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Abstract

Motivation: Protein-protein interactions (PPI) are essential for the function of the cellular machinery. The
rapid growth of protein-protein complexes with known 3D structures offers a unique opportunity to study
PPI to gain crucial insights into protein function and the causes of many diseases. In particular, it would
be extremely useful to compare interaction surfaces of monomers, as this would enable the pinpointing
of potential interaction surfaces based solely on the monomer structure, without the need to predict the
complete complex structure. While there are many structural alignment algorithms for individual proteins,
very few have been developed for protein interfaces, and none that can align only the interface residues to
other interfaces or surfaces of interacting monomer subunits in a topology independent (non-sequential)
manner.
Results: We present InterComp, a method for topology and sequence-order independent structural
comparisons. The method is general and can be applied to various structural comparison applications. By
representing residues as independent points in space rather than as a sequence of residues, InterComp
can can be applied to a wide range of problems including: interface-surface comparisons, interface-
interface comparisons and even comparisons of small molecule ligands. We demonstrate a use-case by
applying InterComp to find similar protein interfaces on the surface of proteins. We show that InterComp
pinpoints the correct interface for almost half of the targets (283 of 586) when considering the top 10 hits,
and for 24% of the top 1, even when no templates can be found with the already available sequence-order
dependent methods like TM-align.
Availability: The program is available from: http://wallnerlab.org/InterComp

Contact: bjorn.wallner@liu.se
Supplementary information: Supplementary data included in the pdf.

1 Introduction

Proteins are involved in almost all processes in cells and have evolved to
interact with a range of other molecules, such as proteins, DNA, RNA, or
small molecules. The study of how proteins interact with these molecules
offers important insights into the function of proteins, the way they operate,
and possible causes of disease (Alberts, 1998; Jeong et al., 2001; Li et al.,
2004).

Proteins interact with other molecules by making direct physical
contact through specific residues on the protein surface. These residues
constitute the interface of a protein. A variety of interfaces have been
experimentally identified and have been found to vary both in shape and
residue composition (Davis and Sali, 2005). Interfaces can be stable, as
for the multiple chains of the ribosome, or transient, as for many proteins
involved in signalling pathways. The same interface can interact with
multiple molecules and an interaction can also require multiple interfaces
(Bomsztyk et al., 2004; Cohen, 2002; Han et al., 2004).

To predict how proteins interact with other molecules it is of
fundamental importance to know where the interfacial residues are located
on their surface. For example, in the case of protein docking, it has
been shown that it is relatively easy to dock proteins using template-

based docking techniques if a similar interaction has been experimentally
determined (Tuncbag et al., 2012; Kundrotas et al., 2012; Zhang et al.,
2013; Mirabello and Wallner, 2017).

A number of template-based docking methods have been developed
in the last few years. Some methods use sequence- or profile-based
alignments to match two target protein sequences to the sequences of
two protein chains that are part of an experimentally solved quaternary
structure (Chen and Skolnick, 2008; Mukherjee and Zhang, 2011). When
a match is found, the structure and mutual position of the two protein
chains can be used as templates to model the interaction of the targets.
Unfortunately, this approach inherits the same drawbacks as template-
based modelling of protein monomer structures, and when the pairwise
sequence identity drops below 30% it is difficult to obtain a reliable
prediction (Aloy et al., 2003).
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Other methods are based on structural templates. The first step in
these methods is usually to build the monomer structure of each molecule
in the complex separately. Then, the structure of each monomer is
aligned to libraries of known complexes, and cases where the two target
monomers are structurally similar to monomers of a known complex can
be used as a template for the interaction. This improves the coverage of
modellable multimers. Since the structure of proteins is more conserved
than the sequence, more distantly related homologs can be found using
structure (Aloy and Russell, 2002; Zhang et al., 2013; Mirabello and
Wallner, 2017). However, a drawback of the methods based on structure is
that both the target monomers need to be overall structurally similar to their
templates. At the same time, it has been shown that an interaction is only
specific to the shape and chemical composition of the patches of residues
directly involved in the interaction, i.e. the interfacial residues and not the
overall structural scaffold. In fact, some proteins interact through the same
type of interface while differing substantially in their overall structural
similarity (Keskin and Nussinov, 2007).

In addition, the number of different spatial arrangements of residues in
protein interfaces seems to be lower than the number of different protein
folds, and studies have shown that the space of interface structures is
already covered to a large degree in the known structures in the Protein
Data Bank (Gao and Skolnick, 2010b; Kundrotas et al., 2012). Thus,
in principle it should be possible to find template interfaces for most
unknown interactions from the structure of single interacting monomers,
particularly if the alignment is limited to the interfacial regions of proteins.
But aligning only interface residues is not trivial and methods adopt a
mixed approach to this problem, where full structural alignments are used
to find templates, and the quality of the alignment at the interfacial region
of the template is used to improve the quality of the prediction (Hosur
et al., 2011; Zhang et al., 2013; Guerler et al., 2013; Mirabello and
Wallner, 2017). Other methods focus on structurally aligning a subset of
residues of the target structures corresponding to the interfacial regions of
templates as a more flexible way of finding interaction templates whenever
the evolutionary relationship between targets and templates is unclear or
non-existent (Günther et al., 2007; Gao and Skolnick, 2010a; Tuncbag
et al., 2011).

However, thus far the full potential and the characteristics of interfaces
have not been explored, and it is still unclear whether aligning interfaces,
rather than full monomers, represents a real improvement in the search for
interaction templates (Sinha et al., 2010). In the latest CASP12/CAPRI
experiment (2016) the most successful groups were still using templates
gathered from alignments of sequences or full structures (Lensink et al.,
2017). A possible reason for why the full potential of interfaces has
not yet been exploited can be found by analyzing how current interface
alignment methods are implemented. For example, PRISM (Tuncbag et al.,
2011), one of the leading methods based on interface alignments, does
not restrict its search for templates to only interfacial residues, but also
includes neighboring residues that are closer than 6Å to other interfacial
residues, even if these are buried in the protein core. Although such an
approach helps the alignment procedure by reducing the fragmentation
of the interface, it also restricts the alignment to cases where basically
the secondary structure elements at the interface level match, and thus it
might be less effective at finding evolutionary unrelated, yet compatible,
templates.

Another approach to find templates is to rely on using sequence-
independent structural alignment programs such as TM-align (Zhang
and Skolnick, 2005) and restricting the alignment to only interfacial
residues (Kundrotas and Vakser, 2013; Guerler et al., 2013). The ability
to insert multiple gaps in structural alignments can help to address the
issue of fragmentation at the interface. However, depending on the level of
fragmentation, TM-align might still fail in retrieving the correct alignment,
simply because it is not designed for dealing with heavily fragmented

coordinate sets. A further limitation of TM-align is that the sequential order
of the residues must be maintained for the algorithm to work correctly,
and as such it would not be possible to align interfaces with different chain
topologies.

To address the topological issue, iAlign was developed (Gao and
Skolnick, 2010a). It is a protein-protein interface comparison method
based on an extension of the Kabsch algorithm (Kabsch, 1976), also used
in TM-align, that will optionally allow for sequence-order independent
comparisons for interfaces. However, it utilizes a definition of protein
interface, where the interfacial residues are collected across both the
protein chains involved in the interaction. This means that the mutual
position of the patches of interfacial residues must be known before any
comparison can be performed against a template. Thus, iAlign can only
be used if the complete interface is known, e.g. for comparing known
interfaces, and not for searching for interfacial residues on a monomer
structure.

In this study, we present InterComp, designed to perform sequence-
order independent structural comparisons and alignments. Since the
algorithm works on a disjointed set of points in space rather than on
a sequence of residues, the method is general and can be used for
various structural comparisons applications, including interface-surface,
interface-interface, and even small molecule ligand comparisons. The main
difference in these applications would be a few size-dependent parameters
and the statistics, i.e. p-value calculation. Here, we demonstrate a case
when we apply InterComp to find protein interfaces on monomer structures
(interface-surface). We show that InterComp can pinpoint the interface
location on the surface of proteins, even when no templates can be found
with the already available sequence-order dependent structural alignment
methods (e.g TM-align).

2 Methods

2.1 Algorithm

The aim of this study is to build software that is capable of comparing
molecules by treating them as a set of independent points on a surface in
a 3D space. This means that the points have no inherent ordering. This
differs from regular structural alignments, where the atoms follow a fixed
order according to the protein sequence.

We use a modified version of a stochastic method for molecular
structure matching (Kirkpatrick et al., 1983; Barakat and Dean, 1991)
and simulated annealing to solve an optimization problem that maximizes
the structural superposition score of two molecules independently of
the chain topology of their covalently bonded network. The objective
function is calculated by comparing the C

↵

distance maps of the two
molecules. This simplifies the problem; since distance maps are invariant
to rotations and translation there is no need to apply spatial transformations
to superimpose molecules. Instead, the optimal matching between two
molecules is found by permutating the rows and columns in the distance
matrix while maximizing the similarity (see below for details).

2.2 Objective function

In this study, the similarity measure for a given trial alignment between
two molecules a and b with length L

a

= N and L
b

= M (N  M ),
represented as internal distance matrices D

a

and D
b

, is a variant of
the Levitt-Gerstein score (Levitt and Gerstein, 1998) adapted to internal
distances:
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where N is number the of residues in a, and d0 is a parameter that
monitors the slope of the function (optimizedd0=0.5Å, see Supplementary
information), �

xy

is the absolute element (x, y) in the matrix difference
between D

a

and the first N columns and rows of D
b

after it has been
permutated to form a trial alignment, see di↵(D1, D2) in Figure 1a. The
M �N residues (for x > N and y > N ) from b are not included in the
alignment and are thus excluded from the similarity score.

To also consider the chemical compatibility of the molecules (i.e. the
similarity of the aligned residues), a second scoring component based
on amino acid similarity is used, analogous to the method used for the
structural similarity above:

seqdist(S
a

, S
b

) =

1

N

NX

z=1

BLOSUM(sa
z

, sb
z

) (2)

where N is the number of residues in S
a

, S
a

and S
b

are the aligned amino
acid residues from targets a and b, respectively, and the BLOSUM62
substitution matrix (Henikoff and Henikoff, 1992) is used to score the
similarity for the matching position.

To represent both the structural and sequence similarity, the two scores
are combined using a weighted sum to form the complete objective function
in the simulated annealing procedure:

opt(p) = argmax

p2P (M,N)
W

str

strdist(D
a

, Dp

b

)+

+(1�W
str

) seqdist(S
a

, Sp

b

)

(3)

where W
str

2 [0, 1] is the weight for the structural similarity score, Dp

b

is a permutation of the rows/columns in the distance matrix D
b

and Sp

b

the
corresponding amino acids. The default weight of the structural component
of the scoring function,W

str

, has been optimized to0.5 by trying different
values forW

str

in the0.25�1.75 range (see Supplementary information).
When the optimal mapping between two molecules has been found, a

structural superposition can be performed by minimizing the RMSD for
the mapping and outputting the two structurally aligned molecules in PDB
format.

2.3 Optimization protocol

The optimization procedure keeps the distance map D
a

of the smallest
molecule fixed, while trial configurations for the largest map D

b

are
generated by swapping a random pair of rows/columns. To account for
the difference in size, a number of rows/columns in D

b

, equal to the size
difference, are always ignored when calculating the final score. These
are initialized randomly, and then sampled naturally by the swapping
of rows/columns in D

b

. Figure 1b shows how a trial configuration is
generated to obtain Dp

b

from D
b

. In addition, to model mismatches in
D

a

a proportion of the rows/columns from the smallest molecule, D
a

can optionally be ignored (null correspondences as defined in (Barakat
and Dean, 1991)). However, in our tests this option did not yield better
results, most likely because the structural similarity score (Eq: 1) already
down-weight residues with large deviations (data not shown).

The simulated annealing procedure is used to find the optimal sorting
for D

b

. At each iteration, two columns in D
b

are randomly swapped
to form a trial configuration, the score (Eq:3) is calculated and the
configuration accepted if it improves on the current best score. Otherwise,
the configuration is accepted with probability: P = exp(��score/T ),
where the �score is the difference between the trial score and the last
accepted score, and T is the annealing temperature, which is gradually
lowered with the number of iterations.

With regard to the annealing procedure discussed in Barakat and Dean,
1991, the main differences in the current method are the larger number

Fig. 1. (a): the similarity score in InterComp is calculated by adding up the elements in the
matrix of deltas di↵(Da, Db). The deltas are the absolute difference, calculated element
by element, between the first N rows/columns in the distance matrix Da and the matrix
Db . (b) A trial alignment is obtained by permutating Db by swapping any two random
rows/columns forming the D

p
b

and length of Markov chains used during the search. This is necessary
since it is difficult to compare molecules containing many atoms and
a large imbalance in the number of atoms between targets. The longer
Markov chains allow the state of the system to settle as the temperature
is decreased in the annealing procedure. The procedure is said to have
converged whenever the acceptance rate, i.e. the frequency at which a new
trial configuration is accepted, drops below 0.3%. The acceptance rate is
reset at the beginning of each Markov chain, and the minimum size of the
Markov chain is set so that the acceptance rate can always drop below the
stopping criteria.

2.4 Data sets

To test and optimize the method, a data set of hetero- or homo-dimeric
protein-protein complexes was constructed. The set is composed of
protein chains extracted from a 20% redundancy-reduced version of PDB
compiled by PISCES (Wang and Dunbrack, 2003). The reduced PDB
contained 2,952 protein chains (July 13, 2016) with resolution 1.6Å and
R-factor 0.25 or better. From this set, any protein chain involved in one
or more dimer interactions was selected, resulting in 668 protein chains
involved in dimer interactions. To avoid including targets with very small
interfaces, any monomer with an interface composed of less than 20
residues was removed. In addition, targets with an interface covering
more than 50% of their surface were also removed, since these targets
were deemed too easy and even a random predictor would score well in
our tests. The final set called T568 consisted of 568 protein monomers.
From this, a monomer shells set (S568) was constructed, consisting of the
C↵ atoms from residues on the surface of the protein chains defined by
Residue Solvent Accessibility (RSA) for the side-chain > 15% calculated
using Naccess (Hubbard and Thornton, 1993).

In addition, a library of template protein interfaces was also extracted
from PDB (May 19, 2016) using the defined biological units to prevent
non-native interfaces from crystal packing (Carugo and Argos, 1997). If a
biological unit is also a multimer, an interface is defined as residues within
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Fig. 2. (a): Protein monomer 3vsv, chain A (purple). The shell atoms are C↵ atoms
from residues whose RSA is over 15% (green). The interface atoms are a subset of the
shell atoms whose residues are also closer than 5Å to any residue in another protein chain
(red). (b): Stylized version of a protein monomer where the shell and interface residues are
represented with a dashed contour line. (c): Example of an interface-shell alignment, where
an interface and a shell extracted from two monomers are aligned. This is the case with
all InterComp alignments in this work. (d): Example of an interface-monomer alignment,
where the interface atoms are aligned against all C↵ atoms in a monomer. (e): Example
of a monomer-monomer alignment, where all C↵ atoms from two protein monomers are
aligned. The alignments shown in d and e are performed with TM-align in this work.

5.0Å (all-atoms) between the two monomers. Each resulting interface is
characterized by the monomer from which its residues were extracted and
the monomer containing the counterparts in the interaction. For example,
if the PDB 1xyz contains two chains, A and B, two separate interfaces
will be extracted: 1xyz_AB, containing the C↵ atoms of residues from
A that were interacting with any residue in B, and 1xyz_BA, containing
the C↵ atoms of residues from B that were interacting with any residue in
A. The resulting template library, called I400k, contained approximately
400,000 interfaces.

Figure 2a shows an example of a protein monomer (PDB id: 3vsv,
chain A, colored in purple) where the shell atoms are highlighted as green
spheres and the interface atoms (interface id: 3vsv_AD) are highlighted
in red. It is important to note that all the interface atoms are also shell
atoms. A stylized version of the same concept is shown in Figure 2b. In
this work we use InterComp to align the interface to shells (Figure 2c), and
compare InterComp to using TM-align to align the interface to a monomer
(Figure 2d) and monomer to monomer (Figure 2e).

In order to estimate p-values for the structural score (Eq:1), a set of
approximately 2 million random alignments between target shells and
biological interfaces was constructed. This set was constructed by aligning
1,790 monomer shells previously described in Gao and Skolnick, 2010a
against the library of biological interfaces (I400k) using InterComp to
calculate the structural score. To avoid including non-random hits, pairs
that showed a significant similarity by TM-align (TM-score<0.35) were
filtered out. It is important to note that this filtering will only remove
any high scoring interface-shell alignment that can be found by TM-align
(sequence-order dependent). It is still possible that the set of random
alignments may include non-random high scoring matches, interfaces that
are only found when compared in a sequence-order independent manner
using InterComp. Still, these examples will be few compared to the whole
random set and should not influence the p-value calculation too much.

Since the structural score depends heavily on the size of the interface
and shell, the random structural scores were fitted to an extreme value
distribution for different interface and shell size bins. In Fig. 3 the random
distribution for different size bins along with the fitted distributions are
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Fig. 3. Probability density distributions of InterComp scores from random alignments for
different interface (rows) and shell (column) sizes. The empirical probability density is
shown in blue and the fitted extreme value distribution in red.

shown. We used the fit to calculate the p-values for each structural score. By
analyzing the first row of plots in Fig. 3, it is clear that whenever interfaces
contain less than 10 residues, independently of the size of the shell, random
scores tend to be high. This will make it hard to find significant hits for
small interfaces, which makes sense, since smaller interfaces can easily
align with most targets (e.g. single helix to helix alignment).

Since our tests consist of multiple comparisons against many templates
(400k), using the p-value alone to decide whether the null hypothesis can
be rejected or not would be impossible without performing the necessary
multiple testing correction. In our tests, we thus adopt the False Discovery
Rate (FDR) controlling procedure (Benjamini and Hochberg, 1995) and
derive an FDR adjusted p-value (q-value) for each p-value (Yekutieli
and Benjamini, 1999). The q-values are then used to decide if a given
InterComp score is significant.

To test the hypothesis that InterComp is more sensitive than a sequence-
order dependent algorithm, two additional interface sets of varying
difficulty were constructed. The first “medium” set was built by removing
all template hits that would also be matched by TM-align (TM-score>0.5)
for a given target from the T568 set, using Monomer-Interface alignments,
see Fig. 2d. The second “hard” set was built by removing all template hits
that would also be matched by TM-align (TM-score>0.5) for a given target
from the T568 set, using Monomer-Monomer alignments, see Fig. 2e.

In Fig. 4 a schematic representation of all three subsets of template
interfaces used to test InterComp is shown. It is important to note
that while the I400k is the same for every target in the T568 set, the
“medium” and “hard” sets will vary from target to target, depending on
the structural similarity found using interface-monomer and monomer-
monomer alignment with TM-align.

2.5 Performance measures

To assess the performance of InterComp, the Positive Predicted Value
(PPV) of interfacial residues is used:

PPV =

TP

TP + FP
(4)

where TP is the number of True Positives, i.e. the number of residues
correctly predicted as part of an interface, andFP is the number of residues
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Fig. 4. Schematic overview of the different template interface sets that were used to test
InterComp. The full I400k interface set, also called the “easy” set, is shown in red. The
“medium” subset of I400k for a given target is obtained by removing any template interface
that will align with the TM-align, TM-score of the Interface-Monomer alignment � 0.5.
The “hard” subset of I400k is obtained by removing from the “medium” subset any template
interface whose parent monomer is in the same fold as the target monomer, TM-score of
the Monomer-Monomer alignment � 0.5.

incorrectly predicted as part of an interface. The sum of TP and FP is
also the total number of residues predicted as part of an interface.

3 Results and Discussion

3.1 Benchmark: Aligning interfaces to surfaces

InterComp was applied to the problem of predicting the interface residues
on the surface of protein chains involved in a dimeric interaction. By
restricting the search to the surface of proteins (shells) rather than to full
monomers, the complexity of the search was reduced. This was necessary
since the time required for the algorithm to converge is related to the
length of the Markov chains which increases quadratically with the size of
the largest target. The accuracy should not suffer from this choice, since
interfaces are expected to be on the surface of proteins.

We hypothesize that top-ranking interface templates by q-value (see
Methods) should correspond to residues involved in interactions with
partner proteins. The location of the interface on each monomer was found
by searching for areas on the surface that are compatible in shape and
chemical composition to interfaces in the library, as illustrated in Fig. 2c.

In detail, InterComp was used to align each monomer target shell from
the S568 set against the I400k interface library (“easy” test). The top 1
and top 10 best matches by q-value are selected and the performance is
assessed by the fraction of correctly predicted interface residues from the
target shell, PPV (Eq:4), see Fig. 5 and Fig. 6 right panel. To account
for the fact that the “easy” test database contains several simple cases
that any structural alignment method would find. The test was made more
difficult by removing any template that would be found using TM-align,
a commonly used sequence-order dependent structural alignment method.
Two difficulty levels were tested: for the first (“medium” test) any template
with an interface-monomer TM-score>0.5 was removed (Fig. 5 and Fig. 6
middle panel); for the second (“hard” test) any interface whose parent
monomers had a TM-score>0.5 with the target was removed, effectively
removing any templates that overall were structurally similar to the target
(Fig. 5 and Fig. 6 right panel). In this way, it is possible to assess if
InterComp is capable of finding correct template interfaces even when

Diff.
easy
medium
hard
random

3 10 50 100 350
-log(q -value)

∞
0.0

0.2

0.4

0.6

0.8

1.0

P
P

V

Fig. 5. Distribution of fraction of correctly predicted interface residues (PPV) in relation
to the negative logarithm of the q-value calculated from the top 10 InterComp hits using
the “easy” (green), “medium” (orange), and ‘hard” (purple) interface sets. The “random”
box corresponds to the fraction of interfacial residues on each target shell and estimates the
performance of a predictor that would pick random shell residues to be part of the interface.
The infinity (1) sign on the x-axis corresponds to q-value=0.

sequence-order dependent structural alignment methods like TM-align fail
at various levels.

There is a clear correlation between the structural score from
InterComp and the PPV for all three tests (Fig. 5 and 6). Although the
correlation between InterComp score and PPV for the “hard” test, is less
pronounced (Spearman’s rank correlation 0.20-0.24), InterComp could
still find at least the location of an interface with PPV�0.5 for more than
half (287/568) of targets for the top 10 hits and for 24% (139/568) of the
targets for the top 1. Moreover, the chances of finding the right interface
increases as the q-value derived from the InterComp improves (Fig. 5,
purple boxes). For the “medium” test, InterComp could correctly identify
the correct interface for 70% (401/568) of targets for the top 10, and
60% (341/568) for the top 1. On the full I400k template set (excluding
self-hits, “easy” test) InterComp founds at least one interface for 80%
of targets (450/568) and 66% (373/568) for the top 10 and top 1 hits,
respectively. In all cases, including the “hard” set the number of correctly
identified interfaces is significantly better than would be expected by a
random predictor.

3.2 Alternative Interfaces

In some cases, even at very significant q-values the PPV can be low
or close to zero (Fig. 6). The reason for this could of course be that
InterComp predicts completely wrong interfaces in all of these cases.
However, a more likely explanation is some of these very significant hits are
alternative, yet unknown interfaces or interfaces not included among the
test interfaces for the target. An example of a potential correctly predicted
interface that is classified as incorrect in the benchmark is shown in Fig. 7a.
The top 1 interface predicted by InterComp (q-value=0) for target 4b1y
(medium difficulty) is incorrect, since it does not match the interface in its
biological unit. However, the monomer from which the template interface
was extracted superimposes almost perfectly with the target, as shown
in Fig. 7b. This highlights a problem with multiple correct interfaces, and
although some can be identified, not all of them are included in the relevant
biological unit.
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Fig. 6. Scatter plots of the PPV in relation to the negative logarithm of the q-value calculated from the InterComp score for the Top 1 and Top 10 hits for each target shell using the “easy”
(green), “medium” (orange), and “hard” (purple) interface sets. The infinity (1) sign on the x-axis corresponds to q-value=0.

Fig. 7. An example of a significant hit that is not part of the target set. (a) The protein Phactr1
RPEL-3 (4b1y) from organism Oryctolagus cuniculus bound to G-actin (cyan). The target
interface is the binding site for G-actin (short peptide shown in cyan), but InterComp
identified another high-confidence interface with template 2p9l1_BF (white spheres).
However, the template 2p9l (Arp2/3 complex from organism Bos taurus) superimpose
almost perfectly to the target (green/grey chains aligned on right side, RMSD: 0.65), with
the interface 2p9l1_BF highlighted in red and the relevant partner for the template interaction
shown in white. In this case, it is likely that the inferface pinpointed by InterComp is actually
correct, even though it was not part of the target set.

3.3 Successful Examples

A few examples of successful cases from the “hard” tests are shown in
Fig. 8. For all of these examples, InterComp is able to find with high
accuracy (PPV>0.5) the location of the target interface. This would not

have been possible using TM-align, since the TM-score is less than 0.5 for
aligning the template interface to the target (0.23-0.35) and for aligning
the template interface parent monomer to the target (0.26-0.42). It is easy
to spot the location of some false positives, where the predicted interface
residues (the red spheres) are quite far away from the interaction surface,
e.g. on the rear side of 1t92A in Fig. 8a and 3lagA in Fig. 8b. In these
cases, a simple clustering technique could potentially be used to filter out
spurious positives that are unlikely to be part of the interface. But that is
not the focus of this study.

3.4 Computational cost

To give an idea of the computational cost of running InterComp, we timed
the running times using a few typical sizes for target shells against the
full I400k set of template interfaces using a 28 core 2.6 GHz computer
with 128GB RAM Linux node. The median number of residues on the
surface of a monomer (shell size) for set S568 is 129. This corresponds
to a monomer of about 200 residues (e.g. target 2zcmA, 3cxnA) with a
runtime of approximately 120 minutes on 28 cores (56 core hours in total).
A run on a target shell twice as large (250 residues, and 400 residues in
total in the monomer) will need approximately 13 hours to be completed
(364 core hours in total). Overall, a full test on all 568 targets in the S568
set against I400k takes approximately 100,000 core hours, i.e. 176 core
hours per target on average.
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Fig. 8. Successful predictions from the “hard” category with the corresponding InterComp score, q-value, M-M TM-score (Monomer-Monomer TM-score), M-I TM-score (Monomer-
Interface TM-score) and PPV. The target chains are shown in yellow with the predicted interfacial residues highlighted by red spheres, template chains are shown in cyan with the aligned
interface residues highlighted by white spheres. The interacting target partners are showed in transparent orange and template partners are showed in transparent magenta. (a) Target 1t92A
, Pili subunit structure of N-terminal truncated pseudopilin PulG from Klebsiella oxytoca. Template 4uxz1_BC, crystal Structure of a Membrane Diacylglycerol Kinase from organism
Escherichia coli. (b) Target 3lagA, Double-stranded beta-helix, crystal structure of a functionally unknown protein RPA4178 from Rhodopseudomonas palustris. Template 3kvp1_AD,
Beta-propeller-like, crystal structure of uncharacterized protein ymzC precursor from Bacillus subtilis. (c) Target 4dt5A, Single-stranded left-handed beta-helix, crystal structure of antifreeze
protein from Rhagium inquisitor. Template 3cgl1_DC, GFP-like protein dsFP483, cyan fluorescent protein from organism Discosoma striata. (d)Target 5b08A, Alpha-beta plaits, polyketide
cyclase OAC from organism Cannabis sativa. Template 3oay2_LM Immunoglobulin-like beta-sandwich, HIV glycan shield from Homo sapiens.

4 Conclusions

We have presented InterComp, a topology and sequence-order independent
structural alignment method. We have shown that InterComp is capable
of performing protein surface to interface alignment and can be used to
pinpoint potential interaction points on the surface of proteins, even when
regular structural alignment methods that are dependent on the sequence-
order fail. The fact that InterComp can align monomer structures to one side
of a complete interface is extremely useful, and should leverage the use
of structural information in protein-protein docking by providing novel
templates with similar interfaces but no overall structural similarities.
However, the interface-surface alignment case demonstrated here is only
one of many potential use-cases for InterComp. For instance, we are
currently recalculating the statistics to apply the method to interface-
interface, and small molecule comparisons, which will enable clustering
of interfaces and improvements to virtual screening of small molecules.
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S1 Parameter optimization

InterComp has three parameters that have a significant impact on the search for

the optimal mapping between two molecules. The first parameter is d0, which
is a parameter of the Levitt-Gerstein score (see Eq. 1), the second parameter

is the weight of the structural component of the scoring function in relation to

the weight of the chemical component, Wstr (see Eq. 3), and the third parame-

ter is the percentage of null correspondences, i.e. the number of rows/columns

that can be ignored during the annealing procedure in the distance matrix of

the smallest of the two molecules. It should be noted that the weight on the

sequence is 1 � Wstr, which means that increasing the structural score will in

e↵ect decrease the relative contribution from the sequence similarity. The de-

fault values for d0 = 0.5 and Wstr = 0.5 were found by a grid search trying

all combinations of d0 2 [0.25, 1.75] in 0.25 steps and Wstr 2 [0.50, 0.75, 1.0]
maximizing the number of target monomers whose interfaces were correctly

(PPV>0.5) found within the top 10 identified templates (Fig. S1). In addi-

tion, the combination d0 = 0.5 and Wstr = 0.25 was also tested (the single

low-performing point in the “hard” category in Fig. S1), but considering the

bad performance for the “hard” category and the high computational cost for

obtaining additional points (35,000 core hours per point) no more combinations

involving Wstr = 0.25 were tried. The default values d0 = 0.5 and Wstr = 0.5
were selected to allow for better results in most cases (mainly on the “easy” and

“medium” sets). Still, a higher weight on the structural component of the score

(Wstr � 0.75) or a higher d0 could yield slightly better results in the “hard”

category. For the optimized d0 and Wstr allowing for 10% null correspondences,

did not improve the performance (data not shown). Thus, the percentage of

null correspondences was set to 0.
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Figure S1: Number of targets for which the interface could be correctly detected

at various parameter settings. This test was run on a subset of 200 targets

randomly selected from set S568. The selected default parameters are d0 = 0.5,
and Wstr = 0.5.
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