module A was composed of ten *F. verticillioides* genes, where 80% of these
167 were annotated with a significant GO term cytoplasmic component (GO:0044444)
168 (<http://biit.cs.ut.ee/gprofiler/index.cgi>)²². However, it is important to note that majority of these
169 genes have no known function and these GO functions were chosen solely based on predicted
170 protein motifs (Table S2). Module B was comprised of fifteen genes, where four (FVEG_07930,
171 FVEG_00890, FVEG_11886, and FVEG_00594) were annotated with a significant GO term
172 transport (GO:0006810). The eleven other genes were hypothetical proteins with some
173 knowledge of their functional domains. But this module showed relatively higher percentage of
174 genes with no GO terms and no functional protein domains compared to module A (Table S2).
175 Once we defined these subnetwork modules, we analyzed all member genes *in silico* to predict
176 potential hub genes that may hold a key role in *F. verticillioides* pathogenicity.

177 In module A, we selected FVEG_11622 as a potential pathogenicity-associated hub gene
178 based on following observations: i) FVEG_11622 deteriorated the differential probabilistic
179 activity level of its given module from wild type to mutant by 26% (the mean of other member

180 genes was 16%), ii) correlation coefficients of FVEG_11622 decreased from wild type to mutant
181 by 0.26 and 0.34 for Pearson's and Spearman rank, respectively (the mean of other member
182 genes was 0.14 and 0.19), iii) FVEG_11622 contained four edges to other member genes (the
183 mean of other member genes was 2.8), iv) FVEG_11622 demonstrated significant expression
184 decrease from wild type to mutant (*t*-score of 4.4), and v) orthologous gene of FVEG_11622 in
185 *Botrytis cinerea* (*BC1G*) is recognized as having a role in fungal virulence. The predicted hub
186 gene FVEG_11622, which was tentatively designated as *FvEBP1*, encodes a putative 238-AA
187 hypothetical protein that harbors Emopamil-binding protein (EBP) domain (pfam05241). In
188 mammalian systems, this protein family is known to be associated with endoplasmic reticulum
189 and plays a critical role in sterol isomerization and lipoprotein internalization²³. An emopamil
190 binding protein BcPIE3 in *Botrytis cinerea* which shares significant structural similarities to
191 mammalian EBPs was shown to be important for virulence²⁴. *FvEBP1* has four direct edges to
192 FVEG_03416, FVEG_04142, FVEG_08818 and FVEG_09111. FVEG_03416 is an alginate
193 lyase gene, and contains an alginate lyase domain which is important for fructose and mannose
194 metabolism. FVEG_04142 is a V-type proton ATPase subunit F. V-type ATPases have
195 hydrogen-exporting ATPase activity and are involved in ATP hydrolysis coupled proton
196 transport. FVEG_09111 is a hypothetical protein, containing a PX-associated domain. The
197 function of this protein is unknown, but its N-terminus is always found to be associated to a PX
198 domain which is involved in targeting of proteins to cell membranes. FVEG_08818 is a
199 hypothetical protein with a methyltransferase domain.

200 Using the same approach, we identified FVEG_00594 as the potential pathogenicity-
201 associated hub gene in module B based on following observations: i) FVEG_00594 reduced the
202 differential probabilistic activity level of its detected module from wild type to mutant by 24%

203 (the mean of other member genes was 13%); ii) correlation coefficient difference of
204 FVEG_00594 between wild type and mutant was 0.34 and 0.4 for Pearson's and Spearman rank,
205 respectively (the mean of other member genes was 0.24 and 0.2); iii) FVEG_00594 included four
206 edges to other member genes (the mean of other member genes was 3.7); iv) the difference of
207 expression level of FVEG_00594 was higher in wild type although it did not show high
208 significance (*t*-score as 0.8), and v) the ortholog of FVEG_00594 in *F. graminearum* (FG) is
209 recognized as having a role in fungal virulence. FVEG_00594, designated *FvSYN1*, encodes a
210 putative 377 amino-acid protein that harbors two well-recognized domains: syntaxin N-terminal
211 domain (cd00179) and SNARE domain (cd15849). In budding yeast, the SNARE protein
212 complex is involved in membrane fusion and protein trafficking for new synthesis and recycling
213 of organelles²⁵. SNAREs were originally classified into v-SNAREs and t-SNAREs according to
214 their vesicle or target membrane localization²⁶. Syntaxins belong to t-SNARE proteins and are
215 shown to play an important role in membrane fusion in eukaryotic cells^{27,28}. Syntaxins are
216 known as a family of membrane-associated receptors for intracellular transport vesicles.
217 Syntaxin and SNAREs are also known to anchor these newly synthesized and recycled proteins
218 to the cytoplasmic surface²⁹. SNARE proteins play critical and conserved roles in intracellular
219 membrane fusion in eukaryotic cells³⁰. They were known to mediate membrane fusion during all
220 trafficking steps of the intracellular communication process, including the secretory and
221 endocytic pathways³¹. *FvSYN1* has four directly associated genes in the subnetwork module:
222 FVEG_03392, FVEG_04259, FVEG_09144 and FVEG_13321. Three of these genes
223 (FVEG_03392, FVEG_04259, FVEG_09144) encode hypothetical proteins with no known
224 functional motif thus making it difficult to predict their role. While FVEG_13321 is a

225 hypothetical protein, it does contain a fungal Zn₂Cys₂ binuclear cluster domain, which is
226 typically found in the family of fungal zinc cluster transcription factors ^{32,33}.

227

228 **Functional characterization of predicted hub genes associated with virulence**

229 To test our hypothesis that *FvEBP1* (FVEG_11622) and *FvSYN1* (FVEG_00594) are
230 putative hub genes of subnetwork modules A and B, respectively, and that they are important for
231 *F. verticillioides* virulence. We generated gene knockout mutants Δ fvebp1 and Δ fvsyn1 through
232 homologous recombination following our standard split marker protocol ³⁴. Hygromycin B
233 phosphotransferase (*HPH*) was used as the selective marker, and homologous recombination
234 outcomes were confirmed by PCR (data not shown) and Southern blots (Fig. S1). We first
235 compared vegetative growth of these mutants on synthetic media (PDA, V8 agar and defined
236 medium agar). While Δ fvsyn1 strain showed reduced colony growth, Δ fvebp1 strain exhibited no
237 growth defect (Fig. 5A). The mutant Δ fvsyn1 showed restricted radial vegetative growth while
238 exhibiting more dense and fluffier mycelial growth on solid media when compared to the wild
239 type (Fig. 5B). When cultures were harvested from YEPD broth, we did not observe a significant
240 difference in fungal mass production (Fig. 5C). For spore production on V8 plates, Δ fvsyn1
241 produced significantly reduced spores when compared to other strains (Fig. 5D).

242 To test virulence, we inoculated B73 maize seedling mesocotyls with spore suspension of
243 wild-type, Δ fvebp1, and Δ fvsyn1 strains (along with water as a negative control) following the
244 previously described procedure ³⁵. When symptoms were observed after a 2-week incubation
245 period, Δ fvebp1 and Δ fvsyn1 mutants showed significantly decreased levels of rot when
246 compared with the wild-type progenitor (Fig. 4E). Mutants Δ fvebp1 and Δ fvsyn1 showed
247 approximately 70% and 60% reduction in virulence when analyzed by average mesocotyl rot

248 area (Fig. 5E). In order to test whether the mutant phenotype is due to a targeted gene
249 replacement, we generated complementation strains of $\Delta fvebp1$ and $\Delta fvsyn1$ by co-transforming
250 each mutant protoplasts with the respective wild-type gene (*FvEBP1* and *FvSYN1* with their
251 native promoter and terminator) along with the geneticin-resistance gene. PCR was performed to
252 confirm reintroduction of wild-type genes in complemented strains. *FvSYN1C* strain showed
253 complete restoration of virulence on maize seedlings whereas *FvEBP1C* showed partial (~75%)
254 recovery (Fig. 5E). These results suggested that *FvEBP1* and *FvSYN1* play an important role in
255 virulence on maize seedling rot, and further convinced us that these two genes serve as the
256 predicted hub gene of their respective subnetwork module.

257

258 **Testing network robustness in gene deletion mutants**

259 A very important feature of these subnetwork modules is having robustness, *i.e.* the
260 ability to respond to and withstand the external as well as internal stimuli while maintaining its
261 normal behavior³⁶. However, it is reasonable to predict that when we eliminate or disable a
262 critical node (*i.e.* a hub gene), the network could be disrupted and shattered into isolated nodes.
263 If a hub gene is eliminated from the subnetwork, we can hypothesize that other member genes,
264 particularly those sharing direct edges, will exhibit disparate expression patterns.

265 We first tested correlated gene expression patterns in the wild type versus $\Delta fvebp1$
266 mutant by qPCR. We learned that gene expression levels of FVEG_03416, FVEG_04142, and
267 FVEG_08818 were drastically lowered in the $\Delta fvebp1$ mutant than those observed in the wild-
268 type progenitor (Fig. 6A). Furthermore, the FVEG_09111 gene expression level was not
269 detectable in the mutant. Particularly, FVEG_04142 and FVEG_09111 showed higher levels of
270 expression in the $\Delta fvebp1$ mutant when compared to the wild type, and in $\Delta fvebp1$ that expression

271 pattern is now reversed (Fig. 6B). These results show that when *FvEBP1* is no longer present in
272 the subnetwork, expression levels of these genes, FVEG_03416, FVEG_04142, and
273 FVEG_08818, and FVEG_09111, are drastically suppressed (Fig. 6A and B), suggesting
274 *FvEBP1* is critical for proper regulation of these neighboring genes.

275 In the Δ fvsyn1 strain, we comparatively studied the expression pattern of four genes that
276 directly share edges with *FvSYN1*. Three of the four genes tested, FVEG_03392, FVEG_04259
277 and FVEG_09144 showed a significant difference in expression levels between the wild type and
278 Δ fvsyn1 mutant. Significantly, FVEG_03392 and FVEG_04259, which showed lower expression
279 level in the wild type when compared with Δ fsr1 mutant, reversed its course and showed higher
280 expression in the wild type when compared with Δ fvsyn1 (Fig. 6C). FVEG_09144, which
281 showed no difference in expression between wild type and Δ fsr1, showed significantly higher
282 expression in Δ fvsyn1. FVEG_13321, which showed higher expression in wild type compared
283 to Δ fsr1, now exhibits statistically similar expression in wild-type and Δ fvsyn1 (Fig. 6C and D).
284 Collectively these data showed that *FvSYN1* and *FvEBP1* are important for regulating the
285 expression of closely correlated genes, further providing evidence that these are important hub
286 genes of their respective subnetworks.

287

288 **DISCUSSION**

289

290 In this study, we assembled a streamlined computational network analysis pipeline to
291 investigate the system-level coordinated changes across differentially activated genes rather than
292 simply focusing on differential transcript abundance of individual genes, and to detect subtle
293 processes that are not likely to be revealed by examining a small list of highly significant genes

294 in this host-pathogen interaction. To generate meaningful prediction from limited datasets,
295 comprehensive and rigorous investigation was needed. Thus, we mainly searched for comparable
296 expression patterns probabilistically using a log-likelihood ratio matrix over replicates instead of
297 just considering differential expression for identifying potential subnetwork modules. Also, we
298 analytically investigated the given subnetwork modules with multidirectional analysis
299 considering factors such as probabilistic impact, and differential correlation. Significantly, this
300 comprehensive approach can help identify novel virulence-associated subnetwork modules as
301 well as the key functional “hub” genes in fungal pathogens, such as *F. verticillioides*. This
302 assembly of tool will be instrumental as we continue our effort to harness new and meaningful
303 information from NGS data as we try to better understand complex pathosystems.

304 Our study mainly focused on analyzing the underlying transcriptional regulation in host-
305 pathogen interactions. However, we do recognize that complex intercellular web of interactions
306 in a living cell, not to mention between a host and its pathogen, are not limited to gene-gene
307 association. Numerous constituents of the cell, *e.g.* DNA, RNA, protein, and metabolites,
308 contribute to the structure and the dynamics of cellular network and ultimately behavior.
309 However, in contrast to DNA and RNA, the resources available for us to generate systems-level
310 proteome and metabolome datasets for network analyses are currently limited. In addition to this
311 challenge, majority of host-pathogen systems have very limited genetic information available.
312 For instance, as one can see from our three predicted modules majority of member genes encode
313 hypothetical proteins with unknown, and vaguely predicted, functions. We primarily focused on
314 developing this computational approach with the intent of investigating not-well defined
315 biological systems with minimal bias toward existing genetic information, *i.e.* allocating higher
316 scores toward known virulence genes in given species.

317 Furthermore, there is a greater challenge in refining subnetwork module development for
318 host organisms that typically has larger and more complex genomes. Over 95% of our NGS data
319 generated in this study came from maize, suggesting that maize stalk is actively responding to
320 the pathogen invasion and colonization at transcriptional level³⁷. In our earlier study, we
321 developed a computational analysis pipeline, including the cointegration-correlation-expression
322 approach, to predict potential maize defense-associated genes that show strong differential
323 activation and coordination with known *F. verticillioides* virulence genes³⁷. Here, we selected
324 three *F. verticillioides* pathogenicity genes identified from our current work (FVEG_11622,
325 FVEG_00594, and FVEG_09767 [*FSR1*]) to predict maize response subnetworks. An
326 illustration of the potential subnetwork module associated with maize defense response against
327 the *F. verticillioides* pathogenicity genes is shown in Fig. 7. We followed the procedure from
328 narrowing down maize genes using the cointegration-correlation-expression approach to
329 branching out potential defense-associated modules on maize co-expression networks³⁷. The
330 subnetwork module associated with maize defense system was composed of 28 maize genes,
331 where genes relatively significantly expressed in wild type-infected are indicated in red and
332 genes relatively significantly expressed in mutant type-infected are indicated in blue (Table S3).
333 In this potential maize defense gene subnetwork module, we noticed that five maize genes
334 (GRMZM2G102760_T01, GRMZM5G870932_T01, GRMZM2G001421_T02,
335 GRMZM2G001696_T01, and GRMZM2G137535_T01) were annotated with a significant GO
336 term defense response/incompatible interaction (GO:0009814), defined as “a response of a plant
337 to a pathogenic agent that prevents the occurrence or spread of disease”. However, as seen in *F.*
338 *verticillioides* subnetwork modules, we recognize that a large percentage of member genes
339 encode hypothetical proteins and that transcriptional coordination does not always result in

340 functional correlation. In addition, unlike *F. verticillioides* genes we characterized in this study,
341 generating null mutants and performing network robustness assays are more strenuous for maize.

342 While difficulties mentioned above remain as obstacles, our effort demonstrates that the
343 proposed network-based analysis pipeline can improve our understanding of the biological
344 mechanisms that underlie host-pathogen interactions, and that it has the potential to unveil novel
345 genetic subnetwork modules and hub genes critical for virulence in fungal pathogens. We are
346 currently in the process of improving our computational pipeline with computational network
347 querying that can estimate node correspondence probabilities to find novel functional pathways
348 in biological networks³⁸⁻⁴¹. This gene subnetwork approach can lead to the discovery of new
349 quantifiable cellular subnetworks that can bridge the knowledge gaps in the maize-*F.*
350 *verticillioides* system and be further applied to other plant-microbe pathosystems.

351

352 METHODS

353

354 Fungal strains, maize line, and RNA sample preparation

355 *F. verticillioides* strain 7600¹⁷ and fsr1 mutant⁵ were cultured at 25°C on V8 juice agar
356 (200 ml of V8 juice, 3 g of CaCO₃ and 20 g of agar powder per liter). Maize inbred B73, a
357 progenitor of numerous commercial hybrids with no inherent resistance to stalk rot, was
358 inoculated with *F. verticillioides* wild type and fsr1 mutant spore suspension as described
359 previously^{5,35}. Maize stalk samples were collected 3, 6, and 9 dpi using manual sectioning, and
360 microscopically inspected to identify host tissue damage and/or fungal colonization, particularly
361 in the vascular bundles. For each sample, sectioning was performed on at least three independent
362 stalk samples from each stage of infection, and isolated tissues were pooled for RNA extraction

363 with TRIzol reagent (Invitrogen). For each time point, we collected six pooled samples, thus
364 thirty-six RNA samples in total. Standard QA/QC procedure for RNA samples was implemented
365 at the Texas A&M AgriLife Research Genomics and Bioinformatics Service (College Station,
366 TX) prior to sequencing.

367

368 **RNA Sequencing and data preprocessing**

369 RNA sequencing was processed at the Texas A&M AgriLife Research Genomics and
370 Bioinformatics Service using Illumina HiSeq 2000 as described previously ³⁷. We sequenced a
371 total of 36 sample libraries, *i.e.* six libraries per each time point (3 dpi, 6 dpi, and 9 dpi) for wild
372 type and the mutant inoculated maize stalks, but it is worth noting that, in this study, we only
373 used sequencing data for the last two time points in this study (6 dpi and 9 dpi, hence 24 sample
374 libraries in total) to focus on gene regulation mechanism in the latter stages of maize-Fusarium
375 interaction. Next, acquiring read counts of all *F. verticillioides* genes was completed as described
376 in our earlier reports ^{15,37} by i) aligning the RNA-seq reads to the reference genome of *F.*
377 *verticillioides* strain 7,600 obtained from the Broad Institute (<http://www.broadinstitute.org>)
378 using Bowtie2 ¹⁹ and Samtools ²⁰, ii) filtering out genes insignificantly expressed over most of
379 the replicates, thereby keeping 9446 genes for downstream analysis, iii) normalizing the read
380 counts of these genes by their corresponding gene length and also based on expression levels of
381 β -tubulin genes (*i.e.* FVEG_04081 and FVEG_05512) to have relative expression quantification
382 across all replicates.

383

384 **Prediction of *F. verticillioides* subnetwork modules associated with stalk rot**

385 A procedure of identifying candidate functional subnetwork modules follows
386 computational analysis pipeline described earlier ¹⁵ with some modifications, and additional
387 detail is provided in the Supplementary Information. From the preprocessed gene expression data,
388 we performed conversion into log likelihood ratio (LLR) matrix, construction of co-expression
389 networks based on partial correlation, and selection of the most significantly differentially
390 expressed genes (*i.e.*, top 1%) between the two strains (wild type vs. mutant) as seed genes.
391 Based on this preparation, we applied computationally efficient branching out searching from a
392 seed gene until it does not meet minimum discriminative power increase for each subnetwork
393 module. The entire searching process was reiterated for every seed gene and for the five co-
394 expression networks (Supplementary Information). Note that our approach probabilistically
395 searches for subnetwork modules whose member genes have highly likely coordinated
396 expression patterns to each other over all the replicates using the LLR matrix that demonstrates
397 how likely each gene would be regulated in wild type or *fsr1* mutant. As a result, our network-
398 based computational analysis approach found candidate subnetwork modules that show
399 harmonious coordination of member genes as well as strong differential activity between the
400 wild type and *fsr1* mutant.

401

402 **Prediction strategy for hub genes in each subnetwork module**

403 Our proposed computational approach in this study simultaneously inferred potential *F*.
404 *verticilliodes* pathogenicity-associated hub or key functional genes in each subnetwork module
405 while branching out the modules by performing multidirectional analysis on the detected
406 candidate subnetwork modules with six different criteria, as depicted in Fig. 3B. First, we
407 investigated how each gene is probabilistically impactful in its subnetwork module utilizing the

408 probabilistic inference strategy applied in our previous work ¹⁵. We estimated probabilistic
409 differential activity of each gene by comparing discriminative power on the two phenotypes
410 (wild type vs. *fsr1* mutant) between its given module with and without the gene. As described in
411 our previous study ¹⁵, we computed discriminative power difference (estimated by *t*-test statistics)
412 between both activity levels (one with the gene and the other without the gene) by supposing $\zeta =$
413 $\{g_1, g_2, \dots, g_n\}$, member genes in a subnetwork module, and $e = \{e^1, e^2, \dots, e^n\}$, expression
414 levels of the given genes. The discriminative power difference $D(d)$ was calculated as follows.

$$415 D(d) = \left[\sum_{k=1}^n \log \left(\frac{f_1^k(e^k)}{f_2^k(e^k)} \right) \right]_{\zeta}^{t-test\ score} - \left[\sum_{k=1}^n \log \left(\frac{f_1^k(e^k)}{f_2^k(e^k)} \right) \right]_{\zeta - \{g_d\}}^{t-test\ score}$$

416 where $\log \left(\frac{f_1^k(e^k)}{f_2^k(e^k)} \right)$ is the log-likelihood ratio (LLR), and $f^k(e)$ is each conditional probability
417 density functions (*i.e.*, either wild or mutant). We subsequently considered genes whose
418 discriminative power deterioration $D(d)$ relatively larger as candidate key genes. Second, we
419 examined differential correlation of each gene with its connected gene in each module between
420 the wild type versus the mutant using two correlation methods, *i.e.* Pearson's correlation and
421 Spearman rank correlation. We selected genes whose correlation coefficients with its
422 neighboring genes were not only relatively significantly different between the two different
423 networks, but also higher in the wild-type network as candidate hub genes. Third, we calculated
424 number of edges of each gene to other member genes in each module since it is reasonable to
425 predict that genes with more edges will exhibit more meaningful influence on the module. Fourth,
426 we investigated expression difference of each gene in a given module between the two strains
427 since we predict that altered expression of genes downstream of *FSR1* can follow that of *FSR1*.
428 We selected genes that were significantly differentially expressed between the two conditions
429 and relatively highly expression in in the wild type. Fifth, we listed orthologs of known

430 pathogenicity genes in other well-studied fungal species such as *F. graminearum* (FG), *F.*
431 *oxysporum* (FO), *Aspergillus fumigatus* (AF), *Botrytis cinerea* (BC1G), *Magnaporthe grisea*
432 (MGG), *Ustilago maydis* (UM), and *Cryptococcus neoformans* (CNAG). We noted genes in a
433 given module shown in the list of pathogenic genes as potential key genes. Finally, we
434 considered whether each gene in a given module was associated with a significant GO term. We
435 applied *p*-values of Benjamini-Hochberg false discovery rate (FDR) method⁴² to find the most
436 relevant GO term to each gene and its given module based on g:Profiler
437 (<http://biit.cs.ut.ee/gprofiler/index.cgi>)²². We chose genes annotated with a GO term that is the
438 most significantly associated term with the given module as candidate key genes.

439 After identifying a candidate hub (or key functional) gene in its given subnetwork
440 module, we performed additional fine-tuning procedure for more robust and reliable module
441 prediction. Briefly, once we identified a candidate gene satisfying the abovementioned six
442 criteria through subnetwork module extension process with 10% minimum discriminative power
443 enhance, we performed module adjustment process by implementing the whole module
444 extension for the given module as well as identifying the same potential gene by escalating the
445 minimum discriminative power enhance by 1%. We repeatedly applied this fine-tuning process
446 until the predicted hub (or key functional) gene did not meet all conditions. This process also
447 stopped when the given subnetwork module grew smaller down to the arbitrary set minimum
448 size of seven genes.

449

450 **Nucleic acid manipulation, polymerase chain reaction (PCR), and fungal transformation**

451 Standard molecular manipulations, including PCR and Southern hybridization, were
452 performed as described previously³⁴. Fungal genomic DNA was extracted using the OminiPrep

453 genomic DNA extraction kit (G Biosciences, Maryland heights, MO, USA). The constructs for
454 transforming *F. verticillioides* were generated with a split-marker approach described earlier ³⁴.
455 Briefly, DNA fragments of 5' and 3' flanking regions of each gene were PCR amplified from
456 wild-type genomic DNA. Partial Hygromycin B phosphotransferase (*HPH*) gene (*HP-* and *-PH*)
457 fragments were amplified from pBS15 plasmid. 5' and 3' flanking region fragments were then
458 fused with PH- and -HP fragments by single-joint PCR, respectively. The single-joint PCR
459 products were transformed into wild-type fungal protoplast. For complementation, respective
460 wild-type genes driven by its native promoter was co-transformed with a geneticin-resistant gene
461 (*GEN*) into mutant protoplasts. All primers used in this study were listed in Table S4. *F.*
462 *verticillioides* protoplast were generated and transformed following standard protocol ³⁴ with
463 minor modifications. Murinase (2 mg/ml) was replaced with Driselase (5 mg/ml) (Sigma, St
464 Louis, MO, USA) in the protoplast digestion solution. Transformants were regenerated and
465 selected on regeneration medium containing 100 µg/ml of hygromycin B (Calbiochem, La Jolla,
466 CA, USA) and/or 150 µg/ml G418 sulfate (Cellgro, Manassas, VA, USA) as needed. Respective
467 drug-resistant colonies were screened by PCR and further verified by Southern analysis.
468

469 **Maize infection assays**

470 Maize seedling rot pathogenicity assay was performed on 2-week old maize inbred lines
471 B73 seedlings as previously described ³⁵ with minor modifications. Briefly, 1x10⁸/ml spore
472 suspensions in YEPD broth along with YEPD control were inoculated on maize B73 mesocotyls.
473 Plant mesocotyls were first slightly wounded by a syringe needle about 3cm above the soil. A 5-
474 µl spore suspension was applied to the wound site. The seedlings were immediately covered with
475 a plastic cover to create a high moisture environment suitable for infection and colonization. The

476 seedlings were collected and analyzed after a 2-week growth period in the dark room. At least
477 three biological and three technical replicates were performed for each fungal strain.

478

479 **Expression analysis of subnetwork member genes linked to predicted hub genes**

480 Total RNA extractions were conducted by using RNeasy plant mini kit (Qiagen)
481 according to manufacturer's specifications and was quantified by Nanodrop. RNA was converted
482 into cDNA using the Verso cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA)
483 following the manufacturer's protocol. qRT-PCR analyses were performed using the SYBR
484 Green Dynamo Color Flash qPCR kit (Thermo Fisher Scientific) on an Applied Biosystems 7500
485 Real-Time PCR system. The *F. verticillioides* β -tubulin gene (*TUB-2*) was used as the
486 endogenous calibrator. The amplification data analysis was done according to the manufacturer's
487 protocol.

488

489 **Identification of potential maize defense subnetwork module**

490 We followed our previous analysis strategy ³⁷ to identify potential subnetwork modules
491 associated with maize defense response against *F. verticillioides* virulence genes. We began
492 searching for maize modules possibly responsible for its defense mechanism through
493 cointegration-correlation-expression analysis: i) Cointegration was applied to track an
494 interrelationship of expression levels between maize and *F. verticillioides* over all replicates. We
495 applied the Engle-Granger correlation method to measure single cointegrating relations and *p*-
496 value ≤ 0.05 was used to identify candidate maize genes that appear to have significant
497 association with the identified *F. verticillioides* pathogenicity-associated genes, ii) correlation
498 was utilized to trace patterns of expression levels between maize and *F. verticillioides* over all

499 replicates. We used Pearson's correlation coefficients to estimate their linear relationship and
500 condensed maize genes into candidates whose expression patterns are highly correlated with that
501 of *F. verticillioides* pathogenicity-associated genes (*i.e.*, p -value ≤ 0.005), iii) We considered
502 expression levels of maize genes over replicates and filtered out insignificantly expressed maize
503 genes (*i.e.*, maize genes whose mean expression levels were in the bottom 20% or not expressed
504 in at least one replicate). We adjusted p -values of the cointegration-correlation-expression
505 approach to have 50% of candidate maize genes predicted from a given *F. verticillioides*
506 pathogenicity-associated gene were also among the candidates inferred from other given *F.*
507 *verticillioides* gene. Based on the maize genes narrowed down through the cointegration-
508 correlation-expression analysis, we identified subnetwork modules associated with maize
509 defense response using our network-based comparative analysis approach.

510

511 **Availability of Materials and Data**

512 The datasets generated during and/or analyzed during the current study are available
513 from the corresponding author on reasonable request.

514

515 **Author Contributions**

516 Research concepts: M.K., H.Z., W.B.S., B.-J.Y.; experiments performed: M.K., H.Z., and
517 H.Y.; manuscript editing: M.K., H.Z., W.B.S. All authors reviewed and approved the manuscript.

518

519 **Acknowledgments**

520 This work was supported in part by the National Research Initiative Competitive Grants
521 Program (No. 2007-35319-18334) and the Agriculture and Food Research Initiative (No. 2013-

522 68004-20359) from the US Department of Agriculture. We would like to thank Mr. Trent
523 LeMaster (Bioenvironmental Science, Texas A&M) and Mr. Jae-Young Jun (Electrical &
524 Computer Engineering, Texas A&M) for excellent technical assistance.

525 **References**

526

527 1 Stack, J. Common stalk rot diseases of corn. *Plant Dis.* **6**, 1-8 (1999).

528 2 White, D. G. *Compendium of Corn Disease*. 3rd edn, (APS Press, 1999).

529 3 Dodd, J. L. The role of plant stresses in development of corn stalk rots. *Plant Dis.* **64**,
530 533-537 (1980).

531 4 Michaelson, M. E. Factors affecting development of stalk rots of corn caused by *Diplodia*
532 *zeae* and *Gibberella zeae*. *Phytopathology* **47**, 499-503 (1957).

533 5 Shim, W. B. *et al.* *FSR1* is essential for virulence and female fertility in *Fusarium*
534 *verticillioides* and *F. graminearum*. *Mol. Plant Microbe In.* **19**, 725-733 (2006).

535 6 Bartoli, M. *et al.* Down-regulation of striatin, a neuronal calmodulin-binding protein,
536 impairs rat locomotor activity. *J. Neurobiol.* **40**, 234-243 (1999).

537 7 Castets, F. *et al.* Zinedin, SG2NA, and striatin are calmodulin-binding, WD repeat
538 proteins principally expressed in the brain. *J. Biol. Chem.* **275**, 19970-19977 (2000).

539 8 Moreno, C. S. *et al.* WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are
540 members of a novel family of calmodulin-binding proteins that associate with protein
541 phosphatase 2A. *J. Biol. Chem.* **275**, 5257-5263 (2000).

542 9 Dettmann, A. *et al.* HAM-2 and HAM-3 are central for the assembly of the *Neurospora*
543 STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the
544 MAP kinase MAK-1 in a MAK-2-dependent manner. *Mol. Microbiol.* **90**, 796-812
545 (2013).

546 10 Wang, C. L., Shim, W. B. & Shaw, B. D. *Aspergillus nidulans* striatin (StrA) mediates
547 sexual development and localizes to the endoplasmic reticulum. *Fungal Genet. Biol.* **47**,
548 789-799 (2010).

549 11 Pöggeler, S. & Kück, U. A WD40 repeat protein regulates fungal cell differentiation
550 and can be replaced functionally by the mammalian homologue striatin. *Eukaryot. Cell* **3**,
551 232-240 (2004).

552 12 Wang, C. L., Shim, W. B. & Shaw, B. D. The *Colletotrichum graminicola* striatin
553 orthologue Str1 is necessary for anastomosis and is a virulence factor. *Mol. Plant Pathol.*
554 **17**, 931-942 (2016).

555 13 Yamamura, Y. & Shim, W. B. The coiled-coil protein-binding motif in *Fusarium*
556 *verticillioides* Fsr1 is essential for maize stalk rot virulence. *Microbiol-SGM*. **154**, 1637-
557 1645 (2008).

558 14 Zhang, H., Mukherjee, M., Kim, J.-E., Yu, W. & Shim, W. B. Fsr1, a striatin homolog,
559 forms an endomembrane-bound signaling complex that regulates virulence in maize
560 pathogen *Fusarium verticillioides* *Mol. Plant Pathol.* **In Press**; 10.1111/mpp.12562
561 (2017).

562 15 Kim, M., Zhang, H., Woloshuk, C. P., Shim, W. B. & Yoon, B.-J. Computational
563 Prediction of Pathogenic Network Modules in *Fusarium verticillioides*. *IEEE/ACM T.*
564 *Comp. Bioinformatics* **In Press**; 10.1109/TCBB.2015.2440232 (2017).

565 16 Su, J. J., Yoon, B. J. & Dougherty, E. R. Accurate and Reliable Cancer Classification
566 Based on Probabilistic Inference of Pathway Activity. *PLoS One* **4**, e8161;
567 10.1371/journal.pone.0008161 (2009).

568 17 Ma, L. J. *et al.* Comparative genomics reveals mobile pathogenicity chromosomes in
569 *Fusarium*. *Nature* **464**, 367-373 (2010).

570 18 Ballouz, S., Verleyen, W. & Gillis, J. Guidance for RNA-seq co-expression network
571 construction and analysis: safety in numbers. *Bioinformatics* **31**, 2123-2130 (2015).

572 19 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature
573 Methods* **9**, 357-359 (2012).

574 20 Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
575 2078-2079 (2009).

576 21 Hero, A. & Rajaratnam, B. Hub discovery in partial correlation graphs. *IEEE T. Inform.
577 Theory* **58**, 6064-6078 (2012).

578 22 Reimand, J., Arak, T. & Vilo, J. gProfiler-a web server for functional interpretation of
579 gene lists (2011 update). *Nucleic Acids Res.* **39**, W307-W315; 10.1093/Nar/Gkr378
580 (2011).

581 23 Seo, K. W., Kelley, R. I., Okano, S. & Watanabe, T. Mouse Td(ho) abnormality results
582 from double point mutations of the emopamil binding protein gene (Ebp). *Mamm.
583 Genome* **12**, 602-605 (2001).

584 24 Gioti, A. *et al.* A *Botrytis cinerea* emopamil binding domain protein, required for full
585 virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes.
586 *Eukaryot. Cell* **7**, 368-378 (2008).

587 25 Nicholson, K. L. *et al.* Regulation of SNARE complex assembly by an N-terminal
588 domain of the t-SNARE Sso1p. *Nat. Struct. Biol.* **5**, 793-802 (1998).

589 26 Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A
590 protein assembly-disassembly pathway *in vitro* that may correspond to sequential steps of
591 synaptic vesicle docking, activation, and fusion. *Cell* **75**, 409-418 (1993).

592 27 Hong, W. J. SNARES and traffic. *BBA-Mol. Cell Res.* **1744**, 120-144 (2005).

593 28 Gupta, G. D. & Heath, I. B. Predicting the distribution, conservation, and functions of
594 SNAREs and related proteins in fungi. *Fungal Genet. Biol.* **36**, 1-21 (2002).

595 29 Yuan, Q. A. & Jantti, J. Functional Analysis of Phosphorylation on *Saccharomyces
596 cerevisiae* Syntaxin 1 Homologues Sso1p and Sso2p. *PLoS One* **5** (2010).

597 30 Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. *Nat. Rev. Mol. Cell
598 Biol.* **2**, 98-106 (2001).

599 31 Hong, W. J. & Lev, S. Tethering the assembly of SNARE complexes. *Trends Cell Biol.*
600 **24**, 35-43 (2014).

601 32 MacPherson, S., Larochelle, M. & Turcotte, B. A fungal family of transcriptional
602 regulators: The zinc cluster proteins. *Microbiol. Mol. Biol. Rev.* **70**, 583-604 (2006).

603 33 Schillig, R. & Morschhauser, J. Analysis of a fungus-specific transcription factor family,
604 the *Candida albicans* zinc cluster proteins, by artificial activation. *Mol. Microbiol.* **89**,
605 1003-1017 (2013).

606 34 Sagaram, U. S., Shaw, B. D. & Shim, W. B. *Fusarium verticillioides* GAP1, a gene
607 encoding a putative glycolipid-anchored surface protein, participates in conidiation and
608 cell wall structure but not virulence. *Microbiol-SGM*. **153**, 2850-2861 (2007).

609 35 Christensen, S. A. *et al.* The Novel Monocot-Specific 9-Lipoxygenase ZmLOX12 Is
610 Required to Mount an Effective Jasmonate-Mediated Defense Against *Fusarium
611 verticillioides* in Maize. *Mol. Plant Microbe In.* **27**, 1263-1276 (2014).

612 36 Barabasi, A. L. & Oltvai, Z. N. Network biology: Understanding the cell's functional
613 organization. *Nat. Rev. Genet.* **5**, 101-115 (2004).

614 37 Kim, M., Zhang, H., Woloshuk, C., Shim, W. B. & Yoon, B. J. Computational
615 identification of genetic subnetwork modules associated with maize defense response to

616 *Fusarium verticillioides*. *BMC Bioinformatics* **16 Suppl 13**, S12; 10.1186/1471-2105-16-
617 S13-S12 (2015).

618 38 Qian, X., Sze, S. H. & Yoon, B. J. Querying pathways in protein interaction networks
619 based on hidden Markov models. *J. Comput. Biol.* **16**, 145-157 (2009).

620 39 Qian, X. & Yoon, B. J. Effective identification of conserved pathways in biological
621 networks using hidden Markov models. *PLoS One* **4**, e8070;
622 10.1371/journal.pone.0008070 (2009).

623 40 Sahraeian, S. M. E. & Yoon, B. J. Fast network querying algorithm for searching large-
624 scale biological networks. *IEEE Int. Conf. Acoust. Speech Sig. Process.*, 6008-6011
625 (2011).

626 41 Su, J., Yoon, B. J. & Dougherty, E. R. Identification of diagnostic subnetwork markers
627 for cancer in human protein-protein interaction network *BMC Bioinformatics* **11 (Suppl**
628 **6)**, S8; 10.1186/1471-2105-11-S6-S8 (2010).

629 42 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and
630 powerful approach to multiple testing. *J. Roy. Stat. Soc. B Met.* **57**, 289-300 (1995).

631

632

633

634

635 **Figure legends**

636

637 **Fig. 1. NGS statistics of significantly differentially expressed genes.**

638 A) General statistics of next-generation sequencing (NGS) datasets. Reads from wild type and
639 mutant (6 dpi and 9dpi) were mapped to *F. verticillioides* reference genome. B) Co-expression
640 network of wild type and mutant *F. verticillioides*. We applied five distinct threshold levels to
641 generate five different co-expression networks. The table shows number of genes and all possible
642 edge combinations in each co-expression network. C) Schematic depiction of wild type and
643 mutant co-expression networks at threshold level 0.985. D) The heat map provides a schematic
644 overview of 324 most significantly differentially expressed genes at three distinct time points. A
645 total of 155 genes are expressed significantly higher in the wild type (red) while a total of 169
646 genes are expressed significantly higher in the mutant (blue). In this selection, genes whose
647 absolute *t*-test statistics score is higher than 3.5 were chosen, where the relative abundance was
648 acquired by the two-step normalization which considers each gene length as well as relative
649 expression against beta-tubulin genes over all the time points (3 dpi, 6 dpi, and 9 dpi). Next, *t*-
650 test scores of the selected genes were again measured over relative expression levels normalized
651 at each time point, and displayed in colors.

652

653

654 **Fig. 2. Schematic overview of our network-based NGS data analysis.**

655 Our aim is to search through large co-expression networks to identify subnetwork modules that
656 are differentially activated between two different conditions (*e.g.* wild type versus mutant).

657 Initial selection of seed genes (*i.e.* top 1% differentially expressed genes) is followed by a series

658 of computational procedures described previously ¹⁵. Through this process, we can identify
659 subnetwork modules that show significant difference in virulence potentials.

660

661 **Fig. 3. Computational prediction procedure for identifying key potential pathogenicity**
662 **genes.**

663 A) Raw NGS datasets are preprocessed, *i.e.* alignment, filtering, and normalization, before they
664 are applied for inferring *F. verticillioides* co-expression networks by means of partial correlation.
665 In addition, these datasets were also converted into a log-likelihood ratio (LLR) matrix for
666 downstream analysis. Next, subnetwork modules are extended from seed genes, significantly
667 differentially expressed between the two different conditions (*F. verticillioides* wild type vs.
668 mutant), as long as they keep sufficient strength of differential activity between the two strains
669 [1-2]. B) Each potential hub (virulence-associated) gene is predicted in its detected subnetwork
670 module based on several criteria: i) highly impactful in a probabilistic manner, ii) relatively
671 differentially correlated between two strains (wild vs. mutant), iii) relatively more connected in
672 the given module, iv) relatively significantly differentially expressed, v) orthologous to known
673 pathogenicity-associated genes of other fungal species, vi) annotated to significant GO terms
674 with other member genes. Through this proposed analysis approach, we identified potential
675 functional genes showing significant differential activity between the two conditions as well as
676 strong association with virulence.

677

678 **Fig. 4. Potential subnetwork modules associated with the *F. verticillioides* pathogenicity.**

679 Our network-based comparative analysis identified three potential virulence-associated
680 subnetwork modules differentially activated between the two strains (*F. verticillioides* wild type

681 vs. mutant). Module A is composed of ten *F. verticillioides* genes, where 80% of them were
682 annotated to a significant GO term GO:0044444 “cytoplasmic part”. Module B is comprised of
683 fifteen genes, where four of them (FVEG_07930, FVEG_00890, FVEG_11886, and
684 FVEG_00594) were annotated to a significant GO term GO:0006810 “transport”. The node sizes
685 are directly proportional to their number of edges and the node colors vary according to their
686 discriminative power measured by *t*-test scores.

687

688 **Fig. 5. Functional characterization of *F. verticillioides* *FvSYN1* and *FvEBP1*.**

689 A) Vegetative growth of wild-type (WT), Δ Fvsyn1, Δ Fvebp1 and their complementation strains
690 (FvSYN1C and FvEBP1C) were examined on V8, 0.2XPDA, and Myro agar plates. Strains were
691 point inoculated with an agar block (0.5 cm in diameter) and incubated for 6 days at 25 °C under
692 14 h light/10 h dark cycle. B) Spores (2×10^7) of WT, Δ fvsyn1 and Fvsyn1C were inoculated in
693 the center of V8 plates for 6 days at 25 °C under 14 h light/10 h dark cycle. Vegetative growth of
694 WT, Δ Fvsyn1 and FvSYN1C on V8 agar plates, strain growth condition was the same as
695 described above. Agar plates were cut into half and pictures were taken from a side view. C)
696 Fungal mass production of WT, Δ Fvsyn1 and FvSYN1C strains was tested in YEPD broth. 100
697 μ l spores (10^8 /ml concentration) were inoculated and incubated for 4 days at 25 °C and shaking
698 at 150 rpm. Fungal mass production was quantified by weighing wet and dry fungal mass. The
699 data presents the average and standard deviation of three independent experiments. D) Spore
700 production of of WT, Δ Fvsyn1, FvSYN1C, Δ Fvebp1and FvEBP1C on V8 agar plates, strain
701 growth condition was the same as described above. Spores were collected from agar plates and
702 counted. E) One-week-old B73 seedlings were inoculated with 10^8 /ml spore suspension of fungal
703 strains on mesocotyls. Lesion areas were quantified by Image J software after 2-week incubation.

704 Asterisk above the column indicates statistically significant difference (P<0.05) analyzed by t-
705 Test.

706

707 **Fig. 6. Altered expression of select neighboring genes as detected by qPCR.**

708 A) Relative quantification (RQ) of four neighboring genes (FVEG_3391, FVEG_9144,
709 FVEG_13321, FVEG_4259) to predicted hub *FvSYN1* (FVEG_0594) in wild type (WT) versus
710 $\Delta Fv\text{syn}1$. RQ levels of four genes in WT were normalized to 1. B) Schematic overview of
711 transcriptional changes of four neighboring genes (highlighted) of *FvSYN1* (FVEG_0594)
712 observed in WT versus $\Delta Fv\text{syn}1$. C) Relative quantification (RQ) of four neighboring genes
713 (FVEG_4142, FVEG_8818, FVEG_3416, FVEG_9111) to predicted hub *FvEBP1*
714 (FVEG_11622) in wild type (WT) versus $\Delta Fv\text{ebp}1$. D) Schematic overview of transcriptional
715 changes of four neighboring genes (highlighted) of *FvEBP1* (FVEG_11622) observed in WT
716 versus $\Delta Fv\text{ebp}1$.

717

718 **Fig. 7. Potential subnetwork module associated with maize defense response**

719 Our network-based comparative analysis of maize genes applied cointegration-correlation-
720 expression strategy to identify a potential maize subnetwork module differentially activated
721 between the two strains (*F. verticillioides* wild type vs. mutant). This predicted maize module is
722 comprised of 28 member genes, and five were annotated to a significant GO term GO:0009814
723 “defense response, incompatible interaction”. These five genes were indicated by diamond-
724 shaped illustration.

725

726

Fig. 1. Kim & Zhang et al

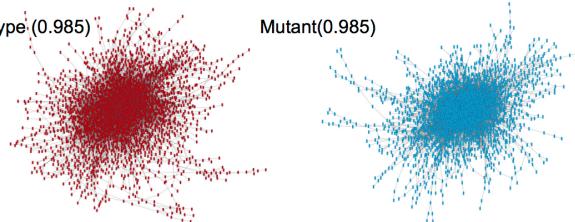
A General statistics of NGS datasets

	Wild type		Mutant	
	6 dpi	9 dpi	6 dpi	9 dpi
Type of run	Single			
Read length	100 (bp)			
Mean # of reads aligned	100934		218264	
Median depth of coverage	14.18	16.64	4.48	9.77

B Co-Expression network of wild type and mutant *F. verticillioides*

Threshold	Wild type		Mutant	
partial correlation cut-off	# of genes	# of edges	# of genes	# of edges
0.985	6,161	198,310	6,057	184,278
0.98	7,017	371,064	6,908	356,837
0.975	7,637	583,097	7,518	565,812
0.97	8,063	826,857	7,922	805,236
0.965	8,381	1,096,076	8,249	1,072,693

C Wild type (0.985)



Mutant(0.985)

D

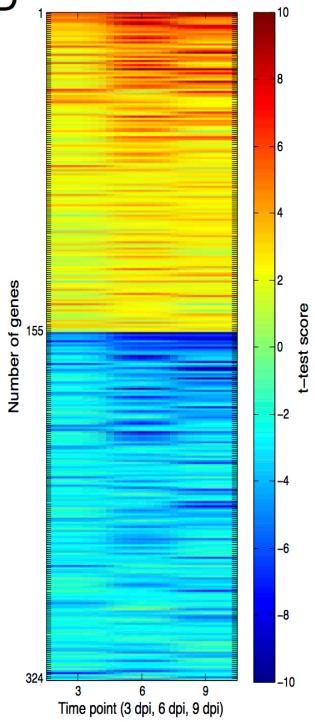


Fig. 2. Kim & Zhang et al

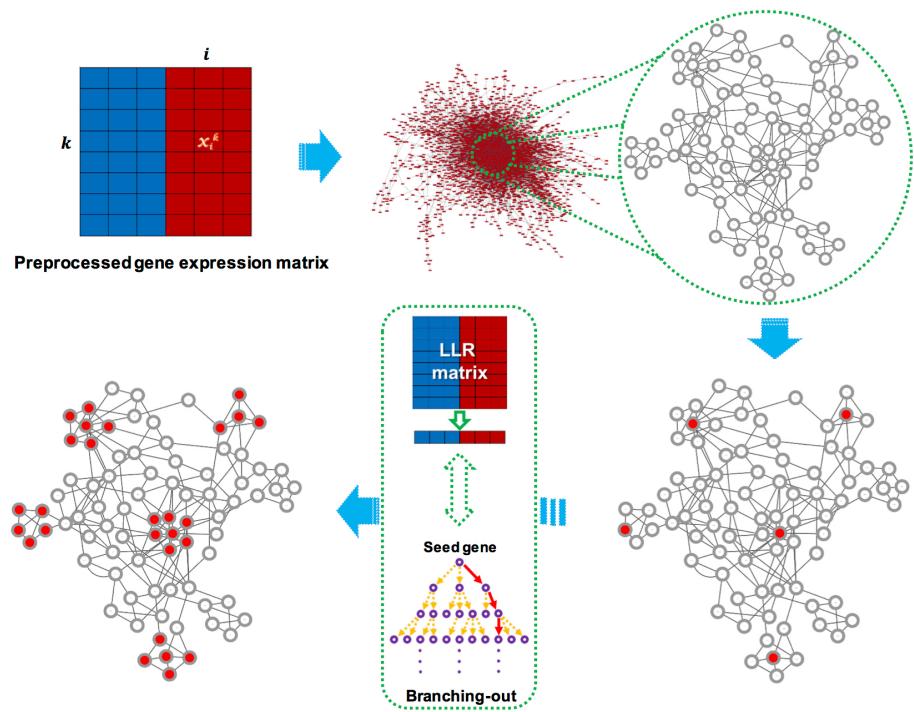


Fig. 3. Kim & Zhang et al

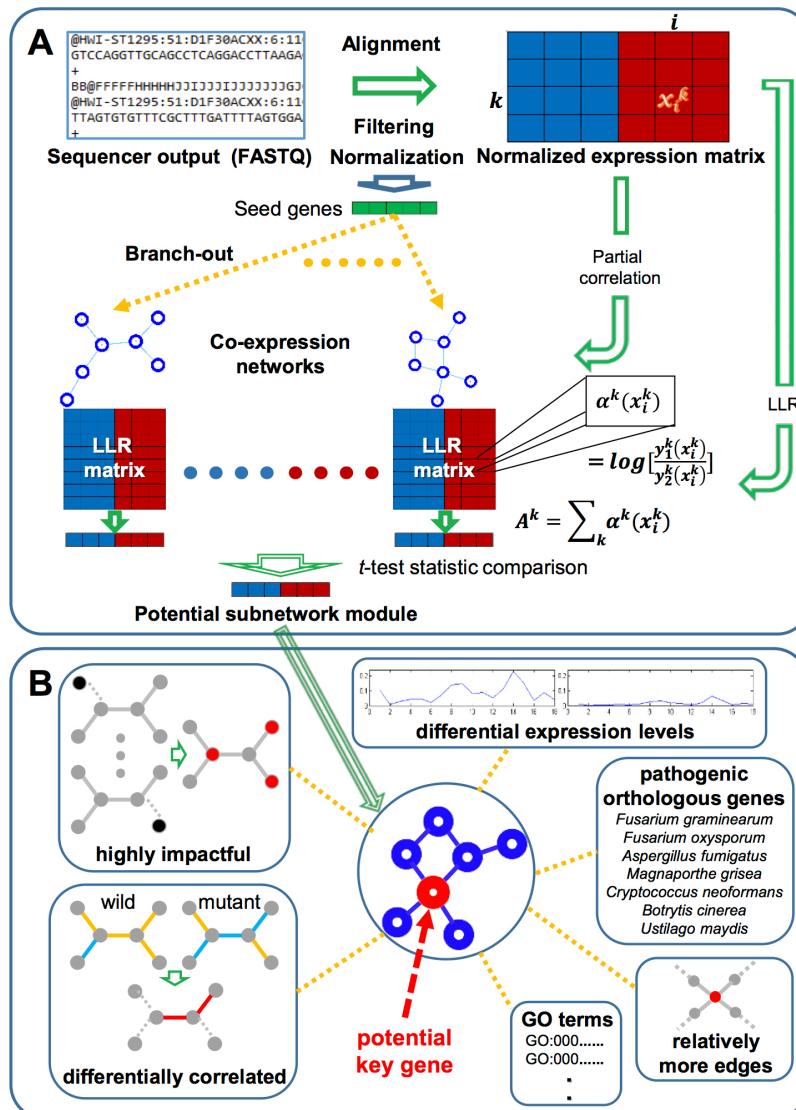
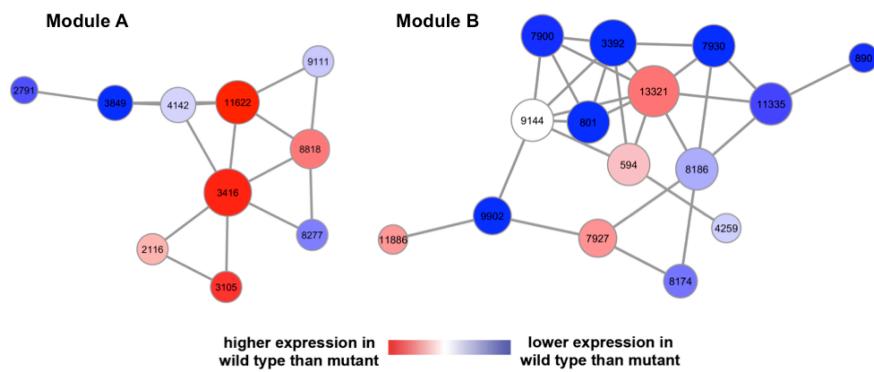


Fig. 4. Kim & Zhang et al



731

732

Fig. 5. Kim & Zhang et al

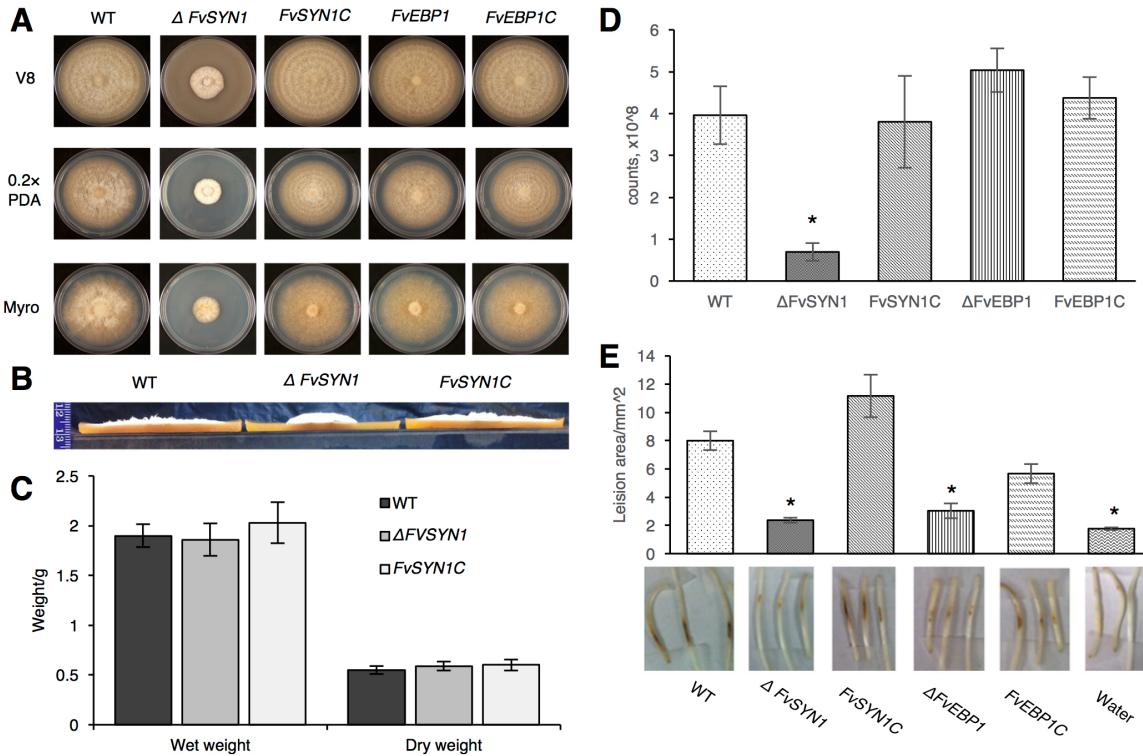


Fig. 6. Kim & Zhang et al

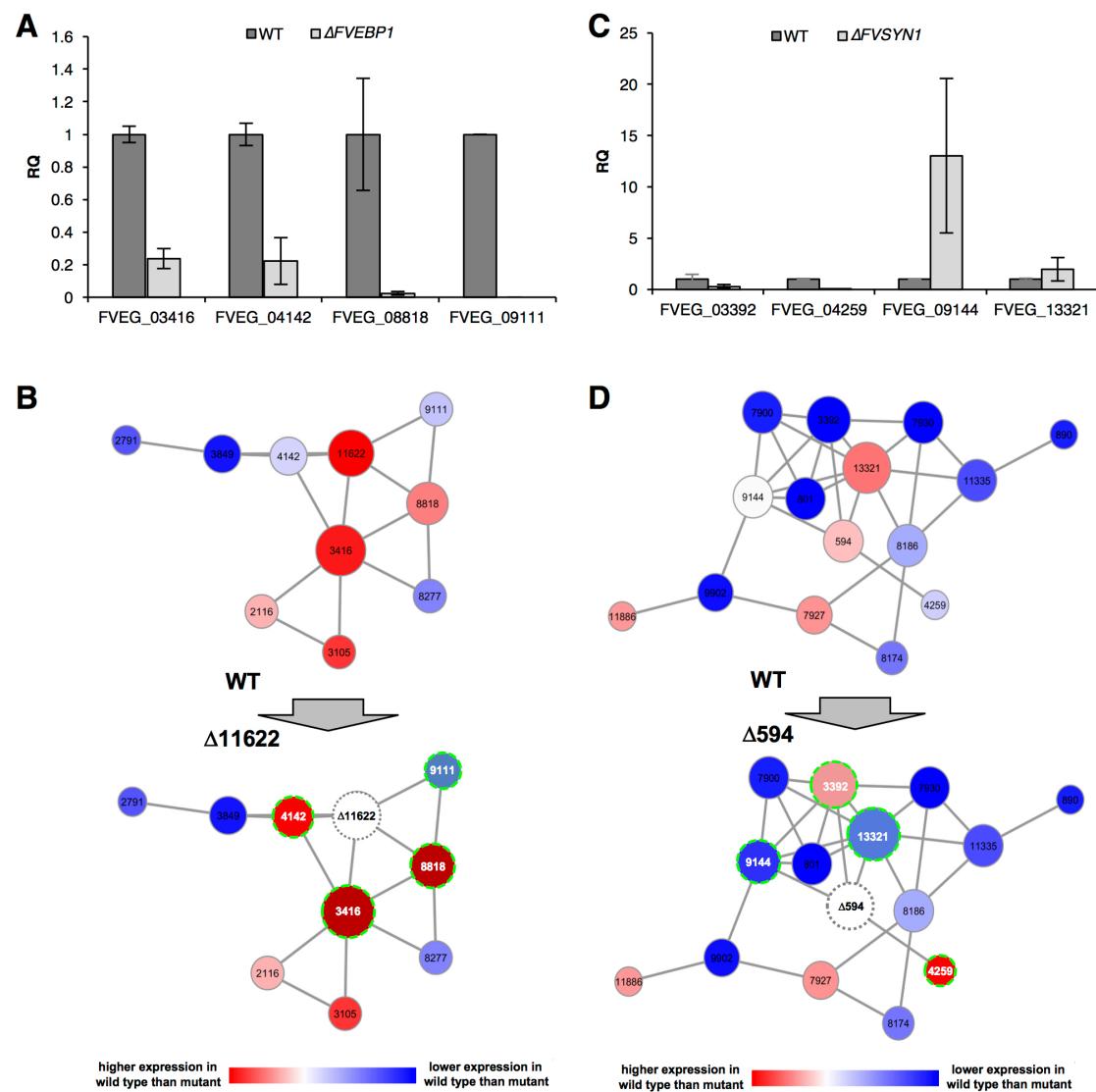


Fig. 7. Kim & Zhang et al

