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Abstract

A user ready, portable, documented software package, NFTsim, is presented to facilitate
numerical simulations of a wide range of brain systems using continuum neural field
modeling. NFTsim enables users to simulate key aspects of brain activity at multiple
scales. At the microscopic scale, it incorporates to define characteristics of local
interactions between cells, neurotransmitter effects, synaptodendritic delays and
feedbacks. At the mesoscopic scale, it incorporates information about medium to large
scale axonal ranges of fibers, which are essential to model dissipative wave transmission
and to produce synchronous oscillations and associated cross-correlation patterns as
observed in local field potential recordings of active tissue. At the scale of the whole
brain, NFTsim allows for the inclusion of long range pathways, such as thalamocortical
projections, when generating macroscopic activity fields. The multiscale nature of the
neural activity produced by NFTsim enables the modeling of resulting quantities
measurable via various neuroimaging techniques. In this work, we give a comprehensive
description of the design and implementation of the software. Due to its modularity and
flexibility, NFTsim enables the systematic study of an unlimited number of neural
systems with multiple neural populations under a unified framework and allows for
direct comparison with analytic and experimental predictions. The code is written in
C++ and bundled with Matlab routines for a rapid quantitative analysis and
visualization of the outputs. The output of NFTsim is stored in plain text file enabling
users to select from a broad range of tools for offline analysis. This software enables a
wide and convenient use of powerful physiologically-based neural field approaches to
brain modeling. NFTsim is distributed under the Apache 2.0 license.

Introduction 1

The brain is a multiscale physical system, with structures ranging from the size of ion 2

channels to the whole brain, and timescales running from sub-millisecond to multi-year 3

durations. When modeling brain structure and dynamics, it is thus necessary to choose 4
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models that are appropriate to the scales of the phenomena involved. These range from 5

microscale models of individual neurons and their substructures, through network-level 6

models of discrete neurons, to population-level mesoscale and macroscale neural mass 7

and neural field models that average over microstructure and apply from local brain 8

areas up to the whole brain. Many useful results can be obtained analytically from 9

models at various scales, either generally or when applied to specific brain systems and 10

phenomena. However, in order to minimize approximations and make realistic 11

predictions in complex situations, numerical simulations are usually necessary. The 12

purpose of this paper is to present a neural field software package, NFTsim, that can 13

simulate scales from a few tenths of a millimeter and a few milliseconds upward, thereby 14

making contact with experiments [1–6] and other classes of simulations over this 15

range [7, 8]. 16

No one type of brain model is optimal at all scales. For example, single neuron 17

models abound in neuroscience, and can include a large number of biophysical effects 18

with relatively few approximations. Many such models have also been used to study 19

networks of interconnected neurons with varying degrees of idealization, thereby 20

revealing a huge number of insights [9–11]. However, several key problems arise as 21

network size grows: (i) the computational resources required become prohibitive, 22

meaning that simulations can often only be carried out in physiologically unrealistic 23

scenarios, typically with idealized neurons, which may be quantitatively and/or 24

qualitatively inappropriate for the real brain; (ii) it is increasingly difficult to measure 25

and assign biophysical parameters to the individual neurons — e.g., individual 26

connectivities, synaptic strengths, or morphological features, so large groups of neurons 27

are typically assigned identical parameters, thereby partly removing the specificity of 28

such simulations; (iii) analysis and interpretation of results, such as large collections of 29

timeseries of individual soma voltages, becomes increasingly difficult and demanding on 30

storage and postprocessing; (iv) emergence of collective network-level phenomena can be 31

difficult to recognize, sometimes leading to single-neuron dynamics being 32

overemphasized; (v) the scales of these simulations are well suited to relate to 33

single-neuron measurements, and microscopic pieces of brain tissue, but are distant from 34

those of noninvasive imaging modalities such as functional magnetic resonance imaging 35

(fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) [12–14], 36

which detect signals that result from the aggregate activity of large numbers of neurons; 37

and (vi), inputs from other parts of the brain are neglected, meaning that such models 38

tend to represent isolated pieces of neural tissue. 39

At the level of neurons and neuronal networks [15,16], software is abundant, 40

including BRIAN, NEURON, GENESIS, and NeoCortical Simulator [17–22]. A detailed 41

review of tools and implementation strategies for spiking neural network simulations can 42

be found in [9]. 43

At the largest scales, neural mass models average the properties of huge numbers of 44

neurons into those of a single population, without taking account of its spatial aspects. 45

This enables the temporal dynamics of whole neural populations to be approximated, 46

but information on individual neurons and spatial dynamics and patterns is not tracked. 47

This scale can be used to study whole-brain phenomena such as generalized seizures, if 48

time delays within each mass can be neglected. This approach has been used to treat 49

relatively coarse-grained networks of interacting brain regions, each modeled as a neural 50

mass. However, it is rare to see careful attention paid to the need for these 51

representations to approach the correct spatiotemporal continuum limit as the size of 52

the regions decreases [10,23,24], thereby throwing some such discretizations into 53

question. Of course, neural structure is not truly continuous, but its granularity is at a 54

far finer scale than that of the discretizations just mentioned. 55

Above the single-neuron scale and extending to encompass the neural-mass limit as a 56
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special case, neural field approaches retain spatial information in a continuum limit in 57

which properties such as firing rate and soma voltage are viewed as local averages over 58

many neurons, and can vary from point to point, and as functions of time; when 59

correctly discretized, neural mass models are a limiting case of the more general neural 60

fields and should not be viewed as a separate category. Neural fields approximate 61

rate-based models of single neurons from the small scale, while retaining relative timings 62

between neural inputs and outputs. Simultaneously, they self-consistently add spatial 63

structure that is neglected in neural mass models. Hybrid models with features of both 64

neural fields and spiking neurons have also been developed and used to clarify the 65

relationship between these approaches [3], or to enable single-neuron dynamics to be 66

influenced by average neural fields [25], but we do not discuss these classes of models 67

further here. 68

The issues discussed in the preceding paragraphs are closely analogous to ones that 69

arise in other branches of physics. Specifically, no single model can cover all scales at 70

once. Rather, a hierarchy of models is needed, from the microscale to the macroscale, 71

each relating predictions to measurements at its operational scale. This yields tractable 72

models that can be interpreted in terms of concepts and measurements that apply at 73

the appropriate scales for a given phenomenon. Importantly, each model needs to be 74

related to the ones at nearby scales, especially by making complementary predictions at 75

overlapping scales of common applicability. By analogy, molecular dynamics approaches 76

and statistical mechanics (akin to single neuron approaches) are widely used to track 77

molecules at the microscopic scale, but large-scale theories like thermodynamics and 78

fluid mechanics (akin to neural mass and neural field methods) are more useful and 79

tractable for macroscopic phenomena, and their predictions can be more easily 80

interpreted. At intermediate scales, nonequilibrium thermodynamics and fluctuation 81

theory meet with statistical mechanics and molecular approaches to make 82

complementary predictions of the same phenomena; so that consistency of the various 83

approaches in their common domain can be established. Although molecular-level and 84

spiking-neuron approaches are more fundamental, they are not practical at large scales, 85

and yield results that have to be reinterpreted in terms of larger-scale observables in any 86

case. Conversely, thermodynamic and neural-field approaches fail at spatial and 87

temporal scales that are too short to justify the relevant averaging over a system’s 88

microscopic constituents. 89

Because of the wide range of scales that can be incorporated in neural field theory, it 90

provides useful macroscopic predictions and can reach down to mesoscopic scales that 91

now overlap with those that can be simulated with neuron-level methods. This provides 92

a range of common applicability on scales of around 1 mm, or slightly less, where 93

complementary predictions can be made and tested – an overlap that will increase as 94

microscopic simulations increase in scale. Equally significantly, quantitative neural field 95

predictions can readily be made of quantities observable by EEG, MEG, fMRI, 96

electrocorticography (ECoG), and other imaging technologies, by adding the biophysics 97

of these signals, measurement procedures, and postprocessing [26–29]. This enables 98

predictions of a single brain model to be tested against multiple phenomena in order to 99

better determine the relevant physiological parameters. The importance of this point 100

cannot be overemphasized — underdetermination of theories and models is rife in 101

neuroscience, and ones that are tested against only one or a few phenomena, and/or 102

whose predictions and parameters are not expressed in quantitative physical units, must 103

at best be treated as being highly provisional, subject to further verification and 104

parameter constraint. 105

As an illustration of the versatility of NFT approaches, we note that the particular 106

NFT on which the present NFTsim software is based has been extensively applied and 107

quantitatively tested against experiments, including EEG, evoked response potentials 108
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(ERPs), ECoG, age-related changes to the physiology of the brain, sleep and arousal 109

dynamics, seizures, Parkinson’s disease, and other disorders, transcranial magnetic 110

stimulation (TMS), synaptic plasticity phenomena [1,6,26–38]. Indeed, one of the major 111

strengths of this NFT is its versatility: within the same framework we can express 112

different models to study purely cortical phenomena, the corticothalamic system, basal 113

ganglia, sleep dynamics, or the visual cortex, among an essentially unlimited number of 114

other applications [1, 26–28,30,32, 34–37,39–42]. This NFT has also been clearly linked 115

to its neural mass limit [35], to hybrid spiking-field approaches [3, 34,43], and to 116

network and connection-matrix representations of spatial structure in the brain [44], 117

usually obtained via fMRI. 118

We stress that the NFT embodied in NFTsim is not the only possibility. Other 119

NFTs have been developed and applied by numerous authors [45–53], each of which has 120

been applied to one or more physical situations in these and subsequent publications. 121

This list is not exhaustive, since the present work is not intended as a review, but more 122

examples can be found in [10], [24], and [54]. Notably, most of these NFTs can be 123

expressed in the notation of the present paper, and can thus be simulated with the 124

NFTsim software described below. Some of these previous neural field models leave out 125

physical effects that are included in NFTsim, while others include additional features 126

that remain to be incorporated in a future version of the code. 127

A few software packages are available to model neural masses and neural fields: [7] 128

developed a neuroinformatics platform for large-scale brain modeling in terms of a 129

network of linked neural masses with anatomically specified cortical geometry [54], 130

long-range connectivity, and local short-range connectivity that approximates the 131

continuum limit when it is Gaussian and homogeneous [23]. While the mathematical 132

framework described in [54] allows for neural field models to be treated using realistic 133

geometry on nonregular grids, a user-ready implementation is not currently available. 134

Similarly, the Brain Dynamics Toolbox [55] provides tools for network-based and 135

continuum models of brain dynamics. The most recent simulation tool for 136

spatiotemporal neural dynamics is the Neural Field Simulator [8], which allows for 137

study of a range of 2D neural field models on a square grid. However, this software does 138

not allow for either the simulation of neural field models with heterogeneous parameters 139

or with multiple populations. 140

To address the need for research-ready NFT simulation tools with direct application 141

to the study of large-scale brain phenomena, this paper introduces and describes 142

NFTsim, a software package that solves neural field equations expressed in differential 143

form for simulating spatially extended systems containing arbitrary numbers of neural 144

populations. 145

Neural Field Theory 146

Neural field theory (NFT) treats multiscale brain activity by averaging neural quantities 147

such as firing rate, soma voltage, and incoming and outgoing activity over multiple 148

neurons. The scales over which neural field models average must be sufficient to 149

represent large numbers of neurons and spikes, but can still be small enough to resolve 150

quite fine structure in the brain and its activity. NFTsim allows an arbitrary number p 151

of spatially extended populations of neurons to be simulated. Each of these can be 152

distinguished by its location (e.g., belonging to the cortex or a particular nucleus) and 153

its neural type (e.g., pyramidal excitatory, interneuron). To model a particular system, 154

we must specify the neural populations and the connections between them, including 155

self-connections within a population. If we introduce position and time coordinates r 156

and t, the main macroscopic variables that describe the activity of neural populations a 157

and their interaction with other populations b are: the incoming, axonal spike-rate fields 158
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φab(r, t) arriving at population a at (r, t) from population b, the dendritic potentials 159

Vab, the mean soma potential Va(r, t), the mean firing rate Qa(r, t), and the axonal 160

fields φca(r, t) propagating to other populations c from population a. Figure 1 161

illustrates the interactions of these quantities: (i) synaptodendritic dynamics involving 162

the incoming axonal fields φab to yield the potentials Vab; (ii) dendritic summation and 163

soma charging processes to yield the soma potential Va; (iii) generation of pulses Qa at 164

the axonal hillock, and (iv) axonal propagation of pulses φac within and between neural 165

populations [1]. The following subsections present a review of the equations describing 166

these physiological processes, while Table 1 summarizes the quantities and symbols used 167

in NFT and their SI units. 168

φab Vab Va Qa φca
Synaptodendritic

dynamics

Soma

charging

Firing

response

Wave

propagation

Fig 1. Schematic of the dynamical processes that occur within and between
neural populations. Gray circles are quantities associated with interactions between
populations (i.e., a and b), while white circles are quantities associated with a
population (i.e., a or b). Spike-rate fields φab arriving at neurons of type a from ones of
type b are modulated by the synaptic dynamics, and undergo dendritic dynamics to
produce postsynaptic subpotentials Vab. These contributions are linearly summed in the
dendritic tree, eventually resulting in charging currents at the soma that give rise to the
soma potential Va, after allowing for capacitive effects and leakage. Action potentials
generated at the axonal hillock are averaged over a population of neurons. Then, when
the mean soma voltage exceeds a threshold, the mean firing rate Qa of the population is
obtained via a nonlinear response function. Finally, the pulses propagate away across
the axonal tree and the dendrites of the receiving population c as the set of average
spike-rate fields φca. Note that self-connections with b = a or c = a are included.

Synaptodendritic Dynamics and the Soma Potential 169

When spikes arrive at synapses on neurons of population a from a neural population b, 170

they initiate neurotransmitter release and consequent synaptic dynamics, like 171

transmembrane potential changes, followed by dendritic propagation of currents that 172

result in soma charging and consequent modifications of the soma potential. Each of 173

these processes involves its own dynamics and time delays and results in low pass 174

filtering and temporal smoothing of the original spike until the soma response is spread 175

over a time interval that is typically tens of ms, exhibiting a fast rise and an 176

approximately exponential decay [3, 56]. 177

If the overall synaptodendritic and soma responses are linear, which is the most 178

common approximation in the literature [2, 30,57], the total soma potential Va is the 179

sum of subpotential contributions Vab, which are components of perturbation to the 180

dendritic transmembrane potential, arriving at each type of dendritic synapse ab. The 181

subscript a denotes the receiving population and b denotes the neural population from 182

which the incoming spikes originate, distinguished by its source and the 183

neurotransmitter type. The subpotentials Vab at a particular location comprise 184

contributions from both the wave fields φab from other internal populations b and inputs 185

φax from external populations x [58]; the external inputs are often split into a uniform 186

mean nonspecific excitation and a specific excitation due to structured stimuli. Thus we 187

write the total mean cell body potential as the sum of postsynaptic subpotentials 188
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Va(r, t) =
∑
b

Vab(r, t), (1)

where the subscript b distinguishes the different combinations of afferent neural type 189

and synaptic receptor and all the potentials are measured relative to resting [2]. 190

The overall effect of synaptodendritic dynamics and soma charging in response to an 191

incoming weighted pulse-rate field φab are well described by an impulse response kernel 192

Lab(t− t′) 193

Vab(r, t) =

t∫
−∞

Lab(r, t− t′)νab(r, t)φab(r, t′ − τab)dt′, (2)

νab(r, t) = Nab(r, t)sab(r, t), (3)

where φab is the average rate of spikes arriving at a from population b; the time delay 194

τab is nonzero when a and b are in anatomical structures that are separated by a 195

nonzero distance [2]. In Eq. (3), Nab is the mean number of connections of mean 196

time-integrated synaptic strength sab to a cell of type a from cells of type b. In [2], Lab 197

is a nonnegative response kernel with 198∫ ∞
−∞

Lab(r, u)du = 1, (4)

and Lab(r, u) = 0 for u < 0 to express causality. Note that τab are not the only time 199

delays in the system. Propagation delays within a single structure, such as the cortex, 200

are handled by accounting for axonal propagation, as described in section Propagation 201

of Axonal Pulse-rate Fields. In NFTsim Lab(r, t) is defined as 202

Lab(r, t) =


αabβab
βab − αab

{exp[−αabt]− exp[−βabt]} , α 6= β,

α2
abt exp[−αabt], α = β,

(5)

for t ≥ 0, with Lab(r, t) = 0 for t < 0 and the r-dependence of the positive constants α 203

and β has been omitted for compactness. These quantities parametrize the decay rate 204

and rise rate of the soma response, respectively, and β ≥ α is assumed without loss of 205

generality. The temporal profile of the dendritic response function is illustrated in 206

Fig. 2. This function peaks at t = ln(β/α)/(β − α) for α 6= β; if α = β, the peak is at 207

t = 1/α. In addition, there are two special cases of Eq. (5): (i) if either α→∞ or 208

β →∞, then Lab becomes a single exponential function in which only one of the 209

characteristic timescales dominates; and, (ii) if α = β =∞, then the kernel reduces to 210

the impulse Lab(r, t) = δ(r, t). 211

The convolution in Eq. (2) can be re-expressed as 212

DabVab(r, t) = νabφab(r, t− τab), (6)

where the differential operator Dab is given by 213

Dab(r, t) =
1

αabβab

d2

dt2
+

(
1

αab
+

1

βab

)
d

dt
+ 1. (7)

In some previous work [56] a special approximation has been used where αab and βab 214

are independent of b and are thus treated as effective values, representing an average 215

over different receptor time constants. Under this approximation Eq. (6) becomes 216
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DaVa(r, t) =
∑
b

νabφab(r, t− τab) (8)

All the aforementioned cases and forms of the operators (differential and integral) are 217

implemented in NFTsim. 218

time [s]
0 0.1 0.2 0.3 0.4

L ab
[s

-1
]

0

5

10

15

20

25

30

Fig 2. Dendritic response function. The response to a delta-function input, via
Lab as defined in Eq. (5), for decay rate parameter αab = 45 s−1 and rise rate
parameter βab = 185 s−1. This function peaks at t = ln(β/α)/(β − α) for α 6= β.

Generation of Pulses 219

Pulses (i.e., spikes or action potentials) are produced at the axonal hillock when the 220

soma potential exceeds a threshold potential θa(r, t). When we consider the mean 221

response of a population of neurons to a mean soma potential we must bear in mind 222

that each neuron has slightly different morphology and environment. Hence, they 223

respond slightly differently in the same mean environment. This has the effect of 224

blurring the firing threshold and the resulting overall population response function is 225

widely approximated by the nonlinear form [48] 226

Qa(r, t) = S[Va(r, t)− θa(r, t)], (9)

where θa is the mean threshold potential of population a and Sa is a function that 227

increases monotonically from zero at large negative Va to a maximum firing rate Qmax
a 228

at large positive Va, with the steepest increase concentrated around the mean threshold 229

θa. NFTsim employs by default the nonlinear sigmoid response function 230

Sa[Va(r, t), θa(r, t)] =
Qmax
a

1 + exp[−{Va(r, t)− θa(r, t)}/σ′a(r, t)]
, (10)

where σa = σ′aπ/
√

3 is the population standard deviation of the soma voltage relative to 231

the threshold. If the function in Eq. (10) is linearized to consider small perturbations 232

around a steady state of the system [2,31], one finds the linear response function 233

Qa = Q(0)
a + ρa[Va − V (0)

a ] (11)
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where Q
(0)
a and V

(0)
a are the relevant steady-state values and ρa = dQa/dVa, is the slope 234

of the sigmoid function, evaluated at V
(0)
a [2]. This linear population response function 235

is also implemented in NFTsim and other functional forms can be defined as well. 236

Propagation of Axonal Pulse-rate Fields 237

The propagation of the pulses Qb(r, t) in each population b generates an outgoing mean 238

field φab that propagates via axons to the population a at other locations. In general, 239

this propagation can depend on both the initial and final populations, and can 240

incorporate arbitrary nonuniformities and a range of propagation velocities via 241

propagator methods, for example [59,60]. However, considerable theoretical and 242

experimental work has shown that, to a good approximation, the mean field of axonal 243

signals in a smoothly structured neural population propagates approximately as if 244

governed by an isotropic damped wave equation [2, 47, 49, 52, 53,61–66]. In NFTsim we 245

implement the widely used equation 246

Dabφab(r, t) = Qb(r, t), (12)

with 247

Dab =

[
1

γ2
ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2

ab∇2

]
, (13)

where γab = vab/rab is a temporal damping coefficient, rab is the spatial effective axonal 248

range, vab is the axonal velocity [2, 53,62–66], and ∇2 is the Laplacian operator. 249

Equations (12) and (13) constitute the two-dimensional generalization of the 250

telegrapher’s equation [2, 53,67]. More generally, γab, rab, and vab can be functions of 251

position. If the special case of spatially uniform activity is considered, the Laplacian 252

operator has no effect and can be omitted from (13). This special case results in the 253

harmonic operator 254

Dab =

[
1

γ2
ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1

]
. (14)

We stress that this is not the same as using a local neural mass model because the 255

damping parameter γab depends on spatial propagation. To obtain the neural mass 256

limit, one also needs to set the spatial ranges rab = 0 so γab becomes infinite and 257

Dab(r, t) = 1. (15)

This yields 258

φab(r, t) = Qb(r, t), (16)

which is termed the local interaction approximation [2, 50]. 259

The parameter rab in the propagators in Eqs (13) and (14) encompasses coordinate 260

divergence of axons traveling to the target population a from the source population b 261

and the extent of dendritic arborization of the target population a, and thus rab 6= rba 262

in general [79]. 263

Design and Implementation of NFTsim 264

This section presents a comprehensive description of NFTsim. The subsection General 265

Workflow gives an overview of the typical usage workflow of NFTsim. The 266

subsection Classes and their Interactions describes the main NFTsim classes, which 267

represent the biophysical processes and quantities introduced in Neural Field Theory. 268

Next, subsection Input-Output illustrates with examples how to specify a model in the 269
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Table 1. NFT quantities and associated SI units.

Symbol Description Units

Qmax
a Maximum firing rate s−1

γab Damping rate s−1

vab Wave velocity m s−1

rab Mean axonal range m
θa Mean neural firing threshold V
σ′a Standard deviation of the firing threshold V
αab Mean dendritic response decay rate s−1

βab Mean dendritic response rise rate s−1

νab Synaptic coupling strength V s
τab Long range time delay s
φab Axonal field s−1

Qa Mean firing rate s−1

Vab Subpotential V
Va Mean soma potential V

Symbols used in NFT, associated physical quantities and their SI units. Double
subscripts ab mean that the target population is a and the source population is b.

input configuration file to NFTsim and how to interpret the output file. In addition, 270

subsection Numerical Methods, Considerations, and Constraints elaborates on the 271

numerical approaches and constraints used to correctly solve the equations of neural 272

field models while attaining numerical accuracy and stability. Lastly, 273

subsection Analysis and Visualization presents a simple example of how to run a 274

simulation, and analyze and visualize the results using the auxiliary Matlab module +nf. 275

A list of the available functions in this module is presented in Table 3. 276

The typographic conventions used in the remainder of this text are that: (i) all 277

computer code is typeset in a typewriter font; and (ii) code snippets are framed by 278

horizontal lines with line numbers on the left. 279

General Workflow 280

A typical NFTsim workflow consists of three broad phases: configuration; simulation; 281

and postprocessing. The first phase involves writing a configuration file that specifies 282

the neural field model as well as other parameters required to run a simulation. This file 283

is a human readable plain text file with the extension .conf. Once a configuration is 284

specified the simulation can be launched by invoking the nftsim executable, either 285

directly via a shell (eg. bash) terminal 286

287

1 user@host$ nftsim -i <my-model.conf > -o <my-model.output > 288
289

or indirectly via the nf.run Matlab function. In the simulation phase, NFTsim reads 290

the configuration file, specified after the flag -i, builds the objects of the specified 291

model, runs the simulation and writes the output file, which contains the timeseries of 292

the neural quantities requested in the configuration file. The name of the output file 293

can be specified using the flag -o and must have the extension .output. In the absence 294

of an output file name, NFTsim uses the input file name with the extension .output. 295

For autogenerated output file names, the flag -t can be used to append a string to the 296

output file name of the form YYYY-MM-DDTHHMMSS, which follows the standard ISO 297

8601 [73] to represent date and time. In the postprocessing phase, the simulation results 298

can be analyzed offline and visualized with the functions provided in the Matlab module 299
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+nf. 300

Code Architecture 301

Neural field models can be decomposed into a small number of objects, that represent 302

their various parts. Each object has intrinsic properties that, in turn, can be well 303

represented as classes, each of which is a set of elements having common attributes 304

different from other sets, using object oriented programming. NFTsim classes have been 305

implemented in C++ (C++11 standard) [74,75]. 306

The most prominent components of neural field models are populations, synaptic 307

connections, and propagators. Each of these components (or objects) is described by a 308

main base class with properties specific to a group of objects. Derived classes are 309

defined via the mechanism of class inheritance which allows for: (i) the definition of 310

class in terms of another class; (ii) the customization of different parts of the system 311

being modeled; and (iii) the extension of the functionalities of the library. For instance, 312

a base class describing propagators has properties such as axonal range and axonal 313

velocity. These properties are common to different propagators (derived classes) such as 314

the wave propagator in Eq. (13) or the harmonic propagator in Eq. (14), and are 315

inherited from the base class. However, the optimal method to solve each form of 316

propagation may vary and thus each propagator-derived class can have its own solver. 317

Furthermore, there are auxiliary base classes that define additional properties of the 318

main classes described above. These auxiliary classes embody processes like dendritic 319

dynamics, soma charging, firing response, external stimuli, and anatomical time delays. 320

Thanks to this modular architecture, NFTsim allows for the specification of models 321

with (i) an arbitrary number of neural populations, of different types and with different 322

parameter sets; (ii) different types of connections between pairs of populations; and (iii) 323

different types of activity propagation, with or without propagation time delays between 324

and within neural populations. 325

Classes and their Interactions 326

An overview of NFTsim’s calling interactions between classes, is illustrated in Fig. 3. In 327

this diagram main and auxiliary base classes are positioned so that, in a simulation, 328

their position corresponds to being initialized and stepped forward in time from top to 329

bottom and from left to right within each row. In the first row, we see the high-level 330

class Solver which coordinates how the other classes interact during a simulation. In 331

the second row, the main base class Propagator computes each of the axonal pulse-rate 332

fields φab generated by the firing rate Qb. In any given neural field model there are as 333

many Propagator objects as there are connections. These can be any of three derived 334

Propagator classes (Wave, Harmonic, Map) implemented to accommodate the operators 335

defined in Eqs (13), (14), or (15), respectively. The Wave class uses an explicit time 336

stepping method based on second order central difference schemes in space and time 337

(see Explicit Difference Method and Boundary Conditions for the 2D Wave Equation). 338

The Harmonic class implements Eq. (14), where for spatially homogeneous models the 339

Laplacian term is zero and one finds a damped oscillator response. This class uses a 340

standard fourth-order Runge-Kutta (RK4) explicit forward time stepping method with 341

a fixed time step [83]. Lastly, the Map class, where the propagator is simply a direct 342

mapping as in Eq. (15). Below Propagator, there is the auxiliary class Tau, which 343

handles the activity history and retrieves the appropriate delayed activity for use in 344

Eq. (6) when the discrete time delay τab is nonzero. Then, to the right of Propagator, 345

the Coupling class handles synaptic connections and their dynamics. The base 346

Coupling class assumes that the synaptic strengths are constant over space and time. 347

Thus, the output signal is a product of incoming activity and synaptic weights. Other 348
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Solver

Propagator

Qb, φab

PopulationCoupling

νab, φab

Outlet

Timeseries
Qx

Dendrite
Vab

FiringResponse
Va, Qa

Tau
τab

Fig 3. Simplified diagram of NFTsim’s call graph. The execution of a
simulation is controlled by the class Solver. Initial conditions are given in terms of
firing rates Qb which are then propagated to other populations via Propagator.
Synaptic connections are handled via Coupling. The incoming activity to postsynaptic
Population undergoes dendritic dynamics via Dendrite. The sum of individual
contributions Vab and the resulting firing response are handled by FiringResponse.
The class Timeseries is used to represent external inputs Qx from a stimulus
Population. Lastly, the class Outlet stores the variables that are written to the output
file.

derived Coupling classes implement temporally varying synaptic strengths as in [35], or 349

modulation by pre- or postsynaptic activity, as in [39]. To the right of Coupling, the 350

Population class describes neural population activity and its parameters define the 351

type. 352

In the third and fourth rows, below Population, we see that each Population uses 353

two subsidiary classes: an array of Dendrite objects (one for every population 354

connected via a Coupling); and, a FiringResponse. The signal from a Coupling 355

object is passed to a corresponding Dendrite object which implements the 356

synaptodendritic effects defined in Eq. (6). The contributions Vab are then summed to 357

yield the soma potential Va of the population. Then, the population’s FiringResponse 358

object implements Eq. (9) to calculate the resulting population firing rate Qa. Different 359

forms of the activation function are specified within the base FiringResponse class. 360

Other types of activation function that involve modulation of parameters due to 361

presynaptic or postsynaptic activity are implemented in classes derived from the 362

FiringResponse class. Such is the case of BurstingResponse that implements 363

modulation of firing threshold θa [68]. External or stimulus populations are also objects 364

of the Population class. However, their activity is represented by a predefined 365

spatiotemporal profile of firing rate Qx, that represents a chosen input and is contained 366

in an object of the class Timeseries. In NFTsim the external inputs may include noisy 367

and/or coherent components which may or may not be spatially localized (e.g., afferent 368

to the visual thalamus in response to a visual stimulus). Currently, NFTsim supports a 369

number of different external driving signals (φax) to stimulate any population a of a 370

system. These signals include: a constant value equivalent to applying DC voltage; sine 371

waves; square pulse trains; and, white noise to simulate random perturbations. These 372

basic functions can be combined additively to generate more complex stimulation 373

signals. 374

Lastly, to the right of Population, the class Outlet, stores the variables that are 375

written to the output file. 376
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Propagator

Qb→φab

Coupling

φab→νabφab

Dendrite

νabφab→Vab

FiringResponse

Vab→Va→Qa

Fig 4. NFTsim classes associated with biophysical processes. This diagram
illustrates the relationship of the classes in the library and the biophysical
transformations they represent. Input variables are on the left, while output variables
are on the right. Gray boxes are classes associated with interactions between
populations, while white boxes are classes associated with internal mechanisms of a
population.

In summary, a compact representation of the neural field equations with the label of 377

the associated NFTsim classes is 378

Dabφab = Qb, Propagator (17)

Pab = νabφab, Coupling (18)

DabVab = νabφab, Dendrite (19)

Qa = Sa

[∑
b

Vab

]
, FiringResponse. (20)

where the auxiliary variable Pab in Eq. (18) is only defined inside the Coupling class 379

and assigned the presynaptic inputs weighted by the local synaptic coupling strength. 380

Figure 4, which is analogous to the diagram presented in Fig. 1, illustrates the input and 381

output variables of each class and the direction in which they flow within a simulation. 382

Input-Output 383

The main routine of NFTsim takes a plain text configuration file as input, where all the 384

model description and simulation parameters are specified, and writes the simulation 385

result to an output file. Both the configuration file and output file are plain text files, 386

so launching simulations and reading the results with other programming languages is 387

also possible. Note that all the parameters in the configuration and output files are 388

specified directly in SI units without prefixes (e.g., s, s−1, V); e.g., a value of 1 mV is 389

written as 1e-3 (where V is implicit). 390

Configuration and Output Files 391

The following listing shows an exemplar configuration file, named e-erps.conf, which 392

is included with other examples in the configs/ directory of NFTsim. This file 393

specifies a neural field model with a single cortical excitatory population that receives 394

inputs from an external population which is the source of a stimulus to the cortex. In 395

this example, parameters were taken from [32], with the exception of the axonal 396

propagation parameters, which are tuned to emphasize wave propagation properties 397

(i.e., by decreasing the damping rate γab) for illustrative purposes. The cortical 398

population is initially in a steady state of low firing rate around 10 s−1 and is driven by 399

two pulses applied toward the center of the grid. The first pulse occurs at t ≈ 32 ms 400

and has a positive amplitude of φex1
= 2 s−1. The onset of the second pulse is 401

t ≈ 60 ms and has a negative amplitude of φex2
= 2 s−1. 402

PLOS 12/42

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/237032doi: bioRxiv preprint 

https://doi.org/10.1101/237032
http://creativecommons.org/licenses/by-nc-nd/4.0/


403

1 e-erps.conf - configuration file for a single -population neural field 404

model. 405

2 All parameters are in SI units 406

3 407

4 Time: 0.25 Deltat: 2.4414e-4 408

5 Nodes: 4096 409

6 410

7 Connection matrix: 411

8 From: 1 2 412

9 To 1: 1 2 413

10 To 2: 0 0 414

11 415

12 Population 1: Excitatory 416

13 Length: 0.5 417

14 Q: 10 418

15 Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340 419

16 Dendrite 1: alpha: 83 beta: 769 420

17 Dendrite 2: alpha: 83 beta: 769 421

18 422

19 Population 2: Stimulation 423

20 Length: 0.5 424

21 Stimulus: Superimpose: 2 425

22 Stimulus: Pulse - Onset: 0.03125 Node: 2000 Amplitude: 2 426

23 Width: 0.001953125 Frequency: 1 Pulses: 1 427

24 Stimulus: Pulse - Onset: 0.06250 Node: 2097 Amplitude: -2 428

25 Width: 0.001953125 Frequency: 1 Pulses: 1 429

26 430

27 Propagator 1: Wave - Tau: 0 Range: 0.2 gamma: 30 431

28 Propagator 2: Map - 432

29 433

30 Coupling 1: Map - nu: 0 434

31 Coupling 2: Map - nu: 1e-4 435

32 436

33 Output: Node: 2000 Start: 0 Interval: 9.7656e-4 437

34 Population: 2.Q 438

35 Dendrite: 439

36 Propagator: 1.phi 440

37 Coupling: 441
442

The above file starts with a brief description of the model to be simulated. This 443

comment is optional and can span multiple lines. In lines 4-5, global parameters for the 444

simulation are defined: simulation duration (Time), time step size (Deltat), and the 445

total number of nodes in the two dimensional grid (Nodes). 446

The aforementioned parameters are followed by the specification of a square 447

connection matrix in lines 7-10, where the rows are the target populations and columns 448

indicate the source populations. In this matrix, a positive integer indicates there is a 449

connection between two populations and it also serves as an identifier of that 450

connection. In the case presented above, there are only two nonzero connections, 451

connection 1 to Population 1 from itself and connection 2 to Population 1 from 452

Population 2. The couplings, dendrites and propagators are labeled by these 453

consecutive positive integers. The two populations of this example are defined in lines 454

12-25. Each population in the model is specified separately, indicating its type (e.g., 455

excitatory, inhibitory, or external), the physical size of its longest side (Length), its 456

initial condition in terms of firing rate Q, and its type of dendritic and firing responses. 457

The next step, in lines 27-28, is to define the type of propagation and coupling between 458

each pair of connected populations. In line 27, the axonal propagation of the 459

excitatory-excitatory connection follows a damped wave equation, with zero long-range 460

time delay (Tau), characteristic spatial range of 0.2 m (Range) and a damping 461

coefficient of 30 s-1 (gamma). Finally, at the end of the configuration file, from line 33 462

onwards in this example, we specify which timeseries are written to the output file. 463
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There are three global output parameters: Node which specifies the labels of the grid 464

nodes whose activity will be written to the output file; Start, sets the time (in seconds) 465

from which the output timeseries will be written, and cannot be larger than the total 466

simulation duration Time; and, Interval is the sampling interval between points in the 467

timeseries. In lines 34 and 36 we see that NFTsim has to write the firing rate (Q) of 468

Population 2, and the axonal field phi of Propagator 1, respectively. NFTsim first 469

writes the configuration file at the top of the output file to ensure full reproducibility of 470

the results, then it writes a line filled with the symbol =, and finally, it writes the 471

requested timeseries. Below we show part of the output file e-erps.output. 472

473

1 ======================================================================= 474

2 475

3 Time Pop.2.Q Propagator .1. phi 476

4 2000 2000 477

5 9.76560000000000e-04 0.00000000000000e+00 1.00003146139049e+01 478

6 1.95312000000000e-03 0.00000000000000e+00 1.00014242188480e+01 479
480

Here, the first column is the time vector. The second column is the firing rate Q of the 481

second population at node 2000. The third columns is the excitatory field of 482

Propagator 1 from Population 1 to itself at node 2000. Line 3 provides the label of 483

each timeseries, while line 4 shows the node index. 484

Numerical Methods, Considerations, and Constraints 485

This section focuses on considerations and constraints regarding the numerical methods 486

implemented in NFTsim. In Initial Conditions we give a general overview and strategies 487

to set initial conditions for neural field simulations. Furthermore, Discretization of the 488

Spatial Domain and Courant Condition describe the way space is discretized in NFTsim 489

and the maximum grid ratio for correctly solving the 2D damped wave equation, 490

respectively. Lastly, in Explicit Difference Method and Boundary Conditions for the 2D 491

Wave Equation we explain the stepping method used to solve the wave equation on a 492

finite grid. 493

Initial Conditions 494

Neural field equations are partial delay differential equations (PDDEs), thus at the start 495

of a simulation activity from previous times is required for initialization. NFTsim 496

assumes the system is initialized at a stable fixed point and then fills a history array, 497

which stores the past activity of the system, with the values of firing rate at equilibrium. 498

The size of the history array depends on the time step size ∆t and the longest time 499

delay τab in the model. For example, if the maximum time delay is 16 ms and the time 500

step is 0.125 ms, then the length of the history array will be 128. 501

In a steady state, the fields in the system do not change, so NFTsim sets all the 502

temporal derivatives to zero. Furthermore, NFTsim currently assumes that the initial 503

activity is uniform spatially. If the stationary state used as initial conditions is unstable, 504

or if it is close to a stable state, one can expect to see transient activity until the system 505

settles into the closest stable attractor (either a fixed point or another manifold). 506

We now present an example of how to find the steady states of a cortical model with 507

two cortical populations with one external input. The equation for the cortical steady 508

state φ
(0)
e is 509

S−1
e

[
φ(0)
ee

]
= (νee + νei)φ

(0)
ee + νesφ

(0)
es , (21)

where the system is also assumed to be driven by a constant, spatially uniform input 510

φ
(0)
es from subcortical structures. The structure of the solution can be interpreted as 511
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follows: the left-hand side of Eq. (21) is a monotonic increasing function of φ
(0)
ee , while 512

the right-hand side is linear in φ
(0)
ee (although it could more generally be nonlinear). 513

Hence, either one or three solutions exist [31]. When three solutions are found, the 514

middle one represents an unstable equilibrium, the lower corresponds to normal activity, 515

and the upper to a high firing rate seizure-like state [31]. When five solutions are found, 516

three of which are stable, the additional middle stable steady state has been found to be 517

consistent with a waking state of increased cortical and thalamic activity [76]. 518

The form of the steady-state equation strongly depends on the number of 519

populations and the interconnections within the model. Also, due to the transcendental 520

nature of the steady-state equation, fixed point solutions have to be computed 521

numerically. To find the roots, the steady-state equation is usually rearranged so as to 522

have all the terms to the right hand side, and then evaluated for a range of 523

S−1
e

[
φ

(0)
ee

]
≡ V (0)

e values. Solutions are identified by a change in sign between 524

consecutive test values of V
(0)
e . A standard root finding algorithm (e.g., 525

Newton-Raphson) can then be used to refine the roots. An initial scan over V
(0)
e is 526

required because the root finding algorithm will most likely converge to the root nearest 527

the initial guess for V
(0)
e . 528

For these reasons, NFTsim does not currently provide a general method to find the 529

stable steady-state solutions of the system. Nevertheless, it is possible to use NFTsim 530

to find them. One strategy consists of running auxiliary simulations to give the system 531

enough time to reach a stable state. The end state of this auxiliary simulation can then 532

be used to provide the initial conditions for other simulations. The second strategy 533

consists of combining NFTsim with Monte Carlo methods to run numerous simulations 534

with randomly sampled initial conditions in order to find the stable states. 535

The first approach mentioned above is best suited for scenarios in which one already 536

has an initial estimate of the initial stable state of the system; and for nonuniform 537

situations [77,78], in which case the auxiliary simulations are run for the uniform case 538

and the nonuniformities in the parameters are introduced in the main simulations. The 539

second approach is more general and does not require any a priori knowledge of the 540

initial conditions. This approach is best suited for neural field models with several 541

populations and for which finding the steady states of the systems analytically is not 542

possible or is too cumbersome. If multiple steady states are found [76], the user must 543

decide which one is to be used for the main simulations. Usually the linearly stable 544

fixed point that represents the lowest firing rates is selected as the initial condition on 545

the basis that represents a normal brain state [2, 28]. 546

Discretization of the Spatial Domain 547

Each population is modeled as a 2D rectangular sheet. In NFTsim, the physical spatial 548

domain of each population, whatever its extent, is divided into a finite number N of 549

uniform grid cells (or nodes), which remain invariant throughout the simulations for all 550

times. 551

In a configuration file, the parameter Length corresponds to the physical length of 552

the x-axis. By default, the domains are assumed to be square with Lx = Ly. In this 553

case, the value of the parameter Nodes must be a perfect square so that the spatial 554

resolutions 555

∆x =
Lx√
N
, (22)

and 556

∆y =
Ly√
N

(23)
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are the same. 557

To define a rectangular domain, in addition to the parameter Nodes (N), in the 558

configuration file one can specify the number of nodes along the x-axis via the 559

parameter Longside nodes (Nx). In this case, the number of nodes along the x and y 560

axes are different, but the spacing remains the same for both axes (i.e., ∆x = ∆y) 561

∆x =
Lx
Nx

. (24)

The number of nodes and physical length of the y-axis can be obtained as Ny = N/Nx 562

and Ly = Ny∆y, respectively. Table 2 summarizes the symbols and configuration length 563

and size parameters used in this section and in the remainder of the text. 564

As an example, we show part of a configuration file for a neural field model with two 565

populations. The physical length of the first population L1
x is larger than the length of 566

second population L2
x. 567

568

1 Time: 0.15 Deltat: 0.0001 569

2 Nodes: 12 Longside nodes: 4 570

3 571

4 Connection matrix: 572

5 From: 1 2 3 573

6 To 1: 1 2 0 574

7 To 2: 0 0 3 575

8 To 3: 0 0 0 576

9 577

10 Population 1: Big population 578

11 Length: 0.8 579

12 Q: 10 580

13 Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340 581

14 Dendrite 1: alpha: 83 beta: 769 582

15 Dendrite 2: alpha: 83 beta: 769 583

16 584

17 585

18 Population 2: Small population 586

19 Length: 0.08 587

20 Q: 10 588

21 Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340 589

22 Dendrite 3: alpha: 83 beta: 769 590
591

In the above file the two internal populations are modeled as rectangular grids with a 592

total of 12 nodes or grid cells, and with the number of nodes of the longest side 593

specified by Longside nodes. The resulting 2D grid has a size of 4× 3 nodes as shown 594

in the schematic of Fig. 5. For illustrative purposes, the parameter values used in this 595

configuration file have been exaggerated so the link between the input parameters and 596

the discretization of the space shown in the schematic is clear. However, this 597

configuration file will not produce accurate results because the spatial resolution is too 598

coarse. 599

Figure 5 illustrates that NFTsim populations are linked via a primary topographic 600

one-to-one map, which implies that all the populations must have the same number of 601

grid points N , even if they have different physical spatial dimensions. We assign the 602

same map coordinate rn to homologous grid cells in different populations. In this 603

example, r1 is assumed to be the actual physical position in Population 1, but in 604

Population 2, r1 denotes a rescaled physical dimension. Also, any physical position rn, 605

for n = 1, ..., N is assumed to be at the center of a grid cell, which is also labeled with 606

integers n = 1, ..., N . For instance, in Population 1, r1 corresponds to position 607

(∆x1/2,∆y1/2) = (0.1, 0.1) m; and, in Population 2, r1 corresponds to position 608

(∆x2/2,∆y2/2) = (0.01, 0.01) m. Lastly, the borders of the grid are depicted with 609

dashed lines to denote periodic boundary conditions (PBCs), which represent structures 610

with planar geometry and toroidal topology. 611
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Table 2. Symbols, configuration parameters and units.

Symbol Parameter name Units Parameter exposure
in configuration file

N Nodes - required

Nx Longside nodes - optional (
√

(N))
Lx Length m required
∆x - m none (Lx/Nx)
∆y - m none (∆x)
Ny - - none (N/Nx)
Ly - m none (Ny∆y)

First column: symbols used in this work to identify the parameters specified in a
configuration file. Second column: parameter names used in configuration files to
determine the physical size and spatial resolution of the 2D sheets for each population.
The symbol − means the parameter is not specified directly in a configuration file. Third
column: SI units of each parameter. Here, the symbol − means the parameter is
dimensionless. Fourth column: shows whether the exposure [81] of each parameter in the
configuration file is (i) required, (ii) optional (with its default value); or, (iii) not
required (none). In the latter case, the parameter is derived internally in the code and
we provide the equation used to calculate its value).

Courant Condition 612

The interval ∆x is used to evaluate whether the current parameters satisfy the Courant 613

condition, a necessary condition for obtaining stable solutions when solving hyperbolic 614

partial differential equations on a regular discrete grid. For the wave equation in 1D the 615

dimensionless number 616

pab =
vab∆t

∆x
≤ 1, (25)

is called the Courant number [82]; ∆t is the integration time step size and vab = γabrab 617

is the magnitude of the wave velocity. In the continuum wave equation, activity 618

propagates at maximum speed vab and the method is stable when ∆x/∆t ≥ vab. 619

Unstable schemes arise when ∆x/∆t < vab because waves propagate more than one grid 620

spacing in a period ∆t. However, for the 2D case one finds the stability criterion to 621

be [83] 622

∆t ≤ 1

vab

[
1

∆x2
+

1

∆y2

]− 1
2

, (26)

so, because ∆x = ∆y

∆t ≤ 1

vab

[
2

(∆x)2

]− 1
2

, (27)

≤ ∆x

vab

1√
2
. (28)

(29)

Hence, considering all wave-type propagators, the maximum value of the Courant 623

number pmax must satisfy 624

pmax = max(vab)
∆t

∆x1
≤ 1√

2
. (30)
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Fig 5. Schematic of the discretized spatial domain. The model has two
populations: Population 1 and Population 2. Geometrically, each population is
represented by a grid of 12 nodes, which are labeled with integers. The grid is
rectangular with dimensions 4 × 3 nodes. The number of nodes of the longest side is
specified by Longside nodes. The physical size, Lx, of each population is different.
Thus, each node in Population 1 has a linear size of ∆x1, and of ∆x2 in Population

2. Each spatial point (e.g., r1, r9, r11) is at the center of a grid cell. The subscript
denotes the node index on this grid. Also, rn denotes the actual position in the largest
population; in the smallest population rn denotes a rescaled physical dimension.

This condition is checked internally by NFTsim and if it is not satisfied, an error 625

message is returned. Note that, in practice, one usually imposes a stricter condition to 626

ensure the system has a margin of stability; e.g., in [2], the grid ratio was chosen so that 627

pmax = 0.1. 628

Explicit Difference Method and Boundary Conditions for the 2D Wave 629

Equation 630

NFTsim uses an explicit central difference method [84] to solve Eq. (13), which 631

represents axonal propagation of activity through the cortex or other structures with a 632

significant spatial extent. Here, we present the explicit time stepping formula currently 633

implemented to compute the next value of φab from past values of φab and Qb. The full 634

derivation is in Appendix S1. 635

Equation (13) is the inhomogeneous damped wave equation, which can be simplified 636

by making the substitutions 637

u = φabe
γabt, (31)

638

w = Qbe
γabt. (32)
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We then obtain the undamped wave equation 639[
1

γ2
ab

∂2

∂t2
− r2

ab∇2

]
u(r, t) = w(r, t). (33)

Note that this simplification only works for small values of ∆t because the exponential 640

factors introduced in Eqs (31) and (32) diverge as ∆t→∞. Then, the final 641

time-stepping formula using an explicit central difference method for the 2D wave 642

equation is 643

φn+1
m,l = e−γab∆t

{
(2− 4p2)φnm,l + p2(φnm,l+1 + φnm,l−1 + φnm+1,l + φnm−1,l)− φn−1

m,l e
−γab∆t

+
∆t2γ2

ab

12

[
(10− 4p2)Qnm,l + (Qn+1

m,l e
γab∆t +Qn−1

m,l e
−γab∆t)

+ p2
(
Qnm,l+1 +Qnm,l−1 +Qnm+1,l +Qnm−1,l

)]}
(34)

where the superscript n indexes time step; the first and second subscripts index space 644

along the orthogonal x and y directions, respectively, except for the subscripts on 645

γab;and p is the Courant number. 646

Note that in Eq. (34), only five spatial points are required: the central point m, l; its 647

horizontal neighbors m+ 1, l, m− 1, l; and, its vertical neighbors m, l + 1 and m, l − 1. 648

This pattern is often referred to as a five-point stencil. There are alternative finite 649

difference methods that use higher-order terms to approximate the derivatives and 650

would require larger stencils (e.g., more neighboring points) [86]. It is usually better to 651

increase the spatial resolution rather than the stencil complexity to obtain higher 652

accuracy. 653

The finite difference scheme presented above is second-order accurate in space and 654

time. This means that the rate at which the error between the discretized 655

approximation and the exact continuum solution decreases to zero is 656

O(∆x2) +O(∆y2) +O(∆t2). For instance, halving ∆x, ∆y, or ∆t, subject to Eq. (30) 657

leads to a decrease of the error by a factor of four. 658

When solving partial differential equations on a finite spatial domain, one must 659

specify boundary conditions for the simulations. NFTsim uses periodic boundary 660

conditions (PBCs). This type of condition avoids boundary effects stemming from the 661

finite size of a grid and avoids the perturbing influence of an artificial boundary like a 662

reflective wall. In PBCs, opposite boundaries are treated as if they were physically 663

connected, that is, the top of the grid is wrapped on to the bottom and the left of the 664

grid on to the right. 665

The class Stencil has two main functions: (i) retrieving the five-point stencil 666

pattern for every node in the grid; and, (ii) correctly copying the activity close to the 667

boundaries of the domain at every time step to implement periodicity. To achieve this, 668

Stencil operates on a grid of size (Nx + 2) × (Ny + 2). The additional ghost cells are 669

used to store copies of the top and bottom rows and left and right columns of the grid. 670

Figure 6 illustrates a 4× 4 grid with the additional ghost cells shaded in light blue 671

and five-point stencil pattern consisting of a central grid point c and its 4 neighbors 672

labeled as n, s, e,w (i.e., north, south, east, west). The number in each grid cell 673

represents its linear index – because the class Stencil accesses the elements of the two 674

dimensional grid using a single subscript instead of two. The grid cells with prime, 675

double-prime, and triple-prime indices are copies of the original cells with the same 676

indices. These copies are used to implement PBCs along the vertical, horizontal, and 677

diagonal directions, respectively. For instance, the cell 1′ is the vertical copy of cell 1; 678

cell 1′′ is the horizontal copy, and cell 1′′′ is the diagonal copy. The diagonal copies are 679

not used by the 5-point stencil, but would be used by a 9-point stencil [86]. 680
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Fig 6. Schematic of the grid used by the class Stencil. This class retrieves the
four nearest neighbors (labeled n, s, e,w) of a central point c. These five points define
the pattern known as a five-point stencil. The cells in light blue are the ghost cells
required to implement periodic boundary conditions. The prime, double-prime and
triple prime indices represent copies of the corresponding indices in the vertical,
horizontal and diagonal directions, respectively.

Analysis and Visualization 681

NFTsim includes a Matlab module which provides ancillary tools to assist with running, 682

analyzing and visualizing models. This package folder is called +nf. The available 683

functions and a description of their functionality are summarized in Table 3. 684

The code snippet below uses some basic nf functions as an example of how users can 685

interact with NFTsim directly from Matlab. The model is the same as the one specified 686

in the configuration file e-erps.conf presented earlier, except that the timeseries of all 687

the nodes in the grid are written to the output file. The simulation is executed via 688

nf.run(). Once the output file is available nf.read() loads the simulated data into a 689

Matlab structure. 690

Spatial patterns of activity and propagation of waves of activity across space can be 691

visualized using the function nf.movie() 692

693

1 nf.movie(nf_struct , ‘Propagator .1.phi ’, 1) 694
695

Representative frames from the movie of waves propagating from stimulation sites are 696

shown in Fig. 7(a) to Fig. 7(f). In each panel the mean spatial value of φee(x, y, t) at 697

time t has been subtracted, so red and blue reflect positive and negative deviations, 698

respectively, from the mean. The file used in this example is included in NFTsim and is 699

also available in Appendix S2. 700

Furthermore, extracting and plotting the timeseries of a few nodes enable users to 701

directly inspect the type of activity (e.g., healthy neural activity, evoked responses, or 702

seizures). In this example, nf.extract() is used internally by nf.plot timeseries() 703

to select the timeseries Propagator.1.phi. 704
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Fig 7. Neural activity of the model described in e-erps.conf. The cortical
population is driven by two square pulses. The first pulse is positive, while the second
pulse is negative. For illustrative purposes, in each panel the mean spatial value of
φee(x, y, t) has been subtracted, so the color reflects deviations from the mean at that
specific time. Each panel shows a surface plot of
φ′ee(x, y, z) = φee(x, y, t)− 〈φee(x, y, t)〉 s−1 propagating radially outwards from the
stimulation sites, and an inset with a planar view of the same quantity, at different
times: (a) 42 ms; (b) 52 ms; (c) 62 ms; (d) 77 ms; (e) 86 ms; (f) 104 ms.
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705

1 nf_struct = nf.run(‘configs/e-erps -all -nodes.conf ’) 706

2 these_nodes = {[1992:2008] ,[2089:2105]}; 707

3 these_traces = {‘Propagator .1.phi ’, ‘Propagator .1.phi ’}; 708

4 nf.plot_timeseries(nf_struct , these_traces , these_nodes , true) 709
710

Figure 8 shows the resulting plots generated with the code shown above. Each set of 711

timeseries is centered around one of the stimulation sites. In Fig.8(a) the red curve is 712

the axonal field at the site that received positive stimulation; and, in Fig.8(b), the blue 713

line is the axonal field at the site that received negative inputs. The timeseries in gray 714

above and below the colored curves are the axonal fields from neighboring sites along 715

the x-direction. In these plots, the distance between the stimulation sites and 716

neighboring sites increases vertically from the center to the top and bottom edges. The 717

vertical dashed lines are not automatically produced by nf.plot timseries, but have 718

been added to mark the onset time of the positive (red dashed) and negative (blue 719

dashed) inputs, respectively. 720

Fig 8. Timeseries of neural activity of the model described in e-erps.conf.
The cortical population is driven by two square pulses applied at the center of the grid
as shown in Fig. 7. Here, we illustrate the timeseries of φee from a few nodes close to
the vicinity of (black lines) and at the stimulation sites. The vertical dashed lines mark
the onset time of the positive (red dashed) and negative (blue dashed) stimulation
inputs, respectively. (a) the axonal field at the site receiving the positive stimulus is
highlighted in red while the time evolution of the same axonal field at neighbouring
locations is shown as black lines. (b) the axonal field at the site receiving the negative
input is highlighted in blue.

Another important step is the calculation of the temporal power spectrum for a 721

range of frequencies (in Hz), which is often compared to the power spectrum of 722

experimental data. The power spectrum may also include multiple spatial modes for a 723
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range wave numbers (in m−1) and incorporate volume conduction or hemodynamic 724

effects [97,98] on measurement. A comparison between the linear analytic power 725

spectrum and the numerical nonlinear power spectrum calculated with 726

nf.spatial spectrum() is given as an example in Standard Tests and Reproducibility. 727

Table 3. Auxiliary functions available in the module +nf.

Function Description

extract extracts time-series from an output structure
get frequencies returns the spatial frequencies
grid reshapes output into a 3D array of shape (Lout, Nx, Ny)
movie generates a movie from a 3D array produced by nf.grid

plot timeseries plots vertically spaced timeseries of specific traces and nodes
read reads an output file and returns a structure
report prints information about a structure
run runs a simulation from a configuration file
spatial spectrum computes spatiotemporal spectrum
spectrum computes temporal spectrum
wavelet spectrogram computes wavelet spectrogram using a Morlet wavelet

First column: names of the available Matlab functions. Second column: brief
descriptions of what each function does. The variable Lout is the number of time points
in the output file.

Results and Applications 728

In this section we first present four exemplar systems that can be simulated using 729

NFTsim and that have been previously studied in detail. Then, section Observables 730

and Diagnostics briefly discusses the main observables that can be currently computed 731

in NFTsim and how these have been used to predict a range of brain phenomena and 732

compare to experimental results. In section Standard Tests and Reproducibility, we 733

discuss how NFTsim could be used as a validation tool for neural field models and 734

neural field simulators. Lastly, section Benchmarks presents performance metrics and 735

practical information for users regarding average run times, memory usage, and storage 736

required for typical simulations based on a neural field model of the corticothalamic 737

system [28]. 738

Exemplar Systems 739

The versatility of neural field theory and its concomitant implementation in NFTsim 740

allow for the investigation of an unlimited variety of specific models and parameter sets. 741

In this section we present a few illustrative cases, which have been thoroughly described 742

elsewhere, along with some of their applications [1, 2, 6, 26–30,32–38,68]. Their 743

respective configuration files are included in NFTsim. 744

The most general corticothalamic model considered here includes populations with 745

long-, mid-, and short-range connections in the cortex, the specific and reticular nuclei 746

in the thalamus, and external inputs. We indicate how components of this model can be 747

successively deleted to obtain a family of models suited to simpler applications in 748

corticothalamic and cortical systems. In what follows we label specific models according 749

to the internal populations they include. The first system, called EMIRS, includes five 750

different populations of neurons: cortical excitatory pyramidal (e), excitatory mid-range 751
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(m) and inhibitory (i) populations; internal thalamic reticular nucleus (r), relay specific 752

nucleus (s), whereas the simplest case is of a system with a single excitatory population 753

(e). There is also always at least one external population that provides inputs (often 754

labeled either x or n). NFTsim provides a number of external input types such as 755

sinusoids (in space and time), pulses, and white noise. For instance, these inputs could 756

be from excitatory neurons of the auditory pathway, which transmit signals from the 757

cochlea to the thalamus [70]; or, they could be artificial external stimulation like 758

Transcranial Magnetic Stimulation [37]. 759

Figure 9 shows schematics of the illustrative neural field models described here. The 760

EMIRS corticothalamic model displayed in Fig. 9(a) includes three cortical populations 761

(e, m, and i) and two thalamic populations (r and s), with intracortical, intrathalamic, 762

and corticothalamic connections. 763

The EIRS corticothalamic model is obtained by deleting the population m from 764

Fig. 9(a) to obtain Fig. 9(b). Physically, this deletion corresponds to describing the 765

effects of the mid- range population, whose axonal range is of the order of a few 766

millimeters, as part of the short-range i population [1]. In this case, the excitatory effect 767

partly cancels inhibition to give a weaker, net effect from this compound population, 768

which includes the effects of both short-range excitatory and inhibitory interneurons. 769

This model has been successfully applied to investigate a wide range of 770

phenomena [30,42,69] (see Introduction). The model has five distinct populations of 771

neurons: four internal and one external. 772

In the purely cortical EI model of Fig. 9(c), thalamic dynamics are deleted and 773

φes = φis is assumed to replace φsn as the external input to an isolated cortex. The 774

basic EI model includes external inputs to two cortical populations (e and i), and both 775

intracortical and corticocortical feedback are represented. This model is a starting point 776

for understanding more elaborate neural fields models of the cortex (e.g., modeling 777

distinct layers within the gray matter [34,70]). Delays in the propagation of signals 778

within neurons are due to synaptodendritic, soma, and axonal dynamics. However, in 779

this model there are no long-range delays like those from the thalamus to the cortex. An 780

extensive description and analysis of this model are given elsewhere [2, 31, 71], including 781

emergence of gamma rhythm [69] and integration of cholinergic modulation [72]. Finally, 782

the excitatory-only E model in Fig. 9(d) omits cortical inhibitory effects. This neural 783

field model is the simplest system we consider that can be simulated in NFTsim and 784

has been used as the central example throughout this work. 785

Observables and Diagnostics 786

Brain phenomena including the alpha rhythm [30,33], age-related changes to the 787

physiology of the brain [26], evoked response potentials [27,34,70], and seizure 788

dynamics [1, 5, 35,68], can be measured noninvasively via EEG. In these studies, the 789

axonal fields of excitatory cortical population φee have been used to approximate EEG 790

signals measured from the surface of the scalp [49,87] and constitute one of the main 791

biophysical observables comparable to experimental EEG data. Furthermore, another 792

tool traditionally used to detect various waking and sleep stages [6, 28] is the EEG 793

power spectrum [49]. In calculating scalp EEG spectra (rather than intracranial ones), 794

one must consider filtering due to volume conduction by the cerebrospinal fluid, skull, 795

and scalp [49,87]. The calculation of the power spectrum including volume conduction 796

filtering is implemented in the module +nf. 797

It is extremely important to note that EEG is only one type of output. The neural 798

activity of different cortical and subcortical populations can be used to predict other 799

relevant electrical signals such as local field potentials (LFPs), eECoG and 800

stereoencephalography (SEEG); magnetic signals such as MEG; metabolic-related 801

signals like fMRI [88] or indirect fluorescence signals like those recorded via voltage 802
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Fig 9. Schematic of four representative neural field models. The quantities
φab are the fields propagating to population a from population b. Dashed lines represent
inhibitory connections. (a) Corticothalamic model including excitatory (e), mid-range
(m), inhibitory (i), reticular (r), specific relay (s) and external non-specific (n)
populations. (b) Corticothalamic model including excitatory (e), inhibitory (i),
reticular (r), specific relay (s), and external (n) populations. (c) Cortical model
comprising excitatory (e) and inhibitory (i) cortical populations plus an external input
field from a subcortical population (s). (d) Purely excitatory (e) cortical model with
input from a subcortical population (s).

sensitive dyes imaging (VSDI) [89]. Note that conversion of NFTsim outputs to the 803

desired neuroimaging modality signals requires an additional modeling step, including a 804

description of the causal relationship and physiological couplings between the sources 805
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(i.e., the spatiotemporal fields of neural activity stemming from multiple populations) 806

and the effective biophysical quantity measured in experiments [90,92,93,96–98]. 807

Standard Tests and Reproducibility 808

Standard tests are a set of benchmarks used evaluate and compare disparate numerical 809

implementations of similar neurobiological models [94]. There are very few such tests in 810

computational neuroscience [95] and the ones currently available are only for single-cell 811

models. To the best of the authors’ knowledge, there are no published standard tests for 812

mesoscopic models such as neural fields. Thus, there is a huge void regarding quality 813

assessment of scientific software for continuum models of brain dynamics. 814

NFTsim provides a reference framework for standard tests for implementations of 815

neural field models because its methods have been verified with analytic results; and, 816

the linear analytic closed form solutions upon which the code is based have been 817

extensively validated with experiments, as discussed in the Introduction. For example, 818

in Fig. 10 we reproduce the results presented in Fig. 2 from [6]. This plot shows a 819

comparison between the linear analytic power spectrum (dashed line) and the spectrum 820

computed from NFTsim simulations. Both spectra agree to within agree to NFTsim’s 821

default eirs-corticothalamic.conf is used with the parameters from [6], which we 822

do not repeat here because the original configuration files are also included as part of 823

the library package. The power spectrum is calculated using the 824

nf.spatial spectrum() function. 825

Furthermore, the NFTsim’s methods and implementation have also been directly 826

validated by experimental data for nonlinear dynamics, notably neural activity 827

corresponding to seizures [35] and sleep spindles [6]. 828

Fig 10. Comparison of analytic and numeric EEG power spectra in the
corticothalamic system. The dynamics of the EIRS model were simulated using the
wake parameters from [6] for their Figure 2. The linear analytic spectrum (black dashed
solid) is compared against the spectra computed from simulations (solid line).

Benchmarks 829

NFTsim provides a tool for semi-automated benchmarking. Timing and configuration 830

information for simulation runs are stored in a comma-separated value (csv) file that 831

can be processed at a later stage. 832
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Invoking the script 833

834

1 nf_benchmarks 835
836

without any arguments will run all the configuration files in the benchmarks/ directory 837

once. We provide ten default configuration files that run in a total of under 700 s on a 838

desktop computer. Example results for specific hardware are given below. These files 839

are based on the corticothalamic model and are representative of typical simulation 840

scenarios. With nf benchmarks users can also: 841

(i) benchmark a specific configuration file 842

843

1 nf_benchmarks <config_filename > 844
845

(ii) benchmark a specific configuration file multiple times (e.g., 8 times in this 846

example) 847

848

1 nf_benchmarks --num -trials 8 <config_filename > 849
850

(iii) benchmark a specific configuration file with output written to memory instead 851

of disk (this only works under Linux) 852

853

1 nf_benchmarks --to -mem <config_filename > 854
855

(iv) benchmark a specific configuration file using a non-default compiler 856

857

1 nf_benchmarks --clang <config_filename > 858
859

In NFTsim propagating fields are followed via partial differential equations, so the 860

main contributions to the runtime T are (i) the number of grid cells N ; (ii) advancing a 861

maximum of P 2 fields, between P populations, on the N cells; (iii) the length of the 862

simulation in integration steps L = Tsim/∆t; and, (iv) the size of the output O written 863

to file. So, 864

T ∝ ksimP
2NL+ koutO (35)

where the coefficients ksim and kout depend on the hardware architecture. The output 865

size O depends on the product of the total number of variables (W ), the number of grid 866

cells (Nout) and the total output time points [Lout = (Tsim − Tstart)/∆tout] requested in 867

the configuration file. 868

For large O, the runtime is dominated by writing operations. This overhead is 869

expected for two reasons: (i) a simulated data sample is written to disk every ∆tout, 870

which takes additional time; and, (ii) writing the output to a text file requires conversion 871

of numbers to text. Despite the runtime overhead this last point entails, text files are a 872

convenient format to store the output because they are easier to debug than binary files. 873

The required memory, M , used by a NFTsim process is dominated by the number of 874

grid points N and the history arrays of P internal populations with delay depth 875

D = max(τab)/∆t, which is the number of integration steps for a signal to propagate to 876

the target population from the source population. So, 877

M ∝ NPD. (36)

Table 4 summarizes the simulation parameters that determine runtime and memory 878

usage of a NFTsim process, including those which are not directly specified in a 879

configuration file. 880

To assess NFTsim’s performance, we select the corticothalamic model presented in 881

earlier sections, with the parameters taken from previously published work [6] and thus 882

considered a typical simulation use case. 883

The simulation length and integration time step are held constant at 16 s and 884

∆t = 2−14 s ≈ 10−4 s, respectively. So, the only varying parameter that affects the 885
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Table 4. NFTsim simulation and output size parameters, and runtime and
memory usage symbols.

Symbol Description Parameter in configuration file Units

Tsim Simulation length Time s
∆t Integration time step Deltat s
L Number of time steps - -
P Number of populations - -
D Delay depth - -
O Output size - -
Nout Number of output nodes Node -
∆tout Output sampling period Interval s
Tstart Output start time Start s
W Number of output variables - -
Lout Number of output time points - -
M Memory used - byte
T Runtime - s

First column: symbols used in this work to identify either the parameters specified in a
configuration file, or variables associated with runtime and memory usage. Second
column: description of the variable or parameter. Third column: parameter names used
in configuration files. The symbol − means the parameter is not specified directly in a
configuration file. Fourth column: SI units. Here, the symbol − means the quantity is
dimensionless.

runtime and storage is Nodes (N). The choice of this integration time step size is such 886

that is sufficiently small to resolve high frequency oscillations and to satisfy the Courant 887

condition for numerical stability for a range of discretization values between 888

3 mm < ∆x < 50 mm. The Courant number ranges between 0.014 < p < 0.15 for a fixed 889

velocity vab = 10 m s−1. 890

Two groups of simulations were ran. The first group, Gno, runs the simulation and 891

only writes a copy of the configuration file to the output file. The subscript no means 892

no output. In this case the runtime represents the effective time spent executing a 893

simulation without the time overhead due to writing operations. From Eq. (35), the 894

group Gno has kout ≈ 0. The second group of simulations Gwo consists of identical 895

simulations to those of Gno, except that all the model variables (firing rate, voltages, 896

fields, coupling strengths), for all the nodes, sampled at 512 Hz, are written to a file in 897

the hard disk. 898

Approximate runtimes and memory usage are measured using tools available on 899

Linux systems. The computer used for the benchmarks has Red Hat Enterprise Linux 900

(RHEL) 6.9 as operating system, GNU Compiler collection (gcc) 4.9.2 as the default 901

compiler, a 3.50 GHz Intel i5-4690 processor and 8GB of RAM. 902

Table 5 presents the benRHchmark results for different grid sizes and shows that the 903

runtimes scale linearly as a function of the number of nodes with ksim ≈ 0.15 s for the 904

simulation group Gno and and ksim ≈ kout ≈ 0.15 s for group Gwo. From these results, 905

we conclude that in order to produce one minute worth of data sampled at a rate 906

typically used in clinical EEG recordings, NFTsim takes about four minutes to run the 907

simulation and write the output to disk. Thus, NFTsim’s simulation length to real-time 908

data length ratio (Tsim/Treal) for EEG-compatible outputs is approximately 4. To 909

reduce this ratio users can decrease the size of the output O, by writing only a few 910

relevant variables to disk. 911

While these benchmarks offer a narrow view of NFTsim’s performance, they are a 912

PLOS 28/42

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2018. ; https://doi.org/10.1101/237032doi: bioRxiv preprint 

https://doi.org/10.1101/237032
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Benchmarks for different grid sizes using NFTsim v.0.1.5.

Nodes Storage [GB] Memory [MB] Runtime Gno [s] Runtime Gwo [s]

144 1.1 5 24 44
256 1.9 6 40 79
1024 7.3 16 161 302
4096 29 51 646 1208
16384 116 200 2601 4908

The value of Nodes is reported on the first column. The second column informs the
storage size of the output file with all the model variables for each node (firing rate,
voltages, fields, coupling strengths) sampled at 1/∆tout =512 Hz for the group of
simulations Gwo. The third column presents the total memory usage of the process.
Reported runtimes on the fourth column and fifth columns are the time elapsed in
seconds. The values on the fourth column correspond to simulations with no output (no)
written to the output file. The fifth column corresponds to the running times of
simulations for which all the model variables for every node of the grid are written to
the output file (wo). The same corticothalamic model is used in every simulation with
Tsim =16 s, and ∆t = 2−14 s.

valuable practical tool for users and provide: (i) estimates of resources required to run 913

simulations; and, (ii) a guide to make informed decisions between the execution 914

runtimes and accuracy (i.e., decreasing the spatial resolution and/or the time step). 915

Conclusions, Availability, and Future Directions 916

We have introduced NFTsim, a user-ready, extensible and portable suite for numerical 917

simulations of neural activity based on neural field models. NFTsim is based on the 918

well established framework of neural field theory [2] and has been validated with both 919

analytic solutions and experimental data. Thus, when working with new models and 920

simulations users can use analytic solutions as a way to validate their results. This 921

feature is unmatched by other tools currently available to simulate dynamical models of 922

brain activity. 923

Written in C++, NFTsim has been tested on a range of Linux distributions (RHEL 924

6.9, RHEL 7.4, OpenSUSE 13.2, OpenSUSE 42.2). The output of NFTsim is written to 925

a plain text file and ancillary modules written in Matlab contain functions to assist in 926

simulation execution, quick analysis and visualization of the results. NFTsim thus 927

provides an efficient solution to simulating various continuum spatiotemporal models 928

including spatially uniform (homogeneous) and nonuniform (inhomogeneous) neural 929

field models [77]; systems with heterogeneous time delays between populations [33]; and, 930

the selected format for data storage is simple enough that enables users to choose from 931

a broad selection of tools to perform further analysis and visualization. The 932

development of NFTsim follows essential practices of modern open-source scientific 933

software development [95] such as: 934

(i) The code is licensed under the Apache 2.0 license. 935

(ii) Our code sources are hosted on Github: 936

https://github.com/BrainDynamicsUSYD/nftsim. 937

(iii) We use pull requests to review new features and bug fixes. 938

(iv) Our users can open issues reporting bugs and/or other problems they encounter. 939

(v) The developer documentation is produced using Doxygen [100]. 940

(vi) A separate manual is provided for end-users. 941
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(vii) Releases are tagged, so users can refer to and download continuously improved 942

versions of the code that are considered stable and tested. For instance, for this paper, 943

we have used v.0.1.5. 944

Neural field models simulated with NFTsim include spatial propagation of signals 945

and have been shown to have ample physiological applications. Most notably, the 946

activity from neural populations can be used to calculate biophysical signals such as 947

LFP, ECoG, or EEG signals, the latter being the most commonly found in previous 948

studies. Other forms of biophysical observables, such as fMRI and VSDI may also be 949

implemented, but require additional modeling work to define how the electrical activity 950

relates to the corresponding measurements (e.g., oxygen consumption, blood flow 951

changes or fluorescence). Further physical effects such as spatial smoothing due to 952

volume conduction in EEG can be implemented as a part of postprocessing modules like 953

+nf. 954

Due to its flexibility and generality, NFTsim allows for a systematic study of both 955

healthy and unhealthy brain function. For instance, in [6] the authors used simulations 956

of a full nonlinear EIRS model showed that for parameter values representing typical 957

sleep spindle oscillations. They found that the numerical nonlinear power spectrum had 958

an additional harmonic peak that was neither present in the linear EIRS model nor it 959

was predicted by the analytic linearized power spectrum. This study clearly 960

demonstrated that NFTsim’s flexibility allowed for the investigation of nonlinearities, 961

introducing them one at the time in different neural populations. This enabled the 962

authors to determine which anatomical structures and physiological mechanisms were 963

responsible for the dynamics observed in experiments. 964

Due to its modularity, NFTsim is extensible and can accommodate new features 965

presented in theoretical work on neural fields. In fact, a tool like NFTsim is essential for 966

the study of nonlinearities and connectivities configurations that do not necessarily 967

follow the random connectivity approximation or are not spatially homogeneous or 968

constant over time. For instance, [68] explored the mechanisms of seizures by 969

incorporating slow currents modulating the bursting behavior of the reticular nucleus in 970

the corticothalamic (EIRS) model; while [37] incorporated a model of synaptic plasticity 971

to the purely excitatory subsystem. These two mechanisms are already implemented in 972

the current version of NFTsim. However, further investigation and development work is 973

required before implementing a general mechanism of parameter modulation, which 974

would allow for the study different types and functional forms of neural 975

feedbacks [58,99]. 976

We remind potential users that NFTsim, as any scientific software, should not be 977

used blindly. As a minimal requirement, users should: check that the integration time 978

step is small enough to resolve the simulated dynamics, for example by running the 979

simulation with increased or decreased time steps to check for stability and convergence 980

of the solutions; run simulations for different values of the Courant number; and 981

compare numerical results with known analytic solutions. Artifacts of periodicity 982

introduced by PBCs, illustrated in Fig. 7 can be avoided if the grid’s area is larger than 983

that of the actual physical system. In this scenario, waves propagating from the region 984

of interest towards the right edge of the grid would die off before being reintroduced on 985

the left edge. This approximation would be close to the solution in the absence of 986

artificial boundaries in which the region of interest has infinite size. Lastly, the 987

parameter Interval, which effectively downsamples the timeseries written to disk, 988

needs to be carefully selected so as to avoid temporal aliasing if there are signals with 989

high-frequency content. 990

In the present work we have concentrated mainly on a high-level description of the 991

software and presented examples for which model parameters are assumed to be 992

spatially uniform. NFTsim already accepts spatial variations in many parameters, 993
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although more development work needs to be done to provide general mechanisms of 994

parameter variation. 995

As mentioned in Classes and their Interactions, NFTsim currently has white noise in 996

its collection of external driving signals because in the 997

literature [1, 2, 4, 8, 27–30,38,62,101–104] neural field models are typically either 998

initialized or driven by random fields using a white noise process. However, there are 999

several limitations that make white noise a poor choice. The first limitation is that 1000

idealized continuous noise is not physically realistic because it has an infinite bandwidth 1001

and infinite power. The second limitation is that in computer simulations, where 1002

continuous models are inevitably discretized, the bandwidth of a white noise signal 1003

depends on the size of the discretization. This dependence implies that if either the 1004

time step or the spatial step are reduced, the bandwidth increases and as a result a 1005

white noise signal has additional modes (i.e., frequency components). One can use a 1006

scaling parameter to adjust the overall power of the discretized driving signal [29,84]. 1007

This scaling has no effect on the resulting spectral shape that is often compared to 1008

EEG [29]. The third limitation is that white noise introduces discontinuities in the 1009

derivatives of the system, which are continuous and differentiable. For these reasons, it 1010

is necessary to incorporate a new type of random stimuli that has similar spectral 1011

characteristics to white noise (i.e, a flat power spectrum over a range of relevant 1012

frequencies) but that is differentiable in time and space; and its spectral profile does not 1013

change under changes of the discretization. 1014

Future work will extend NFTsim scientific features by including (i) a new iterative 1015

bandlimited noise generation to render the inputs even more biologically realistic; (ii) 1016

generalized mechanisms of spatiotemporal variations for different model parameters and 1017

variables; (iii) generalized mechanisms of neuromodulation; and, (iv) spherical topology. 1018

In addition, a number of technical enhancements will be made such as (i) implement 1019

support for output binary files; and (ii) extend and automate unit test coverage to 1020

ensure that new additions to the code do not break previous functionality. 1021

Supporting information 1022

Appendix S1. Discretization of the wave equation 1023

In this section we describe the discretization of the wave equation. This method 1024

allows us to obtain an equation to advance each field φab from t to t+ ∆t. We remind 1025

the reader that the equation relating the field φab(r, t) to the driving signal Qb(r, t) is 1026[
1

γ2
ab

∂2

∂t2
+

2

γab

∂

∂t
+ 1− r2

ab∇2

]
φab(r, t) = Qb(r, t). (37)

This equation is a damped wave equation for φab(r, t) with source Qb(r, t). The 1027

damping is introduced via the first-order derivative term in the same way friction forces 1028

enter a vibrating mechanical system; and, by the third term in Eq. (37). This equation 1029

can be simplified by making the following substitutions 1030

u = φab exp(γabt), (38)

and 1031

w = Qb exp(γabt). (39)

We then obtain the undamped wave equation 1032[
1

γ2
ab

∂2

∂t2
− r2

ab∇2

]
u(r, t) = w(r, t), (40)
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To solve this differential equation numerically, we replace the temporal and spatial 1033

derivatives with finite central difference approximations on a discretized domain. The 1034

derivation presented in the following paragraphs solves the Eq. (40) by using explicit 1035

methods, that is, the next value of φab is computed from known past values of u and w 1036

and all future time terms appear on the same side of the time stepping equation. 1037

Consider first the term ∂2/∂t2 in Eq. (40), and let the superscripts n index time in 1038

units of k = ∆t. We can use a Taylor expansion to write 1039

δ2
t u

n = un+1 − 2un + un−1, (41)

= 2

(
k2

2!

∂2u

∂t2
+
k4

4!

∂4u

∂t4
+ ...

)
, (42)

= k2

(
∂2u

∂t2
+
k2

12

∂4u

∂t4
+ ...

)
, (43)

where δ2
t is the second order central difference operator in time; and, un+1 is the future 1040

term we are interested in calculating. Combining Eqs. (41) and (43) yields 1041

un+1 = 2un − un−1 + k2

(
∂2u

∂t2
+
k2

12

∂4u

∂t4
+ ...

)
. (44)

Note that this approximation is O(k2) accurate in time because we use a second order 1042

central difference formula to approximate the second order derivative. So, the error is 1043

proportional to the square of k. In a similar way, the second order centered finite 1044

difference approximation for the second order spatial derivatives are 1045

δ2
x1
ul,m ≡ ul+1,m − 2ul,m + ul−1,m = h2

(
∂2u

∂x2
1

+
h2

12

∂4u

∂x4
1

+ ...

)
, (45)

δ2
x2
ul,m ≡ ul,m+1 − 2ul,m + ul,m−1 = h2

(
∂2u

∂x2
2

+
h2

12

∂4u

∂x4
2

+ ...

)
, (46)

where h = ∆x1 = ∆x2 is the grid spacing and the subscripts m and l index grid points 1046

in the orthogonal x1 and x2 directions, respectively. The error of the centered difference 1047

scheme used here is O(h2). We also use: 1048

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

, (47)

=
1

h2
(δ2
x1

+ δ2
x2

), (48)

and 1049

∂2u

∂t2
= γ2

abr
2
ab∇2u+ γ2

abw, (49)
1050

∂4u

∂t4
= γ2

abr
2
ab∇2 ∂

2u

∂t2
+ γ2

ab

∂2w

∂t2
. (50)

We then substitute Eqs (49) and (50) into Eq. (44) and obtain 1051

un+1 = 2un − un−1

+ k2

[
γ2
abr

2
ab∇2u+ γ2

abw +
k2

12

(
γ2
abr

2
ab∇2

(
∂2u

∂t2

)
+ γ2

ab

∂2w

∂t2

)]
, (51)
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and further substitute the term
∂2u

∂t2
in Eq. (51) for the right hand side of Eq. (49) 1052

un+1 = 2un − un−1 (52)

+ k2

[
γ2
abr

2
ab∇2u+ γ2

abw +
k2

12

(
γ2
abr

2
ab∇2

(
γ2
abr

2
ab∇2u+ γ2

abw
)

+ γ2
ab

∂2w

∂t2

)]
.

By rearranging the terms in Eq. (52) we can express un+1 in terms of u and w

un+1 = 2un − un−1 (53)

+ k2

[
γ2
abr

2
ab∇2u+ γ2

abw +
k2

12

(
γ4
abr

4
ab∇4u+ γ4

abr
2
ab∇2w + γ2

ab

∂2w

∂t2

)]
,

un+1 = 2un − un−1 + k2γ2
abr

2
ab

[
∇2 +

k2γ2
abr

2
ab

12
∇4

]
u

+ k2γ2
ab

[
1 +

k2

12

∂2

∂t2
+
k2γ2

abr
2
ab

12
∇2

]
w. (54)

We now omit the terms involving ∇4 since a second order approximation is enough,
giving

un+1 = 2un − un−1 + k2γ2
abr

2
ab∇2un + k2γ2

ab

[
1 +

k2

12

∂2

∂t2
+
k2γ2

abr
2
ab

12
∇2

]
w. (55)

Next we replace ∇2 by the approximations defined in Eq. (48) to obtain

un+1 = 2un − un−1

+ p2(δ2
x1

+ δ2
x2

)un + k2γ2
ab

[
1 +

1

12
δ2
t +

p2

12

(
δ2
x1

+ δ2
x2

)]
w, (56)

where p ≡ pab = kγabrab/h is the Courant number and is equivalent to Eq. (30). Next, 1053

we replace the second order difference operators δ2
t , δ2

x1
, and δ2

x2
to obtain an explicit 1054

solution to compute the next value in time of um,l: 1055

un+1
m,l = 2unm,l − un−1

m,l + p2(δ2
x1

+ δ2
x2

)unm,l

+ k2γ2
ab

[
1 +

1

12
δ2
t +

p2

12

(
δ2
x1

+ δ2
x2

)]
wnm,l, (57)

un+1
m,l = 2unm,l − un−1

m,l + p2(unm,l+1 + unm,l−1 + unm+1,l + unm−1,l − 4unm,l)

+ k2γ2
ab

[
wnm,l +

1

12
(wn+1

m,l − 2wnm,l + wn−1
m,l )

+
p2

12

(
wnm,l+1 + wnm,l−1 + wnm+1,l + wnm−1,l − 4wnm,l

)]
, (58)

un+1
m,l = 2unm,l − 4p2unm,l + p2(unm,l+1 + unm,l−1 + unm+1,l + unm−1,l)− un−1

m,l

+
k2γ2

ab

12

[
12wnm,l + wn+1

m,l − 2wnm,l + wn−1
m,l

+p2
(
wnm,l+1 + wnm,l−1 + wnm+1,l + wnm−1,l − 4wnm,l

)]
, (59)

un+1
m,l = (2− 4p2)unm,l + p2(unm,l+1 + unm,l−1 + unm+1,l + unm−1,l)− un−1

m,l

+
k2γ2

ab

12

[
(10− 4p2)wnm,l + (wn+1

m,l + wn−1
m,l )

+p2
(
wnm,l+1 + wnm,l−1 + wnm+1,l + wnm−1,l

)]
. (60)
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From Eqs (38) and (39), un = φneγabn∆t and wn = φneγabn∆t. Also, for a single 1056

simulation step, the current state is centered at t = 0 and thus indexed by n = 0; the 1057

next and previous states are ±1 step away, or equivalently ±∆t. Then, n+ 1 denotes 1058

time ∆t and n− 1 denotes time −∆t. Therefore we define the following substitutions 1059

un+1 = φn+1eγab∆t, (61)

un = φn, (62)

un−1 = φn−1e−γab∆t, (63)

wn+1 = Qn+1eγab∆t, (64)

wn = Qn, (65)

wn−1 = Qn−1e−γab∆t, (66)

The spatial indices are omitted for compactness but can take the values {m,m± 1} and 1060

{l, l ± 1}. Hence, Eq. (60) can be expressed in terms of φ and Q as 1061

φn+1
m,l e

γab∆t = (2− 4p2)φnm,l + p2(φnm,l+1 + φnm,l−1 + φnm+1,l + φnm−1,l)− φn−1
m,l e

−γab∆t

+
k2γ2

ab

12

[
(10− 4p2)Qnm,l + (Qn+1

m,l e
γab∆t +Qn−1

m,l e
−γab∆t)

+p2
(
Qnm,l+1 +Qnm,l−1 +Qnm+1,l +Qnm−1,l

)]
. (67)

Finally, upon multiplying both sides of Eq. (67) by e−γab∆t one finds 1062

φn+1
m,l = e−γab∆t

{
(2− 4p2)φnm,l + p2(φnm,l+1 + φnm,l−1 + φnm+1,l + φnm−1,l)− φn−1

m,l e
−γab∆t

+
k2γ2

ab

12

[
(10− 4p2)Qnm,l + (Qn+1

m,l e
γab∆t +Qn−1

m,l e
−γab∆t)

+ p2
(
Qnm,l+1 +Qnm,l−1 +Qnm+1,l +Qnm−1,l

)]}
. (68)

Eq. (68) is the formula to advance an axonal field φab one time step based on its current 1063

state (n) and previous state (n− 1) when φab is governed by Eq. (13). 1064
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Appendix S2. Configuration file used in Analysis and Visualization. 1065

1066

1 e-erps -all -nodes.conf - configuration file for one -population neural 1067

field model. 1068

2 All parameters are in SI units. 1069

3 1070

4 Time: 0.25 Deltat: 2.4414e-4 1071

5 Nodes: 4096 1072

6 1073

7 Connection matrix: 1074

8 From: 1 2 1075

9 To 1: 1 2 1076

10 To 2: 0 0 1077

11 1078

12 Population 1: Excitatory 1079

13 Length: 0.5 1080

14 Q: 10 1081

15 Firing: Function: Sigmoid Theta: 0.01292 Sigma: 0.0038 Qmax: 340 1082

16 Dendrite 1: alpha: 83 beta: 769 1083

17 Dendrite 2: alpha: 83 beta: 769 1084

18 1085

19 Population 2: Stimulation 1086

20 Length: 0.5 1087

21 Stimulus: Superimpose: 2 1088

22 Stimulus: Pulse - Onset: 0.03125 Node: 2000 Amplitude: 2 1089

23 Width: 0.001953125 Frequency: 1 Pulses: 1 1090

24 Stimulus: Pulse - Onset: 0.06250 Node: 2097 Amplitude: -2 1091

25 Width: 0.001953125 Frequency: 1 Pulses: 1 1092

26 1093

27 Propagator 1: Wave - Tau: 0 Range: 0.2 gamma: 30 1094

28 Propagator 2: Map - 1095

29 1096

30 Coupling 1: Map - nu: 0 1097

31 Coupling 2: Map - nu: 1e-4 1098

32 1099

33 Output: Node: All Start: 0 Interval: 9.7656e-4 1100

34 Population: 1101

35 Dendrite: 1102

36 Propagator: 1.phi 1103

37 Coupling: 1104
1105
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