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Introduction 

The phytohormones auxin and cytokinin are crucial regulators in plant development, for example in 

embryogenesis, phyllotaxis, gravitropism and root and shoot formation (Reinhardt et al., 2003; 

Benková et al., 2003; Friml et al., 2003; Gordon et al., 2009; Marchant et al., 1999). Auxin controlled 

gene expression is transcriptionally regulated by AUXIN RESPONSE FACTORS (ARFs), which bind 

to short DNA sequences termed auxin responsive elements (AuxRes) in the promoter of target genes. 

At low auxin concentrations, the co-repressor TOPLESS represses auxin-regulated transcription by 

mediating the binding of AUXIN/ INDOLE-3-ACETIC ACID (Aux/IAA) proteins to ARFs. 

Perception of auxin by the TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX 

(TIR1/AFB) family proteins, subunits of an SCF E3-ligase protein complex, target the Aux/IAA 

proteins for degradation via the ubiquitin-proteasome pathway, thereby leading to the activation of the 

ARFs and hence auxin responsive gene expression (reviewed in Saini et al., 2013). Cytokinins are 

perceived by histidine kinase receptors (AHKs) which carry an extracellular CHASE domain for 

hormone sensing. Cytokinin perception leads to autophosphorylation of the receptor kinase domain 

and subsequent transfer of the phosphoryl group onto a histidine phosphotransfer-protein (AHP). This 

enables AHP allocation to the nucleus and relay of the phosphoryl group to type-B response regulators 

(type-B ARRs), which in turn regulate transcription of cytokinin responsive genes. Among their 

targets are type-A ARRs which negatively influence cytokinin signalling, thereby creating a negative 

feedback loop (reviewed in Bishopp et al., 2011). Phytohormone distributions in a tissue can be 

visualized by the expression of reporter genes under the control of known auxin- or cytokinin-

responsive elements, such as DR5 and DR5v2 for auxin signalling, and Two Component signalling 

Sensor (TCS) and TCSnew (TCSn) for cytokinin (Ulmasov et al., 1997; Liao et al., 2015; Zurcher et 

al., 2013). A more direct way to analyse the presence of auxin is monitoring the degradation of 

reporter proteins fused to the highly conserved SCF-TIR1 complex recognition domain (DII) of 

Aux/IAA proteins (Brunoud et al., 2012; Liao et al., 2015). In the Arabidopsis shoot apical meristem 

(SAM), these reporters uncovered auxin maxima in the primordia, and high levels of cytokinins in the 

center of the meristem and the primordia. In the root apical meristems (RAM), an auxin maximum is 

formed in the Quiescent Center (QC), in the columella initials and in differentiated columella cells, 

while cytokinin maxima are observed in the differentiated columella and the stele (Aida et al., 2004; 

Sabatini et al., 1999; Yang et al., 2017; Benková et al., 2003; Zurcher et al., 2013). Post-embryonic 

development of plant organs depends on the activity of meristems, and this specific phytohormone 

distribution was shown to be required for meristem patterning (Sabatini et al., 1999; Blilou et al., 

2005; Reinhardt et al., 2003; Stahl and Simon, 2005). At least for auxin, fine-tuned short-distance 

transport is essential to establish and maintain its distribution pattern. PINFORMED (PIN) proteins 

serve as auxin efflux carriers and establish a directional auxin flow to maintain the auxin maximum 

(Wang et al., 2009a; Miyashita et al., 2010; Xu et al., 2005; Blilou et al., 2005; Carraro et al., 2006; 
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Gallavotti et al., 2008; Reinhardt et al., 2003). Different PINs are expressed in specific, partially 

overlapping domains within the root meristem and polarly localize to the cell membrane, thereby 

exporting auxin only in one specific direction (Blilou et al., 2005; Carraro et al., 2006).  Among 

downstream targets of auxin signalling in Arabidopsis are the PLETHORA (PLT) genes, which are 

members of the AINTEGUMENTA-like (AIL) subclass of the APETALA2/ethylene-responsive 

element binding proteins (AP2/EREBP) family of transcription factors (Aida et al., 2004). AtPLT1 and 

AtPLT2 are redundantly required for the embryonic specification of the QC and for the maintenance of 

root stem cells in Arabidopsis (Aida et al., 2004). The AtPLTs are expressed in the stem cell niche 

forming a concentration gradient with a maximum in the QC and the distal stem cells (DSCs), 

therefore mirroring auxin distribution (Aida et al., 2004; Galinha et al., 2007; Mähönen et al., 2014). 

Auxin and cytokinin signalling are connected at multiple points: for example, auxin induces ARR 

expression (Müller and Sheen, 2008; Moubayidin et al., 2013), while ARR1 promotes expression of 

the Aux/IAA gene SHORT HYPOCOTYL2 (SHY2). Furthermore, cytokinin influences auxin transport 

by regulating the expression of auxin influx (LIKE AUXIN RESISTANT 2) and efflux carriers 

(PINs), causing a relocation of auxin (Dello Ioio et al., 2008; Ruzicka et al., 2009; Zhang et al., 2013). 

Homologues of PIN auxin efflux carriers, as well as auxin-responsive homologues of PLTs were also 

identified in monocots, indicating that the principles of auxin and cytokinin transport and signalling is 

conserved between monocots and dicots (Zhang et al., 2014; Li and Xue, 2011; Wang et al., 2009a; 

Xu et al., 2005; Carraro et al., 2006; Gallavotti et al., 2008; O’Connor et al., 2014). Even though 

barley (Hordeum vulgare) is the fourth most produced crop plant in the world (FAO statistics 2014; 

http://faostat.fao.org), highly salt tolerant in comparison to other cereal crops (Maas and Hoffman, 

1977) and therefore a valuable model plant in regard to abiotic stresses, only very few studies about 

auxin and cytokinin exist for barley (Tagliani et al., 1986; Zalewski et al., 2014, 2010; Pospíšilová et 

al., 2016). Initial studies indicate a connection between cytokinin signalling and drought stress 

resistance in barley, which so far has not been fully explored (Pospíšilová et al., 2016). In this study, 

we analysed cytokinin signalling and downstream targets of auxin and cytokinin in the barley shoot 

and root meristem, utilizing phytohormone treatment, RNA in situ hybridisations and transgenic 

fluorescent reporter lines. Application of the hormones to barley seedlings impairs root growth and 

meristem maintenance. The expression pattern of the cytokinin signalling reporter TCSn reveals 

cytokinin signalling in the stele proximal to the QC and in the differentiated root cap cells. The 

homologue of the auxin-responsive gene AtPLT1, HvPLT1, is expressed in a pattern similar to AtPLT1 

in Arabidopsis, in particular in and around the QC. Furthermore, the putative auxin transporter 

HvPIN1a is expressed and polarly localised in the root meristem, its expression is regulated by 

cytokinin and the intracellular localisation is affected by BFA, similar to Arabidopsis. With our study 

we provide the first fluorescent reporter lines for phytohormone transport, signalling or responses in 

barley which serve as valuable tools to analyse the role of auxin and cytokinin in barley development.  
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Material and Methods 

Plant growth 

To monitor root growth and expression of reporter genes in the root, seedlings were grown on square 

plates as described in (Kirschner et al., 2017). For all experiments either the cultivar (cv.) Morex or 

Golden Promise were used as indicated. SAMs were monitored in plants grown 8 DAG on agar plates 

(Waddington stage I, “transition apex”) or plants grown on soil under greenhouse conditions for 

around 3 weeks (Waddington stage II “double-ridge”) (Waddington et al., 1983). 

Cloning 

The HvpPLT1:HvPLT1-mVENUS construct was built by PCR amplification of a 1929 bp fragment 

upstream of the start codon of HvPLT1 (MLOC_76811.2 on morex_contig_73008/ 

HORVU2Hr1G112280.5 (Mayer et al., 2012; Mascher et al., 2017)) as the putative promoter region 

from Morex genomic DNA (gDNA) and cloned by restriction and ligation via a AscI site into a 

modified pMDC99 (Curtis and Grossniklaus, 2003). The whole HvPLT1 coding region without stop 

codon (3433 bp) was amplified from Morex gDNA and inserted downstream of the promoter in the 

pMDC99 vector by Gateway cloning (Invitrogen). A C-terminal mVENUS (Koushik et al., 2006) was 

integrated downstream of the gateway site by restriction and ligation via PacI and SpeI. The 

HvpPIN1:HvPIN1-mV construct was produced the same way, using 3453 bp upstream of the start 

codon of HvPIN1 (AK357068/MLOC_64867 on morex_contig_101983/ HORVU6Hr1G076110.1 

(Mayer et al., 2012; Mascher et al., 2017)) as putative promoter region and the whole HvPIN1 coding 

region including the stop codon. The mVENUS sequence was inserted by restriction and ligation via a 

SmaI restriction site into the sequence coding for the central hydrophilic region of the HvPIN1 protein, 

as described for a PIN1 reporter construct in Arabidopsis (Benková et al., 2003). The insertion of 

mVENUS is depicted in Supplementary figure 8B. For the TCSn:VENUS-H2B cytokinin reporter 

construct, the TCSn regulatory sequence (Zurcher et al., 2013) was obtained in the pDONR221 

gateway vector from Invitrogen and subsequently inserted by Gateway cloning into the modified 

pMDC99 vector. The auxin reporter construct DR5v2:VENUS-H2B was built by amplifying the 

DR5v2 promoter from the pGIIK/DR5v2::NLS-tdTomato plasmid (kind gift of Dolf Weijers, (Liao et 

al., 2015)) and inserted by Gateway cloning into the modified pMDC99 vector. The pMDC99 

modified for TCSn:VENUS-H2B and DR5v2:VENUS-H2B contained the gateway cassette, the coding 

sequence of VENUS (Nagai et al., 2002) and a T3A terminator, which were inserted by restriction and 

ligation with AscI and SacI from pAB114 (described in Bleckmann et al., 2010). Furthermore, it 

contains the coding sequence of Arabidopsis HISTONE H2B (AT5G22880) at the C terminus of the 

VENUS gene, inserted via restriction and ligation at a PacI restriction site. The DR5:ER-GFP contains 

the auxin-response promoter DR5 that consists of 9 inverted repeats of the 11 b-sequence 5′-

CCTTTTGTCTC-3′, a 46-bp CaMV35S minimal promoter element, and a tobacco mosaic leader 
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sequence as translational enhancer fused to endoplasmatic reticulum -targeted GFP (Benková et al., 

2003; Friml et al., 2002). The plasmid was a kind gift from the Benková lab.  

 

Barley transformation 

The barley cv. Golden Promise was used for transformation as described previously (Imani et al., 

2011), tested for hygromycin resistance by growth on medium containing hygromycin and via PCR to 

detect the hygromycin gene. For root expression analysis, the seeds of the plants recovered from the 

transformed scutella were used (T1) and again tested for the presence of the reporter construct by PCR 

with primers binding in the gene of interest and the downstream reporter gene.  

Preparation of the reporter line samples 

Clearing of the transgenic reporter lines was performed as described for pea root nodules with an 

altered fixation step (Warner et al., 2014). Root samples were fixed with 4 % para-formaldehyde in 

phosphate buffered saline (PBS) for 1 h with applied vacuum. Samples were incubated in the clearing 

solution for 1 week in darkness at 4 °C. The roots of plant lines with weak expression, or to be 

examined uncleared, were embedded in warm liquid 5 % (w/v) agarose in dH2O for stabilization and 

sectioned longitudinally in the center by hand with a razor blade. SAM preparation was carried out by 

removing all leaves from the SAMs and the expression was directly monitored without clearing.  

Cell wall and starch staining 

Modified pseudo-Schiff propidium iodide (mPS-PI) staining and microscopy of the stained samples 

was performed as described previously (Kirschner et al., 2017).  

Treatments 

The cytokinins 6-benzylaminopurine (6-BA) (Duchefa) and trans-zeatin (t-Z) (Sigma-Aldrich) were 

used, as well as the auxins NAA (Duchefa) and 2,4D (Duchefa). For phytohormone treatments of wild 

type plants, the hormones were added to the growth medium at the concentrations indicated in the 

results section. The mock control was treated with water. For phytohormone treatment of the 

TCSn:VENUS-H2B and HvpPIN1:HvPIN1-mVENUS and DR5v2:VENUS-H2B reporter lines, the 

phytohormones were added to PBS and the plates with 7 day-old seedlings were flooded with the 

hormone solution or pure PBS as mock control and incubated for 2 -3 h to allow phytohormone 

uptake. After removing the buffer, plates were placed back into the phytochamber at a 45 ° angle and 

examined 24 h later. Brefeldin-A (BFA) treatment of the HvpPIN1:HvPIN1-mVENUS reporter line 

was performed as described (Geldner et al., 2001). Roots were cut around 1 cm above the tip, which 

was then placed in PBS as mock control or PBS containing 50 µM BFA. Pictures of the outer cortex 

cell layers of the roots and the epidermis of the SAMs were taken at the time of treatment (0 h) and 2 h 

later.  
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RNA in situ hybridisations 

Probes for the HvPLT1 mRNA were prepared from genomic DNA of the barley cv. Morex from the 

HvPLT1 start to stop codon (3433 bp). The DNA was cloned into the pGGC000 entry vector of the 

GreenGate cloning system (Lampropoulos et al., 2013) and then amplified including the T7 and SP6 

promoter sites by PCR. RNA probes were produced as described (Hejátko et al., 2006). The RNA 

probes were hydrolysed by adding 50 µl carbonate buffer (0.08 M NaHCO3, 0.12 M Na2CO3) to 50 µl 

RNA probe and incubation at 60 °C for 58 min. On ice, 10 µl 10 % acetic acid, 12 µl sodium acetate 

and 312 µl EtOH were added, the RNA was precipitated and dissolved in RNase-free dH2O. RNA in 

situ hybridisations were performed on roots of plants 8 days after germination (DAG) as described 

previously (Kirschner et al., 2017). Polyvinyl alcohol was added to a final concentration of 10 % to the 

NBT/BCIP staining buffer. Permanent specimens were created by washing the slides in 50 % EtOH, 

70 % EtOH, 95 % EtOH and 100 % EtOH for 2 min each and for 10 s in xylol, and after drying, a few 

drops of Entellan (Merck) and a cover slip were added.  

Microscopy 

The transgenic reporter lines with mVENUS or VENUS fluorophores were examined with a 40x water 

objective with a numeric aperture (NA) of 1.20 using the Zeiss confocal laser scanning microscope 

(LSM) 780. Yellow fluorescence was excited using a 514 nm Argon laser and the emission was 

detected between 519 and 620 nm. The pinhole was set to 2,24 airy units. Transmitted light pictures 

were recorded with a transmitted light detector (T-PMT). Pictures were recorded with the tile scan 

function with 10 % overlap, a threshold of 0.70 and automatically stitched using the microscope 

software. RNA in situ hybridizations were examined using a plan-neofluar 20x objective with a NA of 

0.50 or a plan-neofluar 40x objective with a NA of 0.75 using the Zeiss Axioskop light microscope. 

Analysis 

Picture analyses were carried out using Fiji (Schindelin et al., 2012). For root length measurements, 

the mean root length of all roots from a single plant were measured. For meristem length 

measurements, the border between meristem and elongation zone was defined by the first cell in the 

outermost cortex cell layer that doubled in cell length compared to its distal neighbour and analysis 

was carried out qualitatively from direct observation (as described in Dello Ioio et al. 2007). For 

analysing the DSC layers the starch-free cells of three columns in the center of the root cap below the 

QC were counted and the mean for one column was calculated. Only roots with mPS-PI stained 

starch-containing cells were used for analysis. For information about creation of the phylogenetic trees 

see Supplementary figure 6 and Supplementary figure 8A. The transmembrane domains of the PIN 

proteins were predicted using the TMHMM method (Krogh et al., 2001). Plots and statistics were 

created in R (R Core Team, 2015). Significance was determined by a two-tailed Student's T-Test with 

the given p value. For image processing, Adobe Photoshop was used. Contrast and brightness were 
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adjusted in the mPS-PI sample pictures manually to increase the cell wall and starch visibility. When 

the fluorescence brightness was compared, the same changes were performed equally for all samples. 

The surface of the SAMs was extracted in MorphoGraphX (de Reuille et al., 2015).  
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Results  

Cytokinin inhibits root growth and root meristem maintenance 

The effects of auxin and cytokinin signalling can easily be studied by manipulation of the hormone 

levels in the plant, for instance by externally adding an excess of the hormone, or by inhibiting 

biosynthesis or signal perception. Reduction of cytokinin levels by overexpression of degradation 

enzymes leads to enhanced root growth and longer meristems in Arabidopsis (Werner et al., 2010), 

whereas application of cytokinin reduces the root and meristem length (Ruzicka et al., 2009; Dello 

Ioio et al., 2007). While the effect of a manipulation of the cytokinin signalling and biosynthesis 

pathway was already studied in barley roots on a whole-organ level, it has not yet been analysed on a 

cellular level (Zalewski et al., 2010; Pospíšilová et al., 2016). To test the effect of cytokinin, we used 

both trans-zeatin (t-Z), a naturally occurring isoprenoid-type cytokinin (Podlešáková et al., 2012), and 

the synthetic cytokinin 6-benzylaminopurine (6-BA), both of which were shown to affect root and 

meristem length upon application in Arabidopsis (Ruzicka et al., 2009; Dello Ioio et al., 2007). 6-BA 

had a negative effect on root length in both used concentrations (1 µM and 10 µM) measured 10 DAG, 

while t-Z did not affect root growth significantly (Figure 1A). Root longitudinal growth can primarily 

be attributed to cell divisions in the meristematic zone and cell elongation in the elongation zone. 

Interestingly, the effect on the root meristems was much stronger for both, 6-BA and t-Z, and resulted 

in a reduction in meristem size (Figure 1B, C). Both hormones seem to affect meristem size by 

changes in cell division and/or differentiation rate, since a reduced cell number was responsible for the 

difference in overall meristem size, rather than the mean length of the meristematic cells 

(Supplementary figure 1A). Furthermore, both cytokinins reduced the width of the root meristem 

(Supplementary figure 2B). In summary, cytokinin application causes a reduction in root growth in 

barley which is due to a reduced meristem size and thereby a lower production of new root cells for 

growth in length or diameter.  

 

The cytokinin signaling reporter TCSn is expressed in the stele and root cap and can be activated by 

cytokinin application 

Since cytokinin application had an effect on root length and meristem size, we aimed to reveal the 

distribution of the phytohormone in the root. Therefore, we transformed barley cv. Golden Promise 

plants with a construct carrying a fluorescent VENUS reporter gene driven by the TCSn promoter 

within the vector backbone of pMDC99 (Curtis and Grossniklaus, 2003). This promoter carries 

concatemeric binding motifs for type-B ARRs combined with a minimal promoter, and responds to 

cytokinin signalling in Arabidopsis and maize protoplasts (Zurcher et al., 2013). In mature barley root 

apical meristems (8 DAG), we observed expression of the cytokinin reporter TCSn:VENUS-H2B in the 

differentiated root cap and the stele (Figure 2A’), but not in the metaxylem (Figure 2A’, white arrow 

head), the QC or the surrounding initials (Figure 2A’, gray arrow head), resembling the expression 
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pattern of the TCSn promoter in Arabidopsis (Zurcher et al., 2013). 24 h treatment with 6-BA 

significantly increased TCSn:VENUS-H2B expression in the stele, while there was only a weaker 

response to t-Z (Figure 2B, C). Cytokinins activated TCSn expression also in the DSCs, the cortex and 

endodermis initials, the epidermis initials and in a layer of the QC adjacent to the root cap (Figure 2D). 

In control plants, expression in the DSCs, the QC or the surrounding initials could never be observed 

(Figure 2D). However, we could not observe expression of the TCSn:VENUS-H2B in the SAM of any 

of the transgenic lines (Supplementary figure 3).  

 

High auxin concentrations decrease root growth and negatively affect root meristem size  

External application of auxin affects the root architecture of plants in regard to root length, meristem 

size and structure (Martínez-de la Cruz et al., 2015; Ruzicka et al., 2009; Carraro et al., 2006). In 

barley, root growth was inhibited by all auxins tested (Tagliani et al., 1986). To study barley root and 

meristem growth in more detail, we used the synthetic auxin NAA and the auxin analogue 2,4D, 

which cannot be exported from cells via auxin efflux carriers (Delbarre et al., 1996). Low (10 nM) and 

high concentrations (1 µM and 10 µM) were used in comparison, as auxins are known to have 

opposite effects on meristem size at different concentrations (Ruzicka et al., 2009). Growing barley 

plants on medium containing either no phytohormone or the different auxins for 10 days revealed that 

neither root length nor root meristem length are affected by low concentrations (10 nM) of NAA or 

2,4D, but both are decreased at high auxin concentrations (1µM 2,4D, 1µM and 10µM NAA) (Figure 

3A, B, C). The reduction in meristem length went together with a reduction in meristematic cortex cell 

number (Supplementary figure 1B). Additionally, treatments with high concentrations (1 µM and 

10 µM) increased meristem width (Supplementary figure 2).  

In Arabidopsis, auxin application results in differentiation of the DSCs, indicated by their 

accumulation of starch granules (Ding and Friml, 2010). In barley, no significant difference in the 

number of DSC layers was detected after auxin application (Supplementary figure 4). 

The commonly used auxin signalling reporter DR5 and DR5v2 are not stably expressed in barley  

As auxin reporters, two widely used regulatory sequences are the DR5 and the DR5v2, the former 

consisting of 9 inverted repeats of the auxin responsive element TGTCTC (Ulmasov et al., 1997) and 

the latter of 9 repeats of the higher affinity ARF binding-site TGTCGG (Liao et al., 2015). Here, the 

presence of auxin in a cell is indirectly determined through the activation of ARFs that bind to the 

synthetic promoters in an auxin-dependent manner, activating expression of the reporter genes. In 

Arabidopsis, the responsiveness of these reporters to auxin was confirmed by auxin application to the 

roots, leading to an enhanced expression of the reporter gene and a broadening of the expression 

domain (Liao et al., 2015). The same reporters were successfully used in rice and maize to display the 

spatial domain of auxin signalling (Yang et al., 2017; Gallavotti et al., 2008), therefore, the same 

regulatory sequences might be usable to monitor auxin signalling in barley. Surprisingly, no 
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expression of the DR5:GFP reporter could be detected in transgenic lines with this construct, and 

expression of the DR5v2:VENUS-H2B reporter lines was very weak and inconsistent between different 

roots and plant lines (Supplementary figure 5A, B). Furthermore, no increase of DR5v2:VENUS-H2B 

expression was detected even upon high auxin concentrations (10 µM 2,4D) (Supplementary figure 

5B’). Thus, the DR5 and DR5v2 reporters are not suitable to report on auxin signalling in barley.  

 

Expression pattern of HvPLT1 

We therefore identified further genes known to be involved in auxin signalling, among them the PLT 

transcription factors (Aida et al., 2004; Galinha et al., 2007; Li and Xue, 2011). In Arabidopsis, the 

expression of the AtPLTs is dependent on auxin signaling, and the expression of AtPLT1 and AtPLT2 

spatially reflects the auxin distribution in the root tip, observed by the expression of the DR5 auxin 

reporters (Mähönen et al., 2014; Galinha et al., 2007; Aida et al., 2004). We searched the barley 

proteome (Mayer et al., 2012) and created an unrooted tree of PLT family proteins from barley, rice, 

Arabidopsis and maize (Supplementary figure 6). The rice OsPLT1 protein grouped together with 

AtPLT1-3 and AtBBM (AtPLT4) and therefore might have a similar function in the stem cell niche 

maintenance (Li and Xue, 2011). Consequently, we focused on MLOC_76811 as the closest 

homologue of OsPLT1 (Supplementary figure 6), which we named HvPLT1 accordingly. HvPLT1 

consists of two repeats of the conserved AP2 DNA binding domain and a conserved linker region 

(Figure 4A, http://pgsb.helmholtz-muenchen.de/plant/barley/) similar to AtPLT1 and AtPLT2 from 

Arabidopsis. We created transgenic reporter lines that expressed HvPLT1 fused to mVENUS under the 

control of 1929 bp of putative HvPLT1 promoter sequences. The reporter lines showed expression of 

HvPLT1 with the maximum in the QC and the surrounding cells, which gradually decreased towards 

the root cap, the proximal meristems and the outer root layers (Figure 4B, B’). Non-transgenic control 

plants did not show any expression (Supplementary figure 8A, A’). RNA in situ hybridisations with a 

probe for HvPLT1 confirmed this expression pattern (Figure 4C).  

 

Identification of a PIN1 homologue in barley 

The HvPLT1 expression pattern suggests the presence of an auxin maximum in the QC and the root 

stem cell niche also in barley. A major source of auxin are young aerial tissues, from where the 

hormone is transported towards the root via the phloem (Saini et al., 2013) and subsequent cell-to-cell 

transport is facilitated by PIN proteins (Wang et al., 2009a; Carraro et al., 2006; Blilou et al., 2005). A 

search in the barley protein database for homologues of AtPINs discovered 13 putative HvPIN protein 

sequences that we used to build a phylogenetic tree and analyze their topology (Mayer et al., 2012) 

(Supplementary figure 9A). Based on the structure of the phylogenetic tree, we identified PIN1 

(MLOC_64867.2, MLOC_12686.1), PIN2 (AK366549), PIN5 (MLOC_60446.1, MLOC_71135.1), 

PIN8 (MLOC_61956.2), PIN9 (MLOC_38112.1, MLOC_53867.1), PIN3 (MLOC_6128.3, 
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MLOC_38023.1) and PIN10 (MLOC_38022.1, MLOC_60432.1 ) homologues and named them 

accordingly (Supplementary figure 9A). Like maize and rice, also barley does not encode PIN4 and 

PIN7 homologues (Wang et al., 2009a; Forestan et al., 2012). For maize it was hypothesized that in 

the root apex, the three ZmPIN1s could take over the roles of PIN3, PIN4 and PIN7 efflux carriers 

(Forestan et al., 2012). The same distribution of functions could hold true for barley. Additionally, the 

barley genome encodes one member of the SISTER OF PIN1 (SoPIN1) clade (MLOC_293.2, 

Supplementary figure 9A), which is conserved in flowering plants, but lost in Arabidopsis (O’Connor 

et al., 2014). A transmembrane helices prediction analysis revealed that the HvPIN1 and HvPIN2 

carry 4 - 5 transmembrane domains that group around a central hydrophilic region, similar to AtPIN1 

(Supplementary figure 9B). HvPIN5, HvPIN8 and HvPIN9 in contrast exhibit only a short central 

hydrophilic region (Supplementary figure 9). HvPIN3s and HvPIN10s did not show any typical 

structure of PIN proteins, and either lack a large hydrophilic region (HvPIN10a, HvPIN10b and 

HvPIN3b) or their hydrophilic region is not central (HvPIN3a) (Supplementary figure 9B). For the 

subsequent work on PIN protein localization in barley, we focussed on PIN1, as this is the best studied 

PIN protein in other model plants. Both in maize and rice, the two maize PIN1-like proteins and 

OsPIN1 show a similar transmembrane helices prediction profile, with two hydrophobic domains at 

the N and C termini and a central hydrophilic region (Xu et al., 2005; Wang et al., 2009a; Carraro et 

al., 2006). From the HvPINs that grouped together with the other PIN1s, HvPIN1a is the one with the 

transmembrane helices prediction profile most similar to AtPIN1 (Supplementary figure 9). 

Expression pattern and polar localization of HvPIN1a 

In the Arabidopsis root, PIN1 is expressed in the root meristem, in particular in the vasculature and 

endodermis, and weaker in the epidermis and cortex (Blilou et al., 2005). PIN1 homologues of maize 

and rice are expressed in the root meristem, and also in the root cap (Forestan et al., 2012; Wang et al., 

2009b). We generated transgenic barley reporter lines using the genomic HvPIN1a sequence under 

control of the putative endogenous HvPIN1a regulatory sequences, consisting of 3453 bp upstream of 

the start codon. The sequence of the fluorophore mVENUS was inserted into the part of the HvPIN1a 

gene sequence that encodes the intracellular hydrophilic region of the protein, as it was described for 

the AtPIN1-GFP reporter (Benková et al., 2003) (Supplementary figure 9B). Strong expression was 

detected in the whole root meristem, except for the area of the presumed QC, where expression was 

weaker compared to surrounding tissues (Figure 5A’, D’). High expression was observed in the stele, 

the endodermis, the cortex and DSCs, and the differentiated root cap (Figure 5D’). In the two analysed 

stages of the SAM, HvPIN1a was expressed throughout the whole meristem (Figure 6A, C). The 

PIN1s from Arabidopsis, maize and rice were shown to be mostly polarly localised to the plasma 

membranes at defined sides of the cells. In barley, a basal plasma membrane localisation was detected 

in the stele, endodermis and the inner cortex cell layers (gray arrow heads in Figure 5B, D’), but apical 

localisation was observed in the outermost cortex cell layer and the lateral root cap (white arrow head 

in Figure 5B, D’). In the central region of the root cap, polar localisation was not detectable, and 
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HvPIN1a appeared evenly distributed at the plasma membrane (Figure 5D’). In the SAM, HvPIN1a 

was expressed everywhere, with expression peaks at the tips of the developing primordia (Figure 6). 

Here, we did not observe any polar localization of HvPIN1a (Figure 6).  

 

HvPIN1a-mVENUS accumulates in vesicles upon Brefeldin-A (BFA) treatment 

PINs are continuously recycled from the cell membrane to endosomes. Trafficking of basally localised 

PINs in Arabidopsis requires the GDP/GTP exchange factor for small G proteins of the ADP-

ribosylation factor class (ARF-GEFs), which contain Sec7 domains (Kleine-Vehn et al., 2009; 

Steinmann et al., 1999; Geldner et al., 2003). The inhibitor of protein secretion BFA stabilizes an 

intermediate of the reaction of the ARF-GEF Sec7 domain with GDP, thereby blocking the cycle of 

activation of the ARF-GEFs and the recycling pathways (Peyroche et al., 1999). Therefore, BFA can 

be used to reveal the involvement of BFA-sensitive ARF-GEFs in the PIN recycling pathways. 

Treatment with BFA induces intracellular accumulation of AtPIN1 by blocking the exocytosis of 

PIN1, which normally cycles rapidly between plasma membrane and endosomal compartments 

(Geldner et al., 2001, 2003). To test if the PIN1 recycling mechanism is conserved in barley, we 

treated HvPIN1a-mVENUS expressing roots and SAMs with 50 µM BFA and monitored the 

HvPIN1a-mVENUS localisation after 2 h in the outer cortex cell file and the epidermis in root and 

shoot meristem, respectively. While HvPIN1a-mVENUS was exclusively localised at the apical cell 

membranes before the BFA treatment and upon mock controls, the formation of vesicles within the 

cells could be observed after 2 h of BFA treatment (gray arrow heads in Figure 7A). This indicates the 

existence of a conserved mechanism of PIN1 recycling between endosomal compartments and the 

plasma membrane in barley.  

HvPIN1a expression is regulated by cytokinin 

As the recycling of the HvPIN1a protein is similarly affected by BFA as it is in Arabidopsis, we 

examined if gene expression of HvPIN1a is regulated by the same factors as in Arabidopsis. Dello Ioio 

and colleagues showed that AtPIN1 expression is downregulated by cytokinin (Dello Ioio et al., 2008; 

Ruzicka et al., 2009). In barley, treatment with the cytokinin 6-BA for 24 h reduced HvPIN1a-

mVENUS expression as well (Figure 7B, C). The downregulation was mostly visible in the stele, the 

place of cytokinin signaling (Figure 7B). However, if this downregulation occurs at the level of 

transcription like in Arabidopsis, or on protein level, we cannot distinguish here (Dello Ioio et al., 

2008).  
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Discussion 

Creation and validation of auxin and cytokinin reporter lines in barley 

With this study, we started to address the roles of auxin and cytokinin in barley root and shoot 

meristem development at cellular resolution. We found that the DR5 and DR5v2 regulatory elements 

that are successfully used in many other plant species to determine auxin signalling were not 

consistently expressed in our transgenic barley lines (Liao et al., 2015; Yang et al., 2017; Forestan et 

al., 2012) (Supplementary figure 5). In Arabidopsis, the two auxin reporters DR5 and DR5v2 showed 

differences in their expression patterns, indicating that ARFs have different binding affinity towards 

the respective auxin response elements TGTCTC (DR5) and TGTCGG (DR5v2) (Liao et al., 2015). 

Moreover, it was shown that the spacing between the auxin responsive elements, their flanking 

sequences and the number of repeats are important for the reactivity of the reporter to auxin (Ulmasov 

et al., 1997). We have to conclude from the data presented here that in barley, different auxin 

responsive elements and/or a different composition of the reporters are necessary to create 

transcriptional reporter lines for auxin signalling. We could, however, successfully monitor the 

expression of auxin-related genes. We found that the expression pattern of HvPLT1 in root meristems 

is similar to that of AtPLT1 in Arabidopsis and the root-specific rice PLTs, with an expression 

maximum around the QC (Galinha et al., 2007; Li and Xue, 2011), both on RNA and protein level 

(Figure 4). This suggests that the expression of PLTs is conserved between these plant species, 

indicating that the well described auxin- and PLT-mediated cell specification mechanism in the root 

meristem is conserved between Arabidopsis and barley (Aida et al., 2004; Galinha et al., 2007; 

Mähönen et al., 2014). The expression of PIN1 in the root is conserved between species, but 

expression in individual tissues differs (Figure 5A’) (Wang et al., 2009a; Blilou et al., 2005; Forestan 

et al., 2012). Furthermore, the intracellular localisation of PINs differs depending on their domain 

topology. Křeček and colleagues sorted the eight Arabidopsis PINs into two subfamilies, namely the 

“long” and the “short” PINs according to the length of their hydrophilic region (Křeček et al., 2009). 

The “long” PIN subfamily is characterised by its central hydrophilic loop, separating two hydrophilic 

domains, each consisting of five trans-membrane regions. They are primarily localised to the plasma 

membrane in the cell (Benková et al., 2003; Blilou et al., 2005; Friml et al., 2003). The "short" PINs, 

however, possess a short central hydrophilic region and localise to internal cell membranes (Ganguly 

et al., 2010). Accordingly, HvPIN1a localised to the plasma membrane (Figure 5B, D’). We 

furthermore discovered PINs that cannot be assigned as "long" or "short" PIN because their 

transmembrane topology does not follow either structure (Supplementary figure 9B). This divergence 

in transmembrane topology has not been reported for PINs in Arabidopsis, rice and maize and 

therefore, the localisation and function of these PINs should be subjected to a closer examination. The 

expression pattern and polar localization of HvPIN1a indicate that also in barley, an auxin flow is 

created that is directed towards the QC, the stem cell niche and the root cap and also a flow from the 

stem cell niche to the proximal meristem via the outer cortex cell layers (Figure 5C), as it was 
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proposed for the Arabidopsis PINs (Blilou et al., 2005). In the SAM, AtPIN1 is expressed in the 

epidermis and in subepidermal cells, and only below the primordia, the expression becomes restricted 

to the presumed provascular tissues (Heisler et al., 2005). In maize, ZmPIN1a is also predominantly 

expressed in the epidermis of axillary meristems and the inflorescence meristem, but also in 

underlying tissues (Gallavotti et al., 2008). Like in the root, HvPIN1a is more broadly expressed than 

PIN1 in Arabidopsis, not only in the epidermis but evenly in all tissue layers of the SAM (Figure 6). 

Like in the root, it is possible that close PIN1 homologues take over the role of a tissue-layer specific 

auxin transporter in barley shoots (Supplementary figure 9A).  

Genetic analysis and BFA-treatment experiments revealed that in Arabidopsis, the basal localisation of 

PINs is dependent on the ARF-GEF GNOM (Geldner et al., 2003). The kinases D6 PROTEIN 

KINASE and PINOID regulate PIN localization by phosphorylating the PINs at the plasma membrane, 

making them less affine to the GNOM-dependent basal recycling pathway. The phosphorylated PIN 

proteins are then recruited to the apical GNOM-independent trafficking pathways (Kleine-Vehn et al., 

2009; Steinmann et al., 1999; Geldner et al., 2003). For the apically localised AtPIN2 in the 

Arabidopsis epidermis, however, it was shown that its vacuolar trafficking is independent of GNOM 

and involves an additional, BFA-sensitive ARF-GEF (Kleine-Vehn et al., 2008). In the outer cortex 

cell layer, where HvPIN1a is localised apically, and in the SAM epidermis, where we could not 

observe a polar localisation, BFA caused the accumulation of HvPIN1a in vesicles (Figure 7A), 

indicating that in barley, too, BFA-sensitive components are involved in PIN1 trafficking. Besides 

intracellular localisation of the PIN1 protein, also the expression of PIN1 is subject to regulation by 

other factors. Dello Ioio and colleagues showed that in Arabidopsis, AtPIN1 expression is 

downregulated by cytokinin (Dello Ioio et al., 2008). In rice, the PIN1 homologues OsPIN1a, 

OsPIN1b and OsPIN1c, however, are not transcriptionally regulated by cytokinin (Wang et al., 

2009b). In barley, HvPIN1a expression is downregulated by cytokinin application (Figure 7B, C). 

Thus, HvPIN1a expression is similarly regulated in barley as it is in Arabidopsis, but different from 

rice, where OsPIN1 expression is cytokinin independent (Dello Ioio et al., 2008; Wang et al., 2009b).  

In contrast to the auxin reporters DR5 and DR5v2, the cytokinin signaling sensor TCSn was functional 

in barley, since its expression pattern is conserved between Arabidopsis and barley, and, more 

importantly, the expression pattern changes upon cytokinin application (Figure 2) (Zurcher et al., 

2013). However, although the TCSn reporter confers expression in the shoot meristem in Arabidopsis 

(Zurcher et al., 2013), we could not detect any expression of TCSn:VENUS-H2B in barley SAMs. 

Since the TCSn reporter consists of concatemeric repeats of the DNA-binding motif of the Arabidopsis 

type-B ARR (Zurcher et al., 2013), it is possible that in barley, only some tissues express proteins that 

induce the TCSn regulatory sequence, so that despite ongoing cytokinin signalling in the cell, the 

reporter gene is not activated.  
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Role of auxin and cytokinin for barley root meristems 

Previous studies on hormone activities in barley had addressed how manipulation of endogenous 

cytokinin levels and auxin affects root growth, at the whole organ level (Zalewski et al., 2010; 

Pospíšilová et al., 2016; Tagliani et al., 1986). We have extended these analyses to the meristem and 

cellular level. The reduction in root growth as well as a reduction in meristem size upon 6-BA 

application in barley is similar to that observed for Arabidopsis (Figure 1) (Ruzicka et al., 2009; Dello 

Ioio et al., 2007). In Arabidopsis, components of cytokinin signalling in the root stem cell niche 

control the differentiation at the transition zone (Dello Ioio et al., 2007; Moubayidin et al., 2013). 

Expression of the cytokinin reporter TCSn:VENUS-H2B in barley was enhanced in the stem cell niche 

upon cytokinin treatment, indicating that the reduction of meristem size upon cytokinin treatment 

might also depend on enhanced cytokinin signalling in the QC, as observed for Arabidopsis 

(Moubayidin et al., 2013). Interestingly, all effects on root growth and root meristem size were less 

pronounced upon treatment with the cytokinin t-Z compared to 6-BA. In Arabidopsis, CYTOKININ 

OXIDASES/DEHYDROGENASES (AtCKXs), which are involved in the degradation of cytokinins, 

preferentially cleave isoprenoid cytokinins including t-Z, but not 6-BA; similarly, CKX1 from maize 

predominately cleaves free cytokinin bases including t-Z (Galuszka et al., 2007; Mrízová et al., 2013). 

In barley, thirteen putative members of the HvCKX family were identified (Zalewski et al., 2014). 

Their presence could lead to an enhanced degradation of the externally added t-Z, thereby leading to a 

reduced influence on root growth and meristem maintenance in comparison to 6-BA.  

Besides cytokinin, we analysed the influence of the synthetic auxin NAA and the non-transportable 

synthetic auxin analogue 2,4D on barley root growth. In contrast to studies in Arabidopsis where low 

concentrations of auxins were shown to increase the root growth rate (Evans et al., 1994; Müssig et al., 

2003), we observed no enhancement of root growth rates upon applications of low concentrations of 

NAA and 2,4D (10 nM) in barley (B). Instead, we observed a reduction in meristem size upon 

treatment with high concentrations of auxin, both in regard to cell number and meristem length (Figure 

3, Supplementary figure 1). Besides the effect of auxin application on longitudinal root growth and 

meristem size in Arabidopsis, the phytohormone also influences the DSCs that give rise to the 

columella cells. Auxin application leads to a differentiation of these stem cells, marked by 

accumulation of starch granules (Ding and Friml, 2010). In barley, however, we could not observe any 

starch granule accumulations in additional cell files (Supplementary figure 4B). Previously, we have 

published similar observations for the application of a CLE peptide. CLE peptides were shown to 

cause both a differentiation of the proximal root meristem and the DSCs in Arabidopsis. Application 

of the CLE peptide in barley, however, did only affect the proximal root meristem but not the DSC 

differentiation (Kirschner et al., 2017; Stahl et al., 2009). This indicates that DSC maintenance, in 

contrast to root meristem maintenance, is regulated differently in barley than in Arabidopsis.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


In summary, we have shown here important similiarities and differences in root meristem development 

and the role of phytohormones between barley, other crop species and the model organism 

Arabidopsis. We have also characterised a first set of fluorescent reporter lines for barley at cellular 

resolution, which will be useful for further in-depth studies of the poorly understood development of 

one of the major crop plants worldwide. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


References  

Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y., 
Amasino, R., and Scheres, B. (2004). The PLETHORA Genes Mediate Patterning of the 
Arabidopsis Root Stem Cell Niche. Cell 119: 109–120. 

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, 
J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ 
Formation. Cell 115: 591–602. 

Bishopp, A., Benková, E., and Helariutta, Y. (2011). Sending mixed messages: auxin-cytokinin 
crosstalk in roots. Curr. Opin. Plant Biol. 14: 10–6. 

Bleckmann, A., Weidtkamp-Peters, S., Seidel, C.A.M., and Simon, R. (2010). Stem Cell Signaling 
in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant Physiol. 152: 
166–76. 

Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., 
Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth 
and patterning in Arabidopsis roots. Nature 433: 39–44. 

Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., 
Kepinski, S., Traas, J., Bennett, M.J., and Vernoux, T. (2012). A novel sensor to map auxin 
response and distribution at high spatio-temporal resolution. Nature 482: 103–106. 

Carraro, N., Forestan, C., Canova, S., Traas, J., and Varotto, S. (2006). ZmPIN1a and ZmPIN1b 
Encode Two Novel Putative Candidates for Polar Auxin Transport and Plant Architecture 
Determination of Maize. Plant Physiol. 142: 254–64. 

Curtis, M.D. and Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput 
Functional Analysis of Genes in Planta. Plant Physiol. 133: 462–469. 

Delbarre, A., Muller, P., Imhoff, V., and Guern, J. (1996). Comparison of mechanisms controlling 
uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and 
indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532–541. 

Ding, Z. and Friml, J. (2010). Auxin regulates distal stem cell differentiation in Arabidopsis roots. 
Proc. Natl. Acad. Sci. U. S. A. 107: 12046–12051. 

Evans, M.L., Ishikawa, H., and Estelle, M.A. (1994). Responses of Arabidopsis roots to auxin 
studied with high temporal resolution: Comparison of wild type and auxin-response mutants. 
Planta 194: 215–222. 

Forestan, C., Farinati, S., and Varotto, S. (2012). The Maize PIN Gene Family of Auxin 
Transporters. Front. Plant Sci. 3: 1–23. 

Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, 
G., Scheres, B., Jürgens, G., and Palme, K. (2002). AtPIN4 Mediates Sink-Driven Auxin 
Gradients and Root Patterning in Arabidopsis. Cell 108: 661–673. 

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and 
Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of 
Arabidopsis. Nature 426: 147–53. 

Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., and Scheres, B. 
(2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root 
development. Nature 449: 1053–7. 

Gallavotti, A., Yang, Y., Schmidt, R.J., and Jackson, D. (2008). The Relationship between Auxin 
Transport and Maize Branching. Plant Physiol 147: 1913–1923. 

Galuszka, P., Popelková, H., Werner, T., Frébortová, J., Pospíšilová, H., Mik, V., Köllmer, I., 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


Schmülling, T., and Frébort, I. (2007). Biochemical Characterization of Cytokinin 
Oxidases/Dehydrogenases from Arabidopsis thaliana Expressed in Nicotiana tabacum L. J. Plant 
Growth Regul. 26: 255–267. 

Ganguly, A., Lee, S.H., Cho, M., Lee, O.R., Yoo, H., and Cho, H.-T. (2010). Differential Auxin-
Transporting Activities of PIN-FORMED Proteins in Arabidopsis Root Hair Cells. PLANT 
Physiol. 153: 1046–1061. 

Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., 
Ueda, T., Nakano, A., and Jürgens, G. (2003). The Arabidopsis GNOM ARF-GEF Mediates 
Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. Cell 112: 219–
230. 

Geldner, N., Friml, J., Stierhof, Y.D., Jürgens, G., and Palme, K. (2001). Auxin transport 
inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428. 

Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M. (2009). Multiple feedback 
loops through cytokinin signaling control stem cell number within the Arabidopsis shoot 
meristem. Proc. Natl. Acad. Sci. U. S. A. 106: 16529–34. 

Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J.A., and Meyerowitz, E.M. 
(2005). Patterns of auxin transport and gene expression during primordium development revealed 
by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15: 1899–1911. 

Hejátko, J., Blilou, I., Brewer, P.B., Friml, J., Scheres, B., and Benková, E. (2006). In situ 
hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nat. Protoc. 
1: 1939–1946. 

Imani, J., Li, L., Schäfer, P., and Kogel, K.-H. (2011). STARTS - A stable root transformation 
system for rapid functional analyses of proteins of the monocot model plant barley. Plant J. 67: 
726–735. 

Dello Ioio, R., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, 
P., and Sabatini, S. (2007). Cytokinins determine Arabidopsis root-meristem size by controlling 
cell differentiation. Curr. Biol. 17: 678–682. 

Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, 
T., Costantino, P., and Sabatini, S. (2008). A Genetic Framework for the Control of Cell 
Division and Differentiation in the Root Meristem. Science (80-. ). 322: 1380–1384. 

Kirschner, G.K., Stahl, Y., Von Korff, M., and Simon, R. (2017). Unique and Conserved Features 
of the Barley Root Meristem. Front. Plant Sci. 8. 

Kleine-Vehn, J., Huang, F., Naramoto, S., Zhang, J., Michniewicz, M., Offringa, R., and Friml, 
J. (2009). PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated 
Recruitment into GNOM-Independent Trafficking in Arabidopsis. Plant Cell 21: 3839–3849. 

Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., and Friml, J. 
(2008). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar 
targeting. Proc. Natl. Acad. Sci. U. S. A. 105: 17812–17817. 

Koushik, S. V, Chen, H., Thaler, C., Puhl, H.L., and Vogel, S.S. (2006). Cerulean, Venus, and 
VenusY67C FRET Reference Standards. Biophys. J. 91: L99–L101. 

Křeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., and Zažímalová, E. (2009). 
The PIN-FORMED ( PIN ) protein family of auxin transporters. Genome Biol. 10: 1–11. 

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.. (2001). Predicting transmembrane 
protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 
305: 567–580. 

Lampropoulos, A., Sutikovic, Z., Wenzl, C., Maegele, I., Lohmann, J.U., and Forner, J. (2013). 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


GreenGate - A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. PLoS One 
8: e83043. 

Li, P. and Xue, H. (2011). Structural characterization and expression pattern analysis of the rice PLT 
gene family. ActaBiochim Biophys Sin 43: 688–697. 

Liao, C., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., and Weijers, D. (2015). Reporters for 
sensitive and quantitative measurement of auxin response. Nat. Methods 12: 207–210. 

Maas, E.V. and Hoffman, G.J. (1977). Crop salt tolerance - current assessment. J. Irrig. Drain. Div. 
103: 115–134. 

Mähönen, A.P., Tusscher, K. ten, Siligato, R., Smetana, O., Díaz-Triviño, S., Salojärvi, J., 
Wachsman, G., Prasad, K., Heidstra, R., and Scheres, B. (2014). PLETHORA gradient 
formation mechanism separates auxin responses. Nature 515: 125–129. 

Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C., and 
Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin 
uptake within root apical tissues. EMBO J. 18: 2066–73. 

Martínez-de la Cruz, E., García-Ramírez, E., Vázquez-Ramos, J.M., Reyes de la Cruz, H., and 
López-Bucio, J. (2015). Auxins differentially regulate root system architecture and cell cycle 
protein levels in maize seedlings. J. Plant Physiol. 176: 147–156. 

Martinez, C.C., Koenig, D., Chitwood, D.H., and Sinha, N.R. (2016). A sister of PIN1 gene in 
tomato (Solanum lycopersicum) defines leaf and flower organ initiation patterns by maintaining 
epidermal auxin flux. Dev. Biol. 419: 85–98. 

Mascher, M. et al. (2017). A chromosome conformation capture ordered sequence of the barley 
genome. Nature 544: 427–433. 

Mayer, K.F.X. et al. (2012). A physical, genetic and functional sequence assembly of the barley 
genome. Nature 491: 711–716. 

Miyashita, Y., Takasugi, T., and Ito, Y. (2010). Identification and expression analysis of PIN genes 
in rice. Plant Sci. 178: 424–428. 

Moubayidin, L. et al. (2013). Spatial coordination between stem cell activity and cell differentiation 
in the root meristem. Dev. Cell 26: 405–15. 

Mrízová, K., Jiskrová, E., Vyroubalová, S., Novák, O., Ohnoutková, L., Pospíšilová, H., Frébort, 
I., Harwood, W. a, and Galuszka, P. (2013). Overexpression of Cytokinin Dehydrogenase 
Genes in Barley (Hordeum vulgare cv. Golden Promise) Fundamentally Affects Morphology and 
Fertility. PLoS One 8: e79029. 

Müller, B. and Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification 
during early embryogenesis. Nature 453: 1094–7. 

Müssig, C., Shin, G.-H., and Altmann, T. (2003). Brassinosteroids promote root growth in 
Arabidopsis. Plant Physiol. 133: 1261–1271. 

Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002). A variant 
of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. 
Nat. Biotechnol. 20: 87–90. 

O’Connor, D.L., Runions, A., Sluis, A., Bragg, J., Vogel, J.P., Prusinkiewicz, P., and Hake, S. 
(2014). A Division in PIN-Mediated Auxin Patterning during Organ Initiation in Grasses. PLoS 
Comput. Biol. 10: 21–24. 

Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., and Jackson, C.L. (1999). 
Brefeldin A Acts to Stabilize an Abortive ARF–GDP–Sec7 Domain Protein Complex. Mol. Cell 
3: 275–285. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


Podlešáková, K., Zalabák, D., Čudejková, M., Plíhal, O., Szüčová, L., Doležal, K., Spíchal, L., 
Strnad, M., and Galuszka, P. (2012). Novel Cytokinin Derivatives Do Not Show Negative 
Effects on Root Growth and Proliferation in Submicromolar Range. PLoS One 7: e39293. 

Pospíšilová, H. et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene 
shows greater tolerance to drought stress. N. Biotechnol. 33: 692–705. 

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. 

Reinhardt, D., Pesce, E.-R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., 
Friml, J., and Kuhlemeier, C. (2003). Regulation of phyllotaxis by polar auxin transport. 
Nature 426: 255–260. 

de Reuille, P.B. et al. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. Elife 
4: 1–20. 

Ruzicka, K., Simásková, M., Duclercq, J., Petrásek, J., Zazímalová, E., Simon, S., Friml, J., Van 
Montagu, M.C.E., and Benková, E. (2009). Cytokinin regulates root meristem activity via 
modulation of the polar auxin transport. Proc. Natl. Acad. Sci. U. S. A. 106: 4284–9. 

Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, 
O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An Auxin-Dependent Distal Organizer 
of Pattern and Polarity in the Arabidopsis Root. Cell 99: 463–72. 

Saini, S., Sharma, I., Kaur, N., and Pati, P.K. (2013). Auxin: A master regulator in plant root 
development. Plant Cell Rep. 32: 741–757. 

Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 
9: 676–682. 

Stahl, Y. and Simon, R. (2005). Plant stem cell niches. Int. J. Dev. Biol. 49: 479–89. 

Stahl, Y., Wink, R.H., Ingram, G.C., and Simon, R. (2009). A Signaling Module Controlling the 
Stem Cell Niche in Arabidopsis Root Meristems. Curr. Biol. 19: 909–914. 

Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., 
Palme, K., and Jürgens, G. (1999). Coordinated Polar Localization of Auxin Efflux Carrier 
PIN1 by GNOM ARF GEF. Science (80-. ). 286: 316–18. 

Tagliani, L., Nissen, S., and Blake, T.K. (1986). Comparison of Growth, Exogenous Auxin 
Sensitivity, and Endogenous Indole-3-Acetic Acid Content in Roots of Hordeum vulgare L. and 
an Agravitropic Mutant. Biochem. Genet. 24: 839–848. 

Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997). Aux/IAA Proteins Repress 
Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response 
Elements. Plant Cell 9: 1963–1971. 

Waddington, S.R., Cartwright, P.M., and Wall, P.C. (1983). A quantitative scale of spike initial 
and pistil development in barley and wheat. Ann. Bot. 51: 119–130. 

Wang, J.-R., Hu, H., Wang, G.-H., Li, J., Chen, J.-Y., and Wu, P. (2009a). Expression of PIN 
Genes in Rice (Oryza sativa L.): Tissue Specificity and Regulation by Hormones. Mol. Plant 2: 
823–831. 

Wang, J.R., Hu, H., Wang, G.H., Li, J., Chen, J.Y., and Wu, P. (2009b). Expression of PIN genes 
in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Mol. Plant 2: 823–831. 

Warner, C.A., Biedrzycki, M.L., Jacobs, S.S., Wisser, R.J., Caplan, J.L., and Sherrier, D.J. 
(2014). An Optical Clearing Technique for Plant Tissues Allowing Deep Imaging and 
Compatible with Fluorescence Microscopy. Plant Physiol. 166: 1684–1687. 

Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., and Schmülling, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


T. (2010). Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought 
Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco. Plant Cell 22: 3905–3920. 

Xu, M., Zhu, L., Shou, H., and Wu, P. (2005). A PIN1 Family Gene, OsPIN1, involved in Auxin-
dependent Adventitious Root Emergence and Tillering in Rice. Plant Cell Physiol. 46: 1674–
1681. 

Yang, J., Yuan, Z., Meng, Q., Huang, G., Périn, C., Bureau, C., Meunier, A.-C., Ingouff, M., 
Bennett, M.J., Liang, W., and Zhang, D. (2017). Dynamic Regulation of Auxin Response 
during Rice Development Revealed by Newly Established Hormone Biosensor Markers. Front. 
Plant Sci. 8: 256. 

Zalewski, W., Galuszka, P., Gasparis, S., Orczyk, W., and Nadolska-Orczyk, A. (2010). Silencing 
of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to 
higher plant productivity. J. Exp. Bot. 61: 1839–51. 

Zalewski, W., Gasparis, S., Boczkowska, M., Rajchel, I.K., Kała, M., Orczyk, W., and Nadolska-
Orczyk, A. (2014). Expression Patterns of HvCKX Genes Indicate Their Role in Growth and 
Reproductive Development of Barley. PLoS One 9: e115729. 

Zhang, W., Swarup, R., Bennett, M., Schaller, G.E., and Kieber, J.J. (2013). Cytokinin induces 
cell division in the quiescent center of the Arabidopsis root apical meristem. Curr. Biol. 23: 
1979–89. 

Zhang, Y., Paschold, A., Marcon, C., Liu, S., Tai, H., Nestler, J., -Ting Yeh, C., Opitz, N., Lanz, 
C., Schnable, P.S., and Hochholdinger, F. (2014). The Aux/IAA gene rum1 involved in 
seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary 
roots. J. Exp. Bot. 65: 4919–4930. 

Zurcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P.T., and Muller, B. (2013). A 
Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin 
Signaling Network in Planta. PLANT Physiol. 161: 1066–1075. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


Figures 

Figure 1: Root length and meristem size of the barley cv. Morex upon cytokinin treatment for 10 days. 

A) Root length after 10 day-treatment with cytokinin; experiment was performed twice; values normalized to 
mock-treated plants; n = 7-18 plants per data point. B)-B’’) Representative pictures of meristem phenotypes 
upon cytokinin treatment according to the captions; arrowheads mark the transition zones in the outer cortex 
layer; insets show magnifications of the transition zones; scale bars 200 µm (overviews) and 100 µm (magnified 
insets). C) Meristem size after 10-day cytokinin treatment, measured by meristem length; experiment was 
performed twice; n = 11-16 roots per data point; significance was determined using the two-tailed Student’s t 
test, * = p<0.05, **= p<0.001. 

 

Figure 2: Expression of the cytokinin reporter TCSn:VENUS-H2B in the root meristem of the barley cv. 
Golden Promise 8 DAG. 
A), A’) TCSn:VENUS-H2B expression in untreated roots; transmitted light and VENUS emission (A)) and 
VENUS emission only (A’)); white arrow head in A’: metaxylem, gray arrow head in A’: QC; seven 
independent transgenic lines were examined and exhibit a similar expression pattern. B) Quantification of 
TCSn:VENUS-H2B expression by the mean gray value of the region marked by red box in C); mean gray value 
normalized to the PBS control; significance was determined using the two-tailed Student’s t test, ** = p<0.001. 
C) Representative pictures of TCSn:VENUS-H2B expression in root meristems upon 24 h of cytokinin treatment 
according to the captions; PBS without hormone was used as control; three independent transgenic lines were 
examined; the experiment was performed three times; n = 8-31 per treatment. D) Magnification of the stem cell 
niche and root cap of roots upon treatments indicated by the captions; expression in the cortex/ endodermis 
initials, the DSCs, the QC layer adjacent to the root cap and the epidermis initials (PBS: 0/21 roots, 1 µM 6-BA: 
1/9 roots, 10 µM 6-BA 8/18 roots, 1 µM t-Z 2/9 roots, 10 µM t-Z 5/8 roots); the root cap border is marked with a 
white frame; for a better comparison between samples, roots were cleared before microscopy (C), D), E)); scale 
bars 100 µm. 

 

Figure 3: Root length, meristem size and DSC phenotype of the cv. Morex upon auxin treatment for 10 
days.  
A) Root length after 10 day-treatment with auxin; experiment was performed twice; for a better comparison 
between the experiments, all values were normalized to the mock-treated plants; n = 4-18 plants per data point. 
B) – B’’) Representative pictures of the root meristem phenotype at 10 DAG upon hormone treatment according 
to the captions; arrow heads mark the transition zones; insets show magnifications of the transition zones; scale 
bars 200 µm and 100 µm in the magnification. C) Meristem length upon hormone treatment, measured by 
meristem length; experiment was performed twice; all values are normalized to the mock-treated control; n = 7-
17 roots per data point; significance was determined using the two-tailed Student’s t test, * = p<0.05, **= 
p<0.001. 

 

Figure 4: HvPLT1 gene structure, promoter activity and protein localization in the root meristem of the 
barley cv. Golden Promise 8 DAG. 
A) Genomic structure of the HvPLT1 coding sequence; boxes represent exons, black horizontal lines represent 
introns; dark gray boxes indicate coding sequence for AP2 domains, light gray boxes indicate coding sequence 
for the linkers between AP2 domains. B) Representative picture of the HvpPLT1:HvPLT1-mVENUS emission in 
the root meristem; transmitted light and mVENUS emission (B)), mVENUS emission only (B’)); arrow head in 
B’) points to the QC; hand sections; seven independent transgenic lines were examined and exhibited similar 
expression patterns. C) Representative picture of RNA in situ hybridizations with a probe for HvPLT1 (purple 
staining, C)) or the respective sense probe (C’)); scale bars 100 µm. 

 

Figure 5: HvPIN1a expression in the root meristem of the barley cv. Golden Promise 8 DAG.  
A) Representative picture of HvpPIN1a:HvPIN1a-mVENUS expression; transmitted light and mVENUS 
emission (A)), mVENUS emission only (A’)); six independent transgenic lines were examined which vary only 
in expression level but not in localisation or pattern; white box in A’) marks magnification in B); gray box in A’) 
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marks magnification in D). B) Magnification of the epidermal, cortical and endodermal cell layers depicted with 
white frame in A’). C) Schematic illustration of HvPIN1a expression in the root meristem, high = dark gray, low 
= gray; red arrows indicate possible auxin flow created by localisation of PIN1 auxin transporters; En = 
endodermis, Co = cortex, Ep = epidermis, LRC = lateral root cap, RC = root cap. D) Magnification of the stem 
cell niche depicted with gray frame in A’); transmitted light and mVENUS emission (D)), mVENUS emission 
only (D’)); white arrow heads mark apically localised PIN1, gray arrow heads mark basally localised PIN1; scale 
bars 100 µm in A), D); 50 µm in B). 

Figure 6: HvPIN1a expression in the shoot meristem of the barley cv. Golden Promise.  
A), A’) Representative picture of HvpPIN1a:HvPIN1a-mVENUS expression in the barley SAM in Waddington 
stage I; longitudinal view (A’)) and top view (A’)) of the same SAM. B) Surface projection of 
HvpPIN1a:HvPIN1a-mVENUS of the same SAM as in A), created with MorphoGraphX (de Reuille et al., 2015); 
C), C’) Representative picture of HvpPIN1a:HvPIN1a-mVENUS expression in the barley SAM in Waddington 
stage II; transmitted light and mVENUS emission (C)), mVENUS emission only (C’)); four independent 
transgenic lines were examined and vary only in expression strength but not in localisation and pattern; scale 
bars 50 µm. 

 

Figure 7: HvPIN1a localisation is influenced by BFA and its expression is decreased by cytokinin. 

A) Representative pictures of the HvpPIN1a:HvPIN1a-mVENUS expression in the outer cortex cell layer of the 
root meristem or in the epidermis of the SAM immediately after (0 h) or 2 h after mock (PBS) or 50 µM BFA 
treatment; gray arrow heads point to vesicles; scale bars 20 µm; three independent transgenic lines were 
examined; experiments were performed twice; n = 4 – 6 ; one transgenic line was used (in case of the root 
meristem); experiments were performed twice; n = 3 – 5; two transgenic lines were used (in case of shoot 
meristem). B) Representative pictures of HvpPIN1a:HvPIN1a-mVENUS expression upon either mock (PBS, B)) 
or cytokinin (B’)) treatment as indicated in the captions; scale bar 200 µm. C) Quantitative analysis of the 
HvpPIN1a:HvPIN1a-mVENUS expression upon cytokinin expression in B), measured by the mean gray value of 
the whole root meristem and the root cap; values are normalized to the PBS-control; five different independent 
transgenic lines were used; experiment was performed twice; n = 24 per treatment; significance was determined 
using the two-tailed Student’s t test, * = p<0.05. 
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Supplementary material 

Supplementary figure 1: Meristem cell number upon auxin and cytokinin treatment 
A) Meristem cell number upon 10-day cytokinin treatment; experiment was performed twice; n = 11-16 roots per 
data point. B) Meristem length upon auxin treatment; experiment was performed twice; all values are normalized 
to the mock-treated control; n = 7-17 roots per data point; significance was determined using the two-tailed 
Student’s t test, * = p<0.05, **= p<0.001. 

 

Supplementary figure 2: Root meristem width upon cytokinin and auxin treatment.  

Meristem width measured at the transition zone from root meristems exemplarily shown in Figure 1B and Figure 
3B. A) Roots were treated with cytokinin for 10 days; experiments were performed twice; n = 15-25 roots per 
data point. B) Roots were treated with auxin for 10 days; experiment was performed twice, n = 12-25 roots per 
data point; significance was determined using the two-tailed Student’s t test, * = p<0.05, **= p<0.001. 

 

Supplementary figure 3: The cytokinin reporter TCSn:VENUS-H2B is not expressed in the SAM of the 

barley cv. Golden Promise.  

A), A’) Undectectable TCSn:VENUS-H2B expression in SAMs in waddington stage I; transmitted light and 
VENUS emission (A)) and VENUS emission only (A’)). B), B’) Undectectable TCSn:VENUS-H2B expression 
in SAMs in waddington stage II; transmitted light and VENUS emission (B)) and VENUS emission only (B’)). 
Seven independent transgenic lines were examined and show no expression in the SAM; scale bars 100 µm; 
insets in A’) and B’) show respective pictures with tonal correction to show autofluorescence. 

 

Supplementary figure 4: DSC layer number of the cv. Morex upon 10-day treatment with auxin.  

A) Exemplary pictures of the root stem cell niche upon mock or auxin treatment as indicated; scale bar 100 µm. 
B) Number of DSC layers upon 10-day treatment with auxin; no significant difference to mock-treated plants; 
experiment was performed twice; n = 5-20 per data point. Significance was determined using the two-tailed 
Student’s t test, * = p<0.05, **= p<0.001. 

 

Supplementary figure 5: Expression of DR5 is undetectable and DR5v2 is unstably expressed in barley 

roots.  

A) Exemplary picture of DR5:GFP root; transmitted light and (undetectable) GFP emission (A)), undetectable 
GFP emission only (A’)); four independent transgenic lines were examined and show no GFP epression; scale 
bar 200 µm. B) DR5v2:VENUS-H2B lines show only variable or no expression and do not show a consistent 
reaction on 2,4D treatment; number of expressing DR5v2:VENUS-H2B lines (B)); number of plants that show 
the respective expression change upon treatment with 10 µM 2, 4D for 24 h (B’)). 

 

Supplementary figure 6: Phylogenetic tree of PLT homologue proteins.  

Arabidopsis PLT sequences were taken from arabidopsis.org; rice PLT sequences were named according to Li 
and Xue (Li and Xue, 2011); maize PLT sequences were identified in a BLAST search with AtPLT1 as template 
(e-value below 5e-75) on the Phytozomev.12.0 website and named according to Zhang and colleagues (Zhang et 
al., 2014); barley genes were identified by BLAST-p search on http://webblast.ipk-gatersleben.de/barley/ with 
AtPLT1 as template (e-value below 4e-47 for high-confidence genes and 2e-11 for low-confidence genes) 
(Mayer et al., 2012). Alignments and evolutionary analyses were performed using MEGA7. 0 (Molecular 
Evolutionary Genetics Analysis version 7.0 for bigger datasets (Kumar, Stecher and Tamura 2015)) and a 
MUSCLE alignment; the evolutionary history was inferred by using the Maximum Likelihood method based on 
the JTT matrix-based model. The bootstrap consensus tree inferred from 100 replicates is taken to represent the 
evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% 
bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa clustered 
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together in the bootstrap test (100 replicates) are shown next to the branches. Initial tree(s) for the heuristic 
search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 
distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. 

 

Supplementary figure 7: Barley cv. Golden Promise as non-transgenic control.  

A) Representative picture of the root meristem of a non-transgenic Golden Promise seedling 8 DAG; transmitted 
light and mVENUS emission (A)), mVENUS emission only (A’)), same settings as in Figure 4B, B’; hand-
sections as described in Material and Methods; only background signal with mVENUS excitation. B) 
Representative picture of the root meristem of a non-transgenic Golden Promise seedling 8 DAG; transmitted 
light and mVENUS emission (B)), mVENUS emission only (B’)), same settings as in Figure 5A’; cleared as 
described in Material and Methods; only background signal with mVENUS excitation; scale bars 100 µm; inset 
in A’) shows respective pictures with tonal correction to show autofluorescence. 

 

Supplementary figure 8: Phylogeny and topology of barley PINs.  

A) Phylogenetic tree of maize, Arabidopsis, rice and barley PINs; barley PINs were taken from 
http://webblast.ipk-gatersleben.de/barley/ with BLAST-p with HvPIN1a (MLOC_64867) as template (e-value 
below 1e-41 for high and low-confidence genes); rice sequences are taken from (Miyashita et al., 2010); 
Arabidopsis PINs were searched at arabidopsis.org; maize PINs were taken from Phytozome v12 (e-value below 
4.3e-29) and named according to (Forestan et al., 2012). Selected SoPIN1 proteins from Brachypodium and 
tomato (Solanum lycopersicum) taken from (O’Connor et al., 2014; Martinez et al., 2016) to define the SoPIN1 
clade. Alignments were performed using MEGA7. 0 (Molecular Evolutionary Genetics Analysis version 7.0 for 
bigger datasets (Kumar, Stecher and Tamura 2015)) and a MUSCLE alignment; the phylogenetic tree was 
obtained using MEGA7.0 by the Maximum Likelihood method based on the JTT matrix-based model. The 
bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary history of the taxa 
analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. 
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 
replicates) are shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by 
applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using a JTT model, 
and then selecting the topology with superior log likelihood value; protein subfamilies are framed with the same 
colour; gray frame marks HvPIN1a. B) Topology of the transmembrane barley PIN proteins in comparison to 
AtPIN1; domains predicted to the inside of the cell are shown in light-gray, transmembrane domains are shown 
in dark-gray and domains outside the cell are depicted in black according to the legend; in the protein topology 
of MLOC_64867 - HvPIN1a the asterisk marks the site where mVENUS is inserted for the reporter line shown 
in Figure 5; newly identified HvPINs are named according to their topology and the cluster of the Arabidopsis, 
maize and rice PIN family to which they belong.  

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/236018doi: bioRxiv preprint 

https://doi.org/10.1101/236018
http://creativecommons.org/licenses/by/4.0/

