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4 Abstract

Biomedical researchers are generating high-throughput, high-dimensional single-cell
data at a staggering rate. As costs of data generation decrease, experimental design is mov-
ing towards measurement of many different single-cell samples in the same dataset. These
samples can correspond to different patients, conditions, or treatments. While scalability of
methods to datasets of these sizes is a challenge on its own, dealing with large-scale exper-
10 imental design presents a whole new set of problems, including batch effects and sample
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11 comparison issues. Currently, there are no computational tools that can both handle large

12 amounts of data in a scalable manner (many cells) and at the same time deal with many
13 samples (many patients or conditions). Moreover, data analysis currently involves the use
14 of different tools that each operate on their own data representation, not guaranteeing a
15 synchronized analysis pipeline. For instance, data visualization methods can be disjoint
16 and mismatched with the clustering method. For this purpose, we present SAUCIE, a deep
17 neural network that leverages the high degree of parallelization and scalability offered by
18 neural networks, as well as the deep representation of data that can be learned by them to
19 perform many single-cell data analysis tasks, all on a unified representation.

20 A well-known limitation of neural networks is their interpretability. Our key contribu-
21 tion here are newly formulated regularizations (penalties) that render features learned in
22 hidden layers of the neural network interpretable. When large multi-patient datasets are fed
23 into SAUCIE, the various hidden layers contain denoised and batch-corrected data, a low
24 dimensional visualization, unsupervised clustering, as well as other information that can
25 be used to explore the data. We show this capability by analyzing a newly generated 180-
2 sample dataset consisting of T cells from dengue patients in India, measured with mass
27 cytometry. We show that SAUCIE, for the first time, can batch correct and process this
28 11-million cell data to identify cluster-based signatures of acute dengue infection and cre-
29 ate a patient manifold, stratifying immune response to dengue on the basis of single-cell
30 measurements.

+ 1 Introduction

32 Vast amounts of high-dimensional, high-throughput, single-cell data measuring various aspects
ss of cells including mRNA molecules, proteins, epigenetic marks and histone modifications are
s being generated via new technologies. Furthermore, the number of samples included in large-
35 scale studies of single-cell data for comparing across populations or disease conditions is rapidly
s increasing. Processing data of this dimensionality and scale is an inherently difficult prospect,
a7 especially considering the degree of noise, batch effects, artifacts, sparsity and heterogeneity
ss 1in the data [1,2]. However, this effect becomes exacerbated as one tries to compare between
s samples, which themselves contain noisy heterogeneous compositions of cellular populations.
40 Deep learning offers promise as a technique for handling the size and dimensionality of
s+ modern biological datasets. However, while work has been done in training networks to per-
«2 form certain supervised tasks such as predicting binding [3},4] or classifying patients [5], deep
s learning has been underutilized for unsupervised exploratory tasks. In this paper, we develop a
s« deep learning framework that focuses on unsupervised data exploration. Our key insight is that
s the layers of a deep neural network form representations of the data, and that if those layers are
s properly constrained (via architectural choices and regularization), they can be used to extract
a7 task-oriented features of the data.

48 We base our approach on the autoencoder [6-8]. An autoencoder is a neural network that
s9 learns to recreate its own input via a low-dimensional bottleneck layer that learns representa-
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so tions of the data and enables a denoised reconstruction of the input from them [9H13]]. Since
st autoencoders learn their own features, they can reveal structure in the data without defining or
52 explicitly learning a similarity or distance metric in the original data space as other dimension-
s3  ality reduction methods do (for instance, PCA uses covariance and diffusion maps [[14] utilize
s« affinities based on a kernel choice). We use this approach to construct SAUCIE, a Sparse Au-
ss toencoder for Unsupervised Clustering, Imputation, and Embedding, which is aimed to enable
s6 exploratory tasks via its design choices.

57 SAUCIE is a multilayered deep neural network, whose input layer is fed single-cell mea-
ss surements, such as mass cytometry or single-cell RNA sequencing, of an individual cell. Then,
ss. SAUCIE gradually reduces the dimensionality of the dataset by taking the data through nar-
so rower and narrower hidden layers. We see that the output or reconstruction layer of SAUCIE
et gives similarly denoised and imputed data as the manifold denoising method MAGIC [15] on a
e2 1.3 million single-cell RNA sequencing dataset from embryonic mouse brain. In other words,
es SAUCIE effectively learns the manifold of the data in a similar way to data diffusion [16]
s« methods. Thus, SAUCIE can leverage the power of manifold learning, which has shown to be
es key for analyzing single-cell data [17] in a scalable fashion. Manifold learning methods are
es traditionally difficult to scale due to the computational complexity of kernel computation and
o7 eigendecomposition operations. Deep learning comes to the rescue here by being amenable to
es GPU speedup and parallelization of matrix operations.

69 As SAUCIE reduces input dimensionality, regularizations on different layers reveal differ-
70 ent representations of the data: for visualization, batch correction, clustering, and denoising.
71 In order to achieve these representations we use customized regularizations in each layer. We
72 use the architectural choice of having a two-dimensional bottleneck layer to provide a visual-
73 ization of the data. We develop a novel batch-level maximal mean discrepancy (MMD)-based
74 penalty constraint to remove batch effects in the embedding layer. A customized sparse encod-
75 ing layer featuring our novel information-dimension (ID) regularization provides an automated
76 clustering of the data with no parametric assumptions on the shape or number of clusters. All
77 regularizations balance against reconstruction accuracy, which is the basic penalty in an au-
78 toencoder that steers the network convergence away from trivial solutions. Furthermore, this
7o penalty ensures that the final layer of the network provides reconstructed measurements that
so are denoised; in the case of single-cell RNA sequencing data, this layer also naturally imputes
st missing values.

82 Guiding the internal representations of the data to be effective at each of these disparate
ss tasks together fit SAUCIE into the field of multitask learning. Results in multitask learning have
s« generally shown that optimizing multiple tasks over the same latent representation is helpful in
g5 increasing the reliability and consistency of various algorithms. We apply the same approach
ss here by having the representation (or data manifold) learned by SAUCIE be jointly optimized
&7 for multiple tasks. Further, SAUCIE itself forms a near complete analysis of the data. The
ss clustering layer in SAUCIE for instance, actually performs clustering, and clusters are read out
s from this layer. This is in contrast to other methods that simply use the autoencoder for coming
o0 up with a reduced dimensional representation, which is then fed to other (generally unscalable)
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o1 algorithms, for example scVI which outputs a latent layer that then needs another clustering
92 algorithm [18]].

03 We apply SAUCIE to a twenty-million cell mass cytometry dataset with 180 samples from
o« forty subjects in a study of the dengue flavivirus [[19]]. SAUCIE is the only method that is able to
os batch correct 180 samples and then cluster them in such a way that subpopulation proportions
96 become comparable prima facia. This obviates the need for approaches such as first clustering
o7 samples separately and then performing “meta-clustering” as with the Phenograph method, or
98 other methods that cannot operate uniformly on combined data of this size (the problems of
o which are illustrated in Figure [ST0). We are also able to tune the granularity of clustering with
10 SAUCIE in order to get a clustering that is informative of the differences between conditions.
101 SAUCIE results show that acute subjects are characterized by enrichment in distinct subpopula-
102 tions of CD4-CD8- 4 T cells and cells involved in Type I interferon signaling. When subjects
103 are measured in convalescence, there is an increase in CD4+Foxp3+ T reg cells.

104 Thus, SAUCIE provides a unified representation of data where different aspects or features
15 are emphasized in different layers, forming a one-step data analysis pipeline. This unified
16 analysis uncovers a cell-space manifold as well as a sample-space manifold, thus enabling a
107 multilevel analysis of complex experimental design where the samples are stratified on the basis
10s of their cell-level features. We additionally evaluate SAUCIE extensively on all of its designed
100 tasks using ten public single-cell datasets.

w 2 Results

i 2.1 The SAUCIE Architecture and Layer Regularizations

112 To enable unsupervised learning in a scalable manner, we base our method on the autoencoder.
113 Autoencoders learn to recreate their input at the output layer, but via a low-dimensional infor-
114 mational bottleneck layers which are forced to learn meaningful structure-preserving represen-
1s tations of the data. However, a key challenge is to extract meaning from this representation.
11e  Specifically, we seek representations in hidden layers that are useful for performing the various
117 analysis tasks associated with single cell data. Here, we introduce several design decisions and
11s  novel regularizations to our autoencoder architecture (Figure|l)) in order to constrain the learned
119 representations for four key tasks:

120 1. visualization and dimensionality reduction,
121 2. batch correction,

122 3. clustering, and

123 4. denoising and imputation.

124 For each task, dedicated design decisions are used to produce the desirable result.
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125 Clustering: First, to cluster the data, we introduce the information dimension regularization
126 that encourages activations of the neurons in a hidden layer of the network to be binarizable.
127 The idea is that if we can obtain a “digital” binary encoding, then we can easily turn these
128 codes into clusters. As Figure QA shows, the network without regularizations tends to store its
120 information in a distributed, or “analog” way. With the ID regularization the activations are all
130 near 0 or 1, i.e., binary or “digital”, and thus amenable to clustering by simple thresholding-
131 based binarization. As seen in Figure [3]A, this leads to a clustering of the cells that effectively
132 represents the data space. Thus, the ID regularization achieves an analog-to-digital conversion
133 that enables interpretation of the representation as data groups or clusters corresponding to each
134 binary code. A previous work in the same vein, Binary Connect, has shown the promise in en-
135 couraging networks to learn in ways that are easy to binarize. That work differs from SAUCIE
136 though, in that they learn binary weights rather than binary activations, along with the goal
137 being to improve computational efficiency rather than achieve a clustering of the data [20].

13s  Batch Correction: Batch effects are generally systematic differences found in biological data
133 measured under different experimental runs, largely due to ambient conditions such as temper-
120 ature, machine calibration or day-to-day variation in measurement efficiency. Thus, measure-
141 ments even from very similar systems, such as blood cells of the same patient, appear to have
122 a shift or difference between two different experimental runs. To solve this problem, we in-
143 troduce a maximal mean discrepancy (MMD) correction that penalizes differences between the
124 probability distributions internal activations of samples. Previous work has attempted batch cor-
15 rection by minimizing MMD. However, those models assume that batch effects are minor and
16 simple shifts close to the identity function, which is often the case [21]. Moreover, minimizing
127 MMD alone only removes any and all differences between batches. In contrast, the additional
148 autoencoder reconstruction penalty in SAUCIE forces it to preserve the original structure in
129 each batch, balancing the goals of, on one hand, making the two batches alike while on the
150 other hand not changing them. We note that this notion of a biological batch (data measured or
15t run together) is distinct from the mini-batches used in stochastic gradient descent to train neural
152 networks and the two should not be confused. The term batch is exclusively used to describe
153 biological batches and when training with stochastic gradient descent the term mini-batches is
154 @

155 Figure [4] shows that analyzing data before batch correction can lead to misleading results,
156 as artificial variation from batch effects can drown out the relevant variation within the biology
157 that we are interested in. Penalizing MMD directly on the input space would be a flawed way
158 of addressing batch effects because it would require making the assumption of (and thus being
159 sensitive to the choice of) meaningful distance and similarity measures on the input points.
160 Since the data is noisy and possibly sparse, by instead penalizing MMD on an internal layer
161 of the network, we can correct complex, highly nonlinear batch effects by aligning points on a
12 data manifold represented in these layers.
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s Imputation and denoising Next, we leverage the fact that an autoencoder does not recon-
164 struct its input exactly, but instead must learn a lower dimensional representation of the data,
1es and decode this representation for data reconstruction. This means the reconstructions are de-
1es noised versions of the input and are thus naturally solutions to the dropout and other noise
17 afflicting much real-world data, especially single cell RNA-sequencing data. The gene-gene
1es relationships plotted in Figure 3[C illustrate the ability of SAUCIE to recover the meaningful
1e0 relationship between genes despite the noise in the data.

170 Visualization Finally, we design the informational bottleneck layer of the autoencoder to be
171 two dimensional, which lets it serve as a visualization and nonlinear embedding of the data.
172 Because the network must reconstruct the input accurately from this internal representation, it
172 must compress all the information about a cell into just these two dimensions, unlike methods
172 like PCA or Diffusion Maps, which explicitly leave some variation unmodeled. Consequently,
175 the information stored is also global, meaning points close together in the SAUCIE visualization
176 are more similar than points that are farther apart, which is not true beyond small neighborhoods
177 1n a local method like tSNE. The ability to flexibly learn and accurately reflect the structure in
17s  the data with SAUCIE is demonstrated in Figure [3B.

179 Considered together, these customized regularizations and architectural choices make SAUCIE
150 ideally suited for the exploratory data analysis when presented with single-cell biological data.
1s1  Further, SAUCIE is entirely self-contained and not require any external algorithms that may not
1.2 be able to process the scale of multisample single-cell data.

ws 2.2 Comparison to other methods

18 We begin by offering an extensive comparison between SAUCIE and other (generally special-
1ss 1zed) methods at each of these tasks in turn. We find that SAUCIE performs as well as, or
186 even better than, specialized algorithms, which are much less scalable, for each individual task.
157 Moreover, SAUCIE performs all tasks on a unified representation leading to visualizations that
18s are coherent with clusters and cluster expression.

189 Throughout the comparisons on each of the tasks, we use two artificial datasets (simulation
190 from mixtures of Gaussians and the canonical MNIST handwritten digit dataset), along with
191 ten different single-cell datasets. Five datasets are CyTOF: the dengue dataset we extensively
122 evaluate later in the manuscript, T cell development data from [22], renal cell carcinoma data
193 from [23], breast tumor data from [24]], and iPSC data from [25]]. Five datasets are scRNA-seq:
194 mouse cortex data, retinal bipolar cells from [26], hematopoiesis data from [27], mouse brain
195 data from [28]], and the 10x mouse megacell demonstration from [29].

196 2.2.1 Clustering

197 To evaluate the ability of SAUCIE to find meaningful clusters in single-cell data, we compare
198 it to several alternative methods: minibatch kmeans [30], Phenograph [31]], and another neural
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199 network approach called Single-cell Variational Inference (scVI) [18]. While we compare to
200 scVI as it and SAUCIE are both neural networks, we emphasize a fundamental difference be-
201 tween the two: scVI only returns a latent space, which must then be visualized or clustered by
202 another outside method, while SAUCIE explicitly performs these tasks. Since kmeans needs to
203 be told how many clusters there are ahead of time (k), we use the number of clusters identified
204« by Phenograph as k. We look at the following datasets: MNIST handwritten digits for which
205 there are ground truth labels, artificially generated Gaussians rotated into high dimensions, and
206 public single-cell datasets for which we have curated cell clusters as presented by the authors:
207 m, |]2_3l], m, []ﬁ[],and []m

208 In addition to analyzing the clusters visually (Figure[S2)), we also quantitatively assess clus-
200 ter performance of the methods by computing modularity and silhouette scores [30] on the
210 generated clusters and ground truth labels (Table[T)). For MNIST, we find that just as we would
211 expect given they are both non-Euclidean clustering methods that do not need a specified num-
212 ber of clusters, SAUCIE and Phenograph are the most comparable, with their having the high-
213 est modularities, similar silhouette scores, and very similar visual appearance. Next, we look at
214 an artificially generated dataset of four two-dimensional Gaussian point clouds with different
215 means rotated into 100 dimensions. We find that SAUCIE is the only method that automatically
216 1dentifies exactly four clusters, which was the underlying number of clusters in the generation
217 model. This illustrates why optimizing modularity, like Phenograph does, is not necessarily the
218 best heuristic to follow, as it adds additional complexity to the clustering in order to increase
219 the modularity score, resulting in too many clusters. Likewise, scVI did not identify the four
220 clusters, which is unsurprising as the data did not fit its parametric model appropriate for gene
221 counts.

222 We also examine clustering performance on five public single-cell datasets to evaluate the
23 ability of SAUCIE to cluster real biological data: from [26], [23[], [28], [27], and [22].
224 Visual inspection reveals that SAUCIE produces clusters that are qualitatively coherent on the
225 embedding. Quantitatively, the modularity scores of its clusters corroborate this evaluation. As
226 shown in Table [T] the average modularity score across datasets is 0.8531. In a wide variety of
227 data from both CyTOF and scRNA-seq measurements, SAUCIE is able to produce clusters that
228 reasonably represent the data qualitatively, quantitatively, and by comparison to other methods.

2¢ 2.2.2 Batch correction

230 We assess our ability to remove batch-related artifacts with SAUCIE by comparison to two
231 published batch correction methods that have been specifically designed to remove batch ef-
232 fects in single-cell data. The first, Mutual Nearest Neighbors (MNN) []3;2[], uses mutual nearest
233 neighbors on a k-nearest neighbors graph to align two datasets, and the second, Canonical Cor-
234 relation Analysis [33]], finds a latent space in which the two batches are aligned. To evaluate
235 the performance of these methods and SAUCIE, we use several different datasets with varying
23 degrees of batch artifacts. We note that SAUCIE is the only method capable of scaling batch
237 correction to hundreds of samples as we do in the next section. Nonetheless, here we compare
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233 performance on datasets small enough for the alternative methods to handle.
To quantitatively assess the quality, we apply a test we term the mixing score (similar to that
of [34]]):

mixing score = %—Z % B0, e kNN (i) (Lbateh(zn)—batch(s;) ) (1)
230 where N, and NN, are the number of points in the first and second batch respectively. This
240 score calculates for each point the number of nearest neighbors that are in the same batch as
241 that point, accounting for the difference in batch sizes. In perfectly mixed batches, this score
2.2 1s 0.5, while in perfectly separated batches it is 1.0. As batch correction should not only mix the
243 batches but also preserve their shape as best as possible, we quantify the distortion between the
244 original and batch corrected data using Procrustes, which finds the error between the optimal
245 alignments of the two batches by linear transformation [35]]. These numbers are reported in
246 Table [2| While the other methods each have some datasets that violate their assumptions and
247 thus they perform poorly, SAUCIE performs as well or better at each of the wide variety of
28 datasets.

249 First, we generated two batches, each consisting of two ten-dimensional Gaussian point
250 clouds with different means. We then rotated this into 1000 dimensions to simulate realistic
251 single-cell data. Visual inspection shows that CCA appears to align the batches (i.e., the batch
252 label is well mixed), however it distorts the original shape of the data, creating more distinct
253 clusters per batch than originally existed. MNN pulls the batches closer together but does not
254 fully mix them. SAUCIE appears to successfully align the two batches while at the same time
255 preserving the original data structure shape without distortion. SAUCIE scores as well as the
256 alternative methods at the mixing score, while only SAUCIE can easily scale this performance
257 to hundreds of batches.

258 Next, we look at the CyTOF measurements of spike-in data where the same blood sample
259 has been measured twice on different days. Since they are technical replicates, the difference
260 between them confirms that there are batch effects in this data that need to be corrected. We ex-
261 pect perfect alignment after batch correction. We can observe well-aligned batches for SAUCIE
262 and MNN, however CCA does not remove any batch effect. As before, SAUCIE scores well
263 both in the mixing score and the Procrustes score.

264 Then, we evaluate nontechnical replicates of sScRNA-seq data from developing mouse cor-
265 tex. While the batch effect is the dominant signal in the data, we do not expect perfect align-
266 ment, as there are also possible differences between the time points that we expect to remain
267 (the two samples are from embryonic day 14.5 and 17, respectively). CCA partially aligns the
268 two batches. However, batch effect remains the strongest signal in the embedding and the shape
260 Of the data has been distorted: there now appear to be more clusters than were present origi-
270 nally in the data. SAUCIE and MNN, however, well align the two batches, but like in previous
271 datasets, MNN appears to also remove much of the population structure of the data. SAUCIE
272 both preserves the original population structure of each sample and aligns them. This is also
273 reflected in the nearest neighbor values, which are 0.544, 0.689, and 0.902, respectively.

8
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274 SAUCIE is also able to correct varying degrees of batch effect on public datasets from [23]],
s [24], and [22]. With an average mixing score of 0.518 across the datasets, SAUCIE effectively
276 aligns each different pair appropriately, due to its combination of reconstruction penalty and
277 batch correction term. Both on scRNA-seq and CyTOF data, SAUCIE can integrate different
278 samples for later downstream analysis.

2

J

279 2.2.3 Visualization

250 To evaluate the SAUCIE visualization and its ability to provide a faithful low-dimensional data
281 representation, we provide an extensive comparisons of this visualization to other frequently
282 used methods. We make use of artificial datasets where the underlying structure is known, as
253 well as real biological datasets that have been extensively characterized previously, so we have
234 prior understanding of the structure we expect to see in the visualization (Figure S4)).

285 The first three datasets come from a continuous artificially-generated tree structure with
286 different amounts of Gaussian noise added to it. All seven of the branches are recovered by
287 SAUCIE, tSNE, and PHATE. However, without enough noise, tSNE shatters branches, mis-
288 leadingly showing them as different clusters. PCA, Monocle2, and Diffusion Maps correctly
289 display the continuous tree-like nature of the data. However, in the two dimensions that are
200 shown, they do not capture all of the branches.

291 In the tree generated using diffusion limited aggregation (DLA), we have a more compli-
292 cated tree than in the previous examples. Only SAUCIE and PHATE effectively illustrate this
203 branching structure, while PCA places spherical clouds with many branches overlapping, and
204 Monocle2 and Diffusion Maps collapse several of the branches together. tSNE shatters the
205 different branches into one or more clusters, losing the continuous nature.

296 Next, to evaluate the ability of the various embedding methods to handle intersecting mani-
297 folds, we generated a dataset of three intersecting half circles. Both SAUCIE and PCA preserve
208 the circular shape as well as the intersecting positions. The other methods either distort the
209 curvature of the data, shatter the trajectory, or remove the intersecting nature of the data.

300 To evaluate the ability of SAUCIE and the existing visualization methods to recover under-
st lying structure we embed the MNIST dataset where there are true labels that correspond to the
s02 digit each image represents. We find that these different digits are well represented by SAUCIE,
a3 tSNE, and PHATE. In PCA, Monocle2, and Diffusion Maps, only some of the digits are distinct
s04 1n the two dimensions that are shown, with the others being erroneously blended.

305 Another dataset where we have ground truth is a synthetic Gaussian mixture model (GMM).
sos Here, four shifted Gaussians represented in the GMM dataset show the ability of each method
307 to capture the distinct clusters present in the data. Diffusion Maps collapses all of the data into a
a8 single point in the two dimensions shown, while Monocle2 places the clusters closer or farther
a9 to each other erroneously. Additionally, PCA, Monocle2, and Diffusion Maps do not capture the
a0 spherical structure of the data. SAUCIE, tSNE, and PHATE all capture this structure effectively.
311 In [27], the authors performed an extensive characterization of hematopoiesis in mouse bone
sz marrow and identified different cell types as shown in the colors in the embedding. SAUCIE
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a3 produces a visualization that reflects branching structure that is consistent with PHATE. Mon-
s14 ocle2 and Diffusion Maps collapse the trajectories into a single branch while tSNE shows them
315 as contiguous clusters.

316 The data from [22] describes a system of T cell development in the mouse thymus in which
s17 T cells develop from CD4-CDS8 double negative phenotype into double positive and then branch
a8 out into CD4+/CD8- and CD4-/CD8+. We therefore expect the embedding to show a continuous
a9 trajectory that then branches into two. This is the case for SAUCIE and PHATE. While tSNE
s20 shows the two directions, it does not optimally show the continuous progression. PCA and
st Monocle2 show a continuous progression but fail to show the branch point. Diffusion Maps
a2 fails to accurately capture any meaningful structure at all.

323 Next we looked at the dataset of [25]] with induced pluripotent stem cells that were measured
s2¢ in CyTOF over the course of several days, denoted by different colors. We expect the time
325 points to correlate with the embedding as cells gradually change phenotype over time. We can
a6 see that SAUCIE, PHATE, tSNE, and Diffusion Maps show this significant separation. PCA
sz and Monocle2 show the least separation across time.

328 In [26]], we examine retinal bipolar cells, along with the different subtypes identified by the
a0 authors. We expect the embedding to reflect these different populations that they identified. We
ss0 can see that PHATE, tSNE, and SAUCIE are able to show all of the different clusters within the
a3t two dimensional embedding. PCA, Monocle2, and Diffusion Maps show some of the structure
332 but clearly do not show all of the distinctions between cell types.

333 In [28]], we look at mouse neural cells, which were also accompanied by different neural
s« cell types that are reflected by different colors in the embeddings. Again we find that SAUCIE,
sss PHATE, and tSNE show all the expected cell types and that PCA, Monocle2, and Diffusion
ss  Maps only capture some of the structure within the two dimensions that are shown.

337 In addition to the previous extensive qualitative evaluation, we also measure the quality of
ss  the visualizations with a quantitative metric taken from [36]. In line with to their method’s
a9 precision and recall metrics, we compute a neighborhood around each point in both the original
a0 data space and the embedding space, and compare the neighbors of each. An embedding with
s+t high recall has most of a point’s original-space neighbors in its embedding-space neighborhood.
a2 Similarly, an embedding with high precision has most of the point’s embedding-space neighbors
a3 1n its original-space neighborhood. As directed by the authors’ algorithm, we gradually increase
a4 the size of the neighborhood and report the area-under-the-curve (AUC) for the precision-recall
as  curve. These results are in Table [3] where SAUCIE has the highest average score of 0.9342,
ass averaged across all datasets.

a7 2.2.4 Imputation

as  We analyze the SAUCIE imputation and its ability to recover missing values by implicitly in-
a9 terpolating on a data manifold in several ways. First, Figure shows several relationships
ss0 from the scRNA-seq data of the 10x mouse megacell dataset affected by severe dropout. This
351 dataset consists of 1.3 million cells, and SAUCIE was the only method in the comparison to
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32 be able process the full dataset. Moreover, it was able to do this in just 44 minutes. Addition-
sss  ally, because training a neural network only requires small minibatches in memory at one time,
s« we were able to do this without ever loading the entire large dataset into memory all at once.
355 Thus, to enable this comparison, we subsampled the data by taking one of the SAUCIE clusters
36 consisting of 4172 cells.

357 For this comparison, we measure against several popular imputation methods for scRNA-
a8 seq data: MAGIC, which is a data diffusion based approach, scImpute, which is a parametric
359 statistical method for imputing dropouts in SCRNA-seq data, and Nearest Neighbors Completion
so (NN Completion), which is an established method for filling in missing values in a general
st application of high-dimensional data processing.

362 In Figure [S3] we show six relationships of the mouse megacell dataset for the original data
33 and the different imputation methods. We observe that the original raw data is highly sparse,
s«  which can be seen by the large number of values on the axes where one of the variables is
ses exactly zero. Note that most cells have one or both genes missing. This is a problem because
ses this prevents us from identifying trends that exist between the genes. After imputation with
37 SAUCIE, we can observe that the sparse character of the data has been removed, with values
ses  filled in that reveal underlying associations between the gene pairs. These associations are
sse corroborated by MAGIC, which imputes similar values to SAUCIE in each case. MAGIC
a0 1s a dedicated imputation tool that is widely used, so SAUCIE matching the relationships it
snn found gives confidence in the ability of SAUCIE to impute dropout effectively. The resulting
a7z imputation in scImpute does not look significantly less sparse from the original and we do not
a7 see continuous trends emerge. NN Completion appears to desparsify the data, but the resulting
a74 trends all look similar to each other (i.e., positively correlated). This suggests that it does not
ars  correctly identify the underyling trends, as we would expect different genes to have different
are relationships. While scRNA-seq is highly sparse, the undersampling affects all entries in the
a7 matrix, including the nonzero values. As such, manifold-based methods like SAUCIE and
a7 MAGIC are more suited for finding these true relationships because they denoise the full dataset
a79  as opposed to just filling in zeros.

380 Due to the fact that ground truth values for the missing counts in this single-cell data are
ss1 not known, we further test the accuracy of the imputation abilities of SAUCIE with an artifi-
ss2 cially constructed experiment. We first leverage the bulk RNA sequencing data of 1076 cells
a3 from [37]], because it accurately captures the relationships between genes due to it not being
ss4 sparse (as opposed to generating our own synthetic data from a parametric generating function
sss that we have the ability to choose, where we can create the relationships). We then simulate
ss6  increasing amounts of dropout and compare the imputed values returned by each method to the
ss7  true values we started with. To simulate dropout in a manner that reflects the underlying mech-
sss anisms of inefficient mRNA capture, we remove molecules instead of just setting values for
a9 genes to zero. As a result, the level of dropout is conditional upon expression level, reflecting
s the dropout structure of single-cell RNA sequencing data. The results are reported in Figure
st where SAUCIE compares favorably to other methods, recovering the true values accurately
a2 even after as much as 99% dropout. The dataset for this experiment consisted of just 1076 cells,
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a3 which allowed us to compare to the methods that cannot process larger datasets, but even on
se4 a dataset of this size SAUCIE gave a more than 100-times speedup over NN Completion and
a5 600-times speedup over scImpute.

s 2.2.5 Runtime Comparison

se7 In order to showcase the scalability of SAUCIE, we compare to a host of other methods on a
a8 subset of our newly generated CyTOF dataset consisting of over 11 million cells existing in 35
a9 dimensions. We display the runtimes of each method on a random sample of N points, with
w0 N = 100,200,400, 800, ...,11000000 in Figure ST} For each step, the method was given a
a1 timeout after 24 hours. Points where a method stopped scaling in Figure [ST| are marked with
402 an ‘x’.

403 SAUCIE performs visualization, batch correction, imputation, and clustering in its run,
a4 while each of the other methods only performs one of these tasks. Moreover, SAUCIE does
a5 not just compute simple linear functions on the data, but instead performs complex non-linear
a6 transformations in the process. Despite its complexity, it also scales very well with the ex-
a7 tremely large dataset sizes, which can be further improved by simply adding more independent
a8 GPUs for calculations. Each additional (relatively inexpensive) GPU can offer a near linear
s09 Increase in computation time, as opposed to more CPUs which offer diminishing returns in par-
a0 allelizability. All experiments were run on a single machine with just one GPU, meaning these
411 results could still benefit even more from this potential for scalability. For further details on
412 how the runtime experiment was performed, see the Methods section.

413 Among the batch correction methods, there are no other methods that correct multiple
#14  batches simultaneously. However even when we restrict to pairwise comparisons, SAUCIE
415 1S the only method that comes close to handling this amount of data. CCA and MNN both stop
a6 scaling in the tens of thousands of cells. In the group of imputation methods, scimpute and NN
417 completion also stop scaling in the tens of thousands, while MAGIC stops scaling in the hun-
#18 dreds of thousands. For visualization, PCA was the only method faster than SAUCIE, which
#19 1s unsurprising because calculating it using fast randomized SVD is quick, but it gives a sim-
a0 ple, strictly linear blurry views of the data, in contrast to SAUCIE’s nonlinear dimensionality
a2t reduction. The other more complex visualization methods do not scale to these dataset sizes:
a2 Diffusion Maps, PHATE, tSNE, and Monocle2 all stop scaling before even reaching the full
23 eleven million cells. For clustering, kmeans is the only one faster than SAUCIE, due to using
«24 its minibatched version. However, it still assumes circular clusters in the Euclidean space and
425 comes with the intrinsic flaw that the number of clusters must be known ahead of time, which is
226 not possible in any realistic setting like ours where we are performing exploratory data analysis
a7 on a large new dataset. Phenograph and scVI do not scale to the full dataset, either. Despite
428 being another neural network method, scVI cannot scale to these larger sizes because it only
429 produces a latent space that then must be clustered with another method. This requirement then
s30 becomes its bottleneck, emphasizing the importance of SAUCIE performing all tasks directly
s31 instead of acting as a pre-processing step for other methods.
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432 SAUCIE is the only method that can efficiently batch correct, impute and denoise, visualize,
a3 and cluster datasets of this size, while using a nonlinear manifold representation of the data.

s 2.3 Analysis of immune response to dengue infection with SAUCIE

s Next, we demonstrate an application of SAUCIE as an important tool enabling exploratory anal-
a6 ysis of a new “big” dataset that consists of single-cell CyTOF measurements of T cells from
a7 45 subjects including a group acutely infected with the dengue virus and healthy controls from
a8 the same endemic area [19]. While dengue is estimated to affect sixty million people yearly
a9 and cause ten thousand deaths, like other tropical diseases, it remains understudied. Moreover,
a0 dengue is especially challenging since there are several different serotypes with complex inter-
a1 actions between them. Specifically, there are four strains that have very different characteristics.
a2 While infection with a particular strain may provide some immunity towards reinfection with
a3 that same strain, an antibody dependent enhancement results in faster uptake of another strain
a4 upon reinfection [38]. Drugs have proven difficult to develop for dengue. Further, vaccine
w5 development has also been challenging in the case of dengue. Recently, the WHO has ruled
a4 that the dengue vaccine of Senofi Pasteur only be administered to patients who are infected
a7 for the second (or subsequent) time [[39]. This is because the vaccine itself is thought to leave
as patients vulnerable to very severe reinfections. So unlike other viruses, the dengue virus appar-
a9 ently leaves patients more vulnerable the second time. These types of complex effects require
w50 deep and detailed analysis of both infected and convalescent patients at the single cell level to
45t understand the immune response.

452 We applied SAUCIE to the single-cell CyTOF data of T cells collected in an area endemic
ss3 for dengue virus infection [19] to study general T cell compartment composition, variability
ss4 and changes in the variability after convalescence. We believe that the dengue data is an ideal
a5 test case for SAUCIE, because the samples are shipped from India and samples were collected
a6 over a period of months and were assesed over different experiment days [19]. Thus, there is a
ss7 - pressing need for batch correction and data cleaning as well as uniform processing, clustering
a8 and meta-analysis of patient stratification. As part of the study, cells from additional patient
ss9  groups beyond the acutely infected were also measured: healthy people unrelated to the subjects
s0 as a control and the same acute subjects at a later convalescent time point. Primary research
st questions include understanding profile of the acute subjects and how they differ from the other
a2 groups. Across all groups, there are 180 samples resulting in over twenty million cells with
a3 results analyzed on 35 different protein markers, a massive amount of data that would cause
se4 difficulties in most standard analytic frameworks.

w5 2.3.1 Batch correction

a6 Beyond the sheer size of the total dataset, due to the large number of distinct samples in the
467 experiment there are significant batch related artifacts effects, stemming from day-to-day dif-
a8 ferences, instruments, handling and shipping of the samples. While there are true biological
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w90 differences between the individual samples, to identify those true differences in the samples we
470 have to remove differences that are caused by these technical variables.

a7t Differences that are highly associated with the day they were run on the cytometry instru-
sz ment can be seen by grouping all of the samples together by run day and examining their
473 marker-by-marker abundances. Each run day has twelve samples chosen such that each day
a7+ has samples from each experimental condition, so any differences between the samples from
a7 each day are batch effects. As shown in Figure[S3] these difference exist in the spike-in controls
a7 as well as the samples, confirming their identity as batch effect and not true variation.

477 Figure [S7| shows four markers with extreme batch effects: TCRgd, IL-6, IFNg, and CD86.
a7s - These batch effects would normally mean only samples within each run day could be compared
479 to each other, as comparisons between samples from different run days would be dominated by
a0 the differences in the run days. Instead, the SAUCIE batch correction removes these undesirable
ss1  effects by combining the samples from each day and aligning them to a reference batch, here
a2 chosen to be Day 1. Figure shows that after SAUCIE the differences between run days
ss3  disappear so that now what it means to be low or high in a marker is the same for each day.
ss¢  Before, the cells with the lowest IFNg in samples from Day 3 would still be considered IFNg+
sss  while the cells with the highest IFNg in samples from Day 1 would still be IFNg-. After batch
a6 correction with SAUCIE, these can be directly compared.

487 The challenge of batch correction is to remove differences due to artifacts while preserving
a8 biological differences. We reason that to prevent removing true biological variation, the ‘shape’
a9 of the data (but not its position and scale) within each day must be preserved. We define the
a0 shape of the data as any moment beyond the first two - mean and variance. We examine this in
se1  detail by considering a run day with the most significant batch effects, Day 2. In Figure [S3|C,
a2 the SAUCIE visualization shows that the reference and nonreference batches are completely
03 separated. When MMD regularization is added in SAUCIE, though, these two batches are fully
se4 overlapped. In Figure [S8] we examine the twelve individual samples that were run on Day 2.
95 Initially, we see that this confirms our idea that the differences between days are batch effects,
a9 because each sample measures high in IL-6 and CD86. So the differences between samples
27 tun on Day 1 and Day 2 in CD86 abundance is not dominated by having more of a certain
a8 sample type in Day 2. Instead, all samples in Day 2 have been shifted higher. As desired, after
490 batch correction, the mean of each marker is reduced to the level of the reference-batch mean.
soo Crucially, the relationship of samples in Day 2 relative to each other is preserved. The samples
sor with the highest IL-6 in Day 2 are still Samples 3, 9, and 11 while the samples with the lowest
so2 are still Samples 4, 5, and 6. SAUCIE has just changed what it means to be high or low for
sos samples in this day such that it reconciles what it means to be high or low for samples in the
s« reference day.

505 In conclusion, the batch correction and denoising ability of SAUCIE has transformed the
sos data into a form that is amenable to biological discovery. We investigate this in the next section.
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so7  2.3.2 Differential cluster proportions between subjects

sos  We first obtain the clusters characteristic of each group and then further analyze them for marker
so9 enrichments as single cell versions of blood biomarkers [40]. For the clustering considered here,
sto  we use a coarse-grained clustering obtained with a coefficient for ID regularization of 0.1. This
st was chosen by scanning across values of 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5, and choosing the
stz clustering that yielded the best modularity. If other granularities are desired, lower coefficients
si3  could be used and the impact of this parameter on the number of clusters is shown in Figure[S9
sia The two regularizations Ay and ). affect the number of clusters that result. For a given value
si5s of \g, as ). increases, the number of clusters decreases (coarser granularity). Higher values of
sis  \g yield more clusters (finer granularity). Notably, these results are robust and yield reasonable
si7  results for varying values of the two regularizations. These two together act as knobs that can
sis be tuned to get the desired granularity of clustering. The methods section further discusses how
st9  these regularizations affect the number of clusters.

520 For the SAUCIE clustering, we focus on T cells as particularly relevant to the immune pro-
s21 - cess and an abundant subset of the data (eleven million total cells), looking for clusters that
s22 are over- or under-represented in the cells of each group. We look for clusters that behave dif-
s23 ferently in the acute compared to the convalescent time points. These would then represent a
s24 population of cells that might have an important role in the process, which could be further in-
s2s  vestigated. To understand what cell population this is, we examine the marker abundance profile
s26 for the cluster. The mean for each cluster and marker is shown in the heatmap in Figure [6B.

527 We find twenty total clusters within the T cell populations, five of which are CD8 T cells
s2s and thirteen of which are CD4 T cells. In addition, interestingly, there are six clusters of CD4-
s29 CDB8- T cells, where four are v T cells. These have been noted as a characteristic of reaction to
ss0 viral infections [41-45]]. There are twelve clusters representing effector memory cells and nine
sst  regulatory T cells that are CD4+Foxp3+. Two of the clusters are naive T cells.

532 Several of these populations are indicative of differences between acute, convalescent, and
ss3  healthy subjects, and can be used for characterizing the nature of the reaction of each of these
s« groups, as we do below.

535 1. v6 T cells are a relatively rare type of T cells, but SAUCIE is still able to identify them.

536 Despite their rarity, they appear to have significance in identifying different populations,
537 which emphasizes the importance of this attribute of SAUCIE. These cells signal espe-
538 cially strong earliy in immune response, particularly skin and mucosal immunity. They
539 have less variable TCR sequences than a3 T cells [46]. These cells are a bridge between
540 T cells and myeloid cells, as they have some innate immune activity, where they express
541 CD11c and CD86. They can bind to lipid antigens. Clusters 0 and 3 (consisting of 7% of
542 the total cells) shows upregulation of CD57. This is an indication of terminal differentia-
543 tion. CTLA-4 and CD38 are also high, so these are highly activated cells and potentially
544 dysfunctional. We see that these clusters are highest in the acute subjects and lowest in
545 the healthy subjects. Out of the fifteen subjects that were measured both as acute subjects
546 and later in convalescence, thirteen had more of these cells during their acute infection.
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547 2. We find another group of vd T cells that are CD45RO and CD45RA positive (cluster 2,

548 consisting of 1% of the total cells), but not yet fully terminally differentiated, so these
549 could be transitional between naive and effector memory. The effector memory cells
550 express less IFNb. As this cluster is more expressed in the healthy subjects, it indicates
551 that even these subjects may have had some exposure to dengue. There is a lack of an
552 inflammatory state, i.e., low in IFNb and Perforin, so we expect that these are actually
553 memory cells instead of effector cells. It makes more sense then that these populations
554 are more expressed in convalescent and healthy subjects.

555 3. We also find another population of CD4+ T cells (clusters 3-15, consisting of 45% of the

556 total population) that are not expressing any inflammatory markers or activation markers,
557 and these are higher in the convalescent and healthy subjects, while being very low in
558 the acute subjects. These look to be other memory cells that may characterize these
559 convalescent subjects. In fact, out of the fifteen subjects with acute-convalescent paired
560 measurements, eleven had more of these cells during convalescent measurement. These
561 have signs of recent activation as they do not have CD69, which is an early activation
562 marker, nor any of the cytokines like IFNg, IFNb, or IL-6.

563 4. Additionally, we find a population of CD8+ effector cells (cluster 15, which consists of
564 3% of the total cells) that are highly expressed in the acute subjects. These cells also
565 express CD57 and CD38, but are not 0 as the previous populations were. These appear
566 to be more differentiated and are likely not transitional, as the previous ones were, either.

se7  We can also visualize the cell-level cluster proportions on a patient manifold (Figure[5B). There,
ses  We see that cluster proportions arranged on this manifold reveal clusters that are changing across
se9 the space. This analysis indicates clearly that cluster 1 is representative of acute subjects and
s cluster 5 is representative of the healthy subjects. Furthermore, we can evaluate the same in-
s71 - dividual when measured after acute infection, and then later at a convalescent time point (Fig-
s22 ure[5[C). Viewed in this way, we see that cluster 11 is also more present in most subjects when
s73  they came in with an acute infection than at the convalescent time point.

s24 2.3.3 Visualization

ss SAUCIE can process all cells from all subjects to construct a cellular manifold and extract its
s features. First, we visualize this manifold using the 2-D visualization layer. Figure[0A is divided
577 into two embeddings that show the cell manifolds for acute and healthy subjects separately.
sz As can be seen, there is a characteristic change in the manifold that becomes apparent when
s79 comparing the embeddings side-by-side. The acute subjects have cell populations distinctly
ss0 Mmissing that are present in the healthy subjects.

581 After characterizing the nature of the cellular space in the aggregate, we can additionally
ss2 analyze manifolds formed by the distributions of T lymphocytes within each patient separately.
ss3  As each patient has a heterogeneous population of cells, including with different total numbers
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ss¢ Of cells, it becomes a challenge to define a meaningful measure of similarity between the indi-
sss  viduals. Here we are able to leverage the manifold constructed by the SAUCIE embedding and
sss  calculate MMD (a distribution distance) between the distribution of cells in the latent space for
ss7 each pair of subjects. With a measure of similarity between each pair of patients, we can now
ss construct a manifold not of the cells but also of the subjects (Figure [S|A).

ss0  2.3.4 Comparison to existing method

so  We next compare the SAUCIE pipeline of batch correcting, clustering, and visualizing single-
so1  cell data from a cohort of subjects to an alternative approach called metaclustering [47]. We
se2 first cluster each sample individually with Phenograph. Then, we represent each cluster as
se3 1ts centroid and use Phenograph again on the clusters to obtain metaclusters. We examine
se« the pipelines on ten of the 180 samples here, where the metaclustering approach took forty
ses minutes. We note that the SAUCIE pipeline took 45 minutes to process all 180 samples, while
ses the metaclustering approach would take 12 hours to process all of them. Figure [SI0| shows
so7 tSNE embeddings of the cluster centroids where the size of the cluster is proportional to the
se8  size of the point. Coloring by sample, we see that the metaclusters have identified batch effects.
see Metacluster 0 is only composed of samples 1, 3, 4, and 5. These samples have no clusters in any
so0 other metacluster, and none of the other samples have any cluster in this metacluster. Examining
so1 the gene expression heatmap, we see that metacluster 0 has separated cells with high CD86
sz values, which were shown earlier to be batch effects. Moreover, the metaclusters are very
ss heterogeneous internally with respect to gene expression. This is a results of metaclustering
s+ the cluster centroids, as the metaclusters then have no information about the individual cells
s0s comprising that centroid.

606 In contrast, Figure [STI| shows the SAUCIE pipeline on these ten samples. The cluster
07 proportions show that each cluster is fully mixed with respect to the samples, as opposed to
es the sample-segregated metaclusters of the previous approach. Similarly, the clusters are more
s09 homogeneous internally, meaning they actually keep similar cells together, as opposed to the
st0 metaclusters, which lost this information when each cluster was represented by only its centroid.
s11  Finally, we find that SAUCIE effectively compares cells across subjects, while the metacluster-
sz ing approach still fails at patient-to-patient comparisons, instead only identifying batch effect
e1s  variation. This emphasizes the importance of multitask learning using a unified representation
s14 1n SAUCIE.

o 3 Discussion

st We presented SAUCIE, a neural network framework that streamlines exploratory analysis of
17 datasets that contain a multitude of samples and a large volume of single cells measured in each
s sample. The key advantage in SAUCIE is its ability to perform a variety of crucial tasks on
1o single-cell datasets in a highly scalable fashion (utilizing the parallelizability of deep learning
s20 with GPUs) without needing to call external algorithms or processing methods. As a result,
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szt SAUCIE is able to process multisample data in a unified way using a single underlying repre-
22 sentation learned by a deep autoencoder. Thus, different samples can be visualized in the same
23 coordinates without batch effects via the embedding layer of the neural network, and cluster
s24 proportions can be directly compared, since the whole dataset is decomposed into a single set
e2s of clusters without requiring cluster matching or metaclustering. These unified representations
e2s can be readily used for inter-sample comparisons and stratification, on the basis of their under-
27 lying cell-to-cell heterogeneity.

628 Mathematically, SAUCIE presents a new way of utilizing deep learning in the analysis of
s20 biological and biomedical data by directly reading and interpreting hidden layers that are regu-
s30 larized in novel ways to understand and correct different aspects of data. Thus far, deep learning
a1 has primarily been used in biology and medicine as a black-box model designed to train clas-
ez sifiers that often mimic human classifications of disease or pathology. However, the network
sss 1nternal layers themselves are typically not examined for mechanistic understanding. SAUCIE
s« 18 leading a new wave of deep learning models that obtain information from internal layers
sss of a deep network. Deep autoencoding neural networks essentially perform nonlinear dimen-
sss sionality reduction on the data. As such they could be used “off-the-shelf” for obtaining new
a7 coordinates for data in a reduced-dimension space, to which other algorithms can be applied.
sss  However, in SAUCIE we aim to go further to structure the reduced dimensions in specifically
s30 Interpretable ways using novel regularizations. Our information-theoretic regularization en-
ss0 courages near-binary activations of an internal layer, thus making the layer amenable to directly
ss1 output encoded cluster identifications. We believe that this is just the first foray into what could
ss2 be a vast number of such regularizations that can offer interpretability of specialized layers in
s« neural networks, thus turning these “black boxes” into “glass boxes.”

644 The ability to stratify patients on the basis of their single-cell subpopulations, which can
ess emerge as features in deep neural networks, can be key to a new generations of biomarkers that
sss can be used in diagnosis and treatment. Traditionally, biomarkers are proteins or antibodies that
ss7 are circulating in blood, which signals the presence of infection or other conditions. However,
sss immune cells are highly plastic and can evolve or activate in specific ways in response to dis-
ss0 ease conditions in different patients. Here, we showcase the heterogeneity of immune cells in
eso response to acute dengue infection in a large patient cohort. We see that specific subpopula-
es1  tions are enriched in the acute conditions, as opposed to convalescent or healthy controls. We
es2  showed with our dengue dataset it is possible discover cell populations, even rare ones that are
es3 indicative of patient and experimental conditions. Other datasets comprising of large patient
es¢+ cohorts measured at single-cell resolution are underway already in many hospitals and clinical
ess  trials. In the future, we are confident that this capability will be useful in many studies includ-
s 1ng immunotherapy, autoimmunity, and cancer, where there are immune subsets that emerge in
657 Tresponse.
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Figure 1: The pipeline for analyzing single-cell data in large cohorts with SAUCIE. Many
individual patients are separately measured with a single-cell technology such as CyTOF or
scRNA-seq, producing distinct datasets for each patient. SAUCIE performs imputation and
denoising, batch effect removal, clustering, and visualization on the entire cohort with a unified
model and is able to provide interpretable, quantifiable metrics on each subject or group of
subjects.
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Figure 2: Regularizations and architecture choices in SAUCIE. A) the ID regularization
applied on the sparse encoding layer produces digital codes for clustering B) the informational
bottleneck, i.e. a smaller embedding layer, uses dimensionality reduction to produce denoised
data at the output C) the MMD regularization removes batch artifacts D) the within cluster
distance regularization applied to the denoised data provides coherent clusters.
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Figure 3: A comparison of the different analysis tasks performed by SAUCIE against other
methods. A) A comparison of clustering performance shown on PHATE. SAUCIE compares
well to the other methods, producing a coherent clustering. Neither Phenograph nor scVI pro-
duces clusters that look coherent. B) A comparison of SAUCIE’s visualization. PCA produces
a blurry visualization. Diffusion maps shows a much simplified structure. tSNE shatters the
space. SAUCIE produces a result similar to PHATE, revealing the structure in the data. C) A
comparison of imputation. SAUCIE recovers complex nonlinear shapes of gene-gene relation-
ships.

21


https://doi.org/10.1101/237065
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237065; this version posted January 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Perfect ) Batch
% Reconstruction Correction
- ;
Perfect Blending 4
(MMD=0)
A=0 A,=0.0001

SAUCIE2

SAUCIE1
Original SAUCIE MNN CCA
e ¥
w
ol
2
SAUCIET
N
w
3]
2
<
w

SAUCIE1

Figure 4: Demonstration of SAUCIE’s batch correction abilities. A) SAUCIE batch correc-
tion balances perfect reconstruction (which would leave the batches uncorrected) with perfect
blending (which would remove all of the original structure in the data) to remove the technical
variation while preserving the biological variation. B) The effect of increasing the magnitude
of the MMD regularization on the dengue data. Sufficient MMD regularization is capable of
fully removing batch effect. C) Results of batch correction on the synthetic GMM data (top)
and the dengue data (bottom) shows that SAUCIE better removes batch effects than MNN and
better preserves the structure of the data than CCA.

22


https://doi.org/10.1101/237065
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/237065; this version posted January 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Acute Healthy Convalescent All
Patient Manifold Patient Manifold Patient Manifold Patient Manifold
° L]
oo oo
® % 3 4
5 - 5 : ¥ 4
X .‘ X X < .“
° L]
kPCA 1 kPCA 1 kPCA 1 kPCA 1
Cluster 1 Proportion Cluster 3 Proportion Cluster 5 Proportion Cluster 9 Proportion
° <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>