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Abstract 
Events in early life contribute to subsequent risk of asthma; however, the causes and 
trajectories of childhood wheeze are heterogeneous and do not always result in asthma. 
Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these 
differences are unclear. Using unsupervised model-based cluster analysis, we identified latent 
clusters within a prospective birth cohort with deep immunological and respiratory 
phenotyping. We characterised each cluster in terms of immunological profile and disease 
risk, and replicated our results in external cohorts from the UK and USA. We discovered 
three distinct trajectories, one of which is a high-risk “atopic” cluster with increased 
propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later 
wheeze depending on cluster membership. Our findings demonstrate the utility of 
unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a 
foundation for improving management and prevention of childhood asthma. 
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1 Introduction 
Asthma is a global health problem, and there is a pressing need for better understanding of its 
pathogenesis [1]. Both genetic and environmental factors are involved in asthma [2, 3], and 
the “hygiene hypothesis” proposes that modern changes to hygiene, sanitation and living 
environment have modified human exposures to microbes, with subsequent effects on early-
life immune development [4]. However, the clinical presentation and prognosis of childhood 
wheeze is highly variable: some children remit; others remit but relapse in later life; and yet 
others have wheeze persisting into adult asthma [5]. These differences suggest that the 
underlying causes of disease also differ from person to person. For example, while asthma is 
commonly linked to allergy, not all individuals with wheeze are sensitised to allergen, and 
vice versa [6]. As such, childhood asthma is a heterogeneous condition [7, 8], and this greatly 
complicates the study of its pathogenesis [9]. We postulate that there are subpopulations in 
early childhood, each sharing similar patterns of pathophysiology, disease susceptibility and 
phenotype that permit categorisation into clusters. If we can agnostically identify these 
clusters, then we may identify the biological mechanisms that underlie them, and find targets 
for early intervention that are specific for different asthma subtypes.  
 
Older attempts at subtyping asthma susceptibility relied on supervised classification, using 
expert knowledge and cut-offs to define clusters. For example, specific immunoglobulin E 
(IgE) ≥ 0.35 kU/L; wheal diameter ≥ 3 mm in a skin prick test (SPT); or symptom score 
surpassing a threshold – would determine classification into a high-risk profile [10, 11]. 
However, these cut-offs vary with age, gender or other parameters, and may not accurately 
reflect true attribution of risk [12]. Hence, they often continue to produce heterogeneous 
groups. Furthermore, previous studies tended to focus on a single “domain”, for instance 
grouping only by immunological response [13], symptomatology or timing of disease [14, 
15]. Recently, researchers have turned to unsupervised approaches, such as model-based 
cluster analysis and latent class analysis (LCA) [16-21]. These do not require experts to 
supply cut-offs, but can instead “learn” boundaries from the data. They can potentially 
uncover patterns of similarity not immediately obvious to the human eye. Finally, these 
methods can cover a broader range of domains, incorporating measurements from multiple 
sources to determine clusters that are potentially informative of asthma risk.  
 
Here, we use a data-driven unsupervised framework together with a comprehensively-
phenotyped birth cohort (the Childhood Asthma Study, CAS) to define developmental 
trajectories during preschool years, a period known to be critical to asthma pathogenesis. 
Specifically, we 1) discover, using non-parametric mixture models, latent clusters that define 
early childhood trajectories of immune function and susceptibility to respiratory infection; 2) 
investigate how these clusters relate to differential profiles of asthma susceptibility, and to 
existing definitions of atopy; 3) identify risk factors for asthma within each cluster, which 
may differ across said clusters; 4) summarise and simplify our findings in decision trees; and 
5) externally validate the clusters in independent cohorts.  

2 Results 
Our discovery dataset was CAS, a Western Australian birth cohort (N=263) enriched for 
parental asthma history [22], with clinical, immunological, and respiratory measurements 
from the first ten years of life (Methods). Clinical variables included demographics, 
incidence of allergic disease and family history. Immunological variables included IgE, IgG4, 
and IgG antibody levels for common allergens, as well as a combination antibody assay 
(Phadiatop) which covers multiple allergens [23]. We measured frequency and severity of 
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respiratory infections, and performed 16S rRNA sequencing on nasopharyngeal aspirates 
(NPAs) collected during respiratory infections (disease samples) or routine check-ups 
(healthy samples). These NPAs have been classified by Teo et al [24, 25], based on clustering 
of microbial composition, into microbiome profile groups (MPGs) that were associated with 
healthy respiratory states (health-associated MPGs, e.g. Alloiococcus-, Staphylococcus- or 
Corynebacterium-dominated) or infectious respiratory states (infection-associated MPGs, e.g. 
Moraxella-, Haemophilus-, or Streptococcus-dominated).  
 
To identify latent clusters, we applied non-parametric expectation-maximisation (EM) 
mixture modelling (“npEM”) to CAS. We used a largely non-selective approach to the choice 
of features, but we did explicitly exclude variables with excessive missing data (Methods, 
Supplementary Methods), as well as primary outcomes such as yearly incidence of wheeze 
and physician-diagnosed asthma (Supplementary Table 1). By virtue of study design and 
exclusion criteria, most included variables were related to immunological function or 
respiratory infection in the first three years of life. Individuals were assigned to a cluster if 
the mixture model determined ≥ 90% probability of membership in that cluster 
(Supplementary Methods). We described each cluster in terms of key characteristics and 
significant cluster-specific predictors for age-five wheeze. We also built an npEM-derived 
classifier to cluster samples with low missing data, and classify individuals from two 
comparable datasets for replication – the Manchester Asthma and Allergy Study (MAAS) 
(N=1085) [26] from Manchester, UK, and the Childhood Origins of Asthma Study (COAST) 
(N=289) from Wisconsin, USA [27] (Supplementary Table 2; Supplementary Figure 1). 
Finally, we developed a decision tree classifier, which allowed us to simplify cluster 
description and determine which features best separated clusters.  
 
Using npEM-based clustering and classification in CAS, we identified three distinct clusters 
from 217 individuals and 174 clustering features  (Figure 1): low-risk CAS1 (N=88, 25% 
wheeze at age 5), low-risk but allergy-susceptible CAS2 (N=107, 21% wheeze at age 5) and 
high-risk CAS3 (N=22, 76% wheeze at age 5) (Figure 2). Forty-six individuals in CAS had 
excessive missing data and were not classifiable (Methods). 

2.1 CAS1: low-risk, non-atopic cluster with transient wheeze 
CAS1 was a low-risk cluster with infrequent and transient respiratory wheeze. Rates of 
wheeze declined from 33% at age 1 to 12% by age 10 (Table 1; Figure 2). In this cluster, 
Th2 cytokine responses of PBMCs to allergen stimulation were minimal; and rates of 
allergen sensitisation (as measured by IgE or SPT) were the lowest among all groups (Table 
2, Supplementary Tables 3B-D; Figure 3). IgG and IgG4 were also low across all allergens. 
 
Frequency of respiratory infection in CAS1 were intermediate to low (Table 3). However, in 
this cluster, a high frequency of lower respiratory infections (LRIs) in childhood, especially 
wheezy LRIs (wLRIs), was a risk factor for age-five wheeze – even after adjusting for sex, 
BMI and parental history of asthma as demographic covariates (Table 4; Figure 4A-B). 
After multiple regression analysis with stepwise backward elimination (Methods), three 
variables remained significant in the one model: age-three wLRI frequency (odds ratio OR 
8.3 per unit increase, p=3.4×10-2); age-four LRI frequency (OR 3.6, p=0.022); and proportion 
of infection-associated MPGs (Streptococcus, Haemophilus, Moraxella) in age-two-to-four 
healthy NPAs (OR 0.13 per quartile, p=0.016). Repeated-measures ANOVA confirmed that 
LRI and wLRI frequency in the first 3 years of life were predictors for age-five wheeze 
within CAS1 (Supplementary Table 4).  
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2.2 CAS2: low-risk cluster susceptible to atopic and non-atopic wheeze 
Like CAS1, CAS2 was a low-risk cluster with infrequent allergic disease. However, 
compared to CAS1, Phadiatop and HDM IgE were slightly elevated at most timepoints 
(Table 2, Supplementary Table 3B; Figure 3A). Conversely, peanut IgE was not 
significantly elevated (Wilcoxon, adjusted p=0.99 at all timepoints; Figure 3D). As for other 
antibody isotypes: CAS2 IgG was between CAS1 and CAS3 levels, with it being closer to 
CAS1. CAS2 IgG4 was also intermediate, but was much closer to CAS3 levels than CAS1 
(Table 2; Figure 3). However, despite the antibody differences between CAS1 and CAS2, 
yearly rates of wheeze in CAS2 remained comparable to CAS1 (30% at age 1, declining to 
18% at age 10; Table 1; Figure 2). Interestingly, compared to CAS1, individuals in CAS2 
tended to have fewer older siblings living in the household at age 2, as well as more frequent 
paternal history of asthma (adjusted p=0.029 and 0.055, respectively; Table 1). 
 
The predictive factors for wheeze at age 5 in CAS2 included: LRI, wLRI and fLRI frequency 
(GLM; p=2.7×10-3, 0.016 and 0.02 at age 3, respectively); HDM IgE (p=0.016 and 0.011 at 
ages 2 and 4, respectively); and Phadiatop IgE (p=0.01 at age 4) (Table 4; Figure 4).  After 
multiple regression analysis with stepwise backward elimination (Methods), three of these 
remained significant: age-two fLRI (p=0.006, OR 11 per unit increase), age-four wLRI 
(p=0.006, OR 4.8), and age-four Phadiatop IgE (p=5.5×10-3, OR 4.1). Repeated-measures 
ANOVA showed that HDM IgE and LRI-related variables (LRI, wLRI, fLRI) from the first 3 
years of life were significant predictors of age-five wheeze in CAS2 (Supplementary Table 
4). But although both allergic (IgE-related) and non-allergic (infection-related) risk factors 
contributed to age-five wheeze, there was no significant evidence of interaction between 
them (p=0.36 within CAS2 alone, p=0.92 across entire cohort, for age-four wLRI frequency 
× Phadiatop IgE). Overall, CAS2 represented a low-risk trajectory susceptible to, but not 
necessarily afflicted by, wheeze due to atopic and non-atopic risk factors. In this cluster, 
atopic determinants of age-five wheeze (HDM and Phadiatop IgE) were only active from age 
2 onwards, suggesting delayed atopic wheeze in this cluster. 

2.3 CAS3: high-risk atopic cluster with persistent wheeze 
CAS3 was a “high-risk” cluster, where persistent respiratory wheeze and atopic disease was 
seen in more than half the group throughout the first 10 years of life (Table 1; Figure 2). 
This cluster was dominated by males (86%, Fisher exact test, unadjusted p=6.8×10-3 
compared to CAS1, Table 1), and appeared to represent an early- and multi-sensitised atopic 
phenotype with persistent wheeze. 
 
CAS3 had elevated IgE, IgG, and IgG4 responses to common allergens, especially HDM 
(Table 2, Supplementary Table 3B; Figure 3). Peanut, HDM and Phadiatop IgE were 
significantly greater in CAS3 than in CAS1 from 6 months onwards. SPTs were also more 
frequently positive in CAS3, especially to HDM and food allergens. From 6 months onwards, 
wheal sizes in cow’s milk and egg white SPTs were on average greater in CAS3 than in 
CAS1 (Wilcoxon, adjusted p=4.8×10-9 for egg white SPT at age 5, Supplementary Table 
3D). Age-five peanut SPTs also yielded stronger wheal responses in CAS3 compared to 
CAS1 (Wilcoxon, adjusted p=8.4×10-4).  
 
No strong predictors for age-five wheeze were identified within CAS3 (Table 4): only couch 
grass-specific IgE at age 2 and ARI frequency at age 1 were weakly significant (both 
p=0.046). Neither of these reached statistical significance with stepwise backward 
elimination. However, the prolific IgE response, and the prevalence and severity of early-life 
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LRIs in this cluster (Table 3), strongly suggest contribution from both atopic and non-atopic 
causes of wheeze. CAS3 primarily represented those with extreme levels of atopic 
sensitisation and infection. The relative paucity of identifiable predictors may be explained 
by the small size of CAS3 (N=22), the intrinsically high rate of wheeze in the cluster (76% 
with age-five wheeze), and saturation of risk from high levels of IgE and frequent infections.  

2.4 Cytokine responses of PBMCs following in vitro antigen stimulation 
Unlike the antibody measurements, no cytokine measurements contributed as clustering 
features to the original cluster analysis. Nonetheless, we found that in vitro stimulation of 
PBMCs with HDM antigen elicited a stronger Th2 cytokine response in CAS3 compared to 
the other clusters (Table 2, Figure 5). These cytokines (IL-4, IL-5, IL-13) were elevated 
from a very young age (Wilcoxon, adjusted p=4.6×10-5 for IL-4 mRNA at age 6m, compared 
to CAS1), coinciding with increase in HDM IgE and IgG4 responses. Similar differences in 
CAS3 were observed for peanut- and ovalbumin-stimulated PBMCs, but only at 6 months of 
age (unadjusted p<0.05 for all, Supplementary Table 3C). There were no other significant 
differences for other non-Th2 cytokines that were tested (IFN-γ, IL-10), nor were there 
cytokine differences specific for CAS1 or CAS2 (Supplementary Table 3C).  

2.5 IgG4 and IgG  
Across all clusters, allergen-specific IgG4 and IgG were positively correlated with IgE for the 
same allergen (especially HDM, Supplementary Figure 2). As noted previously, CAS2 and 
CAS3 were distinguished from CAS1 by high IgG4 against multiple allergens, and CAS3 had 
greater IgG4 responses than either CAS1 or CAS2 (Supplementary Table 3B; Figure 3). 
Although previous literature suggests possible protection conferred by IgG4 [28] or IgG [29], 
in this study there was no clear or consistent evidence of protection by either IgG4 or IgG 
against later wheeze (Table 4). Furthermore, the protected status of CAS2 was unlikely to be 
driven by IgG4, given that CAS3 had higher IgG4 than CAS2. 

2.6 Patterns in IgE, IgG, cytokine and SPT responses 
Although they were highly-correlated, phenotypes of IgE, IgG, Th2 cytokine and SPT 
responses did not overlap perfectly. CAS3 was enriched for individuals with strong signals in 
all modalities, but there remained individuals within CAS3 and the rest of the cohort who 
were only responsive in some modalities but not others. Notably, IgE and SPT signals did not 
always coincide (Supplementary Figure 3A). Also, some individuals with IgE or SPT 
sensitisation against HDM did not exhibit detectable Th2 cytokine response to in vitro HDM 
stimulation (Supplementary Figure 3A). Finally, HDM IgG4 did not appear to be 
responsible for this effect: those with IgE but not Th2 cytokine responses (i.e. HDM IL-13 at 
limit of detection 0.01 pg/L) did not have significantly different levels of IgG4 compared to 
those with both IgE and Th2 responses (Wilcoxon, p=0.15, Supplementary Figure 3B). 

2.7 Comparison to existing criteria for atopy 
The information conveyed by the npEM-derived CAS clusters was consistent with that of 
traditional atopy thresholds (i.e. any specific IgE ≥ 0.35 kU/L or SPT ≥ 2mm at age 2). When 
we compared the CAS clusters with supervised groups created using traditional thresholds 
(Supplementary Table 5), we found that CAS1 most closely matched a non-atopic 
phenotype (58 of 84 had no specific IgE greater than 0.35 kU/L by age 2). Conversely, CAS2 
and CAS3 partially matched the traditional criteria for atopy, with CAS3 being an extreme 
phenotype (all 22 children in CAS3 had some specific IgE ≥ 0.35kU/L by age 2).  
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However, the CAS clusters outperformed IgE- and SPT-defined atopy in terms of predicting 
for age-five wheeze (likelihood ratio test for model with clusters vs. model with IgE/SPT, 
Chi-squared=23, p=2.0×10-6). In addition, at age 2, 68% of CAS3 were “sensitised” (any 
specific IgE ≥ 0.35kU/L) to two or more allergens, compared to only 1% and 6% for CAS1 
and CAS2 respectively. This emphasised CAS3 as an early- and multi-sensitised phenotype. 
Finally, many members of low-risk CAS1 and CAS2 who were IgE- or SPT-responsive prior 
to age 5 did not maintain atopic wheeze at age 5 (77% or 79 of 103), compared to CAS3 
(24% or 5 of 21). Therefore, the association of IgE and SPT results with disease risk varied 
across clusters. Overall, this suggests that fixed atopy thresholds are not sufficient on their 
own in delineating risk profiles – instead, an unsupervised clustering approach may be 
superior. 

2.8 Relationship with time-dependent wheeze phenotypes 
We explored how the npEM-derived clusters mapped to pre-defined wheezing phenotypes 
(Figure 2C): no wheeze (in the first three years of life, or at age 5), transient wheeze (only in 
the first three years of life), late wheeze (only at age 5), and persistent wheeze (in both first 
three years of life and age 5). We found that CAS3 was enriched for persistent wheeze, while 
individuals in CAS1 or CAS2 tended to have transient or no wheeze. There were rarely any 
members of the cohort with late wheeze (approximately 10% or less). 

2.9 Co-associations with food sensitisation, eczema and wheeze 
In addition to persistent wheeze, CAS3 was also enriched for persistent food sensitisation 
(peanut IgE ≥ 0.35 kU/L, or positive egg white or cow’s milk SPTs) and persistent eczema: 
44% of all individuals in CAS3 satisfied all three conditions (Supplementary Figure 4). 
Almost all individuals in CAS3 had both eczema and food sensitisation from age 6m 
onwards, with rates of food sensitisation and wheeze increasing with time (Figure 2D). In 
contrast, CAS1 and CAS2 had low rates of food sensitisation, and declining rates of both 
eczema and wheeze. These trends lend credence to the hypothesis that the “atopic march” 
phenotype [30, 31] may only be present in a minority of the population (e.g. CAS3) [19].  

2.10 Relationship with microbiome  
Previous studies suggest an association between asthma risk and early-life disruption of the 
respiratory microbiome, especially colonisation with Streptococcus spp. in the first 7 weeks 
of life [24]. In this study, using the same data and definitions, we found that CAS3 was 
overrepresented by individuals who had >20% relative abundance of Streptococcus in their 
first infection-naïve healthy NPA, within the first 7 weeks of life (44% versus 11% and 15% 
in CAS1 and CAS2, respectively; Fisher exact test, unadjusted p=0.042 and 0.065, 
respectively; Table 3).  
 
Furthermore, Teo et al and others [24, 32] previously found that transient incursions with 
MPGs associated with acute respiratory infections (Streptococcus, Haemophilus and 
Moraxella spp.) were associated with increased frequency and severity of subsequent LRIs 
and wheezing disease. Here, we found that the proportion of infection-associated MPGs in 
healthy samples from age 0 to 2 was greater in CAS3 (62% vs. 49% and 32% in CAS1 and 
CAS2, respectively; Fisher exact test, unadjusted p=0.2 and 5.5×10-4, respectively; Table 3). 
This finding was independent of LRI and wLRI frequency (GLM; p<0.05 for model 
predicting group membership, with age-two LRI and wLRI as covariates). On the contrary, 
there were no associations between cluster membership and health-associated MPGs 
(Corynebacterium, Alloiococcus, Staphylococcus spp.; Supplementary Table 3E). 
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Recent work by Teo et al [25] suggested that infection-associated MPGs in early life were 
predictive for age-five wheeze in atopic children, while in non-atopic children they were 
predictive for transient wheeze (i.e. wheeze only in the first 3 years of life and not later). In 
this study, a similar trend was noted for infection-associated MPGs from age 0 to 2, in 
relation to transient wheeze in “non-atopic” CAS1 (GLM, OR 3.6 per percent, p=0.17, with 
demographic covariates). Surprisingly, there was evidence that infection-associated MPGs in 
later samples (from age 2 to 4) were protective against age-five wheeze in CAS1 (OR 0.086 
per percent, 0.45 per quartile, p=0.034 and 0.035, respectively; Table 4). Infection- and 
health-associated MPGs were otherwise not associated with age-five wheeze within the other 
clusters.  

2.11 Decision tree analysis 
We used decision tree analysis to determine the handful of biological features that most 
strongly distinguish each npEM cluster. This process may allow us to simplify the clustering 
into a tree algorithm that can then be used clinically for screening or diagnosis. Unlike the 
previous GLMs, which identified variables most predictive for wheeze, the decision trees 
identified variables most discriminatory for age-five wheeze versus non-wheeze within each 
cluster.  
 
Decision tree analysis on the CAS dataset, using all available variables from all timepoints 
for classification, created a “Simple Tree” with two decision nodes and three end nodes 
(Figure 6). This tree had 89% accuracy in terms of retrieving the cluster memberships from 
the original npEM model, where accuracy is calculated as percentage overlap of tree clusters 
with original CAS clusters. Applying this Simple Tree to CAS, we found that membership in 
the CAS3-equivalent tree cluster was also a better predictor for age-five wheeze (likelihood 
ratio test, Chi-squared=19, p<1×10-5) than traditional thresholds for atopy based on IgE and 
SPT measurements at age 2.  
 
Further tree analyses using variables restricted to each timepoint identified similar trends 
(Supplementary Figure 5); IgG4-related variables best separated CAS1 from other clusters 
(from Phadiatop in early life, to HDM by age 3), while IgE-related variables (Phadiatop) best 
separated CAS2 and CAS3. Explicitly forcing the exclusion of Phadiatop variables from tree 
analysis caused these thresholds to be replaced with allergen-specific assays: cat and peanut 
IgG4 for Phadiatop IgG4; and peanut and HDM IgE for Phadiatop IgE (Supplementary 
Figures 6 and 7). This is consistent with correlation patterns amongst the IgE and IgG4 
variables (Supplementary Table 6). 
 
Because the causes of wheeze were likely different for different clusters, we also constructed 
a “Comprehensive Tree” that best split individuals into six groups, based on cluster 
membership crossed with age-five wheeze status (Supplementary Figure 8). For decision 
nodes we excluded all age-five features related to wheeze (e.g. LRIs, wheezy LRIs at age 5), 
because of definitional overlap with our outcome of interest. We thus identified nodes that 
were consistent with the predictors for wheeze found in the previous regression analyses 
(Table 4), combined with nodes from the Simple Tree (Figure 6). The Comprehensive Tree 
had a total accuracy of 77% in correctly recovering both cluster membership and wheeze 
status. In terms of identifying purely wheeze status at age 5, the accuracy of the tree was 
84%, with a positive predictive value (PPV, or precision) of 72%, negative predictive value 
(NPV) of 88%, sensitivity (recall) of 71% and specificity of 89%. The Comprehensive Tree 
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was more successful in flagging age-five wheeze (likelihood ratio test, Chi-squared=60, 
p=6.1×10-13), compared to the traditional atopy thresholds described previously. 

2.12 External replication of clusters in MAAS and COAST 
The disease trajectories described by the CAS npEM clusters were successfully replicated in 
both MAAS (N=1085) [26] and COAST (N=289) [27]. We applied our npEM classifier 
(Methods) to MAAS and COAST, and found that individuals classified into “Cluster 3” 
(MAAS3/COAST3) had a persistent disease phenotype extending into late adolescence, with 
consistently high rates of parent-reported wheeze and physician-diagnosed asthma from birth 
to age 16. The other two clusters (Cluster 1 = MAAS1/COAST1; Cluster 2 = 
MAAS2/COAST2) appeared to be relatively low-risk (Figure 7A,B,D).  
 
MAAS3 and COAST3 exhibited stronger IgE expression (total, HDM, cat, dog) from ages 1 
to 8 (Figure 7C,E), compared to other clusters in each dataset. Like CAS3, COAST3 
demonstrated elevated PBMC expression of Th2 cytokine protein (IL-5 and IL-13) in 
response to HDM stimulation at age 3 (Figure 7F). This was not replicated in MAAS3, but 
previous work in MAAS had identified that a strong Th2 response (IL-5, IL-13) to HDM 
stimulation of PBMCs at age eight was associated with increased risk of HDM sensitisation 
and asthma [21]. Nonetheless, MAAS3 appeared to be overrepresented in “early-sensitised” 
and “multiple sensitised” phenotypes discovered earlier by Lazic et al [17] from SPT and IgE 
data. Approximately 86% of individuals in MAAS3 belonged to either one of these two 
phenotypes, although only 13% of individuals in these two phenotypes were accounted for by 
MAAS3. 
 
Furthermore, when we explored potential predictors of wheeze phenotypes and asthma 
diagnosis in later childhood, we found that the clusters in the external cohorts were very 
similar to those in CAS. In COAST1, LRI and wLRI frequency at age 2 were predictive of 
asthma diagnosis at age six (GLMs with demographic covariates, p=0.02 and 0.02, 
respectively), while in COAST2, HDM IgE at age 3, and LRI, wLRI and fLRI frequencies at 
age 2 were all predictive (GLMs, p<0.05 for all) (Supplementary Figure 9). Although the 
timing and magnitude of associations differed between cohorts, this reaffirmed wheeze in 
Cluster 1 as being primarily non-atopic in origin, while wheeze in Cluster 2 seemed to be 
driven by both non-atopic and atopic factors.  
 
We attempted to validate CAS-derived decision trees in the MAAS dataset, as it contained 
measurements of both age-five HDM IgE and HDM IgG4, which we used as surrogates for 
age-three HDM IgE and HDM IgG4. These features comprised two decision-node features in 
the Phadiatop-free equivalent of the CAS Simple Tree (Supplementary Figure 5). COAST 
did not have any IgG4 measurements, so tree validation was not attempted there. The 
performance of the Simple Tree when applied to MAAS was poor, with only 20% accuracy 
in terms of overlap between tree clusters and npEM clusters, compared to 89% in CAS. 
Instead, when we generated a new tree from MAAS using its npEM clusters 
(Supplementary Figure 10), we achieved good accuracy (85% clusters correctly identified). 
However, the decision nodes of this tree were different to CAS, being related to family size 
and SPTs rather than IgE and IgG4. The MAAS1-equivalent tree cluster was distinguished by 
reduced SPT responsiveness (wheal size < 4-5mm) to cat, HDM and grass; while the 
MAAS3 equivalent was defined by strong HDM or grass SPT responsiveness. While this 
differs from the CAS decision trees, it is consistent with the broad distinction between non-
atopic Cluster 1 and atopic Cluster 3. We also stress that CAS and COAST are both high-risk 
cohorts (each child having a parent with asthma or allergies), while MAAS was not. 
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3 Discussion 
We have used model-based cluster analysis to uncover clusters of children with differential 
asthma susceptibility. Specifically, there was a high-risk group characterised by very early 
allergen-specific Th2 activity; early sensitization to multiple allergens including food 
allergens; and concurrent frequent respiratory infections – resulting in high incidence of 
atopic persistent wheeze. We also found a lower-risk cluster, with limited or delayed 
elevation in IgE – this resulted in a lower incidence of mixed (atopic and non-atopic) wheeze. 
Finally, there was a low-risk cluster which exhibited occasional and transient infection-
related wheeze, with minimal allergen sensitisation. These clusters were replicated in external 
datasets, suggesting relevance across populations. A decision tree that accounts for cluster 
membership with modified thresholds for atopic sensitisation is superior to traditional 
definitions of atopy in predicting disease occurrence. A summary of key findings is given in 
Table 5, and in-depth discussion of the biological and practical significance of these findings 
can be found in the Supplementary discussion. 
 
Our findings demonstrate clear and homogeneous developmental trajectories among children 
in multiple cohorts. The latent clusters incorporated multiple domains, including immune 
function and infection frequency, that reflected both endotype (pathophysiology) and 
phenotype. We emphasise that our approach was unsupervised and exploratory – endpoint 
variables describing parent-reported wheeze and atopic disease were excluded from 
clustering, and clusters were constructed de novo without any reference to traditional atopic 
thresholds. Therefore, it was encouraging to observe that the data-driven clusters differed in 
susceptibility and nature of subsequent wheeze, and that biologically- and clinically-relevant 
findings could still be derived from them. Our results build on previous findings [11, 33] 
demonstrating that the concept of atopy, as an intrinsic or heritable predisposition to allergic 
disease, is more complicated than what could be described by dichotomies or thresholds. 
Instead, our study strongly supports the future use of predictive models with more precise, 
subgroup-driven representations of atopy and other relevant pathophysiological mechanisms.  
 
The characterisation of these three clusters demonstrates how the complex phenomenon of 
asthma pathogenesis can be explored in depth using clustering. We have successfully 
provided an example where addressing inter-cluster differences have allowed the 
identification of intra-cluster disease predictors. The clusters may be further characterised by 
exploring other aspects of asthma pathophysiology, including genetics, epigenetics and 
others. By continuing with these approaches, we can hopefully move away from fixed 
thresholds or criteria for atopic risk, to more sophisticated formulations of risk, which will 
then improve future attempts at the targeted screening, prevention and treatment of asthma. 
These approaches may also be broadly applied to other heterogeneous diseases or datasets, 
and computerised tools may then be designed to embody the sum knowledge from these 
approaches. Such approaches can eventually help clinicians and scientists achieve a fuller 
understanding of pathophysiology, and hence better predict and manage human disease.  

4 Methods 

4.1 Patients and study design 
The Childhood Asthma Study (CAS) was a prospective birth cohort (N=263) operated by the 
Telethon Kids Institute, Perth, Western Australia [22]. CAS was established with the goal of 
describing the risk factors and pathogenesis of childhood allergy and asthma. Details of CAS 
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have been reported in previous publications from our group [22, 24, 34-36], and are 
summarised below. 
 
In CAS, expectant parents were recruited from private paediatric clinics in Perth during the 
period spanning July 1996 to June 1998. Each child who was born and subsequently recruited 
had at least one parent with physician-diagnosed asthma or atopic disease (hayfever, 
eczema). The child was then followed from birth till age 10 at the latest, with routine medical 
examinations, clinical questionnaires, blood sampling at multiple time points (6-7 weeks, 6 
months, 1 year, 2, 3, 4, 5, and 10 years) and collection of nasopharyngeal samples.  Parents 
also kept a daily symptom diary and recorded the presence of symptoms of respiratory 
infection and other illnesses, and all medications taken. 

4.2 Measurements 
During each routine visit, we collected samples that encompassed multiple domains of 
childhood health, and recorded metrics related to suspected or known modulators of asthma 
risk. These included markers of immune function, specifically: 1) IgG, IgG4, and IgE 
Phadiatop ImmunoCAP antibodies (ThermoFisher, Uppsala, Sweden), covering common 
allergens such as house-dust mite (HDM, Dermatophagoides pteronyssinus), mould, couch 
grass, ryegrass, peanut, cat dander; 2) IgE and IgG4 Phadiatop Infant and Adult assays 
(ThermoFisher, Uppsala, Sweden) that target multiple allergens simultaneously [23]; 3) skin 
prick or sensitisation tests (SPT), testing for HDM, mould, ryegrass, cat, peanut, cow’s milk 
and hen’s egg; and 4) cytokine responses (IL-4,5,9,13,10, IFN-γ) following in vitro 
stimulation of extracted peripheral blood mononuclear cells (PBMCs) by multiple antigen 
and allergen stimuli, including phytohaemaglutinin (PHA), HDM, cat, peanut and ovalbumin. 
Additional details on these measurements are found in Hollams et al [34] and Holt et al [35]. 
 
In addition, nasopharyngeal samples were taken from each child during healthy routine visits, 
as well as unscheduled visits where parents were asked to present with their child at every 
onset of symptoms of a respiratory infection. We then screened these samples for viral and 
bacterial pathogens using rtPCR and 16s rRNA amplicon sequencing with Illumina MiSeq 
(San Diego, US), respectively [24]. Specific details are described in the supplement to Teo et 
al [24].  
 
Other collected data included: sex, height and weight; paternal and maternal history of atopic 
disease; blood levels of basophils, plasmacytoid and myeloid dendritic cells as measured by 
fluorescence-assisted cell sorting (FACS); and levels of vitamin D (25-
hydroxycholecalciferol, 25(OH)D), the measurement of which has been described by 
Hollams et al [36].  
 
The study designs and measurements performed in the replication cohorts (MAAS, COAST) 
have been described elsewhere [19, 37]. Respiratory infection phenotypes (ARI, LRI, URI, 
fLRI, wLRI) were redefined in COAST based on their recorded symptom scores. 

4.3 Identification of latent clusters  
We used an implementation of a non-parametric mixture model (npEM) from the R package 
“mixtools” [38], because: 1) it was plausible to consider a population as a mixture of 
subpopulations each with their own unique distributions; 2) it had advantages over other 
unsupervised approaches [39] – unlike LCA, npEM could handle continuous variables; and 
3) it lent itself to an intuitive method for supervised classification of other datasets into 
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similar clusters (see Supplementary Methods). Further details can be found in the 
supplementary, and a graphical outline of methodology is given in Supplementary Figure 1.  
 
Prior to cluster analysis, quality control measures were applied to the data. Variables 
(“features”) and subjects that had excessive missingness (i.e. more than 30% of variables) 
were excluded from clustering. Also excluded were features pertaining to our outcomes of 
interest; namely, incidence of parent-reported wheeze, asthma diagnosis and atopic disease at 
all timepoints. Feature selection was otherwise exploratory and all-inclusive, in that we 
attempted to retain as many individuals and variables as possible. We also included 
frequency of wheeze in the context of respiratory infection as it represented infection 
severity. This left us with a “complete-case” dataset of 186 subjects and 174 variables for 
clustering, which essentially covered variables from the first three years of life for each child. 
Some highly-skewed features, such as antibody and cytokine levels, were then subjected to 
logarithmic (base 10) transformation. Positional standardisation scaling was then applied 
across all variables. The complete list of clustering features is provided in Supplementary 
Table 1. 
 
Unsupervised cluster analysis was performed on processed and scaled data using non-
parametric expectation-maximisation (EM) mixture modelling (npEM) from the “mixtools” 
R package [40]. This method assumes that the frequency distributions of each cluster can be 
represented by non-parametric density estimates that are learned from the data in an iterative 
process. The optimal number of clusters was determined by scree plot and calculation of the 
Bayesian information criterion (BIC). The density functions generated by the resulting npEM 
model were then used to classify as many of the remaining “low-missingness” subjects as 
possible (31 of 36), so that the resultant groupings are a composite of unsupervised cluster 
analysis and supervised classification. Subjects were assigned to the cluster with ≥ 90% 
probability according to the model (Supplementary Methods). 
 
Decision tree analysis was also conducted with the CAS clusters using “rpart” [41] to create 
classification trees that summarise inter-cluster differences and generate thresholds. We also 
specifically compared the classification trees with existing thresholds for atopy (any specific 
IgE at age 2 ≥ 0.35 kU/L, and/or any specific SPT at age 2 ≥ 2mm) [11], in terms of efficacy 
in predicting age-five wheeze.  
 
The npEM clusters were then described and validated in two external datasets, MAAS 
(N=1085) [26] and COAST (N=289) [27]. This replication was performed by applying the 
density function-derived classification method used previously for the low-missingness CAS 
subjects. Only features that were common to both CAS and the replication cohorts (MAAS, 
COAST) were used for replicating the classification (Supplementary Table 1); these 
modified classification models were also tested in CAS, and the resulting CAS clusters 
compared to the pre-existing clusters in CAS. Further details can be found in the 
Supplementary Methods and Supplementary Results. 

4.4 Statistical analyses  
We performed statistical analyses comparing clusters in terms of all variables in the dataset. 
Of interest to us were our primary outcomes: asthma diagnosis and parent-reported wheeze at 
each timepoint. Comparisons were performed separately for each variable and timepoint. 
Statistical tests used included t-tests, Mann-Whitney-Wilcoxon tests, ANOVAs, Kruskal-
Wallis tests, chi-squared and Fisher exact tests; and logistic and linear regression. For 
summary statistics, multiple testing adjustment was performed using the Benjamini-Yekutieli 
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(BY) method, for all across-cluster tests (Cluster × trait); and for all comparisons between 
clusters (CAS1 vs. 2, 1 vs. 3, and 2 vs. 3). The BY method was chosen as it accounted for 
positive dependency across the highly-correlated variables in the CAS dataset [42]. For 
variables that underwent logarithmic transformation for statistical analyses before being 
transformed back, we used geometric means instead of arithmetic means to describe the 
measure of central tendency (in this case, the geometric mean is equivalent to the exponent of 
the arithmetic mean of the log-transform). 
 
We then determined the predictors for age-five wheeze within each cluster. Both simple and 
multiple regression models were constructed; the former were built with and without a base 
set of covariates (sex, family history of asthma, BMI where available). The latter were built 
by manually selecting variables found to be most statistically-significant (at least p<0.05) in 
the univariate analyses, for each timepoint, followed by step-wise backward elimination to 
achieve the most parsimonious model with all predictors statistically-significant (p<0.05). 
Repeated-measures ANOVAs were also performed for selected predictors of age-five 
wheeze. Finally, generalised linear models (GLMs) were generated and their likelihood ratios 
examined using the “lrtest” function from the R package “Epidisplay” [43], to check how 
much cluster membership or classification trees improved upon prediction of age-five wheeze 
using selected predictors. 
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Tables 
Table 1: Comparison of selected demographic and clinical variables in CAS clusters 

Variable Age (y) CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) P-value (unadjusted) Feature? 
  Prop. (95% CI) Prop. (95% CI) Prop. (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
Sex = male  55% (44%-65%) 51% (42%-61%) 86% (71%-100%) 7.3E-03 0.67 6.8E-03 3.7E-03 Yes 
Maternal asthma  51% (40%-62%) 41% (32%-51%) 59% (37%-81%) 0.19 0.19 0.63 0.16 Yes 
Paternal asthma  22% (13%-30%) 44% (35%-54%) 23% (3.7%-42%) 2.2E-03 1.3E-03 1 0.093 Yes 
Wheeze 1 33% (23%-43%) 30% (21%-39%) 55% (32%-77%) 0.092 0.76 0.084 0.046 No 
 5 25% (15%-35%) 21% (13%-30%) 76% (56%-96%) 7.1E-06 0.59 2.6E-05 3.4E-06 No 
 10 12% (3.4%-21%) 18% (8.4%-27%) 50% (24%-76%) 3.1E-03 0.46 1.5E-03 0.011 No 
Asthma 5 15% (7%-23%) 13% (5.9%-20%) 52% (29%-76%) 4.1E-04 0.83 7.7E-04 2.1E-04 No 
 10 10% (2.3%-18%) 15% (6.1%-23%) 56% (30%-81%) 2.6E-04 0.59 1.8E-04 7.9E-04 No 
Eczema 6m 39% (28%-49%) 45% (35%-54%) 91% (78%-100%) 2.4E-05 0.47 7.9E-06 9.0E-05 Yes 
 1 34% (24%-44%) 30% (21%-39%) 82% (64%-99%) 2.5E-05 0.54 7.2E-05 1.4E-05 Yes 
 5 28% (18%-37%) 24% (16%-33%) 71% (50%-92%) 2.1E-04 0.73 3.3E-04 7.9E-05 No 
Atopic rhinoconjunctivitis 5 30% (20%-40%) 39% (29%-49%) 76% (56%-96%) 6.4E-04 0.21 2.7E-04 3.2E-03 No 
  Mean (95% CI) Mean (95% CI) Mean (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
BMI (kg/m2) 3 16 (16-17) 16 (16-17) 16 (16-17) 0.86 0.65 0.68 0.8 No* 
 4 16 (16-17) 16 (16-16) 17 (16-17) 0.59 0.76 0.32 0.39 No 
 5 16 (16-16) 16 (16-16) 16 (15-17) 0.71 0.56 0.48 0.67 No 
 10 18 (17-19) 18 (17-18) 18 (17-19) 0.89 0.75 1 0.62 No 
Number of older siblings 0 0.93 (0.72-1.1) 0.53 (0.38-0.69) 0.77 (0.32-1.2) 4.5E-03 1.0E-03 0.37 0.25 Yes 
 2 0.85 (0.66-1) 0.5 (0.34-0.65) 0.77 (0.32-1.2) 2.8E-03 6.5E-04 0.48 0.16 Yes 
 5 0.68 (0.5-0.85) 0.39 (0.25-0.54) 0.67 (0.23-1.1) 0.016 5.1E-03 0.75 0.12 No 
  Geom. mean (95% CI) Geom. mean (95% CI) Geom. mean (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
Vitamin D (nmol/L) 1 60 (55-64) 59 (55-63) 59 (52-67) 0.93 0.98 0.76 0.7 No 
 2 57 (54-61) 58 (55-61) 47 (40-55) 0.012 0.82 5.4E-03 4.4E-03 No 
 5 89 (83-95) 84 (79-89) 77 (69-84) 0.057 0.46 0.016 0.056 No 

 
BMI = body mass index; feature? = whether variable was used as a clustering feature or not; geom. mean = geometric mean; prop. = proportion. For categorical variables, 
associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p<0.05); 
italics indicate near-significance (p<0.10). *Not used as clustering feature, as BMI is a derived variable. Height and weight at age 3 were used instead. 
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Table 2: Comparison of HDM-associated immunological variables in CAS clusters 

Variable Age CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) P-value (unadjusted) Feature? 
  Geom. mean (95% CI) Geom. mean (95% CI) Geom. mean (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
Total antibody           
IgE (kU/L) 6m 1.2 (0.69-2) 2.2 (1.4-3.6) 21 (12-35) 1.2E-07 0.044 6.7E-08 2.2E-06 Yes 
 1 0.6 (0.29-1.3) 2 (1.1-3.7) 43 (17-109) 2.0E-09 0.019 4.3E-09 5.3E-08 Yes 
 2 6.6 (3.5-12) 17 (12-25) 187 (131-267) 1.2E-11 0.044 4.2E-11 1.4E-10 Yes 
 5 35 (23-55) 60 (46-80) 451 (278-731) 2.2E-08 0.096 1.9E-08 1.5E-07 No 
 10 85 (46-154) 150 (103-217) 800 (405-1.6E+03) 1.4E-04 0.11 1.3E-04 2.8E-04 No 
HDM antibody           
IgE (kU/L) 6m 0.018 (0.016-0.02) 0.019 (0.016-0.022) 0.033 (0.019-0.059) 1.9E-03 0.47 7.9E-04 4.2E-03 Yes 
 1 0.019 (0.017-0.023) 0.019 (0.016-0.022) 0.26 (0.075-0.93) 1.3E-09 0.47 2.5E-07 4.5E-09 Yes 
 2 0.024 (0.019-0.031) 0.042 (0.029-0.06) 7.1 (2.7-19) 2.6E-16 0.078 2.5E-15 3.5E-13 Yes 
 5 0.072 (0.041-0.13) 0.23 (0.12-0.45) 31 (7.8-127) 4.2E-09 0.015 3.8E-09 5.1E-07 No 
 10 0.37 (0.17-0.8) 1.3 (0.51-3.4) 52 (19-144) 2.9E-06 0.068 5.7E-07 9.7E-05 No 
IgG (mg/L) 1 0.21 (0.2-0.23) 0.23 (0.21-0.25) 0.29 (0.21-0.39) 0.042 0.34 0.012 0.07 Yes 
 2 0.32 (0.27-0.37) 0.49 (0.41-0.59) 0.89 (0.57-1.4) 1.9E-06 2.1E-04 3.8E-06 7.0E-03 Yes 
 5 0.55 (0.42-0.7) 0.59 (0.46-0.74) 1.7 (0.88-3.3) 1.5E-03 0.67 6.4E-04 9.0E-04 No 
 10 1.6 (1.3-1.9) 2.1 (1.8-2.5) 2.8 (1.9-4.2) 1.0E-02 0.023 0.011 0.18 No 
IgG4 (µg/L) 6m 1.5E-04 (1.5E-04-1.5E-04) 1.7E-04 (1.3E-04-2.1E-04) 4.6E-04 (9.0E-05-2.4E-03) 4.9E-03 0.37 5.2E-03 0.024 Yes 
 1 1.5E-04 (1.5E-04-1.5E-04) 6.9E-04 (3.2E-04-1.5E-03) 0.081 (4.6E-03-1.4) 1.8E-10 5.2E-04 6.6E-12 2.2E-05 Yes 
 2 3.4E-04 (1.8E-04-6.6E-04) 4.8 (1.7-13) 61 (8.9-419) 1.8E-25 1.5E-22 8.6E-18 9.8E-05 Yes 
 5 2 (0.48-8.1) 168 (111-256) 539 (317-917) 1.1E-15 1.3E-12 1.0E-08 1.9E-04 No 
HDM cytokine response^          
IL-13 protein (pg/ml)^ 0 0.22 (0.066-0.73) 0.22 (0.076-0.63) 0.085 (0.011-0.66) 0.68 0.76 0.41 0.45 No 
 6m 0.064 (0.022-0.18) 0.06 (0.025-0.14) 19 (1.4-244) 4.6E-06 0.98 1.7E-05 4.1E-06 No 
 5 0.13 (0.046-0.37) 0.32 (0.11-0.87) 12 (1.2-117) 2.1E-04 0.29 7.7E-05 5.1E-04 No 
IL-5 protein (pg/ml)^ 0 0.043 (0.018-0.11) 0.026 (0.013-0.052) 0.018 (5.0E-03-0.068) 0.44 0.36 0.29 0.57 No 
 6m 0.018 (9.2E-03-0.034) 0.013 (8.9E-03-0.02) 0.21 (0.012-3.7) 7.9E-04 0.4 8.1E-03 3.5E-04 No 
 5 0.028 (0.014-0.057) 0.042 (0.02-0.087) 2.3 (0.25-22) 3.2E-06 0.45 5.7E-06 2.0E-05 No 
IL-13 mRNA^ 0 1.7E-03 (1.1E-04-0.026) 6.0E-03 (4.8E-04-0.075) 6.7E-03 (3.3E-05-1.4) 0.85 0.6 0.68 0.94 No 
 6m 1.0E-04 (8.8E-06-1.1E-03) 3.2E-04 (3.8E-05-2.6E-03) 2 (0.015-266) 3.2E-04 0.5 1.7E-04 3.8E-04 No 
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 5 0.036 (1.6E-03-0.8) 0.11 (8.8E-03-1.4) 2.9E+03 (742-1.1E+04) 6.8E-05 0.59 9.9E-05 2.5E-05 No 
IL-4 mRNA^ 0 1.4E-06 (6.9E-07-3.0E-06) 1.9E-06 (7.8E-07-4.4E-06) 1.0E-06 (1.0E-06-1.0E-06) 0.71 0.65 0.6 0.47 No 
 6m 4.6E-06 (1.0E-06-2.1E-05) 5.1E-06 (1.4E-06-1.8E-05) 0.54 (6.5E-03-44) 6.2E-09 0.94 4.7E-07 1.0E-07 No 
 5 2.3E-04 (1.7E-05-3.0E-03) 4.7E-04 (5.3E-05-4.3E-03) 5.3 (0.082-345) 4.9E-04 0.72 4.5E-04 3.2E-04 No 
IL-5 mRNA^ 0 2.5E-04 (2.1E-05-2.9E-03) 2.6E-04 (2.8E-05-2.5E-03) 1.2E-05 (3.1E-07-4.6E-04) 0.47 0.96 0.24 0.25 No 
 6m 5.2E-05 (5.6E-06-4.8E-04) 3.1E-05 (5.2E-06-1.8E-04) 0.33 (1.3E-03-83) 1.5E-04 0.85 2.3E-04 1.1E-04 No 
 5 0.021 (9.9E-04-0.43) 0.07 (5.7E-03-0.85) 246 (7-8.7E+03) 1.3E-04 0.49 7.1E-05 1.1E-04 No 
  Prop. (95% CI) Prop. (95% CI) Prop. (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
Total antibody past 
atopy threshold  

         

IgE ≥ 100 kU/L 6m 0% (0%-0%) 1.9% (0%-4.6%) 9.1% (0%-22%) 0.029 0.5 0.04 0.14 No* 
 1 0% (0%-0%) 2.8% (0%-6%) 36% (15%-58%) 1.2E-07 0.26 9.1E-07 2.5E-05 No* 
 2 6.9% (1.5%-12%) 9.6% (3.9%-15%) 73% (53%-93%) 1.2E-10 0.6 6.3E-10 3.2E-09 No* 
 5 27% (16%-38%) 35% (25%-46%) 94% (83%-100%) 4.8E-07 0.29 1.9E-07 6.1E-06 No 
 10 48% (34%-62%) 60% (47%-73%) 100% (100%-100%) 6.6E-04 0.25 3.7E-04 3.0E-03 No 
HDM antibody past 
atopy threshold  

         

IgE ≥ 0.35 kU/L 6m 0% (0%-0%) 1.9% (0%-4.6%) 14% (0%-29%) 4.5E-03 0.5 7.5E-03 0.037 No* 
 1 0% (0%-0%) 1.9% (0%-4.5%) 50% (27%-73%) 2.9E-11 0.5 2.0E-09 1.7E-08 No* 
 2 2.3% (0%-5.5%) 14% (7.6%-21%) 86% (71%-100%) 2.0E-16 3.9E-03 3.8E-16 1.2E-10 No* 
 5 23% (13%-33%) 39% (28%-50%) 89% (73%-100%) 1.1E-06 0.035 4.0E-07 1.5E-04 No 
 10 49% (35%-63%) 58% (45%-72%) 100% (100%-100%) 8.4E-04 0.44 3.7E-04 2.9E-03 No 
HDM SPT past atopy 
threshold  

         

Wheal ≥ 2mm 6m 2.3% (0%-5.4%) 1.9% (0%-4.5%) 14% (0%-29%) 0.043 1 0.054 0.035 No* 
 2 10% (3.8%-17%) 15% (8.1%-22%) 86% (71%-100%) 2.9E-12 0.39 8.2E-12 1.5E-10 No* 
Wheal ≥ 3mm 5 13% (5.2%-20%) 28% (18%-37%) 81% (63%-99%) 1.5E-08 0.022 4.6E-09 1.0E-05 No 
 10 36% (23%-49%) 51% (38%-63%) 78% (57%-99%) 7.4E-03 0.11 2.7E-03 0.06 No 

 
Feature? = whether variable was used as a clustering feature or not; geom. mean = geometric mean; PBMC = peripheral blood mononuclear cells; prop. = proportion; SPT = 
skin prick or sensitisation test. For categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-
Wilcoxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). ^PBMC cytokine responses to HDM above unstimulated control; 
birth samples (age 0) taken from cord blood (CBMC). *Not used as clustering features, as these were derived variables; the variables from which they were derived (HDM 
IgE and IgG4) were used instead.  
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Table 3: Comparison of selected respiratory disease-related variables in CAS clusters 

Variable Age (y) CAS1 (N=88) CAS2 (N=107) CAS3 (N=22) P-value (unadjusted) Feature?  
  Mean (95% CI) Mean (95% CI) Mean (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
Any ARI (events per y) 1 4.4 (3.9-4.9) 3.6 (3.1-4.1) 4.5 (3.3-5.6) 0.044 0.018 0.86 0.16 No* 
 2 4.5 (3.8-5.2) 3.6 (3.2-4) 4.7 (3.4-6) 0.13 0.13 0.56 0.077 No* 
 3 3.7 (3.1-4.3) 3.4 (3-3.9) 4 (2.7-5.4) 0.74 0.56 0.77 0.53 No* 
 4 3 (2.4-3.6) 2.7 (2.2-3.2) 3.7 (2.4-4.9) 0.28 0.48 0.28 0.11 No 
 5 2 (1.5-2.5) 1.9 (1.5-2.3) 1.5 (0.9-2.1) 0.94 0.83 0.89 0.74 No 
URI (events per y) 1 2.9 (2.4-3.3) 2.6 (2.2-3) 2.5 (1.7-3.3) 0.59 0.34 0.5 0.96 Yes 
 2 3.2 (2.6-3.7) 2.6 (2.2-3) 2.5 (1.2-3.8) 0.19 0.19 0.12 0.34 Yes 
 3 2.7 (2.2-3.2) 2.8 (2.4-3.3) 2.2 (1.3-3.2) 0.45 0.41 0.59 0.24 Yes 
 4 2.1 (1.7-2.6) 2.2 (1.8-2.7) 1.7 (0.77-2.7) 0.5 0.94 0.26 0.27 No 
 5 1.6 (1.1-2) 1.5 (1.2-1.9) 0.67 (0.2-1.1) 0.081 0.76 0.047 0.026 No 
LRI (events per y) 1 1.6 (1.2-1.9) 0.98 (0.76-1.2) 2 (1.3-2.6) 4.0E-03 0.021 0.17 2.6E-03 Yes 
 2 1.4 (0.98-1.7) 1 (0.81-1.2) 2.2 (1.6-2.9) 2.5E-03 0.83 6.1E-03 2.0E-04 Yes 
 3 1 (0.76-1.3) 0.6 (0.4-0.8) 1.8 (1.1-2.6) 6.1E-04 0.02 0.039 2.7E-04 Yes 
 4 0.87 (0.52-1.2) 0.46 (0.3-0.63) 2 (1.1-2.8) 1.7E-05 0.3 3.5E-04 1.6E-06 No 
 5 0.42 (0.24-0.6) 0.36 (0.24-0.48) 0.86 (0.44-1.3) 0.019 1 0.011 7.5E-03 No 
Wheezy LRI (wLRI, events per y) 1 0.47 (0.3-0.63) 0.24 (0.15-0.34) 0.64 (0.19-1.1) 0.054 0.036 0.61 0.065 Yes 
 2 0.68 (0.45-0.91) 0.41 (0.26-0.56) 1 (0.56-1.5) 5.2E-03 0.063 0.066 1.7E-03 Yes 
 3 0.59 (0.37-0.81) 0.3 (0.17-0.44) 1.4 (0.78-2.1) 4.6E-05 0.065 2.5E-03 6.6E-06 Yes 
 4 0.52 (0.25-0.79) 0.32 (0.18-0.46) 1.9 (0.95-2.8) 4.5E-08 0.86 9.3E-07 3.3E-08 No 
 5 0.28 (0.13-0.42) 0.23 (0.13-0.33) 0.76 (0.36-1.2) 2.3E-03 0.99 2.0E-03 1.2E-03 No 
Febrile LRI (fLRI, events per y) 1 0.36 (0.22-0.51) 0.28 (0.16-0.4) 0.55 (0.28-0.81) 0.025 0.24 0.071 6.4E-03 Yes 
 2 0.36 (0.23-0.5) 0.33 (0.22-0.43) 0.95 (0.46-1.4) 0.01 1 6.1E-03 3.8E-03 Yes 
 3 0.38 (0.21-0.55) 0.16 (0.09-0.23) 0.52 (0.13-0.92) 0.06 0.063 0.44 0.04 Yes 
 4 0.3 (0.13-0.47) 0.15 (0.064-0.24) 0.43 (0.16-0.7) 0.021 0.18 0.091 4.9E-03 No 
 5 0.19 (0.082-0.3) 0.14 (0.06-0.21) 0.19 (0-0.42) 0.83 0.55 0.91 0.8 No 
Severe LRI (wLRI or fLRI, events per y) 1 0.69 (0.5-0.89) 0.44 (0.29-0.58) 1 (0.49-1.5) 0.012 0.027 0.25 9.1E-03 No* 
 2 0.9 (0.62-1.2) 0.59 (0.43-0.75) 1.6 (1.1-2.2) 7.9E-04 0.22 5.2E-03 1.2E-04 No* 
 3 0.73 (0.49-0.97) 0.37 (0.23-0.51) 1.5 (0.85-2.2) 1.6E-04 0.032 0.01 3.8E-05 No* 
 4 0.63 (0.32-0.94) 0.36 (0.21-0.52) 1.9 (1-2.8) 2.8E-07 0.56 5.9E-06 8.4E-08 No 
 5 0.36 (0.19-0.53) 0.27 (0.17-0.38) 0.76 (0.36-1.2) 0.015 0.88 0.012 5.0E-03 No 
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  Prop. (95% CI) Prop. (95% CI) Prop. (95% CI) Overall 1 vs. 2 1 vs. 3 2 vs. 3  
>20% Streptococcus in  
first infection-naive NPA sample 

7w 11% (0.34%-23%) 15% (3.3%-26%) 44% (3.9%-85%) 0.081 0.75 0.042 0.065 No 

 6m 7.6% (1.6%-14%) 18% (10%-26%) 14% (0%-31%) 0.12 0.045 0.39 1 No 
% Healthy NPAs with  
infection-associated MPGs 

0-2 49% (38%-59%) 32% (24%-39%) 62% (47%-76%) 1.2E-03 0.013 0.2 5.5E-04 No 

 2-4 46% (37%-55%) 44% (37%-51%) 45% (29%-61%) 0.9 0.67 0.92 0.8 No 

 
Feature? = whether variable was used as a clustering feature or not; geom. mean = geometric mean; ARI = acute respiratory infection (lower or upper); LRI = lower 
respiratory infection; MPG = microbiome profile group; NPA = nasopharyngeal aspirate; prop. = proportion; URI = upper respiratory infection; 7w = 7 weeks. For 
categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical 
significance (p<0.05); italics indicate near-significance (p<0.10). *Not used as clustering features, as these were derived variables; the variables from which they were 
derived (URI, LRI, wLRI, fLRI) were used instead. 
 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2017. ; https://doi.org/10.1101/237073doi: bioRxiv preprint 

https://doi.org/10.1101/237073
http://creativecommons.org/licenses/by/4.0/


 19 

Table 4: Analysis of selected predictors for age-five wheeze within each CAS cluster, with demographic covariates (sex, BMI, parental 
history of asthma) 

Selected predictors   CAS1 (N=88)  CAS2 (N=107)  CAS3 (N=22)  All (N=261)  
for age-five wheeze  OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 
ARI (events per y) 1 1.1 (0.88-1.5) 0.36 1.1 (0.87-1.3) 0.51 0.57 (0.29-0.93) 0.046 1 (0.89-1.2) 0.76 
 2 1.1 (0.94-1.3) 0.22 1 (0.81-1.3) 0.82 0.43 (0.077-0.89) 0.12 1 (0.93-1.2) 0.44 

 3 1.1 (0.87-1.3) 0.58 1.1 (0.91-1.4) 0.3 0.67 (0.36-1) 0.1 1 (0.93-1.2) 0.48 
 4 1.2 (0.99-1.4) 0.074 1.2 (1-1.5) 0.032 0.63 (0.27-1.1) 0.15 1.2 (1-1.3) 0.013 
LRI (events per y) 1 0.97 (0.71-1.3) 0.84 1 (0.61-1.5) 0.99 0.48 (0.13-1.1) 0.16 1 (0.81-1.2) 0.92 
 2 1.2 (0.88-1.6) 0.26 1.5 (0.97-2.5) 0.069 0.99 (0.34-2.6) 0.98 1.4 (1.1-1.7) 5.3E-03 
 3 2 (1.3-3.2) 2.3E-03 2.6 (1.5-5.3) 2.7E-03 0.98 (0.4-2.6) 0.96 2 (1.5-2.7) 3.8E-06 
 4 2 (1.4-3.4) 2.0E-03 3.6 (1.8-8.3) 6.5E-04 1.9 (0.57-8.4) 0.32 2.5 (1.8-3.6) 1.5E-07 
Wheezy LRI (events per y) 1 1.3 (0.68-2.4) 0.43 1.1 (0.35-3) 0.83 2.6 (0.62-58) 0.34 1.5 (0.98-2.3) 0.06 
 2 1.2 (0.8-2) 0.33 1.6 (0.89-2.9) 0.12 2.4 (0.67-16) 0.24 1.6 (1.2-2.2) 5.6E-03 
 3 2.8 (1.6-5.6) 1.3E-03 3 (1.4-8) 0.016 1.2 (0.43-4.6) 0.76 2.7 (1.8-4.2) 4.1E-06 
 4 2.5 (1.5-5) 4.0E-03 6.3 (2.5-21) 6.8E-04 7.1 (1.2-169) 0.1 3.9 (2.5-6.7) 5.4E-08 
Febrile LRI (events per y) 1 1.6 (0.77-3.6) 0.21 0.84 (0.28-1.9) 0.71 7.3 (0.78-178) 0.12 1.5 (0.93-2.4) 0.098 
 2 1 (0.44-2.2) 1 4.8 (1.8-15) 3.9E-03 1.6 (0.48-10) 0.5 2.3 (1.4-3.9) 1.2E-03 
 3 2 (1-4.8) 0.08 4.3 (1.2-15) 0.02 4.2 (0.55-519) 0.37 2.4 (1.4-4.3) 2.3E-03 
 4 1.8 (0.97-4.1) 0.092 2.6 (0.88-8.3) 0.082 1.1 (0.11-18) 0.93 2.2 (1.3-4) 5.9E-03 
% Healthy NPAs with infection-
associated MPGs 

0-2 0.9 (0.13-5.7) 0.91 2.6 (0.43-16) 0.3 NA NA 2.3 (0.79-6.7) 0.13 

 2-4 0.086 (6.8E-03-0.71) 0.034 0.8 (0.077-7.5) 0.85 4.4E+03 (2.1-2.5E+12) 0.13 0.49 (0.14-1.6) 0.24 
Quartile of % healthy NPAs 
with infection-associated MPGs 

0-2 1 (0.54-1.8) 0.98 1.3 (0.72-2.4) 0.36 NA NA 1.3 (0.89-1.8) 0.19 

 2-4 0.45 (0.19-0.88) 0.035 1 (0.51-2.1) 0.9 NA NA 0.8 (0.53-1.2) 0.24 
HDM IgE (kU/L)* 6m 8 (0.85-94) 0.074 0.93 (0.14-3.6) 0.92 3.4 (0.26-180) 0.4 2.3 (0.99-5.8) 0.054 
 1 1.5 (0.22-7.8) 0.65 0.54 (0.039-2.3) 0.51 39 (2.5-22000) 0.082 2.7 (1.5-5) 0.00089 
 2 0.93 (0.28-2.5) 0.89 2 (1.2-3.7) 0.016 1.4 (0.38-4.8) 0.62 2 (1.5-2.8) 2.80E-05 
 3 1.4 (0.68-2.9) 0.32 1.5 (0.9-2.4) 0.12 1.5 (0.4-5.2) 0.55 1.7 (1.3-2.2) 1.00E-04 
 4 1.9 (0.94-4.1) 0.086 1.9 (1.2-3.1) 0.011 1.4 (0.31-5.5) 0.64 1.9 (1.5-2.5) 3.70E-06 
Peanut IgE (kU/L)* 6m 2.5 (0.78-9) 0.13 1.5 (0.54-3.8) 0.41 1.1 (0.3-3.7) 0.92 2.3 (1.4-3.9) 0.0014 
 1 1.7 (0.48-6.3) 0.39 2.2 (0.65-6.9) 0.19 0.47 (0.095-1.6) 0.27 2.2 (1.4-3.6) 0.00098 
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 2 0.51 (0.097-2) 0.37 3 (0.74-12) 0.12 2 (0.51-13) 0.37 2.7 (1.6-4.9) 0.00046 
 3 1.7 (0.46-5.5) 0.37 0.53 (0.015-3.8) 0.61 3.3 (0.94-26) 0.13 2.6 (1.6-4.8) 0.00068 
 4 0.2 (0.00073-2.9) 0.36 0.96 (0.19-3.2) 0.95 1.4 (0.49-6.5) 0.54 2.1 (1.3-3.7) 0.006 
Cat IgE (kU/L)* 6m 6.6 (0.77-61) 0.079 2.2 (0.62-7.6) 0.2 0.24 (0.012-3.2) 0.29 2.3 (0.96-5.4) 0.061 
 1 2.1 (0.13-30) 0.57 4 (0.54-32) 0.16 0.45 (0.053-2.8) 0.41 3.5 (1.4-9.5) 0.0099 
 2 0.55 (0.042-3.7) 0.57 2.1 (0.59-7) 0.22 2.2 (0.42-26) 0.42 2.6 (1.3-5.5) 0.0065 
 3 1.7 (0.49-5.6) 0.35 1.4 (0.21-6.7) 0.66 1.3 (0.29-6.9) 0.77 2.5 (1.3-4.9) 0.0065 
 4 0.75 (0.0088-13) 0.86 1.5 (0.53-3.9) 0.4 0.83 (0.17-4.4) 0.81 2.4 (1.3-4.8) 0.006 
Couch grass IgE (kU/L)* 6m 2.8 (0.51-14) 0.21 1.3 (0.3-4.5) 0.68 0.98 (0.048-59) 0.99 1.7 (0.71-3.9) 0.22 
 1 0.38 (0.017-2.8) 0.42 0.33 (0.01-2.9) 0.41 0.15 (0.0058-1.5) 0.14 0.63 (0.19-1.7) 0.4 
 2 0.085 (0.0034-0.7) 0.057 1.1 (0.14-6.3) 0.9 25 (1.6-1100) 0.046 2.1 (0.99-4.7) 0.053 
 3 2 (0.44-8) 0.29 6.1e-06 (NA-8.1e+54) 0.99 2.3 (0.57-14) 0.29 2.5 (1.3-5.1) 8.90E-03 
 4 8.4e-13 (NA-3.5e+172) 0.99 1.6 (0.55-4.1) 0.34 1.9 (0.54-10) 0.35 2 (1.3-3.4) 4.30E-03 
Phadiatop IgE (PAU/L)* 6m 1.2 (0.44-2.9) 0.73 1.3 (0.65-2.6) 0.43 2.2 (0.66-12) 0.25 2 (1.3-2.9) 0.00078 
 1 0.73 (0.2-2.5) 0.63 1.1 (0.41-2.8) 0.85 1.6 (0.23-18) 0.67 2.1 (1.3-3.4) 0.0021 
 2 0.33 (0.091-1) 0.065 2.1 (0.81-5.9) 0.13 2.5 (0.18-70) 0.52 2 (1.3-3) 0.0012 
 3 1.8 (0.8-4) 0.16 1.4 (0.72-2.8) 0.31 8.4 (0.53-380) 0.19 2 (1.4-2.9) 8.00E-05 
 4 1.8 (0.91-3.8) 0.094 2.4 (1.3-4.8) 0.01 2.7 (0.16-66) 0.5 2.2 (1.6-3.2) 2.20E-06 
HDM IgG4 (µg/L)* 6m NA (NA-NA) 0.55 0.053 (NA-6.5e+24) 0.99 28 (1.7e-34-NA) 0.99 1.4 (0.88-2.6) 0.17 
 1 NA (NA-NA) 0.61 1.1 (0.8-1.5) 0.5 0.9 (0.58-1.3) 0.6 1.2 (1-1.4) 0.053 
 2 1.1 (0.71-1.6) 0.67 1.1 (0.85-1.4) 0.61 0.4 (0.038-1.2) 0.26 1.1 (1-1.3) 0.056 
 3 1.1 (0.85-1.5) 0.35 1.1 (0.77-2) 0.64 0.94 (0.19-2.3) 0.9 1.1 (0.98-1.2) 0.1 
 4 1.2 (0.98-1.5) 0.082 0.89 (0.7-1.1) 0.33 0.46 (0.031-5.4) 0.53 1.1 (1-1.3) 0.034 
Peanut IgG4 (µg/L)* 6m NA (NA-NA) 0.55 NA (NA-NA) 0.53 0.9 (0.42-1.9) 0.76 1.5 (0.94-2.6) 0.1 
 1 0.075 (NA-3.5e+23) 0.99 0.89 (0.67-1.1) 0.35 0.96 (0.64-1.4) 0.84 1.1 (0.95-1.2) 0.22 
 2 1.1 (0.85-1.3) 0.54 0.96 (0.8-1.2) 0.64 0.89 (0.48-1.4) 0.65 1 (0.95-1.2) 0.37 
 3 1.1 (0.89-1.4) 0.37 1 (0.83-1.3) 0.87 0.68 (0.22-1.3) 0.37 1.1 (0.96-1.2) 0.27 
 4 1.1 (0.92-1.4) 0.22 0.91 (0.76-1.1) 0.35 0.73 (0.19-1.4) 0.45 1.1 (0.96-1.2) 0.24 
Cat IgG4 (µg/L)* 6m 0.057 (NA-2e+12) 0.99 0.99 (0.67-1.3) 0.95 24 (3.3e-30-NA) 1 1.1 (0.88-1.3) 0.41 
 1 0.76 (0.43-1.1) 0.22 0.94 (0.78-1.1) 0.54 0.76 (0.42-1.2) 0.28 1 (0.9-1.1) 0.82 
 2 1.4 (1.1-1.7) 0.011 0.92 (0.67-1.3) 0.59 0.96 (0.51-1.6) 0.88 1.1 (1-1.3) 0.053 

 3 1.3 (1-1.6) 0.05 0.9 (0.63-1.4) 0.59 0.86 (0.054-13) 0.91 1.2 (1-1.4) 0.033 
 4 1.4 (1.1-2) 0.027 0.89 (0.64-1.3) 0.49 0.54 (0.011-1.5) 0.58 1.2 (1-1.5) 0.034 
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Couch grass IgG4 (µg/L)* 6m NA (NA-NA) 0.55 0.062 (NA-1.3e+24) 0.99 19 (2.5e-57-NA) 1 1.3 (0.74-2.4) 0.32 
 1 0.081 (NA-9.7e+23) 0.99 1 (0.77-1.3) 0.81 0.93 (0.6-1.4) 0.71 1.1 (0.92-1.3) 0.29 
 2 0.071 (NA-2.1e+22) 0.99 0.88 (0.7-1.1) 0.22 0.91 (0.61-1.3) 0.61 1 (0.88-1.1) 0.96 
 3 1.2 (0.99-1.6) 0.061 0.85 (0.7-1) 0.1 1.4 (0.88-2.2) 0.16 1.1 (0.96-1.2) 0.22 
 4 1.1 (0.91-1.4) 0.28 0.72 (0.56-0.91) 0.0074 0.88 (0.24-1.9) 0.75 1 (0.91-1.2) 0.69 
Phadiatop Infant IgG4 (PAU/L)* 6m 0.7 (0.45-0.91) 0.03 1 (0.88-1.2) 0.79 1.4 (0.96-2.4) 0.12 0.98 (0.89-1.1) 0.67 
 1 0.91 (0.72-1.2) 0.4 0.73 (0.49-0.99) 0.057 0.83 (0.29-1.5) 0.64 0.93 (0.81-1.1) 0.35 
 2 1.1 (0.89-1.3) 0.49 0.97 (0.68-1.6) 0.86 1.7 (0.93-7.7) 0.2 1.1 (0.96-1.3) 0.2 
 3 2.3 (1.1-6.8) 0.091 0.23 (0.071-0.64) 0.0076 1 (0.17-7.3) 1 1.3 (0.96-1.8) 0.16 
 4 1 (0.83-1.4) 0.71 0.3 (0.097-0.85) 0.028 0.42 (0.042-3.2) 0.4 1.1 (0.88-1.3) 0.61 
HDM IgG (mg/L)* 1 25 (0.32-1.6E+04) 0.19 3.3 (0.16-46) 0.38 5.6E-03 (8.4E-06-0.57) 0.058 2 (0.31-11) 0.44 
 2 0.8 (0.15-3.5) 0.78 0.97 (0.24-3.7) 0.96 0.79 (0.031-18) 0.88 1.3 (0.6-2.9) 0.48 
 3 2.3 (0.14-35) 0.54 0.48 (0.057-2.5) 0.43 3.9 (0.26-96) 0.34 2.1 (0.89-5) 0.089 
Cat IgG (mg/L)* 1 1.5E-15 (NA-1.2E+291) 0.99 6.5 (0.22-150) 0.24 4.6E-03 (1.4E-06-0.9) 0.082 1.7 (0.11-18) 0.68 
 2 0.66 (0.077-3.5) 0.65 1.2 (0.28-4.3) 0.82 0.16 (4.0E-03-3.5) 0.26 0.87 (0.34-2.1) 0.75 
 3 0.023 (8.2E-06-2) 0.18 0.52 (0.058-2.7) 0.49 3.7 (0.18-244) 0.44 1.1 (0.35-3) 0.9 

 
BMI = body mass index; HDM = house dust mite; LRI = lower respiratory infection. Association analyses performed via generalised linear models (GLM) with demographic 
covariates: age-five wheeze ~ predictor + sex (male) + BMI at age 3 + paternal history of asthma + maternal history of asthma. Bold text indicates statistical significance 
(p<0.05); italics indicate near-significance (p<0.10). *Odds ratio (OR) is for every 10-fold increase in IgE, IgG4 or IgG. 
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Table 5: Key findings from cluster analysis 

§ Certain childhood populations may be broadly split into three clusters, each representing a unique trajectory of immune function and 
susceptibility to respiratory infections: low-risk non-atopic Cluster 1 with transient wheeze; low-risk but allergy-susceptible Cluster 2 with 
mixed wheeze; and strongly-atopic high-risk Cluster 3 with persistent wheeze. 

§ Cluster 3 is consistent with an early-sensitised and multi-sensitised phenotype. 
§ HDM hypersensitivity is an important predictor of wheeze in allergic or allergy -susceptible individuals. 
§ In CAS, IgG4 flags for clusters with susceptibility to atopic disease (CAS2 and CAS3), while early and multiple-allergen elevation in IgE 

predicts frank atopic disease. The pathophysiological role of IgG4 remains unclear. 
§ Food and peanut hypersensitivities are important contributors to membership in high-risk Cluster 3. This may be pathophysiologically 

related to eczema, multi-sensitisation and the atopic march. 
§ Allergic and infective processes act in a synergistic manner to intensify airway inflammation during respiratory pathogen clearance. Some 

clusters (Cluster 3) may be more susceptible to this effect than others that lack strong allergic sensitisation (Cluster 1). 
§ The microbiome also acts differently on asthma risk depending on cluster membership. In CAS, early-life asymptomatic colonisation with 

infection-associated MPGs is associated with risk of persistent wheeze in allergy-susceptible clusters (CAS2, CAS3), while it is potentially 
protective in non-atopic children (CAS1) 

§ Tests for atopy (IgE, SPT, cytokines) do not necessarily overlap. Therefore, atopy may be better defined by the composite result from a 
battery of tests encapsulated in a predictive model, rather than just a single test or threshold. 

§ Different childhood populations may share similar trajectories of asthma susceptibility, but there may be subtle differences in terms of the 
types of tests, allergens, or biological signals that are most informative (SPT, IgE, cytokines, etc.).  
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Figures 
 
Figure 1: Non-parametric mixture-model based clustering of CAS dataset, based on 174 
features. 

SPT = skin prick test. White spaces within the heatmap indicate missing data. Rows represent individuals; 
columns represent clustering features with general categories as labelled on grey background. Variables with 
grey background are clustering features ordered by category or type of variable first (e.g. all HDM IgE-related 
variables grouped together), then by timepoint (earlier to later, from left to right). Variables with lilac 
background indicate resultant cluster membership and outcome variable (age-five wheeze). Heatmap values are 
scaled relative to range and median values for each feature; the median is coloured beige-yellow, the median + 
range red, and median – range blue. For sex, -1/blue = female, 0/yellow (median) = male.  
 
Figure 2: Incidence of multiple phenotypes, including parent-reported wheeze (A), 
physician-diagnosed asthma (B), defined wheeze phenotypes (C), in relation to food and 
inhalant sensitisation (D), stratified by cluster and time in the CAS dataset. 

Points indicate observed proportion; bars indicate 95% CI (binomial distribution). Wheeze phenotypes defined 
as: no wheeze = no wheeze at ages 1 to 3, or age 5; transient wheeze = any wheeze at ages 1 to 3, but not age 5; 
late wheeze = wheeze at age 5, but not ages 1 to 3; persistent wheeze = any wheeze at both ages 1 to 3 and age 
5. Food sensitization defined as peanut IgE ≥ 0.35 kU/L at any age, or cow’s milk, egg white, peanut SPT > 2 or 
3 mm for age ≤ 2 or > 2 respectively. Inhalant sensitization defined as HDM, cat, couchgrass, ryegrass, mould 
or Phadiatop IgE ≥ 0.35 kU/L at any age, or mould SPT (Alternaria or Aspergillus spp.) > 2 or 3 mm for age ≤ 2 
or > 2 respectively. 
 
Figure 3: HDM IgE (A), IgG (B) and IgG4 (C); and peanut IgE (D) and IgG4 (E) 
stratified by cluster and time, in the CAS dataset 

Points indicate means; bars indicate 95% CI (t-distribution). 
 
Figure 4: LRI frequency (A), wheezy LRI (wLRI) frequency (B), and HDM IgE (C), 
stratified by age-five wheeze status, cluster and time, in the CAS dataset. 

Points indicate means; bars indicate 95% CI (t-distribution). *p<0.05 for Mann-Whitney-Wilcoxon comparison 
within each timepoint. #p<0.05 for repeated-measures ANOVA across timepoints from the first 3 years of life 
(see Table 4). 
 
Figure 5: PBMC expression of IL-5 (A) and IL-4 mRNA (B), as well as IL-13 protein 
(C), in response to stimulation HDM, stratified by cluster and time (CAS) 

Cord = cord blood sample collected at birth. Points indicate means; bars indicate 95% CI (t-distribution).  
 
Figure 6: A “simple” decision tree generated by recursive partitioning from CAS data, 
with breakdown of tree clusters by actual CAS npEM-derived clusters (A); scatterplot 
showing separation of CAS clusters by decision split thresholds (B) 

Percentages in Panel A may not sum up to 100%, because some individuals have missing values for decision 
node variables, hence making them impossible to classify. In Panel B, note that left-most column of points 
represent values of HDM IgG4 that were less than the limit-of-detection (LOD) for that assay (0.0003 µg/L), 
and were subsequently assigned to half the LOD (0.00015 µg/L). Most of these points belonged to individuals 
from CAS1. 
 
Figure 7: Description of npEM-derived clusters in external cohorts: in MAAS, 
incidence of wheeze (A), asthma diagnosis (B), and HDM IgE levels (C); in COAST, 
incidence of asthma diagnosis (D), proportion of individuals with detectable 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2017. ; https://doi.org/10.1101/237073doi: bioRxiv preprint 

https://doi.org/10.1101/237073
http://creativecommons.org/licenses/by/4.0/


 24 

aeroallergen-specific IgE levels (E), and PBMC protein expression of IL-13 following 
HDM stimulation above unstimulated control (F) 

MAAS cohort (N=934) was classified using npEM model from CAS, into MAAS1 (N=199, 21%), MAAS2 
(N=692, 74%) and MAAS3 (N=43, 5%); these correspond to CAS clusters CAS1, 2 and 3, respectively. 
COAST cohort (N=285) was similarly classified into COAST1 (N=105, 37%), COAST2 (N=151, 53%) and 
COAST3 (N=29, 10%). 
 
Figure 8: Graphical summary of proposed clusters 

*“Early” specifically refers to “within the first 6 months of life”. 
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