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Abstract	
A	 comprehensive	 catalogue	 of	 the	 mutations	 that	 drive	 tumorigenesis	 and	

progression	 is	 essential	 to	 understanding	 tumor	 biology	 and	 developing	

therapies.	 Protein-coding	 driver	mutations	 have	 been	well-characterized	 by	

large	exome-sequencing	studies,	however	many	tumors	have	no	mutations	in	

protein-coding	 driver	 genes.	 Non-coding	 mutations	 are	 thought	 to	 explain	

many	of	these	cases,	however	few	non-coding	drivers	besides	TERT	promoter	

are	 known.	 To	 fill	 this	 gap,	 we	 analyzed	 150,000	 cis-regulatory	 regions	 in	

1,844	whole	 cancer	 genomes	 from	 the	 ICGC-TCGA	PCAWG	project.	Using	our	

new	method,	 ActiveDriverWGS,	 we	 found	 41	 frequently	 mutated	 regulatory	

elements	 (FMREs)	 enriched	 in	 non-coding	 SNVs	 and	 indels	 (FDR<0.05)	

characterized	 by	 aging-associated	 mutation	 signatures	 and	 frequent	

structural	variants.	Most	FMREs	are	distal	 from	genes,	 reported	here	 for	 the	

first	time	and	also	recovered	by	additional	driver	discovery	methods.	FMREs	

were	 enriched	 in	 super-enhancers,	 H3K27ac	 enhancer	 marks	 of	 primary	

tumors	and	long-range	chromatin	interactions,	suggesting	that	the	mutations	

drive	 cancer	 by	 distally	 controlling	 gene	 expression	 through	 three-

dimensional	 genome	 organization.	 In	 support	 of	 this	 hypothesis,	 the	

chromatin	 interaction	 network	 of	 FMREs	 and	 target	 genes	 revealed	

associations	of	mutations	and	differential	gene	expression	of	known	and	novel	

cancer	genes	(e.g.,	CNNB1IP1,	RCC1),	activation	of	immune	response	pathways	

and	 altered	 enhancer	 marks.	 Thus	 distal	 genomic	 regions	 may	 include	

additional,	 infrequently	 mutated	 drivers	 that	 act	 on	 target	 genes	 via	

chromatin	 loops.	 Our	 study	 is	 an	 important	 step	 towards	 finding	 such	

regulatory	 regions	 and	 deciphering	 the	 somatic	 mutation	 landscape	 of	 the	

non-coding	genome.		
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Introduction	
Cancer	 is	 driven	 by	 somatic	 driver	 mutations	 such	 as	 single	 nucleotide	 variants	

(SNVs),	insertions-deletions	(indels)	and	copy	number	alterations	(CNAs)	that	affect	

critical	genes	and	pathways.	Driver	mutations	unlock	oncogenic	cellular	properties	

of	 unconstrained	 proliferation,	 replicative	 immortality,	 immune	 evasion	 and	 the	

other	hallmarks	of	cancer1.	Completing	the	catalogue	of	cancer	driver	mutations	is	a	

central	 challenge	 of	 cancer	 research	 and	 key	 to	 understanding	 tumor	 biology,	

developing	precision	therapies	and	molecular	biomarkers.	

The	 search	 for	driver	mutations	 is	 complicated	by	 the	high	 rate	of	 somatic	

‘passenger’	mutations	 that	 have	 no	 biological	 significance.	 Statistical	methods	 are	

used	 to	distinguish	between	drivers	and	passengers	 in	cancer	genome	sequencing	

datasets.	 These	 methods	 assume	 that	 somatic	 driver	 mutations	 occur	 more	

frequently	than	expected	from	background	mutation	rates,	have	unexpectedly	high	

functional	 impact	 and	 show	 enrichment	 in	 biological	 pathways	 and	 networks	

(reviewed	in	2-4).	Driver	discovery	is	facilitated	by	large	genomic	datasets	assembled	

by	 consortia	 like	 the	 International	 Cancer	 Genome	 Consortium	 (ICGC)5	 and	 The	

Cancer	Genome	Atlas	 (TCGA)6.	The	notable	driver	mutation	 in	 the	TERT	promoter	

that	confers	replicative	 immortality	on	cells	by	 inhibiting	telomere-related	cellular	

senescence	was	first	 identified	 in	melanoma7,8	and	then	 in	pan-cancer	analyses9,10.	

These	mutations	 create	 new	 transcription	 factor	 (TF)	 binding	 sites	 (TFBS)	which	

increase	 TERT	 transcription11.	 Other	 genes	 with	 frequent	 promoter	 mutations	

include	the	protein-coding	genes	PLEKHS1,	WDR74	and	SDHD9,10	along	with	the	long	

non-coding	RNAs	 (lncRNAs)	NEAT1	and	MALAT112.	Genome-wide	driver	discovery	

studies	 are	 limited	 to	 gene-focused	 genomic	 regions	 such	 as	 promoters	 and	

untranslated	regions	(UTRs)	rather	than	experimentally	defined	regulatory	regions.	

Alternative	 approaches	 have	 scanned	 the	 genome	 with	 fixed-width	 windows10,13,	

defined	 windows	 around	 mutation	 hotspots9,14,	 or	 annotated	 cancer	 mutations	

using	cis-regulatory	information14,15.	Window-based	approaches	do	not	capture	the	

precise	 boundaries	 of	 regulatory	 elements	 while	 annotation-based	 approaches	
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conduct	limited	statistical	testing	of	mutations.	Current	approaches	are	also	unable	

to	determine	potential	target	genes	of	distal	mutations.		

Driver	 discovery	 in	 the	 non-coding	 regulatory	 genome	 is	 challenged	 by	

complex	overall	distribution	of	somatic	mutations.	At	the	megabase	scale,	mutation	

burden	 is	 associated	with	 transcriptional	 activity	 and	 replication	 timing16,17.	Open	

chromatin	is	generally	characterized	by	fewer	somatic	mutations	while	enhancers	of	

the	 tissue	 of	 origin	 accumulate	 more	 mutations18,19.	 At	 the	 nucleotide	 scale,	

mutation	 signatures	 are	 manifested	 in	 uneven	 distribution	 of	 mutations	 in	 their	

trinucleotide	context.	Different	signatures	are	characteristic	of	different	tumor	types	

and	have	been	linked	to	aberrant	activity	of	DNA	repair	pathways,	effects	of	various	

carcinogens	or	molecular	clocks20.	Genome-wide	analyses	of	short	sequence	motifs	

bound	 by	 TFs	 have	 revealed	 increased	mutation	 rates	 in	 regulatory	 regions21,	 for	

example	excessive	promoter	mutations	melanoma	and	other	cancer	types	are	likely	

explained	by	decreased	activity	of	the	nucleotide	excision	repair	pathway22,23.	These	

studies	suggest	that	a	large	fraction	of	gene	regulatory	mutations	are	caused	by	local	

mutational	processes	rather	than	positive	selection	driving	tumor	evolution.		

The	 eukaryotic	 genome	 is	 organized	 three-dimensionally	 in	 the	 nuclear	

space	 to	 enable	 its	 functions,	 including	 transcription	 regulation	 via	 long-range	

interactions	of	promoters	and	enhancers	and	TF	binding24.	Binding	sites	of	the	CTCF	

chromatin	architectural	factor	and	the	cohesin	complex	subunit	RAD21	co-occur	at	

topologically	 associated	 domain	 boundaries	 engaged	 in	 long-range	 chromatin	

interactions24,25	 and	 are	 frequently	 mutated	 in	 colorectal	 cancer26.	 Anchors	 of	

chromatin	 interactions	 include	 functional	 genetic	 polymorphisms27,28	 and	 are	

enriched	 in	mutations	 in	 liver	and	esophageal	 cancers29.	The	MYC	 super-enhancer	

locus	at	8q24	harbors	SNVs	with	genetic	predisposition	for	multiple	tumor	types30,31	

and	 its	 deletion	 in	 mice	 was	 recently	 associated	 with	 reduced	 tumorigenesis32.	

Recurrent	 somatic	mutations	 in	 enhancers	 of	PAX5	 and	TAL1	have	 been	 found	 in	

leukemia	 and	 associated	 with	 differential	 gene	 expression33,34.	 Structural	

rearrangements	in	medulloblastoma	and	leukemia	cause	enhancer	hijacking	where	

oncogene	 expression	 is	 induced	 through	 translocations	 that	 associate	 oncogenes	

with	active	enhancers35,36.	Thus	some	mutations	at	gene	regulatory	sites	may	drive	
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cancer	 by	 re-configuring	 gene	 regulatory	 interactions	 or	 the	 three-dimensional	

folding	of	chromatin.	Surprisingly,	 then,	a	systematic	driver	analysis	of	non-coding	

mutations	 in	cis-regulatory	and	three-dimensional	chromatin	 interaction	networks	

is	currently	lacking.	

To	fill	this	gap	and	to	explore	the	effects	of	non-coding	somatic	mutations	on	

gene-regulatory	 networks,	 we	 used	 2,583	 tumor-normal	 pairs	 characterized	 with	

whole	genome	sequencing	(WGS)	by	the	 ICGC-TCGA	Pan-cancer	Analysis	of	Whole	

Genomes	(PCAWG)	project.	We	identified	candidate	drivers	in	regulatory	regions	of	

the	human	genome	defined	by	the	Encyclopedia	of	DNA	Elements	(ENCODE)37,	then	

integrated	 these	with	 the	 three-dimensional	architecture	of	 the	human	genome	 to	

prioritize	 and	 interpret	 candidate	 non-coding	 cancer	 drivers	 and	 their	 potential	

target	genes.	We	found	dozens	of	frequently	mutated	regulatory	elements	(FMREs)	

that	 were	 enriched	 in	 somatic	 small	 mutations	 and	 structural	 variants	 and	 over-

represented	 in	 active	 regulatory	 elements.	 Mutations	 in	 FMREs	 associated	 with	

altered	expression	of	target	genes,	suggesting	that	our	findings	include	novel	driver	

mutations	that	rewire	gene	regulatory	networks.	

	

Results	
Genome-wide	discovery	of	cancer	driver	mutations	with	ActiveDriverWGS	

We	 used	 the	 ICGC-PCAWG	 dataset	 of	 2,583	 whole	 cancer	 genomes	 for	 driver	

discovery	 and	 focused	 on	 mutations	 from	 1,844	 genomes	 from	 31	 cancer	 types,	

comprising	 14.2	 million	 single	 nucleotide	 variants	 and	 indels[PCAWG	 marker	 paper]	

(Supplementary	Figure	1).	We	excluded	four	cancer	types	with	atypical	mutational	

processes:	melanomas	with	 elevated	mutation	 rates	 in	 active	 TFBS22,	 lymphomas	

with	 localized	 hypermutations38,	 and	 liver	 and	 esophageal	 cancers	 with	 frequent	

mutations	 in	 topologically	 associated	CTCF	binding	 sites29	 (Supplementary	Note,	

Supplementary	 Figure	 2).	 We	 also	 excluded	 a	 small	 subset	 of	 hypermutated	

tumors	(69)	that	carried	47%	of	all	somatic	mutations.		

To	 find	 non-coding	 cancer	 drivers	 in	 whole	 cancer	 genomes,	 we	 created	

ActiveDriverWGS,	 a	 genome-wide	 driver	 discovery	 method	 that	 statistically	
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identifies	genomic	regions	with	an	elevated	frequency	of	somatic	mutations	(Figure	

1a).	 ActiveDriverWGS	 performs	 a	 statistical	 analysis	 of	 single	 nucleotide	 variants	

(SNVs)	 and	 small	 insertions-deletions	 (indels)	 relative	 to	 adjacent	 background	

sequences	using	Poisson	generalized	linear	regression,	expanding	our	earlier	work	

on	 protein-coding	 drivers39.	 The	 model	 estimates	 expected	 mutation	 burden	

through	 a	 relatively	 narrow	 adjacent	 window	 and	 is	 therefore	 less	 sensitive	 to	

mega-base	 scale	 fluctuation	 of	 mutation	 rates.	 To	 adjust	 for	 nucleotide-level	

mutational	signatures	that	vary	considerably	across	patients	and	tumor	types20,	the	

model	 includes	 covariates	 for	 the	 frequency	 of	 each	 mutation	 type	 in	 its	

trinucleotide	 context.	 ActiveDriverWGS	 additionally	 predicts	 mutation	 impact	 by	

detecting	frequently	mutated	binding	sites	within	candidate	driver	genes	and	non-

coding	regions.		

We	 validated	 ActiveDriverWGS	 by	 confirming	 its	 ability	 to	 recover	 known	

protein-coding	 and	 non-coding	 cancer	 drivers	 in	 the	 pan-cancer	 cohort	 and	

individual	 cancer	 types.	We	detected	47	 coding	genes	 (FDR<0.05)	 in	 a	pan-cancer	

analysis,	 including	 43	 known	 drivers	 annotated	 in	 the	 Cancer	 Gene	 Census	

database40	(Fisher’s	exact	P=3.0x10-62,	Figure	1b).	Driver	analyses	of	31	cancer	type	

specific	cohorts	revealed	70	genes	and	59	known	drivers	in	total	(Supplementary	

Figure	3).	Among	non-coding	consensus	regions	studied	in	PCAWG[PCAWG-2-5-9-14],	we	

recovered	previously	described	non-coding	regions	with	frequent	mutations	such	as	

promoters	of	TERT	and	WDR74,	 the	 lncRNAs	NEAT1	and	MALAT1	 as	well	 as	other	

candidates	(Supplementary	Figure	4).		

We	benchmarked	ActiveDriverWGS	and	found	that	our	statistical	framework	

is	 well-calibrated.	 We	 tested	 three	 independently	 generated	 sets	 of	 simulated	

somatic	 mutations	 including	 two	 from	 the	 PCAWG	 project	 and	 one	 internally	

generated	 set	 (Supplementary	 Figure	 5).	 We	 also	 tested	 three	 configuration	

changes	 in	 the	 driver	 discovery	 pipeline:	 genomic	 window	 sizes	 for	 determining	

background	mutations,	inclusion	of	hyper-mutated	samples,	and	exclusion	of	model	

cofactors	 corresponding	 to	 trinucleotide	 sequence	 composition.	 ActiveDriverWGS	

was	robust	to	the	size	of	the	background	window,	and	our	simulations	showed	that	

statistical	 strength	 was	 maximized	 with	 a	 50	 kbp	 window	 size.	 We	 further	
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confirmed	the	importance	of	using	trinucleotides	for	driver	discovery,	as	exclusion	

of	 this	 cofactor	 greatly	 increased	 false	 positive	 findings	 among	 protein-coding	

drivers	 (47	 vs	 4	 non-cancer	 genes	 found).	 As	 anticipated,	 inclusion	 of	 hyper-

mutated	samples	in	the	pan-cancer	analysis	led	to	recovery	of	fewer	known	protein-

coding	drivers	(26	vs	43	known	driver	genes	found)	likely	due	to	their	introduction	

of	 increased	noise	of	passenger	mutations	(Supplementary	Figure	5).	These	data	

collectively	 show	 that	 ActiveDriverWGS	 accurately	 recovers	 known	 cancer	 driver	

genes	and	non-coding	genome	regions	with	frequent	somatic	mutations.	

	

Driver	analysis	reveals	frequently	mutated	regulatory	elements	(FMREs)	

Having	 validated	ActiveDriverWGS,	we	next	 sought	 to	discover	non-coding	 cancer	

drivers	in	cis-regulatory	regions.	We	studied	4.5	million	TFBS	mapped	in	ENCODE37	

in	 chromatin	 immunoprecipitation	 with	 DNA	 sequencing	 (ChIP-seq)	 experiments.	

We	 focused	on	149,222	cis-regulatory	modules	(CRMs)	 that	covered	103	Mbp	and	

3.3%	of	the	genome.	CRMs	were	defined	by	overlapping	binding	sites	of	at	least	two	

TFs	 that	 were	 observed	 in	 least	 two	 cell	 lines.	 To	 avoid	 confounding	 functional	

impact,	CRMs	segments	overlapping	coding	regions	and	splice	sites	were	excluded.	

The	majority	of	CRMs	(75%)	overlapped	with	no	UTR	or	promoter	of	protein-coding	

gene,	 enhancer	 or	 lncRNA	 sequence	 studied	 in	 PCAWG[PCAWG-2-5-9-14]	

(Supplementary	 Figure	 6).	 These	 experimentally	 defined	 CRMs	 represent	 less-

explored	genomic	space	for	driver	discovery	and	are	complementary	to	commonly	

used	 gene-focused	 regions	 such	 as	 fixed	 upstream	 promoters.	 The	 merging	 of	

overlapping	 TFBSs	 allowed	 us	 to	 reduce	 the	 redundancy	 of	 binding	 patterns	 of	

different	TFs,	while	filtering	of	cell-type	specific	TFBSs	led	to	a	high-confidence	set	

of	 regulatory	 regions	 more	 likely	 characteristic	 of	 a	 heterogeneous	 pan-cancer	

cohort	of	tumor	samples.	

	 Pan-cancer	analysis	of	CRMs	using	ActiveDriverWGS	revealed	41	frequently	

mutated	regulatory	elements	(FMRE;	FDR<0.05)	(Figure	1c,	Supplementary	Table	

1).	FMREs	included	previously	described	recurrently	mutated	regions	(promoters	of	

TERT	and	WDR74;	lncRNA	MALAT1),	serving	as	positive	controls.	Driver	analyses	of	

individual	cancer	types	revealed	six	FMREs,	including	three	not	seen	in	pan-cancer	
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results	(Supplementary	Figure	7).	We	found	that	FMREs	were	longer	than	CRMs	in	

general	 (median	 1049	bp	 vs	 491	 bp,	Wilcoxon	P=3.1x10-6)	 and	 included	more	TF	

binding	sites	(34	vs	10,	P=2.1x10-5)	while	length	and	TFBS	abundance	were	strongly	

correlated	(Pearson	r=0.64,	P<10-300).	The	FMREs	represented	698	patients	(38%)	

with	 1,092	 SNVs	 and	 113	 indels.	Most	 FMREs	 (25/41)	 did	 not	 overlap	 any	UTRs,	

promoters,	or	lncRNA	genes,	including	five	intronic	FMREs	and	10	FMREs	that	were	

more	 than	 50	 kbp	 from	 any	 gene	 or	 annotated	 region.	 Thus	 our	 findings	 are	

complementary	to	gene-focused	driver	analyses	in	PCAWG[PCAWG-2-5-9-14].	

To	 confirm	 these	 findings,	 we	 used	 four	 additional	 methods	 MutSigCV16,	

NBR41,	 OncoDriveFML42	 and	 DriverPower[Shuai	 &	 Stein]	 that	 use	 distinct	 statistical	

models,	 clustering	 of	 mutations,	 and	 functional	 impact	 scores	 to	 find	 coding	 and	

non-coding	 cancer	 drivers.	 The	 majority	 of	 FMREs	 detected	 by	 ActiveDriverWGS	

(26/41)	 were	 also	 found	 by	 at	 least	 one	 other	 method,	 significantly	 more	 than	

expected	 from	 chance	 alone	 (0	 expected,	 Fisher’s	 exact	 P=1.8x10-77).	 The	 five	

methods	revealed	a	total	of	92	candidate	regions	at	FDR<0.05	and	the	FMRE	at	the	

TERT	promoter	was	 identified	by	all	methods	(Figure	1d,	Supplementary	Figure	

8).	Recovery	of	most	FMREs	with	 independent	analytical	approaches	supports	our	

findings	of	FMREs	and	suggests	that	some	may	act	as	cancer	drivers	that	are	subject	

to	 positive	 selection.	However	 their	 elevated	mutation	 frequency	may	 also	 reflect	

regionalized	 hyper-mutation	 or	 challenging	 genomic	 regions	 with	 technical	

sequencing	artefacts.	

Power	analysis	suggests	that	FMREs	with	relatively	rare	mutations	are	only	

discoverable	in	large	patient	cohorts	(Supplementary	Figure	9).	The	PCAWG	pan-

cancer	 dataset	 is	 suitable	 for	 detecting	 effects	 three-folder	 smaller	 than	 for	 the	

largest	 PCAWG	 tumour-type	 specific	 cohorts	 (i.e.	 breast,	 prostate	 and	pancreatic).	

We	 show	 that	 FMREs	 exist,	 but	 have	 been	 below	 the	 detectable	 effect-size	 in	 the	

larger	 individual	 tumor-type	 studies	 published	 to	 date.	 Thus	we	need	 to	 use	pan-

cancer	analyses	and	sequence	larger	cancer-specific	cohorts	in	the	future.		
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FMREs	are	enriched	in	multiple	classes	of	somatic	alterations	

Cancer	 driver	 genes	 are	 affected	 by	 different	 genetic	 mechanisms	 in	 different	

tumors	and	tumor	types.	To	 further	study	the	biological	 importance	of	FMREs,	we	

analysed	their	somatic	copy	number	alteration	(CNA)	and	structural	variation	(SV)	

landscapes	profiled	in	PCAWG[PCAWG-6;	PCAWG-1]	relative	to	expected	genetic	alterations.	

TF	 binding	 sites	 have	 been	 shown	 to	 have	 higher	 somatic	 mutation	 burden,	

potentially	 due	 to	 collisions	 of	 gene	 regulatory	 and	 DNA	 repair	 pathways.	 To	

account	 for	 TF	 occupancy	 as	 a	 cofactor	 of	 mutation	 rates,	 we	 sampled	 control	

regions	from	all	CRMs	according	to	their	mean	TF	occupancy	per	nucleotide	in	100	

equally	 sized	 bins	 and	 used	 sampled	 CRMs	 to	 establish	 expected	 number	 of	

mutations	 according	 to	 the	 bin	 distribution	 of	 FMREs.	 As	 additional	 controls,	 we	

sampled	regions	with	matching	length	randomly	from	the	genome.	To	avoid	biasing	

our	 analyses	 by	 earlier	 findings	 of	 recurrent	 non-coding	 cancer	 mutations	 and	

known	drivers,	we	excluded	3	of	41	FMREs	corresponding	 to	 the	TERT	 promoter,	

the	5’UTR	region	of	WDR74	and	the	lncRNA	MALAT1.	

As	a	 confirmation	of	ActiveDriverWGS	analysis,	FMREs	as	a	group	 included	

significantly	more	SNVs	and	indels	(880)	than	expected	from	all	CRMs	with	similar	

TF	 binding	 occupancy	 (288	 expected,	 PCRM=5.9x10-5)	 and	 from	 random	 genome-

wide	 regions	 (113	 expected;	PGW<10-6)	 (Figure	2a).	 The	 enrichment	 suggests	 the	

mutations	apparent	 in	FMREs	exceeds	the	mutation	rate	of	comparable	regulatory	

regions	and	may	instead	reflect	positive	selection	of	mutations	important	in	cancer	

biology.	 Similarly,	96	 structural	variant	breakpoints	were	 significantly	enriched	 in	

FMREs	 compared	 to	 both	 types	 of	 control	 regions	 (PCRM<10-6,	 5	 expected;	

PGW=6.0x10-6,	9	expected)(Figure	2a).	Focal	copy	number	variants	(652)	showed	a	

trend	of	enrichment	(PCRM=0.074,	511	expected;	PGW=0.0081,	430	expected)	(Figure	

2a).	 In	 total,	 43%	 of	 all	 patients	 in	 the	 dataset	 (793/1,844)	 had	 at	 least	 one	

mutation	 in	 any	 FMRE	 (SNV,	 indel,	 SV	 or	 focal	 CNA),	 significantly	 more	 than	

expected	 by	 chance	 from	 the	 distribution	 of	 TF-occupancy	 weighted	 CRMs	

(399/1,844;	 PCRM<10-6)	 or	 from	 random	 genomic	 control	 regions	 (469/1,844,	

PGW=1.1x10-4).	 Individual	FMREs	with	 fewer	SNVs	and	 indels	often	 included	many	

focal	 CNAs	 in	 additional	 patients,	 while	 few	 patients	 (46/793	 or	 6%)	 carried	
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multiple	mutations	of	different	 types	 in	 the	same	FMRE	(Figure	2b).	Thus	FMREs	

likely	 include	 functionally	 important	 regions	 that	 are	 modified	 through	 distinct	

genetic	mechanisms	in	different	tumors	and	tumor	types.	For	example,	enrichment	

of	 structural	 variants	 among	 FMREs	 may	 indicate	 enhancer	 hijacking	 events	

mediated	by	translocations35,36.		

To	study	mutational	processes	active	 in	FMREs,	we	evaluated	 the	mutation	

signatures	of	SNVs	using	sample-specific	exposure	predictions	developed	by	PCAWG	
[PCAWG-7]	 (Figure	 2c).	 As	 controls,	 we	 sampled	 genome-wide	 mutations	 from	 the	

samples	 that	 carried	 FMRE	 mutations.	 We	 found	 that	 FMRE	 mutations	 were	

significantly	 enriched	 in	 aging-related	 signatures:	 signature	 five	 with	 311	 SNVs	

(permutation	 P=7.6x10-4,	 270	 SNVs	 expected)	 and	 signature	 one	 with	 70		

SNVs	(P=4.8x10-4,	47	SNVs	expected),	relative	to	mutations	sampled	randomly	from	

the	 tumor	 genomes	with	 FMRE	mutations.	 As	 expected,	 59	 known	protein-coding	

drivers	detected	by	ActiveDriverWGS	were	also	enriched	in	signatures	one	and	five	

relative	 to	 genome-wide	 mutations.	 The	 overall	 higher	 frequency	 of	 SNVs	 with	

aging-related	signatures	supports	the	hypothesis	of	FMREs	acting	as	cancer	drivers.		

To	 reveal	 the	 FMREs	 with	 the	 strongest	 indications	 of	 hyper-mutation	 or	

technical	 biases,	we	 studied	 germline	 variants	 in	 the	 PCAWG	 cohort	 (Figure	2d).	

FMREs	 had	 significantly	more	 unique	 germline	 SNPs	 per	 nucleotide	 compared	 to	

exons	of	59	protein-coding	drivers	 (median	0.074	vs	0.058,	Wilcoxon	P=0.010),	 in	

agreement	 with	 recent	 findings	 of	 reduced	 mutation	 rates	 in	 exons	 due	 to	

differential	mismatch	 repair43.	 Twelve	 frequently	mutated	 regions,	 including	 nine	

FMREs	 (22%)	 as	 well	 as	 5’UTR	 of	WDR74,	 promoter	 of	 ZNF595	 and	 the	 lncRNA	

RPPH1	exceeded	the	germline	density	of	all	protein-coding	drivers	and	we	flagged	

these	as	potetntially	problematic	(Figure	1c).	Eleven	additional	FMREs	(27%)	lied	

between	 the	 90th	 and	 the	 100th	 percentile	 of	 germline	 variation	 of	 protein-coding	

drivers,	similarly	to	known	cancer	genes	(e.g.	FOXA1,	GATA3)	and	genes	with	cancer	

predisposition	variants	(e.g.	CDKN1B).	We	also	compared	FMREs	to	common	fragile	

sites44	and	flagged	five	regions	as	potentially	problematic,	including	two	with	excess	

germline	variation	in	PCAWG.	Thus	driver	discovery	of	non-coding	regions	such	as	

CRMs	 is	 challenged	 by	 germline	 variation	with	 biological	 and	 technical	 cofactors.	
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However	some	regions	may	also	undergo	positive	selection	in	somatic	genomes	and	

include	cancer	predisposition	variants	in	the	germline	genomes	of	cancer	patients.		

	

FMREs	are	enriched	in	long-range	chromatin	interactions	and	super-

enhancers		

To	 explore	 the	 potential	 role	 of	 FMREs	 as	 distal	 regulatory	 elements	 interacting	

with	 promoters	 of	 target	 genes,	 we	 studied	 chromatin	 long-range	 interactions	

representing	 the	 three-dimensional	 architecture	 of	 the	 genome.	 We	 annotated	

FMREs	 using	 loop	 anchors	 of	 11,282	 high-confidence	 chromatin	 interactions	

conserved	 in	at	 least	 two	cell	 lines	derived	 from	a	public	HiC	dataset24.	We	 found	

that	 13/38	 FMREs	 associated	with	 distal	 genomic	 regions	 through	 29	 long-range	

chromatin	 interactions	 (Figure	 3a).	 This	 is	 a	 two-fold	 enrichment	 relative	 to	

occupancy-matched	 CRMs	 (PCRM=0.0028,	 13	 interactions	 expected)	 and	 five-fold	

genome-wide	 enrichment	 (PGW=3.0x10-6,	 6	 interactions	 expected),	 suggesting	 that	

the	 mutated	 FMREs	 are	 particularly	 frequently	 interacting	 with	 distal	 genomic	

regions.		

To	explore	the	potential	role	of	FMREs	as	cis-regulatory	elements,	we	used	a	

dataset	of	58,283	super-enhancers45	 across	86	human	cell	 types.	 Super-enhancers	

are	sets	of	adjacent	enhancers	(also	known	as	clusters	of	open	regulatory	elements	

(COREs))	 that	 are	 bound	 by	 master	 regulators	 and	 involved	 in	 cell	 type	

specification46,47.	Half	of	FMREs	(19/38)	occurred	at	234	super-enhancers	of	various	

tissues	and	were	enriched	relative	to	both	sets	of	control	regions	(PCRM<0.0045,	101	

annotations	 expected;	 PGW<10-6,	 26	 expected)	 (Figure	 3b).	 Tissue-specific	 super-

enhancers	 co-occurred	with	FMREs	more	 frequently	 than	expected	with	31	 tissue	

types	 (PCRM<0.1)	 including	 fetal	 cells,	 hematopoietic	 and	 immune	 cells,	 as	 well	 as	

five	 cancer	 cell	 lines	 (Supplementary	 Figure	 10).	 In	 total,	 25/38	 FMREs	 were	

annotated	at	either	 super-enhancers	or	 chromatin	 loop	anchors	and	seven	FMREs	

with	 both	 types	 of	 genomic	 elements,	 suggesting	 that	mutations	 in	 FMREs	 rewire	

the	cis-regulatory	logic	encoded	by	super-enhancers	and	their	long-range	chromatin	

interactions.	
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To	 validate	 our	 observations	 of	 enriched	 super-enhancers	 in	 FMREs,	 we	

studied	 a	 genome-wide	 ChIP-seq	 dataset	 of	 histone	 H3	 lysine	 27	 acetylation	

(H3K27ac)	 sites	 representing	 active	 enhancers	 of	 19	 primary	 prostate	 cancer	

samples48	with	matched	WGS	data	in	PCAWG.	FMREs	were	significantly	enriched	in	

591	H3K27ac	peaks	(PCRM<4.4x10-5,	315	sites	expected;	PGW<10-6,	69	sites	expected)	

(Figure	3c).	A	sizeable	portion	of	FMREs	(18/38)	appeared	as	active	enhancers	in	

the	 majority	 of	 prostate	 samples	 and	 most	 FMREs	 (25/38)	 showed	 ewnhancer	

marks	in	at	least	one	prostate	tumor	sample	of	the	subset	(Supplementary	Figure	

10).	 These	 data	 support	 the	 hypothesis	 that	 mutations	 in	 FMREs	 are	 engaged	 in	

gene	regulation	in	primary	tumors.		

We	 asked	 whether	 the	 mutations	 in	 FMREs	 associated	 with	 differential	

H3K27ac	signal	in	the	19	H3K27ac-profiled	prostate	tumors.	Of	the	five	FMREs	with	

mutations	in	relevant	samples,	two	FMREs	showed	mutation-associated	differences	

in	H3K27ac	levels.	A	single	mutation	in	the	FMRE	1:17222956	corresponded	to	the	

sample	 with	 the	 highest	 H3K27ac	 peak	 in	 the	 region	 (z-score=1.67;	 Figure	 3b),	

while	 a	mutation	 in	 the	 FMRE	 6:52860289	 corresponded	 to	 the	 sample	with	 the	

lowest	 H3K27ac	 peak	 (z-score=-1.68;	 Figure	 3b).	 Both	 FMREs	 were	 detected	 as	

candidate	 drivers	 by	 four	 driver	 discovery	 methods,	 while	 the	 first	 region	 was	

flagged	due	to	excess	germline	variation.	Although	limited	in	statistical	significance	

due	 to	 single	 mutated	 samples,	 these	 observations	 suggest	 that	 FMRE	mutations	

may	co-occur	with	altered	chromatin	marks.		

Enrichment	 of	 FMREs	 in	 regions	 with	 chromatin	 interactions	 and	 super-

enhancer	 annotations	 suggests	 that	 FMREs	 and	 corresponding	 somatic	mutations	

are	 involved	 in	 central	 gene	 regulatory	 programs	 of	 tissue	 identity	 and	

differentiation.	Known	and	unknown	regional	mutational	processes	active	 in	 gene	

regulatory	processes	may	confound	our	observations	of	candidate	drivers,	however	

the	occupancy-weighted	permutation	procedure	shows	that	FMREs	are	enriched	in	

regulatory	 annotations	 beyond	what	 is	 expected	 from	 other	 frequently	 TF-bound	

regions.	 Further	 analyses	 and	 experimental	 work	 is	 required	 to	 deconvolute	 the	

effects	of	somatic	mutation	rates	and	positive	selection	apparent	in	super-enhancers	

and	chromatin	interaction	sites.		
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Chromatin	interactions	of	FMREs	reveal	mutation	impact	on	gene	expression	

To	study	the	impact	of	candidate	driver	mutations	in	FMREs,	we	associated	FMREs	

and	 putative	 target	 genes	 using	 high-confidence	 chromatin	 interactions.	 The	

resulting	 chromatin	 interaction	 network	 included	 18/38	 FMREs	 and	 37	 putative	

target	genes	that	either	shared	promoter	or	5’UTR	sequence	with	FMREs	(15	genes)	

or	were	distally	associated	to	FMREs	via	long-range	chromosomal	interactions	(22	

genes)	 (Figure	3c).	The	remaining	20	FMREs	with	no	apparent	 target	genes	were	

excluded.	

We	 tested	 associations	 of	 11	 FMREs	 and	 22	 potential	 target	 genes	 for	

differential	 gene	 expression	 and	 revealed	 seven	 (32%)	 genes	 (RCC1,	 CCNB1IP1,	

GSTA4,	 ICK,	 HIST1H2AI,	 ANG,	 ZKSCAN3)	 with	 differential	 mRNA	 abundance	 in	

samples	with	mutations	in	four	FMREs	(Chi-square	P<0.05,	FDR<0.14).	We	used	the	

PCAWG	transcription	dataset[PCAWG-3]	that	covered	~50%	of	samples	with	WGS	data	

and	 applied	 negative	 binomial	 regression	 models	 on	 mRNA	 abundance	 values	

(RPKM-UQ)	that	controlled	for	cancer	type	and	relative	gene	copy	number	variation	

as	covariates.	To	 increase	confidence,	we	analyzed	tumor	types	with	at	 least	 three	

mutated	samples	and	excluded	genes	with	low	mRNA	abundance	(mean	RPKM-UQ	>	

1).		

CCNB1IP1,	 a	 tumor	 suppressor	 gene	 according	 to	 the	 Cancer	 Gene	 Census	

database,	showed	reduced	expression	in	three	kidney	and	three	breast	tumors	with	

available	 gene	 expression	 data	 (P=0.0083,	 Figure	 4a).	 The	 FMRE	 14:21081816	

located	 280kbp	 downstream	of	CCNB1IP1	was	mutated	 in	 24	 tumors	 in	 total	 (six	

expected	by	chance,	FDR=6.2x10-3).	The	FMRE	was	detected	as	significant	by	three	

driver	 discovery	 methods.	 The	 1.3	 kbp	 FMRE	 interacts	 distally	 with	 CCNB1IP1	

through	 long-range	 chromatin	 interactions	 and	 is	 bound	 by	 87	 TFs	 in	 ENCODE,	

likely	 representing	a	high-occupancy	 target	 (HOT)	 region	bound	by	dozens	of	TFs	

and	 involved	 in	 developmental	 enhancer	 function49,50.	 CCNB1IP1	 (cyclin	 B1	

interacting	 protein	 1)	 encodes	 a	 ubiquitin	 E3	 ligase	 that	 negatively	 regulates	 cell	

motility	and	invasion	by	inhibiting	cyclin	B151,52.	The	angiogenesis-related	gene	ANG	
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interacting	 with	 the	 FMRE	 via	 chromatin	 loops	 also	 showed	 lower	 expression	 in	

FMRE-mutated	samples	(P=0.042).		

The	 genes	 GSTA4	 and	 ICK	 showed	 reduced	 expression	 in	 6	 breast	 and	 3	

bladder	 cancer	 samples	 with	 mutations	 in	 the	 FMRE	 6:52860289	 (P=0.027	 and	

P=0.030	 respectively)	 (Figure	 4b).	 The	 FMRE	 has	 mutations	 in	 33	 samples	 (7	

expected	by	chance;	FDR=5.8x10-9),	overlaps	with	the	promoter	of	GSTA4,	the	small	

nuclear	RNA	RN7SK,	and	has	long-range	chromatin	interactions	with	the	promoter	

of	 ICK.	 GSTA4	 encodes	 the	 metabolic	 enzyme	 glutathione	 S-transferase	 alpha	 4	

involved	 in	 cellular	 defense	 against	 toxic,	 carcinogenic,	 and	 pharmacologic	

compounds	 and	 stress-induced	 TP53	 signaling	 for	 apoptosis53.	 ICK	 encodes	 the	

intestinal	 cell	 kinase	 involved	 in	 cell	 cycle54	 and	 implicated	 in	 proliferation	 and	

ciliogenesis	in	glioblastoma55.	The	FMRE	is	annotated	as	a	super-enhancer	in	brain	

hippocampus	and	carries	binding	sites	of	103	TFs.	We	first	found	this	FMRE	due	to	a	

mutation	that	associated	with	decreased	H3K27ac	level	in	prostate	tumors	(Figure	

3b).	 Reduced	 expression	 of	GSTA4	 and	 ICK	and	 decreased	 level	 of	 the	 enhancer-

associated	histone	mark	in	mutated	samples	fit	the	hypothesis	that	mutations	at	this	

FMRE	disrupt	gene	expression.	

The	 transcription	 factor	 ZKSCAN3	 showed	 increased	 abundance	 in	 three	

ovarian	 cancer	 samples	with	 available	 gene	 expression	 data	 (chi-square	P=0.046,	

Figure	4c).	 The	 FMRE	 6:27870625	 bp	was	mutated	 in	 27	 pan-cancer	 samples	 (8	

expected,	 FDR=8.0x10-4)	 and	 was	 considered	 significant	 by	 two	 driver	 discovery	

methods.	 The	 1.4	 kbp	 region	 interacts	 with	 target	 genes	 through	 long-range	

chromatin	 interactions	 and	 includes	 a	 thymus-related	 super-enhancer	 and	 a	 HOT	

region	 bound	 by	 74	 TFs.	 ZKSCAN3	 (zinc	 finger	with	 KRAB	 and	 SCAN	 domains	 3)	

located	 ~450	 kbp	 downstream	 of	 the	 FMRE	 is	 a	 transcriptional	 repressor	 of	

autophagy56	 and	 a	 positive	 regulator	 of	 the	 cyclin	 D2	 oncogene	 in	 multiple	

myeloma57.	It	has	also	been	implicated	in	the	promotion,	migration	and	metastasis	

of	 colorectal58,59,	 prostate60,	 and	 bladder	 cancer61.	 The	 adjacent	 histone	 gene	

HIST1H2AI	 interacting	with	the	FMRE	via	chromatin	loops	also	showed	differential	

expression	relative	to	mutations	in	this	FMRE	(P=0.038).	
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The	 strongest	 association	 of	 FMRE	 mutations	 and	 mRNA	 abundance	 was	

found	 at	 the	 FMRE	 upstream	of	RCC1	(regulator	 of	 chromosome	 condensation	 1).	

RCC1	showed	elevated	expression	in	25	FMRE-mutated	samples	of	bladder,	breast,	

colorectal,	kidney,	lung	and	ovarian	cancers	(chi-square	P=1.8x10-5,	Figure	4d).	The	

FMRE	was	mutated	 in	 59	 tumors	 in	 total	 (33	 expected,	 FDR=0.0499).	 The	 FMRE	

1:28837464	is	a	11	kbp	region	that	includes	the	RCC1	promoter,	the	adjacent	ncRNA	

SNHG3,	 binding	 sites	 of	 102	 TFs,	 and	 super-enhancers	 of	 cancer	 cell	 lines	 (liver	

HepG2;	leukemia	K652;	colon	HCT116)	and	hematopoietic	and	immune	cells	(CD4+,	

CD8+,	 CD34+).	 RCC1	 is	 not	 characterized	 in	 cancer,	 however	 its	 involvement	 in	

hallmark	 cancer	 pathways	 suggests	 it	 as	 a	 candidate	 oncogene.	 RCC1	 encodes	 a	

DNA-binding	 guanine	 nucleotide	 exchange	 factor	 that	 produces	 the	 RanGTP	

signaling	molecule	 essential	 for	mitotic	processes62-64.	RCC1	is	 regulated	by	MYC65	

and	its	overexpression	in	normal	cells	evades	DNA	damage-induced	cell	cycle	arrest	

and	senescence66.		

	 To	increase	confidence	in	these	candidate	drivers,	we	manually	reviewed	all	

148	mutations	 in	 raw	sequencing	data	 files	 and	evaluated	 their	 sequence	 context,	

read	coverage	and	strand	bias.	The	majority	of	all	mutations	(142	or	96%)	and	all	

mutations	with	matching	expression	data	(56)	were	considered	true	positives	while	

17%	 of	 mutations	 (25/142	 and	 10/56)	 were	 flagged	 due	 to	 strand	 bias	 or	 low	

variant	 allele	 frequency.	 The	 false	 positive	 rate	 corresponds	 to	 overall	 variant	

calling	error	rate	of	the	PCAWG	project.	

In	summary,	these	examples	suggest	that	a	subset	of	non-coding	mutations	in	

FMREs	 increase	 oncogenic	 gene	 expression	 or	 reduce	 the	 transcription	 of	 tumor	

suppressor	 genes,	 further	 supporting	 their	 role	 as	 candidate	 cancer	 drivers.	

Alternative	 definitions	 of	 tissue-specific	 regulatory	 elements,	 gene	 regulatory	

regions	and	chromatin	interactions	detected	in	primary	tumor	samples	of	matching	

tissue	types,	and	larger	datasets	of	matched	transciptomes	will	likely	reveal	further	

FMREs	and	target	genes.		
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FMRE	mutations	at	RCC1	locus	associate	with	global	activation	of	immune	

response	genes	

The	large	number	of	mutations	in	the	FMRE	upstream	of	RCC1	prompted	us	to	study	

global	 differential	 gene	 expression	 of	 mutated	 and	 non-mutated	 cancer	 samples	

across	9,420	protein-coding	genes	with	Gene	Ontology	(GO)	annotations	and	above-

baseline	 transcript	 abundance	 using	 the	 cancer	 type	 and	 copy	 number	 adjusted	

statistical	models	described	above.		

We	found	62	significantly	expressed	genes	(FDR<0.05,	chi-square	test),	all	of	

which	 showed	 increased	 expression	 in	 FMRE-mutated	 samples	 relative	 to	 non-

mutated	samples	of	matched	cancer	types	(Figure	5a).	To	further	characterize	the	

genes	up-regulated	 in	FMRE-mutated	 tumors,	we	carried	out	pathway	enrichment	

analysis	of	FDR-ranked	genes	using	g:Profiler67	and	found	16	biological	processes	of	

GO	 and	 3	 Reactome	 pathways	 (FDR<0.05).	 Intriguingly,	 34/62	 differentially	

expressed	 genes	 were	 significantly	 enriched	 in	 immune	 response,	 neoantigen	

processing,	endocytosis	and	fiber	elongation	pathways	(Figure	5b).	The	activation	

of	 immune	 response	 genes	 and	 pathways	 such	 as	 antigen	 processing	 and	

presentation	 (WAS,	 SLC11A1,	 CAPZB,	 LILRB2,	 RFTN1,	 CTSL,	 CCL19,	 AP1S2;	

FDR=0.0024)	is	in	agreement	with	the	super-enhancer	annotations	of	hematopoietic	

and	immune	cells	associated	with	the	FMRE.	The	differentially	genes	also	included	

one	 known	 cancer	 gene	WAS	 implicated	 in	 the	Wiskott-Aldrich	 immunodeficiency	

syndrome	 that	 has	 been	 associated	with	 lymphoma68.	While	 further	 experimental	

work	 is	 required	 to	 elucidate	 the	 underlying	 mechanisms,	 our	 differential	

expression	 and	pathway	 analysis	 suggests	 that	 the	 cancer	mutations	 in	 the	 FMRE	

upstream	of	RCC1	 activate	global	gene	expression	patterns,	potentially	 to	enhance	

the	activity	of	hallmark	cancer	pathways	of	immune	suppression.		
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Discussion	
Only	 few	 non-coding	 cancer	 drivers	 are	 known	 to	 date.	 Their	 discovery	 requires	

large	WGS	 datasets	 and	 detailed	 annotations	 of	 the	 regulatory	 genome.	 Thus	 the	

search	space	of	driver	discovery	efforts	has	been	limited	to	gene-focused	regions	of	

the	genome.	Here	we	performed	a	driver	analysis	of	the	cis-regulatory	genome	using	

the	 largest	 cancer	 WGS	 dataset	 available	 to	 date	 from	 the	 PCAWG	 project.	 We	

revealed	 the	 currently	 largest	 set	 of	 pan-cancer	 driver	 candidates,	 frequently	

mutated	 regulatory	 elements	 (FMREs),	 that	were	 enriched	 in	 somatic	 non-coding	

SNVs	and	other	genomic	alterations	across	a	heterogeneous	cohort	of	tumors.	Two	

thirds	of	FMREs	occurred	at	known	super-enhancers	or	chromatin	loops	and	most	

appeared	 as	 enhancers	 in	 primary	 tumors.	 Our	 leading	 hypothesis	 is	 the	 positive	

selection	of	these	regions	in	cancer	genomes	that	causes	oncogenic	rewiring	of	gene	

regulatory	networks	and	long-range	chromatin	interactions	of	distal	enhancers	and	

target	 genes.	 We	 found	 several	 lines	 of	 evidence	 support	 the	 driver	 hypothesis:	

enrichment	of	different	classes	of	mutations	in	FMREs,	over-representation	of	aging-

associated	 mutation	 signatures,	 and	 significant	 associations	 of	 candidate	 driver	

mutations	 and	 expression	 of	 putative	 target	 genes	 and	 pathways	 involved	 in	

hallmark	cancer	processes.		

We	 cannot	 rule	 out	 alternative	 explanations	 to	 observed	 enrichment	 of	

somatic	 mutations	 in	 the	 identified	 regions.	 Thus	 caution	 should	 be	 taken	 in	

interpreting	these	candidate	driver	regions,	most	of	which	are	reported	for	the	first	

time.	 From	 the	 point	 of	 genome	 biology,	 the	 somatic	 mutation	 landscape	 has	

complex	 associations	 with	 chromatin	 state	 and	 gene	 regulation.	 While	 open	

chromatin	is	broadly	associated	with	reduced	mutation	load,	abundant	mutations	in	

TF-bound	 regions	 have	 been	 associated	 with	 deficient	 DNA	 repair	 due	 to	

competitive	binding	of	 regulatory	 and	DNA	 repair	 proteins.	However	our	 analysis	

shows	that	FMREs	are	enriched	in	mutations	and	regulatory	annotations	even	when	

considering	 regions	 with	 similar	 TF	 occupancy	 as	 controls,	 suggesting	 that	 the	

observed	mutation	 enrichment	 may	 be	 due	 to	 positive	 selection.	 Technically,	 the	

non-coding	 genome	 includes	 challenging	 regions	 with	 potential	 for	 sequence	
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alignment	 and	 variant	 calling	 artefacts.	 We	 rely	 on	 the	 comprehensive	

preprocessing	and	filtering	pipeline	of	the	PCAWG	project	that	uses	a	consensus	of	

several	state-of-the-art	methods	for	variant	calling.	Some	FMREs	have	high	germline	

variation	 that	 potentially	 originates	 from	 highly	 variable	 regions	 such	 as	 fragile	

sites,	 regions	 that	are	challenging	 the	sequencing	pipeline,	as	well	as	 regions	with	

functional	 germline	 variants	 of	 cancer	 predisposition.	 Further	 computational	

analyses	 and	 experimental	 work	 are	 required	 to	 establish	 these	 candidate	 non-

coding	regions	as	bona	fide	cancer	drivers.		

	 To	 capture	 and	 interpret	 pan-cancer	 drivers,	 we	 analysed	 high-confidence	

regulatory	regions	and	long-range	chromatin	interactions	apparent	across	multiple	

cell	 lines.	 These	 regions	 and	 interactions	 are	more	 likely	 representative	 of	 a	 pan-

cancer	cohort	than	those	of	single	cell	 lines,	however	any	epigenomic	data	derived	

from	 cell	 lines	 are	 limited	 in	 their	 biological	 relevance	 to	 primary	 tumors.	 Thus	

future	driver	analyses	of	non-coding	regions	will	benefit	from	epigenomic	and	gene	

regulatory	profiles	derived	from	matching	tumors	and	tumor	types.		

	 Our	analysis	revealed	rarely	mutated	FMREs	that	were	detectable	only	in	the	

pan-cancer	 dataset	 while	 few	 cancer	 type	 specific	 FMREs	 beyond	 the	 TERT	

promoter	were	 identified.	 Our	 power	 analysis	 confirms	 that	 the	 available	 sample	

sizes	 do	 not	 permit	 analysis	 within	 cancer	 types	 and	 suggests	 that	 considerably	

larger	 tumor	 cohorts	 with	WGS	 data	 are	 required	 for	 future	 studies.	 Discovering	

functional	driver	mutations	in	FMREs	using	target	gene	expression	was	even	more	

limited	as	only	half	of	PCAWG	tumors	had	matching	transcriptomic	data	available.	

Thus	additional	FMREs	likely	remain	to	be	discovered.		

	 Integration	of	cancer	genome	variation	with	epigenomic	profiles,	long-range	

chromatin	interactions	and	matching	transcriptomic	data	is	a	powerful	approach	for	

discovering	candidate	drivers	and	mechanistic	hypotheses	of	the	roles	of	mutations.	

This	strategy	is	applicable	to	tissue-specific	regulatory	regions	as	well	as	other	types	

of	 regions	 such	 as	 ultra-conserved	 elements.	 Systematic	 genetic	 disruption	 of	

candidate	 driver	 regions	 with	 the	 CRISPR	 technology	 coupled	 with	 phenotypic	

screens	is	required	to	demonstrate	the	function	of	mutations	in	FMREs	in	cell	lines	

and	model	organisms.	Analysis	of	 future	WGS	datasets	paired	with	comprehensive	
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clinical	 information	 such	as	 those	generated	 in	 the	 ICGC-ARGO	project	will	 enable	

biomarker	 discovery	 from	non-coding	mutations.	 In	 summary,	 our	 study	 suggests	

that	the	non-coding	cancer	genome	includes	previously	uncharacterized	rare	driver	

mutations	 that	 contribute	 to	 the	 hallmarks	 of	 cancer	 through	 cis-regulatory	

mechanisms.	 Further	 computational	 and	 experimental	 studies	 are	 needed	 to	

understand	 the	 role	 of	 these	 regions	 and	 the	 non-coding	 cancer	 genome	with	 its	

mutational	processes	and	driver	mechanisms.		 	
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Figure	legends	
Figure	1.	Cancer	driver	discovery	in	regulatory	regions	of	the	genome.		

(a)	 Discovery	 of	 frequently	 mutated	 regulatory	 elements	 (FMREs)	 as	 candidate	

cancer	 drivers.	We	 analyzed	 cis-regulatory	modules	 (CRMs)	 comprising	 clustered	

transcription	 factor	 binding	 sites	 (TFBS)	 from	 ChIP-seq	 datasets	 in	 ENCODE	 that	

were	 conserved	 in	 multiple	 cell	 lines	 and	 bound	 by	 at	 least	 two	 TFs.	 Single	

nucleotide	 variants	 (SNVs)	 and	 small	 indels	 from	 the	 PCAWG	WGS	 dataset	 were	

used	 for	 driver	 discovery.	 Our	 novel	 genome-wide	 driver	 discovery	 method	

ActiveDriverWGS	 evaluates	 the	 enrichment	mutations	 in	 candidate	 driver	 regions	

relative	 to	 adjacent	 background	 sequence	 and	 trinucleotide	 sequence	 content.	

Candidate	 non-coding	 drivers	 (FMREs)	 were	 then	 associated	 to	 potential	 target	

genes	using	long-range	chromatin	interactions	derived	from	public	HiC	datasets.	To	

validate	 candidate	 drivers,	 we	 associated	 FMRE	 mutations	 with	 gene	 expression	

changes	of	target	genes.	(b)	Protein-coding	drivers	detected	in	analysis	of	the	pan-

cancer	cohort.	Known	cancer	drivers	annotated	in	the	Cancer	Gene	Census	database	

are	printed	in	bold.	(c)	Frequently	mutated	regulatory	elements	(FMREs)	detected	

in	pan-cancer	analysis	of	CRMs.	Genes	associated	with	FMREs	are	shown	right	of	the	

bars.	 Arrows	 show	 FMREs	 highlighted	 in	 the	 manuscript	 and	 asterisks	 indicate	

previously	 known	 non-coding	 driver	 regions.	 FMREs	with	 gray	 labels	 are	 flagged	

due	to	excess	germline	variation	in	PCAWG.	(d)	Comparison	of	FMREs	identified	by	

five	driver	discovery	methods.	Two	thirds	of	FMREs	identified	by	ActiveDriverWGS	

are	also	found	by	at	least	one	other	method.		

	

Figure	2.	FMREs	are	enriched	in	different	types	of	somatic	mutations,	aging-

related	mutation	signatures	and	germline	variants.		

(a)	FMREs	as	a	set	are	enriched	in	SNVs	and	indels,	structural	variation	breakpoints	

and	focal	copy	number	alterations	(dark	red	boxplots).	As	controls	we	used	sets	of	

CRMs	 sampled	 with	 matching	 average	 TF	 occupancy	 (pink	 boxplots)	 and	 sets	 of	

randomly	sampled	genomic	regions	(grey	boxplots).	Bootstrap	resampling	was	used	

to	estimate	variation	of	FMRE	mutations.	FMREs	corresponding	to	three	previously	
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known	regions	(TERT,	WDR74,	MALAT1)	were	excluded	to	estimate	the	properties	

of	 novel	 candidates	 and	 remove	 bias	 towards	 known	 regions.	 (b)	 FMREs	 involve	

distinct	types	of	somatic	alterations	in	different	tumors	and	tumor	types,	while	few	

FMREs	 carry	 multiple	 types	 of	 mutations	 in	 the	 same	 tumor.	 FMREs	 are	 ranked	

according	to	their	significance	in	ActiveDriverWGS	analysis.	(c)	Mutation	signatures	

of	 SNVs	 in	FMREs	 (dark	 red)	are	 compared	 to	 signatures	 in	protein-coding	driver	

genes	 randomly	 sampled	 mutations.	 FMRE-associated	 mutations	 are	 enriched	 in	

aging-related	 signatures	 five	 and	 one,	 relative	 to	 randomly	 sampled	mutations	 in	

the	tumor	samples	with	FMRE	mutations.	Error	bars	show	one	standard	deviation	

above	and	below	mean.	(d)	All	regions	identified	by	ActiveDriverWGS	at	FDR<0.05	

ranked	according	to	mean	number	of	distinct	SNVs	per	base	pair.	Genes	with	high	

germline	 variation	 and	 highlighted	 FMREs	 are	 labelled.	 Known	 protein-coding	

drivers	 detected	 by	 ActiveDriverWGS	 were	 used	 to	 estimate	 expected	 germline	

variation	as	90th	and	100th	percentile	(dashed	and	dotted	line,	respectively).		

	

Figure	3.	FMREs	are	enriched	in	super-enhancers	and	chromatin	loops.		

(a)	 FMREs	 are	 enriched	 in	 long-range	 chromatin	 interactions	 of	 loop	 anchors,	

super-enhancer	 elements	 across	 multiple	 tissues,	 and	 enhancer	 histone	 marks	

(H3K27ac)	 of	 19	 primary	 prostate	 tumors	 with	 WGS	 data	 in	 PCAWG.	 Observed	

annotations	in	FMREs	(dark	red)	are	compared	to	TF	occupancy-adjusted	sampling	

of	 CRMs	 (pink)	 and	 genome-wide	 random	 regions	 (gray).	 (b)	 Two	 FMREs	 carry	

mutations	 that	 associate	 with	 stronger	 or	 weaker	 enhancer	 marks	 in	 primary	

prostate	 tumors.	Boxplots	 show	normalized	H3K27ac	signal	 in	 the	FMRE	near	 the	

mutation	of	interest.	Yellow	asterisks	indicate	the	enhancer	mark	intensity	in	single	

samples	with	mutated	FMREs.	(c)	Chromatin	interaction	network	shows	FMREs	and	

their	 putative	 target	 genes.	 The	 network	 displays	 two	 types	 of	 interactions:	

proximal	 interactions	 comprise	 FMREs	 that	 coincide	 with	 gene	 promoters	 (solid	

line),	and	distal	interactions	comprise	FMREs	and	genes	that	interact	via	chromatin	

loops	(interactions)	of	promoters	and	FMREs	(dashed	line).	Node	size	corresponds	

to	number	of	mutations,	color	to	mutation	significance	and	shape	to	type	of	genomic	

region.	Regions	highlighted	in	the	text	are	indicated	with	arrows.		
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Figure	4.	Mutations	in	FMREs	associate	with	differential	expression	of	cancer	

genes.		

Left:	 chromosomal	 location	 of	 FMREs,	 target	 genes	 and	 long-range	 chromatin	

interactions	of	gene	promoters	and	FMREs.	Middle:	mutations	in	the	FMRE	and	50	

kbp	flanking	region	(top)	and	histogram	of	TF	binding	in	the	region	(bottom).	Right:	

altered	 expression	 of	 target	 genes	 in	 FMRE-mutated	 samples.	 Points	 represent	

log1p-transformed	 expression	 values	 (RPKM-UQ)	 and	 are	 colored	 according	 to	

relative	copy	number	of	target	gene.	(a)	The	tumor	suppressor	gene	CCNB1IP1	and	

angiogenesis	related	gene	ANG	showed	reduced	expression	in	six	kidney	and	breast	

cancer	 samples	 with	 mutations	 in	 distal	 FMRE.	 (b)	 The	 drug	 metabolism	 gene	

GSTA4	and	intestinal	kinase	gene	ICK	showed	reduced	expression	in	nine	breast	and	

bladded	 cancer	 samples	 with	 mutations	 in	 the	 distal	 FMRE.	 (c)	 The	 candidate	

oncogenic	 transcription	 factor	 ZKSCAN3	 and	 histone	 gene	 HIST1H2A1	 showed	

increased	expression	 in	 three	ovarian	cancer	samples	with	mutations	 in	 the	distal	

FMRE.	(c)	The	novel	cancer	gene	RCC1	involved	in	RanGTP	signaling	and	cell	cycle	

shows	increased	expression	in	25	samples	of	seven	cancer	types	with	mutations	in	

the	proximal	FMRE	upstream	of	the	gene.		

	

Figure	5.	Mutations	in	FMREs	at	RCC1	locus	associate	with	global	activation	of	

immune	response	pathways.		

(a)	Volcano	plot	shows	genes	with	differential	expression	in	tumors	with	mutations	

in	 the	 FMRE	 upstream	 of	 the	 RCC1	 gene.	 Genes	 with	 significant	 expression	

differences	 are	 shown	 in	 dark	 red	 (FDR<0.05)	 and	 gene	 symbols	 with	 enriched	

pathway	annotations	are	shown.	(b)	Enrichment	map	shows	significantly	enriched	

GO	processes	and	Reactome	pathways	corresponding	to	enriched	genes	(FDR<0.05	

from	g:Profiler).	Network	nodes	represent	pathways	and	processes	and	nodes	with	

many	 shared	 genes	 are	 connected	 with	 edges.	 Subnetworks	 are	 annotated	 with	

common	biological	themes	representative	of	pathways.	
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Methods	
Somatic	mutations		

We	 analyzed	 the	 dataset	 of	 1,844	whole	 cancer	 genomes	 of	 31	 cancer	 types	with	

14.2	 million	 somatic	 single	 nucleotide	 variants	 (SNVs)	 and	 indels[PCAWG-1].	 This	

represented	 a	 subset	 of	 the	 consensus	 dataset	 of	 46.6	million	mutations	 in	 2,583	

samples	sequenced	in	the	Pan-cancer	Analysis	of	Whole	Genomes	(PCAWG)	project	

of	 the	 International	 Cancer	 Genome	 Consortium	 (ICGC).	 The	 subset	 was	 derived	

using	 the	 following	 procedure.	 First	 we	 filtered	 69	 hyper-mutated	 samples	 with	

more	 than	 90,000	 mutations	 (~30	 mutations/Mb)	 that	 contributed	 47%	 of	 all	

mutations.	We	further	excluded	670	samples	of	four	cancer	types:	melanoma	(65),	

lymph-related	 cancers	 (BNHL	 (104),	 CLL	 (90),	 NOS	 (2)),	 esophageal	

adenocarcinoma	(95),	and	liver	hepatocellular	carcinoma	(314)	to	avoid	leakage	of	

stronger	mutation	enrichment	signal	of	these	cancer	types	to	the	pan-cancer	cohort	

(see	Supplementary	Note	1).		

	

Genomic	regions	

Our	 driver	 discovery	 pipeline	was	 run	 separately	 for	multiple	 classes	 of	 genomic	

regions	 of	 the	 human	 genome	 hg19.	 Cis-regulatory	 modules	 from	 the	 ENCODE	

project	 comprised	 clusters	 of	 transcription	 factor	 (TF)	 binding	 sites	 (TFBS)	

measured	 in	 chromatin	 immunoprecipitation	 (ChIP-seq)	 experiments	 retrieved	

from	UCSC	Genome	Browser.	We	used	the	dataset	of	4.9	million	binding	sites	of	161	

TFs	in	91	cell	lines	and	excluded	sites	that	were	only	observed	in	one	cell	line.	The	

remaining	1.1	million	binding	sites	of	101	TFs	were	merged	into	consecutive	regions	

based	 on	 ≥1bp	 of	 common	 sequence,	 resulting	 in	 322,614	 regions.	We	 discarded	

regions	bound	by	single	TFs	and	used	the	remaining	149,222	clusters	of	TFBS	(i.e.,	

cis-regulatory	modules,	CRMs)	 for	driver	discovery.	CRMs	were	 filtered	to	exclude	

sequence	regions	overlapping	with	coding	sequence	and	splice	sites.	In	addition	to	

CRMs,	 we	 performed	 driver	 discovery	 on	 protein-coding	 sequences	 (CDS),	

untranslated	regions	of	protein-coding	genes	 (5’UTR,	3’UTR),	promoters	of	 coding	
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genes	 (promDomain),	and	gene	bodies	of	 long	non-coding	RNAs	(lncRNA)	derived	

from	the	PCAWG	consensus	dataset[PCAWG-2-5-9-14].	

	

ActiveDriverWGS	and	driver	discovery	

Candidate	 cancer	 driver	 genes	 and	 regulatory	 regions	 were	 identified	 with	

ActiveDriverWGS,	 our	 novel	 mutation	 enrichment	 method	 that	 tests	 whether	 a	

genomic	 element	 of	 interest	 is	 significantly	 more	 mutated	 than	 the	 relevant	

background	sequence	using	a	generalized	linear	regression	model.	ActiveDriverWGS	

is	 a	 local	 mutation	 enrichment	 model	 that	 determines	 the	 expected	 number	 of	

mutations	in	a	genomic	region	by	observing	mutations	in	a	background	window	of	

at	 least	 100kb	 around	 the	 region	 of	 interest,	 including	 ±50kb	 upstream	 and	

downstream	of	the	region	plus	additional	intermediate	regions	such	as	gene	introns.	

ActiveDriverWGS	considers	sequence	trinucleotide	composition	as	a	cofactor	in	the	

regression	 model.	 It	 models	 the	 number	 of	 all	 sequence	 positions	 of	 each	 of	 32	

classes	of	 trinucleotides	 in	both	 the	background	sequence	and	 sequence	 region	of	

interest	 as	 well	 as	 the	 number	 of	 mutations	 in	 these	 trinucleotide	 classes.	 Indel	

mutations	are	modeled	as	the	33rd	class	of	mutations	with	equal	probability	at	each	

sequence	 location.	 Only	 one	 mutation	 is	 counted	 per	 tumor	 in	 cases	 where	 an	

element	contains	multiple	mutations	 in	 the	same	 tumor	genome.	This	 reduces	 the	

impact	 of	 local	 hypermutations	 and	 leads	 to	more	 conservative	 driver	 prediction.	

ActiveDriverWGS	conducts	chi-square	tests	 to	validate	 two	hypotheses	using	pairs	

of	 hierarchical	 regression	models	 (H0	 vs.	H1).	 The	 statistical	 test	 checks	whether	

mutations	 in	 the	region	of	 interest	 (variable	 is_element)	are	distributed	differently	

relative	to	its	background	sequence:	

	 H0:	n_mutations	~	Pois	(trinucleotide_context)	

	 H1:	n_mutations	~	Pois	(trinucleotide_context	+	is_element)		

A	 significant	 p-value	 in	 this	 combined	 test	 indicated	 that	 the	 element	 of	

interest	was	a	candidate	cancer	driver.	To	distinguish	regions	with	excess	mutations	

from	 regions	 with	 fewer	 than	 expected	 mutations,	 we	 additionally	 computed	

confidence	intervals	to	expected	numbers	of	mutations	from	the	null	model	H0	and	

accepted	the	alternative	hypothesis	H1	only	 if	 the	expected	background	mutations	
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were	significantly	fewer	than	observed	mutations	at	95%	quantile.	If	the	confidence	

intervals	indicated	significant	excess	of	mutations	in	the	background	and	depletion	

in	the	region	of	interest,	we	inverted	corresponding	small	p-values	(P=1-P).	Regions	

with	 no	 mutations	 were	 assigned	 P=1.	 The	 p-values	 resulting	 from	 the	 first	 test	

were	 corrected	 for	multiple	 testing	 across	 all	 tested	 regions	 using	 the	 Benjamini-

Hochberg	 False	 Discovery	 Rate	 (FDR)	 procedure	 and	 genes	 with	 FDR<0.05	 were	

considered	significant.	The	p-values	from	the	second	test	were	also	corrected	with	

the	FDR	procedure,	limiting	to	elements	that	passed	the	first	test	at	FDR<0.05.	Each	

cancer	 type	 and	 element	 type	was	 subject	 to	 separate	multiple	 testing	 correction	

procedure.	

Power	calculations	for	chi-squared	tests	in	ActiveDriverWGS	were	conducted	

using	the	pwr.chisq.test	function	of	the	‘pwr’	package	in	R.	Effect	size	was	computed	

using	 number	 of	 samples,	 final	 degrees	 of	 freedom	 from	ActiveDriverWGS	 output	

(1),	and	significance	level	(P=0.05).	This	process	was	repeated	for	several	values	of	

power	(0.6-0.9)	and	data	were	plotted	as	line	plots.	

The	R	source	code	of	ActiveDriverWGS	is	freely	available	at		

https://github.com/reimandlab/ActiveDriverWGS.	

	

Benchmarking	of	ActiveDriverWGS		

We	tested	ActiveDriverWGS	using	simulated	mutations	and	parameter	settings.	To	

generate	 simulated	 mutation	 data,	 we	 split	 the	 genome	 into	 50kb	 windows	 and	

randomly	re-assigned	PCAWG	pan-cancer	single	nucleotide	variants	in	each	window	

to	 alternative	 positions	 of	 the	 same	 trinucleotide	 context	 using	 sampling	 with	

replacement.	Indels	were	randomly	re-assigned	without	using	trinucleotide	context.	

Besides	in-house	simulated	data,	we	also	tested	ActiveDriverWGS	on	two	additional	

sets	 of	 simulations	 from	 the	 PCAWG	 drivers	 group	 (Sanger,	 Broad).	 In	 total	 672	

simulation	runs	with	three	sets	of	simulated	mutations,	32	cancer	types	and	seven	

types	 of	 genomic	 elements	 revealed	 eleven	 significant	 findings	 at	 FDR<0.05,	

suggesting	that	very	little	deviation	existed	from	expected	false	discovery	rates.	We	

also	 tested	 ActiveDriverWGS	with	 different	 sizes	 of	 background	windows:	 ±10kb,	

±25kb,	±50kb,	±75kb,	and	±100kb.	We	found	that	the	method	is	robust	to	variations	
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in	background	window,	however	the	±50kb	window	provided	the	best	accuracy	and	

enrichment	of	known	cancer	genes.	We	also	excluded	the	 trinucleotide	cofactor	 in	

our	regression	models	and	observed	a	 large	 increase	 in	 false	positive	 findings.	We	

repeated	the	analysis	after	 including	hyper-mutated	samples	and	 found	that	many	

fewer	 known	 driver	 genes	 were	 detected.	 Thus	 hyper-mutated	 samples	 were	

excluded	from	the	analysis.		

	

Additional	driver	discovery	methods	

Four	 independent	 driver	 discovery	 methods	 were	 used	 to	 discover	 candidate	

drivers	 among	 CRMs.	 Each	 method	 used	 different	 statistical	 models,	 cofactors,	

mutation	 impact	 scores	 and/or	 clustering	metrics	 to	 find	 candidate	 drivers.	NBR	

uses	 a	 negative	 binomial	 regression	 to	 estimate	 the	 background	mutation	 rate	 of	

each	 element	 as	 described	 earlier41.	 This	method	 accounts	 for	 the	 length	 of	 each	

element	 and	 its	mutability	 using	 a	 trinucleotide	 substitution	model	with	 192	 rate	

parameters	 and	uses	 the	 local	mutation	 rate	 in	 regions	 around	 each	 element	 as	 a	

covariate.	DriverPower	DriverPower	 is	 a	 combined	burden	 and	 functional	 impact	

test	 for	 coding	 and	 non-coding	 cancer	 driver	 elements.	 In	 the	 DriverPower	

framework,	 randomized	 non-coding	 genome	 elements	 are	 used	 as	 training	 set.	 In	

total	 1373	 reference	 features	 covering	 nucleotide	 compositions,	 conservation,	

replication	 timing,	 expression	 levels,	 epigenomic	 marks	 and	 compartments	 are	

collected	 from	 public	 databases	 for	 downstream	 modelling.	 For	 the	 modelling,	 a	

feature	selection	step	by	randomized	Lasso	is	performed	at	first.	Then	the	expected	

background	mutation	rate	 is	estimated	with	selected	highly	 important	 features	by	

binomial	generalized	linear	model.	The	predicted	mutation	rate	is	further	calibrated	

with	functional	impact	scores	measured	by	LINSIGHT69	scores.	Finally,	a	p-value	is	

generated	 for	 each	 test	 element	 by	 binomial	 test	 with	 the	 alternative	 hypothesis	

that	the	observed	mutation	rate	is	higher	than	the	adjusted	mutation	rate,	and	the	

Benjamini–Hochberg	 procedure	 is	 used	 for	 FDR	 control.	 OncoDriveFML,	 Driver	

discovery	 with	 OncoDriveFML	was	 performed	 as	 described	 in	 the	 PCAWG	 driver	

study	 [PCAWG-2-5-9-14].	MutSigCV.	Driver	 discovery	 with	 MutSigCV	 was	 performed	 as	

described	in	the	PCAWG	driver	study	[PCAWG-2-5-9-14].		
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Super-enhancers	and	long-range	chromatin	interactions	

We	 annotated	 FMREs	 using	 public	 datasets	 of	 long-range	 chromatin	 interactions	

and	 super-enhancers.	 The	 super-enhancer	 dataset	 originates	 from	 the	 study	 by	

Hnisz	 et	 al45.	 Chromatin	 loops	 representing	 long-range	 interactions	 from	 eight	

human	cell	lines	were	derived	from	the	HiC	dataset	by	Rao	et	al24.	To	obtain	a	high-

confidence	 set	 of	 chromatin	 interactions,	 we	 merged	 interactions	 whose	 loop	

anchors	 overlapped	with	 each	 other	 at	 both	 ends,	 and	 filtered	 those	 interactions	

that	had	been	characterized	only	in	one	cell	line.	Long-range	chromatin	interactions	

were	 considered	 to	 interact	with	 a	 gene	 if	 one	 anchor	 of	 the	 loop	overlapped	 the	

coding,	UTR	or	promoter	sequence	of	 the	gene	while	 the	other	anchor	of	 the	 loop	

had	 no	 overlap	with	 the	 gene.	We	 also	 tested	 the	 aggregated	 set	 of	H3K27ac	 and	

DNAse	 sites	 from	 the	 Roadmap	 Epigenomics	 project70.	 To	 determine	 statistical	

significance	of	genomic	annotations	of	FMREs,	we	tested	the	union	of	all	sequences	

corresponding	to	anchors	using	the	two	permutation	strategies	described	below.	

	

Enrichment	of	regulatory	annotations	of	FMREs	

We	 counted	 the	 number	 of	 pairs	 of	 FMREs	 and	 distinct	 genomic	 annotations.	 To	

determine	the	statistical	significance	of	enriched	genomic	annotations	of	FMREs,	we	

used	a	custom	permutation	test	to	sample	from	all	CRMs	from	ENCODE	as	controls.	

We	split	our	initial	dataset	of	~150,000	CRMs	into	100	equal	bins	based	on	their	TF	

occupancy,	represented	as	number	of	TFs	bound	in	CRM	divided	by	length	of	region.	

To	estimate	the	expected	number	of	regulatory	annotations	in	FMREs,	we	sampled	

10,000,000	 random	 sets	 of	 CRMs	 from	 the	 bins	 using	 the	 number	 and	 size	

distribution	of	detected	FMREs.	Statistical	significance	of	enriched	annotations	was	

estimated	as	an	empirical	p-value,	i.e.,	the	fraction	of	10,000,000	permutations	that	

showed	equivalent	or	higher	number	of	regulatory	annotations	than	associated	with	

the	true	set	of	FMREs.	To	avoid	biasing	our	findings	by	known	non-coding	drivers,	

we	 excluded	 three	 FMREs	 overlapping	 with	 the	 TERT	 promoter,	 the	 WDR74	

promoter	and	 the	 lncRNA	MALAT1.	Besides	 length-adjusted	sampling	of	CRMs,	we	
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also	 sampled	 random	 genome	 regions	 of	 equivalent	 sizes	 as	 controls.	 Confidence	

intervals	for	observed	numbers	of	FMRE	annotations	were	derived	with	resampling.	

	

Copy	number	alterations	and	structural	variants	

Matching	copy	number	and	structural	variation	datasets	originate	from	the	PCAWG	

project[PCAWG-6;	PCAWG-11].	We	determined	 relative	digital	 copy	numbers	of	 all	 regions	

and	patients	by	accounting	for	previously	computed	sample	ploidy	estimates,	whole	

genome	 duplication	 events,	 and	 patient	 sex.	 To	 estimate	 the	 frequency	 and	

enrichment	 of	 copy	 number	 alteration	 events	 in	 FMREs,	we	 focused	 on	 focal	 and	

potentially	high-impact	 copy	number	alterations	with	 less	 than	5	mbp	 in	 size	 and	

total	copy	number	of	zero	(corresponding	to	homozygous	deletion)	or	relative	gain	

of	 two	 or	 more	 copies.	 For	 structural	 variants,	 we	 studied	 coordinates	 of	

breakpoints.	 To	 determine	 statistical	 significance,	 we	 used	 permutation	 tests	

relative	 to	 all	 occupancy-matched	ENCODE	CRMs	as	well	 as	 size-matched	 random	

regions	from	the	genome,	using	the	strategy	defined	above.	For	analysis	of	mutation	

impact	on	gene	expression,	copy	number	altered	regions	were	further	processed	to	

obtain	gene-level	copy	number	estimates.	Copy	numbers	of	genes	were	computed	as	

the	most	extreme	copy	number	values	of	their	exons.	

	

Mutation	signature	analysis	

To	analyse	mutation	signatures	characteristic	of	FMREs,	we	studied	sample-specific	

exposure	 predictions	 for	 SNVs	 developed	 by	 PCAWG[PCAWG-7].	 As	 controls,	 we	

sampled	 two	sets	of	mutations	 in	 the	cancer	 samples	with	FMRE	mutations:	SNVs	

present	 in	 59	protein-coding	drivers	 predicted	 by	ActiveDriverWGS,	 and	 genome-

wide	SNVs.	We	conducted	custom	permutation	tests	with	100,000	sets	of	SNVs	that	

were	sampled	with	replacement	using	the	number	of	mutations	observed	in	FMREs	

and	 their	 distribution	 among	 cancer	 types.	We	 computed	 the	 enrichment	 of	 each	

FMRE-related	 mutation	 signature	 by	 counting	 the	 fraction	 of	 randomly	 sampled	

genome-wide	sets	of	SNVs	 that	exceeded	 the	number	of	SNVs	observed	 in	FMREs.	

Empirical	enrichment	p-values	were	derived	as	the	fraction	of	permutations	where	

sampled	 mutations	 of	 signature-specific	 SNVs	 exceeded	 the	 number	 of	 observed	
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signature-specific	 SNVs	 in	 FMREs.	 Mutation	 signatures	 with	 fewer	 than	 5%	 of	

genome-wide	permutations	exceeding	observed	FMRE	signatures	were	highlighted	

as	enriched.		

	

Germline	analysis	

Germline	variant	 frequency	of	FMREs	was	estimated	using	density	of	unique	SNVs	

and	indels	in	100	bp	windows	across	the	entire	PCAWG	cohort	of	cancer	patients.	As	

reference	we	used	the	protein-coding	drivers	identified	by	ActiveDriverWGS	in	the	

pan-cancer	cohort.	We	computed	germline	variant	density	within	genomic	elements	

and	estimated	the	upper	bound	of	expected	variation	 for	within-element	variation	

as	90th	 and	100th	percentiles	of	 values	observed	among	 coding	driver	predictions.	

FMREs	 that	 exceeded	 the	 100th	 percentile	 threshold	 were	 flagged	 for	 excess	

germline	 variation.	 We	 also	 computed	 germline	 variation	 density	 for	 frequently	

mutated	promoters,	UTRs,	enhancers	and	lncRNAs	discovered	by	ActiveDriverWGS	

in	the	pan-cancer	driver	analysis.		

	

Mutation	impact	on	gene	expression	

We	 used	 matching	 RNAseq	 gene	 expression	 data	 from	 PCAWG[PCAWG-3;	PCAWG-14]	 to	

estimate	 the	 impact	of	non-coding	mutations	on	gene	expression.	We	used	upper-

quartile	 normalization	 values	 of	 fragments	 per	 kilobase	 of	 transcript	 per	 million	

(FPKM-UQ)	 as	 gene	 expression	 measurements.	 Approximately	 50%	 of	 PCAWG	

tumors	with	WGS	data	had	corresponding	transcriptomic	data,	and	the	tumors	with	

no	available	transcriptomic	data	were	excluded	from	the	analysis.	Negative	binomial	

regression	 models	 similar	 to	 ActiveDriverWGS	 were	 used	 to	 determine	 whether	

mutations	in	FMREs	corresponded	to	significantly	lower	or	higher	gene	expression	

levels	 in	matching	 samples.	 The	model	 evaluated	 gene	 rounded	 RPKM-UQ	 values	

and	 accounted	 for	 cancer	 type	 and	 relative	 gene	 copy	 number	 as	 cofactors.	 The	

alternative	model	 tested	whether	mutated	 samples	 showed	 significantly	 different	

gene	 expression	 of	 gene	 of	 interest.	 In	 each	 statistical	 test,	 only	 samples	 with	

matching	mutation,	gene	expression	and	copy	number	data	were	included	and	other	

samples	were	excluded.	Further,	cancer	types	with	at	 least	 three	mutated	samples	
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were	included	and	others	were	excluded.	Cancer	types	with	fewer	mutated	samples	

were	also	removed	from	the	control	(non-mutated)	set.	Each	FMRE	was	tested	using	

pan-cancer	 mutations	 with	 cancer	 type	 as	 a	 nominal	 co-factor	 and	 relative	 copy	

number	as	a	numeric	cofactor.	Two	sets	of	genes	were	tested	for	every	FMRE:	genes	

or	their	promoters	directly	overlapping	with	an	FMRE,	and	genes	distally	associated	

with	an	FMRE	via	a	long-range	chromatin	interaction	of	gene	promoter.	Genes	with	

P<0.05	were	selected	as	significant	and	FDR	values	were	computed	across	all	tested	

pairs	and	reported	(FDR<0.15).		

	

Global	gene	expression	and	pathway	enrichment	analysis	

Global	analysis	of	gene	expression	in	samples	with	mutations	in	the	FMRE	upstream	

of	RCC1	was	conducted	with	the	same	statistical	approach	as	for	single	target	genes.	

We	 tested	 protein-coding	 genes	 that	 had	 at	 least	 one	 GO	 annotation	 and	 showed	

above-baseline	 gene	 expression	 in	 tested	 samples	 (mean	 RPKM-UQ	 transcript	

abundance	 values	 above	 one	 unit).	 Genes	 with	 FDR<0.05	 were	 selected	 as	

significant.	 Pathway	enrichment	 analysis	 of	 genes	 ranked	by	p-values	was	 carried	

out	using	the	g:Profiler67	R	package	with	the	following	settings:	ranked	input	gene	

list,	only	GO	biological	processes	and	Reactome	pathways	considered,	minimum	five	

and	 maximum	 1000	 genes	 per	 gene	 set,	 g:Profiler	 internal	 multiple	 testing	

correction	used	for	FDR	estimates,	minimum	three	genes	shared	with	gene	list	and	

gene	set,	and	electronic	gene	annotations	(IEA)	included.		

	

Mutation	vetting	

Mini-BAM	files	for	samples	with	a	variant	in	the	following	FMREs	were	downloaded	

from	GNOS:	chr1:28831933-28842995,	chr6:52859342-52861236,	chr6:27869931-

27871319	 and	 chr14:21081147-21082486.	 FMRE	 variants	 were	 manually	

examined	 in	 the	 IGV	 software	 v2.3.97.	 Variants	 that	were	missing	 or	were	 called	

within	palindromic	regions	were	marked	as	false	positives.	Variants	were	flagged	as	

low	confidence	if	they	occurred	on	one	strand	(forward	or	reverse),	had	fewer	than	

four	reads,	or	were	found	within	a	homopolymer	run.	Variants	were	highlighted,	but	

not	 flagged,	 if	 they	had	 four	supporting	reads,	only	one	supporting	read	on	one	of	
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the	strands,	in	a	low	coverage	region,	or	in	a	region	with	strand	bias.	Variants	found	

in	regions	with	strand	bias,	and	showed	strand	bias	in	their	supporting	reads	were	

highlighted,	but	not	flagged.	

	

ChIP-seq	data	of	primary	prostate	cancers	

We	 used	 a	 recent	 ChiP-seq	 dataset	 for	 the	 histone	 mark	 H3K27ac	 in	 19	 PCAWG	

prostate	cancer	samples48.	We	examined	the	dataset	to	find	overlaps	of	FMREs	and	

H3K27ac	peaks.	Global	overlap	of	FMREs	and	H3K27ac	peaks	was	determined	using	

the	permutation	strategy	and	the	two	types	of	control	regions	described	above.	To	

evaluate	 mutation	 impact	 on	 specific	 H3K27ac	 peaks	 within	 FMREs,	 the	 FMREs	

were	 extended	 by	 1Kb	 up	 and	 downstream,	 and	 rounded	 to	 the	 nearest	 100	 bp	

before	 intersecting	 with	 H3K27ac	 regions	 determined	 in	 ChiP-seq	 files.	 Patients	

with	 an	H3K27ac	 peak	 in	 the	 target	 region	were	 considered	 to	 have	 an	 enhancer	

mark	 in	 proximity	 to	 the	 FMRE.	 Peak	 scores	 were	 subsequently	 converted	 to	 z-

scores	and	plotted	as	boxplots.		
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