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Abstract

Parkinson’s disease (PD) is an age-dependent neurodegenerative disorder characterized by the
loss of substantia nigra dopaminergic (DAergic) neurons in ventral midbrain (MB). Identification
of interactions between aging and the known risk variants is crucial to understanding the
etiology of PD. Recessive mutations in SYNJ7 have recently been linked to familial early-onset
atypical Parkinsonism. We now show an age-dependent decline of SYNJ7 expression in the
striatum as well as in striatal DAergic terminals of aged mice. Heterozygous deletion of SYNJ1
in mice causes selective elevation of PIP, in the MB, and manipulation of PIP, levels also
impairs synaptic vesicle recycling preferentially in MB neurons. SYNJ7*" mice display
progressive PD-like behavioral alterations and DAergic terminal degeneration. Furthermore, we
found down-regulation of human SYNJ7 transcripts in a subset of sporadic PD brains,
corroborating the role of an age-dependent decrease in SYNJ7 in predisposing DAergic neuron

vulnerability and PD pathogenesis.

Introduction

Parkinson’s disease (PD) is one of the most debilitating neurodegenerative disorders affecting
millions of people worldwide. Most cases are diagnosed later in life, and the incidence of PD
grows exponentially after the age of sixty (Driver et al., 2009). Due to the sporadic nature of
most cases, it has been difficult to determine the underlying pathogenic mechanism. Emergent
evidence suggested convergent pathogenic pathways, including dysfunctional synaptic
membrane trafficking, during disease progression (Trinh and Farrer, 2013; Schirinzi et al.,
2017). Human genetic studies and genome-wide association studies (GWAS) have also
revealed an overlapping pool of genes, such as LRRK2 and SNCA, that contributes to both

familial and sporadic PD (Singleton et al., 2013; Spataro et al., 2015; Hernandez et al., 2016).
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SYNJ1/PARK20 is one of the most recent additions to the PARK gene family, as three
recessive point mutations — R258Q, A459P, and R839C, in both the SAC1 domain and the 5-
phosphatase domain of the SYNJ7 gene, have been identified in families with juvenile atypical
Parkinsonism with epilepsy (Krebs, et al., 2013; Quadri, et al., 2013; Olgiati, et al., 2014, Kirola,
et al., 2016; Taghavi, et al., 2017). Synaptojanin1 (synj1, encoded by SYNJ7) is an important
phosphoinositide phosphatase, which has two isoforms — the 170-kDa isoform a (NP_003886.3)
and the 145-kDa isoform b (NP_982271.2). The brain-specific isoform b is enriched in nerve
terminals where it regulates synaptic vesicle (SV) recycling and synaptic protein targeting
(McPherson et al., 1996; Micheva et al., 1997; Mani et al., 2007; Dong et al.,, 2015) by
hydrolyzing membrane phosphoinositides (e.g. P1(4,5)P,, PI(3,4)P,, PI3P and PI4P) via its two

11  phosphatase domains and by binding to endophilin at the proline-rich domain. Knock-in mice
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12 carrying the homozygous R258Q disease allele, which abolishes the SAC1 activity (Krebs et al.,
13 2013) recapitulated parkinsonian symptoms and exhibited defective clathrin uncoating and
14  dystrophic changes in the nigrostriatal terminals (Cao et al., 2017b). Interestingly, missense
15 mutations in auxilin (encoded by DNAJC6/PARK19), another protein involved in clathrin
16 uncoating, were also identified in early-onset familial forms of PD (Edvardson et al., 2012;
17  Koroglu et al., 2013). The pathogenic mechanism connecting dysfunctional synaptic membrane
18 trafficking and PD pathogenesis, however, remains unclear, although a recent study in
19  Drosophila suggests a potential link to autophagic deregulation (Vanhauwaert et al., 2017).
20 Nonetheless, disease mutations in familial PD represent rare occurrences in the affected
21  population. A clinical study has now found variations in the non-coding regions of DNAJC6 in
22  sporadic PD cases (Olgiati et al., 2016). More strikingly, in a recent meta-analysis for the
23 sporadic PD GWAS, the gene encoding endophilinA, SH3GL1, was revealed as one of 17 new
24  risk variants (Chang, et al.,, 2017). These results have brought increasing interest in
25 understanding if synj1, a close interacting partner of endophilinA, contributes to risks in sporadic

26 PD via common pathways at the nerve terminal.

27 For sporadic PD, aging is considered the greater contributor compared with genetic risks
28  (Driver et al., 2009; Collier et al., 2011). Major pathogenic pathways implicated in PD such as
29  mitochondrial dysfunction, membrane trafficking and autophagy-lysosomal impairment,
30 increased oxidative stress and neuroinflammation also deteriorate during normal aging. More
31  importantly, the number of substantia nigra par compacta (SNpc) DAergic neurons in the ventral
32  midbrain (MB), whose degeneration is known as the hallmark of PD, is also markedly reduced in

33  healthy aged subjects (Stark and Pakkenberg, 2004; Mortera and HerculanoHouzel, 2012). How
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aging interacts with genetic variants and triggers the clinically significant pathological course of

PD remains to be understood.

To understand whether loss of function of SYNJ1 leads to DAergic vulnerability in aging-
related PD pathogenesis, we examined the impact of aging on SYNJ7 expression and
performed a detailed investigation in the previously established SYNJ7™ mice (Voronov, et al.,
2008). We demonstrate an age dependent decline of SYNJ7 expression in the striatum,
particularly in the DAergic terminals; and age-dependent reduction in SYNJ7 predisposes
SYNJ1* mice to PD-like motor dysfunctions and striatal DAergic degeneration. Our study
demonstrates for the first time haploinsufficiency of a Parkinsonism gene contributes to

dopamine neuron vulnerability in aged mice.

Results

SYNJ1 transcript levels are reduced in the striatum of sporadic PD brains and healthy

aged brains

To understand the role of SYNJ7 in sporadic PD, we visited data sets in the public domain
(GSE28894, GSE20168, GSE8397) and found down-regulation of SYNJ1 transcripts in multiple
brain regions including the prefrontal cortex, the striatum and the substantia nigra (SN) in
subsets of sporadic PD brains (Figure 1A). The reduction of SYNJ17 in these brain regions,
except the lateral SN, is unlikely due simply to neuronal or synaptic loss, as the synaptic
marker, SYP (encoding synaptophysin) was largely unaltered in the same subjects (Figure 1B).
This result encouraged us to explore the potential link between SYNJ7 loss-of-function and age-
dependent sporadic PD. To investigate the impact of aging on SYNJ7 expression, we first
examined postmortem human data from public databases by extracting the raw measurements
of SYNJ1 transcripts in developing human brains (data from Allen Brain Atlas, lacking SN data)
and in aged human brains (data from GTEx) (see Materials and Methods / human data
analysis). To better elucidate age-dependent changes in transcript levels, we binned the data
by age groups and normalized both data sets (developing and aged) to the mean transcript level
in the cortex of the overlapping age group 21-30 (Figure. 1C left). An accelerated decline of
SYNJ1 transcripts was observed in the striatum from 11-20 years (bin 3) to 41-60 years (bin 6),
while cortical SYNJ1 remained largely steady. The decline of SYNJ1 in the striatum is not due to
neuronal loss or synapse loss as p-actin (Figure 1C middle) and synapsin1 (Figure 1C right)

levels do not exhibit similar trends in the striatum. However, the decrease of SYN7 (synapsin 1)
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expression became apparent at 61-70 years in the cortex, and was accompanied by a
comparable reduction in the SYNJ1 level, suggesting synapse loss. The age-dependent down-

regulation of SYNJ1 in the SN is less clear due to lack of available data, although the average

A W

values in most binned groups appear similar to those in the striatum.

To verify the above findings in an animal model and to determine if the decline of SYNJ1
is reflected beyond the mRNA level to the protein level, we performed immunohistochemical
analyses of C57/BL6 mouse brains of both sexes at various ages. We first verified the specificity

of the synj1 antibody for its synapse-enriched localization and its validity for quantitative
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measures in both cell cultures and brain slices (Figure 1-Figure supplement 1). We then
10 performed immunohistochemical staining for tyrosine hydroxylase (TH), synj1, and synapsin1/2,
11  a presynaptic marker, in coronal sections that included both the striatum and the cortex (Figure
12 1-Figure supplement 2A). The immunofluorescence of synj1 and synapsin1/2 in the striatum
13  was normalized to that in the cortex for each slice (see Materials and Methods/Data analysis).
14  While synapsin1/2 level remained at a constant 80% relative to the cortex across all age groups,
15  synj1 expression was significantly reduced in the striatum of 18-month old mice (Figure 1-Figure

16  supplement 2B), reminiscent of the aged human brain.
17  Synj1 expression in striatal DAergic terminals is reduced in aged mice

18 The striatum is an essential part of the basal ganglia, where DAergic terminals from the ventral
19 MB and glutamatergic (GLUTergic) terminals from the cortex converge at striatal medium spiny
20  neurons to regulate motor output (Figure 2A). To determine if DAergic terminals in the striatum
21  also exhibit an age-dependent change in synj1 expression, we performed an in-depth analysis
22 of the immunofluorescence in the coronal sections from 3-month and 18-month old mice. By co-
23 labeling with TH, the rate-limiting enzyme for DA synthesis, and synapsin1/2, a presynaptic
24  marker, we were able to differentiate DAergic terminals (TH and synapsin1/2 positive) and non-
25 DAergic terminals (TH negative, synapsin1/2 positive). We found that in DAergic terminals,
26 synj1 expression was 10% lower than in non-DAergic terminals at 3-month old (Figure 2B-K);
27  however, this difference grew to nearly 50% in 18-month old animals. Consistently, the
28  cumulative probability for synj1 immunofluorescence sampled from over 1000 nerve terminals
29 revealed a greater difference between TH* and TH™ terminals in an 18-month old mouse

30 compared to a 3-month old mouse (Figure 2 E, K).

31  MB displays specific vulnerability to PIP, metabolism in SYNJ71* mice
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The primary function of synj1 is to regulate phosphoinositide metabolism and support the
normal functions of membrane trafficking. To understand the impact of synj1 expression on
membrane phosphoinositide levels, we measured the content of PIP,, PIP and Pl in the cortex,
the striatum and the MB of 1-year old SYNJ7*" mice and littermate wildtype (WT) mice using
high-performance liquid chromatography (HPLC). We first noted that the PIP; level in the MB is
nearly 2-fold higher, whereas the Pl and the PIP levels were significantly lower, than those in
the cortex (n=23) (Figure 3A). The PIP; level in the MB was further elevated by 15% in 1-year
old SYNJ1" mice than that of WT (p=0.007) (Figure 3B). While there is a trend of increased

PIP, in the striatum (p=0.07), no obvious change in the cortex of SYNJ71" mice was observed

© 00 N O U b W N

=
o

(Figure 3B). The amount of PIP, increase in the heterozygous MB is commensurate to a
11  previous study, which found PIP; levels to be elevated by approximately 12% in the whole brain
12 samples of SYNJ7™ mice (Voronov, et al., 2008).

13 To determine how PIP, accumulation in the MB could affect neuronal function, we
14  examined the efficiencies of SV recycling in cultured neurons by expressing an optical reporter,
15  pHluorin. PHIuorin is a pH-sensitive variant of GFP whose protonation and deprotonation results
16 in a dynamic 20-fold change in fluorescence, which allows for the quantitative measurement of
17 SV exocytosis and endocytosis when conjugated to the lumenal aspect of the vesicular
18 transporter (Sankaranarayanan et al., 2000; Ariel and Ryan, 2010; Pan and Ryan, 2012).
19 VMAT2-pHIluorin or vGLUT1-pHluorin was expressed in cultured MB or cortical neurons,
20 respectively, and a 10 Hz, 10 s field stimulation was applied to trigger SV recycling. We
21 previously showed that cultured MB but not cortical neurons from SYNJ71*" mice displayed
22  slowed endocytosis (Pan et al., 2017), suggesting that insufficient conversion of PIP, due to
23 heterozygous deletion of SYNJ1 affects SV endocytosis preferentially in MB neurons. To verify
24  the selective effect of altered PIP, levels in MB neurons, we treated cultured neurons with
25 LY249002 (LY), a PI3K inhibitor, which blocks the conversion of PIP, to PIP; on the plasma
26 membrane, and found that SV endocytosis in MB neurons was substantially slower after a 10-
27 15 min treatment (Figure 3C-E). In contrast, cortical neurons showed minimal responsiveness to
28 LY incubation up to 30 min. The changes in the amount of exocytosis in the MB neurons are
29 more heterogeneous across different nerve terminals and do not exhibit any difference on
30 average. Our data suggests that SV trafficking in MB neurons is more susceptible to PIP,

31 accumulation than cortical neurons.

32 SYNJ1" mice display PD-like motor function deficits
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We next evaluated the motor functions associated with the reduced expression of SYNJ71. Mice
with complete deletion of SYNJ7 are not viable and die shortly after birth. SYNJ71*" mice,
however, appear normal with regard to body size and life span. Unlike the R258Q disease
mutation homozygous knock-in mice (RQ KI), some of which display severe movement
problems and tonic-clonic seizures (Cao et al., 2017b), SYNJ1* mice do not have seizures or
apparent gait difficulties in their lifetime. When SYNJ71*" and SYNJ1"* littermates were
evaluated for their general locomotor functions in the open-field assay, 7-month old SYNJ1"™

mice exhibited hyperactivity (Figure 4A) compared to their littermates. Both SYNJ7** and
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SYNJ1™ mice displayed a significant deterioration in their activity levels at 12-months old and

SYNJ1* mice appeared no different than WT mice at this age (Figure 4B). To further test the

=
o

11  integrity of dopamine-regulated motor function, we challenged the mice with quinpirole, a DA D2
12 receptor (D2R) agonist. Motor inhibition induced by quinpirole was significantly impaired in
13 SYNJ1™ mice at 12-months old (Figure 4C), as was their motor coordination when tested on the
14  accelerated Rota-rod (Figure 4D). Such decline in motor functions following hyperactivity in
15 SYNJ1™ mice is reminiscent of the findings in many other PD models (Chesselet and Richter,
16 2011, review), including the LRRK2 G2019S KI mice (Volta, et al., 2017).

17  Aged SYNJ1* mice exhibit loss of DAergic terminals

18 To further understand the pathological consequence of reduced SYNJ7 expression, we
19 performed the following analyses: 1) the integrity of DAergic neurons and their nerve terminals
20  2) striatal DA content and metabolism. Stereological analysis of DAergic neurons in the ventral
21  MB revealed no difference in the number of DAergic cell bodies in aged (18-months old)
22 SYNJ1* mice (Figure 5-Figure supplement 1). In SYNJ71™* mice, the number of DAergic
23 terminals in striatal slices was reduced by nearly 50% as mice aged from 3-months to 18-
24  months. While the number of DAergic terminals was unaltered in SYNJ7" mice compared to
25  SYNJ1** at 3-months old, aging led to a significantly exacerbated reduction of an additional
26 50% in 18-month old SYNJ7” mice (Figure 5A-B). Consistently, striatal DA content and DA
27  metabolites, measured by HPLC, were also reduced in the SYNJ7" mice (Figure 5C),
28 insinuating that SYNJ17 haploinsufficiency leads to the decline of DA release, the loss of DAergic

29 terminals, or a combination of both due to SYNJ7 haploinsufficiency.
30

31 Discussion
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Emerging evidence has demonstrated a link between recessive point mutations in
SYNJ1/PARK20 and familial early-onset atypical Parkinsonism. We now show that a reduction
of SYNJ1 expression, which results in aberrant accumulation of PIP, in specific brain regions or
neuron populations, may contribute to the risks for age-related sporadic PD. SYNJ1
heterozygous mice are unable to maintain the proper function of the midbrain DAergic system,
driving PD related pathological processes in aged individuals. Our data, therefore, implicates a

role of SYNJ1 loss-of-function in the pathogenesis of age-dependent sporadic PD.

We show that SYNJ17 expression is down regulated in the striatum during aging in
both humans and mice. This is important evidence supporting SYNJ17 functional insufficiency in
PD risk, as most pathogenic changes, such as neuroinflammation and mitochondrial
malfunction, are also found to present in normal aging. Whether age-related reduction of SYNJ1
interacts with other sporadic PD variants has yet to be determined. We previously reported a
potential genetic interaction between LRRKZ2 disease mutation G2019S and SYNJ1
haploinsufficiency in mice and found LRRK2 mediates phosphorylation of synj1, which leads to
an impairment in SV trafficking in MB neurons (Pan et al., 2017). In addition, although several
large-scale genome-wide studies failed to reveal SYNJ1 at the level of significance examined,
the gene encoding its closest interacting partner, SH3GL 7/endophilinA, is now suggested to be
a significant PD-risk gene. Recent studies have also shown that LRRK2 phosphorylates
endophilinA and synj1 (Matta et al., 2012; Arranz et al., 2015; Islam et al., 2016; Pan et al.,
2017), further suggesting the potential involvement of the LRRK2-endophilinA-synj1 complex in
regulating synaptic membrane trafficking, a process which may go awry in the pathogenesis of
PD.

While nearly all reported mouse models with complete knockout of recessive PD genes fail
to show any PD related phenotypes, our study demonstrates for the first time that
haploinsufficiency of a Parkinsonism gene is sufficient to cause DA neuron vulnerability in aged
mice. SYNJ1" mice display PD-like behavioral and pathological changes. SYNJ1*" mice show
hyperactivity, which was found in younger mice followed by reduced motor coordination and
D2R sensitivity at mid-age. Although it remains to be understood whether and how increased
motor activity at younger ages result in a faster decline in motor functions during aging, this
phenotype is often found in other PD mouse models, such as the WT and A53T a-synuclein
transgenic mice (Unger et al.,, 2006; Lam et al., 2011; Chesselet et al., 2012) as well as the
LRRK2 G2019S Kl mice (Volta, et al., 2017). Furthermore, aged SYNJ1"" mice display

advanced DAergic denervation in the striatum accompanied by reduced DA and DA metabolite
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content. Interestingly, the combined functional decline and pathological DAergic degeneration
are mostly found in mouse models carrying variants with early disease onset and high clinical
penetrance (Tsika et al., 2014; Sumi-Akamaru et al., 2015; Cao et al., 2017b). Therefore, our

results indicate that SYNJ7" mice may be used as a potential PD model for dissecting

ua A W N

pathogenic pathways at the early stages of PD.

The key question is how reduced levels of SYNJ7 contribute to vulnerability selectively
within the DAergic system. We found that DAergic terminals express less synj1 compared to

neighboring non-DA terminals in the striatum. We also showed that cultured ventral MB

O 00 N O

neurons, including nigral DAergic neurons that project to innervate the striatum, exhibit higher
10  vulnerability to SV recycling compared to cortical neurons in response to SYNJ17 deficiency (Pan
11 et al., 2017) and significant PIP; elevation. In fact, the elevated levels of PIP, was robust in MB
12 of SYNJ1™ mouse, but not in the cortex, suggesting a lack of compensatory mechanism to
13  maintain the homeostasis of PIP, levels in MB. These impairments could expedite local
14  mechanisms for synapse elimination or axon degeneration (Stevens et al., 2007). Our study did
15  not differentiate DAergic from GABAergic neurons or VTA from SNpc neurons in the ventral MB
16  with respect to their age-dependent change in synj1 levels or their sensitivity to PIP, elevation.
17  Considering the lack of difference in SV endocytosis between TH* and TH™ neurons of the
18 ventral MB at baseline (Pan et al., 2017), it is likely that disease protective mechanisms for VTA
19 and GABAergic neurons arise from signaling pathways other than synj1 and lipid alterations.
20  For example, different calcium burdens or neuroinflammatory responses (Pan et al., 2012;
21 Sulzer et al., 2017; Surmeier et al., 2017) may account for their outcome. It was recently
22  reported that loss of synj1 SAC1 activity leads to impaired autophagosome maturation in flies
23 due to abnormal accumulation of PI3P (Vanhauwaert et al., 2017). The PIP levels, however, are
24 not altered in the cortex, the MB or the striatum of the SYNJ1* mouse in our study. It remains
25 to be tested if changes in PIP, levels alter autophagic signaling via alternative pathways
26 (George et al., 2016) in SYNJ7” mice that contribute to DAergic neurodegeneration in the

27 striatum.

28 Interestingly, the SAC1 domain of synj1 that predominantly hydrolyzes phosphatidylinositol
29 monophosphates is considered a weaker enzyme compared to the 5-phosphatase domain,
30  which mainly hydrolyzes PI(4,5)P2 to produce PI4P; yet, the ablation of the SAC1 activity leads
31 to DAergic degeneration in multiple model systems (Cao et al.,, 2017b; Vanhauwaert et al.,
32 2017). Although the functional outcome of the disease-related mutation, R839C, in the 5-

33  phosphatase domain of synj1 has not been examined; other mutations and variants that were
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known to substantially impair 5-phosphatase activity were found in patients with early-onset
generalized neurological degeneration and epilepsy (Dyment, et al., 2015; Hardies, et al., 2016).
The combined clinical and animal data prompts an interesting possibility that reduced
expression level or overall function of synj1, rather than the impairment of an individual

functional domain is relevant to the pathogenesis of sporadic PD.

Taken together, our findings demonstrate that aging may predispose certain human
populations to PD risk via a reduction of SYNJ7 levels in the striatum. Our study thus not only
assists in the identification of novel biomarkers for PD, but also suggests a therapeutic idea for
PD by restoring SYNJ17 levels.

Materials and methods
Human data analysis

Sporadic PD brain transcriptome data was downloaded from PMID: 20926834. Among the 17
genome-wide expression datasets, we only examined datasets with a sample size greater than
15 in each group to ensure the statistical power. Three of these datasets, GSE28894,
GSE20168, GSEB8397, were found to exhibit statistical difference (P < 0.05, two-sample
Student’s t test) in SYNJT levels in multiple brain regions. Clinical information of the postmortem
brain tissue samples can be found in the following articles: PMID 15965975 and 16344956.
Normal human brain age-dependent data was downloaded from Allen Brain Atlas / developing
human brain (7D4BTIMR5K11_0log2, JOYAOQ1MXT11_0_SYN1_log2, and
N2884L1TVT11_3_ACTB_log2, referred to as “Allen brain data” hereafter) which contains data
from postconceptional week 8 to 40 years old; as well as from the Genotype-Tissue Expression
(GTEx) project, which contains brain region-specific data from 20-70 years old
(www.gtexportal.org, referred to as GTEx data hereafter). Raw mRNA data from different brain
regions was expressed in the Log2 reads per kilobase per million (RPKM) scale. For Allen brain
data, measurements from various parts of the cerebral cortices were averaged and expressed
as “cortical” mRNA for each subject. Data for the striatum was collected as a single entry and
data for substantia nigra was absent. For each documented age, the number of subjects varied
from 1 to 3 in the Allen brain data. For GTEx brain data, a single entry was found for cortex,
putamen/basal ganglia (denoted as striatum) and substantia nigra. Data distribution was
clustered in the 40-70 years range where typically over 10 subjects were measured for a

specific age. We used cortical expression in the 21-30 years age bin for normalization to conjoin
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the two data sets and reveal age-dependent changes in the full spectrum, but have inevitably

lost absolute quantitative information on the log2 scale.
Animals

Mice were housed in the pathogen-free Center for Comparative Medicine at The Icahn School
of Medicine at Mount Sinai. Handling procedures were in accordance with the National Institutes
of Health guidelines and approved by the Mount Sinai Institutional Animal Care and Use
Committee (IACUC).

Cryostat, Imnmunofluorescence and antibodies

Mice were anesthetized with ketamine (100mg/kg) and xylazine (10mg/kg) diluted in saline and
perfused transcardially with 4% fresh paraformaldehyde, and post-fixed with 4%
paraformaldehyde for over two hours. Dissected brains were cryoprotected in 30% sucrose prior
to flash-freezing in the OCT-compound media (SAKURA). Coronal sections were sliced at 40
um thickness on a Leica CM 3050 S research cryostat and kept at an anti-freeze medium for
immunohistolochemical (IHC) analysis. IHC was carried out following a standard protocol as
previously described (Lu, et al., 2014). Briefly, tissue slices were washed in 1X PBS and
blocked in 5% goat serum for 30-60 min. Primary antibodies diluted in 5% goat serum were
applied and incubated overnight at 4°C, followed by Alexa Fluor® secondary antibodies
(Invitrogen™). The tissue slices were then subjected to extended washing using 1X PBS to
reduce background fluorescence before mounting with Diamond Antifade Mountant (Thermo
Fisher Scientific, P36962). The following primary antibodies were used: Anti-TH antibody
(monoclonal, Sigma-Aldrich, T2928, or polyclonal, EMD Millipore, AB152, both used at 1:500
dilution), rat anti-DAT (EMD Millipore, MAB369, 1:1000 dilution), rabbit anti-synj1 (Novus
Biologicals, NBP1-87842, 1:500 dilution), guinea pig anti-synapsin 1/2 (Synaptic System,
106004, 1:500 dilution).

Cell culture and Transfection

MB cultures (Mani and Ryan, 2009; Pan and Ryan, 2012) and cortical cultures (Mani et al.,
2007) were prepared as described previously. Ventral MBs (containing both VTA and SN) or
cortices were dissected from P0-1 mouse pups and digested using papain (Worthington,
LK003178) or trypsin (Sigma, T1005) supplemented with DNase (Sigma, D5025), respectively.
MB neurons were then prepared according to our previously published protocol plated at a cell

density of 199,000 cells / cm? and grown in the Neurobasal-A based medium supplemented with
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GDNF (10 ng/mL, EMD Millipore, GF030). Cortical neurons were plated at 142,000 cells / cm?
and grown in the MEM-based medium supplemented with insulin (24 ug / ml, Sigma, 16634) and
transferrin (0.1 mg / ml, Calbiochem, 616420). Typically, four PO-P1 mouse brains are required
for a MB culture. Calcium phosphate was used for transfection to achieve sparse expression
and to ensure analysis of single neurons during the imaging experiments. Transfection was
carried out at DIV 3-5 for MB neurons and at DIV 5-6 for cortical neurons, after which, the
growth medium was replaced with a fresh medium supplemented with an antimitotic agent,
ARA-C (Sigma-Aldrich, C6645).

Optical setup and live cell imaging

For live cell imaging, cells were mounted on a custom-made laminar-flow stimulation chamber
with constant perfusion (at a rate of ~0.2-0.3 mL / min) of a Tyrode’s salt solution containing 119
mM NaCl, 2.5 mM KCI, 2 mM CaCl2, 2 mM MgCI2, 25 mM HEPES, 30 mM Glucose, 10 uM 6-
cyano-7- nitroquinoxaline-2,3-dione (CNQX), and 50 uM D, L-2-amino-5-phosphonovaleric acid
(AP5) and buffered to pH 7.40. NH,CI solution containing 50 mM NH,4CI, 70 mM NaCl, 2.5 mM
KCI, 2 mM CaCl2, 2 mM MgClI2, 25 mM HEPES, 30 mM Glucose, 10 uM CNQX, and 50 uM
AP5, buffered to pH 7.40 was used to reveal total pHluorin expression for normalizing
exocytosis. All chemicals were purchased from Sigma-Aldrich. Temperature was clamped at
30.0 °C at the objective throughout the experiment. Field stimulations were delivered at 10 V /
cm by A310 Accupulser and A385 stimulus isolator (World Precision Instruments). A 1 ms pulse
was used to evoke single action potentials. Images were acquired using a highly sensitive,
back-illuminated EM-CCD camera (iXon+ Model # DU-897E-BV, Andor Corp., CT, USA).
Olympus IX73 microscope was modified for laser illumination. A solid-state 488 nm OPSL smart
laser at 50 mW (used at 10% and output at ~ 2 mW at the back aperture) was built into a laser
combiner system for millisecond on/off switching and camera blanking control (Andor Corp).
PHIuorin fluorescence excitation and collection were through an Olympus PLAPON 60X0O 1.42
NA objective using 525/50m emission filter and 495LP dichroic filters (Chroma, 49002). Images
were sampled at 2 Hz with an Andor Imaging Workstation driven by Andor iQ-CORE-FST (ver
2.x) Q3.0 software.

Confocal Microscopy

An LSM780 upright confocal microscope driven by the Zeiss Zen Black software was used to
examine the immunofluorescence in brain slices. Images were acquired at 1024X1024 pixel

resolution using single scans by a 10x (for striatal and cortical synj1 expression analysis, Figure
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1-Figure supplement 1D-E and Figure 1-Figure supplement 2) or a 63x lens (for nerve terminal

analysis, Figure 2). Immunofluorescence of these images was analyzed using ImageJ.
HPLC lipid analysis and monoamine analysis

Different brain regions were dissected using rodent brain matrices (ASI, RBM-2000C). Flash
frozen mouse brain samples were used for lipid extraction, followed by anion-exchange high-
pressure liquid chromatography quantification as described previously (Berman et al., 2008;
Landman et al., 2006; Zhu et al., 2015 and Cao et al., 2017a). Striatal samples were collected
from freshly dissected brains using 2mm reusable biopsy punch (World Precision Instrument,
504529) and flash frozen for further analysis of DA content and two major DA metabolites, HVA
and DOPAC, by the Vanderbilt University Neurochemistry Core.

Behavioral assays

Male SYNJ1™ mice and their littermate controls were tested for general locomotor activity in an
open field chamber in a dark room for 60 min. Motor coordination was assessed by accelerated
Rota-rod assay. All mice were subjected to 1-hour habituation in the test room with food and
water supply prior to testing. Open-field test — each mouse was placed in the center of a 16 x
16-inch chamber equipped with a Versamax monitor system (Accuscan) in a quiet dark room.
The mouse horizontal and vertical movements were monitored and recorded for 60 minutes by
a grid of 32 infrared beams at ground level and 16 elevated (3 inch) beams. Quinpirole test —
mice were divided into two groups for each genotype which were then subjected to peritoneal
injection of a D2R agonist quipirole (0.05 mg/kg) or 1x PBS before being placed into the open-
field chamber. Movement was recorded for the following 60 minutes in the dark room as
described above. Accelerated Rota-rod test — the mouse was placed on a rotating rod with
increasing acceleration from 4-40 RPM over 5 minutes. Each mouse was trained for 2 trials
before the test. The duration a mouse spent on the accelerated Rota-rod was averaged for

consecutive 3 trials spaced by 15 minutes.
Stereology microscopy

Mice were perfused and fixed as described above (Cryostat, Immunofluorescence and
antibodies section). MB brain tissues were cryo-sectioned at 40 ym in thickness using Leica
CM3050s and stored in antifreeze media containing 30% ethanol glycol, 25% glycerol and 5%
PB. For stereological counting, one in every five slices was selected and a total of 8 brain slices

were used from each mouse for IHC labeling. Zeiss Axioplan2 was used for tissue slice imaging
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1  with a 20X objective, and Stereo Investigator was used for data analysis using the following
2 parameters: frame sizes: 150 ym x 150 ym; grid sizes: 250 ym x 250 ym; top guard zone

3 height: 2 ym and optical dissector height: 8 ym.
4  Data analysis and statistics

All statistical tests were performed in OriginPro 8.2, except the Kolmogorov-Smirnov test, which
uses a built-in function at http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html.
Descriptive statistical tests were carried out to determine the distribution of the data sets. All

data sets conforming to the normal distribution were subjected to two-sample Student’s f test or

O© 00 N O u»

multiple-sample ANOVA test followed by Tukey’s post-hoc tests. P values less than 0.05 was
10 considered statistically significant. For human brain data (Figure 1C), the size of each bin was
11  arbitrarily determined to balance sufficient samples and to represent the empirical stages of life
12 (0-10 years: childhood / developmental stage; 11-20 years: adolescent / developmental stage;
13 21-30 years: early adulthood / full-grown with no degeneration; 30-40 years: adulthood /
14  possible signs of aging and degeneration; 41-60 years: mid-aged / signs of aging and
15 degeneration; 61-70 years: aged / progressive degeneration). For immunohistochemical
16  analysis in Figure 1-Figure supplement 1 D-E and Figure supplement 2, three rectangular
17  regions of interest were placed randomly in the cortical or the striatal region to cover an equal
18 sized area in both regions. Both sides of the hemispheres were analyzed from 2 brain slices for
19 each of the 3 mice at the selected age. For analysis of nerve terminal synj1
20 immunofluorescence, confocal images were analyzed using the ‘Time series analyzer V3.2’
21 plug-in by Imaged. Universal 2x2 um circular regions of interest were used and placed manually
22 in a double-blinded fashion. Nearly 5% of the measurements that fall outside of the mean £ 3x
23 standard deviation were excluded as outliers. The mean value of immunofluorescence was
24  calculated for each image across 30-80 regions of interest and these mean values were then
25 averaged across all images (10-20) sampled from each animal. Each data point represents the
26  averaged value for one animal and the error bar represents standard error from 10-20 samples.
27  For quantification of DAergic terminals in striatal slices (Figure 5A-B), circular regions of
28 interests were manually placed on all colocalized puncta on the 135 X 135 um image. To
29  reduce the error of this relatively arbitrary measurement, the following strategies were used: 1)
30 Analysis was performed in a double-blinded fashion. 2) The immunostaining procedure, the
31 confocal imaging settings, and the gain / contrast of the images during analysis were kept the
32 same for a matching number of SYNJ7”* and SYNJ7" samples. 3) A matching number of

+/+

33 images from SYNJ1"* and SYNJ71" mice were assigned for analysis at a single time. 4) Counts
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were compared between two analysts. For pHluorin imaging study (Figure 3D-E), data was
collected from 2-3 batches of cultures. Each data point represents an average of 3 stable trials
on a single cell before and after drug treatment (connected by a black line). Typically, 15-50

nerve terminals with consistent responses were selected for analysis for each cell.
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Figure legend

Figure 1. SYNJ1 transcripts are reduced in subsets of sporadic PD brains and the
striatum of aged humans

A-B) SYNJ1 (A) and SYP (synaptophysin) (B) mRNA levels from postmortem sporadic PD and
control human samples were analyzed based on datasets GSE28894, GSE20168, GSE8397
(see Materials and Methods / Human Data Analysis). Each data point represents one patient. P
values are from two-sample Student’s t test. C) SYNJ17 (synj1, top), ACTB (p-actin, middle) and
SYN1 (synapsin |, bottom) transcript levels in different brain regions were normalized to the
average of the “21-30 years” bin and plotted against all binned age groups. Data sets obtained
from Allen Brain Atlas developing human brain and GTEx aged brain bank. Numbers in brackets
indicate the number of subjects in each binned age group. To test the null hypothesis that
SYNJ1 expression is not down-regulated by aging, we performed one-way ANOVA followed by
Tukey’s post-hoc tests for each brain region starting from bin 3, 11-20 years old, to bin 7, 60-70
years old. One-way ANOVA for SYNJT: cortex, *P = 4.52E-4; striatum, *P = 0; MB, *P = 0.014.
One-way ANOVA for SYN1: cortex, *P = 0.0059; striatum, P = 0.95; MB, P = 0.57. P values are
from Tukey’s post-hoc analysis for brain regions display significant age-dependent changes.

Figure 1-Figure Supplement 1. Validation of the synj1 antibody for quantitative analysis

A) DIV14 cortical neurons from SYNJ1*, SYNJ1”" and SYNJ1” mice immunolabeled for
synapsin1/2 and synj1. Synj1 display typical nerve terminal enriched expression. Scale bar, 10
um. B-C) Quantification of synj1 immunoreactivity at the cell body (B) and at the nerve terminals
(C) after background subtraction revealed a gene-does dependent change. D-E) Analysis of
synj1 immunoreactivity in coronal slices (see Materials and Methods / Data analysis) from
SYNJ1™* (N=6) and SYNJ1" (N=6) mice. Scale bar, 100 um.

Figure 1-Figure Supplement 2. Synj1 immunofluorescence is down regulated in the
striatum of aged mice

A) Representative immunofluorescence for synj1, synapsin1/2 and TH in the coronal striatal
slices of a 3-month old and an 18-month old mouse. Scale bar, 100 um. B) Summary of the
expression of synj1 (red) and synapsin1/2 (black) in the striatum (outlined in white in A) relative
to the cortex (outlined in yellow in A) in different ages of the mouse brain (see Materials and
Methods / Data analysis). Data represents the average of 3 mice for each age group. To test the
null hypothesis that age does not change synj1 immunofluorescence, one-way ANOVA (*P =
0.042 for synj1 and P = 0.29 for synapsin1/2) was performed for each marker. P value
represents Tukey’s post-hoc analysis following one-way ANOVA.

Figure 2. Synj1 immunoreactivity is reduced in striatal dopaminergic terminals in aged
mice.

A) Diagram illustrating positions where 40 nm cryoslices were taken from the mouse brain B-C)
Low-magnification (B) and High-magnification (C) confocal images of a representative 18-month
old striatal slice immunolabeled with anti-TH (blue), anti-synj1 (red) and anti-synapsin1/2
(green). White and yellow circles in C represent TH-positive (DAergic) and TH-negative nerve
terminals, respectively. Scale bar in B, 200 ym, scale bar in; C, 5um. D) Comparison of
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averaged TH, synapsin1/2 and synj1 immunoreactivity in circular regions of interests (as in C)
for 3-month and 18-month old mice. Each data point represents the average of the mean
fluorescence measured from 10-20 images of 2 slices for each mouse and the error bar is the
standard error represents each of the 3 mice. P values are calculated by one-sample Student’s ¢
tests (see Materials and Methods / Data analysis). E) Cumulative probability distribution for
synj1 immunoreactivity at TH" and TH™ terminals in a mouse at 18-month old (TH" terminals: N =
694; TH" terminals: N = 985, D = 0.25, *P < 0.001, two-sample Kolmogorov-Smirnov test) and
another at 3-month old (TH+ terminals: N = 1021, TH" terminals: N = 1011, D = 0.15, *P < 0.001,
two-sample Kolmogorov-Smirnov test).

Figure 3. MB-specific sensitivity to PIP, deregulation

A) Comparison of phosphoinositide contents measured by HPLC in different brain regions
(cortex, MB and striatum) of male WT mice at 12 months old. B) Summary of PI, PIP and PIP,
levels from 12 months old SYNJ7”" mice and SYNJ1”* mice of both sexes. P values are
calculated by two-sample Student’s t tests. C) lllustration for the role of synj1 in regulating
phosphoinositide metabolism and the role of LY249002 (LY) in inhibiting the conversion of
P1(4,5)P, to PI(3,4,5)P; D) Representative pHluorin signal for the cultured MB and cortical
neurons at 10 Hz, 10 s stimulation before (black) and after LY incubation (red). E) Summary of
endocytosis and exocytosis kinetics before and after LY treatment in different neurons. P values
are calculated by paired Student’s f tests.

Figure 4. SYNJ1"" mice exhibit hyperactivity in early adulthood and motor function
alterations

A-B) Total distance (A) and movement time (B) measured in the open-field assay for male
SYNJ1”* and SYNJ1*" mice at 7-month and 12-month of age, respectively. A cohort of
SYNJ1™* (N=15) and SYNJ1*" (N=13) littermates were examined at 7 months old; and a cohort
of SYNJ1* (N=22) and SYNJ1"" (N=13) littermates were examined at 12 months old. Due to an
imbalance in the number of subjects, two-way repeated measures ANOVA with post-hoc tests
do not apply. P values are calculated by two-sample Student’s t tests. C) Total distance in the
open field assay for 12 months old mice treated (IP injection) with PBS or quinpirole (0.5 mg/kg)
— a D2 receptor agonist. Locomotor activity was averaged within each 5-minute bin of recording
and 12 data points were obtained for each animal for a total of 60 minutes of recording. Error
bars represent standard errors for the number of animals tested at each 5-minute bin. P values
are from two-sample Student’s t tests. D) Accelerated Rota-rod assay summarizing the end
speed before mice fell off the rotating bar. P values are from two-sample Student’s f tests.

Figure 5. Aged SYNJ7"" mice exhibit loss of dopaminergic terminals and reduction of DA
content

+/+

A) Representative 3-month old and 18-month old striatal slices from a SYNJ7™" mouse and a
SYNJ1" mouse immunolabeled with anti-TH and anti-synapsin1/2. White circles represent
DAergic terminals with immunoreactivity for both TH and synapsin1/2. Scale bar, 5 um. B)
Summary for the number of DAergic terminals analyzed from 3 male mice. Each data point
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represents the mean and the standard error for the number of DAergic terminals sampled from
10-20 images for an individual mouse (see Materials and Methods / Data analysis). P value is
from two-sample Student’s t tests C) DA content and its metabolites levels in the striatum of 12
months old male mice measured by HPLC. P values in both B and C are calculated by two-
sample Student’s t tests.

Figure 5-Figure Supplement 1. SYNJ7*" mice do not exhibit loss of DAergic cell bodies

A) Representative images showing TH immunolabeling (DAB enhanced, brown) and Nissl
counter staining (blue) at the ventral midbrain from a SYNJ7" mouse and a SYNJ™ littermate.
Scale bar, 200 um. B) Stereological analysis estimating total number of TH and Nissl positive
neurons in male SYNJ1* mice (N = 4) and SYNJ" littermates (N = 5) as well as the
percentage of TH positive neurons did not reveal any difference.
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