bioRxiv preprint doi: https://doi.org/10.1101/237032; this version posted February 1, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@PLOS | susmission

aCC-BY-NC-ND 4.0 International license.

NFTsim: Theory and Simulation of Multiscale Neural Field
Dynamics

P. Sanz-Leon 2 ™ 2 P. A. Robinson'2, S. A. Knock 2, P. M. Drysdale!, R. G.
Abeysuriyal23, P. K. Fung!?3, C. J. Rennie!, X. Zhao' 2

1 School of Physics, University of Sydney, Sydney, New South Wales, Australia

2 Center for Integrative Brain Function, University of Sydney, Sydney, New South
Wales, Australia

3 Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative
Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United
Kingdom

4 Downstate Medical Center, State University of New York, Brooklyn, United States

{Current Address: School of Physics, University of Sydney, New South Wales, Australia
* paula.sanz-leon@sydney.edu.au

Abstract

A user ready, portable, documented software package, NFTsim, is presented to facilitate
numerical simulations of a wide range of brain systems using continuum neural field
modeling. NFTsim enables users to simulate key aspects of brain activity at multiple
scales. At the microscopic scale, it incorporates to define characteristics of local
interactions between cells, neurotransmitter effects, synaptodendritic delays and
feedbacks. At the mesoscopic scale, it incorporates information about medium to large
scale axonal ranges of fibers, which are essential to model dissipative wave transmission
and to produce synchronous oscillations and associated cross-correlation patterns as
observed in local field potential recordings of active tissue. At the scale of the whole
brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical
projections, when generating macroscopic activity fields. The multiscale nature of the
neural activity produced by NFTsim enables the modeling of resulting quantities
measurable via various neuroimaging techniques. In this work, we give a comprehensive
description of the design and implementation of the software. Due to its modularity and
flexibility, NF Tsim enables the systematic study of an unlimited number of neural
systems with multiple neural populations under a unified framework and allows for
direct comparison with analytic and experimental predictions. The code is written in
C++ and bundled with Matlab routines for a rapid quantitative analysis and
visualization of the outputs. The output of NFTsim is stored in plain text file enabling
users to select from a broad range of tools for offline analysis. This software enables a
wide and convenient use of powerful physiologically-based neural field approaches to
brain modeling. NFTsim is distributed under the Apache 2.0 license.

Introduction

The brain is a multiscale physical system, with structures ranging from the size of ion
channels to the whole brain, and timescales running from sub-millisecond to multi-year
durations. When modeling brain structure and dynamics, it is thus necessary to choose
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models that are appropriate to the scales of the phenomena involved. These range from
microscale models of individual neurons and their substructures, through network-level
models of discrete neurons, to population-level mesoscale and macroscale neural mass
and neural field models that average over microstructure and apply from local brain
areas up to the whole brain. Many useful results can be obtained analytically from
models at various scales, either generally or when applied to specific brain systems and
phenomena. However, in order to minimize approximations and make realistic
predictions in complex situations, numerical simulations are usually necessary. The
purpose of this paper is to present a neural field software package, NFTsim, that can
simulate scales from a few tenths of a millimeter and a few milliseconds upward, thereby
making contact with experiments [1-6] and other classes of simulations over this

range [7,8].

No one type of brain model is optimal at all scales. For example, single neuron
models abound in neuroscience, and can include a large number of biophysical effects
with relatively few approximations. Many such models have also been used to study
networks of interconnected neurons with varying degrees of idealization, thereby
revealing a huge number of insights [9-11]. However, several key problems arise as
network size grows: (i) the computational resources required become prohibitive,
meaning that simulations can often only be carried out in physiologically unrealistic
scenarios, typically with idealized neurons, which may be quantitatively and/or
qualitatively inappropriate for the real brain; (ii) it is increasingly difficult to measure
and assign biophysical parameters to the individual neurons — e.g., individual
connectivities, synaptic strengths, or morphological features, so large groups of neurons
are typically assigned identical parameters, thereby partly removing the specificity of
such simulations; (iii) analysis and interpretation of results, such as large collections of
timeseries of individual soma voltages, becomes increasingly difficult and demanding on
storage and postprocessing; (iv) emergence of collective network-level phenomena can be
difficult to recognize, sometimes leading to single-neuron dynamics being
overemphasized; (v) the scales of these simulations are well suited to relate to
single-neuron measurements, and microscopic pieces of brain tissue, but are distant from
those of noninvasive imaging modalities such as functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) [12-14],
which detect signals that result from the aggregate activity of large numbers of neurons;
and (vi), inputs from other parts of the brain are neglected, meaning that such models
tend to represent isolated pieces of neural tissue.

At the level of neurons and neuronal networks [15,16], software is abundant,
including BRTAN, NEURON, GENESIS, and NeoCortical Simulator [17-22]. A detailed
review of tools and implementation strategies for spiking neural network simulations can
be found in [9].

At the largest scales, neural mass models average the properties of huge numbers of
neurons into those of a single population, without taking account of its spatial aspects.
This enables the temporal dynamics of whole neural populations to be approximated,
but information on individual neurons and spatial dynamics and patterns is not tracked.
This scale can be used to study whole-brain phenomena such as generalized seizures, if
time delays within each mass can be neglected. This approach has been used to treat
relatively coarse-grained networks of interacting brain regions, each modeled as a neural
mass. However, it is rare to see careful attention paid to the need for these
representations to approach the correct spatiotemporal continuum limit as the size of
the regions decreases [10,23,24], thereby throwing some such discretizations into
question. Of course, neural structure is not truly continuous, but its granularity is at a
far finer scale than that of the discretizations just mentioned.

Above the single-neuron scale and extending to encompass the neural-mass limit as a
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special case, neural field approaches retain spatial information in a continuum limit in
which properties such as firing rate and soma voltage are viewed as local averages over
many neurons, and can vary from point to point, and as functions of time; when
correctly discretized, neural mass models are a limiting case of the more general neural
fields and should not be viewed as a separate category. Neural fields approximate
rate-based models of single neurons from the small scale, while retaining relative timings
between neural inputs and outputs. Simultaneously, they self-consistently add spatial
structure that is neglected in neural mass models. Hybrid models with features of both
neural fields and spiking neurons have also been developed and used to clarify the
relationship between these approaches [3], or to enable single-neuron dynamics to be
influenced by average neural fields [25], but we do not discuss these classes of models
further here.

The issues discussed in the preceding paragraphs are closely analogous to ones that
arise in other branches of physics. Specifically, no single model can cover all scales at
once. Rather, a hierarchy of models is needed, from the microscale to the macroscale,
each relating predictions to measurements at its operational scale. This yields tractable
models that can be interpreted in terms of concepts and measurements that apply at
the appropriate scales for a given phenomenon. Importantly, each model needs to be
related to the ones at nearby scales, especially by making complementary predictions at
overlapping scales of common applicability. By analogy, molecular dynamics approaches
and statistical mechanics (akin to single neuron approaches) are widely used to track
molecules at the microscopic scale, but large-scale theories like thermodynamics and
fluid mechanics (akin to neural mass and neural field methods) are more useful and
tractable for macroscopic phenomena, and their predictions can be more easily
interpreted. At intermediate scales, nonequilibrium thermodynamics and fluctuation
theory meet with statistical mechanics and molecular approaches to make
complementary predictions of the same phenomena; so that consistency of the various
approaches in their common domain can be established. Although molecular-level and
spiking-neuron approaches are more fundamental, they are not practical at large scales,
and yield results that have to be reinterpreted in terms of larger-scale observables in any
case. Conversely, thermodynamic and neural-field approaches fail at spatial and
temporal scales that are too short to justify the relevant averaging over a system’s
microscopic constituents.

Because of the wide range of scales that can be incorporated in neural field theory, it
provides useful macroscopic predictions and can reach down to mesoscopic scales that
now overlap with those that can be simulated with neuron-level methods. This provides
a range of common applicability on scales of around 1 mm, or slightly less, where
complementary predictions can be made and tested — an overlap that will increase as
microscopic simulations increase in scale. Equally significantly, quantitative neural field
predictions can readily be made of quantities observable by EEG, MEG, fMRI,
electrocorticography (ECoG), and other imaging technologies, by adding the biophysics
of these signals, measurement procedures, and postprocessing [26-29]. This enables
predictions of a single brain model to be tested against multiple phenomena in order to
better determine the relevant physiological parameters. The importance of this point
cannot be overemphasized — underdetermination of theories and models is rife in
neuroscience, and ones that are tested against only one or a few phenomena, and/or
whose predictions and parameters are not expressed in quantitative physical units, must
at best be treated as being highly provisional, subject to further verification and
parameter constraint.

As an illustration of the versatility of NF'T approaches, we note that the particular
NFT on which the present NFTsim software is based has been extensively applied and
quantitatively tested against experiments, including EEG, evoked response potentials
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(ERPs), ECoG, age-related changes to the physiology of the brain, sleep and arousal
dynamics, seizures, Parkinson’s disease, and other disorders, transcranial magnetic
stimulation (TMS), synaptic plasticity phenomena [1,6,26-38]. Indeed, one of the major
strengths of this NFT is its versatility: within the same framework we can express
different models to study purely cortical phenomena, the corticothalamic system, basal
ganglia, sleep dynamics, or the visual cortex, among an essentially unlimited number of
other applications [1,26-28,30,32,34-37,39-42]. This NFT has also been clearly linked
to its neural mass limit [35], to hybrid spiking-field approaches [3,34,43], and to
network and connection-matrix representations of spatial structure in the brain [44],
usually obtained via fMRI.

We stress that the NF'T embodied in NFTsim is not the only possibility. Other
NFTs have been developed and applied by numerous authors [45-53], each of which has
been applied to one or more physical situations in these and subsequent publications.
This list is not exhaustive, since the present work is not intended as a review, but more
examples can be found in [10], [24], and [54]. Notably, most of these NFTs can be
expressed in the notation of the present paper, and can thus be simulated with the
NFTsim software described below. Some of these previous neural field models leave out
physical effects that are included in NF'Tsim, while others include additional features
that remain to be incorporated in a future version of the code.

A few software packages are available to model neural masses and neural fields: [7]
developed a neuroinformatics platform for large-scale brain modeling in terms of a
network of linked neural masses with anatomically specified cortical geometry [54],
long-range connectivity, and local short-range connectivity that approximates the
continuum limit when it is Gaussian and homogeneous [23]. While the mathematical
framework described in [54] allows for neural field models to be treated using realistic
geometry on nonregular grids, a user-ready implementation is not currently available.
Similarly, the Brain Dynamics Toolbox [55] provides tools for network-based and
continuum models of brain dynamics. The most recent simulation tool for
spatiotemporal neural dynamics is the Neural Field Simulator [8], which allows for
study of a range of 2D neural field models on a square grid. However, this software does
not allow for either the simulation of neural field models with heterogeneous parameters
or with multiple populations.

To address the need for research-ready NFT simulation tools with direct application
to the study of large-scale brain phenomena, this paper introduces and describes
NFTsim, a software package that solves neural field equations expressed in differential
form for simulating spatially extended systems containing arbitrary numbers of neural
populations.

Neural Field Theory

Neural field theory (NFT) treats multiscale brain activity by averaging neural quantities
such as firing rate, soma voltage, and incoming and outgoing activity over multiple
neurons. The scales over which neural field models average must be sufficient to
represent large numbers of neurons and spikes, but can still be small enough to resolve
quite fine structure in the brain and its activity. NF'Tsim allows an arbitrary number p
of spatially extended populations of neurons to be simulated. Each of these can be
distinguished by its location (e.g., belonging to the cortex or a particular nucleus) and
its neural type (e.g., pyramidal excitatory, interneuron). To model a particular system,
we must specify the neural populations and the connections between them, including
self-connections within a population. If we introduce position and time coordinates r
and t, the main macroscopic variables that describe the activity of neural populations a
and their interaction with other populations b are: the incoming, axonal spike-rate fields
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dap(r,t) arriving at population a at (r,t) from population b, the dendritic potentials
Vab, the mean soma potential V,(r,t), the mean firing rate Q,(r,t), and the axonal
fields ¢q(r,t) propagating to other populations ¢ from population a. Figure 1
illustrates the interactions of these quantities: (i) synaptodendritic dynamics involving
the incoming axonal fields ¢, to yield the potentials Vgp; (ii) dendritic summation and
soma charging processes to yield the soma potential Vj; (iii) generation of pulses @, at
the axonal hillock, and (iv) axonal propagation of pulses ¢,. within and between neural
populations [1]. The following subsections present a review of the equations describing
these physiological processes, while Table 1 summarizes the quantities and symbols used
in NFT and their ST units.

Synaptodendritic Soma m Firing Wave
¢ab : Vab - Va Qa -
dynamics charging U response propagation

Fig 1. Schematic of the dynamical processes that occur within and between
neural populations. Gray circles are quantities associated with interactions between
populations (i.e., a and b), while white circles are quantities associated with a
population (i.e., a or b). Spike-rate fields ¢qp arriving at neurons of type a from ones of
type b are modulated by the synaptic dynamics, and undergo dendritic dynamics to
produce postsynaptic subpotentials V,;. These contributions are linearly summed in the
dendritic tree, eventually resulting in charging currents at the soma that give rise to the
soma potential V,, after allowing for capacitive effects and leakage. Action potentials
generated at the axonal hillock are averaged over a population of neurons. Then, when
the mean soma voltage exceeds a threshold, the mean firing rate @, of the population is
obtained via a nonlinear response function. Finally, the pulses propagate away across
the axonal tree and the dendrites of the receiving population ¢ as the set of average
spike-rate fields ¢.,. Note that self-connections with b = a or ¢ = a are included.

Synaptodendritic Dynamics and the Soma Potential

When spikes arrive at synapses on neurons of population a from a neural population b,
they initiate neurotransmitter release and consequent synaptic dynamics, like
transmembrane potential changes, followed by dendritic propagation of currents that
result in soma charging and consequent modifications of the soma potential. Each of
these processes involves its own dynamics and time delays and results in low pass
filtering and temporal smoothing of the original spike until the soma response is spread
over a time interval that is typically tens of ms, exhibiting a fast rise and an
approximately exponential decay [3,56].

If the overall synaptodendritic and soma responses are linear, which is the most
common approximation in the literature [2,30,57], the total soma potential V, is the
sum of subpotential contributions V;, which are components of perturbation to the
dendritic transmembrane potential, arriving at each type of dendritic synapse ab. The
subscript a denotes the receiving population and b denotes the neural population from
which the incoming spikes originate, distinguished by its source and the
neurotransmitter type. The subpotentials V,; at a particular location comprise
contributions from both the wave fields ¢, from other internal populations b and inputs
¢az from external populations z [58]; the external inputs are often split into a uniform
mean nonspecific excitation and a specific excitation due to structured stimuli. Thus we
write the total mean cell body potential as the sum of postsynaptic subpotentials
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Va(r,t) = ) Va(r,t), (1)
b

where the subscript b distinguishes the different combinations of afferent neural type
and synaptic receptor and all the potentials are measured relative to resting [2].

The overall effect of synaptodendritic dynamics and soma charging in response to an
incoming weighted pulse-rate field ¢, are well described by an impulse response kernel
Lop(t —t)

t

Vap(r,t) = /Lab(r,t—t’)uab(nt)qﬁab(nt’—7',11,)ah€’7 (2)
Vap(r,t) = Ngp(r,t)sap(r,t), (3)

where ¢, is the average rate of spikes arriving at a from population b; the time delay
Tab 1S nonzero when a and b are in anatomical structures that are separated by a
nonzero distance [2]. In Eq. (3), Ngp is the mean number of connections of mean
time-integrated synaptic strength s, to a cell of type a from cells of type b. In [2], Lap
is a nonnegative response kernel with

/ T La(nu)du=1, (4)

— 00
and Lgy(r,u) = 0 for u < 0 to express causality. Note that 7, are not the only time
delays in the system. Propagation delays within a single structure, such as the cortex,

are handled by accounting for axonal propagation, as described in section Propagation
of Azonal Pulse-rate Fields. In NFTsim Ly (r,t) is defined as

b Bab
Lon(e.t) = 3 Bop — ey (P 0@t] = exp[=fut]}y, a5,

agbt exp[faabt]a a = Bv

()

for ¢ > 0, with Lgp(r,t) = 0 for ¢t < 0 and the r-dependence of the positive constants «
and (8 has been omitted for compactness. These quantities parametrize the decay rate
and rise rate of the soma response, respectively, and 8 > « is assumed without loss of
generality. The temporal profile of the dendritic response function is illustrated in
Fig. 2. This function peaks at ¢t = In(8/«) /(8 — «) for a # B; if a = B, the peak is at
t = 1/a. In addition, there are two special cases of Eq. (5): (i) if either o — oo or
8 — oo, then L., becomes a single exponential function in which only one of the
characteristic timescales dominates; and, (ii) if & = 8 = oo, then the kernel reduces to
the impulse Lgp(r,t) = d(r,t).

The convolution in Eq. (2) can be re-expressed as

DapyVap(r,t) = vVapdas(r,t — Tap), (6)

where the differential operator D,y is given by

1 d? 1 1\ d
Dap(r,t) = ———— 4+ [ — =4 7
b(r ) O‘abﬁab dt? * <aab * ﬂab) dt + ( )

In some previous work [56] a special approximation has been used where ayp, and SBqp
are independent of b and are thus treated as effective values, representing an average
over different receptor time constants. Under this approximation Eq. (6) becomes
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DaVa(rvt) = Z Vabd)ab(rat - 7_ab) (8)
b

All the aforementioned cases and forms of the operators (differential and integral) are
implemented in NFTsim.

30 T . :
25 j 1
20 1
T'.—.
L, 15 1
Q
©
—
10 1

5 i

0 N i I
0 0.1 0.2 0.3 0.4
time [s]
Fig 2. Dendritic response function. The response to a delta-function input, via
Lay as defined in Eq. (5), for decay rate parameter a, = 45 s~ and rise rate
parameter (3,, = 185 s~!. This function peaks at t = In(3/a)/(8 — ) for a # B.

Generation of Pulses

Pulses (i.e., spikes or action potentials) are produced at the axonal hillock when the
soma, potential exceeds a threshold potential 6,(r,t). When we consider the mean
response of a population of neurons to a mean soma potential we must bear in mind
that each neuron has slightly different morphology and environment. Hence, they
respond slightly differently in the same mean environment. This has the effect of
blurring the firing threshold and the resulting overall population response function is
widely approximated by the nonlinear form [48]

Qa (I‘, t) = S[Va (I‘, t) — 04 (I‘, t)]v (9)

where 6, is the mean threshold potential of population a and S, is a function that
increases monotonically from zero at large negative V, to a maximum firing rate Q5**
at large positive V,, with the steepest increase concentrated around the mean threshold
0,. NFTsim employs by default the nonlinear sigmoid response function

1+ exp[—{Va(r,t) — Ou(r,t)} /o) (r,1)] ’

where 0, = o/ 7/\/3 is the population standard deviation of the soma voltage relative to
the threshold. If the function in Eq. (10) is linearized to consider small perturbations
around a steady state of the system [2,31], one finds the linear response function

Sa[Va(r;t), 0a(r, 1)] (10)

Qa = Q¢(10) + pa[va - Va(O)] (11)
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where Q((IO) and Va(o) are the relevant steady-state values and p, = dQ,/dV,, is the slope

of the sigmoid function, evaluated at Va(o) [2]. This linear population response function
is also implemented in NFTsim and other functional forms can be defined as well.

Propagation of Axonal Pulse-rate Fields

The propagation of the pulses Qp(r,t) in each population b generates an outgoing mean
field ¢, that propagates via axons to the population a at other locations. In general,
this propagation can depend on both the initial and final populations, and can
incorporate arbitrary nonuniformities and a range of propagation velocities via
propagator methods, for example [59,60]. However, considerable theoretical and
experimental work has shown that, to a good approximation, the mean field of axonal
signals in a smoothly structured neural population propagates approximately as if
governed by an isotropic damped wave equation [2,47,49,52,53,61-66]. In NFTsim we
implement the widely used equation

Dab¢ab(r’ t) = Qb(ra t)v (12)

with )

1 0 2 0
Dap = | == + —— +1—1r2,V?|, 13
@ 'ng ot A Ot ab (13)
where Yqp = Vap/Tab is a temporal damping coefficient, 4 is the spatial effective axonal
range, vy is the axonal velocity [2,53,62-66], and V? is the Laplacian operator.
Equations (12) and (13) constitute the two-dimensional generalization of the
telegrapher’s equation [2,53,67]. More generally, Y45, Tab, and vg, can be functions of
position. If the special case of spatially uniform activity is considered, the Laplacian
operator has no effect and can be omitted from (13). This special case results in the

harmonic operator

1 02 2 0
Dip= | = —= + —— +1]. 14
¢ 'ng ot ryap Ot (14)
We stress that this is not the same as using a local neural mass model because the
damping parameter v,, depends on spatial propagation. To obtain the neural mass
limit, one also needs to set the spatial ranges 7,5, = 0 S0 74, becomes infinite and

Dap(r,t) = 1. (15)

This yields
¢ab(r7 t) = Qb(r7 t)v (16)

which is termed the local interaction approzimation [2,50].

The parameter r4;, in the propagators in Eqs (13) and (14) encompasses coordinate
divergence of axons traveling to the target population a from the source population b
and the extent of dendritic arborization of the target population a, and thus 744 # 75
in general [79].

Design and Implementation of NFTsim

This section presents a comprehensive description of NFTsim. The subsection General
Workflow gives an overview of the typical usage workflow of NFTsim. The

subsection Classes and their Interactions describes the main NFTsim classes, which
represent the biophysical processes and quantities introduced in Neural Field Theory.
Next, subsection Input-Output illustrates with examples how to specify a model in the
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Table 1. NFT quantities and associated SI units.

Symbol | Description Units
Qrax Maximum firing rate st
Yab Damping rate st
Vab Wave velocity ms !
Tab Mean axonal range m

0, Mean neural firing threshold A%

ol Standard deviation of the firing threshold | V

Qab Mean dendritic response decay rate s 1
Bab Mean dendritic response rise rate s 1
Vab Synaptic coupling strength Vs
Tab Long range time delay S

Dab Axonal field s 1
Qa Mean firing rate st
Vb Subpotential \%

Vs Mean soma potential \%

Symbols used in NFT, associated physical quantities and their SI units. Double
subscripts ab mean that the target population is a and the source population is b.

input configuration file to NFTsim and how to interpret the output file. In addition,
subsection Numerical Methods, Considerations, and Constraints elaborates on the
numerical approaches and constraints used to correctly solve the equations of neural
field models while attaining numerical accuracy and stability. Lastly,

subsection Analysis and Visualization presents a simple example of how to run a

simulation, and analyze and visualize the results using the auxiliary Matlab module +nf.

A list of the available functions in this module is presented in Table 3.

The typographic conventions used in the remainder of this text are that: (i) all
computer code is typeset in a typewriter font; and (ii) code snippets are framed by
horizontal lines with line numbers on the left.

General Workflow

A typical NFTsim workflow consists of three broad phases: configuration; simulation;
and postprocessing. The first phase involves writing a configuration file that specifies
the neural field model as well as other parameters required to run a simulation. This file
is a human readable plain text file with the extension .conf. Once a configuration is
specified the simulation can be launched by invoking the nftsim executable, either
directly via a shell (eg. bash) terminal

user@host$ nftsim -i <my-model.conf> -o <my-model.output>

or indirectly via the nf.run Matlab function. In the simulation phase, NFTsim reads
the configuration file, specified after the flag -i, builds the objects of the specified
model, runs the simulation and writes the output file, which contains the timeseries of
the neural quantities requested in the configuration file. The name of the output file
can be specified using the flag —o and must have the extension .output. In the absence
of an output file name, NFTsim uses the input file name with the extension .output.
For autogenerated output file names, the flag -t can be used to append a string to the
output file name of the form _YYYY-MM-DDTHHMMSS, which follows the standard ISO
8601 [73] to represent date and time. In the postprocessing phase, the simulation results
can be analyzed offline and visualized with the functions provided in the Matlab module
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+nf.

Code Architecture

Neural field models can be decomposed into a small number of objects, that represent
their various parts. Each object has intrinsic properties that, in turn, can be well
represented as classes, each of which is a set of elements having common attributes
different from other sets, using object oriented programming. NFTsim classes have been
implemented in C++ (C++11 standard) [74,75].

The most prominent components of neural field models are populations, synaptic
connections, and propagators. Each of these components (or objects) is described by a
main base class with properties specific to a group of objects. Derived classes are
defined via the mechanism of class inheritance which allows for: (i) the definition of
class in terms of another class; (ii) the customization of different parts of the system
being modeled; and (iii) the extension of the functionalities of the library. For instance,
a base class describing propagators has properties such as axonal range and axonal
velocity. These properties are common to different propagators (derived classes) such as
the wave propagator in Eq. (13) or the harmonic propagator in Eq. (14), and are
inherited from the base class. However, the optimal method to solve each form of
propagation may vary and thus each propagator-derived class can have its own solver.
Furthermore, there are auxiliary base classes that define additional properties of the
main classes described above. These auxiliary classes embody processes like dendritic

dynamics, soma charging, firing response, external stimuli, and anatomical time delays.

Thanks to this modular architecture, NFTsim allows for the specification of models
with (i) an arbitrary number of neural populations, of different types and with different
parameter sets; (ii) different types of connections between pairs of populations; and (iii)
different types of activity propagation, with or without propagation time delays between
and within neural populations.

Classes and their Interactions

An overview of NFTsim’s calling interactions between classes, is illustrated in Fig. 3. In
this diagram main and auxiliary base classes are positioned so that, in a simulation,
their position corresponds to being initialized and stepped forward in time from top to
bottom and from left to right within each row. In the first row, we see the high-level
class Solver which coordinates how the other classes interact during a simulation. In
the second row, the main base class Propagator computes each of the axonal pulse-rate
fields ¢qp generated by the firing rate @p. In any given neural field model there are as
many Propagator objects as there are connections. These can be any of three derived
Propagator classes (Wave, Harmonic, Map) implemented to accommodate the operators
defined in Eqs (13), (14), or (15), respectively. The Wave class uses an explicit time
stepping method based on second order central difference schemes in space and time
(see Explicit Difference Method and Boundary Conditions for the 2D Wave Equation).
The Harmonic class implements Eq. (14), where for spatially homogeneous models the
Laplacian term is zero and one finds a damped oscillator response. This class uses a
standard fourth-order Runge-Kutta (RK4) explicit forward time stepping method with
a fixed time step [83]. Lastly, the Map class, where the propagator is simply a direct
mapping as in Eq. (15). Below Propagator, there is the auxiliary class Tau, which
handles the activity history and retrieves the appropriate delayed activity for use in
Eq. (6) when the discrete time delay 744 is nonzero. Then, to the right of Propagator,
the Coupling class handles synaptic connections and their dynamics. The base
Coupling class assumes that the synaptic strengths are constant over space and time.
Thus, the output signal is a product of incoming activity and synaptic weights. Other
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Solver
Propagator Coupling Population Outlet
Qb7¢ab Vab7¢ab
Tau
Tab
Dendrite
Vab
I
Timeseries FiringResponse
o Va, Qa

Fig 3. Simplified diagram of NFTsim’s call graph. The execution of a
simulation is controlled by the class Solver. Initial conditions are given in terms of
firing rates @, which are then propagated to other populations via Propagator.
Synaptic connections are handled via Coupling. The incoming activity to postsynaptic
Population undergoes dendritic dynamics via Dendrite. The sum of individual
contributions V,; and the resulting firing response are handled by FiringResponse.
The class Timeseries is used to represent external inputs @), from a stimulus
Population. Lastly, the class Outlet stores the variables that are written to the output
file.

derived Coupling classes implement temporally varying synaptic strengths as in [35], or
modulation by pre- or postsynaptic activity, as in [39]. To the right of Coupling, the
Population class describes neural population activity and its parameters define the
type.

In the third and fourth rows, below Population, we see that each Population uses
two subsidiary classes: an array of Dendrite objects (one for every population
connected via a Coupling); and, a FiringResponse. The signal from a Coupling
object is passed to a corresponding Dendrite object which implements the
synaptodendritic effects defined in Eq. (6). The contributions V,; are then summed to
yield the soma potential V;, of the population. Then, the population’s FiringResponse
object implements Eq. (9) to calculate the resulting population firing rate Q,. Different
forms of the activation function are specified within the base FiringResponse class.
Other types of activation function that involve modulation of parameters due to
presynaptic or postsynaptic activity are implemented in classes derived from the
FiringResponse class. Such is the case of BurstingResponse that implements
modulation of firing threshold 6, [68]. External or stimulus populations are also objects
of the Population class. However, their activity is represented by a predefined
spatiotemporal profile of firing rate @, that represents a chosen input and is contained
in an object of the class Timeseries. In NFTsim the external inputs may include noisy
and/or coherent components which may or may not be spatially localized (e.g., afferent
to the visual thalamus in response to a visual stimulus). Currently, NFTsim supports a
number of different external driving signals (¢, ) to stimulate any population a of a
system. These signals include: a constant value equivalent to applying DC voltage; sine
waves; square pulse trains; and, white noise to simulate random perturbations. These
basic functions can be combined additively to generate more complex stimulation
signals.

Lastly, to the right of Population, the class Outlet, stores the variables that are
written to the output file.
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Propagator Coupling Dendrite FiringResponse

Qp—Pab Pab—>VabPab Vab®ab—Vab Vab—=Va—Qq

Fig 4. NFTsim classes associated with biophysical processes. This diagram
illustrates the relationship of the classes in the library and the biophysical
transformations they represent. Input variables are on the left, while output variables
are on the right. Gray boxes are classes associated with interactions between
populations, while white boxes are classes associated with internal mechanisms of a
population.

In summary, a compact representation of the neural field equations with the label of
the associated NF'Tsim classes is

DapPab = Qv, Propagator (17)
Pop = Vabbab, Coupling (18)
Do Vap = VapPab, Dendrite (19)

Qo =S, , FiringResponse. (20)

Z Vab
b

where the auxiliary variable P, in Eq. (18) is only defined inside the Coupling class
and assigned the presynaptic inputs weighted by the local synaptic coupling strength.
Figure 4, which is analogous to the diagram presented in Fig. 1, illustrates the input and

output variables of each class and the direction in which they flow within a simulation.

Input-Output

The main routine of NFTsim takes a plain text configuration file as input, where all the
model description and simulation parameters are specified, and writes the simulation
result to an output file. Both the configuration file and output file are plain text files,
so launching simulations and reading the results with other programming languages is
also possible. Note that all the parameters in the configuration and output files are
specified directly in SI units without prefixes (e.g., s, s7%, V); e.g., a value of 1 mV is
written as 1e-3 (where V is implicit).

Configuration and Output Files

The following listing shows an exemplar configuration file, named e-erps.conf, which
is included with other examples in the configs/ directory of NFTsim. This file
specifies a neural field model with a single cortical excitatory population that receives
inputs from an external population which is the source of a stimulus to the cortex. In
this example, parameters were taken from [32], with the exception of the axonal
propagation parameters, which are tuned to emphasize wave propagation properties
(i.e., by decreasing the damping rate 7,;) for illustrative purposes. The cortical
population is initially in a steady state of low firing rate around 10 s=* and is driven by
two pulses applied toward the center of the grid. The first pulse occurs at t ~ 32 ms
and has a positive amplitude of ¢.,, = 2 s~!. The onset of the second pulse is

t ~ 60 ms and has a negative amplitude of ¢, = 2 s~
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—_

e-erps.conf - configuration file for a single-population neural field
model.
All parameters are in SI units

Time: 0.25 Deltat: 2.4414e-4
Nodes: 4096

Connection matrix:
From: 1 2
To 1: 1 2
To 2: 0o o0

Population 1: Excitatory

Length: 0.5

Q: 10

Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340
Dendrite 1: alpha: 83 beta: 769

Dendrite 2: alpha: 83 beta: 769

Population 2: Stimulation
Length: 0.5
Stimulus: Superimpose: 2

Stimulus: Pulse - Onset: 0.03125 Node: 2000 Amplitude: 2
Width: 0.001953125 Frequency: 1 Pulses: 1

Stimulus: Pulse - Onset: 0.06250 Node: 2097 Amplitude: -2
Width: 0.001953125 Frequency: 1 Pulses: 1

Propagator 1: Wave - Tau: O Range: 0.2 gamma: 30
Propagator 2: Map -

Coupling 1: Map - nu: O
Coupling 2: Map - nu: le-4

Output: Node: 2000 Start: O Interval: 9.7656e-4
Population: 2.Q

Dendrite:

Propagator: 1.phi

Coupling:

The above file starts with a brief description of the model to be simulated. This
comment is optional and can span multiple lines. In lines 4-5, global parameters for the
simulation are defined: simulation duration (Time), time step size (Deltat), and the
total number of nodes in the two dimensional grid (Nodes).

The aforementioned parameters are followed by the specification of a square
connection matrix in lines 7-10, where the rows are the target populations and columns
indicate the source populations. In this matrix, a positive integer indicates there is a
connection between two populations and it also serves as an identifier of that
connection. In the case presented above, there are only two nonzero connections,
connection 1 to Population 1 from itself and connection 2 to Population 1 from
Population 2. The couplings, dendrites and propagators are labeled by these
consecutive positive integers. The two populations of this example are defined in lines
12-25. Each population in the model is specified separately, indicating its type (e.g.,
excitatory, inhibitory, or external), the physical size of its longest side (Length), its

initial condition in terms of firing rate Q, and its type of dendritic and firing responses.

The next step, in lines 27-28, is to define the type of propagation and coupling between
each pair of connected populations. In line 27, the axonal propagation of the
excitatory-excitatory connection follows a damped wave equation, with zero long-range
time delay (Tau), characteristic spatial range of 0.2 m (Range) and a damping
coefficient of 30 s’! (gamma). Finally, at the end of the configuration file, from line 33
onwards in this example, we specify which timeseries are written to the output file.
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There are three global output parameters: Node which specifies the labels of the grid
nodes whose activity will be written to the output file; Start, sets the time (in seconds)
from which the output timeseries will be written, and cannot be larger than the total
simulation duration Time; and, Interval is the sampling interval between points in the
timeseries. In lines 34 and 36 we see that NFTsim has to write the firing rate (Q) of
Population 2, and the axonal field phi of Propagator 1, respectively. NFTsim first
writes the configuration file at the top of the output file to ensure full reproducibility of
the results, then it writes a line filled with the symbol =, and finally, it writes the
requested timeseries. Below we show part of the output file e-erps.output.

Time Pop.2.Q Propagator.1.phi

2000 2000

9.76560000000000e-04 0.00000000000000e+00 1.00003146139049e+01
1.95312000000000e-03 0.00000000000000e+00 1.00014242188480e+01

Here, the first column is the time vector. The second column is the firing rate Q of the
second population at node 2000. The third columns is the excitatory field of
Propagator 1 from Population 1 to itself at node 2000. Line 3 provides the label of
each timeseries, while line 4 shows the node index.

Numerical Methods, Considerations, and Constraints

This section focuses on considerations and constraints regarding the numerical methods
implemented in NFTsim. In Initial Conditions we give a general overview and strategies
to set initial conditions for neural field simulations. Furthermore, Discretization of the
Spatial Domain and Courant Condition describe the way space is discretized in NFTsim
and the maximum grid ratio for correctly solving the 2D damped wave equation,
respectively. Lastly, in Fxplicit Difference Method and Boundary Conditions for the 2D
Wave Equation we explain the stepping method used to solve the wave equation on a
finite grid.

Initial Conditions

Neural field equations are partial delay differential equations (PDDEs), thus at the start
of a simulation activity from previous times is required for initialization. NF7Tsim
assumes the system is initialized at a stable fixed point and then fills a history array,

which stores the past activity of the system, with the values of firing rate at equilibrium.

The size of the history array depends on the time step size At and the longest time
delay 7,44 in the model. For example, if the maximum time delay is 16 ms and the time
step is 0.125 ms, then the length of the history array will be 128.

In a steady state, the fields in the system do not change, so NFTsim sets all the
temporal derivatives to zero. Furthermore, NFTsim currently assumes that the initial
activity is uniform spatially. If the stationary state used as initial conditions is unstable,
or if it is close to a stable state, one can expect to see transient activity until the system
settles into the closest stable attractor (either a fixed point or another manifold).

We now present an example of how to find the steady states of a cortical model with
two cortical populations with one external input. The equation for the cortical steady

state ¢§°) is

ST [00] = (e + 102 + vead?, (21)

where the system is also assumed to be driven by a constant, spatially uniform input

22) from subcortical structures. The structure of the solution can be interpreted as
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follows: the left-hand side of Eq. (21) is a monotonic increasing function of ¢>£2), while

the right-hand side is linear in ¢£2) (although it could more generally be nonlinear).
Hence, either one or three solutions exist [31]. When three solutions are found, the
middle one represents an unstable equilibrium, the lower corresponds to normal activity,
and the upper to a high firing rate seizure-like state [31]. When five solutions are found,
three of which are stable, the additional middle stable steady state has been found to be
consistent with a waking state of increased cortical and thalamic activity [76].

The form of the steady-state equation strongly depends on the number of
populations and the interconnections within the model. Also, due to the transcendental
nature of the steady-state equation, fixed point solutions have to be computed
numerically. To find the roots, the steady-state equation is usually rearranged so as to
have all the terms to the right hand side, and then evaluated for a range of

St [ 22)] = Ve(o) values. Solutions are identified by a change in sign between

consecutive test values of VA”. A standard root finding algorithm (e.g.,

Newton-Raphson) can then be used to refine the roots. An initial scan over AT
required because the root finding algorithm will most likely converge to the root nearest
the initial guess for Ve(o).

For these reasons, NFTsim does not currently provide a general method to find the
stable steady-state solutions of the system. Nevertheless, it is possible to use NFTsim
to find them. One strategy consists of running auxiliary simulations to give the system
enough time to reach a stable state. The end state of this auxiliary simulation can then
be used to provide the initial conditions for other simulations. The second strategy
consists of combining NFTsim with Monte Carlo methods to run numerous simulations
with randomly sampled initial conditions in order to find the stable states.

The first approach mentioned above is best suited for scenarios in which one already
has an initial estimate of the initial stable state of the system; and for nonuniform
situations [77,78], in which case the auxiliary simulations are run for the uniform case
and the nonuniformities in the parameters are introduced in the main simulations. The
second approach is more general and does not require any a priori knowledge of the
initial conditions. This approach is best suited for neural field models with several
populations and for which finding the steady states of the systems analytically is not
possible or is too cumbersome. If multiple steady states are found [76], the user must
decide which one is to be used for the main simulations. Usually the linearly stable
fixed point that represents the lowest firing rates is selected as the initial condition on
the basis that represents a normal brain state [2,28].

Discretization of the Spatial Domain

Each population is modeled as a 2D rectangular sheet. In NFTsim, the physical spatial
domain of each population, whatever its extent, is divided into a finite number N of
uniform grid cells (or nodes), which remain invariant throughout the simulations for all
times.

In a configuration file, the parameter Length corresponds to the physical length of
the z-axis. By default, the domains are assumed to be square with L, = L,. In this
case, the value of the parameter Nodes must be a perfect square so that the spatial
resolutions

L
Az = = 22
TTUN (22)
and I
Ay = — L 23
V=N (23)
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are the same.

To define a rectangular domain, in addition to the parameter Nodes (N), in the
configuration file one can specify the number of nodes along the z-axis via the
parameter Longside nodes (N,.). In this case, the number of nodes along the = and y
axes are different, but the spacing remains the same for both axes (i.e., Az = Ay)

Ly
Axr = N,
The number of nodes and physical length of the y-axis can be obtained as N, = N/N,
and L, = N,Ay, respectively. Table 2 summarizes the symbols and configuration length
and size parameters used in this section and in the remainder of the text.

As an example, we show part of a configuration file for a neural field model with two
populations. The physical length of the first population Ll is larger than the length of
second population L2.

(24)

0.15 Deltat: 0.0001
12 Longside nodes: 4

Time:
Nodes:

Connection matrix:
From: 1 2 3
To 1: 1 2 0
To 2: o o0 3
To 3: 0 O O

Population 1: Big population

Length: 0.8

Q: 10

Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340
Dendrite 1: alpha: 83 beta: 769

Dendrite 2: alpha: 83 beta: 769

Population 2: Small population

Length: 0.08

Q: 10

Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340

Dendrite 3: alpha: 83 beta: 769

In the above file the two internal populations are modeled as rectangular grids with a
total of 12 nodes or grid cells, and with the number of nodes of the longest side
specified by Longside nodes. The resulting 2D grid has a size of 4x 3 nodes as shown
in the schematic of Fig. 5. For illustrative purposes, the parameter values used in this
configuration file have been exaggerated so the link between the input parameters and
the discretization of the space shown in the schematic is clear. However, this
configuration file will not produce accurate results because the spatial resolution is too
coarse.

Figure 5 illustrates that NFTsim populations are linked via a primary topographic
one-to-one map, which implies that all the populations must have the same number of
grid points N, even if they have different physical spatial dimensions. We assign the
same map coordinate r, to homologous grid cells in different populations. In this
example, r; is assumed to be the actual physical position in Population 1, but in
Population 2, ry denotes a rescaled physical dimension. Also, any physical position r,,
for n=1,..., N is assumed to be at the center of a grid cell, which is also labeled with
integers n =1, ..., N. For instance, in Population 1, ry corresponds to position
(Az1/2,Ay1/2) = (0.1, 0.1) m; and, in Population 2, ry corresponds to position
(Aza/2,Ays/2) = (0.01, 0.01) m. Lastly, the borders of the grid are depicted with
dashed lines to denote periodic boundary conditions (PBCs), which represent structures
with planar geometry and toroidal topology.
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Table 2. Symbols, configuration parameters and units.

Symbol | Parameter name Units | Parameter exposure
in configuration file

N Nodes - required

N, Longside nodes - optional (y/(N))

L, Length m required

Az - m none (L,/N,)

Ay - m none (Ax)

Ny - - none (N/N,)

L, - m none (N,Ay)

First column: symbols used in this work to identify the parameters specified in a
configuration file. Second column: parameter names used in configuration files to
determine the physical size and spatial resolution of the 2D sheets for each population.
The symbol — means the parameter is not specified directly in a configuration file. Third
column: SI units of each parameter. Here, the symbol — means the parameter is
dimensionless. Fourth column: shows whether the exposure [81] of each parameter in the
configuration file is (i) required, (ii) optional (with its default value); or, (iii) not
required (none). In the latter case, the parameter is derived internally in the code and
we provide the equation used to calculate its value).

Courant Condition

The interval Az is used to evaluate whether the current parameters satisfy the Courant
condition, a necessary condition for obtaining stable solutions when solving hyperbolic
partial differential equations on a regular discrete grid. For the wave equation in 1D the
dimensionless number

UabAt
Az
is called the Courant number [82]; At is the integration time step size and vVgp = YapTab

is the magnitude of the wave velocity. In the continuum wave equation, activity
propagates at maximum speed v, and the method is stable when Axz/At > vg.
Unstable schemes arise when Axz/At < vy, because waves propagate more than one grid

spacing in a period At. However, for the 2D case one finds the stability criterion to
be [83]

Pab = <1, (25)

11 1]°®

< | 4

A [AwQ " Ayz} ’ 20)
80, because Az = Ay
1 [ 2 17

At < — 2
<] (27)
< ar 1 (28)

~ vab V2

Hence, considering all wave-type propagators, the maximum value of the Courant
number pp.x must satisfy

. (30)

Sl

At
Pmax = max(’uab)g <
1
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‘\\f Population1
8 S

\

Population2

Fig 5. Schematic of the discretized spatial domain. The model has two
populations: Population 1 and Population 2. Geometrically, each population is
represented by a grid of 12 nodes, which are labeled with integers. The grid is
rectangular with dimensions 4 x 3 nodes. The number of nodes of the longest side is
specified by Longside nodes. The physical size, L, of each population is different.
Thus, each node in Population 1 has a linear size of Az!, and of Az? in Population
2. Each spatial point (e.g., r1, ro, r11) is at the center of a grid cell. The subscript
denotes the node index on this grid. Also, r,, denotes the actual position in the largest
population; in the smallest population r,, denotes a rescaled physical dimension.

This condition is checked internally by NFTsim and if it is not satisfied, an error 625
message is returned. Note that, in practice, one usually imposes a stricter condition to e
ensure the system has a margin of stability; e.g., in [2], the grid ratio was chosen so that e

Pmax = 0.1. 628
Explicit Difference Method and Boundary Conditions for the 2D Wave 629
Equation 630
NFTsim uses an explicit central difference method [84] to solve Eq. (13), which o1

represents axonal propagation of activity through the cortex or other structures with a e
significant spatial extent. Here, we present the explicit time stepping formula currently 3
implemented to compute the next value of ¢4 from past values of ¢4, and @Qp. The full 63

derivation is in Appendiz S1. 635
Equation (13) is the inhomogeneous damped wave equation, which can be simplified 63
by making the substitutions 637
U = Papeett, (31)
638
w = Qpe™". (32)
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We then obtain the undamped wave equation

{182 — 72 V2] u(r,t) = w(r,t) (33)
gy om Tw¥ [ uny =

Note that this simplification only works for small values of At because the exponential
factors introduced in Eqgs (31) and (32) diverge as At — oco. Then, the final
time-stepping formula using an explicit central difference method for the 2D wave
equation is

b 1 ywA
G =€ t{@ —4p®) i 1+ P (D i1+ Pt T Py + Brn1) — Gyl e A

At27§b 2\ n n+1 At n—1_—yapAt
+ T |:(10 - 4p ) m,l + (Qm,l e’ + Qm,l e e )
+ 02 Qs + Qi + Qpina + Q)| } (34)

where the superscript n indexes time step; the first and second subscripts index space
along the orthogonal x and y directions, respectively, except for the subscripts on
~Yap;and p is the Courant number.

Note that in Eq. (34), only five spatial points are required: the central point m, ; its

horizontal neighbors m + 1,1, m — 1,[; and, its vertical neighbors m,l + 1 and m,[ — 1.

This pattern is often referred to as a five-point stencil. There are alternative finite
difference methods that use higher-order terms to approximate the derivatives and
would require larger stencils (e.g., more neighboring points) [86]. It is usually better to
increase the spatial resolution rather than the stencil complexity to obtain higher
accuracy.

The finite difference scheme presented above is second-order accurate in space and
time. This means that the rate at which the error between the discretized
approximation and the exact continuum solution decreases to zero is
O(Az?) + O(Ay?) + O(A#?). For instance, halving Az, Ay, or At, subject to Eq. (30)
leads to a decrease of the error by a factor of four.

When solving partial differential equations on a finite spatial domain, one must
specify boundary conditions for the simulations. NFTsim uses periodic boundary
conditions (PBCs). This type of condition avoids boundary effects stemming from the
finite size of a grid and avoids the perturbing influence of an artificial boundary like a
reflective wall. In PBCs, opposite boundaries are treated as if they were physically
connected, that is, the top of the grid is wrapped on to the bottom and the left of the
grid on to the right.

The class Stencil has two main functions: (i) retrieving the five-point stencil
pattern for every node in the grid; and, (ii) correctly copying the activity close to the
boundaries of the domain at every time step to implement periodicity. To achieve this,
Stencil operates on a grid of size (N, 4+ 2) X (N, + 2). The additional ghost cells are

used to store copies of the top and bottom rows and left and right columns of the grid.

Figure 6 illustrates a 4 x 4 grid with the additional ghost cells shaded in light blue
and five-point stencil pattern consisting of a central grid point ¢ and its 4 neighbors
labeled as n,s,e,w (i.e., north, south, east, west). The number in each grid cell
represents its linear index — because the class Stencil accesses the elements of the two
dimensional grid using a single subscript instead of two. The grid cells with prime,
double-prime, and triple-prime indices are copies of the original cells with the same
indices. These copies are used to implement PBCs along the vertical, horizontal, and
diagonal directions, respectively. For instance, the cell 1’ is the vertical copy of cell 1;
cell 1” is the horizontal copy, and cell 1’ is the diagonal copy. The diagonal copies are
not used by the 5-point stencil, but would be used by a 9-point stencil [86].
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Fig 6. Schematic of the grid used by the class Stencil. This class retrieves the
four nearest neighbors (labeled n,s,e,w) of a central point c. These five points define
the pattern known as a five-point stencil. The cells in light blue are the ghost cells
required to implement periodic boundary conditions. The prime, double-prime and
triple prime indices represent copies of the corresponding indices in the vertical,
horizontal and diagonal directions, respectively.

Analysis and Visualization

NFTsim includes a Matlab module which provides ancillary tools to assist with running,
analyzing and visualizing models. This package folder is called +nf. The available
functions and a description of their functionality are summarized in Table 3.

The code snippet below uses some basic nf functions as an example of how users can
interact with NF'Tsim directly from Matlab. The model is the same as the one specified
in the configuration file e~erps.conf presented earlier, except that the timeseries of all
the nodes in the grid are written to the output file. The simulation is executed via
nf.run(). Once the output file is available nf.read() loads the simulated data into a
Matlab structure.

Spatial patterns of activity and propagation of waves of activity across space can be
visualized using the function nf .movie ()

nf .movie (nf_struct, ‘Propagator.l.phi’, 1)

Representative frames from the movie of waves propagating from stimulation sites are
shown in Fig. 7(a) to Fig. 7(f). In each panel the mean spatial value of ¢..(z,y,t) at
time ¢ has been subtracted, so red and blue reflect positive and negative deviations,
respectively, from the mean. The file used in this example is included in NFTsim and is
also available in Appendixz S2.

Furthermore, extracting and plotting the timeseries of a few nodes enable users to
directly inspect the type of activity (e.g., healthy neural activity, evoked responses, or
seizures). In this example, nf.extract () is used internally by nf.plot_timeseries()
to select the timeseries Propagator.1.phi.
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Fig 7. Neural activity of the model described in e-erps.conf. The cortical
population is driven by two square pulses. The first pulse is positive, while the second
pulse is negative. For illustrative purposes, in each panel the mean spatial value of
¢ee(z,y,t) has been subtracted, so the color reflects deviations from the mean at that
specific time. Each panel shows a surface plot of

&L (2,Y,2) = Pee(T,y,t) — (Pee(T,y, 1)) s~ propagating radially outwards from the
stimulation sites, and an inset with a planar view of the same quantity, at different
times: (a) 42 ms; (b) 52 ms; (c) 62 ms; (d) 77 ms; (e) 86 ms; (f) 104 ms.
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=W N

nf_struct = nf.run(‘configs/e-erps-all-nodes.conf’)
these_nodes = {[1992:2008],[2089:2105]};
these_traces = {‘Propagator.1l.phi’, ‘Propagator.l.phi’};

nf.plot_timeseries(nf_struct, these_traces, these_nodes, true)

Figure 8 shows the resulting plots generated with the code shown above. Each set of
timeseries is centered around one of the stimulation sites. In Fig.8(a) the red curve is
the axonal field at the site that received positive stimulation; and, in Fig.8(b), the blue
line is the axonal field at the site that received negative inputs. The timeseries in gray
above and below the colored curves are the axonal fields from neighboring sites along
the z-direction. In these plots, the distance between the stimulation sites and
neighboring sites increases vertically from the center to the top and bottom edges. The
vertical dashed lines are not automatically produced by nf.plot_timseries, but have
been added to mark the onset time of the positive (red dashed) and negative (blue
dashed) inputs, respectively.

Plropallgator.l.phil Pyopagator.l.phi

a) b)!

2008 ( ). 2105 -(—)Nr\/,—‘*
2007 2104F——_—
2006 2103 F——H_—————
2005 2102F——H _———
2004 2101F——H _————————
2003 2100F———H _——
2002 2099 —\\/g

x > . '

52001 15 2098 ﬁ\\/fk

= <

2 2000 2 2097}

B 1999 82096 F

P Z
1998 2095 A\\/f\“
1997 2094 —N\/“—*
1996 2093F——H _———
1995 202F——H _— |
1994 2091 F—F+—+ _———————
1993 2000 F——+H_——————
1992 2089 fF—F—+_—————

0 0.1 0.2 0 0.1 0.2
Time [s] Time [s]

Fig 8. Timeseries of neural activity of the model described in e-erps.conf.
The cortical population is driven by two square pulses applied at the center of the grid
as shown in Fig. 7. Here, we illustrate the timeseries of ¢, from a few nodes close to
the vicinity of (black lines) and at the stimulation sites. The vertical dashed lines mark
the onset time of the positive (red dashed) and negative (blue dashed) stimulation
inputs, respectively. (a) the axonal field at the site receiving the positive stimulus is
highlighted in red while the time evolution of the same axonal field at neighbouring
locations is shown as black lines. (b) the axonal field at the site receiving the negative
input is highlighted in blue.

Another important step is the calculation of the temporal power spectrum for a
range of frequencies (in Hz), which is often compared to the power spectrum of
experimental data. The power spectrum may also include multiple spatial modes for a
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range wave numbers (in m~1) and incorporate volume conduction or hemodynamic
effects [97,98] on measurement. A comparison between the linear analytic power
spectrum and the numerical nonlinear power spectrum calculated with
nf.spatial_spectrum() is given as an example in Standard Tests and Reproducibility.

Table 3. Auxiliary functions available in the module +nf.

724

725

726

27

Function Description

extract extracts time-series from an output structure
get_frequencies returns the spatial frequencies

grid reshapes output into a 3D array of shape (Lous, Ny, Ny)
movie generates a movie from a 3D array produced by nf.grid

plot_timeseries

plots vertically spaced timeseries of specific traces and nodes

read

reads an output file and returns a structure

report prints information about a structure

run runs a simulation from a configuration file
spatial_spectrum computes spatiotemporal spectrum
spectrum computes temporal spectrum

wavelet_spectrogram

computes wavelet spectrogram using a Morlet wavelet

First column: names of the available Matlab functions. Second column: brief
descriptions of what each function does. The variable Lyut is the number of time points

in the output file.

Results and Applications

In this section we first present four exemplar systems that can be simulated using
NFTsim and that have been previously studied in detail. Then, section Observables
and Diagnostics briefly discusses the main observables that can be currently computed
in NFTsim and how these have been used to predict a range of brain phenomena and
compare to experimental results. In section Standard Tests and Reproducibility, we
discuss how NFTsim could be used as a validation tool for neural field models and
neural field simulators. Lastly, section Benchmarks presents performance metrics and
practical information for users regarding average run times, memory usage, and storage
required for typical simulations based on a neural field model of the corticothalamic

system [28].

Exemplar Systems

The versatility of neural field theory and its concomitant implementation in NFTsim
allow for the investigation of an unlimited variety of specific models and parameter sets.
In this section we present a few illustrative cases, which have been thoroughly described
elsewhere, along with some of their applications [1,2,6,26-30,32-38,68|. Their
respective configuration files are included in NFTsim.

The most general corticothalamic model considered here includes populations with
long-, mid-, and short-range connections in the cortex, the specific and reticular nuclei
in the thalamus, and external inputs. We indicate how components of this model can be
successively deleted to obtain a family of models suited to simpler applications in
corticothalamic and cortical systems. In what follows we label specific models according
to the internal populations they include. The first system, called EMIRS, includes five
different populations of neurons: cortical excitatory pyramidal (e), excitatory mid-range
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(m) and inhibitory (7) populations; internal thalamic reticular nucleus (r), relay specific
nucleus (s), whereas the simplest case is of a system with a single excitatory population
(e). There is also always at least one external population that provides inputs (often
labeled either x or n). NFTsim provides a number of external input types such as
sinusoids (in space and time), pulses, and white noise. For instance, these inputs could
be from excitatory neurons of the auditory pathway, which transmit signals from the
cochlea to the thalamus [70]; or, they could be artificial external stimulation like
Transcranial Magnetic Stimulation [37].

Figure 9 shows schematics of the illustrative neural field models described here. The
EMIRS corticothalamic model displayed in Fig. 9(a) includes three cortical populations
(e, m, and ¢) and two thalamic populations (r and s), with intracortical, intrathalamic,
and corticothalamic connections.

The EIRS corticothalamic model is obtained by deleting the population m from
Fig. 9(a) to obtain Fig. 9(b). Physically, this deletion corresponds to describing the
effects of the mid- range population, whose axonal range is of the order of a few
millimeters, as part of the short-range ¢ population [1]. In this case, the excitatory effect
partly cancels inhibition to give a weaker, net effect from this compound population,
which includes the effects of both short-range excitatory and inhibitory interneurons.
This model has been successfully applied to investigate a wide range of
phenomena [30,42,69] (see Introduction). The model has five distinct populations of
neurons: four internal and one external.

In the purely cortical EI model of Fig. 9(c), thalamic dynamics are deleted and
Pes = ¢;s is assumed to replace ¢g, as the external input to an isolated cortex. The
basic EI model includes external inputs to two cortical populations (e and ), and both
intracortical and corticocortical feedback are represented. This model is a starting point
for understanding more elaborate neural fields models of the cortex (e.g., modeling
distinct layers within the gray matter [34,70]). Delays in the propagation of signals
within neurons are due to synaptodendritic, soma, and axonal dynamics. However, in
this model there are no long-range delays like those from the thalamus to the cortex. An
extensive description and analysis of this model are given elsewhere [2,31,71], including
emergence of gamma rhythm [69] and integration of cholinergic modulation [72]. Finally,
the excitatory-only E model in Fig. 9(d) omits cortical inhibitory effects. This neural
field model is the simplest system we consider that can be simulated in NFTsim and
has been used as the central example throughout this work.

Observables and Diagnostics

Brain phenomena including the alpha rhythm [30,33], age-related changes to the
physiology of the brain [26], evoked response potentials [27,34,70], and seizure
dynamics [1,5,35,68], can be measured noninvasively via EEG. In these studies, the
axonal fields of excitatory cortical population ¢, have been used to approximate EEG
signals measured from the surface of the scalp [49,87] and constitute one of the main
biophysical observables comparable to experimental EEG data. Furthermore, another
tool traditionally used to detect various waking and sleep stages [6,28] is the EEG
power spectrum [49]. In calculating scalp EEG spectra (rather than intracranial ones),
one must consider filtering due to volume conduction by the cerebrospinal fluid, skull,
and scalp [49,87]. The calculation of the power spectrum including volume conduction
filtering is implemented in the module +nf.

It is extremely important to note that EEG is only one type of output. The neural
activity of different cortical and subcortical populations can be used to predict other
relevant electrical signals such as local field potentials (LFPs), eECoG and
stereoencephalography (SEEG); magnetic signals such as MEG; metabolic-related
signals like fMRI [88] or indirect fluorescence signals like those recorded via voltage
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Fig 9. Schematic of four representative neural field models. The quantities
¢dap are the fields propagating to population a from population b. Dashed lines represent
inhibitory connections. (a) Corticothalamic model including excitatory (e), mid-range
(m), inhibitory (i), reticular (r), specific relay (s) and external non-specific (n)
populations. (b) Corticothalamic model including excitatory (e), inhibitory (),
reticular (r), specific relay (s), and external (n) populations. (¢) Cortical model
comprising excitatory (e) and inhibitory (i) cortical populations plus an external input
field from a subcortical population (s). (d) Purely excitatory (e) cortical model with
input from a subcortical population (s).

sensitive dyes imaging (VSDI) [89]. Note that conversion of NFTsim outputs to the
desired neuroimaging modality signals requires an additional modeling step, including a
description of the causal relationship and physiological couplings between the sources
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(i.e., the spatiotemporal fields of neural activity stemming from multiple populations)
and the effective biophysical quantity measured in experiments [90, 92,93, 96-98|.

Standard Tests and Reproducibility

Standard tests are a set of benchmarks used evaluate and compare disparate numerical
implementations of similar neurobiological models [94]. There are very few such tests in
computational neuroscience [95] and the ones currently available are only for single-cell
models. To the best of the authors’ knowledge, there are no published standard tests for
mesoscopic models such as neural fields. Thus, there is a huge void regarding quality
assessment of scientific software for continuum models of brain dynamics.

NFTsim provides a reference framework for standard tests for implementations of
neural field models because its methods have been verified with analytic results; and,
the linear analytic closed form solutions upon which the code is based have been
extensively validated with experiments, as discussed in the Introduction. For example,
in Fig. 10 we reproduce the results presented in Fig. 2 from [6]. This plot shows a
comparison between the linear analytic power spectrum (dashed line) and the spectrum
computed from NFTsim simulations. Both spectra agree to within agree to NFTsim’s
default eirs-corticothalamic.conf is used with the parameters from [6], which we
do not repeat here because the original configuration files are also included as part of
the library package. The power spectrum is calculated using the
nf.spatial_spectrum() function.

Furthermore, the NFTsim’s methods and implementation have also been directly
validated by experimental data for nonlinear dynamics, notably neural activity
corresponding to seizures [35] and sleep spindles [6].

[ —numerical

10°6F - - -analytical |-
N
I
~

h

2 1078 ]
o
3
[e)
o

10—10 L ]

1 L L L PR | L 1 1 1 PRI | L ' L ' ‘\‘ L

1071 10° 10} 102

Frequency [Hz]
Fig 10. Comparison of analytic and numeric EEG power spectra in the
corticothalamic system. The dynamics of the EIRS model were simulated using the
wake parameters from [6] for their Figure 2. The linear analytic spectrum (black dashed
solid) is compared against the spectra computed from simulations (solid line).

Benchmarks

NFTsim provides a tool for semi-automated benchmarking. Timing and configuration
information for simulation runs are stored in a comma-separated value (csv) file that
can be processed at a later stage.
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Invoking the script

nf_benchmarks

without any arguments will run all the configuration files in the benchmarks/ directory
once. We provide ten default configuration files that run in a total of under 700 s on a
desktop computer. Example results for specific hardware are given below. These files
are based on the corticothalamic model and are representative of typical simulation
scenarios. With nf_benchmarks users can also:

(i) benchmark a specific configuration file

nf_benchmarks <config_filename>

(ii) benchmark a specific configuration file multiple times (e.g., 8 times in this
example)

nf_benchmarks --num-trials 8 <config_filename>

(iii) benchmark a specific configuration file with output written to memory instead
of disk (this only works under Linux)

nf_benchmarks --to-mem <config_filename>

(iv) benchmark a specific configuration file using a non-default compiler

nf_benchmarks --clang <config_filename>

In NFTsim propagating fields are followed via partial differential equations, so the
main contributions to the runtime 7" are (i) the number of grid cells N; (ii) advancing a
maximum of P? fields, between P populations, on the N cells; (iii) the length of the
simulation in integration steps L = Ty /At; and, (iv) the size of the output O written
to file. So,

T  kgim P2NL + kO (35)

where the coefficients kg, and kout depend on the hardware architecture. The output
size O depends on the product of the total number of variables (W), the number of grid
cells (Noyt) and the total output time points [Lows = (Tsim — Tstart)/Atout] requested in
the configuration file.

For large O, the runtime is dominated by writing operations. This overhead is
expected for two reasons: (i) a simulated data sample is written to disk every Atqys,
which takes additional time; and, (ii) writing the output to a text file requires conversion
of numbers to text. Despite the runtime overhead this last point entails, text files are a

convenient format to store the output because they are easier to debug than binary files.

The required memory, M, used by a NFTsim process is dominated by the number of
grid points N and the history arrays of P internal populations with delay depth
D = max(74p)/At, which is the number of integration steps for a signal to propagate to
the target population from the source population. So,

M « NPD. (36)

Table 4 summarizes the simulation parameters that determine runtime and memory
usage of a NFTsim process, including those which are not directly specified in a
configuration file.

To assess NFTsim’s performance, we select the corticothalamic model presented in
earlier sections, with the parameters taken from previously published work [6] and thus
considered a typical simulation use case.

The simulation length and integration time step are held constant at 16 s and
At =275~ 107% s, respectively. So, the only varying parameter that affects the
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Table 4. NFTsim simulation and output size parameters, and runtime and
memory usage symbols.

Symbol | Description Parameter in configuration file | Units
Teim Simulation length Time S

At Integration time step Deltat S

L Number of time steps - -

P Number of populations - -

D Delay depth - -

0] Output size - -
Nout Number of output nodes Node -
Atout Output sampling period Interval

Tiiart Output start time Start S

w Number of output variables - -
Lout Number of output time points | - -

M Memory used - byte
T Runtime - S

First column: symbols used in this work to identify either the parameters specified in a
configuration file, or variables associated with runtime and memory usage. Second
column: description of the variable or parameter. Third column: parameter names used
in configuration files. The symbol — means the parameter is not specified directly in a
configuration file. Fourth column: SI units. Here, the symbol — means the quantity is
dimensionless.

runtime and storage is Nodes (V). The choice of this integration time step size is such
that is sufficiently small to resolve high frequency oscillations and to satisfy the Courant
condition for numerical stability for a range of discretization values between

3mm < Az < 50mm. The Courant number ranges between 0.014 < p < 0.15 for a fixed
velocity vgy = 10 m s~ 1.

Two groups of simulations were ran. The first group, G,, runs the simulation and
only writes a copy of the configuration file to the output file. The subscript no means
no output. In this case the runtime represents the effective time spent executing a
simulation without the time overhead due to writing operations. From Eq. (35), the
group Gy, has kout =~ 0. The second group of simulations G,,, consists of identical
simulations to those of G,,,, except that all the model variables (firing rate, voltages,
fields, coupling strengths), for all the nodes, sampled at 512 Hz, are written to a file in
the hard disk.

Approximate runtimes and memory usage are measured using tools available on
Linux systems. The computer used for the benchmarks has Red Hat Enterprise Linux
(RHEL) 6.9 as operating system, GNU Compiler collection (gcc) 4.9.2 as the default
compiler, a 3.50 GHz Intel 15-4690 processor and 8GB of RAM.

Table 5 presents the benRHchmark results for different grid sizes and shows that the
runtimes scale linearly as a function of the number of nodes with kg, =~ 0.15 s for the
simulation group G, and and kgm & kouy =~ 0.15 s for group G,,,. From these results,
we conclude that in order to produce one minute worth of data sampled at a rate
typically used in clinical EEG recordings, NFTsim takes about four minutes to run the
simulation and write the output to disk. Thus, NFTsim’s simulation length to real-time
data length ratio (Tyim/Treal) for EEG-compatible outputs is approximately 4. To
reduce this ratio users can decrease the size of the output O, by writing only a few
relevant variables to disk.

While these benchmarks offer a narrow view of NFTsim’s performance, they are a
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Table 5. Benchmarks for different grid sizes using NFTsim v.0.1.5.

Nodes | Storage [GB| | Memory [MB] | Runtime G,, [s] | Runtime G, [s]
144 1.1 5 24 44
256 1.9 6 40 79
1024 7.3 16 161 302
4096 29 o1 646 1208
16384 116 200 2601 4908

The value of Nodes is reported on the first column. The second column informs the
storage size of the output file with all the model variables for each node (firing rate,
voltages, fields, coupling strengths) sampled at 1/At,p =512 Hz for the group of
simulations G- The third column presents the total memory usage of the process.
Reported runtimes on the fourth column and fifth columns are the time elapsed in
seconds. The values on the fourth column correspond to simulations with no output (no)
written to the output file. The fifth column corresponds to the running times of
simulations for which all the model variables for every node of the grid are written to
the output file (wo). The same corticothalamic model is used in every simulation with
Teim =16 s, and At =27 s.

valuable practical tool for users and provide: (i) estimates of resources required to run
simulations; and, (ii) a guide to make informed decisions between the execution
runtimes and accuracy (i.e., decreasing the spatial resolution and/or the time step).

Conclusions, Availability, and Future Directions

We have introduced NF'Tsim, a user-ready, extensible and portable suite for numerical
simulations of neural activity based on neural field models. NFTsim is based on the
well established framework of neural field theory [2] and has been validated with both
analytic solutions and experimental data. Thus, when working with new models and
simulations users can use analytic solutions as a way to validate their results. This
feature is unmatched by other tools currently available to simulate dynamical models of
brain activity.

Written in C++, NFTsim has been tested on a range of Linux distributions (RHEL
6.9, RHEL 7.4, OpenSUSE 13.2, OpenSUSE 42.2). The output of NFTsim is written to
a plain text file and ancillary modules written in Matlab contain functions to assist in
simulation execution, quick analysis and visualization of the results. NFTsim thus
provides an efficient solution to simulating various continuum spatiotemporal models
including spatially uniform (homogeneous) and nonuniform (inhomogeneous) neural
field models [77]; systems with heterogeneous time delays between populations [33]; and,
the selected format for data storage is simple enough that enables users to choose from
a broad selection of tools to perform further analysis and visualization. The
development of NFTsim follows essential practices of modern open-source scientific
software development [95] such as:

(1) The code is licensed under the Apache 2.0 license.

(ii) Our code sources are hosted on Github:
https://github.com/BrainDynamicsUSYD/nftsim.

(iii) We use pull requests to review new features and bug fixes.

iv) Our users can open issues reporting bugs and/or other problems they encounter.

(
(v) The developer documentation is produced using Doxygen [100].
(vi) A separate manual is provided for end-users.
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(vii) Releases are tagged, so users can refer to and download continuously improved
versions of the code that are considered stable and tested. For instance, for this paper,
we have used v.0.1.5.

Neural field models simulated with NFTsim include spatial propagation of signals
and have been shown to have ample physiological applications. Most notably, the
activity from neural populations can be used to calculate biophysical signals such as
LFP, ECoG, or EEG signals, the latter being the most commonly found in previous
studies. Other forms of biophysical observables, such as fMRI and VSDI may also be
implemented, but require additional modeling work to define how the electrical activity
relates to the corresponding measurements (e.g., oxygen consumption, blood flow
changes or fluorescence). Further physical effects such as spatial smoothing due to
volume conduction in EEG can be implemented as a part of postprocessing modules like
+nf.

Due to its flexibility and generality, NFTsim allows for a systematic study of both
healthy and unhealthy brain function. For instance, in [6] the authors used simulations
of a full nonlinear EIRS model showed that for parameter values representing typical
sleep spindle oscillations. They found that the numerical nonlinear power spectrum had
an additional harmonic peak that was neither present in the linear EIRS model nor it
was predicted by the analytic linearized power spectrum. This study clearly
demonstrated that NFTsim’s flexibility allowed for the investigation of nonlinearities,
introducing them one at the time in different neural populations. This enabled the
authors to determine which anatomical structures and physiological mechanisms were
responsible for the dynamics observed in experiments.

Due to its modularity, NFTsim is extensible and can accommodate new features
presented in theoretical work on neural fields. In fact, a tool like NFTsim is essential for
the study of nonlinearities and connectivities configurations that do not necessarily
follow the random connectivity approximation or are not spatially homogeneous or
constant over time. For instance, [68] explored the mechanisms of seizures by
incorporating slow currents modulating the bursting behavior of the reticular nucleus in
the corticothalamic (EIRS) model; while [37] incorporated a model of synaptic plasticity
to the purely excitatory subsystem. These two mechanisms are already implemented in
the current version of NFTsim. However, further investigation and development work is
required before implementing a general mechanism of parameter modulation, which
would allow for the study different types and functional forms of neural
feedbacks [58,99].

We remind potential users that NFTsim, as any scientific software, should not be
used blindly. As a minimal requirement, users should: check that the integration time
step is small enough to resolve the simulated dynamics, for example by running the
simulation with increased or decreased time steps to check for stability and convergence
of the solutions; run simulations for different values of the Courant number; and
compare numerical results with known analytic solutions. Artifacts of periodicity
introduced by PBCs, illustrated in Fig. 7 can be avoided if the grid’s area is larger than
that of the actual physical system. In this scenario, waves propagating from the region
of interest towards the right edge of the grid would die off before being reintroduced on
the left edge. This approximation would be close to the solution in the absence of
artificial boundaries in which the region of interest has infinite size. Lastly, the
parameter Interval, which effectively downsamples the timeseries written to disk,
needs to be carefully selected so as to avoid temporal aliasing if there are signals with
high-frequency content.

In the present work we have concentrated mainly on a high-level description of the
software and presented examples for which model parameters are assumed to be
spatially uniform. NFTsim already accepts spatial variations in many parameters,
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although more development work needs to be done to provide general mechanisms of

parameter variation.

As mentioned in Classes and their Interactions, NFTsim currently has white noise in

its collection of external driving signals because in the
literature [1,2,4,8,27-30,38,62,101-104] neural field models are typically either

initialized or driven by random fields using a white noise process. However, there are
several limitations that make white noise a poor choice. The first limitation is that
idealized continuous noise is not physically realistic because it has an infinite bandwidth

and infinite power. The second limitation is that in computer simulations, where

continuous models are inevitably discretized, the bandwidth of a white noise signal
depends on the size of the discretization. This dependence implies that if either the
time step or the spatial step are reduced, the bandwidth increases and as a result a
white noise signal has additional modes (i.e., frequency components). One can use a
scaling parameter to adjust the overall power of the discretized driving signal [29,84].

This scaling has no effect on the resulting spectral shape that is often compared

to

EEG [29]. The third limitation is that white noise introduces discontinuities in the
derivatives of the system, which are continuous and differentiable. For these reasons, it
is necessary to incorporate a new type of random stimuli that has similar spectral

characteristics to white noise (i.e, a flat power spectrum over a range of relevant

frequencies) but that is differentiable in time and space; and its spectral profile does not

change under changes of the discretization.

Future work will extend NFTsim scientific features by including (i) a new iterative
bandlimited noise generation to render the inputs even more biologically realistic; (ii)
generalized mechanisms of spatiotemporal variations for different model parameters and

variables; (iii) generalized mechanisms of neuromodulation; and, (iv) spherical topology.

In addition, a number of technical enhancements will be made such as (i) implement
support for output binary files; and (ii) extend and automate unit test coverage to

ensure that new additions to the code do not break previous functionality.

Supporting information

Appendix S1. Discretization of the wave equation

In this section we describe the discretization of the wave equation. This method
allows us to obtain an equation to advance each field ¢ from ¢ to t + At. We remind

the reader that the equation relating the field ¢q(r,t) to the driving signal Qy(r

102 20
T pm g LY fa(r ) = Qulr, 1),
ab a

,t) is

(37)

This equation is a damped wave equation for ¢q(r,t) with source Qp(r,t). The

damping is introduced via the first-order derivative term in the same way friction

forces

enter a vibrating mechanical system; and, by the third term in Eq. (37). This equation

can be simplified by making the following substitutions

U= (bab eXp('Vabt),
and
w = Qpexp(Yapt)-
We then obtain the undamped wave equation
[ 1 9

772@ — ribVQ] u(r,t) = w(r,t),
ab

(38)

(39)

(40)
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To solve this differential equation numerically, we replace the temporal and spatial 1033
derivatives with finite central difference approximations on a discretized domain. The 10
derivation presented in the following paragraphs solves the Eq. (40) by using explicit 1035
methods, that is, the next value of ¢ is computed from known past values of u and w 103

and all future time terms appear on the same side of the time stepping equation. 1037
Consider first the term 9%/9t? in Eq. (40), and let the superscripts n index time in 103
units of k = At. We can use a Taylor expansion to write 1039

S2u™ = "t — 2y 4y (41)

k2 0%u  k* O
=2l ==+ +... 42
<2'at2+4!at4+ ) (42)
82 k2 84

= k2 43

<8t2+128t4+ ) (43)
where 7 is the second order central difference operator in time; and, u™*? is the future 100
term we are interested in calculating. Combining Egs. (41) and (43) yields 1001

u k% 0%
=2y " R o s ) 44
u T e <8t2+126t4+) (44)

Note that this approximation is O(k?) accurate in time because we use a second order 1o
central difference formula to approximate the second order derivative. So, the error is 104

proportional to the square of k. In a similar way, the second order centered finite 1044
difference approximation for the second order spatial derivatives are 1045
0%u  h% 0
2 _ 12
6zlul’m = Ujr1i,m — 2ul,m + U—1,m = h (813% + — 2 8134 + .. ) (45)
0%u  h% o'
2 _ )
Oy Ulim = Ulm41 = 2Utm + U m—1 = h (&c% T2 T ) (46)

where h = Axq = Axs is the grid spacing and the subscripts m and [ index grid points 104
in the orthogonal x; and x5 directions, respectively. The error of the centered difference 107

scheme used here is O(h?). We also use: 1048
0? 02
2= — 4+ — 47
v ox? * 0x3’ (47)
1
and 1049
0%u
Fr Vel oy ViU + 5w, (49)
84 82 82 1050
U _ 2.2 o2 w
ﬁ - ’Yabrabv atg +. ab 8t2 (50)
We then substitute Eqs (49) and (50) into Eq. (44) and obtain 1051

un+1 — 2un _ un—l

2 v?2 (22 g2 (Ou > 0w 51
+ 'Yabrab U+ ’Yabw + = 12 Yab ab atQ + Yab 55 o2 ’ ( )
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62
and further substitute the term a—tq; in Eq. (51) for the right hand side of Eq. (49) 1052

u" Tt =2y — ! (52)

k? 0w
+ k2 |:’Yabrabvzu + ’Yabw + = 12 (’yabrabVz (’Yablrabv U+ Vabw) + ’ng 6t2 >:| .

By rearranging the terms in Eq. (52) we can express u" ! in terms of v and w

u" =2y — ! (53)
2 k? 4 4 i 4.2 o2 2 P*w
+ k2 |ara Vi + yiw + — 2 YabTapV U+ VapTapV W + Tab g2 | |2

k2
un+1 _ 2un _ un—l + kQ’YabTab |:V2 Vabrab v4:|

12
kQ 82 k}2’}/2 ,,,2
k,Q v ab’” ab v? . 54
Jab { Thoer T T2 v (54)
We now omit the terms involving V4 since a second order approximation is enough,
giving
un+1 — 2un _ un—l + kQ,Y r v2un =+ kQ’y 1 + ka 82 n k ’-Yabrab V? (55)
abTab ab 12 92 12

Next we replace V2 by the approximations defined in Eq. (48) to obtain

un+1 = 2u" — un—l

1 2
PRS2, + 82 " + K2, [1 + 0+ 2 (02 + 552)} w, (56)

where p = pap, = kvapTab/h is the Courant number and is equivalent to Eq. (30). Next, 103

we replace the second order difference operators 62, 62 ., and 52 , to obtain an explicit 105

solution to compute the next value in time of w,, ;: 1055

u”+1 2up ?,;ll —1-;02(55l + (59262)11;‘1’[

1 P’
+ k22, [ ﬁaf + 13 (62, + 5;)} w1, (57)

n+1 n—1 n n n n
U 2u - um l +p ( m,l+1 + um,l—l + um+1,l + um—l,l - 4um,l)

mli
1(n+1

—1
12 m,l ” )

n
— meJ + Wy

+ kz’ng { Wy +

2

p
+12 (

n+1l _ ) no_ 4 2. n 2/ n n n n _
um,l = LUy, p um,l +p (um,l+l + um7l—1 + um+1,l + um—l,l) u

k27ab [

n n n n n
Wy 41 T Wiy g1 T Wiy g ) T Wy 1 — 4wm,l)] ) (58)

n—1
m,l

+ 12wy, +w) T — 2wy, + w"_

+p? (wm,l+1 + wfn,l—l + w:ln+1,l + Wy 1y — 4wy, )] (59)

Uﬁrll =2 —4p")ult; + P (up i + Upy -1+ Upg g+ U1 g) — UZ;zl
Kz A2Y, n+1

D (10 — 4p*)wy, ; + (w7 +w;, )

+p? (w;’sz,lJrl +wpy, g+ szJrl,l + wﬁlfl,z)] . (60)

+
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From Eqs (38) and (39), u" = ¢"e¥™At and w™ = ¢"eav"At, Also, for a single

simulation step, the current state is centered at ¢ = 0 and thus indexed by n = 0; the
next and previous states are £1 step away, or equivalently £A¢. Then, n 4+ 1 denotes
time At and n — 1 denotes time —At. Therefore we define the following substitutions

u L = gl granAt (61)
u =g, (62)
'l = g e v At (63)
W't = Qrilera At (64)
wh=Q", (65)
w' Tt = Qe e AL (66)

The spatial indices are omitted for compactness but can take the values {m, m + 1} and
{l,l £ 1}. Hence, Eq. (60) can be expressed in terms of ¢ and @ as

abAt _ =1 _—vapA
¢Z;ﬁl€7 2= (2 - 4p2)¢:ln,,l +P2(¢z¢,z+1 + Omi1 + Pmrra T Pr1a) — éf%,gle Tab B

k2’72
+ B (10 — ), + (@t + Qe
0% Qs + Qi + Qi + Q)| (67)

Finally, upon multiplying both sides of Eq. (67) by e~ 74t one finds

+1 —Yap At 2 2 —1_—~yap At
it = A (2 = )y + DA (D + St + B T B ) — e

k2’72
Tt (10— 4@+ (@ Qe
+p? (Q%JJA + Qi1+ Qi1+ Qﬁ%u)] } (68)

Eq. (68) is the formula to advance an axonal field ¢, one time step based on its current
state (n) and previous state (n — 1) when ¢, is governed by Eq. (13).
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Appendix S2. Configuration file used in Analysis and Visualization.

e-erps-all-nodes.conf - configuration file for one-population neural
field model.
All parameters are in SI units.

Time: 0.25 Deltat: 2.4414e-4
Nodes: 4096

Connection matrix:
From: 1 2
To 1: 1 2
To 2: 0 O

Population 1: Excitatory

Length: 0.5

Q: 10

Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340
Dendrite 1: alpha: 83 beta: 769

Dendrite 2: alpha: 83 beta: 769

Population 2: Stimulation
Length: 0.5
Stimulus: Superimpose: 2

Stimulus: Pulse - Onset: 0.03125 Node: 2000 Amplitude: 2
Width: 0.001953125 Frequency: 1 Pulses: 1

Stimulus: Pulse - Onset: 0.06250 Node: 2097 Amplitude: -2
Width: 0.001953125 Frequency: 1 Pulses: 1

Propagator 1: Wave - Tau: O Range: 0.2 gamma: 30
Propagator 2: Map -

Coupling 1: Map - nu:
Coupling 2: Map - nu: le-4

Output: Node: All Start: O Interval: 9.7656e-4
Population:

Dendrite:

Propagator: 1.phi

Coupling:
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