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Abstract

Fusarium verticillioides is recognized as an important stalk rot pathogen of maize
worldwide, but our knowledge of genetic mechanisms underpinning this pathosystem is limited.
Previously, we identified a striatin-like protein Fsr1 that plays an important role in stalk rot. To
further characterize transcriptome networks downstream of Fsrl, we performed next-generation
sequencing (NGS) to investigate relative read abundance and also to infer co-expression
networks utilizing the preprocessed expression data through partial correlation. We used a
probabilistic pathway activity inference strategy to identify functional subnetwork modules
likely involved in virulence. Each subnetwork modules consisted of multiple correlated genes
with coordinated expression patterns, but the collective activation levels were significantly
different in F. verticillioides wild type versus the mutant. We also identified putative hub genes
from predicted subnetworks for functional validation and network robustness studies through
mutagenesis, virulence and qPCR studies. Our results suggest that these genes are important
virulence genes that regulate the expression of closely correlated genes, demonstrating that these
are important hubs of their respective subnetworks. Lastly, we used key F. verticillioides
virulence genes to computationally predict a subnetwork of maize genes that potentially respond

to fungal genes by applying cointegration-correlation-expression strategy.

Key Words: Next-generation sequencing, co-expression network, subnetwork module, hub gene,

cointegration-correlation-expression
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Introduction

Maize stalk rot is a complex disease, primarily caused by a series of fungal pathogens.
Charcoal rot (by Macrophomina phaseolina), Fusarium stalk rot (by Fusarium verticillioides),
Gibberella stalk rot (by F. graminearum) and Anthracnose stalk rot (by Colletotrichum
graminicola) are the major stalk rots that devastate maize-growing regions in the US '*. Losses
due to stalk rot come in several different forms including stalk breakage, lodging, premature
death of the plant, and the interruption of the normal grain filling process. Pathogens typically
overwinter in the crop residue from the previous year and produce spores in the next growing
season that will serve as the primary inoculum source. It is generally perceived that when crops
experience abiotic stress, particularly at the end of the growing season, pathogens take advantage
and colonize vulnerable stalk tissues . But overall, we still lack a clear understanding of how
these stalk rot fungi colonize and progress through pathogenesis.

To better understand the mechanism of pathogenesis, we screened for loss-of-virulence F.
verticillioides mutants and identified a gene, FSRI, that is responsible for the deficiency °.
Microscopic examination of inoculated stalks revealed the wild-type fungus vigorously
colonizing vascular bundles and causing rot, whereas the mutant showed limited colonization
and rot in stalks. F'SRI encodes a protein that shares high similarity with striatins, a group of
proteins found in eukaryotes that form complexes with kinases and phosphatases to regulate
diverse cellular functions °® Recent studies have demonstrated important cellular and
physiological roles of striatin proteins in Sordaria macrospora, Neurospora crassa, Aspergillus
nidulans, and C. graminicola °">. Our laboratory also revealed the importance of the coiled-coil

motif of Fsrl in virulence and demonstrated how Fsrl forms a complex with other proteins to
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regulate stalk rot virulence ">'*

. These discoveries collectively support our hypothesis that
Fsrl/striatin-mediated signal transduction plays a critical role in regulating stalk rot pathogenesis.

One of the intriguing questions we are aiming to answer is the impact of Fsrl in cellular
signaling associated with F. verticillioides virulence. To unravel the complex web of genetic
interactions in F. verticillioides and maize, we decided to take advantage of next-generation
sequencing (NGS) and explore the transcriptomic subtnetwork modules underpinning FSRI-
mediated fungal virulence by computational network-based analysis. Our goal was to develop
probabilistic and systematic models to investigate the interrelationship between genes rather than
relying on quantitative comparison of transcript abundance as a measure of significance. Our
NGS study was designed to capture dynamic changes in gene expression during maize stalk
colonization by F. verticillioides wild type and fsr/ mutant. To capture dynamic changes in
transcriptome, samples were harvested from three distinct phases of stalk pathogenesis:
establishment of fungal infection, colonization and movement into the vascular bundles, and host
destruction and collapse '°. A total of six independent biological replications were prepared and
analyzed for each sample, since increasing the number of replicates was important for us to
implement our computational analysis for identifying subnetwork modules that show strong
differential expression.

As described in our previous work '°, our strategy is to first construct the co-expression
network of F. verticillioides using partial correlation, and search through these networks to
detect subnetwork modules that are differentially expressed in the two F. verticillioides strains.
Subsequently, we use the probabilistic pathway activity inference scheme '® to predict the
activity level of potential subnetworks, followed by applying a computationally efficient branch-

out technique to find the subnetworks that display the largest differential expression. Through
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89  this computational pipeline, we can identify potential pathogenic modules, which consist of
90 genes that show coordinated behavior in F. verticillioides but also behaving differently in the
91  wild type and the mutant. We can also screen for potential gene modules that contain orthologs
92  of well-known virulence genes in other phytopathogenic fungi.
93 Biological functions, including virulence, are executed through elaborate collaboration
94  of various biomolecules, and there has been increasing interest in the computational
95 identification of functional modules from large-scale experimental data. In this study, we
96 performed a comparative analysis of two distinct F. verticillioides RNA-Seq datasets, where one
97  set was obtained from wild-type F. verticillioides and the other set from a loss-of-virulence fsr/
98 mutant. For a systematic analysis of the infection transcriptome, we first predicted the co-
99  expression network of the fungus. Subsequently, we identified functional subnetwork modules in
100 the co-expression network consisting of interacting genes that display strongly coordinated
101  behavior in the respective datasets. A probabilistic pathway activity inference method was
102  adopted to identify three subnetwork modules likely to be involved in F. verticillioides virulence.
103  Each subnetwork consisted of multiple genes with coordinated expression patterns, but more
104 importantly we targeted subnetworks whose collective activation level is significantly different
105 in the wild type versus the mutant. We then applied a series of mathematical criteria to predict
106  the hub gene in each network and functionally tested their role in F. verticillioides virulence and
107  the maintenance of network robustness.
108
109 RESULTS
110

111  NGS data preparation and relative expression analysis
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112 We performed NGS using [llumina HiSeq 2000 and generated 36 independent libraries (i.e.,
113 six libraries per each time point - 3 dpi [infection], 6 dpi [colonization], and 9 dpi [rot] - for wild
114  type and the fsr/ mutant). For analysis and prediction in this study, we used 24 sample libraries
115  from the last two time points (6 dpi and 9 dpi) to focus on gene regulation mechanism in the
116 latter stages of maize-fungal interaction. Acquisition of read counts of all F. verticillioides genes
117 was completed by mapping NGS reads to F. verticillioides strain 7600 reference genome '’ using
118  Bowtie2 '*'? and Samtools *°. Through filtering process, we eliminated genes with insignificant
119  expression and therefore 9446 genes were selected for downstream analysis. We normalized the
120 read counts of these genes by their corresponding gene length and also based on relative
121  expression quantification against two f-tubulin genes (FVEG 04081 and FVEG 05512).
122 Percentages of the two S-tubulin read abundance were traced over 24 replicates in 6 dpi & 9 dpi
123 to examine their expression consistency. Mean (u) and standard deviation (o) of the percentages
124  for B-tubulins were p=0.058%, 0=0.0056 for FVEG 04081 and p=0.035%, ©=0.0044 for
125 FVEG 05512. The general information of our NGS datasets is shown in Fig. 1A. From these
126  genes, we selected 324 most significantly differentially and highly expressed genes either in wild
127  type or fsrl mutant from our datasets, where all replicates were normalized and analyzed for
128 their individual relative expression levels at three different time points. As shown in a heat map
129  with three distinct time points (Fig. 1D), 155 genes (red) are expressed significantly higher in the
130  wild type and 169 genes (blue) are expressed significantly higher in fs»/ mutant (Fig 1D. and
131 Table S1). As explained earlier, the relative abundance was acquired by the two-step
132 normalization by each gene length as well as f-tubulin genes, and was selected by #-test statistics

133  score measurement (|t-test score| > 3.5). However, this common NGS analysis focuses on
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134  relative expression of individual genes but does not allow us to predict gene-gene associations
135  and system-level changes across correlated genes during pathogenesis.
136
137  Identification of F. verticillioides subnetwork modules
138 We developed a computational workflow that allows us to build co-expression networks
139 from F. verticillioides NGS datasets '°. We first inferred the co-expression networks for the wild
140  type as well as the fs7/ mutant utilizing the preprocessed gene expression data by using the
141  partial correlation *' (Supplementary Information). In this co-expression network, we applied
142  five distinct thresholds (0.965, 0.97, 0.975, 0.98, and 0.985), thereby constructing five different
143  co-expression networks. The number of genes and edges between genes are shown in Fig. 1B.
144  When these co-expression networks are illustrated with all member genes and possible edges, we
145  can generate a complex web of scale-free networks (Fig. 1C). However, the aim of our proposed
146  network-based NGS data analysis is to search through these co-expression networks to identify
147  subnetwork modules that are differentially activated between the F. verticillioides wild type and
148  fsrl mutant, that can considerably differ in terms of virulence potentials (Fig. 2).
149 By following this proposed strategy, we developed two potential subnetwork modules
150 differentially activated during F. verticillioides pathogenesis. We performed additional analyses
151  with six different characteristics for selecting hubs and their modules followed by our network-
152  based comparative analysis approach' (Fig. 3). In the subnetwork module fine-tuning process,
153  two modules in Fig. 4 showed the minimum discriminative power increase for the entire module
154  adjustment as 22% and 27% while over 90% of modules displayed smaller than 20% increase.
155 Note that our approach probabilistically focuses on generating subnetwork modules whose

156 member genes have high likelihood of showing associated expression patterns to each other
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157  across all replicates using the log-likelihood-ratio (LLR) matrix that demonstrates how likely
158 each gene would express in F. verticillioides wild type or the mutant. As a result, our network-
159 based computational analysis approach found potential subnetwork modules that show
160  harmonious coordination of member genes as well as strong differential activity between the two
161  strains.
162
163  Computational characterization of two key F. verticillioides subnetwork modules
164 From our network-based comparative analysis, we identified two potential pathogenicity-
165  associated subnetwork modules differentially activated between the wild-type and fsr/ mutant
166  strains (Fig. 4). Module A was composed of ten F. verticillioides genes, where 80% of these
167 were annotated with a significant GO term cytoplasmic component (GO:0044444)
168  (http://biit.cs.ut.ee/gprofiler/index.cgi) **. However, it is important to note that majority of these
169  genes have no known function and these GO functions were chosen solely based on predicted
170  protein motifs (Table S2). Module B was comprised of fifteen genes, where four (FVEG 07930,
171  FVEG 00890, FVEG 11886, and FVEG 00594) were annotated with a significant GO term
172 transport (GO:0006810). The eleven other genes were hypothetical proteins with some
173 knowledge of their functional domains. But this module showed relatively higher percentage of
174  genes with no GO terms and no functional protein domains compared to module A (Table S2).
175  Once we defined these subnetwork modules, we analyzed all member genes in silico to predict
176  potential hub genes that may hold a key role in F. verticillioides pathogenicity.
177 In module A, we selected FVEG 11622 as a potential pathogenicity-associated hub gene
178 based on following observations: i) FVEG 11622 deteriorated the differential probabilistic

179  activity level of its given module from wild type to mutant by 26% (the mean of other member
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180  genes was 16%)), ii) correlation coefficients of FVEG 11622 decreased from wild type to mutant
181 Dby 0.26 and 0.34 for Pearson’s and Spearman rank, respectively (the mean of other member
182  genes was 0.14 and 0.19), iii)) FVEG 11622 contained four edges to other member genes (the
183 mean of other member genes was 2.8), iv) FVEG 11622 demonstrated significant expression
184  decrease from wild type to mutant (z-score of 4.4), and v) orthologous gene of FVEG 11622 in
185  Botrytis cinerea (BCIG) is recognized as having a role in fungal virulence. The predicted hub
186 gene FVEG 11622, which was tentatively designated as FvEBPI, encodes a putative 238-AA
187  hypothetical protein that harbors Emopamil-binding protein (EBP) domain (pfam05241). In
188 mammalian systems, this protein family is known to be associated with endoplasmic reticulum
189  and plays a critical role in sterol isomerization and lipoprotein internalization . An emopamil
190 binding protein BcPIE3 in Botrytis cinerea which shares significant structural similarities to
191 mammalian EBPs was shown to be important for virulence **. FvEBPI has four direct edges to
192 FVEG 03416, FVEG 04142, FVEG 08818 and FVEG 09111. FVEG 03416 is an alginate
193 lyase gene, and contains an alginate lyase domain which is important for fructose and mannose
194  metabolism. FVEG 04142 is a V-type proton ATPase subunit F. V-type ATPases have
195  hydrogen-exporting ATPase activity and are involved in ATP hydrolysis coupled proton
196 transport. FVEG 09111 is a hypothetical protein, containing a PX-associated domain. The
197  function of this protein is unknown, but its N-terminus is always found to be associated to a PX
198 domain which is involved in targeting of proteins to cell membranes. FVEG 08818 is a
199  hypothetical protein with a methyltransferase domain.
200 Using the same approach, we identified FVEG 00594 as the potential pathogenicity-
201  associated hub gene in module B based on following observations: i) FVEG_ 00594 reduced the

202  differential probabilistic activity level of its detected module from wild type to mutant by 24%
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203  (the mean of other member genes was 13%); ii) correlation coefficient difference of
204 FVEG 00594 between wild type and mutant was 0.34 and 0.4 for Pearson’s and Spearman rank,
205 respectively (the mean of other member genes was 0.24 and 0.2); iii)) FVEG_00594 included four
206  edges to other member genes (the mean of other member genes was 3.7); iv) the difference of
207  expression level of FVEG 00594 was higher in wild type although it did not show high
208  significance (z-score as 0.8), and v) the ortholog of FVEG 00594 in F. graminearum (FG) is
209  recognized as having a role in fungal virulence. FVEG 00594, designated FvSYNI, encodes a
210  putative 377 amino-acid protein that harbors two well-recognized domains: syntaxin N-terminal
211  domain (cd00179) and SNARE domain (cd15849). In budding yeast, the SNARE protein
212 complex is involved in membrane fusion and protein trafficking for new synthesis and recycling
213 of organelles . SNAREs were originally classified into v-SNAREs and t-SNAREs according to
214 their vesicle or target membrane localization *. Syntaxins belong to t-SNARE proteins and are
215  shown to play an important role in membrane fusion in eukaryotic cells *"**. Syntaxins are
216  known as a family of membrane-associated receptors for intracellular transport vesicles.
217  Syntaxin and SNARE:s are also known to anchor these newly synthesized and recycled proteins
218  to the cytoplasmic surface . SNARE proteins play critical and conserved roles in intracellular
219  membrane fusion in eukaryotic cells *°. They were known to mediate membrane fusion during all
220 trafficking steps of the intracellular communication process, including the secretory and
221  endocytic pathways °'. FvSYNI has four directly associated genes in the subnetwork module:
222 FVEG 03392, FVEG 04259, FVEG 09144 and FVEG_13321. Three of these genes
223 (FVEG 03392, FVEG 04259, FVEG_09144) encode hypothetical proteins with no known

224  functional motif thus making it difficult to predict their role. While FVEG 13321 is a
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225  hypothetical protein, it does contain a fungal Zn,Cys; binuclear cluster domain, which is
226  typically found in the family of fungal zinc cluster transcription factors ***° .

227

228  Functional characterization of predicted hub genes associated with virulence

229 To test our hypothesis that FvEBPI (FVEG 11622) and FvSYNI (FVEG_00594) are

230  putative hub genes of subnetwork modules A and B, respectively, and that they are important for
231 F. verticillioides virulence. We generated gene knockout mutants Afvebpl and Afvsynl through
232 homologous recombination following our standard split marker protocol **. Hygromycin B

233 phosphotransferase (HPH) was used as the selective marker, and homologous recombination

234 outcomes were confirmed by PCR (data not shown) and Southern blots (Fig. S1). We first

235  compared vegetative growth of these mutants on synthetic media (PDA, V8 agar and defined
236  medium agar). While Afvsynl strain showed reduced colony growth, Afvebpl strain exhibited no
237  growth defect (Fig. 5A). The mutant Afvsynl showed restricted radial vegetative grow while
238  exhibiting more dense and fluffier mycelial growth on solid media when compared to the wild
239  type (Fig. 5B). When cultures were harvested from YEPD broth, we did not observe a significant
240  difference in fungal mass production (Fig. 5C). For spore production on V8 plates, Afvsynl

241  produced significantly reduced spores when compared to other strains (Fig. 5D).

242 To test virulence, we inoculated B73 maize seedling mesocotyls with spore suspension of
243 wild-type, Afvebpl, and Afvsynl strains (along with water as a negative control) following the
244 previously described procedure *°. When symptoms were observed after a 2-week incubation

245  period, Afvebpl and Afvsynl mutants showed significantly decreased levels of rot when

246 compared with the wild-type progenitor (Fig. 4E). Mutants Afvebpl and Afvsynl showed

247  approximately 70% and 60% reduction in virulence when analyzed by average mesocotyl rot
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248  area (Fig. SE). In order to test whether the mutant phenotype is due to a targeted gene
249  replacement, we generated complementation strains of Afvebpl and Afvsynl by co-transforming
250 each mutant protoplasts with the respective wild-type gene (FvEBPI and FvSYNI with their
251  native promoter and terminator) along with the geneticin-resistance gene. PCR was performed to
252  confirm reintroduction of wild-type genes in complemented strains. FvSYN1C strain showed
253  complete restoration of virulence on maize seedlings whereas FVEBP1C showed partial (~75%)
254  recovery (Fig. SE). These results suggested that FvEBPI and FvSYNI play an important role in
255  virulence on maize seedling rot, and further convinced us that these two genes serve as the
256  predicted hub gene of their respective subnetwork module.
257
258  Testing network robustness in gene deletion mutants
259 A very important feature of these subnetwork modules is having robustness, i.e. the
260  ability to respond to and withstand the external as well as internal stimuli while maintaining its
261  normal behavior *°. However, it is reasonable to predict that when we eliminate or disable a
262  critical node (i.e. a hub gene), the network could be disrupted and shattered into isolated nodes.
263  Ifa hub gene is eliminated from the subnetwork, we can hypothesize that other member genes,
264  particularly those sharing direct edges, will exhibit disparate expression patterns.
265 We first tested correlated gene expression patterns in the wild type versus Afvebpl
266  mutant by qPCR. We learned that gene expression levels of FVEG 03416, FVEG 04142, and
267 FVEG 08818 were drastically lowered in the Afvebpl mutant than those observed in the wild-
268  type progenitor (Fig. 6A). Furthermore, the FVEG 09111 gene expression level was not
269  detectable in the mutant. Particularly, FVEG 04142 and FVEG 09111 showed higher levels of

270  expression in the Afsrl mutant when compared to the wild type, and in Afvebp1 that expression
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271  pattern is now reversed (Fig. 6B). These results show that when FvEBPI is no longer present in
272 the subnetwork, expression levels of these genes, FVEG 03416, FVEG 04142, and
273  FVEG 08818, and FVEG 09111, are drastically suppressed (Fig. 6A and B), suggesting
274  FvEBPI is critical for proper regulation of these neighboring genes.
275 In the Afvsynl strain, we comparatively studied the expression pattern of four genes that
276  directly share edges with FvSYNI. Three of the four genes tested, FVEG 03392, FVEG 04259
277 and FVEG 09144 showed a significant difference in expression levels between the wild type and
278  Afvsynl mutant. Significantly, FVEG 03392 and FVEG 04259, which showed lower expression
279  level in the wild type when compared with Afsrl mutant, reversed its course and showed higher
280  expression in the wild type when compared with Afvsynl (Fig. 6C). FVEG 09144, which
281  showed no difference in expression between wild type and Afsrl, showed significantly higher
282  expression in Afvsynl. FVEG 13321, which showed higher expression in wild type compared
283  to Afsrl, now exhibits statistically similar expression in wild-type and Afvsyn1 (Fig. 6C and D).
284  Collectively these data showed that FvSYNI and FvEBPI are important for regulating the
285  expression of closely correlated genes, further providing evidence that these are important hub
286  genes of their respective subnetworks.
287
288  DISCUSSION
289
290 In this study, we assembled a streamlined computational network analysis pipeline to
291 investigate the system-level coordinated changes across differentially activated genes rather than
292  simply focusing on differential transcript abundance of individual genes, and to detect subtle

293  processes that are not likely to be revealed by examining a small list of highly significant genes
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294  in this host-pathogen interaction. To generate meaningful prediction from limited datasets,
295  comprehensive and rigorous investigation was needed. Thus, we mainly searched for comparable
296  expression patterns probabilistically using a log-likelihood ratio matrix over replicates instead of
297  just considering differential expression for identifying potential subnetwork modules. Also, we
298  analytically investigated the given subnetwork modules with multidirectional analysis
299  considering factors such as probabilistic impact, and differential correlation. Significantly, this
300 comprehensive approach can help identify novel virulence-associated subnetwork modules as
301 well as the key functional “hub” genes in fungal pathogens, such as F. verticillioides. This
302 assembly of tool will be instrumental as we continue our effort to harness new and meaningful
303 information from NGS data as we try to better understand complex pathosystems.
304 Our study mainly focused on analyzing the underlying transcriptional regulation in host-
305 pathogen interactions. However, we do recognize that complex intercellular web of interactions
306 in a living cell, not to mention between a host and its pathogen, are not limited to gene-gene
307 association. Numerous constituents of the cell, e.g. DNA, RNA, protein, and metabolites,
308 contribute to the structure and the dynamics of cellular network and ultimately behavior.
309 However, in contrast to DNA and RNA, the resources available for us to generate systems-level
310 proteome and metabolome datasets for network analyses are currently limited. In addition to this
311  challenge, majority of host-pathogen systems have very limited genetic information available.
312  For instance, as one can see from our three predicted modules majority of member genes encode
313  hypothetical proteins with unknown, and vaguely predicted, functions. We primarily focused on
314  developing this computational approach with the intent of investigating not-well defined
315  biological systems with minimal bias toward existing genetic information, i.e. allocating higher

316  scores toward known virulence genes in given species.
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317 Furthermore, there is a greater challenge in refining subnetwork module development for
318  host organisms that typically has larger and more complex genomes. Over 95% of our NGS data
319  generated in this study came from maize, suggesting that maize stalk is actively responding to
320  the pathogen invasion and colonization at transcriptional level *’. In our earlier study, we
321  developed a computational analysis pipeline, including the cointegration-correlation-expression
322 approach, to predict potential maize defense-associated genes that show strong differential
323 activation and coordination with known F. verticillioides virulence genes °’. Here, we selected
324  three F. verticillioides pathogenicity genes identified from our current work (FVEG 11622,
325 FVEG 00594, and FVEG 09767 [FSR1]) to predict maize response subnetworks. An
326 illustration of the potential subnetwork module associated with maize defense response against
327  the F. verticillioides pathogenicity genes is shown in Fig. 7. We followed the procedure from
328 narrowing down maize genes using the cointegration-correlation-expression approach to
329  branching out potential defense-associated modules on maize co-expression networks >’. The
330 subnetwork module associated with maize defense system was composed of 28 maize genes,
331  where genes relatively significantly expressed in wild type-infected are indicated in red and
332 genes relatively significantly expressed in mutant type-infected are indicated in blue (Table S3).
333  In this potential maize defense gene subnetwork module, we noticed that five maize genes
334 (GRMZM2G102760 TO01, GRMZMS5G870932 T01, GRMZM2G001421 TO02,
335 GRMZM2G001696 TO01, and GRMZM2G137535 TO01) were annotated with a significant GO
336 term defense response/incompatible interaction (GO:0009814), defined as “a response of a plant
337  to a pathogenic agent that prevents the occurrence or spread of disease”. However, as seen in F.
338  verticillioides subnetwork modules, we recognize that a large percentage of member genes

339  encode hypothetical proteins and that transcriptional coordination does not always result in
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340 functional correlation. In addition, unlike F. verticillioides genes we characterized in this study,
341  generating null mutants and performing network robustness assays are more strenuous for maize.
342 While difficulties mentioned above remain as obstacles, our effort demonstrates that the
343  proposed network-based analysis pipeline can improve our understanding of the biological
344  mechanisms that underlie host-pathogen interactions, and that it has the potential to unveil novel
345  genetic subnetwork modules and hub genes critical for virulence in fungal pathogens. We are
346  currently in the process of improving our computational pipeline with computational network
347  querying that can estimate node correspondence probabilities to find novel functional pathways

348  in biological networks ***'

. This gene subnetwork approach can lead to the discovery of new

349  quantifiable cellular subnetworks that can bridge the knowledge gaps in the maize-F.

350 verticillioides system and be further applied to other plant-microbe pathosystems.

351

352 METHODS

353

354  Fungal strains, maize line, and RNA sample preparation

355 F. verticillioides strain 7600 '” and fsr1 mutant > were cultured at 25°C on V8 juice agar
356 (200 ml of V8 juice, 3 g of CaCO;3 and 20 g of agar powder per liter). Maize inbred B73, a
357  progenitor of numerous commercial hybrids with no inherent resistance to stalk rot, was
358 inoculated with F. verticillioides wild type and fsrl mutant spore suspension as described
359  previously 7. Maize stalk samples were collected 3, 6, and 9 dpi using manual sectioning, and
360 microscopically inspected to identify host tissue damage and/or fungal colonization, particularly

361 in the vascular bundles. For each sample, sectioning was performed on at least three independent

362  stalk samples from each stage of infection, and isolated tissues were pooled for RNA extraction
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363  with TRIzol reagent (Invitrogen). For each time point, we collected six pooled samples, thus
364 thirty-six RNA samples in total. Standard QA/QC procedure for RNA samples was implemented
365 at the Texas A&M AgriLife Research Genomics and Bioinformatics Service (College Station,
366 TX) prior to sequencing.
367
368 RNA Sequencing and data preprocessing
369 RNA sequencing was processed at the Texas A&M AgriLife Research Genomics and
370  Bioinformatics Service using Illumina HiSeq 2000 as described previously *’. We sequenced a
371  total of 36 sample libraries, i.e. six libraries per each time point (3 dpi, 6 dpi, and 9 dpi) for wild
372 type and the mutant inoculated maize stalks, but it is worth noting that, in this study, we only
373  used sequencing data for the last two time points in this study (6 dpi and 9 dpi, hence 24 sample
374  libraries in total) to focus on gene regulation mechanism in the latter stages of maize-Fusarium
375 interaction. Next, acquiring read counts of all F. verticillioides genes was completed as described
376  in our earlier reports '’ by i) aligning the RNA-seq reads to the reference genome of F.
377  verticillioides strain 7,600 obtained from the Broad Institute (http://www.broadinstitute.org)
378  using Bowtie2 '* and Samtools *°, ii) filtering out genes insignificantly expressed over most of
379 the replicates, thereby keeping 9446 genes for downstream analysis, iii) normalizing the read
380 counts of these genes by their corresponding gene length and also based on expression levels of
381  [-tubulin genes (i.e. FVEG 04081 and FVEG_05512) to have relative expression quantification
382  across all replicates.
383

384  Prediction of F. verticillioides subnetwork modules associated with stalk rot
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385 A procedure of identifying candidate functional subnetwork modules follows
386  computational analysis pipeline described earlier > with some modifications, and additional
387  detail is provided in the Supplementary Information. From the preprocessed gene expression data,
388  we performed conversion into log likelihood ratio (LLR) matrix, construction of co-expression
389  networks tbased on partial correlation, and selection of the most significantly differentially
390 expressed genes (i.e., top 1%) between the two strains (wild type vs. mutant) as seed genes.
391 Based on this preparation, we applied computationally efficient branching out searching from a
392  seed gene until it does not meet minimum discriminative power increase for each subnetwork
393  module. The entire searching process was reiterated for every seed gene and for the five co-
394  expression networks (Supplementary Information). Note that our approach probabilistically
395  searches for subnetwork modules whose member genes have highly likely coordinated
396  expression patterns to each other over all the replicates using the LLR matrix that demonstrates
397  how likely each gene would be regulated in wild type or fs»/ mutant. As a result, our network-
398 based computational analysis approach found candidate subnetwork modules that show
399  harmonious coordination of member genes as well as strong differential activity between the
400  wild type and fsr/ mutant.
401
402  Prediction strategy for hub genes in each subnetwork module
403 Our proposed computational approach in this study simultaneously inferred potential F.
404  verticillioides pathogenicity-associated hub or key functional genes in each subnetwork module
405  while branching out the modules by performing multidirectional analysis on the detected
406 candidate subnetwork modules with six different criteria, as depicted in Fig. 3B. First, we

407  investigated how each gene is probabilistically impactful in its subnetwork module utilizing the
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408  probabilistic inference strategy applied in our previous work . We estimated probabilistic
409  differential activity of each gene by comparing discriminative power on the two phenotypes
410  (wild type vs. fsrI mutant) between its given module with and without the gene. As described in
411  our previous study ", we computed discriminative power difference (estimated by ¢-test statistics)
412  between both activity levels (one with the gene and the other without the gene) by supposing { =
413 {94,932 -, gn}, member genes in a subnetwork module, and e = {el, €?, ..., e"}, expression

414  levels of the given genes. The discriminative power difference D(d) was calculated as follows.

t—test score t—test score

" fie" " fie")
415 D(d) = [ log( ] - [ log ]
Zk:l leC(ek) 4 Zk:l fIZ‘(ek) {_{gd}
416  where log (ﬁg:;) is the log-likelihood ratio (LLR), and f¥(e) is each conditional probability
2

417  density functions (i.e., either wild or mutant). We subsequently considered genes whose

418  discriminative power deterioration D(d) relatively larger as candidate key genes. Second, we
419  examined differential correlation of each gene with its connected gene in each module between
420 the wild type versus the mutant using two correlation methods, i.e. Pearson’s correlation and
421  Spearman rank correlation. We selected genes whose correlation coefficients with its

422  neighboring genes were not only relatively significantly different between the two different

423  networks, but also higher in the wild-type network as candidate hub genes. Third, we calculated
424  number of edges of each gene to other member genes in each module since it is reasonable to
425  predict that genes with more edges will exhibit more meaningful influence on the module. Fourth,
426  we investigated expression difference of each gene in a given module between the two strains
427  since we predict that altered expression of genes downstream of F'SR/ can follow that of FISR/.
428  We selected genes that were significantly differentially expressed between the two conditions

429 and relatively highly expression in in the wild type. Fifth, we listed orthologs of known
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430 pathogenicity genes in other well-studied fungal species such as F. graminearum (FG), F.
431  oxysporum (FO), Aspergillus fumigatus (AF), Botrytis cinerea (BC1G), Magnaporthe grisea
432 (MGQG), Ustilago maydis (UM), and Cryptococcus neoformans (CNAG). We noted genes in a
433  given module shown in the list of pathogenic genes as potential key genes. Finally, we
434  considered whether each gene in a given module was associated with a significant GO term. We
435  applied p-values of Benjamini-Hochberg false discovery rate (FDR) method ** to find the most
436  relevant GO term to each gene and its given module based on g:Profiler
437  (http://biit.cs.ut.ee/gprofiler/index.cgi) **. We chose genes annotated with a GO term that is the
438  most significantly associated term with the given module as candidate key genes.
439 After identifying a candidate hub (or key functional) gene in its given subnetwork
440 module, we performed additional fine-tuning procedure for more robust and reliable module
441  prediction. Briefly, once we identified a candidate gene satisfying the abovementioned six
442  criteria through subnetwork module extension process with 10% minimum discriminative power
443  enhance, we performed module adjustment process by implementing the whole module
444  extension for the given module as well as identifying the same potential gene by escalating the
445  minimum discriminative power enhance by 1%. We repeatedly applied this fine-tuning process
446  until the predicted hub (or key functional) gene did not meet all conditions. This process also
447  stopped when the given subnetwork module grew smaller down to the arbitrary set minimum
448  size of seven genes.
449
450 Nucleic acid manipulation, polymerase chain reaction (PCR), and fungal transformation
451 Standard molecular manipulations, including PCR and Southern hybridization, were

452  performed as described previously **. Fungal genomic DNA was extracted using the OminiPrep
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453  genomic DNA extraction kit (G Biosciences, Maryland heights, MO, USA). The constructs for
454  transforming F. verticillioides were generated with a split-marker approach described earlier **.
455  Briefly, DNA fragments of 5’ and 3’ flanking regions of each gene were PCR amplified from
456  wild-type genomic DNA. Partial Hygromycin B phosphotransferase (HPH) gene (HP- and -PH)
457  fragments were amplified from pBS15 plasmid. 5 and 3’ flanking region fragments were then
458  fused with PH- and -HP fragments by single-joint PCR, respectively. The single-joint PCR
459  products were transformed into wild-type fungal protoplast. For complementation, respective
460  wild-type genes driven by its native promoter was co-transformed with a geneticin-resistant gene
461 (GEN) into mutant protoplasts. All primers used in this study were listed in Table S4. F.
462  verticillioides protoplast were generated and transformed following standard protocol ** with
463  minor modifications. Murinase (2 mg/ml) was replaced with Driselase (5 mg/ml) (Sigma, St
464  Louis, MO, USA) in the protoplast digestion solution. Transformants were regenerated and
465  selected on regeneration medium containing 100 pg/ml of hygromycin B (Calbiochem, La Jolla,
466  CA, USA) and/or 150 ng/ml G418 sulfate (Cellgro, Manassas, VA, USA) as needed. Respective
467  drug-resistant colonies were screened by PCR and further verified by Southern analysis.
468
469  Maize infection assays
470 Maize seedling rot pathogenicity assay was performed on 2-week old maize inbred lines
471  B73 seedlings as previously described ** with minor modifications. Briefly, 1x10%ml spore
472  suspensions in YEPD broth along with YEPD control were inoculated on maize B73 mesocotyls.
473  Plant mesocotyls were first slightly wounded by a syringe needle about 3cm above the soil. A 5-
474  ul spore suspension was applied to the wound site. The seedlings were immediately covered with

475  aplastic cover to create a high moisture environment suitable for infection and colonization. The
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476  seedlings were collected and analyzed after a 2-week growth period in the dark room. At least
477  three biological and three technical replicates were performed for each fungal strain.
478
479  Expression analysis of subnetwork member genes linked to predicted hub genes
480 Total RNA extractions were conducted by using RNeasy plant mini kit (Qiagen)
481  according to manufacturer’s specifications and was quantified by Nanodrop. RNA was converted
482  into cDNA using the Verso cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA)
483  following the manufacturer’s protocol. qRT-PCR analyses were performed using the SYBR
484  Green Dynamo Color Flash qPCR kit (Thermo Fisher Scientific) on an Applied Biosystems 7500
485  Real-Time PCR system. The F. verticillioides B-tubulin gene (TUB-2) was used as the
486  endogenous calibrator. The amplification data analysis was done according to the manufacturer’s
487  protocol.
488
489 Identification of potential maize defense subnetwork module
490 We followed our previous analysis strategy *’ to identify potential subnetwork modules
491  associated with maize defense response against F. verticillioides virulence genes. We began
492  searching for maize modules possibly responsible for its defense mechanism through
493  cointegration-correlation-expression analysis: 1) Cointegration was applied to track an
494  interrelationship of expression levels between maize and F. verticillioides over all replicates. We
495  applied the Engle-Granger correlation method to measure single cointegrating relations and p-
496  value <= 0.05 was used to identify candidate maize genes that appear to have significant
497  association with the identified F. verticillioides pathogenicity-associated genes, ii) correlation

498  was utilized to trace patterns of expression levels between maize and F. verticillioides over all
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499  replicates. We used Pearson’s correlation coefficients to estimate their linear relationship and
500 condensed maize genes into candidates whose expression patterns are highly correlated with that
501 of F. verticillioides pathogenicity-associated genes (i.e., p-value <= 0.005), iii) We considered
502  expression levels of maize genes over replicates and filtered out insignificantly expressed maize
503  genes (i.e., maize genes whose mean expression levels were in the bottom 20% or not expressed
504 in at least one replicate). We adjusted p-values of the cointegration-correlation-expression
505 approach to have 50% of candidate maize genes predicted from a given F. verticillioides
506 pathogenicity-associated gene were also among the candidates inferred from other given F.
507  verticillioides gene. Based on the maize genes narrowed down through the cointegration-
508 correlation-expression analysis, we identified subnetwork modules associated with maize
509  defense response using our network-based comparative analysis approach.
510
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635  Figure legends
636
637  Fig. 1. NGS statistics of significantly differentially expressed genes.
638  A) General statistics of next-generation sequencing (NGS) datatsets. Reads from wild type and
639  mutant (6 dpi and 9dpi) were mapped to F. verticillioides reference genome. B) Co-expression
640 network of wild type and mutant F. verticillioides. We applied five distinct threshold levels to
641  generate five different co-expression networks. The table shows number of genes and all possible
642  edge combinations in each co-expression network. C) Schematic depiction of wild type and
643  mutant co-expression networks at threshold level 0.985. D) The heat map provides a schematic
644  overview of 324 most significantly differentially expressed genes at three distinct time points. A
645  total of 155 genes are expressed significantly higher in the wild type (red) while a total of 169
646  genes are expressed significantly higher in the mutant (blue). In this selection, genes whose
647  absolute r-test statistics score is higher than 3.5 were chosen, where the relative abundance was
648  acquired by the two-step normalization which considers each gene length as well as relative
649  expression against beta-tubulin genes over all the time points (3 dpi, 6 dpi, and 9 dpi). Next, ¢-
650 test scores of the selected genes were again measured over relative expression levels normalized
651  at each time point, and displayed in colors.
652
653
654  Fig. 2. Schematic overview of our network-based NGS data analysis.
655  Our aim is to search through large co-expression networks to identify subnetwork modules that
656  are differentially activated between two different conditions (e.g. wild type versus mutant).

657 Initial selection of seed genes (i.e. top 1% differentially expressed genes) is followed by a series
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658  of computational procedures described previously . Through this process, we can identify
659  subnetwork modules that show significant difference in virulence potentials.
660
661 Fig. 3. Computational prediction procedure for identifying key potential pathogenicity
662  genes.
663  A) Raw NGS datasets are preprocessed, i.e. alignment, filtering, and normalization, before they
664 are applied for inferring F. verticillioides co-expression networks by means of partial correlation.
665 In addition, these datasets were also converted into a log-likelihood ratio (LLR) matrix for
666  downstream analysis. Next, subnetwork modules are extended from seed genes, significantly
667 differentially expressed between the two different conditions (F. verticillioides wild type vs.
668 mutant), as long as they keep sufficient strength of differential activity between the two strains
669 [1-2]. B) Each potential hub (virulence-associated) gene is predicted in its detected subnetwork
670 module based on several criteria: i) highly impactful in a probabilistic manner, ii) relatively
671  differentially correlated between two strains (wild vs. mutant), iii) relatively more connected in
672  the given module, iv) relatively significantly differentially expressed, v) orthologous to known
673  pathogenicity-associated genes of other fungal species, vi) annotated to significant GO terms
674  with other member genes. Through this proposed analysis approach, we identified potential
675  functional genes showing significant differential activity between the two conditions as well as
676  strong association with virulence.
677
678  Fig. 4. Potential subnetwork modules associated with the F. verticillioides pathogenicity.
679  Our network-based comparative analysis identified three potential virulence-associated

680  subnetwork modules differentially activated between the two strains (F. verticillioides wild type
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681  vs. mutant). Module A is composed of ten F. verticillioides genes, where 80% of them were
682  annotated to a significant GO term GO:0044444 “cytoplasmic part”. Module B is comprised of
683  fifteen genes, where four of them (FVEG 07930, FVEG 00890, FVEG 11886, and
684 FVEG 00594) were annotated to a significant GO term GO:0006810 “transport”. The node sizes
685 are directly proportional to their number of edges and the node colors vary according to their
686  discriminative power measured by #-test scores.
687
688  Fig. 5. Functional characterization of F. verticillioides FvSYNI and FvEBP]I.
689  A) Vegetative growth of wild-type (WT), AFvsynl, AFvebpl and their complementation strains
690 (FvSYNIC and FVEBP1C) were examined on V8, 0.2XPDA, and Myro agar plates. Strains were
691  point inoculated with an agar block (0.5 cm in diameter) and incubated for 6 days at 25 °C under
692 14 h light/10 h dark cycle. B) Spores (2x10”) of WT, Afvsynl and Fvsyn1C were inoculated in
693  the center of V8 plates for 6 days at 25 °C under 14 h light/10 h dark cycle. Vegetative growth of
694  WT, AFvsynl and FvSYNIC on V8 agar plates, strain growth condition was the same as
695  described above. Agar plates were cut into half and pictures were taken from a side view. C)
696  Fungal mass production of WT, AFvsynl and FvSYNI1C strains was tested in YEPD broth. 100
697  ul spores (10°/ml concentration) were inoculated and incubated for 4 days at 25 °C and shaking
698  at 150 rpm. Fungal mass production was quantified by weighing wet and dry fungal mass. The
699  data presents the average and standard deviation of three independent experiments. D) Spore
700  production of of WT, AFvsynl, FvSYNIC, AFvebpland FVEBP1C on V8 agar plates, strain
701  growth condition was the same as described above. Spores were collected from agar plates and
702 counted. E) One-week-old B73 seedlings were inoculated with 10*/ml spore suspension of fungal

703  strains on mesocotyls. Lesion areas were quantified by Image J software after 2-week incubation.
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704  Asterisk above the column indicates statistically significant difference (P<0.05) analyzed by t-
705  Test.
706
707  Fig. 6. Altered expression of select neighboring genes as detected by qPCR.
708 A) Relative quantification (RQ) of four neighboring genes (FVEG 3391, FVEG 9144,
709  FVEG 13321, FVEG 4259) to predicted hub FvSYNI (FVEG_0594) in wild type (WT) versus
710  AFvsynl. RQ levels of four genes in WT were normalized to 1. B) Schematic overview of
711  transcriptional changes of four neighboring genes (highlighted) of FvSYNI (FVEG _0594)
712 observed in WT versus AFvsyn1. C) Relative quantification (RQ) of four neighboring genes
713 (FVEG 4142, FVEG 8818, FVEG 3416, FVEG 9111) to predicted hub FvEBPI
714  (FVEG_11622) in wild type (WT) versus AFvebp1. D) Schematic overview of transcriptional
715  changes of four neighboring genes (highlighted) of FvEBPI (FVEG_11622) observed in WT
716  versus AFvebp1.
717
718  Fig. 7. Potential subnetwork module associated with maize defense response
719  Our network-based comparative analysis of maize genes applied cointegration-correlation-
720  expression strategy to identify a potential maize subnetwork module differentially activated
721  between the two strains (F. verticillioides wild type vs. mutant). This predicted maize module is
722 comprised of 28 member genes, and five were annotated to a significant GO term GO:0009814
723  “defense response, incompatible interaction”. These five genes were indicated by diamond-
724 shaped illustration.
725

726
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Fig. 1. Kim & Zhang et al
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Fig. 3. Kim & Zhang et al
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Fig. 7. Kim & Zhang et al
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