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ABSTRACT 34 

The discriminating capacity (i.e., ability to correctly classify presences and absences) of species distribution 35 

models (SDMs) is commonly evaluated with metrics such as the Area Under the Receiving Operating 36 

Characteristic Curve, the Kappa statistic and the True Skill Statistic (TSS). AUC and Kappa have been 37 

repeatedly criticised, but the TSS has fared relatively well since its introduction, mainly because it has been 38 

considered as independent of prevalence. In addition, discrimination metrics have been contested because 39 

they should be calculated on presence-absence data, but are often used on presence-only or presence-40 

background data. Here, we investigate the TSS and an alternative set of metrics −similarity indices, also 41 

known as F-measures. We first show that even in ideal conditions (i.e., perfectly random presence-absence 42 

sampling), TSS can be misleading because of its dependence on prevalence, whereas similarity/F-measures 43 

provide adequate estimations of model discrimination capacity. Second, we show that in real-world 44 

situations where sample prevalence is different from true species prevalence (i.e., biased sampling or 45 

presence-pseudoabsence), no discrimination capacity metric provide adequate estimations of model 46 

discrimination capacity, including metrics specifically designed for presence-pseudoabsence. Our 47 

conclusions are twofold. First, they unequivocally appeal SDM users to understand the potential 48 

shortcomings of discrimination metrics when quality presence-absence data are lacking, and we provide 49 

recommendations to obtain such data. Second, in the specific case of virtual species, which are 50 

increasingly used to develop and test SDM methodologies, we strongly recommend the use of 51 

similarity/F-measures, which were not biased by prevalence, contrary to TSS. 52 

 53 
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INTRODUCTION 55 

During the last decades, species distribution models (SDMs) have become one of the most 56 

commonly used tools to investigate the effects of global changes on biodiversity. Specifically, 57 

SDMs are widely used to explore the potential effects of climate change on the distribution of 58 

species of concern (Gallon et al. 2014), to anticipate the spread of invasive species (Bellard et 59 

al. 2013), but also to prioritise sites for biodiversity conservation (Leroy et al. 2014). 60 

Therefore, conservation managers increasingly rely on SDMs to implement conservation 61 

strategies and policies to mitigate the effects of climate change on biodiversity (Guisan et al. 62 

2013). There are various methodological choices involved in the application of SDMs (e.g., 63 

data type and processing, variables, resolution, algorithms, protocols, global climate models, 64 

greenhouse gas emission scenarios), which make them particularly difficult to interpret, 65 

compare, and assess. However, evaluation of their predictive accuracy is probably a common 66 

step to most SDM studies across methodological and technical choices. This evaluation 67 

allows us to quantify model performance in terms of how well predictions match 68 

observations, which is a fundamental and objective part of any theoretical, applied or 69 

methodological study.  70 

To evaluate model predictive performance, the occurrence dataset is often partitioned into two 71 

subsets (one for calibrating models, and one for testing) and predictions are assessed in terms 72 

of whether or not they fit observations using various accuracy metrics (Araújo et al. 2005), a 73 

method called cross-validation. Other approaches include calibrating on the full dataset and 74 

testing on an independent dataset, or, when the modelled species is a virtual, in silico, species 75 

(e.g., for testing methodological aspects), directly comparing the predicted distribution with 76 

the known true distribution (Leroy et al. 2015). Accuracy metrics can be divided into two 77 

groups: discrimination vs. reliability metrics (Pearce et al. 2000; Liu et al. 2009). 78 

Discrimination metrics measure classification rates, i.e. the capacity of SDMs to distinguish 79 
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correctly between presence and absence sites. Reliability metrics measure whether the 80 

predicted probability is an accurate estimate of the likelihood of occurrence of the species at a 81 

given site. Here, we focus on the issues of discrimination metrics, since they are often used in 82 

the SDM literature to test model robustness; however we stress the importance of evaluating 83 

reliability (see Meynard & Kaplan 2012 as well as Liu et al. 2009), for example with the 84 

Boyce index which is probably the most appropriate reliability metric (Boyce et al. 2002; 85 

Hirzel et al. 2006; Cola et al. 2016). 86 

Discrimination metrics rely on the confusion matrix, i.e., a matrix comparing predicted versus 87 

observed presences and absences (Table 1). Such discrimination metrics have largely been 88 

borrowed from other fields of science, such as medicine and weather forecasting, rather than 89 

being specifically developed for SDM studies (Liu et al. 2009). Three classification metrics 90 

stand out in the SDMs literature: Cohen’s Kappa, the Area Under the receiver operating 91 

characteristic curve (AUC), and the True Skill Statistic (TSS). The AUC was introduced in 92 

ecology by Fielding & Bell (1997) (2,821 citations on Web of Science in June 2017), but has 93 

since repeatedly been criticised (Lobo et al. 2008, 2010; Jiménez-Valverde 2012) because its 94 

dependence on prevalence (i.e., the proportion of recorded sites where the species is present) 95 

makes it frequently misused. Cohen’s Kappa has also been repeatedly criticised for the same 96 

reason (McPherson et al. 2004; Allouche et al. 2006; Lobo et al. 2010). TSS (Peirce 1884), on 97 

the other hand, has fared relatively well since its introduction by Allouche et al. (2006) (719 98 

citations in June 2017), mainly because it had been shown as independent of prevalence. 99 

However, this claim has recently been questioned because of a flawed testing design (Somodi 100 

et al. 2017). More recently, all of these metrics have been contested because they should be 101 

calculated on presence-absence data, but are often used on presence-only or presence-102 

background data, i.e. data with no information on locations where species do not occur 103 

(Yackulic et al. 2013; Jarnevich et al. 2015; Somodi et al. 2017). In these cases, False 104 
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Positives (FP) and True Negatives (TN) (Table 1) are unreliable, which led Li & Guo (2013) 105 

to propose alternative approaches, specifically designed for presence-background models. 106 

They proposed the use of Fpb, a proxy of an F-measure (“the weighted harmonic average of 107 

precision and recall”, Li & Guo (2013)) based on presence-background data, and Fcpb, a 108 

prevalence-calibrated proxy of an F-measure based on presence-background data. Despite the 109 

apparent relevance of Li & Guo's (2013) metrics (13 citations as of June 2017), the field is 110 

still dominated by metrics that have been repeatedly criticised, such as AUC and Kappa, or 111 

more recently TSS (e.g., D’Amen et al. 2015; Jarnevich et al. 2015; Mainali et al. 2015).  112 

With this forum, our aim is twofold: (1) illustrate with examples and simulations that, 113 

contrary to early claims, TSS is in fact dependent on prevalence, and (2) evaluate an 114 

alternative set of metrics based on similarity indices, also known as F-measures in the binary 115 

classification literature, as potential alternative measures of model predictive ability. 116 

Similarity indices assess the similarity of observed and predicted distributions, and can be 117 

partitioned into two components to evaluate model characteristics: Over Prediction Rate 118 

(OPR) and Unpredicted Presence Rate (UPR). We compare the performance of TSS and 119 

similarity-derived metrics on three modelling situations corresponding to the most common 120 

modelling setups, depending on the interplay between species and sample prevalence (see 121 

below). We finally discuss the applicability of these discrimination metrics in SDM studies 122 

and provide practical recommendations. 123 

  124 
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SPECIES AND SAMPLE PREVALENCE  125 

Here we will define species prevalence as the ratio between the species area of occupancy 126 

(AOO, i.e., the area within the distribution of a species that is actually occupied) and the total 127 

study area (see Rondinini et al. 2006 for definitions). For example, if the study area 128 

encompasses Europe and we have divided the study area into 1-km grid cells, and if we are 129 

studying a species that occupies only 15% of those grid cells its prevalence would be 0.15. 130 

Notice that species prevalence will vary depending on the resolution of the gridded data and 131 

on the extent of the study area. In practice, however, species prevalence is never known, 132 

because the true AOO is generally not known, except for the specific case of virtual species 133 

(Leroy et al. 2015). Hence, for real species, only the sample prevalence is known, which is 134 

the proportion of sampled sites in which the species has been recorded. Meynard and Kaplan 135 

(2012) showed with virtual species that sample prevalence should be similar to species 136 

prevalence to produce accurate predictions. However, in practice, we expect sample 137 

prevalence to be different from species prevalence, unless the sampling of presences and 138 

absences is perfectly random throughout the entire study area. Indeed, samplings of species 139 

presences are generally spatially biased (Phillips et al. 2009; Varela et al. 2014). For example, 140 

ecologists look for their species of interest in sites where they have a sense a priori that they 141 

will find it, which will inevitably result in a mismatch between sample and species 142 

prevalence. Furthermore, a substantial proportion of SDM studies rely on presence-only 143 

modelling techniques, which requires to sample ‘pseudo-absence’ or ‘background’ points 144 

(hereafter called pseudo-absences). In such cases the sample prevalence is artificially defined 145 

by the number of chosen pseudo-absences, and is thus unlikely to be equal to species 146 

prevalence.  147 

Neither species prevalence nor sample prevalence should influence accuracy metrics.  In the 148 

following, we investigate three different cases corresponding to the most common situations 149 
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of SDM evaluation. First, we investigate the ideal ‘presence-absence’ case where species 150 

prevalence is equal to sample prevalence; this case corresponds to well-designed presence-151 

absence samplings or to the evaluation of SDMs based on virtual species where the true AOO 152 

is known. Second, we investigate ‘presence-absence’ situations where sample prevalence 153 

differs from species prevalence. Last, we investigate ‘presence only’ situations where sample 154 

prevalence differs from species prevalence.  155 

PRESENCE-ABSENCE, SPECIES PREVALENCE = SAMPLE PREVALENCE 156 

In this first case, we define the sample confusion matrix as perfectly proportional or equal to 157 

the true confusion matrix, i.e. the entire predicted species distribution is compared to the true 158 

species distribution. In practice, this case occurs when the sampling is perfectly random 159 

throughout the landscape and species detectability is equal to one, or when evaluating SDM 160 

performance with virtual species (e.g., Qiao et al., 2015). With this first case we can analyse 161 

the sensitivity of discrimination metrics to species prevalence only.  162 

The unexpected dependence of TSS on prevalence 163 

Previous studies have already shown that common discrimination metrics such as Kappa and 164 

AUC are influenced by species prevalence (e.g., Lobo et al. 2008, 2010). However, TSS has 165 

been widely advocated as a suitable discrimination metric that is independent of prevalence 166 

(Allouche et al. 2006). Here we demonstrate with simple examples that TSS is itself also 167 

dependent on species prevalence. When species prevalence is very low (and so is sample 168 

prevalence), we expect the number of True Negatives (Table 1) to be disproportionately high. 169 

In these cases, specificity will tend towards one, and TSS values will be approximately equal 170 

to sensitivity (Table 2). As a result, TSS values can be high even for models that strongly 171 

overpredict distributions. Figure 1 represents graphically some examples of how 172 

overprediction and underprediction play into TSS performance. For example, Fig. 1a shows a 173 

model that strongly overpredicts the distribution, producing 300% more False Positives than 174 
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True Positives, and yet TSS is close to 1 (Fig. 1a, TSS=0.97). Such a high value can in turn be 175 

produced by a model which correctly predicts the true distribution with few overpredictions 176 

(Fig. 1b, TSS = 1.00). In addition, the over-predicting model (Fig. 1a) will also have higher 177 

TSS values compared to a model that only missed 15% of presences (Fig. 1c, TSS=0.85). 178 

Furthermore, for identically-performing models, if sample prevalence decreases (from 0.25 to 179 

0.01), then the proportion of True Negatives is increased, and consequently TSS values 180 

increased from 0.60 to 0.70 (Fig. 1d-f). Consequently, TSS values can be artificially increased 181 

by decreasing sample prevalence. As an unexpected consequence, for two species with 182 

different AOO in the study area (thus different sample prevalence), the species with the 183 

smaller distribution will be considered better predicted than the one with a larger distribution 184 

(Fig. 1d-f).  185 

To summarise, TSS values can be misleading in situations where the number of True 186 

Negatives is high by (i) not penalising overprediction and (ii) assigning higher values to 187 

species with smaller prevalence for identical discrimination accuracy. These flaws can be 188 

strongly problematic for ecologists, and during SDM performance evaluation it is generally 189 

preferable to assume that overprediction should be equivalent to underprediction (e.g., 190 

Lawson et al., 2014). Therefore, we conclude that TSS is prone to similar shortcomings as 191 

AUC and Kappa when it comes to its dependence on sample prevalence and AOO. 192 

Similarity metrics as an alternative 193 

To avoid these shortcomings, we propose to focus the evaluation metrics on three components 194 

of the confusion matrix (Table 1): True Positives, False Positives and False Negatives, 195 

neglecting the True Negatives that could be easily inflated. In particular, we seek to maximise 196 

True Positives, and minimise both False Positives and False Negatives with respect to True 197 

Positives. This definition exactly matches the definition of similarity indices from community 198 

ecology, such as Jaccard and Sørensen indices or the F-measure indices (Table 2). This 199 
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definition also matches the indices identified by Li & Guo (2013) as potential presence-200 

background metrics. The Fpb index is in fact equal to twice the Jaccard index (eqn. 13 in Li & 201 

Guo 2013), while the F index is equal to the Sørensen index of similarity (eqn. 4 in Li & Guo 202 

2013) (Table 2). 203 

Similarity indices have two main benefits. First, their conceptual basis is easy to understand: 204 

they measure the similarity between predictions and observations. A value of 1 means 205 

predictions perfectly match observations, without any False Positive or False Negative. A 206 

value of 0 means that none of the predictions matched any observation. The lower the 207 

similarity value, the higher the number of False Positives and False Negatives, proportionally 208 

to the number of True Presences. Second, as they do not include True Negatives, they are not 209 

biased by a disproportionate number of True Negatives. In return, they do not estimate the 210 

capacity of models to correctly predict absences. To illustrate this, we calculated the Sørensen 211 

index of similarity (F-measure) on the same examples as above. Sørensen accurately 212 

discriminated between highly over-predicting and well performing models (Fig. 1a-c). In 213 

addition, when species prevalence was artificially increased for identical models, both indices 214 

remained identical (Fig. 1d-f).  215 

Because the specific objectives of SDM studies can be very different (e.g., invasion 216 

monitoring versus habitat identification for threatened species), in a particular context we may 217 

be more interested to assess whether predictions tend to over- or underestimate observations.  218 

Such additional information can be obtained with similarity metrics by partitioning them into 219 

two components: overprediction rate and unpredicted presence rate (Table 2). The 220 

overprediction rate measures the percentage of predicted presences corresponding to false 221 

presences, and was already recommended for assessing model overprediction (Barbosa et al. 222 

2013). The unpredicted presence rate measures the percentage of actual presences not 223 

predicted by the model, and is also called the false negative rate (Fielding & Bell 1997). 224 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/235770doi: bioRxiv preprint 

https://doi.org/10.1101/235770
http://creativecommons.org/licenses/by/4.0/


Taken together these metrics provide a full view of model discrimination accuracy and allow 225 

interpreting the results in the specific context of the study. 226 

Demonstration based on simulations 227 

To validate these theoretical demonstrations, we performed simulations of the metrics for 228 

three case studies with different performances: a first model with 40% overprediction and 229 

40% underprediction, a second model with 40% underprediction and no overprediction, and a 230 

third model with 40% overprediction and no underprediction. The first case addresses a 231 

predicted range that is shifted in space with respect to the real one; the second and third cases 232 

address situations where the predicted range is, respectively, smaller or larger than the real 233 

one. For each model, we predicted the distribution range of theoretical species with different 234 

prevalence (from 0.01 to 0.60 with a step of 0.01) over an area of 100 000 pixels. Then, for 235 

each species, we randomly sampled 500 presences in the total area and a number of absences 236 

verifying the condition that the sample prevalence is equal to species prevalence. We repeated 237 

this procedure five times. For each repetition, we calculated the True Skill Statistic and the 238 

Sørensen index (R scripts available at https://github.com/Farewe/SDMMetrics).  239 

Our results (Figure 2) showed that TSS values decreased with prevalence for cases that 240 

overpredicted species distributions, but not for cases that only underpredicted distributions 241 

(Figure 2a). This result confirms our expectation that TSS does not penalise overprediction at 242 

low prevalence. Sørensen values, on the other hand, remained similar regardless of species 243 

prevalence (Figure 2b). These results confirm that in the ideal situation where species 244 

prevalence = sample prevalence, the Sørensen index of similarity is a more appropriate metric 245 

of model discrimination capacity. 246 

PRESENCE-ABSENCE, SPECIES PREVALENCE ≠ SAMPLE PREVALENCE 247 

When sample prevalence is different from species prevalence, the ratio of sampled absences 248 

over sampled presences is different from the ratio of true presences over true absences. For 249 
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example, if too many absences are sampled (sample prevalence lower than species 250 

prevalence), then the numbers of False Positives and True Negatives will be too large 251 

compared to True Negatives and False Positives. The major consequence of this mismatch is 252 

that any metric comparing sampled presences and absences will not reflect true model 253 

performance, unless it contains a correction factor for the mismatch between sample and 254 

species prevalence. Note, however, that metrics focusing only on sampled presences (omitting 255 

sampled absences) will not be affected by this bias (for example, sensitivity or rate of 256 

unpredicted presences will not be affected). We illustrate in Appendix A how the 257 

aforementioned metrics are biased by prevalence in this situation: the lower the prevalence, 258 

the higher the metric. We further show that an appropriate estimation can only be obtained 259 

when an accurate estimation of species prevalence is available, which is generally not the case 260 

(see section Estimations of species prevalence).  261 

PRESENCE-PSEUDOABSENCE OR PRESENCE-BACKGROUND, SPECIES 262 

PREVALENCE ≠ SAMPLE PREVALENCE 263 

In presence-pseudoabsence schemes, sample prevalence is highly unlikely to be equal to 264 

species prevalence, thus the previous bias also applies in this situation. Furthermore, an 265 

additional bias is added by the fact that pseudo-absence points may be actual presence points. 266 

This bias will further impact the estimation of False Positive by generating “False False 267 

Positives” (FFP), i.e. predicted presences corresponding to actual presences but sampled as 268 

pseudo-absences. We illustrate with simulation how this bias increases the dependence on 269 

prevalence of existing metrics in Appendix B, including the prevalence-calibrated Fcpb metric 270 

specifically designed for presence-background (Li & Guo 2013). We also illustrate that a 271 

mathematical correction could be applied but requires ideal conditions unlikely to be obtained 272 

(perfectly random samplings of presences and pseudoabsences; multiple repetitions; accurate 273 

estimation of species prevalence) (see section Estimations of species prevalence).  274 
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ESTIMATIONS OF SPECIES PREVALENCE 275 

The only way to correct discrimination metrics in cases where sample prevalence is different 276 

from species prevalence requires an estimate of species prevalence. In presence-absences 277 

schemes, species prevalence is usually estimated from the sample of presences and absences – 278 

however we assumed here that in many situations this estimate may be biased. Besides, in 279 

presence-pseudoabsence schemes this estimation is not available. An alternative approach 280 

consists in estimating species prevalence from the modelled species distribution (e.g., Li and 281 

Guo, 2013; Liu et al., 2013). Li and Guo (2013) demonstrated that this approach yielded 282 

satisfactory results for presence-pseudoabsence based on the Fpb index. However, these results 283 

were later contested by Liu et al. (2016) who found that neither Fpb, nor a TSS-derived metric 284 

were able to correctly estimate species prevalence with presence-pseudoabsence data. This 285 

inability to estimate species prevalence from presence-pseudoabsence data was expected 286 

because an accurate estimation would require strong conditions which are unlikely to be met 287 

in reality (see Guillera-Arroita et al., 2015 for a demonstration). Actually, for both presence-288 

pseudoabsence and presence-absence data, estimating species prevalence could be feasible 289 

from limited presence-absence surveys, but may be prohibitively difficult or expensive to 290 

obtain (Phillips & Elith 2013; Lawson et al. 2014). This barrier to estimate species prevalence 291 

severely limits the applicability of discrimination metrics for presence-absence and presence-292 

pseudoabsence models where sample prevalence is different from species prevalence.  293 

  294 
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DISCUSSION AND RECOMMENDATIONS 295 

In this paper, we have demonstrated that evaluating model discrimination capacity (i.e., the 296 

capacity to accurately discriminate between presence and absence) depends on the interplay 297 

between sample and species prevalence. We studied three general situations that modellers are 298 

expected to encounter in their modelling exercises: (i) a presence-absence scheme where 299 

sample prevalence is equal to species prevalence – this situation corresponds to perfectly 300 

random presence-absence samplings with no detection bias, or to evaluations based on virtual 301 

species; (ii) a presence-absence scheme where sample prevalence is different from species 302 

prevalence – a likely situation for presence-absence modelling; and (iii) a presence-303 

pseudoabsence scheme where sample prevalence is different from species prevalence – the 304 

general case for presence-pseudoabsence or presence-background modelling.  305 

Our simulations unequivocally indicate that when sample prevalence is different from species 306 

prevalence, none of the tested metrics are independent of species prevalence, corroborating 307 

previous conclusions on the TSS (Somodi et al. 2017), and invalidating the propositions of Li 308 

and Guo (2013). Our rationale and conclusions on TSS relate in fact to the same 309 

argumentation as provided on AUC by Lobo et al. (2008). Both TSS and AUC have the same 310 

shortcomings. Most importantly, Lobo et al. (2008) showed that the total extent to which 311 

species are modelled highly influenced AUC values. Indeed, the total study extent drives 312 

species prevalence (termed Relative Occurrence Area in Lobo et al. 2008); increasing extent 313 

reduces species prevalence and vice versa. Consequently, artificially increasing the modelling 314 

extent will artificially decrease prevalence, which in turn will increase AUC values (Lobo et 315 

al. 2010; Jiménez-Valverde et al. 2013), but also TSS values as we showed here. Likewise, 316 

comparing species with different AOO over the same extent will provide an unfair advantage 317 

to species with smaller AOO because they will have a smaller prevalence. In fact, these 318 
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shortcomings are likely to be derived to any measurement that need to estimate either FP or 319 

TN (Jiménez-Valverde et al. 2013).  320 

Our first recommendation is a compelling advocacy for improving data quality in SDMs. Our 321 

arguments as well as those of Lobo et al. (2008, 2010) and Jiménez-Valverde et al. (2013) 322 

suggest that the quest for an ideal discrimination metric is futile, unless reliable presence-323 

absence data is available. Indeed, an unbiased set of presence and absence data is required to 324 

estimate species prevalence (Guillera-Arroita et al. 2015), and any metric based on TN and 325 

FP (Jiménez-Valverde et al. 2013). Therefore, we advocate the importance of collecting more 326 

informative data. Ideally, we emphasise the necessity of obtaining at least a random or 327 

representative sample of presences and absences (Phillips & Elith 2013), or to improve data 328 

collection, for instance, by recording non-detections to estimate sampling bias and species 329 

prevalence (Lahoz-Monfort et al. 2014; Guillera-Arroita et al. 2015). Cross-validation 330 

procedures can lead to overoptimistic evaluations because of data autocorrelation, and 331 

specific procedures can be applied to avoid this further bias (Roberts et al. 2016). We also 332 

emphasise the importance of appropriate spatial extent; although a framework to choose 333 

spatial extent does not exist, guidelines exist to improve spatial extent definition (Barve et al. 334 

2011; Jarnevich et al. 2015). 335 

Our second recommendation concerns the case where quality presence-absence data are 336 

available. This is also the case of virtual species, which are increasingly used to develop and 337 

test SDM methodologies (Li & Guo 2013; Meynard & Kaplan 2013; Varela et al. 2014; 338 

Miller 2014; Leroy et al. 2015; Liu et al. 2016; Ranc et al. 2016; Hattab et al. 2017). Our 339 

results unequivocally demonstrated that similarity/F-measure metrics, and their derived 340 

components (OPR, UPR) were unbiased by species prevalence and can thus be applied in 341 

these cases as discrimination metrics with better results than the classic Kappa, AUC and TSS 342 

metrics. Therefore, we strongly recommend the use of these metrics in the specific case of 343 
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virtual species. After all, virtual species are used to demonstrate the shortcoming and/or 344 

advantages of some methods over others, and therefore the use of appropriate evaluation 345 

metrics is highly desirable.  346 

 347 
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Table 1. Confusion matrix used to calculate discrimination metrics. 
  Sampled data 
   Presence Absence 
Predicted 
values 

Presence True Positives (TP) False Positives (FP) 

Absence False Negatives (FN) True Negatives (TN) 
 482 

 483 

Table 2. Existing discrimination metrics. TP = True Positives, FN = False Negatives, FP = 
False Positives, TN = True Negatives, P = number of sampled presences, A = number of 
sampled pseudoabsences, prevsp = estimate of species prevalence. 

Metric Calculation References 

Sensitivity Sn = TP / (TP+FN) Fielding & Bell (1997) 

Specificity Sp = TN / (TN+FP) Fielding & Bell (1997) 

True Skill Statistic TSS = Sn + Sp -1 Peirce (1884), Allouche 

et al. (2006) 

Jaccard’s similarity index Jaccard = TP / (FN+TP+FP) Jaccard (1908) 

Sørensen’s similarity index, 

F-measure 

Sørensen = 2TP / (FN + 2TP + 

FP) 

Sørensen (1948), Li & 

Guo (2013) 

Proxy of F measure based 
on presence-background 
data 

Fpb = 2 × Jaccard Li & Guo (2013) 

 Fcpb = 2 × TP / (FN + TP + c × 

FP) 

where c = P / (prevsp × A) 

 

Overprediction Rate OPR = FP / (TP+FP) Barbosa et al. (2013) 

Underprediction Rate UPR = FN / (TP+FN) = 1 – Sn False Negative Rate in 

Fielding & Bell (1997) 
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 486 

  487 

Figure 1. Examples of model performances and associated metrics. The dark grey filled circle 488 
represents the proportion of actual presences in the sample. The light grey filled circle 489 
represents the proportion of predicted presences in the sample. Therefore, the overlap between 490 
the two circles represents the proportion of actual presences correctly predicted as presences 491 
(‘True Positives’), whereas the white area represents the proportion of actual absences 492 
correctly predicted as absences (‘True Negatives’). At low prevalence (0.10), TSS does not 493 
penalise overprediction: a model that strongly overpredicts distribution (Fig.1a; 300% more 494 
False Positive than True Positives) can have a very high TSS (0.97), which is almost 495 
equivalent to a model with little overprediction (Fig. 1b, TSS = 1.00). TSS does penalise 496 
underprediction (Fig. 1c, TSS = 0.85) much more than overprediction (Fig. 1a-b). For 497 
identically-performing models (i.e., similar rates of over- and underprediction), if prevalence 498 
decreases (from 0.25 to 0.01) with increasing numbers of True Negatives, TSS values 499 
increased from 0.60 to 0.70 (Fig. 1d-f). In other words, for two species with different AOO in 500 
a given study area, the species with the smaller distribution have a higher TSS than the one 501 
with a larger distribution. Sørensen, on the other hand, accurately discriminates between 502 
highly over-predicting and well performing models (Fig. 1a-c). Similarity indices penalise 503 
identically over- and underprediction (Fig. 1b-c). In addition, when species prevalence is 504 
artificially increased for identical models, both indices remain identical (Fig. 1d-f).  505 
 506 
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 508 
Figure 2. Simulations of the effect of species prevalence on species distribution model 509 

discrimination metrics ((a) TSS and (b) Sørensen, equations available in Table 2) in a 510 
presence-absence scheme where sample prevalence is equal to species prevalence. Three case 511 

studies with varying degrees of over- and underprediction are applied to theoretical species 512 

with prevalence ranging from 0.01 to 0.60 with a step of 0.01. The upper limit of 0.60 was 513 

chosen so that we can calculate values for models with 40% overprediction. For each species, 514 
an evaluation dataset was composed of 500 presences randomly sampled in the total area and 515 

a number of randomly sampled absences verifying the condition that the sample prevalence is 516 

equal to species prevalence, with 5 repetitions for each species (R scripts available at 517 
https://github.com/Farewe/SDMMetrics). These simulations showed that TSS attributes 518 

higher values at lower prevalence for case studies that overpredict species distributions, but 519 

not for case studies that have only underprediction (Figure 2a). Sørensen values, on the other 520 

hand, remain similar regardless of species prevalence (Figure 2b). 521 
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