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ABSTRACT

The discriminating capacity (i.c., ability to cortectly classify presences and absences) of species distribution
models (SIDMs) 1s commonly evaluated with metrics such as the Area Under the Receiving Operating
Characteristic Curve, the Kappa statistic and the True Skill Statistic (ISS). AUC and Kappa have been
repeatedly criticised, but the T'SS has fared relatively well since 1ts introduction, mainly because it has been
considered as independent of prevalence. In addition, discrimination metrics have been contested because
they should be calculated on presence-absence data, but are often used on presence-only or presence-
background data. Here, we investigate the 'I'SS and an alternative set of metrics —similarity mdices, also
known as F-measures. We first show that even m ideal conditions (i.e., petfectly random presence-absence
sampling), TSS can be misleading because of its dependence on prevalence, whereas similarity /F-measures
provide adequate estimations of model discrimmation capacity. Second, we show that in real-world
sttuations where sample prevalence s different from true species prevalence (i.e., biased sampling or
presence-pseudoabsence), no discrimination capacity metric provide adequate estimations of model
discrimination capacity, including metrics specifically designed for presence-pseudoabsence. Our
conclusions are twofold. First, they unequivocally appeal SDM users to understand the potential
shortcomings of discrimmation metrics when quality presence-absence data are lacking, and we provide
recommendations to obtain such data. Second, in the specific case of virtual species, which are
increasingly used to develop and test SDM methodologies, we strongly recommend the use of

similarity/ F-measures, which were not biased by prevalence, contrary to TSS.
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55 INTRODUCTION

56  During the last decades, species distribution models (SDMs) have become one of the most

57  commonly used tools to investigate the effects of global changes on biodiversity. Specifically,
58 SDMs are widely used to explore the potential effects of climate change on the distribution of
59  gpecies of concern (Gallon et al. 2014), to anticipate the spread of invasive species (Bellard et
60 al.2013), but also to prioritise sites for biodiversity conservation (Leroy et al. 2014).

61  Therefore, conservation managers increasingly rely on SDMs to implement conservation

62  strategiesand policiesto mitigate the effects of climate change on biodiversity (Guisan et al.
63  2013). There are various methodological choicesinvolved in the application of SDMs (e.g.,
64 datatype and processing, variables, resolution, algorithms, protocols, global climate models,
65  greenhouse gas emission scenarios), which make them particularly difficult to interpret,

66  compare, and assess. However, evaluation of their predictive accuracy is probably a common
67  step to most SDM studies across methodological and technical choices. This evaluation

68  allows usto quantify model performance in terms of how well predictions match

69  observations, which is afundamental and objective part of any theoretical, applied or

70  methodological study.

71  Toevauate model predictive performance, the occurrence dataset is often partitioned into two
72 subsets (one for calibrating models, and one for testing) and predictions are assessed in terms
73 of whether or not they fit observations using various accuracy metrics (Araljo et al. 2005), a
74  method called cross-validation. Other approaches include calibrating on the full dataset and
75  testing on an independent dataset, or, when the modelled speciesisavirtual, in silico, species
76  (e.g., for testing methodological aspects), directly comparing the predicted distribution with
77  the known true distribution (Leroy et al. 2015). Accuracy metrics can be divided into two

78  groups. discrimination vs. reliability metrics (Pearce et al. 2000; Liu et al. 2009).

79  Discrimination metrics measure classification rates, i.e. the capacity of SDMsto distinguish
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80  correctly between presence and absence sites. Reliability metrics measure whether the

81 predicted probability is an accurate estimate of the likelihood of occurrence of the species at a
82  given site. Here, we focus on the issues of discrimination metrics, since they are often used in
83 the SDM literature to test model robustness; however we stress the importance of evaluating
84  reliability (see Meynard & Kaplan 2012 as well as Liu et al. 2009), for example with the

85 Boyceindex which is probably the most appropriate reliability metric (Boyce et al. 2002;

86 Hirzel et al. 2006; Cola et al. 2016).

87  Discrimination metrics rely on the confusion matrix, i.e., a matrix comparing predicted versus
88  observed presences and absences (Table 1). Such discrimination metrics have largely been
89  borrowed from other fields of science, such as medicine and weather forecasting, rather than
90  being specifically developed for SDM studies (Liu et al. 2009). Three classification metrics
91 stand out in the SDMs literature: Cohen’s Kappa, the Area Under the receiver operating
92  characteristic curve (AUC), and the True Skill Statistic (TSS). The AUC was introduced in
93  ecology by Fielding & Bell (1997) (2,821 citations on Web of Science in June 2017), but has
94  since repeatedly been criticised (Lobo et al. 2008, 2010; Jiménez-Valverde 2012) because its
95  dependence on prevalence (i.e., the proportion of recorded sites where the species is present)
96 makesit frequently misused. Cohen’s Kappa has also been repeatedly criticised for the same
97  reason (McPherson et al. 2004; Allouche et al. 2006; Lobo et al. 2010). TSS (Peirce 1884), on
98 the other hand, has fared relatively well since its introduction by Allouche et al. (2006) (719
99 citationsin June 2017), mainly because it had been shown as independent of prevalence.
100  However, this claim has recently been questioned because of a flawed testing design (Somodi
101 etal. 2017). More recently, all of these metrics have been contested because they should be
102 calculated on presence-absence data, but are often used on presence-only or presence-
103  background data, i.e. data with no information on locations where species do not occur

104  (Yackulic et al. 2013; Jarnevich et al. 2015; Somodi et al. 2017). In these cases, False
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Positives (FP) and True Negatives (TN) (Table 1) are unreliable, which led Li & Guo (2013)
to propose alternative approaches, specifically designed for presence-background models.
They proposed the use of Fyp, aproxy of an F-measure (*the weighted harmonic average of
precision and recall”, Li & Guo (2013)) based on presence-background data, and Fey,, a
prevalence-calibrated proxy of an F-measure based on presence-background data. Despite the
apparent relevance of Li & Guo's (2013) metrics (13 citations as of June 2017), the field is
still dominated by metrics that have been repeatedly criticised, such as AUC and Kappa, or

more recently TSS (e.g., D’Amen et al. 2015; Jarnevich et al. 2015; Mainali et al. 2015).

With this forum, our aim is twofold: (1) illustrate with examples and simulations that,
contrary to early claims, TSSisin fact dependent on prevalence, and (2) evaluate an
alternative set of metrics based on similarity indices, also known as F-measures in the binary
classification literature, as potential alternative measures of model predictive ability.
Similarity indices assess the similarity of observed and predicted distributions, and can be
partitioned into two components to evaluate model characteristics. Over Prediction Rate
(OPR) and Unpredicted Presence Rate (UPR). We compare the performance of TSS and
similarity-derived metrics on three modelling situations corresponding to the most common
modelling setups, depending on the interplay between species and sample prevalence (see
below). We finally discuss the applicability of these discrimination metricsin SDM studies

and provide practical recommendations.
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125 SPECIESAND SAMPLE PREVALENCE

126  Here we will define species prevalence as the ratio between the species area of occupancy
127  (AOQ, i.e, the areawithin the distribution of a species that is actually occupied) and the total
128  study area (see Rondinini et a. 2006 for definitions). For example, if the study area

129  encompasses Europe and we have divided the study areainto 1-km grid cells, and if we are
130  studying a species that occupies only 15% of those grid cellsits prevalence would be 0.15.
131  Notice that species prevalence will vary depending on the resolution of the gridded data and
132  onthe extent of the study area. In practice, however, species prevalence is never known,

133  becausethetrue AOQ is generally not known, except for the specific case of virtual species
134 (Leroy et al. 2015). Hence, for real species, only the sample prevalence is known, which is
135 the proportion of sampled sites in which the species has been recorded. Meynard and Kaplan
136  (2012) showed with virtual species that sample prevalence should be similar to species

137  prevalence to produce accurate predictions. However, in practice, we expect sample

138  prevalenceto be different from species prevalence, unless the sampling of presences and

139  absencesis perfectly random throughout the entire study area. Indeed, samplings of species
140  presences are generally spatially biased (Phillips et al. 2009; Varelaet al. 2014). For example,
141  ecologistslook for their species of interest in sites where they have a sense a priori that they
142 will find it, which will inevitably result in a mismatch between sample and species

143  prevalence. Furthermore, a substantial proportion of SDM studies rely on presence-only

144  modelling techniques, which requires to sample ‘ pseudo-absence’ or ‘background’ points
145  (hereafter called pseudo-absences). In such cases the sample prevalence is artificially defined
146 by the number of chosen pseudo-absences, and is thus unlikely to be equal to species

147  prevalence.

148  Neither species prevalence nor sample prevalence should influence accuracy metrics. In the

149  following, weinvestigate three different cases corresponding to the most common situations
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150 of SDM evaluation. First, we investigate the ideal ‘ presence-absence’ case where species
151  prevalenceisequal to sample prevalence; this case corresponds to well-designed presence-
152  absence samplings or to the evaluation of SDMs based on virtual species where the true AOO
153 isknown. Second, we investigate ‘ presence-absence’ situations where sample prevalence

154  differs from species prevalence. Last, we investigate ‘ presence only’ situations where sample
155  prevalence differs from species prevalence.

156 PRESENCE-ABSENCE, SPECIESPREVALENCE = SAMPLE PREVALENCE

157  Inthisfirst case, we define the sample confusion matrix as perfectly proportional or equal to
158 thetrue confusion matrix, i.e. the entire predicted species distribution is compared to the true
159  speciesdistribution. In practice, this case occurs when the sampling is perfectly random

160 throughout the landscape and species detectability is equal to one, or when evaluating SDM
161  performance with virtual species (e.g., Qiao et a., 2015). With thisfirst case we can analyse
162  the sensitivity of discrimination metrics to species prevalence only.

163  The unexpected dependence of TSSon prevalence

164  Previous studies have already shown that common discrimination metrics such as Kappa and
165 AUC areinfluenced by species prevalence (e.g., Lobo et al. 2008, 2010). However, TSS has
166  been widely advocated as a suitable discrimination metric that is independent of prevalence
167  (Alloucheet al. 2006). Here we demonstrate with smple examples that TSSisitself aso

168  dependent on species prevalence. When species prevalence is very low (and so is sample

169  prevalence), we expect the number of True Negatives (Table 1) to be disproportionately high.
170  Inthese cases, specificity will tend towards one, and TSS values will be approximately equal
171  tosensitivity (Table 2). Asaresult, TSS values can be high even for models that strongly

172 overpredict distributions. Figure 1 represents graphically some examples of how

173  overprediction and underprediction play into TSS performance. For example, Fig. 1a shows a

174  model that strongly overpredicts the distribution, producing 300% more False Positives than
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175  True Positives, and yet TSSiscloseto 1 (Fig. 1a, TSS=0.97). Such a high value can in turn be
176  produced by a model which correctly predicts the true distribution with few overpredictions
177  (Fig. 1b, TSS= 1.00). In addition, the over-predicting model (Fig. 1a) will also have higher
178  TSSvaues compared to a model that only missed 15% of presences (Fig. 1c, TSS=0.85).

179  Furthermore, for identically-performing models, if sample prevalence decreases (from 0.25 to
180  0.01), then the proportion of True Negativesisincreased, and consequently TSS values

181  increased from 0.60 to 0.70 (Fig. 1d-f). Consequently, TSS values can be artificially increased
182 by decreasing sample prevalence. As an unexpected consequence, for two species with

183  different AOO in the study area (thus different sample prevalence), the species with the

184  smaller distribution will be considered better predicted than the one with alarger distribution
185  (Fig. 1d-f).

186  Tosummarise, TSS values can be miseading in situations where the number of True

187  Negativesis high by (i) not penalising overprediction and (ii) assigning higher values to

188  species with smaller prevalence for identical discrimination accuracy. These flaws can be

189  strongly problematic for ecologists, and during SDM performance evaluation it is generally
190 preferable to assume that overprediction should be equivalent to underprediction (e.g.,

191 Lawson et a., 2014). Therefore, we conclude that TSSis prone to similar shortcomings as
192 AUC and Kappa when it comes to its dependence on sample prevalence and AOO.

193  Smilarity metrics as an alternative

194  To avoid these shortcomings, we propose to focus the evaluation metrics on three components
195  of the confusion matrix (Table 1): True Positives, False Positives and False Negatives,

196  neglecting the True Negatives that could be easily inflated. In particular, we seek to maximise
197  True Positives, and minimise both False Positives and False Negatives with respect to True
198  Positives. This definition exactly matches the definition of similarity indices from community

199  ecology, such as Jaccard and Sgrensen indices or the F-measure indices (Table 2). This
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200  definition also matches the indicesidentified by Li & Guo (2013) as potential presence-

201  background metrics. The Fy, index isin fact equal to twice the Jaccard index (egn. 13in Li &
202  Guo 2013), while the F index is equal to the Sgrensen index of similarity (egn. 4 inLi & Guo
203  2013) (Table 2).

204  Similarity indices have two main benefits. First, their conceptual basis is easy to understand:
205 they measure the similarity between predictions and observations. A value of 1 means

206  predictions perfectly match observations, without any False Positive or False Negative. A

207  value of 0 meansthat none of the predictions matched any observation. The lower the

208  similarity value, the higher the number of False Positives and False Negatives, proportionally
209 tothe number of True Presences. Second, as they do not include True Negatives, they are not
210  biased by a disproportionate number of True Negatives. In return, they do not estimate the
211  capacity of models to correctly predict absences. To illustrate this, we calculated the Sgrensen
212  index of similarity (F-measure) on the same examples as above. Sgrensen accurately

213  discriminated between highly over-predicting and well performing models (Fig. 1a-c). In

214  addition, when species prevalence was artificially increased for identical models, both indices
215  remained identical (Fig. 1d-f).

216  Because the specific objectives of SDM studies can be very different (e.g., invasion

217  monitoring versus habitat identification for threatened species), in a particular context we may
218  be more interested to assess whether predictions tend to over- or underestimate observations.
219  Such additional information can be obtained with similarity metrics by partitioning them into
220  two components: overprediction rate and unpredicted presence rate (Table 2). The

221  overprediction rate measures the percentage of predicted presences corresponding to false
222  presences, and was already recommended for assessing model overprediction (Barbosa et al.
223  2013). The unpredicted presence rate measures the percentage of actual presences not

224  predicted by the model, and is also called the false negative rate (Fielding & Bell 1997).
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Taken together these metrics provide afull view of model discrimination accuracy and allow
interpreting the results in the specific context of the study.

Demonstration based on simulations

To validate these theoretical demonstrations, we performed simulations of the metrics for
three case studies with different performances: a first model with 40% overprediction and
40% underprediction, a second model with 40% underprediction and no overprediction, and a
third model with 40% overprediction and no underprediction. The first case addresses a
predicted range that is shifted in space with respect to the real one; the second and third cases
address situations where the predicted range is, respectively, smaller or larger than the real
one. For each model, we predicted the distribution range of theoretical species with different
prevalence (from 0.01 to 0.60 with astep of 0.01) over an area of 100 000 pixels. Then, for
each species, we randomly sampled 500 presences in the total area and a number of absences
verifying the condition that the sample prevalenceis equal to species prevalence. We repeated
this procedure five times. For each repetition, we calculated the True Skill Statistic and the

Serensen index (R scripts available at https://github.com/Farewe/SDM M éetrics).

Our results (Figure 2) showed that TSS values decreased with prevalence for cases that
overpredicted species distributions, but not for cases that only underpredicted distributions
(Figure 2a). This result confirms our expectation that TSS does not penalise overprediction at
low prevalence. Sgrensen values, on the other hand, remained similar regardless of species
prevalence (Figure 2b). These results confirm that in the ideal situation where species
prevalence = sample prevalence, the Sgrensen index of similarity isa more appropriate metric
of model discrimination capacity.

PRESENCE-ABSENCE, SPECIESPREVALENCE # SAMPLE PREVALENCE

When sample prevalence is different from species prevalence, the ratio of sampled absences

over sampled presences is different from the ratio of true presences over true absences. For
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250 example, if too many absences are sampled (sample prevalence lower than species

251  prevaence), then the numbers of False Positives and True Negatives will be too large

252  compared to True Negatives and False Positives. The major consequence of this mismatch is
253  that any metric comparing sampled presences and absences will not reflect true model

254  performance, unlessit contains a correction factor for the mismatch between sample and

255  species prevalence. Note, however, that metrics focusing only on sampled presences (omitting
256  sampled absences) will not be affected by this bias (for example, sensitivity or rate of

257  unpredicted presences will not be affected). We illustrate in Appendix A how the

258  aforementioned metrics are biased by prevalence in this situation: the lower the prevalence,
259 the higher the metric. We further show that an appropriate estimation can only be obtained
260  when an accurate estimation of species prevalence is available, which is generally not the case
261  (seesection Estimations of species prevaence).

262 PRESENCE-PSEUDOABSENCE OR PRESENCE-BACKGROUND, SPECIES

263 PREVALENCE # SAMPLE PREVALENCE

264  In presence-pseudoabsence schemes, sample prevalence is highly unlikely to be equal to

265  species prevalence, thus the previous bias also appliesin this situation. Furthermore, an

266  additional biasis added by the fact that pseudo-absence points may be actual presence points.
267  Thisbiaswill further impact the estimation of False Positive by generating “False False

268  Positives’ (FFP), i.e. predicted presences corresponding to actual presences but sampled as
269  pseudo-absences. We illustrate with simulation how this bias increases the dependence on
270  prevalence of existing metricsin Appendix B, including the prevalence-calibrated Fy, metric
271  specifically designed for presence-background (Li & Guo 2013). We also illustrate that a

272  mathematical correction could be applied but requiresideal conditions unlikely to be obtained
273 (perfectly random samplings of presences and pseudoabsences; multiple repetitions; accurate

274  estimation of species prevalence) (see section Estimations of species prevalence).
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ESTIMATIONS OF SPECIES PREVALENCE

The only way to correct discrimination metricsin cases where sample prevalenceis different
from species prevalence requires an estimate of species prevalence. In presence-absences
schemes, species prevalence is usually estimated from the sample of presences and absences —
however we assumed here that in many situations this estimate may be biased. Besides, in
presence-pseudoabsence schemes this estimation is not available. An alternative approach
consists in estimating species prevalence from the modelled species distribution (e.g., Li and
Guo, 2013; Liu et al., 2013). Li and Guo (2013) demonstrated that this approach yielded
satisfactory results for presence-pseudoabsence based on the Fy, index. However, these results
were later contested by Liu et al. (2016) who found that neither Fy,, nor a TSS-derived metric
were able to correctly estimate species prevalence with presence-pseudoabsence data. This
inability to estimate species prevalence from presence-pseudoabsence data was expected
because an accurate estimation would require strong conditions which are unlikely to be met
in reality (see Guillera-Arroita et al., 2015 for a demonstration). Actually, for both presence-
pseudoabsence and presence-absence data, estimating species prevalence could be feasible
from limited presence-absence surveys, but may be prohibitively difficult or expensiveto
obtain (Phillips & Elith 2013; Lawson et al. 2014). This barrier to estimate species prevalence
severely limits the applicability of discrimination metrics for presence-absence and presence-

pseudoabsence models where sample prevalence is different from species prevalence.


https://doi.org/10.1101/235770
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/235770; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

295 DISCUSSION AND RECOMMENDATIONS

296 Inthispaper, we have demonstrated that evaluating model discrimination capacity (i.e., the
297  capacity to accurately discriminate between presence and absence) depends on the interplay
298  between sample and species prevalence. We studied three general situations that modellers are
299  expected to encounter in their modelling exercises: (i) a presence-absence scheme where

300 sample prevaenceisequal to species prevalence — this situation corresponds to perfectly

301 random presence-absence samplings with no detection bias, or to evaluations based on virtual
302  species; (ii) a presence-absence scheme where sample prevalence is different from species
303 prevalence—alikely situation for presence-absence modelling; and (iii) a presence-

304  pseudoabsence scheme where sample prevalence is different from species prevalence — the
305 general case for presence-pseudoabsence or presence-background modelling.

306  Our simulations unequivocally indicate that when sample prevalence is different from species
307 prevaence, none of the tested metrics are independent of species prevalence, corroborating
308  previous conclusions on the TSS (Somodi et al. 2017), and invalidating the propositions of Li
309 and Guo (2013). Our rationale and conclusions on TSS relate in fact to the same

310 argumentation as provided on AUC by Lobo et al. (2008). Both TSS and AUC have the same
311  shortcomings. Most importantly, Lobo et al. (2008) showed that the total extent to which

312  species are modelled highly influenced AUC values. Indeed, the total study extent drives

313  species prevalence (termed Relative Occurrence Areain Lobo et a. 2008); increasing extent
314  reduces species prevalence and vice versa. Consequently, artificially increasing the modelling
315  extent will artificially decrease prevalence, which in turn will increase AUC values (Lobo et
316 al.2010; Jiménez-Valverde et al. 2013), but also TSS values as we showed here. Likewise,
317  comparing species with different AOO over the same extent will provide an unfair advantage

318  to species with smaller AOO because they will have a smaller prevalence. In fact, these
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319  shortcomings are likely to be derived to any measurement that need to estimate either FP or
320 TN (Jiménez-Valverde et al. 2013).

321 Our first recommendation is a compelling advocacy for improving data quality in SDMs. Our
322  arguments as well as those of Lobo et al. (2008, 2010) and Jiménez-Valverde et a. (2013)
323  suggest that the quest for an ideal discrimination metric is futile, unless reliable presence-
324  absence datais available. Indeed, an unbiased set of presence and absence datais required to
325  estimate species prevalence (Guillera-Arroita et al. 2015), and any metric based on TN and
326 FP (Jiménez-Valverde et al. 2013). Therefore, we advocate the importance of collecting more
327 informative data. 1deally, we emphasise the necessity of obtaining at least a random or

328  representative sample of presences and absences (Phillips & Elith 2013), or to improve data
329  collection, for instance, by recording non-detections to estimate sampling bias and species
330 prevalence (Lahoz-Monfort et al. 2014; Guillera-Arroita et al. 2015). Cross-validation

331  procedures can lead to overoptimistic evaluations because of data autocorrelation, and

332  specific procedures can be applied to avoid this further bias (Roberts et al. 2016). We also
333  emphasise the importance of appropriate spatial extent; although a framework to choose

334  gspatial extent does not exist, guidelines exist to improve spatial extent definition (Barve et al.
335 2011; Jarnevich et al. 2015).

336  Our second recommendation concerns the case where quality presence-absence data are

337 available. Thisisalso the case of virtual species, which areincreasingly used to develop and
338  test SDM methodologies (Li & Guo 2013; Meynard & Kaplan 2013; Varelaet al. 2014;

339  Miller 2014; Leroy et al. 2015; Liu et al. 2016; Ranc et al. 2016; Hattab et al. 2017). Our
340  results unequivocally demonstrated that similarity/F-measure metrics, and their derived

341  components (OPR, UPR) were unbiased by species prevalence and can thus be applied in
342  these cases as discrimination metrics with better results than the classic Kappa, AUC and TSS

343  metrics. Therefore, we strongly recommend the use of these metrics in the specific case of
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344  virtua species. After al, virtual species are used to demonstrate the shortcoming and/or
345  advantages of some methods over others, and therefore the use of appropriate evaluation
346  metricsishighly desirable.

347

348
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Table 1. Confusion matrix used to calcul ate discrimination metrics.

Sampled data
Presence Absence
Predicted Presence True Positives (TP) False Positives (FP)
values Absence False Negatives (FN) True Negatives (TN)
482
483

Table 2. Existing discrimination metrics. TP = True Positives, FN = False Negatives, FP =
False Positives, TN = True Negatives, P = number of sampled presences, A= number of
sampled pseudoabsences, prevy, = estimate of species prevalence.

Metric Calculation References

Sensitivity Sn=TP/ (TP+FN) Fielding & Bell (1997)

Specificity Sp=TN/ (TN+FP) Fielding & Bell (1997)

True Skill Statistic TSS=Sn+ -1 Peirce (1884), Allouche
et al. (2006)

Jaccard’s similarity index Jaccard = TP/ (FN+TP+FP) Jaccard (1908)

Serensen’s similarity index, Serensen =2TP/ (FN + 2TP + Serensen (1948), Li &

F-measure FP) Guo (2013)
Proxy of F measure based Fpo = 2 x Jaccard Li & Guo (2013)
on presence-background

data

Fep=2%TP/(FN + TP+ c x
FP)
wherec =P/ (prevg x A)

Overprediction Rate OPR = FP/ (TP+FP) Barbosa et al. (2013)

Underprediction Rate UPR=FN/(TP+FN)=1-5n False Negative Ratein

Fielding & Bell (1997)

484
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486

TSS =097
Sensitivity = 1.00
Specificity = 0.97

a. 300% overprediction,
0% under-prediction,
prevalence = 0.01

Serensen =
UPR =
OPR =

040 | TSS=1.00
0.00 | Sensitivity = 1.00
0.75 | Specificity = 1.00

i

b. 15% over-prediction,
0% under-prediction,
prevalence = 0.01

Serensen = 0.92
UPR =0.00
OPR=0.15

TSS =085
Sensitivity = 0.85
Specificity = 1.00

Serensen = 0.92
UPR =0.15
OPR =0.00

)

c: 0% over-prediction,
15% under-prediction,
prevalence = 0.01

TS55=0.70
Sensitivity = 0.70
Specificity = 1.00

Serensen = 0.70
UPR =0.30
OPR =0.30

| TSS=067
Sensitivity = 0.70
Specificity = 0.97

Saerensen = 0.70
UPR =0.30
OPR =0.30

TSS=0.60
Sensitivity = 0.70
Specificity = 0.90

Serensen = 0.70
UPR =0.30
OPR =0.30

pe

30% over- & under-prediction,
prevalence = 0.01

30% over- & under-prediction, f.
prevalence = 0.1

d. 30% owver- & under-prediction, e.
487 prevalence = 0.25

488  Figure 1. Examples of model performances and associated metrics. The dark grey filled circle
489  represents the proportion of actual presencesin the sample. The light grey filled circle

490 represents the proportion of predicted presences in the sample. Therefore, the overlap between
491  thetwo circles represents the proportion of actual presences correctly predicted as presences
492  (‘True Positives’), whereas the white area represents the proportion of actual absences

493  correctly predicted as absences (' True Negatives'). At low prevalence (0.10), TSS does not
494  penalise overprediction: amodel that strongly overpredicts distribution (Fig.1a; 300% more
495  False Postive than True Positives) can have avery high TSS (0.97), which is almost

496  equivalent to amodel with little overprediction (Fig. 1b, TSS = 1.00). TSS does penalise

497  underprediction (Fig. 1c, TSS = 0.85) much more than overprediction (Fig. 1a-b). For

498 identically-performing models (i.e., similar rates of over- and underprediction), if prevalence
499  decreases (from 0.25 to 0.01) with increasing numbers of True Negatives, TSS values

500 increased from 0.60 to 0.70 (Fig. 1d-f). In other words, for two species with different AOO in
501 agiven study area, the species with the smaller distribution have a higher TSS than the one
502  with alarger distribution. Sgrensen, on the other hand, accurately discriminates between

503  highly over-predicting and well performing models (Fig. 1a-c). Similarity indices penalise
504 identically over- and underprediction (Fig. 1b-c). In addition, when species prevalenceis

505 artificialy increased for identical models, both indices remain identical (Fig. 1d-f).

506
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40% overprediction & 40% underprediction

Case studies — 40% underprediction
40% overprediction

a. True SkKill Statistic b. Sarensen
1.00 A
0.75
@O
=
[}
- 0.50
=
=
[T}
=
0.25 1
0.00 1
0.0 0.z 0.4 0600 0.z 0.4 0.6

508 Species prevalence

509 Figure 2. Simulations of the effect of species prevalence on species distribution model

510 discrimination metrics ((@) TSS and (b) Serensen, equations availablein Table 2) ina

511  presence-absence scheme where sample prevalence is equal to species prevalence. Three case
512  studies with varying degrees of over- and underprediction are applied to theoretical species
513  with prevalence ranging from 0.01 to 0.60 with a step of 0.01. The upper limit of 0.60 was
514  chosen so that we can calculate values for models with 40% overprediction. For each species,
515 an evaluation dataset was composed of 500 presences randomly sampled in the total area and
516  anumber of randomly sampled absences verifying the condition that the sample prevalenceis
517  equal to species prevalence, with 5 repetitions for each species (R scripts available at

518  https://github.com/Farewe/SDMMetrics). These simulations showed that TSS attributes

519  higher values at lower prevalence for case studies that overpredict species distributions, but
520 not for case studies that have only underprediction (Figure 2a). Sgrensen values, on the other
521  hand, remain similar regardless of species prevalence (Figure 2b).
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