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Abstract

A comprehensive catalogue of the mutations that drive tumorigenesis and
progression is essential to understanding tumor biology and developing
therapies. Protein-coding driver mutations have been well-characterized by
large exome-sequencing studies, however many tumors have no mutations in
protein-coding driver genes. Non-coding mutations are thought to explain
many of these cases, however few non-coding drivers besides TERT promoter
are known. To fill this gap, we analyzed 150,000 cis-regulatory regions in
1,844 whole cancer genomes from the ICGC-TCGA PCAWG project. Using our
new method, ActiveDriverWGS, we found 41 frequently mutated regulatory
elements (FMREs) enriched in non-coding SNVs and indels (FDR<0.05)
characterized by aging-associated mutation signatures and frequent
structural variants. Most FMREs are distal from genes, reported here for the
first time and also recovered by additional driver discovery methods. FMREs
were enriched in super-enhancers, H3K27ac enhancer marks of primary
tumors and long-range chromatin interactions, suggesting that the mutations
drive cancer by distally controlling gene expression through three-
dimensional genome organization. In support of this hypothesis, the
chromatin interaction network of FMREs and target genes revealed
associations of mutations and differential gene expression of known and novel
cancer genes (e.g., CNNB1IP1, RCC1), activation of immune response pathways
and altered enhancer marks. Thus distal genomic regions may include
additional, infrequently mutated drivers that act on target genes via
chromatin loops. Our study is an important step towards finding such
regulatory regions and deciphering the somatic mutation landscape of the

non-coding genome.


https://doi.org/10.1101/236802
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236802; this version posted December 19, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Introduction

Cancer is driven by somatic driver mutations such as single nucleotide variants
(SNVs), insertions-deletions (indels) and copy number alterations (CNAs) that affect
critical genes and pathways. Driver mutations unlock oncogenic cellular properties
of unconstrained proliferation, replicative immortality, immune evasion and the
other hallmarks of cancer!. Completing the catalogue of cancer driver mutations is a
central challenge of cancer research and key to understanding tumor biology,
developing precision therapies and molecular biomarkers.

The search for driver mutations is complicated by the high rate of somatic
‘passenger’ mutations that have no biological significance. Statistical methods are
used to distinguish between drivers and passengers in cancer genome sequencing
datasets. These methods assume that somatic driver mutations occur more
frequently than expected from background mutation rates, have unexpectedly high
functional impact and show enrichment in biological pathways and networks
(reviewed in 24). Driver discovery is facilitated by large genomic datasets assembled
by consortia like the International Cancer Genome Consortium (ICGC)> and The
Cancer Genome Atlas (TCGA)®. The notable driver mutation in the TERT promoter
that confers replicative immortality on cells by inhibiting telomere-related cellular
senescence was first identified in melanoma’® and then in pan-cancer analyses®10.
These mutations create new transcription factor (TF) binding sites (TFBS) which
increase TERT transcription'l. Other genes with frequent promoter mutations
include the protein-coding genes PLEKHS1, WDR74 and SDHD?10 along with the long
non-coding RNAs (IncRNAs) NEAT1 and MALAT1'?. Genome-wide driver discovery
studies are limited to gene-focused genomic regions such as promoters and
untranslated regions (UTRs) rather than experimentally defined regulatory regions.
Alternative approaches have scanned the genome with fixed-width windows0.13,
defined windows around mutation hotspots®14, or annotated cancer mutations
using cis-regulatory information!415. Window-based approaches do not capture the

precise boundaries of regulatory elements while annotation-based approaches
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conduct limited statistical testing of mutations. Current approaches are also unable
to determine potential target genes of distal mutations.

Driver discovery in the non-coding regulatory genome is challenged by
complex overall distribution of somatic mutations. At the megabase scale, mutation
burden is associated with transcriptional activity and replication timing!®17. Open
chromatin is generally characterized by fewer somatic mutations while enhancers of
the tissue of origin accumulate more mutations!®1°. At the nucleotide scale,
mutation signatures are manifested in uneven distribution of mutations in their
trinucleotide context. Different signatures are characteristic of different tumor types
and have been linked to aberrant activity of DNA repair pathways, effects of various
carcinogens or molecular clocks?0. Genome-wide analyses of short sequence motifs
bound by TFs have revealed increased mutation rates in regulatory regions?!, for
example excessive promoter mutations melanoma and other cancer types are likely
explained by decreased activity of the nucleotide excision repair pathway?223. These
studies suggest that a large fraction of gene regulatory mutations are caused by local
mutational processes rather than positive selection driving tumor evolution.

The eukaryotic genome is organized three-dimensionally in the nuclear
space to enable its functions, including transcription regulation via long-range
interactions of promoters and enhancers and TF binding?%. Binding sites of the CTCF
chromatin architectural factor and the cohesin complex subunit RAD21 co-occur at
topologically associated domain boundaries engaged in long-range chromatin
interactions?42> and are frequently mutated in colorectal cancer2¢. Anchors of
chromatin interactions include functional genetic polymorphisms?7.28 and are
enriched in mutations in liver and esophageal cancers?°. The MYC super-enhancer
locus at 8q24 harbors SNVs with genetic predisposition for multiple tumor types3031
and its deletion in mice was recently associated with reduced tumorigenesis32.
Recurrent somatic mutations in enhancers of PAX5 and TALI have been found in
leukemia and associated with differential gene expression3334. Structural
rearrangements in medulloblastoma and leukemia cause enhancer hijacking where
oncogene expression is induced through translocations that associate oncogenes

with active enhancers3>36. Thus some mutations at gene regulatory sites may drive
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cancer by re-configuring gene regulatory interactions or the three-dimensional
folding of chromatin. Surprisingly, then, a systematic driver analysis of non-coding
mutations in cis-regulatory and three-dimensional chromatin interaction networks
is currently lacking.

To fill this gap and to explore the effects of non-coding somatic mutations on
gene-regulatory networks, we used 2,583 tumor-normal pairs characterized with
whole genome sequencing (WGS) by the ICGC-TCGA Pan-cancer Analysis of Whole
Genomes (PCAWG) project. We identified candidate drivers in regulatory regions of
the human genome defined by the Encyclopedia of DNA Elements (ENCODE)37, then
integrated these with the three-dimensional architecture of the human genome to
prioritize and interpret candidate non-coding cancer drivers and their potential
target genes. We found dozens of frequently mutated regulatory elements (FMRESs)
that were enriched in somatic small mutations and structural variants and over-
represented in active regulatory elements. Mutations in FMREs associated with
altered expression of target genes, suggesting that our findings include novel driver

mutations that rewire gene regulatory networks.

Results
Genome-wide discovery of cancer driver mutations with ActiveDriverWGS
We used the ICGC-PCAWG dataset of 2,583 whole cancer genomes for driver
discovery and focused on mutations from 1,844 genomes from 31 cancer types,
comprising 14.2 million single nucleotide variants and indels/PCAWG marker paper]
(Supplementary Figure 1). We excluded four cancer types with atypical mutational
processes: melanomas with elevated mutation rates in active TFBS??, lymphomas
with localized hypermutations38, and liver and esophageal cancers with frequent
mutations in topologically associated CTCF binding sites?° (Supplementary Note,
Supplementary Figure 2). We also excluded a small subset of hypermutated
tumors (69) that carried 47% of all somatic mutations.

To find non-coding cancer drivers in whole cancer genomes, we created

ActiveDriverWGS, a genome-wide driver discovery method that statistically
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identifies genomic regions with an elevated frequency of somatic mutations (Figure
1a). ActiveDriverWGS performs a statistical analysis of single nucleotide variants
(SNVs) and small insertions-deletions (indels) relative to adjacent background
sequences using Poisson generalized linear regression, expanding our earlier work
on protein-coding drivers3?. The model estimates expected mutation burden
through a relatively narrow adjacent window and is therefore less sensitive to
mega-base scale fluctuation of mutation rates. To adjust for nucleotide-level
mutational signatures that vary considerably across patients and tumor types?2°, the
model includes covariates for the frequency of each mutation type in its
trinucleotide context. ActiveDriverWGS additionally predicts mutation impact by
detecting frequently mutated binding sites within candidate driver genes and non-
coding regions.

We validated ActiveDriverWGS by confirming its ability to recover known
protein-coding and non-coding cancer drivers in the pan-cancer cohort and
individual cancer types. We detected 47 coding genes (FDR<0.05) in a pan-cancer
analysis, including 43 known drivers annotated in the Cancer Gene Census
database#? (Fisher’s exact P=3.0x10-%2, Figure 1b). Driver analyses of 31 cancer type
specific cohorts revealed 70 genes and 59 known drivers in total (Supplementary
Figure 3). Among non-coding consensus regions studied in PCAWG/PCAWG-2-5-9-14] e
recovered previously described non-coding regions with frequent mutations such as
promoters of TERT and WDR74, the IncRNAs NEATI and MALAT1 as well as other
candidates (Supplementary Figure 4).

We benchmarked ActiveDriverWGS and found that our statistical framework
is well-calibrated. We tested three independently generated sets of simulated
somatic mutations including two from the PCAWG project and one internally
generated set (Supplementary Figure 5). We also tested three configuration
changes in the driver discovery pipeline: genomic window sizes for determining
background mutations, inclusion of hyper-mutated samples, and exclusion of model
cofactors corresponding to trinucleotide sequence composition. ActiveDriverWGS
was robust to the size of the background window, and our simulations showed that

statistical strength was maximized with a 50 kbp window size. We further
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confirmed the importance of using trinucleotides for driver discovery, as exclusion
of this cofactor greatly increased false positive findings among protein-coding
drivers (47 vs 4 non-cancer genes found). As anticipated, inclusion of hyper-
mutated samples in the pan-cancer analysis led to recovery of fewer known protein-
coding drivers (26 vs 43 known driver genes found) likely due to their introduction
of increased noise of passenger mutations (Supplementary Figure 5). These data
collectively show that ActiveDriverWGS accurately recovers known cancer driver

genes and non-coding genome regions with frequent somatic mutations.

Driver analysis reveals frequently mutated regulatory elements (FMREs)
Having validated ActiveDriverWGS, we next sought to discover non-coding cancer
drivers in cis-regulatory regions. We studied 4.5 million TFBS mapped in ENCODE3”
in chromatin immunoprecipitation with DNA sequencing (ChIP-seq) experiments.
We focused on 149,222 cis-regulatory modules (CRMs) that covered 103 Mbp and
3.3% of the genome. CRMs were defined by overlapping binding sites of at least two
TFs that were observed in least two cell lines. To avoid confounding functional
impact, CRMs segments overlapping coding regions and splice sites were excluded.
The majority of CRMs (75%) overlapped with no UTR or promoter of protein-coding
gene, enhancer or IncRNA sequence studied in PCAWG/PCAWG-2-5-9-14]
(Supplementary Figure 6). These experimentally defined CRMs represent less-
explored genomic space for driver discovery and are complementary to commonly
used gene-focused regions such as fixed upstream promoters. The merging of
overlapping TFBSs allowed us to reduce the redundancy of binding patterns of
different TFs, while filtering of cell-type specific TFBSs led to a high-confidence set
of regulatory regions more likely characteristic of a heterogeneous pan-cancer
cohort of tumor samples.

Pan-cancer analysis of CRMs using ActiveDriverWGS revealed 41 frequently
mutated regulatory elements (FMRE; FDR<0.05) (Figure 1c, Supplementary Table
1). FMREs included previously described recurrently mutated regions (promoters of
TERT and WDR74; IncRNA MALAT1), serving as positive controls. Driver analyses of

individual cancer types revealed six FMREs, including three not seen in pan-cancer
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results (Supplementary Figure 7). We found that FMREs were longer than CRMs in
general (median 1049 bp vs 491 bp, Wilcoxon P=3.1x10-¢) and included more TF
binding sites (34 vs 10, P=2.1x10-5) while length and TFBS abundance were strongly
correlated (Pearson r=0.64, P<10-390). The FMREs represented 698 patients (38%)
with 1,092 SNVs and 113 indels. Most FMREs (25/41) did not overlap any UTRs,
promoters, or IncRNA genes, including five intronic FMREs and 10 FMREs that were
more than 50 kbp from any gene or annotated region. Thus our findings are
complementary to gene-focused driver analyses in PCAWG/PCAWG-2-5-9-14]

To confirm these findings, we used four additional methods MutSigCV1é,
NBR#!, OncoDriveFML#2 and DriverPowerlShuai & Stein] that use distinct statistical
models, clustering of mutations, and functional impact scores to find coding and
non-coding cancer drivers. The majority of FMREs detected by ActiveDriverWGS
(26/41) were also found by at least one other method, significantly more than
expected from chance alone (0 expected, Fisher’s exact P=1.8x1077). The five
methods revealed a total of 92 candidate regions at FDR<0.05 and the FMRE at the
TERT promoter was identified by all methods (Figure 1d, Supplementary Figure
8). Recovery of most FMREs with independent analytical approaches supports our
findings of FMREs and suggests that some may act as cancer drivers that are subject
to positive selection. However their elevated mutation frequency may also reflect
regionalized hyper-mutation or challenging genomic regions with technical
sequencing artefacts.

Power analysis suggests that FMREs with relatively rare mutations are only
discoverable in large patient cohorts (Supplementary Figure 9). The PCAWG pan-
cancer dataset is suitable for detecting effects three-folder smaller than for the
largest PCAWG tumour-type specific cohorts (i.e. breast, prostate and pancreatic).
We show that FMREs exist, but have been below the detectable effect-size in the
larger individual tumor-type studies published to date. Thus we need to use pan-

cancer analyses and sequence larger cancer-specific cohorts in the future.
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FMRE:s are enriched in multiple classes of somatic alterations

Cancer driver genes are affected by different genetic mechanisms in different
tumors and tumor types. To further study the biological importance of FMREs, we
analysed their somatic copy number alteration (CNA) and structural variation (SV)
landscapes profiled in PCAWG/PCAWG-6; PCAWG-1] relative to expected genetic alterations.
TF binding sites have been shown to have higher somatic mutation burden,
potentially due to collisions of gene regulatory and DNA repair pathways. To
account for TF occupancy as a cofactor of mutation rates, we sampled control
regions from all CRMs according to their mean TF occupancy per nucleotide in 100
equally sized bins and used sampled CRMs to establish expected number of
mutations according to the bin distribution of FMREs. As additional controls, we
sampled regions with matching length randomly from the genome. To avoid biasing
our analyses by earlier findings of recurrent non-coding cancer mutations and
known drivers, we excluded 3 of 41 FMREs corresponding to the TERT promoter,
the 5’UTR region of WDR74 and the IncRNA MALAT1.

As a confirmation of ActiveDriverWGS analysis, FMREs as a group included
significantly more SNVs and indels (880) than expected from all CRMs with similar
TF binding occupancy (288 expected, Pcry=5.9x10-%) and from random genome-
wide regions (113 expected; Pew<10-¢) (Figure 2a). The enrichment suggests the
mutations apparent in FMREs exceeds the mutation rate of comparable regulatory
regions and may instead reflect positive selection of mutations important in cancer
biology. Similarly, 96 structural variant breakpoints were significantly enriched in
FMREs compared to both types of control regions (Pcru<10%, 5 expected;
Pew=6.0x10-%, 9 expected)(Figure 2a). Focal copy number variants (652) showed a
trend of enrichment (Pcrny=0.074, 511 expected; Pew=0.0081, 430 expected) (Figure
2a). In total, 43% of all patients in the dataset (793/1,844) had at least one
mutation in any FMRE (SNV, indel, SV or focal CNA), significantly more than
expected by chance from the distribution of TF-occupancy weighted CRMs
(399/1,844; Pcru<10%) or from random genomic control regions (469/1,844,
Pew=1.1x10-%). Individual FMREs with fewer SNVs and indels often included many
focal CNAs in additional patients, while few patients (46/793 or 6%) carried
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multiple mutations of different types in the same FMRE (Figure 2b). Thus FMREs
likely include functionally important regions that are modified through distinct
genetic mechanisms in different tumors and tumor types. For example, enrichment
of structural variants among FMREs may indicate enhancer hijacking events
mediated by translocations33:36,

To study mutational processes active in FMREs, we evaluated the mutation
signatures of SNVs using sample-specific exposure predictions developed by PCAWG
[PCAWG-7] (Figure 2c). As controls, we sampled genome-wide mutations from the
samples that carried FMRE mutations. We found that FMRE mutations were
significantly enriched in aging-related signatures: signature five with 311 SNVs
(permutation P=7.6x104, 270 SNVs expected) and signature one with 70
SNVs (P=4.8x10-4, 47 SNVs expected), relative to mutations sampled randomly from
the tumor genomes with FMRE mutations. As expected, 59 known protein-coding
drivers detected by ActiveDriverWGS were also enriched in signatures one and five
relative to genome-wide mutations. The overall higher frequency of SNVs with
aging-related signatures supports the hypothesis of FMREs acting as cancer drivers.

To reveal the FMREs with the strongest indications of hyper-mutation or
technical biases, we studied germline variants in the PCAWG cohort (Figure 2d).
FMREs had significantly more unique germline SNPs per nucleotide compared to
exons of 59 protein-coding drivers (median 0.074 vs 0.058, Wilcoxon P=0.010), in
agreement with recent findings of reduced mutation rates in exons due to
differential mismatch repair43. Twelve frequently mutated regions, including nine
FMREs (22%) as well as 5’UTR of WDR74, promoter of ZNF595 and the IncRNA
RPPH1 exceeded the germline density of all protein-coding drivers and we flagged
these as potetntially problematic (Figure 1c). Eleven additional FMREs (27%) lied
between the 90t and the 100t percentile of germline variation of protein-coding
drivers, similarly to known cancer genes (e.g. FOXA1, GATA3) and genes with cancer
predisposition variants (e.g. CDKN1B). We also compared FMREs to common fragile
sites** and flagged five regions as potentially problematic, including two with excess
germline variation in PCAWG. Thus driver discovery of non-coding regions such as

CRMs is challenged by germline variation with biological and technical cofactors.
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However some regions may also undergo positive selection in somatic genomes and

include cancer predisposition variants in the germline genomes of cancer patients.

FMRE:s are enriched in long-range chromatin interactions and super-
enhancers

To explore the potential role of FMREs as distal regulatory elements interacting
with promoters of target genes, we studied chromatin long-range interactions
representing the three-dimensional architecture of the genome. We annotated
FMREs using loop anchors of 11,282 high-confidence chromatin interactions
conserved in at least two cell lines derived from a public HiC dataset?*. We found
that 13/38 FMREs associated with distal genomic regions through 29 long-range
chromatin interactions (Figure 3a). This is a two-fold enrichment relative to
occupancy-matched CRMs (Pcrn=0.0028, 13 interactions expected) and five-fold
genome-wide enrichment (Pew=3.0x10¢, 6 interactions expected), suggesting that
the mutated FMREs are particularly frequently interacting with distal genomic
regions.

To explore the potential role of FMREs as cis-regulatory elements, we used a
dataset of 58,283 super-enhancers*> across 86 human cell types. Super-enhancers
are sets of adjacent enhancers (also known as clusters of open regulatory elements
(COREs)) that are bound by master regulators and involved in cell type
specification#047. Half of FMREs (19/38) occurred at 234 super-enhancers of various
tissues and were enriched relative to both sets of control regions (Pcrny<0.0045, 101
annotations expected; Pew<10-°, 26 expected) (Figure 3b). Tissue-specific super-
enhancers co-occurred with FMREs more frequently than expected with 31 tissue
types (Pcrm<0.1) including fetal cells, hematopoietic and immune cells, as well as
five cancer cell lines (Supplementary Figure 10). In total, 25/38 FMREs were
annotated at either super-enhancers or chromatin loop anchors and seven FMREs
with both types of genomic elements, suggesting that mutations in FMREs rewire
the cis-regulatory logic encoded by super-enhancers and their long-range chromatin

interactions.
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To validate our observations of enriched super-enhancers in FMREs, we
studied a genome-wide ChIP-seq dataset of histone H3 lysine 27 acetylation
(H3K27ac) sites representing active enhancers of 19 primary prostate cancer
samples*® with matched WGS data in PCAWG. FMREs were significantly enriched in
591 H3K27ac peaks (Pcru<4.4x10-3, 315 sites expected; Pew<10-¢, 69 sites expected)
(Figure 3c). A sizeable portion of FMREs (18/38) appeared as active enhancers in
the majority of prostate samples and most FMREs (25/38) showed ewnhancer
marks in at least one prostate tumor sample of the subset (Supplementary Figure
10). These data support the hypothesis that mutations in FMREs are engaged in
gene regulation in primary tumors.

We asked whether the mutations in FMREs associated with differential
H3K27ac signal in the 19 H3K27ac-profiled prostate tumors. Of the five FMREs with
mutations in relevant samples, two FMREs showed mutation-associated differences
in H3K27ac levels. A single mutation in the FMRE 1:17222956 corresponded to the
sample with the highest H3K27ac peak in the region (z-score=1.67; Figure 3b),
while a mutation in the FMRE 6:52860289 corresponded to the sample with the
lowest H3K27ac peak (z-score=-1.68; Figure 3b). Both FMREs were detected as
candidate drivers by four driver discovery methods, while the first region was
flagged due to excess germline variation. Although limited in statistical significance
due to single mutated samples, these observations suggest that FMRE mutations
may co-occur with altered chromatin marks.

Enrichment of FMREs in regions with chromatin interactions and super-
enhancer annotations suggests that FMREs and corresponding somatic mutations
are involved in central gene regulatory programs of tissue identity and
differentiation. Known and unknown regional mutational processes active in gene
regulatory processes may confound our observations of candidate drivers, however
the occupancy-weighted permutation procedure shows that FMREs are enriched in
regulatory annotations beyond what is expected from other frequently TF-bound
regions. Further analyses and experimental work is required to deconvolute the
effects of somatic mutation rates and positive selection apparent in super-enhancers

and chromatin interaction sites.
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Chromatin interactions of FMREs reveal mutation impact on gene expression
To study the impact of candidate driver mutations in FMREs, we associated FMREs
and putative target genes using high-confidence chromatin interactions. The
resulting chromatin interaction network included 18/38 FMREs and 37 putative
target genes that either shared promoter or 5’UTR sequence with FMREs (15 genes)
or were distally associated to FMREs via long-range chromosomal interactions (22
genes) (Figure 3c). The remaining 20 FMREs with no apparent target genes were
excluded.

We tested associations of 11 FMREs and 22 potential target genes for
differential gene expression and revealed seven (32%) genes (RCC1, CCNB1IP1,
GSTA4, ICK, HIST1H2AI, ANG, ZKSCAN3) with differential mRNA abundance in
samples with mutations in four FMREs (Chi-square P<0.05, FDR<0.14). We used the
PCAWG transcription dataset/PtAWG-3] that covered ~50% of samples with WGS data
and applied negative binomial regression models on mRNA abundance values
(RPKM-UQ) that controlled for cancer type and relative gene copy number variation
as covariates. To increase confidence, we analyzed tumor types with at least three
mutated samples and excluded genes with low mRNA abundance (mean RPKM-UQ >
1).

CCNB1IP1, a tumor suppressor gene according to the Cancer Gene Census
database, showed reduced expression in three kidney and three breast tumors with
available gene expression data (P=0.0083, Figure 4a). The FMRE 14:21081816
located 280kbp downstream of CCNB1IP1 was mutated in 24 tumors in total (six
expected by chance, FDR=6.2x10-3). The FMRE was detected as significant by three
driver discovery methods. The 1.3 kbp FMRE interacts distally with CCNB1IP1
through long-range chromatin interactions and is bound by 87 TFs in ENCODE,
likely representing a high-occupancy target (HOT) region bound by dozens of TFs
and involved in developmental enhancer function*®50. CCNB1IP1 (cyclin B1
interacting protein 1) encodes a ubiquitin E3 ligase that negatively regulates cell

motility and invasion by inhibiting cyclin B15152. The angiogenesis-related gene ANG
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interacting with the FMRE via chromatin loops also showed lower expression in
FMRE-mutated samples (P=0.042).

The genes GSTA4 and ICK showed reduced expression in 6 breast and 3
bladder cancer samples with mutations in the FMRE 6:52860289 (P=0.027 and
P=0.030 respectively) (Figure 4b). The FMRE has mutations in 33 samples (7
expected by chance; FDR=5.8x10-9), overlaps with the promoter of GSTA4, the small
nuclear RNA RN7SK, and has long-range chromatin interactions with the promoter
of ICK. GSTA4 encodes the metabolic enzyme glutathione S-transferase alpha 4
involved in cellular defense against toxic, carcinogenic, and pharmacologic
compounds and stress-induced TP53 signaling for apoptosis®3. ICK encodes the
intestinal cell kinase involved in cell cycle>* and implicated in proliferation and
ciliogenesis in glioblastoma®>. The FMRE is annotated as a super-enhancer in brain
hippocampus and carries binding sites of 103 TFs. We first found this FMRE due to a
mutation that associated with decreased H3K27ac level in prostate tumors (Figure
3b). Reduced expression of GSTA4 and ICK and decreased level of the enhancer-
associated histone mark in mutated samples fit the hypothesis that mutations at this
FMRE disrupt gene expression.

The transcription factor ZKSCAN3 showed increased abundance in three
ovarian cancer samples with available gene expression data (chi-square P=0.046,
Figure 4c). The FMRE 6:27870625 bp was mutated in 27 pan-cancer samples (8
expected, FDR=8.0x10-*) and was considered significant by two driver discovery
methods. The 1.4 kbp region interacts with target genes through long-range
chromatin interactions and includes a thymus-related super-enhancer and a HOT
region bound by 74 TFs. ZKSCAN3 (zinc finger with KRAB and SCAN domains 3)
located ~450 kbp downstream of the FMRE is a transcriptional repressor of
autophagy®® and a positive regulator of the cyclin D2 oncogene in multiple
myeloma®’. It has also been implicated in the promotion, migration and metastasis
of colorectal>®59, prostate®®, and bladder cancer®l. The adjacent histone gene
HIST1HZAI interacting with the FMRE via chromatin loops also showed differential
expression relative to mutations in this FMRE (P=0.038).
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The strongest association of FMRE mutations and mRNA abundance was
found at the FMRE upstream of RCCI (regulator of chromosome condensation 1).
RCC1 showed elevated expression in 25 FMRE-mutated samples of bladder, breast,
colorectal, kidney, lung and ovarian cancers (chi-square P=1.8x10-5, Figure 4d). The
FMRE was mutated in 59 tumors in total (33 expected, FDR=0.0499). The FMRE
1:28837464 is a 11 kbp region that includes the RCC1 promoter, the adjacent ncRNA
SNHG3, binding sites of 102 TFs, and super-enhancers of cancer cell lines (liver
HepG2; leukemia K652; colon HCT116) and hematopoietic and immune cells (CD4+,
CD8+, CD34+). RCC1 is not characterized in cancer, however its involvement in
hallmark cancer pathways suggests it as a candidate oncogene. RCC1 encodes a
DNA-binding guanine nucleotide exchange factor that produces the RanGTP
signaling molecule essential for mitotic processes®2-64. RCC1 is regulated by MYCé>
and its overexpression in normal cells evades DNA damage-induced cell cycle arrest
and senescence®®.

To increase confidence in these candidate drivers, we manually reviewed all
148 mutations in raw sequencing data files and evaluated their sequence context,
read coverage and strand bias. The majority of all mutations (142 or 96%) and all
mutations with matching expression data (56) were considered true positives while
17% of mutations (25/142 and 10/56) were flagged due to strand bias or low
variant allele frequency. The false positive rate corresponds to overall variant
calling error rate of the PCAWG project.

In summary, these examples suggest that a subset of non-coding mutations in
FMREs increase oncogenic gene expression or reduce the transcription of tumor
suppressor genes, further supporting their role as candidate cancer drivers.
Alternative definitions of tissue-specific regulatory elements, gene regulatory
regions and chromatin interactions detected in primary tumor samples of matching
tissue types, and larger datasets of matched transciptomes will likely reveal further

FMRESs and target genes.
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FMRE mutations at RCC1 locus associate with global activation of immune
response genes

The large number of mutations in the FMRE upstream of RCC1 prompted us to study
global differential gene expression of mutated and non-mutated cancer samples
across 9,420 protein-coding genes with Gene Ontology (GO) annotations and above-
baseline transcript abundance using the cancer type and copy number adjusted
statistical models described above.

We found 62 significantly expressed genes (FDR<0.05, chi-square test), all of
which showed increased expression in FMRE-mutated samples relative to non-
mutated samples of matched cancer types (Figure 5a). To further characterize the
genes up-regulated in FMRE-mutated tumors, we carried out pathway enrichment
analysis of FDR-ranked genes using g:Profiler®” and found 16 biological processes of
GO and 3 Reactome pathways (FDR<0.05). Intriguingly, 34/62 differentially
expressed genes were significantly enriched in immune response, neoantigen
processing, endocytosis and fiber elongation pathways (Figure 5b). The activation
of immune response genes and pathways such as antigen processing and
presentation (WAS, SLC11A1, CAPZB, LILRB2, RFTN1, CTSL, CCL19, AP1S2;
FDR=0.0024) is in agreement with the super-enhancer annotations of hematopoietic
and immune cells associated with the FMRE. The differentially genes also included
one known cancer gene WAS implicated in the Wiskott-Aldrich immunodeficiency
syndrome that has been associated with lymphoma®8. While further experimental
work is required to elucidate the underlying mechanisms, our differential
expression and pathway analysis suggests that the cancer mutations in the FMRE
upstream of RCC1 activate global gene expression patterns, potentially to enhance

the activity of hallmark cancer pathways of immune suppression.
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Discussion

Only few non-coding cancer drivers are known to date. Their discovery requires
large WGS datasets and detailed annotations of the regulatory genome. Thus the
search space of driver discovery efforts has been limited to gene-focused regions of
the genome. Here we performed a driver analysis of the cis-regulatory genome using
the largest cancer WGS dataset available to date from the PCAWG project. We
revealed the currently largest set of pan-cancer driver candidates, frequently
mutated regulatory elements (FMREs), that were enriched in somatic non-coding
SNVs and other genomic alterations across a heterogeneous cohort of tumors. Two
thirds of FMREs occurred at known super-enhancers or chromatin loops and most
appeared as enhancers in primary tumors. Our leading hypothesis is the positive
selection of these regions in cancer genomes that causes oncogenic rewiring of gene
regulatory networks and long-range chromatin interactions of distal enhancers and
target genes. We found several lines of evidence support the driver hypothesis:
enrichment of different classes of mutations in FMRESs, over-representation of aging-
associated mutation signatures, and significant associations of candidate driver
mutations and expression of putative target genes and pathways involved in
hallmark cancer processes.

We cannot rule out alternative explanations to observed enrichment of
somatic mutations in the identified regions. Thus caution should be taken in
interpreting these candidate driver regions, most of which are reported for the first
time. From the point of genome biology, the somatic mutation landscape has
complex associations with chromatin state and gene regulation. While open
chromatin is broadly associated with reduced mutation load, abundant mutations in
TF-bound regions have been associated with deficient DNA repair due to
competitive binding of regulatory and DNA repair proteins. However our analysis
shows that FMREs are enriched in mutations and regulatory annotations even when
considering regions with similar TF occupancy as controls, suggesting that the
observed mutation enrichment may be due to positive selection. Technically, the

non-coding genome includes challenging regions with potential for sequence
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alignment and variant calling artefacts. We rely on the comprehensive
preprocessing and filtering pipeline of the PCAWG project that uses a consensus of
several state-of-the-art methods for variant calling. Some FMREs have high germline
variation that potentially originates from highly variable regions such as fragile
sites, regions that are challenging the sequencing pipeline, as well as regions with
functional germline variants of cancer predisposition. Further computational
analyses and experimental work are required to establish these candidate non-
coding regions as bona fide cancer drivers.

To capture and interpret pan-cancer drivers, we analysed high-confidence
regulatory regions and long-range chromatin interactions apparent across multiple
cell lines. These regions and interactions are more likely representative of a pan-
cancer cohort than those of single cell lines, however any epigenomic data derived
from cell lines are limited in their biological relevance to primary tumors. Thus
future driver analyses of non-coding regions will benefit from epigenomic and gene
regulatory profiles derived from matching tumors and tumor types.

Our analysis revealed rarely mutated FMREs that were detectable only in the
pan-cancer dataset while few cancer type specific FMREs beyond the TERT
promoter were identified. Our power analysis confirms that the available sample
sizes do not permit analysis within cancer types and suggests that considerably
larger tumor cohorts with WGS data are required for future studies. Discovering
functional driver mutations in FMREs using target gene expression was even more
limited as only half of PCAWG tumors had matching transcriptomic data available.
Thus additional FMREs likely remain to be discovered.

Integration of cancer genome variation with epigenomic profiles, long-range
chromatin interactions and matching transcriptomic data is a powerful approach for
discovering candidate drivers and mechanistic hypotheses of the roles of mutations.
This strategy is applicable to tissue-specific regulatory regions as well as other types
of regions such as ultra-conserved elements. Systematic genetic disruption of
candidate driver regions with the CRISPR technology coupled with phenotypic
screens is required to demonstrate the function of mutations in FMREs in cell lines

and model organisms. Analysis of future WGS datasets paired with comprehensive
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clinical information such as those generated in the ICGC-ARGO project will enable
biomarker discovery from non-coding mutations. In summary, our study suggests
that the non-coding cancer genome includes previously uncharacterized rare driver
mutations that contribute to the hallmarks of cancer through cis-regulatory
mechanisms. Further computational and experimental studies are needed to
understand the role of these regions and the non-coding cancer genome with its

mutational processes and driver mechanisms.

19


https://doi.org/10.1101/236802
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/236802; this version posted December 19, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Figure legends

Figure 1. Cancer driver discovery in regulatory regions of the genome.

(a) Discovery of frequently mutated regulatory elements (FMREs) as candidate
cancer drivers. We analyzed cis-regulatory modules (CRMs) comprising clustered
transcription factor binding sites (TFBS) from ChIP-seq datasets in ENCODE that
were conserved in multiple cell lines and bound by at least two TFs. Single
nucleotide variants (SNVs) and small indels from the PCAWG WGS dataset were
used for driver discovery. Our novel genome-wide driver discovery method
ActiveDriverWGS evaluates the enrichment mutations in candidate driver regions
relative to adjacent background sequence and trinucleotide sequence content.
Candidate non-coding drivers (FMREs) were then associated to potential target
genes using long-range chromatin interactions derived from public HiC datasets. To
validate candidate drivers, we associated FMRE mutations with gene expression
changes of target genes. (b) Protein-coding drivers detected in analysis of the pan-
cancer cohort. Known cancer drivers annotated in the Cancer Gene Census database
are printed in bold. (c) Frequently mutated regulatory elements (FMREs) detected
in pan-cancer analysis of CRMs. Genes associated with FMREs are shown right of the
bars. Arrows show FMREs highlighted in the manuscript and asterisks indicate
previously known non-coding driver regions. FMREs with gray labels are flagged
due to excess germline variation in PCAWG. (d) Comparison of FMREs identified by
five driver discovery methods. Two thirds of FMREs identified by ActiveDriverWGS

are also found by at least one other method.

Figure 2. FMREs are enriched in different types of somatic mutations, aging-
related mutation signatures and germline variants.

(a) FMRE:s as a set are enriched in SNVs and indels, structural variation breakpoints
and focal copy number alterations (dark red boxplots). As controls we used sets of
CRMs sampled with matching average TF occupancy (pink boxplots) and sets of
randomly sampled genomic regions (grey boxplots). Bootstrap resampling was used

to estimate variation of FMRE mutations. FMREs corresponding to three previously
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known regions (TERT, WDR74, MALAT1) were excluded to estimate the properties
of novel candidates and remove bias towards known regions. (b) FMREs involve
distinct types of somatic alterations in different tumors and tumor types, while few
FMREs carry multiple types of mutations in the same tumor. FMREs are ranked
according to their significance in ActiveDriverWGS analysis. (c) Mutation signatures
of SNVs in FMREs (dark red) are compared to signatures in protein-coding driver
genes randomly sampled mutations. FMRE-associated mutations are enriched in
aging-related signatures five and one, relative to randomly sampled mutations in
the tumor samples with FMRE mutations. Error bars show one standard deviation
above and below mean. (d) All regions identified by ActiveDriverWGS at FDR<0.05
ranked according to mean number of distinct SNVs per base pair. Genes with high
germline variation and highlighted FMREs are labelled. Known protein-coding
drivers detected by ActiveDriverWGS were used to estimate expected germline

variation as 90t and 100t percentile (dashed and dotted line, respectively).

Figure 3. FMREs are enriched in super-enhancers and chromatin loops.

(a) FMREs are enriched in long-range chromatin interactions of loop anchors,
super-enhancer elements across multiple tissues, and enhancer histone marks
(H3K27ac) of 19 primary prostate tumors with WGS data in PCAWG. Observed
annotations in FMREs (dark red) are compared to TF occupancy-adjusted sampling
of CRMs (pink) and genome-wide random regions (gray). (b) Two FMREs carry
mutations that associate with stronger or weaker enhancer marks in primary
prostate tumors. Boxplots show normalized H3K27ac signal in the FMRE near the
mutation of interest. Yellow asterisks indicate the enhancer mark intensity in single
samples with mutated FMRESs. (c) Chromatin interaction network shows FMREs and
their putative target genes. The network displays two types of interactions:
proximal interactions comprise FMREs that coincide with gene promoters (solid
line), and distal interactions comprise FMREs and genes that interact via chromatin
loops (interactions) of promoters and FMREs (dashed line). Node size corresponds
to number of mutations, color to mutation significance and shape to type of genomic

region. Regions highlighted in the text are indicated with arrows.
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Figure 4. Mutations in FMREs associate with differential expression of cancer
genes.

Left: chromosomal location of FMREs, target genes and long-range chromatin
interactions of gene promoters and FMREs. Middle: mutations in the FMRE and 50
kbp flanking region (top) and histogram of TF binding in the region (bottom). Right:
altered expression of target genes in FMRE-mutated samples. Points represent
loglp-transformed expression values (RPKM-UQ) and are colored according to
relative copy number of target gene. (a) The tumor suppressor gene CCNB1IP1 and
angiogenesis related gene ANG showed reduced expression in six kidney and breast
cancer samples with mutations in distal FMRE. (b) The drug metabolism gene
GSTA4 and intestinal kinase gene ICK showed reduced expression in nine breast and
bladded cancer samples with mutations in the distal FMRE. (c) The candidate
oncogenic transcription factor ZKSCAN3 and histone gene HIST1H2A1 showed
increased expression in three ovarian cancer samples with mutations in the distal
FMRE. (c) The novel cancer gene RCCI involved in RanGTP signaling and cell cycle
shows increased expression in 25 samples of seven cancer types with mutations in

the proximal FMRE upstream of the gene.

Figure 5. Mutations in FMREs at RCC1 locus associate with global activation of
immune response pathways.

(a) Volcano plot shows genes with differential expression in tumors with mutations
in the FMRE upstream of the RCCI gene. Genes with significant expression
differences are shown in dark red (FDR<0.05) and gene symbols with enriched
pathway annotations are shown. (b) Enrichment map shows significantly enriched
GO processes and Reactome pathways corresponding to enriched genes (FDR<0.05
from g:Profiler). Network nodes represent pathways and processes and nodes with
many shared genes are connected with edges. Subnetworks are annotated with

common biological themes representative of pathways.
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Methods

Somatic mutations

We analyzed the dataset of 1,844 whole cancer genomes of 31 cancer types with
14.2 million somatic single nucleotide variants (SNVs) and indels/P¢AWG-1], This
represented a subset of the consensus dataset of 46.6 million mutations in 2,583
samples sequenced in the Pan-cancer Analysis of Whole Genomes (PCAWG) project
of the International Cancer Genome Consortium (ICGC). The subset was derived
using the following procedure. First we filtered 69 hyper-mutated samples with
more than 90,000 mutations (~30 mutations/Mb) that contributed 47% of all
mutations. We further excluded 670 samples of four cancer types: melanoma (65),
lymph-related cancers (BNHL (104), CLL (90), NOS (2)), esophageal
adenocarcinoma (95), and liver hepatocellular carcinoma (314) to avoid leakage of
stronger mutation enrichment signal of these cancer types to the pan-cancer cohort

(see Supplementary Note 1).

Genomic regions

Our driver discovery pipeline was run separately for multiple classes of genomic
regions of the human genome hg19. Cis-regulatory modules from the ENCODE
project comprised clusters of transcription factor (TF) binding sites (TFBS)
measured in chromatin immunoprecipitation (ChIP-seq) experiments retrieved
from UCSC Genome Browser. We used the dataset of 4.9 million binding sites of 161
TFs in 91 cell lines and excluded sites that were only observed in one cell line. The
remaining 1.1 million binding sites of 101 TFs were merged into consecutive regions
based on =1bp of common sequence, resulting in 322,614 regions. We discarded
regions bound by single TFs and used the remaining 149,222 clusters of TFBS (i.e.,
cis-regulatory modules, CRMs) for driver discovery. CRMs were filtered to exclude
sequence regions overlapping with coding sequence and splice sites. In addition to
CRMs, we performed driver discovery on protein-coding sequences (CDS),

untranslated regions of protein-coding genes (5’UTR, 3’'UTR), promoters of coding
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genes (promDomain), and gene bodies of long non-coding RNAs (IncRNA) derived

from the PCAWG consensus dataset/PCAWG-2-5-9-14],

ActiveDriverWGS and driver discovery

Candidate cancer driver genes and regulatory regions were identified with
ActiveDriverWGS, our novel mutation enrichment method that tests whether a
genomic element of interest is significantly more mutated than the relevant
background sequence using a generalized linear regression model. ActiveDriverWGS
is a local mutation enrichment model that determines the expected number of
mutations in a genomic region by observing mutations in a background window of
at least 100kb around the region of interest, including #50kb upstream and
downstream of the region plus additional intermediate regions such as gene introns.
ActiveDriverWGS considers sequence trinucleotide composition as a cofactor in the
regression model. It models the number of all sequence positions of each of 32
classes of trinucleotides in both the background sequence and sequence region of
interest as well as the number of mutations in these trinucleotide classes. Indel
mutations are modeled as the 33rd class of mutations with equal probability at each
sequence location. Only one mutation is counted per tumor in cases where an
element contains multiple mutations in the same tumor genome. This reduces the
impact of local hypermutations and leads to more conservative driver prediction.
ActiveDriverWGS conducts chi-square tests to validate two hypotheses using pairs
of hierarchical regression models (HO vs. H1). The statistical test checks whether
mutations in the region of interest (variable is_element) are distributed differently
relative to its background sequence:

HO: n_mutations ~ Pois (trinucleotide_context)
H1: n_mutations ~ Pois (trinucleotide_context + is_element)

A significant p-value in this combined test indicated that the element of
interest was a candidate cancer driver. To distinguish regions with excess mutations
from regions with fewer than expected mutations, we additionally computed
confidence intervals to expected numbers of mutations from the null model H0 and

accepted the alternative hypothesis H1 only if the expected background mutations
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were significantly fewer than observed mutations at 95% quantile. If the confidence
intervals indicated significant excess of mutations in the background and depletion
in the region of interest, we inverted corresponding small p-values (P=1-P). Regions
with no mutations were assigned P=1. The p-values resulting from the first test
were corrected for multiple testing across all tested regions using the Benjamini-
Hochberg False Discovery Rate (FDR) procedure and genes with FDR<0.05 were
considered significant. The p-values from the second test were also corrected with
the FDR procedure, limiting to elements that passed the first test at FDR<0.05. Each
cancer type and element type was subject to separate multiple testing correction
procedure.

Power calculations for chi-squared tests in ActiveDriverWGS were conducted
using the pwr.chisq.test function of the ‘pwr’ package in R. Effect size was computed
using number of samples, final degrees of freedom from ActiveDriverWGS output
(1), and significance level (P=0.05). This process was repeated for several values of
power (0.6-0.9) and data were plotted as line plots.

The R source code of ActiveDriverWGS is freely available at

https://github.com/reimandlab/ActiveDriverWGS.

Benchmarking of ActiveDriverWGS

We tested ActiveDriverWGS using simulated mutations and parameter settings. To
generate simulated mutation data, we split the genome into 50kb windows and
randomly re-assigned PCAWG pan-cancer single nucleotide variants in each window
to alternative positions of the same trinucleotide context using sampling with
replacement. Indels were randomly re-assigned without using trinucleotide context.
Besides in-house simulated data, we also tested ActiveDriverWGS on two additional
sets of simulations from the PCAWG drivers group (Sanger, Broad). In total 672
simulation runs with three sets of simulated mutations, 32 cancer types and seven
types of genomic elements revealed eleven significant findings at FDR<0.05,
suggesting that very little deviation existed from expected false discovery rates. We
also tested ActiveDriverWGS with different sizes of background windows: *10kb,

+25kb, +50kb, +75kb, and +100kb. We found that the method is robust to variations
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in background window, however the +50kb window provided the best accuracy and
enrichment of known cancer genes. We also excluded the trinucleotide cofactor in
our regression models and observed a large increase in false positive findings. We
repeated the analysis after including hyper-mutated samples and found that many
fewer known driver genes were detected. Thus hyper-mutated samples were

excluded from the analysis.

Additional driver discovery methods

Four independent driver discovery methods were used to discover candidate
drivers among CRMs. Each method used different statistical models, cofactors,
mutation impact scores and/or clustering metrics to find candidate drivers. NBR
uses a negative binomial regression to estimate the background mutation rate of
each element as described earlier*l. This method accounts for the length of each
element and its mutability using a trinucleotide substitution model with 192 rate
parameters and uses the local mutation rate in regions around each element as a
covariate. DriverPower DriverPower is a combined burden and functional impact
test for coding and non-coding cancer driver elements. In the DriverPower
framework, randomized non-coding genome elements are used as training set. In
total 1373 reference features covering nucleotide compositions, conservation,
replication timing, expression levels, epigenomic marks and compartments are
collected from public databases for downstream modelling. For the modelling, a
feature selection step by randomized Lasso is performed at first. Then the expected
background mutation rate is estimated with selected highly important features by
binomial generalized linear model. The predicted mutation rate is further calibrated
with functional impact scores measured by LINSIGHT®® scores. Finally, a p-value is
generated for each test element by binomial test with the alternative hypothesis
that the observed mutation rate is higher than the adjusted mutation rate, and the
Benjamini-Hochberg procedure is used for FDR control. OncoDriveFML, Driver
discovery with OncoDriveFML was performed as described in the PCAWG driver
study [PCAWG-2-5-9-14] - MutSigCV. Driver discovery with MutSigCV was performed as
described in the PCAWG driver study (PCAWG-2-5-9-14],
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Super-enhancers and long-range chromatin interactions

We annotated FMREs using public datasets of long-range chromatin interactions
and super-enhancers. The super-enhancer dataset originates from the study by
Hnisz et al*>. Chromatin loops representing long-range interactions from eight
human cell lines were derived from the HiC dataset by Rao et al?*. To obtain a high-
confidence set of chromatin interactions, we merged interactions whose loop
anchors overlapped with each other at both ends, and filtered those interactions
that had been characterized only in one cell line. Long-range chromatin interactions
were considered to interact with a gene if one anchor of the loop overlapped the
coding, UTR or promoter sequence of the gene while the other anchor of the loop
had no overlap with the gene. We also tested the aggregated set of H3K27ac and
DNAse sites from the Roadmap Epigenomics project’%. To determine statistical
significance of genomic annotations of FMREs, we tested the union of all sequences

corresponding to anchors using the two permutation strategies described below.

Enrichment of regulatory annotations of FMREs

We counted the number of pairs of FMREs and distinct genomic annotations. To
determine the statistical significance of enriched genomic annotations of FMREs, we
used a custom permutation test to sample from all CRMs from ENCODE as controls.
We split our initial dataset of ~150,000 CRMs into 100 equal bins based on their TF
occupancy, represented as number of TFs bound in CRM divided by length of region.
To estimate the expected number of regulatory annotations in FMREs, we sampled
10,000,000 random sets of CRMs from the bins using the number and size
distribution of detected FMREs. Statistical significance of enriched annotations was
estimated as an empirical p-value, i.e., the fraction of 10,000,000 permutations that
showed equivalent or higher number of regulatory annotations than associated with
the true set of FMREs. To avoid biasing our findings by known non-coding drivers,
we excluded three FMREs overlapping with the TERT promoter, the WDR74
promoter and the IncRNA MALATI1. Besides length-adjusted sampling of CRMs, we
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also sampled random genome regions of equivalent sizes as controls. Confidence

intervals for observed numbers of FMRE annotations were derived with resampling.

Copy number alterations and structural variants

Matching copy number and structural variation datasets originate from the PCAWG
project/PCAWG-6; PCAWG-11] We determined relative digital copy numbers of all regions
and patients by accounting for previously computed sample ploidy estimates, whole
genome duplication events, and patient sex. To estimate the frequency and
enrichment of copy number alteration events in FMREs, we focused on focal and
potentially high-impact copy number alterations with less than 5 mbp in size and
total copy number of zero (corresponding to homozygous deletion) or relative gain
of two or more copies. For structural variants, we studied coordinates of
breakpoints. To determine statistical significance, we used permutation tests
relative to all occupancy-matched ENCODE CRMs as well as size-matched random
regions from the genome, using the strategy defined above. For analysis of mutation
impact on gene expression, copy number altered regions were further processed to
obtain gene-level copy number estimates. Copy numbers of genes were computed as

the most extreme copy number values of their exons.

Mutation signature analysis

To analyse mutation signatures characteristic of FMREs, we studied sample-specific
exposure predictions for SNVs developed by PCAWGIFPCAWG-7] As controls, we
sampled two sets of mutations in the cancer samples with FMRE mutations: SNVs
present in 59 protein-coding drivers predicted by ActiveDriverWGS, and genome-
wide SNVs. We conducted custom permutation tests with 100,000 sets of SNVs that
were sampled with replacement using the number of mutations observed in FMREs
and their distribution among cancer types. We computed the enrichment of each
FMRE-related mutation signature by counting the fraction of randomly sampled
genome-wide sets of SNVs that exceeded the number of SNVs observed in FMREs.
Empirical enrichment p-values were derived as the fraction of permutations where

sampled mutations of signature-specific SNVs exceeded the number of observed
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signature-specific SNVs in FMREs. Mutation signatures with fewer than 5% of
genome-wide permutations exceeding observed FMRE signatures were highlighted

as enriched.

Germline analysis

Germline variant frequency of FMREs was estimated using density of unique SNVs
and indels in 100 bp windows across the entire PCAWG cohort of cancer patients. As
reference we used the protein-coding drivers identified by ActiveDriverWGS in the
pan-cancer cohort. We computed germline variant density within genomic elements
and estimated the upper bound of expected variation for within-element variation
as 90t and 100t percentiles of values observed among coding driver predictions.
FMREs that exceeded the 100t percentile threshold were flagged for excess
germline variation. We also computed germline variation density for frequently
mutated promoters, UTRs, enhancers and IncRNAs discovered by ActiveDriverWGS

in the pan-cancer driver analysis.

Mutation impact on gene expression

We used matching RNAseq gene expression data from PCAWGIPCAWG-3; PCAWG-14] tq
estimate the impact of non-coding mutations on gene expression. We used upper-
quartile normalization values of fragments per kilobase of transcript per million
(FPKM-UQ) as gene expression measurements. Approximately 50% of PCAWG
tumors with WGS data had corresponding transcriptomic data, and the tumors with
no available transcriptomic data were excluded from the analysis. Negative binomial
regression models similar to ActiveDriverWGS were used to determine whether
mutations in FMREs corresponded to significantly lower or higher gene expression
levels in matching samples. The model evaluated gene rounded RPKM-UQ values
and accounted for cancer type and relative gene copy number as cofactors. The
alternative model tested whether mutated samples showed significantly different
gene expression of gene of interest. In each statistical test, only samples with
matching mutation, gene expression and copy number data were included and other

samples were excluded. Further, cancer types with at least three mutated samples
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were included and others were excluded. Cancer types with fewer mutated samples
were also removed from the control (non-mutated) set. Each FMRE was tested using
pan-cancer mutations with cancer type as a nominal co-factor and relative copy
number as a numeric cofactor. Two sets of genes were tested for every FMRE: genes
or their promoters directly overlapping with an FMRE, and genes distally associated
with an FMRE via a long-range chromatin interaction of gene promoter. Genes with
P<0.05 were selected as significant and FDR values were computed across all tested

pairs and reported (FDR<0.15).

Global gene expression and pathway enrichment analysis

Global analysis of gene expression in samples with mutations in the FMRE upstream
of RCC1 was conducted with the same statistical approach as for single target genes.
We tested protein-coding genes that had at least one GO annotation and showed
above-baseline gene expression in tested samples (mean RPKM-UQ transcript
abundance values above one unit). Genes with FDR<0.05 were selected as
significant. Pathway enrichment analysis of genes ranked by p-values was carried
out using the g:Profiler®” R package with the following settings: ranked input gene
list, only GO biological processes and Reactome pathways considered, minimum five
and maximum 1000 genes per gene set, g:Profiler internal multiple testing
correction used for FDR estimates, minimum three genes shared with gene list and

gene set, and electronic gene annotations (IEA) included.

Mutation vetting

Mini-BAM files for samples with a variant in the following FMREs were downloaded
from GNOS: chr1:28831933-28842995, chr6:52859342-52861236, chr6:27869931-
27871319 and chr14:21081147-21082486. FMRE variants were manually
examined in the IGV software v2.3.97. Variants that were missing or were called
within palindromic regions were marked as false positives. Variants were flagged as
low confidence if they occurred on one strand (forward or reverse), had fewer than
four reads, or were found within a homopolymer run. Variants were highlighted, but

not flagged, if they had four supporting reads, only one supporting read on one of
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the strands, in a low coverage region, or in a region with strand bias. Variants found
in regions with strand bias, and showed strand bias in their supporting reads were

highlighted, but not flagged.

ChIP-seq data of primary prostate cancers

We used a recent ChiP-seq dataset for the histone mark H3K27ac in 19 PCAWG
prostate cancer samples*t. We examined the dataset to find overlaps of FMREs and
H3K27ac peaks. Global overlap of FMREs and H3K27ac peaks was determined using
the permutation strategy and the two types of control regions described above. To
evaluate mutation impact on specific H3K27ac peaks within FMREs, the FMREs
were extended by 1Kb up and downstream, and rounded to the nearest 100 bp
before intersecting with H3K27ac regions determined in ChiP-seq files. Patients
with an H3K27ac peak in the target region were considered to have an enhancer
mark in proximity to the FMRE. Peak scores were subsequently converted to z-

scores and plotted as boxplots.
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