

1 Haploinsufficiency of Parkinsonism Gene *SYNJ1* Contributes to 2 Dopamine neuron Vulnerability in Aged Mice

3 Ping-Yue Pan^{1,2,*}, Patricia Sheehan^{1,2}, Qian Wang^{1,2}, Yuanxi Zhang^{1,2}, Jing Wang^{1,2}, Farida El
4 Gaamouch^{1,2,3}, Li Zhu^{1,2,3}, Dongming Cai^{1,2,3}, Zhenyu Yue^{1,2,*}

5 1, Neurology Department 2, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New
6 York, NY 10029 USA, 3, James J Peters VA Medical Center, Research & Development, Bronx, NY 10468
7 USA. *Correspondence: ping-yue.pan@mssm.edu zhenyu.yue@mssm.edu

8 **Abstract**

9 Parkinson's disease (PD) is an age-dependent neurodegenerative disorder characterized by the
10 loss of substantia nigra dopaminergic (DAergic) neurons in ventral midbrain (MB). Identification
11 of interactions between aging and the known risk variants is crucial to understanding the
12 etiology of PD. Recessive mutations in *SYNJ1* have recently been linked to familial early-onset
13 atypical Parkinsonism. We now show an age-dependent decline of *SYNJ1* expression in the
14 striatum as well as in striatal DAergic terminals of aged mice. Heterozygous deletion of *SYNJ1*
15 in mice causes selective elevation of PIP₂ in the MB, and manipulation of PIP₂ levels also
16 impairs synaptic vesicle recycling preferentially in MB neurons. *SYNJ1*^{+/−} mice display
17 progressive PD-like behavioral alterations and DAergic terminal degeneration. Furthermore, we
18 found down-regulation of human *SYNJ1* transcripts in a subset of sporadic PD brains,
19 corroborating the role of an age-dependent decrease in *SYNJ1* in predisposing DAergic neuron
20 vulnerability and PD pathogenesis.

21

22 **Introduction**

23 Parkinson's disease (PD) is one of the most debilitating neurodegenerative disorders affecting
24 millions of people worldwide. Most cases are diagnosed later in life, and the incidence of PD
25 grows exponentially after the age of sixty (Driver et al., 2009). Due to the sporadic nature of
26 most cases, it has been difficult to determine the underlying pathogenic mechanism. Emergent
27 evidence suggested convergent pathogenic pathways, including dysfunctional synaptic
28 membrane trafficking, during disease progression (Trinh and Farrer, 2013; Schirinzi et al.,
29 2017). Human genetic studies and genome-wide association studies (GWAS) have also
30 revealed an overlapping pool of genes, such as LRRK2 and SNCA, that contributes to both
31 familial and sporadic PD (Singleton et al., 2013; Spataro et al., 2015; Hernandez et al., 2016).

1 *SYNJ1/PARK20* is one of the most recent additions to the *PARK* gene family, as three
2 recessive point mutations – R258Q, A459P, and R839C, in both the SAC1 domain and the 5-
3 phosphatase domain of the *SYNJ1* gene, have been identified in families with juvenile atypical
4 Parkinsonism with epilepsy (Krebs, et al., 2013; Quadri, et al., 2013; Olgiati, et al., 2014; Kirola,
5 et al., 2016; Taghavi, et al., 2017). Synaptojanin1 (*synj1*, encoded by *SYNJ1*) is an important
6 phosphoinositide phosphatase, which has two isoforms – the 170-kDa isoform a (NP_003886.3)
7 and the 145-kDa isoform b (NP_982271.2). The brain-specific isoform b is enriched in nerve
8 terminals where it regulates synaptic vesicle (SV) recycling and synaptic protein targeting
9 (McPherson et al., 1996; Micheva et al., 1997; Mani et al., 2007; Dong et al., 2015) by
10 hydrolyzing membrane phosphoinositides (e.g. PI(4,5)P₂, PI(3,4)P₂, PI3P and PI4P) via its two
11 phosphatase domains and by binding to endophilin at the proline-rich domain. Knock-in mice
12 carrying the homozygous R258Q disease allele, which abolishes the SAC1 activity (Krebs et al.,
13 2013) recapitulated parkinsonian symptoms and exhibited defective clathrin uncoating and
14 dystrophic changes in the nigrostriatal terminals (Cao et al., 2017b). Interestingly, missense
15 mutations in auxilin (encoded by *DNAJC6/PARK19*), another protein involved in clathrin
16 uncoating, were also identified in early-onset familial forms of PD (Edvardson et al., 2012;
17 Koroglu et al., 2013). The pathogenic mechanism connecting dysfunctional synaptic membrane
18 trafficking and PD pathogenesis, however, remains unclear, although a recent study in
19 *Drosophila* suggests a potential link to autophagic deregulation (Vanhauwaert et al., 2017).
20 Nonetheless, disease mutations in familial PD represent rare occurrences in the affected
21 population. A clinical study has now found variations in the non-coding regions of *DNAJC6* in
22 sporadic PD cases (Olgiati et al., 2016). More strikingly, in a recent meta-analysis for the
23 sporadic PD GWAS, the gene encoding endophilinA, *SH3GL1*, was revealed as one of 17 new
24 risk variants (Chang, et al., 2017). These results have brought increasing interest in
25 understanding if *synj1*, a close interacting partner of endophilinA, contributes to risks in sporadic
26 PD via common pathways at the nerve terminal.

27 For sporadic PD, aging is considered the greater contributor compared with genetic risks
28 (Driver et al., 2009; Collier et al., 2011). Major pathogenic pathways implicated in PD such as
29 mitochondrial dysfunction, membrane trafficking and autophagy-lysosomal impairment,
30 increased oxidative stress and neuroinflammation also deteriorate during normal aging. More
31 importantly, the number of substantia nigra *par compacta* (SNpc) DAergic neurons in the ventral
32 midbrain (MB), whose degeneration is known as the hallmark of PD, is also markedly reduced in
33 healthy aged subjects (Stark and Pakkenberg, 2004; Mortera and HerculanoHouzel, 2012). How

1 aging interacts with genetic variants and triggers the clinically significant pathological course of
2 PD remains to be understood.

3 To understand whether loss of function of *SYNJ1* leads to DAergic vulnerability in aging-
4 related PD pathogenesis, we examined the impact of aging on *SYNJ1* expression and
5 performed a detailed investigation in the previously established *SYNJ1^{+/−}* mice (Voronov, et al.,
6 2008). We demonstrate an age dependent decline of *SYNJ1* expression in the striatum,
7 particularly in the DAergic terminals; and age-dependent reduction in *SYNJ1* predisposes
8 *SYNJ1^{+/−}* mice to PD-like motor dysfunctions and striatal DAergic degeneration. Our study
9 demonstrates for the first time haploinsufficiency of a Parkinsonism gene contributes to
10 dopamine neuron vulnerability in aged mice.

11

12 **Results**

13 ***SYNJ1* transcript levels are reduced in the striatum of sporadic PD brains and healthy 14 aged brains**

15 To understand the role of *SYNJ1* in sporadic PD, we visited data sets in the public domain
16 (GSE28894, GSE20168, GSE8397) and found down-regulation of *SYNJ1* transcripts in multiple
17 brain regions including the prefrontal cortex, the striatum and the substantia nigra (SN) in
18 subsets of sporadic PD brains (Figure 1A). The reduction of *SYNJ1* in these brain regions,
19 except the lateral SN, is unlikely due simply to neuronal or synaptic loss, as the synaptic
20 marker, *SYP* (encoding synaptophysin) was largely unaltered in the same subjects (Figure 1B).
21 This result encouraged us to explore the potential link between *SYNJ1* loss-of-function and age-
22 dependent sporadic PD. To investigate the impact of aging on *SYNJ1* expression, we first
23 examined postmortem human data from public databases by extracting the raw measurements
24 of *SYNJ1* transcripts in developing human brains (data from Allen Brain Atlas, lacking SN data)
25 and in aged human brains (data from GTEx) (see **Materials and Methods / human data
26 analysis**). To better elucidate age-dependent changes in transcript levels, we binned the data
27 by age groups and normalized both data sets (developing and aged) to the mean transcript level
28 in the cortex of the overlapping age group 21-30 (Figure. 1C left). An accelerated decline of
29 *SYNJ1* transcripts was observed in the striatum from 11-20 years (bin 3) to 41-60 years (bin 6),
30 while cortical *SYNJ1* remained largely steady. The decline of *SYNJ1* in the striatum is not due to
31 neuronal loss or synapse loss as β -actin (Figure 1C middle) and synapsin1 (Figure 1C right)
32 levels do not exhibit similar trends in the striatum. However, the decrease of *SYN1* (synapsin 1)

1 expression became apparent at 61-70 years in the cortex, and was accompanied by a
2 comparable reduction in the *SYNJ1* level, suggesting synapse loss. The age-dependent down-
3 regulation of *SYNJ1* in the SN is less clear due to lack of available data, although the average
4 values in most binned groups appear similar to those in the striatum.

5 To verify the above findings in an animal model and to determine if the decline of *SYNJ1*
6 is reflected beyond the mRNA level to the protein level, we performed immunohistochemical
7 analyses of C57/BL6 mouse brains of both sexes at various ages. We first verified the specificity
8 of the synj1 antibody for its synapse-enriched localization and its validity for quantitative
9 measures in both cell cultures and brain slices (Figure 1-Figure supplement 1). We then
10 performed immunohistochemical staining for tyrosine hydroxylase (TH), synj1, and synapsin1/2,
11 a presynaptic marker, in coronal sections that included both the striatum and the cortex (Figure
12 1-Figure supplement 2A). The immunofluorescence of synj1 and synapsin1/2 in the striatum
13 was normalized to that in the cortex for each slice (see **Materials and Methods/Data analysis**).
14 While synapsin1/2 level remained at a constant 80% relative to the cortex across all age groups,
15 synj1 expression was significantly reduced in the striatum of 18-month old mice (Figure 1-Figure
16 supplement 2B), reminiscent of the aged human brain.

17 **Synj1 expression in striatal DAergic terminals is reduced in aged mice**

18 The striatum is an essential part of the basal ganglia, where DAergic terminals from the ventral
19 MB and glutamatergic (GLUTergic) terminals from the cortex converge at striatal medium spiny
20 neurons to regulate motor output (Figure 2A). To determine if DAergic terminals in the striatum
21 also exhibit an age-dependent change in synj1 expression, we performed an in-depth analysis
22 of the immunofluorescence in the coronal sections from 3-month and 18-month old mice. By co-
23 labeling with TH, the rate-limiting enzyme for DA synthesis, and synapsin1/2, a presynaptic
24 marker, we were able to differentiate DAergic terminals (TH and synapsin1/2 positive) and non-
25 DAergic terminals (TH negative, synapsin1/2 positive). We found that in DAergic terminals,
26 synj1 expression was 10% lower than in non-DAergic terminals at 3-month old (Figure 2B-K);
27 however, this difference grew to nearly 50% in 18-month old animals. Consistently, the
28 cumulative probability for synj1 immunofluorescence sampled from over 1000 nerve terminals
29 revealed a greater difference between TH⁺ and TH⁻ terminals in an 18-month old mouse
30 compared to a 3-month old mouse (Figure 2 E, K).

31 **MB displays specific vulnerability to PIP₂ metabolism in *SYNJ1*^{+/−} mice**

1 The primary function of synj1 is to regulate phosphoinositide metabolism and support the
2 normal functions of membrane trafficking. To understand the impact of synj1 expression on
3 membrane phosphoinositide levels, we measured the content of PIP₂, PIP and PI in the cortex,
4 the striatum and the MB of 1-year old *SYNJ1^{+/−}* mice and littermate wildtype (WT) mice using
5 high-performance liquid chromatography (HPLC). We first noted that the PIP₂ level in the MB is
6 nearly 2-fold higher, whereas the PI and the PIP levels were significantly lower, than those in
7 the cortex (n=23) (Figure 3A). The PIP₂ level in the MB was further elevated by 15% in 1-year
8 old *SYNJ1^{+/−}* mice than that of WT ($p=0.007$) (Figure 3B). While there is a trend of increased
9 PIP₂ in the striatum ($p=0.07$), no obvious change in the cortex of *SYNJ1^{+/−}* mice was observed
10 (Figure 3B). The amount of PIP₂ increase in the heterozygous MB is commensurate to a
11 previous study, which found PIP₂ levels to be elevated by approximately 12% in the whole brain
12 samples of *SYNJ1^{+/−}* mice (Voronov, et al., 2008).

13 To determine how PIP₂ accumulation in the MB could affect neuronal function, we
14 examined the efficiencies of SV recycling in cultured neurons by expressing an optical reporter,
15 pHluorin. pHluorin is a pH-sensitive variant of GFP whose protonation and deprotonation results
16 in a dynamic 20-fold change in fluorescence, which allows for the quantitative measurement of
17 SV exocytosis and endocytosis when conjugated to the luminal aspect of the vesicular
18 transporter (Sankaranarayanan et al., 2000; Ariel and Ryan, 2010; Pan and Ryan, 2012).
19 VMAT2-pHluorin or vGLUT1-pHluorin was expressed in cultured MB or cortical neurons,
20 respectively, and a 10 Hz, 10 s field stimulation was applied to trigger SV recycling. We
21 previously showed that cultured MB but not cortical neurons from *SYNJ1^{+/−}* mice displayed
22 slowed endocytosis (Pan et al., 2017), suggesting that insufficient conversion of PIP₂ due to
23 heterozygous deletion of *SYNJ1* affects SV endocytosis preferentially in MB neurons. To verify
24 the selective effect of altered PIP₂ levels in MB neurons, we treated cultured neurons with
25 LY249002 (LY), a PI3K inhibitor, which blocks the conversion of PIP₂ to PIP₃ on the plasma
26 membrane, and found that SV endocytosis in MB neurons was substantially slower after a 10-
27 15 min treatment (Figure 3C-E). In contrast, cortical neurons showed minimal responsiveness to
28 LY incubation up to 30 min. The changes in the amount of exocytosis in the MB neurons are
29 more heterogeneous across different nerve terminals and do not exhibit any difference on
30 average. Our data suggests that SV trafficking in MB neurons is more susceptible to PIP₂
31 accumulation than cortical neurons.

32 ***SYNJ1^{+/−}* mice display PD-like motor function deficits**

1 We next evaluated the motor functions associated with the reduced expression of *SYNJ1*. Mice
2 with complete deletion of *SYNJ1* are not viable and die shortly after birth. *SYNJ1^{+/−}* mice,
3 however, appear normal with regard to body size and life span. Unlike the *R258Q* disease
4 mutation homozygous knock-in mice (*RQ KI*), some of which display severe movement
5 problems and tonic-clonic seizures (Cao et al., 2017b), *SYNJ1^{+/−}* mice do not have seizures or
6 apparent gait difficulties in their lifetime. When *SYNJ1^{+/−}* and *SYNJ1^{+/+}* littermates were
7 evaluated for their general locomotor functions in the open-field assay, 7-month old *SYNJ1^{+/−}*
8 mice exhibited hyperactivity (Figure 4A) compared to their littermates. Both *SYNJ1^{+/−}* and
9 *SYNJ1^{+/−}* mice displayed a significant deterioration in their activity levels at 12-months old and
10 *SYNJ1^{+/−}* mice appeared no different than WT mice at this age (Figure 4B). To further test the
11 integrity of dopamine-regulated motor function, we challenged the mice with quinpirole, a DA D2
12 receptor (D2R) agonist. Motor inhibition induced by quinpirole was significantly impaired in
13 *SYNJ1^{+/−}* mice at 12-months old (Figure 4C), as was their motor coordination when tested on the
14 accelerated Rota-rod (Figure 4D). Such decline in motor functions following hyperactivity in
15 *SYNJ1^{+/−}* mice is reminiscent of the findings in many other PD models (Chesselet and Richter,
16 2011, review), including the *LRRK2 G2019S KI* mice (Volta, et al., 2017).

17 **Aged *SYNJ1^{+/−}* mice exhibit loss of DAergic terminals**

18 To further understand the pathological consequence of reduced *SYNJ1* expression, we
19 performed the following analyses: 1) the integrity of DAergic neurons and their nerve terminals
20 2) striatal DA content and metabolism. Stereological analysis of DAergic neurons in the ventral
21 MB revealed no difference in the number of DAergic cell bodies in aged (18-months old)
22 *SYNJ1^{+/−}* mice (Figure 5-Figure supplement 1). In *SYNJ1^{+/+}* mice, the number of DAergic
23 terminals in striatal slices was reduced by nearly 50% as mice aged from 3-months to 18-
24 months. While the number of DAergic terminals was unaltered in *SYNJ1^{+/−}* mice compared to
25 *SYNJ1^{+/+}* at 3-months old, aging led to a significantly exacerbated reduction of an additional
26 50% in 18-month old *SYNJ1^{+/−}* mice (Figure 5A-B). Consistently, striatal DA content and DA
27 metabolites, measured by HPLC, were also reduced in the *SYNJ1^{+/−}* mice (Figure 5C),
28 insinuating that *SYNJ1* haploinsufficiency leads to the decline of DA release, the loss of DAergic
29 terminals, or a combination of both due to *SYNJ1* haploinsufficiency.

30

31 **Discussion**

1 Emerging evidence has demonstrated a link between recessive point mutations in
2 *SYNJ1/PARK20* and familial early-onset atypical Parkinsonism. We now show that a reduction
3 of *SYNJ1* expression, which results in aberrant accumulation of PIP₂ in specific brain regions or
4 neuron populations, may contribute to the risks for age-related sporadic PD. *SYNJ1*
5 heterozygous mice are unable to maintain the proper function of the midbrain DAergic system,
6 driving PD related pathological processes in aged individuals. Our data, therefore, implicates a
7 role of *SYNJ1* loss-of-function in the pathogenesis of age-dependent sporadic PD.

8 We show that *SYNJ1* expression is down regulated in the striatum during aging in
9 both humans and mice. This is important evidence supporting *SYNJ1* functional insufficiency in
10 PD risk, as most pathogenic changes, such as neuroinflammation and mitochondrial
11 malfunction, are also found to present in normal aging. Whether age-related reduction of *SYNJ1*
12 interacts with other sporadic PD variants has yet to be determined. We previously reported a
13 potential genetic interaction between *LRRK2* disease mutation G2019S and *SYNJ1*
14 haploinsufficiency in mice and found *LRRK2* mediates phosphorylation of synj1, which leads to
15 an impairment in SV trafficking in MB neurons (Pan et al., 2017). In addition, although several
16 large-scale genome-wide studies failed to reveal *SYNJ1* at the level of significance examined,
17 the gene encoding its closest interacting partner, *SH3GL1/endophilinA*, is now suggested to be
18 a significant PD-risk gene. Recent studies have also shown that *LRRK2* phosphorylates
19 endophilinA and synj1 (Matta et al., 2012; Arranz et al., 2015; Islam et al., 2016; Pan et al.,
20 2017), further suggesting the potential involvement of the *LRRK2-endophilinA-synj1* complex in
21 regulating synaptic membrane trafficking, a process which may go awry in the pathogenesis of
22 PD.

23 While nearly all reported mouse models with complete knockout of recessive PD genes fail
24 to show any PD related phenotypes, our study demonstrates for the first time that
25 haploinsufficiency of a Parkinsonism gene is sufficient to cause DA neuron vulnerability in aged
26 mice. *SYNJ1*^{+/−} mice display PD-like behavioral and pathological changes. *SYNJ1*^{+/−} mice show
27 hyperactivity, which was found in younger mice followed by reduced motor coordination and
28 D2R sensitivity at mid-age. Although it remains to be understood whether and how increased
29 motor activity at younger ages result in a faster decline in motor functions during aging, this
30 phenotype is often found in other PD mouse models, such as the WT and A53T α-synuclein
31 transgenic mice (Unger et al., 2006; Lam et al., 2011; Chesselet et al., 2012) as well as the
32 *LRRK2* G2019S *KI* mice (Volta, et al., 2017). Furthermore, aged *SYNJ1*^{+/−} mice display
33 advanced DAergic denervation in the striatum accompanied by reduced DA and DA metabolite

1 content. Interestingly, the combined functional decline and pathological DAergic degeneration
2 are mostly found in mouse models carrying variants with early disease onset and high clinical
3 penetrance (Tsika et al., 2014; Sumi-Akamaru et al., 2015; Cao et al., 2017b). Therefore, our
4 results indicate that *SYNJ1^{+/−}* mice may be used as a potential PD model for dissecting
5 pathogenic pathways at the early stages of PD.

6 The key question is how reduced levels of *SYNJ1* contribute to vulnerability selectively
7 within the DAergic system. We found that DAergic terminals express less synj1 compared to
8 neighboring non-DA terminals in the striatum. We also showed that cultured ventral MB
9 neurons, including nigral DAergic neurons that project to innervate the striatum, exhibit higher
10 vulnerability to SV recycling compared to cortical neurons in response to *SYNJ1* deficiency (Pan
11 et al., 2017) and significant PIP₂ elevation. In fact, the elevated levels of PIP₂ was robust in MB
12 of *SYNJ1^{+/−}* mouse, but not in the cortex, suggesting a lack of compensatory mechanism to
13 maintain the homeostasis of PIP₂ levels in MB. These impairments could expedite local
14 mechanisms for synapse elimination or axon degeneration (Stevens et al., 2007). Our study did
15 not differentiate DAergic from GABAergic neurons or VTA from SNpc neurons in the ventral MB
16 with respect to their age-dependent change in synj1 levels or their sensitivity to PIP₂ elevation.
17 Considering the lack of difference in SV endocytosis between TH⁺ and TH[−] neurons of the
18 ventral MB at baseline (Pan et al., 2017), it is likely that disease protective mechanisms for VTA
19 and GABAergic neurons arise from signaling pathways other than synj1 and lipid alterations.
20 For example, different calcium burdens or neuroinflammatory responses (Pan et al., 2012;
21 Sulzer et al., 2017; Surmeier et al., 2017) may account for their outcome. It was recently
22 reported that loss of synj1 SAC1 activity leads to impaired autophagosome maturation in flies
23 due to abnormal accumulation of PI3P (Vanhauwaert et al., 2017). The PIP levels, however, are
24 not altered in the cortex, the MB or the striatum of the *SYNJ1^{+/−}* mouse in our study. It remains
25 to be tested if changes in PIP₂ levels alter autophagic signaling via alternative pathways
26 (George et al., 2016) in *SYNJ1^{+/−}* mice that contribute to DAergic neurodegeneration in the
27 striatum.

28 Interestingly, the SAC1 domain of synj1 that predominantly hydrolyzes phosphatidylinositol
29 monophosphates is considered a weaker enzyme compared to the 5-phosphatase domain,
30 which mainly hydrolyzes PI(4,5)P₂ to produce PI4P; yet, the ablation of the SAC1 activity leads
31 to DAergic degeneration in multiple model systems (Cao et al., 2017b; Vanhauwaert et al.,
32 2017). Although the functional outcome of the disease-related mutation, R839C, in the 5-
33 phosphatase domain of synj1 has not been examined; other mutations and variants that were

1 known to substantially impair 5-phosphatase activity were found in patients with early-onset
2 generalized neurological degeneration and epilepsy (Dyment, et al., 2015; Hardies, et al., 2016).
3 The combined clinical and animal data prompts an interesting possibility that reduced
4 expression level or overall function of synj1, rather than the impairment of an individual
5 functional domain is relevant to the pathogenesis of sporadic PD.

6 Taken together, our findings demonstrate that aging may predispose certain human
7 populations to PD risk via a reduction of *SYNJ1* levels in the striatum. Our study thus not only
8 assists in the identification of novel biomarkers for PD, but also suggests a therapeutic idea for
9 PD by restoring *SYNJ1* levels.

10

11 **Materials and methods**

12 **Human data analysis**

13 Sporadic PD brain transcriptome data was downloaded from PMID: 20926834. Among the 17
14 genome-wide expression datasets, we only examined datasets with a sample size greater than
15 15 in each group to ensure the statistical power. Three of these datasets, GSE28894,
16 GSE20168, GSE8397, were found to exhibit statistical difference ($P < 0.05$, two-sample
17 Student's *t* test) in *SYNJ1* levels in multiple brain regions. Clinical information of the postmortem
18 brain tissue samples can be found in the following articles: PMID 15965975 and 16344956.
19 Normal human brain age-dependent data was downloaded from Allen Brain Atlas / developing
20 human brain (7D4BTI1R5K11_0log2, JOYAOQ1MXT11_0_SYN1_log2, and
21 N2884L1TVT11_3_ACTB_log2, referred to as "Allen brain data" hereafter) which contains data
22 from postconceptional week 8 to 40 years old; as well as from the Genotype-Tissue Expression
23 (GTEx) project, which contains brain region-specific data from 20-70 years old
24 (www.gtexportal.org, referred to as GTEx data hereafter). Raw mRNA data from different brain
25 regions was expressed in the Log2 reads per kilobase per million (RPKM) scale. For Allen brain
26 data, measurements from various parts of the cerebral cortices were averaged and expressed
27 as "cortical" mRNA for each subject. Data for the striatum was collected as a single entry and
28 data for substantia nigra was absent. For each documented age, the number of subjects varied
29 from 1 to 3 in the Allen brain data. For GTEx brain data, a single entry was found for cortex,
30 putamen/basal ganglia (denoted as striatum) and substantia nigra. Data distribution was
31 clustered in the 40-70 years range where typically over 10 subjects were measured for a
32 specific age. We used cortical expression in the 21-30 years age bin for normalization to conjoin

1 the two data sets and reveal age-dependent changes in the full spectrum, but have inevitably
2 lost absolute quantitative information on the log2 scale.

3 **Animals**

4 Mice were housed in the pathogen-free Center for Comparative Medicine at The Icahn School
5 of Medicine at Mount Sinai. Handling procedures were in accordance with the National Institutes
6 of Health guidelines and approved by the Mount Sinai Institutional Animal Care and Use
7 Committee (IACUC).

8 **Cryostat, Immunofluorescence and antibodies**

9 Mice were anesthetized with ketamine (100mg/kg) and xylazine (10mg/kg) diluted in saline and
10 perfused transcardially with 4% fresh paraformaldehyde, and post-fixed with 4%
11 paraformaldehyde for over two hours. Dissected brains were cryoprotected in 30% sucrose prior
12 to flash-freezing in the OCT-compound media (SAKURA). Coronal sections were sliced at 40
13 μm thickness on a Leica CM 3050 S research cryostat and kept at an anti-freeze medium for
14 immunohistolochemical (IHC) analysis. IHC was carried out following a standard protocol as
15 previously described (Lu, et al., 2014). Briefly, tissue slices were washed in 1X PBS and
16 blocked in 5% goat serum for 30-60 min. Primary antibodies diluted in 5% goat serum were
17 applied and incubated overnight at 4°C, followed by Alexa Fluor® secondary antibodies
18 (Invitrogen™). The tissue slices were then subjected to extended washing using 1X PBS to
19 reduce background fluorescence before mounting with Diamond Antifade Mountant (Thermo
20 Fisher Scientific, P36962). The following primary antibodies were used: Anti-TH antibody
21 (monoclonal, Sigma-Aldrich, T2928, or polyclonal, EMD Millipore, AB152, both used at 1:500
22 dilution), rat anti-DAT (EMD Millipore, MAB369, 1:1000 dilution), rabbit anti-synj1 (Novus
23 Biologicals, NBP1-87842, 1:500 dilution), guinea pig anti-synapsin 1/2 (Synaptic System,
24 106004, 1:500 dilution).

25 **Cell culture and Transfection**

26 MB cultures (Mani and Ryan, 2009; Pan and Ryan, 2012) and cortical cultures (Mani et al.,
27 2007) were prepared as described previously. Ventral MBs (containing both VTA and SN) or
28 cortices were dissected from P0-1 mouse pups and digested using papain (Worthington,
29 LK003178) or trypsin (Sigma, T1005) supplemented with DNase (Sigma, D5025), respectively.
30 MB neurons were then prepared according to our previously published protocol plated at a cell
31 density of 199,000 cells / cm^2 and grown in the Neurobasal-A based medium supplemented with

1 GDNF (10 ng/mL, EMD Millipore, GF030). Cortical neurons were plated at 142,000 cells / cm²
2 and grown in the MEM-based medium supplemented with insulin (24 µg / ml, Sigma, I6634) and
3 transferrin (0.1 mg / ml, Calbiochem, 616420). Typically, four P0-P1 mouse brains are required
4 for a MB culture. Calcium phosphate was used for transfection to achieve sparse expression
5 and to ensure analysis of single neurons during the imaging experiments. Transfection was
6 carried out at DIV 3-5 for MB neurons and at DIV 5-6 for cortical neurons, after which, the
7 growth medium was replaced with a fresh medium supplemented with an antimitotic agent,
8 ARA-C (Sigma-Aldrich, C6645).

9 **Optical setup and live cell imaging**

10 For live cell imaging, cells were mounted on a custom-made laminar-flow stimulation chamber
11 with constant perfusion (at a rate of ~0.2-0.3 mL / min) of a Tyrode's salt solution containing 119
12 mM NaCl, 2.5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 25 mM HEPES, 30 mM Glucose, 10 µM 6-
13 cyano-7- nitroquinoxaline-2,3-dione (CNQX), and 50 µM D, L-2-amino-5-phosphonovaleric acid
14 (AP5) and buffered to pH 7.40. NH₄Cl solution containing 50 mM NH₄Cl, 70 mM NaCl, 2.5 mM
15 KCl, 2 mM CaCl₂, 2 mM MgCl₂, 25 mM HEPES, 30 mM Glucose, 10 µM CNQX, and 50 µM
16 AP5, buffered to pH 7.40 was used to reveal total pHluorin expression for normalizing
17 exocytosis. All chemicals were purchased from Sigma-Aldrich. Temperature was clamped at
18 30.0 °C at the objective throughout the experiment. Field stimulations were delivered at 10 V /
19 cm by A310 Accupulser and A385 stimulus isolator (World Precision Instruments). A 1 ms pulse
20 was used to evoke single action potentials. Images were acquired using a highly sensitive,
21 back-illuminated EM-CCD camera (iXon+ Model # DU-897E-BV, Andor Corp., CT, USA).
22 Olympus IX73 microscope was modified for laser illumination. A solid-state 488 nm OPSL smart
23 laser at 50 mW (used at 10% and output at ~ 2 mW at the back aperture) was built into a laser
24 combiner system for millisecond on/off switching and camera blanking control (Andor Corp).
25 PFluorin fluorescence excitation and collection were through an Olympus PLAPON 60XO 1.42
26 NA objective using 525/50m emission filter and 495LP dichroic filters (Chroma, 49002). Images
27 were sampled at 2 Hz with an Andor Imaging Workstation driven by Andor iQ-CORE-FST (ver
28 2.x) iQ3.0 software.

29 **Confocal Microscopy**

30 An LSM780 upright confocal microscope driven by the Zeiss Zen Black software was used to
31 examine the immunofluorescence in brain slices. Images were acquired at 1024X1024 pixel
32 resolution using single scans by a 10x (for striatal and cortical synj1 expression analysis, Figure

1 1-Figure supplement 1D-E and Figure 1-Figure supplement 2) or a 63x lens (for nerve terminal
2 analysis, Figure 2). Immunofluorescence of these images was analyzed using ImageJ.

3 **HPLC lipid analysis and monoamine analysis**

4 Different brain regions were dissected using rodent brain matrices (ASI, RBM-2000C). Flash
5 frozen mouse brain samples were used for lipid extraction, followed by anion-exchange high-
6 pressure liquid chromatography quantification as described previously (Berman et al., 2008;
7 Landman et al., 2006; Zhu et al., 2015 and Cao et al., 2017a). Striatal samples were collected
8 from freshly dissected brains using 2mm reusable biopsy punch (World Precision Instrument,
9 504529) and flash frozen for further analysis of DA content and two major DA metabolites, HVA
10 and DOPAC, by the Vanderbilt University Neurochemistry Core.

11 **Behavioral assays**

12 Male *SYNJ1^{+/−}* mice and their littermate controls were tested for general locomotor activity in an
13 open field chamber in a dark room for 60 min. Motor coordination was assessed by accelerated
14 Rota-rod assay. All mice were subjected to 1-hour habituation in the test room with food and
15 water supply prior to testing. Open-field test – each mouse was placed in the center of a 16 x
16-inch chamber equipped with a Versamax monitor system (Accuscan) in a quiet dark room.
17 The mouse horizontal and vertical movements were monitored and recorded for 60 minutes by
18 a grid of 32 infrared beams at ground level and 16 elevated (3 inch) beams. Quinpirole test –
19 mice were divided into two groups for each genotype which were then subjected to peritoneal
20 injection of a D2R agonist quipirole (0.05 mg/kg) or 1x PBS before being placed into the open-
21 field chamber. Movement was recorded for the following 60 minutes in the dark room as
22 described above. Accelerated Rota-rod test – the mouse was placed on a rotating rod with
23 increasing acceleration from 4-40 RPM over 5 minutes. Each mouse was trained for 2 trials
24 before the test. The duration a mouse spent on the accelerated Rota-rod was averaged for
25 consecutive 3 trials spaced by 15 minutes.

26 **Stereology microscopy**

27 Mice were perfused and fixed as described above (**Cryostat, Immunofluorescence and**
28 **antibodies** section). MB brain tissues were cryo-sectioned at 40 µm in thickness using Leica
29 CM3050s and stored in antifreeze media containing 30% ethanol glycol, 25% glycerol and 5%
30 PB. For stereological counting, one in every five slices was selected and a total of 8 brain slices
31 were used from each mouse for IHC labeling. Zeiss Axioplan2 was used for tissue slice imaging

1 with a 20X objective, and Stereo Investigator was used for data analysis using the following
2 parameters: frame sizes: 150 μm x 150 μm ; grid sizes: 250 μm x 250 μm ; top guard zone
3 height: 2 μm and optical dissector height: 8 μm .

4 **Data analysis and statistics**

5 All statistical tests were performed in OriginPro 8.2, except the Kolmogorov-Smirnov test, which
6 uses a built-in function at http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html.
7 Descriptive statistical tests were carried out to determine the distribution of the data sets. All
8 data sets conforming to the normal distribution were subjected to two-sample Student's *t* test or
9 multiple-sample ANOVA test followed by Tukey's *post-hoc* tests. P values less than 0.05 was
10 considered statistically significant. For human brain data (Figure 1C), the size of each bin was
11 arbitrarily determined to balance sufficient samples and to represent the empirical stages of life
12 (0-10 years: childhood / developmental stage; 11-20 years: adolescent / developmental stage;
13 21-30 years: early adulthood / full-grown with no degeneration; 30-40 years: adulthood /
14 possible signs of aging and degeneration; 41-60 years: mid-aged / signs of aging and
15 degeneration; 61-70 years: aged / progressive degeneration). For immunohistochemical
16 analysis in Figure 1-Figure supplement 1 D-E and Figure supplement 2, three rectangular
17 regions of interest were placed randomly in the cortical or the striatal region to cover an equal
18 sized area in both regions. Both sides of the hemispheres were analyzed from 2 brain slices for
19 each of the 3 mice at the selected age. For analysis of nerve terminal synj1
20 immunofluorescence, confocal images were analyzed using the 'Time series analyzer V3.2'
21 plug-in by ImageJ. Universal 2x2 μm circular regions of interest were used and placed manually
22 in a double-blinded fashion. Nearly 5% of the measurements that fall outside of the mean \pm 3x
23 standard deviation were excluded as outliers. The mean value of immunofluorescence was
24 calculated for each image across 30-80 regions of interest and these mean values were then
25 averaged across all images (10-20) sampled from each animal. Each data point represents the
26 averaged value for one animal and the error bar represents standard error from 10-20 samples.
27 For quantification of DAergic terminals in striatal slices (Figure 5A-B), circular regions of
28 interests were manually placed on all colocalized puncta on the 135 X 135 μm image. To
29 reduce the error of this relatively arbitrary measurement, the following strategies were used: 1)
30 Analysis was performed in a double-blinded fashion. 2) The immunostaining procedure, the
31 confocal imaging settings, and the gain / contrast of the images during analysis were kept the
32 same for a matching number of SYNJ1^{+/+} and SYNJ1⁺⁻ samples. 3) A matching number of
33 images from SYNJ1^{+/+} and SYNJ1⁺⁻ mice were assigned for analysis at a single time. 4) Counts

1 were compared between two analysts. For pHluorin imaging study (Figure 3D-E), data was
2 collected from 2-3 batches of cultures. Each data point represents an average of 3 stable trials
3 on a single cell before and after drug treatment (connected by a black line). Typically, 15-50
4 nerve terminals with consistent responses were selected for analysis for each cell.

5

6 **Acknowledgements:**

7 The work was funded by a Cote Early Investigator Award (PD12-00011) to P-Y Pan, an
8 International Research grant (PDF-IRG-1447) from the Parkinson's Disease Foundation (PDF)
9 to Z Yue and a R21 grant (1R21NS095155-01) from NINDS to P-Y Pan and Z Yue.

10

11 **Competing interests:**

12 None.

13

14 **References:**

15 Ariel, P. and Ryan, T.A. (2010). Optical mapping of release properties in synapses. *Front*
16 *Neural Circuits.* 4, pii: 18.

17 Arranz, A.M., Delbroek, L., Van Kolen, K., Guimaraes, M.R., Mandemakers, W., Daneels,
18 Matta, S., Calafate, S., Shaban, H., Baatsen, P., De Bock, P.J., Gevaert, K., Vanden
19 Berghe, P., Verstreken, P., De Strooper, B., and Moechars, D. (2015). LRRK2 functions in
20 synaptic vesicle endocytosis through a kinase-dependent mechanism. *Journal of cell science.*
21 128, 541-552.

22 Berman, D.E., Dall'Armi, C., Voronov, S.V., McIntire, L.B., Zhang, H., Moore, A.Z.,
23 Staniszewski, A., Arancio, O., Kim, T.W., and Di Paolo, G. (2008). Oligomeric amyloid-beta
24 peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. *Nat Neurosci.* 11(5), 547-
25 54.

26 Cao, J., Gaamouch, F.E., Meabon, J.S., Meeker, K.D., Zhu, L., Zhong, M.B., Bendik, J.,
27 Elder, G., Jing, P., Xia, Luo, W., Cook, D.G., and Cai, D. (2017a). ApoE4-associated
28 phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after
29 traumatic brain injury. *Sci Rep.* 7(1), 11372.

30 Cao, M., Wu, Y., Ashrafi, G., McCartney, A.J., Wheeler, H., Bushong, E.A., Boassa, D.,
31 Ellisman, M.H., Ryan, T.A., and De Camilli, P. (2017b). Parkinson Sac Domain Mutation in
32 Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in
33 Dopaminergic Axons. *Neuron.* 93(4), 882-896.e5.

1 Chang, D., Nalls, M.A., Hallgrímsdóttir, I.B., Hunkapiller, J., van der Brug, M., Cai, F.,
2 International Parkinson's Disease Genomics Consortium, 23andMe Research Team, Kerchner,
3 G.A., Ayalon, G., Bingol, B., Sheng, M., Hinds, D., Behrens, T.W., Singleton, A.B., Bhangale,
4 T.R., and Graham, R.R. (2017). A meta-analysis of genome-wide association studies identifies
5 17 new Parkinson's disease risk loci. *Nat Genet.* 49(10), 1511-1516.

6 Chesselet, M.F. and Richter, F. (2011). Modelling of Parkinson's disease in mice. *Lancet*
7 *Neurol.* 10(12), 1108-18.

8 Chesselet, M.F., Richter, F., Zhu, C., Magen, I., Watson, M.B., and Subramaniam, S.R.
9 (2012). A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice.
10 *Neurotherapeutics.* 9(2), 297-314.

11 Collier, T.J., Kanaan, N.M., and Kordower, J.H. (2011). Ageing as a primary risk factor for
12 Parkinson's disease: evidence from studies of non-human primates. *Nat Rev Neurosci.* 12(6),
13 359-66.

14 Dong, Y., Gou, Y., Li, Y., Liu, Y., and Bai, J. (2015). Synaptosomal protein 25 cooperates in vivo with
15 endophilin through an unexpected mechanism. *Elife.* 4, doi: 10.7554/eLife.05660.

16 Driver, J.A., Logroscino, G., Gaziano, J.M., and Kurth, T. (2009). Incidence and remaining
17 lifetime risk of Parkinson disease in advanced age. *Neurology.* 72(5), 432-8.

18 Dymment, D.A., Smith, A.C., Humphreys, P., Schwartzenbacher, J., Beaulieu, C.L.; FORGE
19 Canada Consortium, Bulman, D.E., Majewski, J., Woulfe, J., Michaud, J., and Boycott, K.M.
20 (2015). Homozygous nonsense mutation in *SYNJ1* associated with intractable epilepsy and tau
21 pathology. *Neurobiol Aging.* 36(2), 1222.e1-5.

22 Edvardson, S., Cinnamon, Y., Ta-Shma, A., Shaag, A., Yim, Y.I., Zenvirt, S., Jalas, C.,
23 Lesage, S., Brice, A., Taraboulos, A., Kaestner, K.H., Greene, L.E., and Elpeleg, O. (2012). A
24 deleterious mutation in *DNAJC6* encoding the neuronal-specific clathrin-uncoating
25 co-chaperone auxilin, is associated with juvenile parkinsonism. *PLoS One.* 7(5), e36458.

26 George, A.A., Hayden, S., Stanton, G.R., and Brockerhoff, S.E. (2016). Arf6 and the
27 5'phosphatase of Synaptosomal protein 25 regulate autophagy in cone photoreceptors. *Inside Cell.* 1(2),
28 117-133.

29 Hardies, K., Cai, Y., Jardel, C., Jansen, A.C., Cao, M., May, P., Djémié, T., Hachon, Le.,
30 Camus, C., Keymolen, K., Deconinck, T., Bhamhani, V., Long, C., Sajan, S.A., Helbig, K.L.;
31 AR working group of the EuroEPINOMICS RES Consortium, Suls, A., Balling, R., Helbig, I., De
32 Jonghe, P., Depienne, C., De Camilli, P., and Weckhuysen, S. (2016). Loss of *SYNJ1* dual
33 phosphatase activity leads to early onset refractory seizures and progressive neurological
34 decline. *Brain.* 139(Pt 9), 2420-30.

35 Hernandez, D.G., Reed, X., and Singleton, A.B. (2016). Genetics in Parkinson disease:
36 Mendelian versus non-Mendelian inheritance. *J Neurochem.* 139 Suppl 1, 59-74.

37 Islam MS, Nolte H, Jacob W, Ziegler AB, Pütz S, Grosjean Y, Szczeniowska K, Trifunovic
38 A, Braun T, Heumann H, Heumann R, Hovemann B, Moore DJ, and Krüger M (2016). Human
39 R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila
40 model of Parkinson's disease. *Hum Mol Genet.* 25(24), 5365-5382.

1 Kirola, L., Behari, M., Shishir, C., and Thelma, B.K. (2016). Identification of a novel
2 homozygous mutation Arg459Pro in SYNJ1 gene of an Indian family with autosomal recessive
3 juvenile Parkinsonism. *Parkinsonism Relat Disord.* 31, 124-128.

4 Körögü, Ç., Baysal, L., Cetinkaya, M., Karasoy, H., and Tolun, A. (2013). DNAJC6 is
5 responsible for juvenile parkinsonism with phenotypic variability. *Parkinsonism Relat Disord.*
6 19(3), 320-4.

7 Krebs, C. E. Karkheiran, S., Powell, J.C., Cao, M., Makarov, V., Darvish, H., Di Paolo, G.,
8 Walker, R.H., Shahidi, G.A., Buxbaum, J.D., De Camilli, P., Yue, Z., and Paisán-Ruiz, C. (2013).
9 The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive
10 Parkinsonism with generalized seizures. *Hum Mutat.* 34(9), 1200-1207.

11 Lam, H.A., Wu, N., Cely, I., Kelly, R.L., Hean, S., Richter, F., Magen, I., Cepeda, C.,
12 Ackerson, L.C., Walwyn, W., Masliah, E., Chesselet, M.F., Levine, M.S., and Maidment, N.T.
13 (2011). Elevated tonic extracellular dopamine concentration and altered dopamine modulation
14 of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α -
15 synuclein. *J Neurosci Res.* 89(7), 1091-102.

16 Landman, N., Jeong, S.Y., Shin, S.Y., Voronov, S.V., Serban, G., Kang, M.S., Park, M.K.,
17 Di Paolo, G., Chung, S., and Kim, T.W. (2006). Presenilin mutations linked to familial
18 Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism.
19 *Proc Natl Acad Sci U S A.* 103(51), 19524-9.

20 Lu, J., He, L., Behrends, C., Araki, M., Araki, K., Wang, Q.J., Catanzaro, J.M., Friedman,
21 S.L., Zong, W.X., Fiel, M.I., Li, M., and Yue, Z. (2014). NRBF2 regulates autophagy and
22 prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. *Nat
23 Commun.* 5, 3920.

24 Mani, M. Lee, S.Y., Lucast, L., Cremona, O., Di Paolo, G., De Camilli, P., and Ryan, T.A.
25 (2007). The dual phosphatase activity of synaptjanin1 is required for both efficient synaptic
26 vesicle endocytosis and reavailability at nerve terminals. *Neuron.* 56(6), 1004-1018.

27 Mani, M. and Ryan, T.A. (2009). Live imaging of synaptic vesicle release and retrieval in
28 dopaminergic neurons. *Front Neural Circuits.* 3, 3.

29 Matta, S., Van Kolen, K., da Cunha, R., van den Bogaart, G., Mandemakers, W.,
30 Miskiewicz, K., De Bock, P.J., Morais, V.A., Vilain, S., Haddad, D., Delbroek, L., Swerts, J.,
31 Chávez-Gutiérrez, L., Esposito, G., Daneels, G., Karran, E., Holt, M., Gevaert, K., Moechars,
32 D.W., De Strooper, B., and Verstreken, P. (2012). LRRK2 controls an EndoA phosphorylation
33 cycle in synaptic endocytosis. *Neuron.* 75, 1008-1021.

34 McPherson, P.S. Garcia, E.P., Slepnev, V.I., David, C., Zhang, X., Grabs, D., Sossin, W.S.,
35 Bauerfeind, R., Nemoto, Y., and De Camilli, P. (1996). A presynaptic inositol-5-phosphatase.
36 *Nature.* 379(6563), 353-7.

37 Micheva, K.D. Kay, B.K., and McPherson, P.S. (1997). Synaptjanin forms two separate
38 complexes in the nerve terminal. Interactions with endophilin and amphiphysin. *J Biol Chem.*
39 272(43), 27239-45.

40 Morterá, P. and Herculano-Houzel, S. (2012). Age-related neuronal loss in the rat brain
41 starts at the end of adolescence. *Front Neuroanat.* 6, 45.

1 Olgiati, S. De Rosa, A., Quadri, M., Criscuolo, C., Breedveld, G.J., Picillo, M., Pappatà, S.,
2 Quarantelli, M., Barone, P., De Michele, G., and Bonifati, V. (2014). PARK20 caused by SYNJ1
3 homozygous Arg258Gln mutation in a new Italian family. *Neurogenetics*. 15(3), 183-8.

4 Olgiati, S., Quadri, M., Fang, M., Rood, J.P., Saute, J.A., Chien, H.F., Bouwkamp, C.G.,
5 Graafland, J., Minneboo, M., Breedveld, G.J., Zhang, J.; International Parkinsonism Genetics
6 Network, Verheijen, F.W., Boon, A.J., Kievit, A.J., Jardim, L.B., Mandemakers, W., Barbosa,
7 E.R., Rieder, C.R., Leenders, K.L., Wang, J., and Bonifati, V. (2016). DNAJC6 Mutations
8 Associated With Early-Onset Parkinson's Disease. *Ann Neurol*. 79(2), 244-56.

9 Pan, P.Y., Li, X., Wang, J., Powell, J., Wang, Q., Zhang, Y., Chen, Z., Wicinski, B., Hof, P.,
10 Ryan, T.A., and Yue, Z. (2017). Parkinson's disease associated LRRK2 hyperactive kinase
11 mutant disrupts synaptic vesicle trafficking in ventral midbrain neurons. *J Neurosci*. pii: 0964-17.
12 doi: 10.1523/JNEUROSCI.0964-17.2017.

13 Pan, P.Y. and Ryan, T.A. (2012). Calbindin controls release probability in ventral tegmental
14 area dopamine neurons. *Nat Neurosci*. 15(6), 813-815.

15 Quadri, M. Fang, M., Picillo, M., Olgiati, S., Breedveld, G.J., Graafland, J., Wu, B., Xu, F.,
16 Erro, R., Amboni, M., Pappatà, S., Quarantelli, M., Annesi, G., Quattrone, A., Chien, H.F.,
17 Barbosa, E.R.; International Parkinsonism Genetics Network, Oostra, B.A., Barone, P., Wang,
18 J., and Bonifati, V. (2013). Mutation in the SYNJ1 gene associated with autosomal recessive,
19 early-onset Parkinsonism. *Hum Mutat*. 34(9), 1208-1215.

20 Sankaranarayanan, S., De Angelis, D., Rothman, J.E., and Ryan, T.A. (2000). The use of
21 pHluorins for optical measurements of presynaptic activity. *Biophys J*. 79(4), 2199-2208.

22 Schirinzi, T., Madeo, G., Martella, G., Maltese, M., Picconi, B., Calabresi, P., and Pisani, A.
23 Early synaptic dysfunction in Parkinson's disease: Insights from animal models. *Mov Disord*.
24 31(6), 802-13. doi: 10.1002/mds.26620

25 Singleton, A.B. Farrer, M.J., and Bonifati, V. (2013). The genetics of Parkinson's disease:
26 progress and therapeutic implications. *Mov Disord*, 28(1), 14-23.

27 Spataro, N., Calafell, F., Cervera-Carles, L., Casals, F., Pagonabarraga, J., Pascual-
28 Sedano, B., Campolongo, A., Kulisevsky, J., Lleó, A., Navarro, A., Clarimón, J., and Bosch, E.
29 (2015). Mendelian genes for Parkinson's disease contribute to the sporadic forms of the
30 disease. *Hum Mol Genet*. 24(7), 2023-34.

31 Stark, A.K. and Pakkenberg, B. (2004). Histological changes of the dopaminergic
32 nigrostriatal system in aging. *Cell Tissue Res*. 318(1), 81-92.

33 Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N.,
34 Micheva, K.D., Mehalow, A.K., Huberman, A.D., Stafford, B., Sher, A., Litke, A.M., Lambris,
35 J.D., Smith, S.J., John, S.W., and Barres, B.A. (2007). The classical complement cascade
36 mediates CNS synapse elimination. *Cell*. 131(6), 1164-78.

37 Sulzer, D., Alcalay, R.N., Garretti, F., Cote, L., Kanter, E., Agin-Liebes, J., Liou, C.,
38 McMurtrey, C., Hildebrand, W.H., Mao, X., Dawson, V.L., Dawson, T.M., Oseroff, C., Pham, J.,
39 Sidney, J., Dillon, M.B., Carpenter, C., Weiskopf, D., Phillips, E., Mallal, S., Peters, B., Frazier,
40 A., Arlehamnl, C.S.L., and Sette, A. (2017). T cells from patients with Parkinson's disease
41 recognize α -synuclein peptides. *Nature*. 546(7660), 656-661.

1 Sumi-Akamaru, H., Beck, G., Kato, S., and Mochizuki, H. (2015). Neuroaxonal dystrophy in
2 PLA2G6 knockout mice. *Neuropathology*. 35(3), 289-302.

3 Surmeier, D.J., Obeso, J.A., and Halliday, G.M. (2017). Selective neuronal vulnerability in
4 Parkinson disease. *Nat Rev Neurosci*. 18(2), 101-113.

5 Taghavi, S., Chaouni, R., Tafakhori, A., Azcona, L.J., Firouzabadi, S.G., Omrani, M.D.,
6 Jamshidi, J., Emamalizadeh, B., Shahidi, G.A., Ahmadi, M., et al. (2017). A Clinical and
7 Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed
8 Known and Novel Gene Mutations. *Mol Neurobiol*. doi: 10.1007/s12035-017-0535-1.

9 Trinh, J. and Farrer, M. (2013). Advances in the genetics of Parkinson disease. *Nat Rev
10 Neurol*. 9(8), 445-54.

11 Tsika, E., Glauser, L., Moser, R., Fiser, A., Daniels, G., Sheerin, U-M., Lees, A., Troncoso,
12 J.C., Lewis, P.A., Bandopadhyay, R., Schneider, B.L., and Moore, D.J. (2014). Parkinson's
13 disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. *Hum Mol Genet*.
14 23(17), 4621-38.

15 Unger, E.L., Eve, D.J., Perez, X.A., Reichenbach, D.K., Xu, Y., Lee, M.K., and Andrews,
16 A.M. (2006). Locomotor hyperactivity and alterations in dopamine neurotransmission are
17 associated with overexpression of A53T mutant human alpha-synuclein in mice. *Neurobiol Dis*.
18 21(2), 431-43.

19 Vanhauwaert, R., Kuenen, S., Masius, R., Bademosi, A., Manetsberger, J., Schoovaerts,
20 N., Bounti, L., Gontcharenko, S., Swerts, J., Vilain, S., Picillo, M., Barone, P., Munshi, S.T., de
21 Vrij, F.M., Kushner, S.A., Gounko, N.V1., Mandemakers, W., Bonifati, V., Meunier, F.A.,
22 Soukup, S.F., and Verstreken, P. (2017). The SAC1 domain in synaptojanin is required
23 for autophagosome maturation at presynaptic terminals. *EMBO J*. 36(10), 1392-1411.

24 Volta, M. Beccano-Kelly, D.A., Paschall, S.A., Cataldi, S., MacIsaac, S.E., Kuhlmann, N.,
25 Kadgien, C.A., Tatarnikov, I., Fox, J., Khinda, J., Mitchell, E., Bergeron, S., Melrose, H., Farrer,
26 M.J., and Milnerwood, A.J. (2017). Initial elevations in glutamate and dopamine
27 neurotransmission decline with age, as does exploratory behavior, in LRRK2 G2019S knock-in
28 mice. *Elife*, 6, pii: e28377.

29 Voronov, S.V., Frere, S.G., Giovedi, S., Pollina, E.A., Borel, C., Zhang, H., Schmidt, C.,
30 Akeson, E.C., Wenk, M.R., Cimasoni, L., Arancio, O., Davisson, M.T., Antonarakis, S.E.,
31 Gardiner, K., De Camilli, P., Di and Paolo, G. (2008). Synaptojanin 1-linked phosphoinositide
32 dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. *Proc Natl Acad
33 Sci U S A*. 105(27), 9415-20.

34 Zhu, L., Zhong, M., Elder, G.A., Sano, M., Holtzman, D.M., Gandy, S., Cardozo, C.,
35 Haroutunian, V., Robakis, N.K., and Cai, D. (2015). Phospholipid dysregulation contributes to
36 ApoE4-associated cognitive deficits in Alzheimer's disease pathogenesis. *Proc Natl Acad Sci U
37 S A*. 112(38), 11965-70.

38

39

1 **Figure legend**

2 **Figure 1. *SYNJ1* transcripts are reduced in subsets of sporadic PD brains and the**
3 **striatum of aged humans**

4 **A-B**) *SYNJ1* (**A**) and *SYP* (synaptophysin) (**B**) mRNA levels from postmortem sporadic PD and
5 control human samples were analyzed based on datasets GSE28894, GSE20168, GSE8397
6 (see Materials and Methods / Human Data Analysis). Each data point represents one patient. P
7 values are from two-sample Student's *t* test. **C**) *SYNJ1* (synj1, top), *ACTB* (β -actin, middle) and
8 *SYN1* (synapsin I, bottom) transcript levels in different brain regions were normalized to the
9 average of the "21-30 years" bin and plotted against all binned age groups. Data sets obtained
10 from Allen Brain Atlas developing human brain and GTEx aged brain bank. Numbers in brackets
11 indicate the number of subjects in each binned age group. To test the null hypothesis that
12 *SYNJ1* expression is not down-regulated by aging, we performed one-way ANOVA followed by
13 Tukey's *post-hoc* tests for each brain region starting from bin 3, 11-20 years old, to bin 7, 60-70
14 years old. One-way ANOVA for *SYNJ1*: cortex, $^*P = 4.52E-4$; striatum, $^*P = 0$; MB, $^*P = 0.014$.
15 One-way ANOVA for *SYN1*: cortex, $^*P = 0.0059$; striatum, $P = 0.95$; MB, $P = 0.57$. P values are
16 from Tukey's *post-hoc* analysis for brain regions display significant age-dependent changes.

17 **Figure 1-Figure Supplement 1. Validation of the synj1 antibody for quantitative analysis**

18 **A**) DIV14 cortical neurons from *SYNJ1*^{+/+}, *SYNJ1*^{+/−} and *SYNJ1*^{−/−} mice immunolabeled for
19 synapsin1/2 and synj1. Synj1 display typical nerve terminal enriched expression. Scale bar, 10
20 μ m. **B-C**) Quantification of synj1 immunoreactivity at the cell body (**B**) and at the nerve terminals
21 (**C**) after background subtraction revealed a gene-does dependent change. **D-E**) Analysis of
22 synj1 immunoreactivity in coronal slices (see Materials and Methods / Data analysis) from
23 *SYNJ1*^{+/+} (N=6) and *SYNJ1*^{+/−} (N=6) mice. Scale bar, 100 μ m.

24 **Figure 1-Figure Supplement 2. Synj1 immunofluorescence is down regulated in the**
25 **striatum of aged mice**

26 **A**) Representative immunofluorescence for synj1, synapsin1/2 and TH in the coronal striatal
27 slices of a 3-month old and an 18-month old mouse. Scale bar, 100 μ m. **B**) Summary of the
28 expression of synj1 (red) and synapsin1/2 (black) in the striatum (outlined in white in **A**) relative
29 to the cortex (outlined in yellow in **A**) in different ages of the mouse brain (see Materials and
30 Methods / Data analysis). Data represents the average of 3 mice for each age group. To test the
31 null hypothesis that age does not change synj1 immunofluorescence, one-way ANOVA ($^*P =$
32 0.042 for synj1 and $P = 0.29$ for synapsin1/2) was performed for each marker. P value
33 represents Tukey's *post-hoc* analysis following one-way ANOVA.

34

35 **Figure 2. Synj1 immunoreactivity is reduced in striatal dopaminergic terminals in aged**
36 **mice.**

37 **A**) Diagram illustrating positions where 40 nm cryoslices were taken from the mouse brain **B-C**)
38 Low-magnification (**B**) and High-magnification (**C**) confocal images of a representative 18-month
39 old striatal slice immunolabeled with anti-TH (blue), anti-synj1 (red) and anti-synapsin1/2
40 (green). White and yellow circles in **C** represent TH-positive (DAergic) and TH-negative nerve
41 terminals, respectively. Scale bar in **B**, 200 μ m, scale bar in; **C**, 5 μ m. **D**) Comparison of

1 averaged TH, synapsin1/2 and synj1 immunoreactivity in circular regions of interests (as in **C**)
2 for 3-month and 18-month old mice. Each data point represents the average of the mean
3 fluorescence measured from 10-20 images of 2 slices for each mouse and the error bar is the
4 standard error represents each of the 3 mice. P values are calculated by one-sample Student's *t*
5 tests (see Materials and Methods / Data analysis). **E**) Cumulative probability distribution for
6 synj1 immunoreactivity at TH⁺ and TH⁻ terminals in a mouse at 18-month old (TH⁺ terminals: N =
7 694; TH⁻ terminals: N = 985, D = 0.25, *P < 0.001, two-sample Kolmogorov-Smirnov test) and
8 another at 3-month old (TH⁺ terminals: N = 1021, TH⁻ terminals: N = 1011, D = 0.15, *P < 0.001,
9 two-sample Kolmogorov-Smirnov test).

10

11 **Figure 3. MB-specific sensitivity to PIP₂ deregulation**

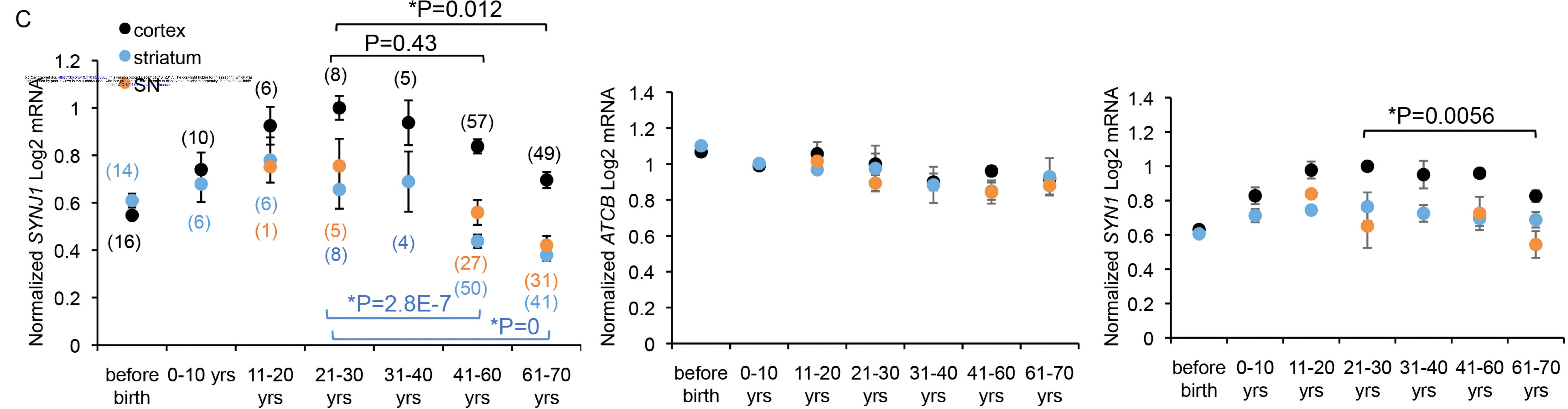
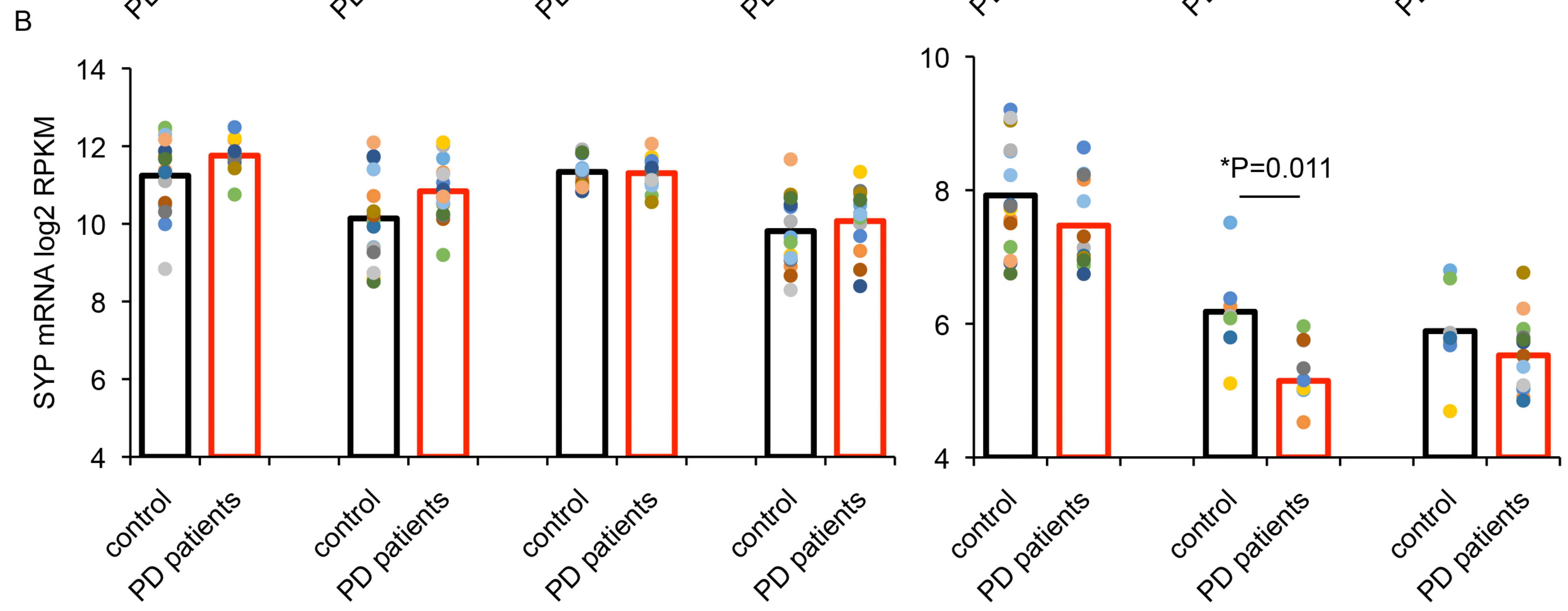
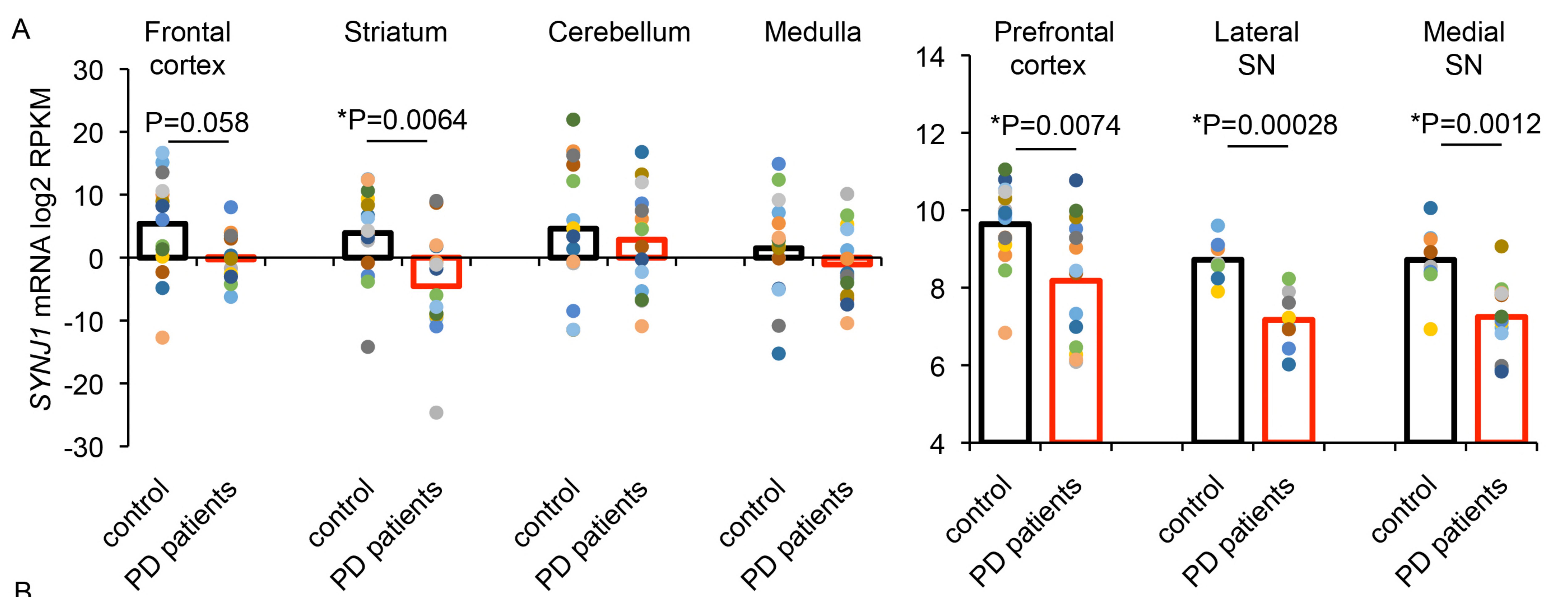
12 **A)** Comparison of phosphoinositide contents measured by HPLC in different brain regions
13 (cortex, MB and striatum) of male WT mice at 12 months old. **B)** Summary of PI, PIP and PIP₂
14 levels from 12 months old *SYNJ1^{+/−}* mice and *SYNJ1^{+/+}* mice of both sexes. P values are
15 calculated by two-sample Student's *t* tests. **C)** Illustration for the role of synj1 in regulating
16 phosphoinositide metabolism and the role of LY249002 (LY) in inhibiting the conversion of
17 PI(4,5)P₂ to PI(3,4,5)P₃ **D)** Representative pHluorin signal for the cultured MB and cortical
18 neurons at 10 Hz, 10 s stimulation before (black) and after LY incubation (red). **E)** Summary of
19 endocytosis and exocytosis kinetics before and after LY treatment in different neurons. P values
20 are calculated by paired Student's *t* tests.

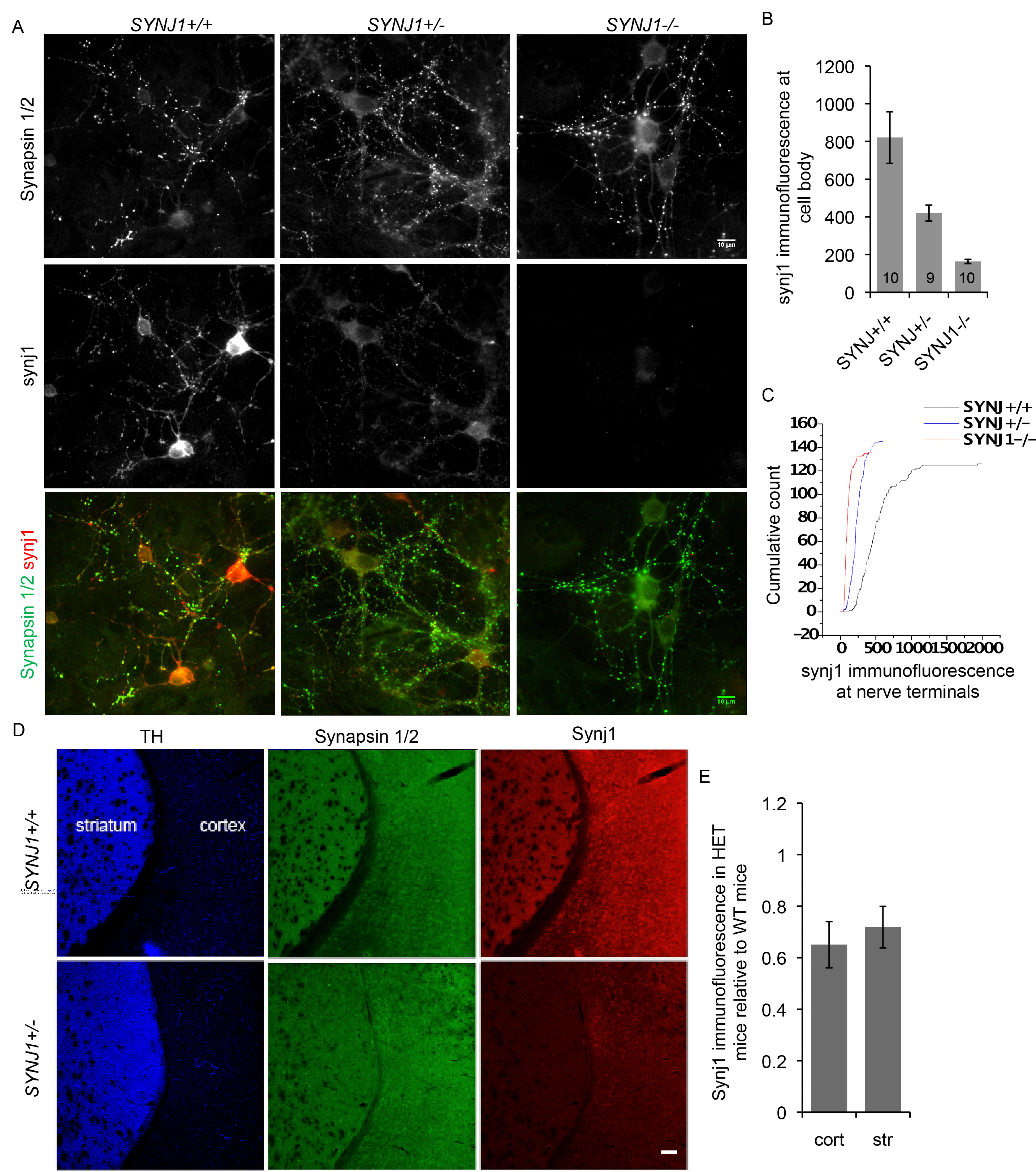
21

22 **Figure 4. *SYNJ1^{+/−}* mice exhibit hyperactivity in early adulthood and motor function
23 alterations**

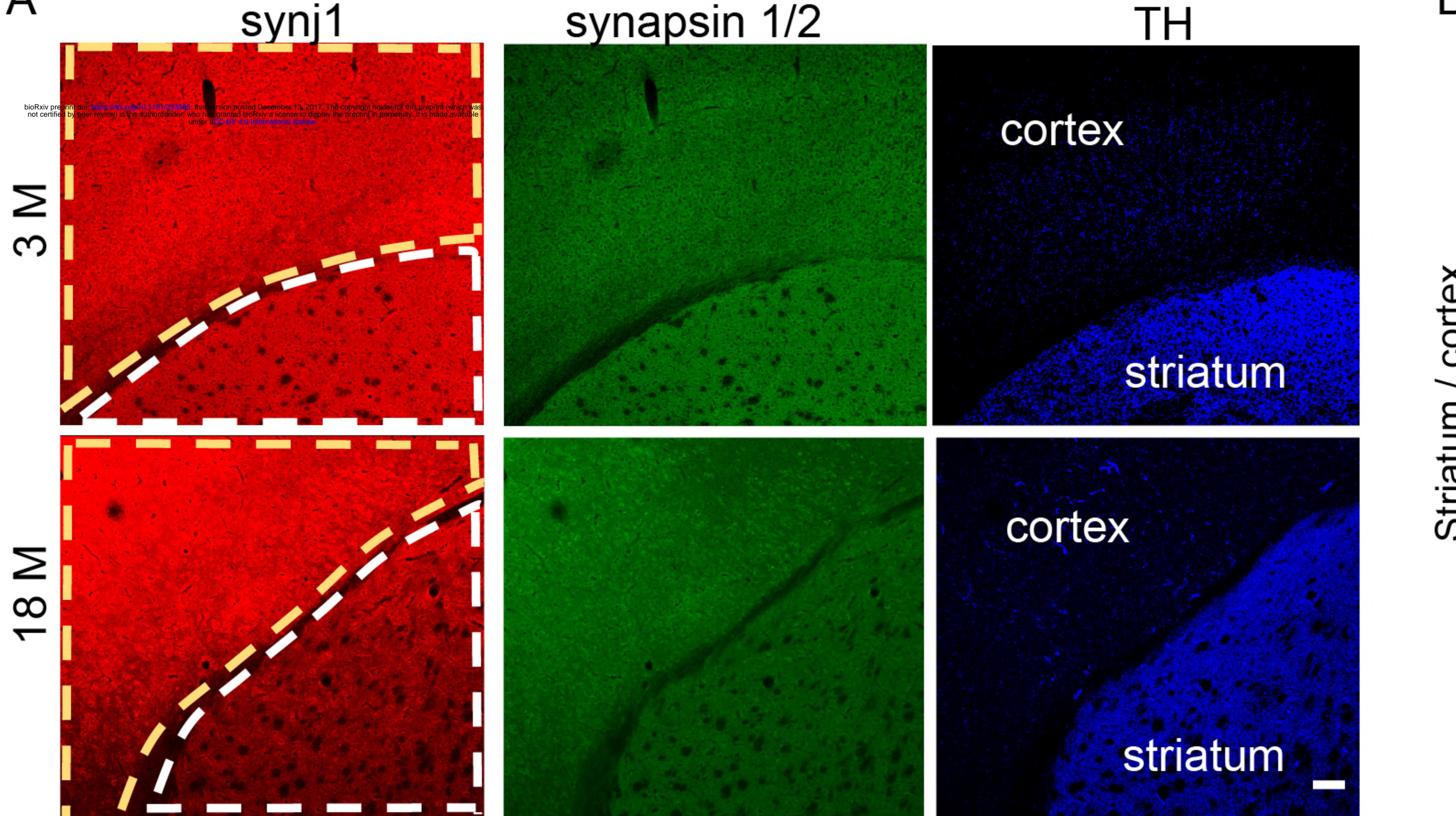
24 **A-B)** Total distance (**A**) and movement time (**B**) measured in the open-field assay for male
25 *SYNJ1^{+/−}* and *SYNJ1^{+/−}* mice at 7-month and 12-month of age, respectively. A cohort of
26 *SYNJ1^{+/+}* (N=15) and *SYNJ1^{+/−}* (N=13) littermates were examined at 7 months old; and a cohort
27 of *SYNJ1^{+/+}* (N=22) and *SYNJ1^{+/−}* (N=13) littermates were examined at 12 months old. Due to an
28 imbalance in the number of subjects, two-way repeated measures ANOVA with *post-hoc* tests
29 do not apply. P values are calculated by two-sample Student's *t* tests. **C)** Total distance in the
30 open field assay for 12 months old mice treated (IP injection) with PBS or quinpirole (0.5 mg/kg)
31 – a D2 receptor agonist. Locomotor activity was averaged within each 5-minute bin of recording
32 and 12 data points were obtained for each animal for a total of 60 minutes of recording. Error
33 bars represent standard errors for the number of animals tested at each 5-minute bin. P values
34 are from two-sample Student's *t* tests. **D)** Accelerated Rota-rod assay summarizing the end
35 speed before mice fell off the rotating bar. P values are from two-sample Student's *t* tests.

36

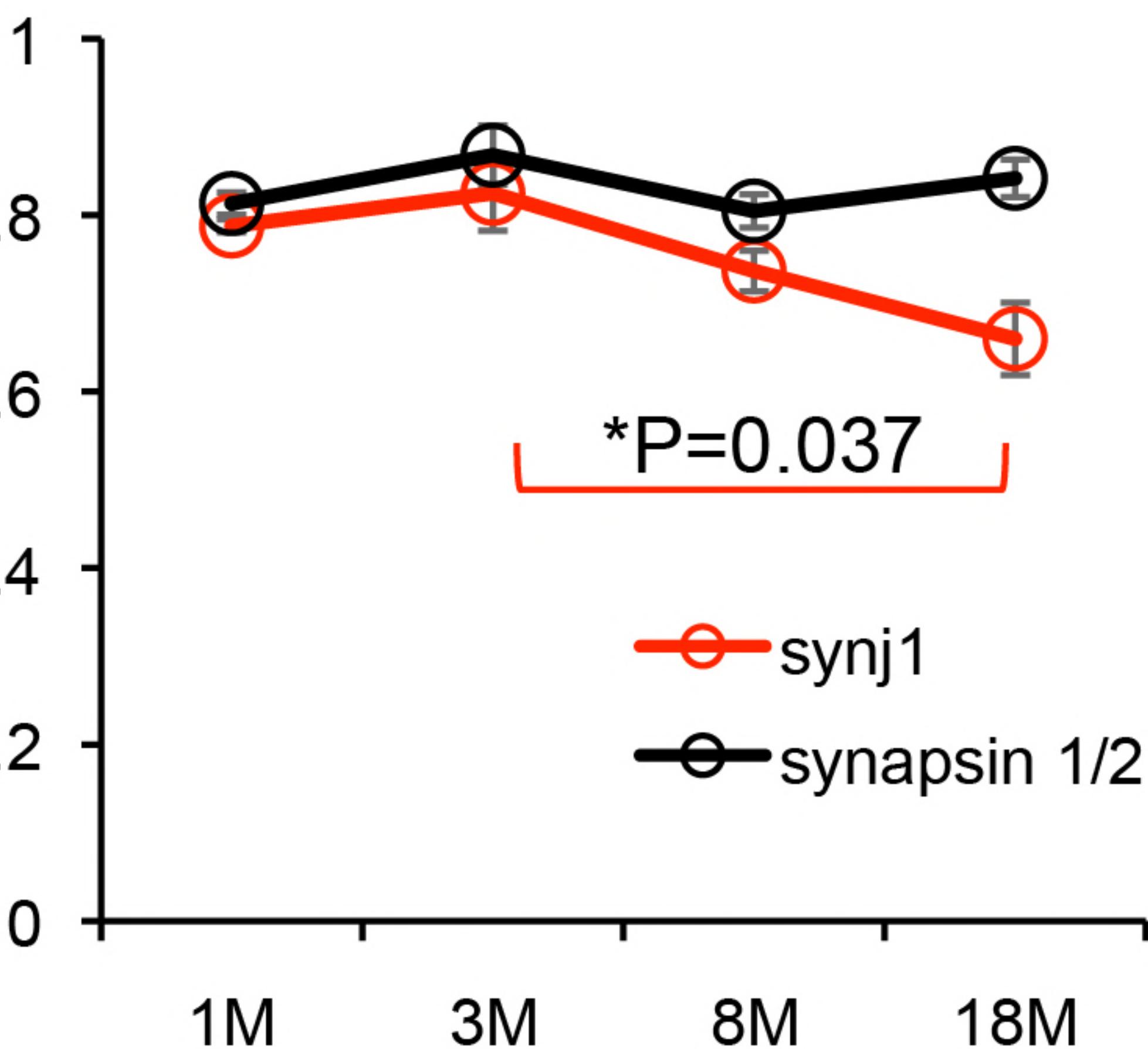



37 **Figure 5. Aged *SYNJ1^{+/−}* mice exhibit loss of dopaminergic terminals and reduction of DA
38 content**

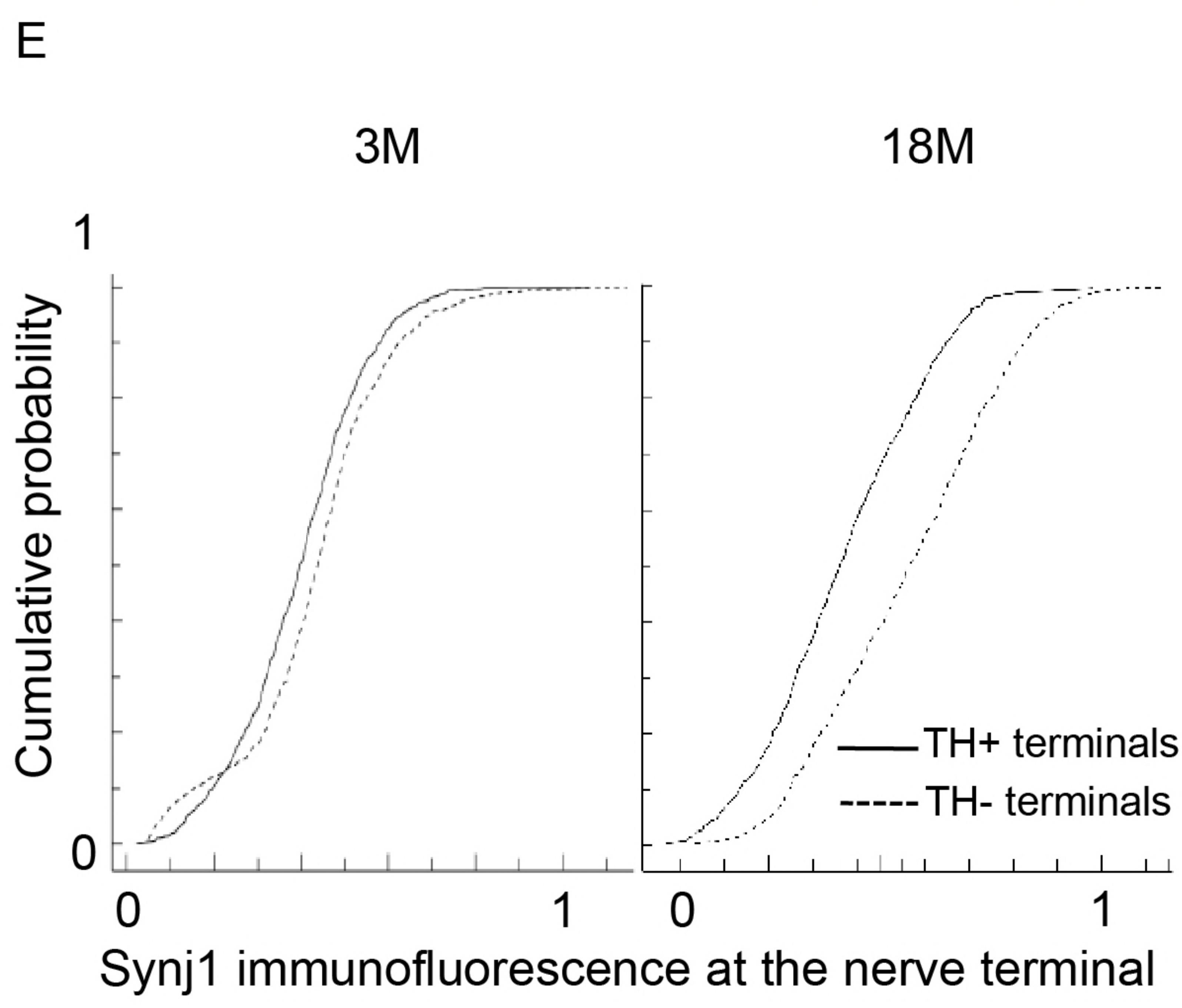
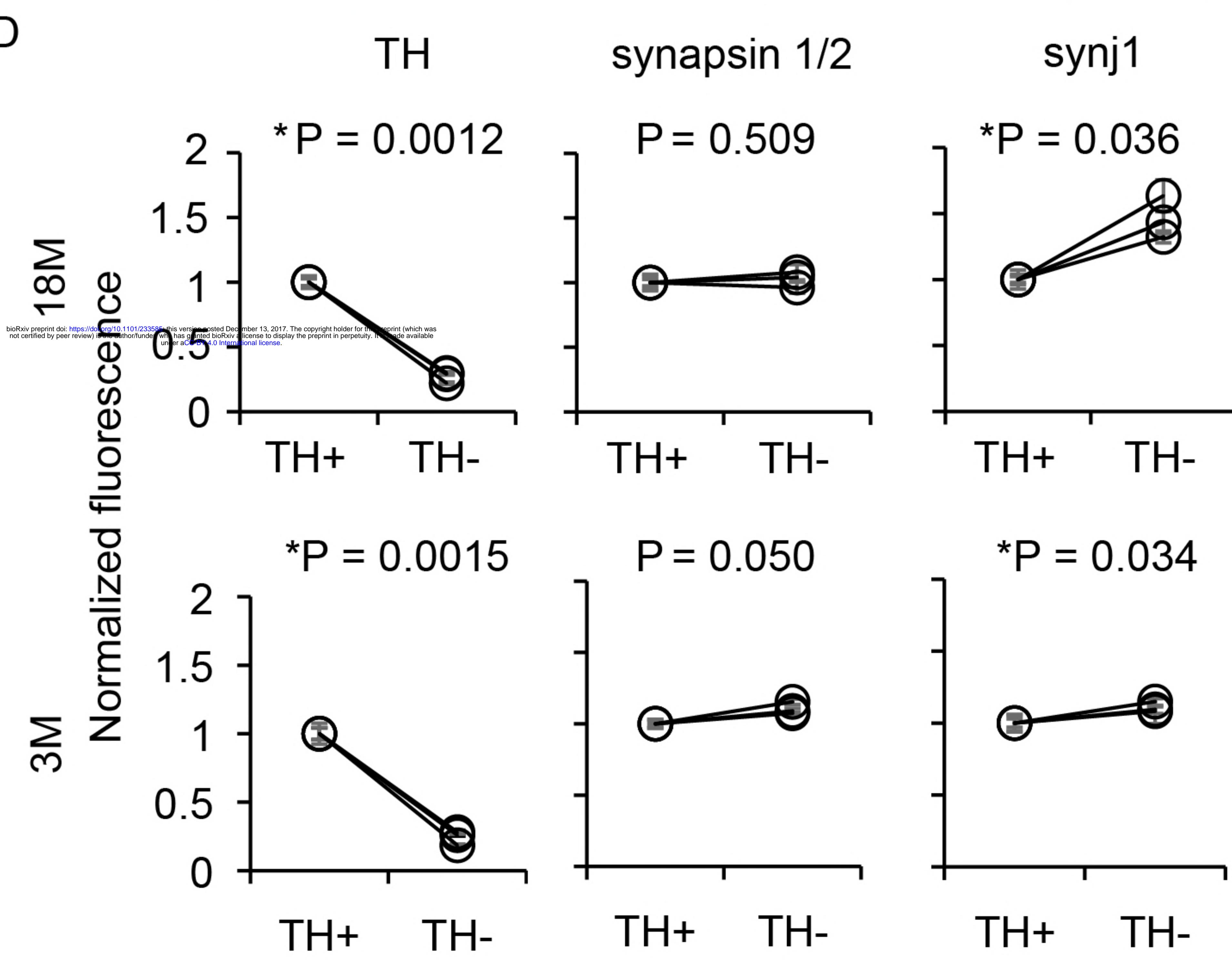
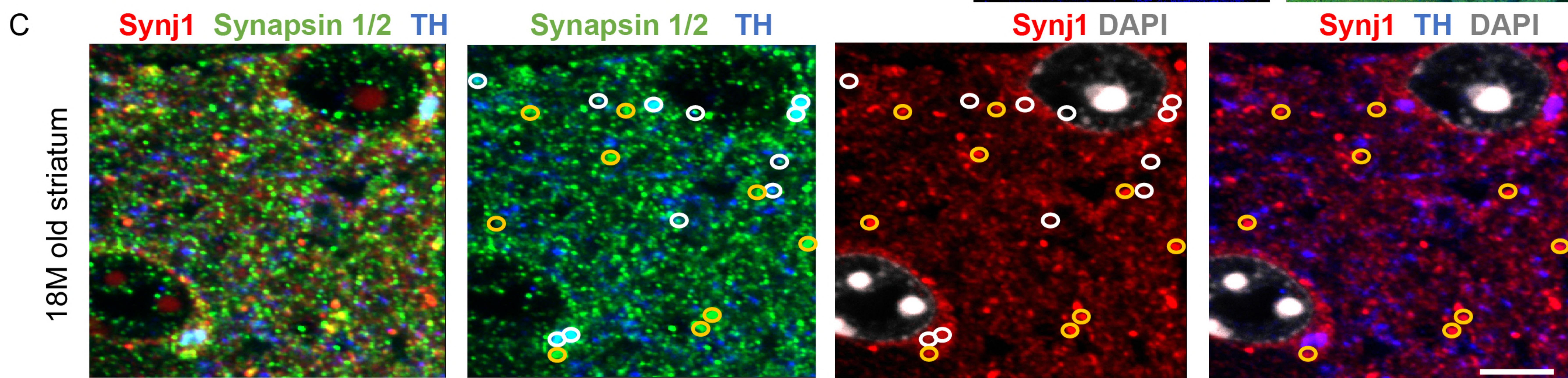
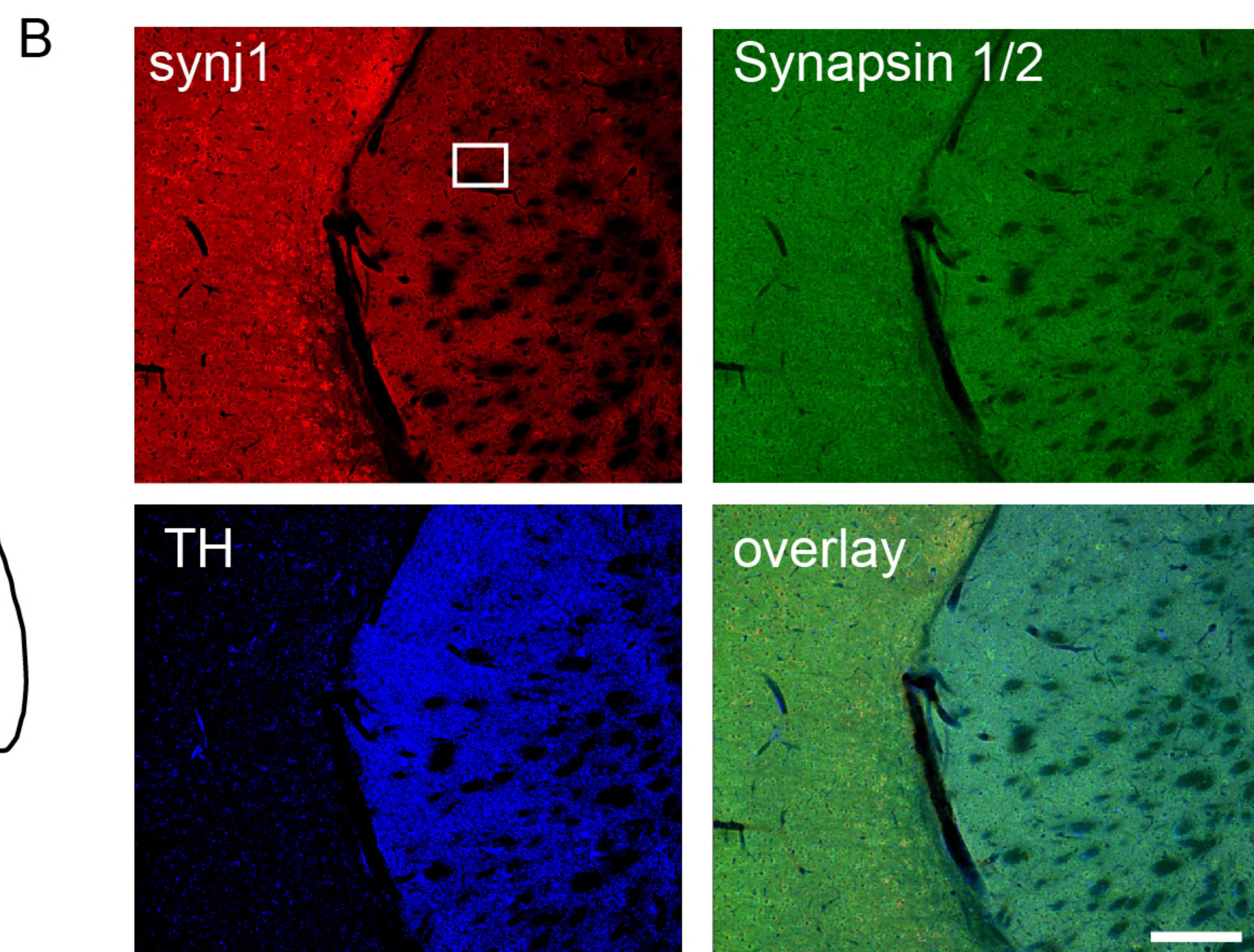
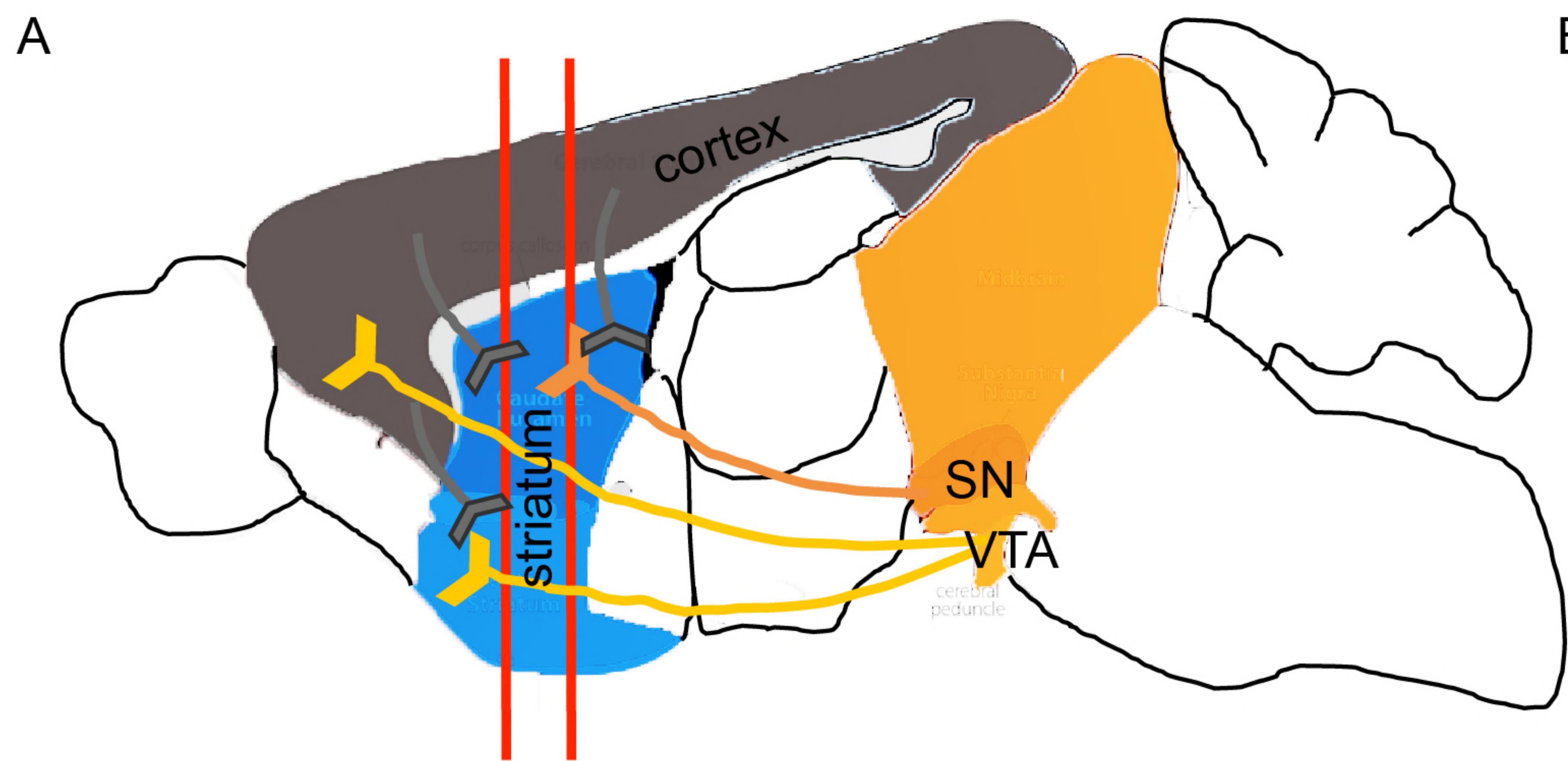

39 **A)** Representative 3-month old and 18-month old striatal slices from a *SYNJ1^{+/+}* mouse and a
40 *SYNJ1^{+/−}* mouse immunolabeled with anti-TH and anti-synapsin1/2. White circles represent
41 DAergic terminals with immunoreactivity for both TH and synapsin1/2. Scale bar, 5 μ m. **B)**
42 Summary for the number of DAergic terminals analyzed from 3 male mice. Each data point

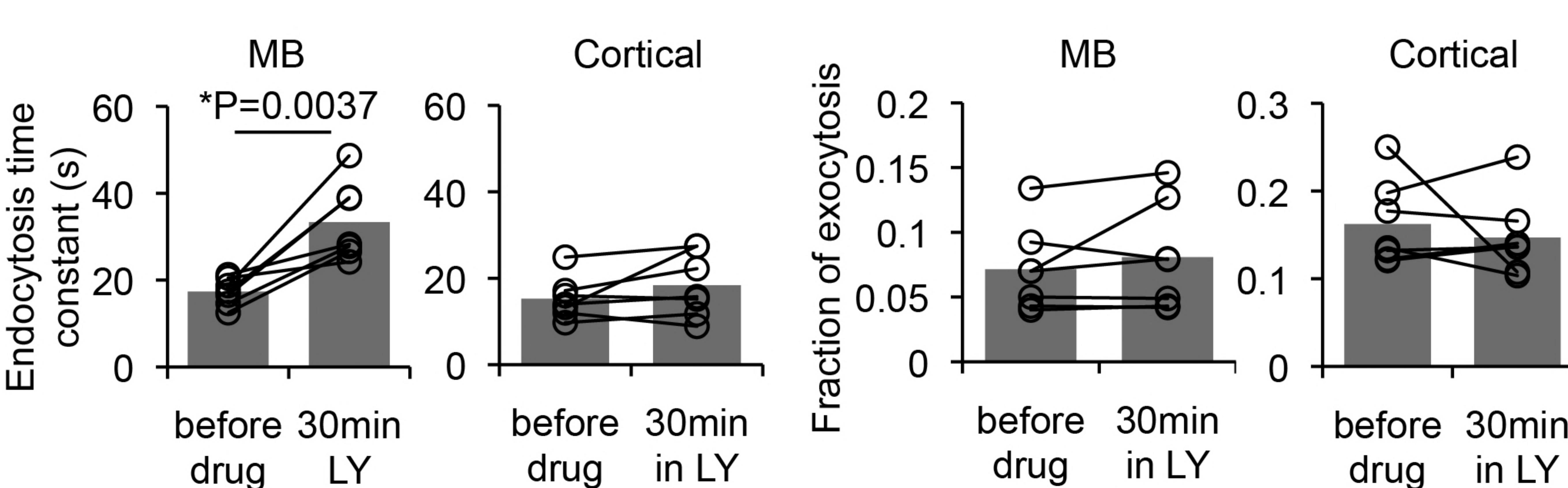
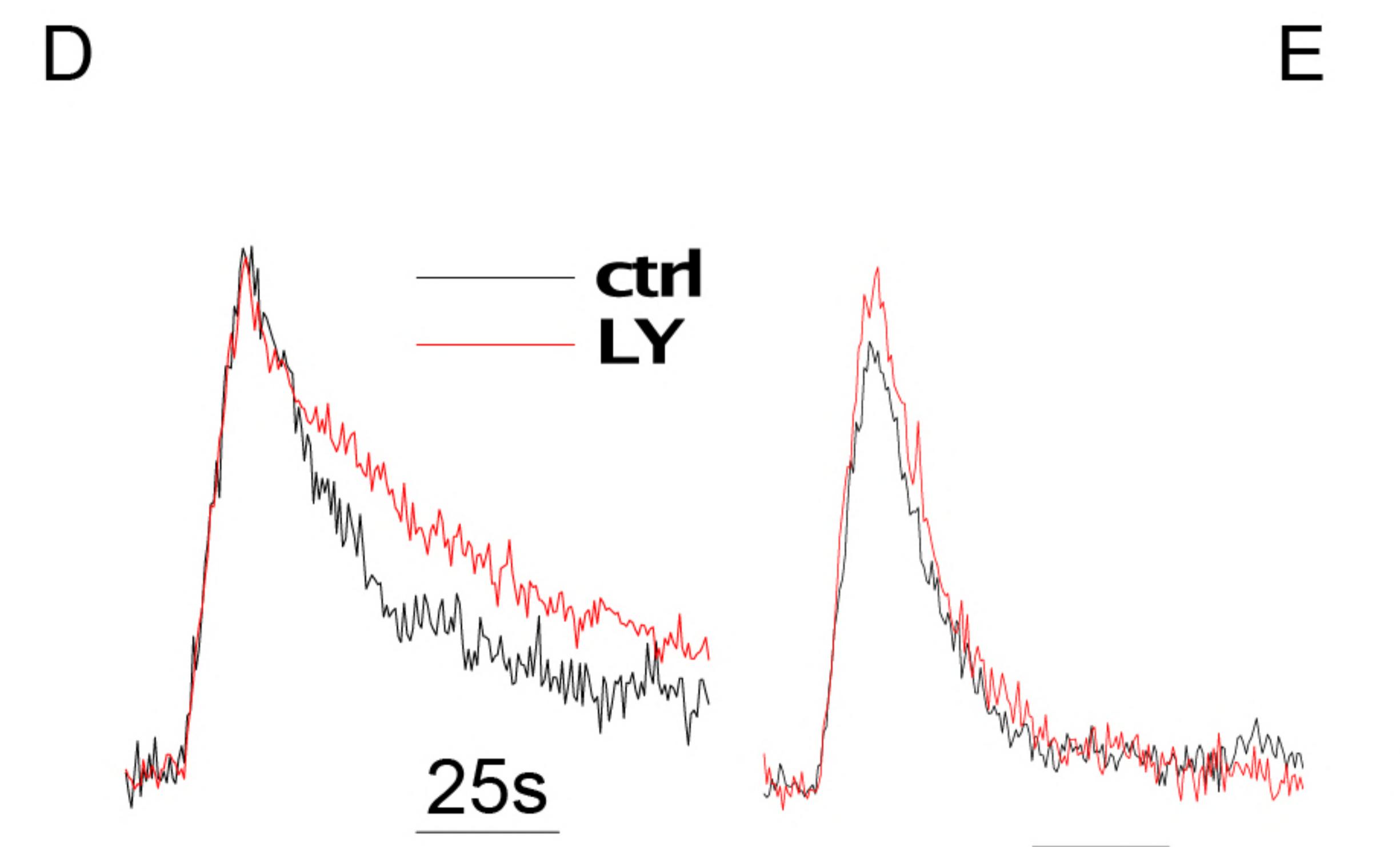
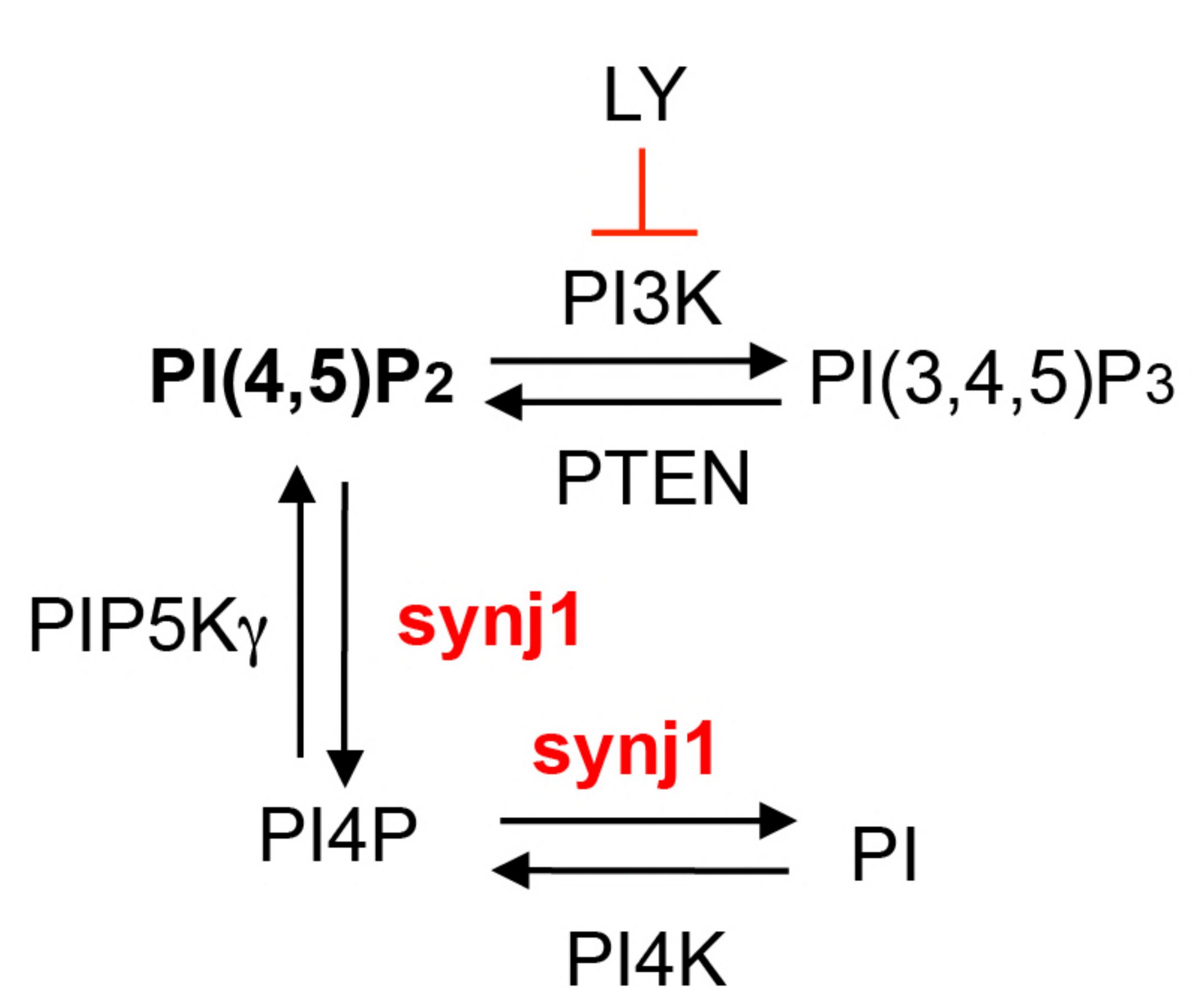
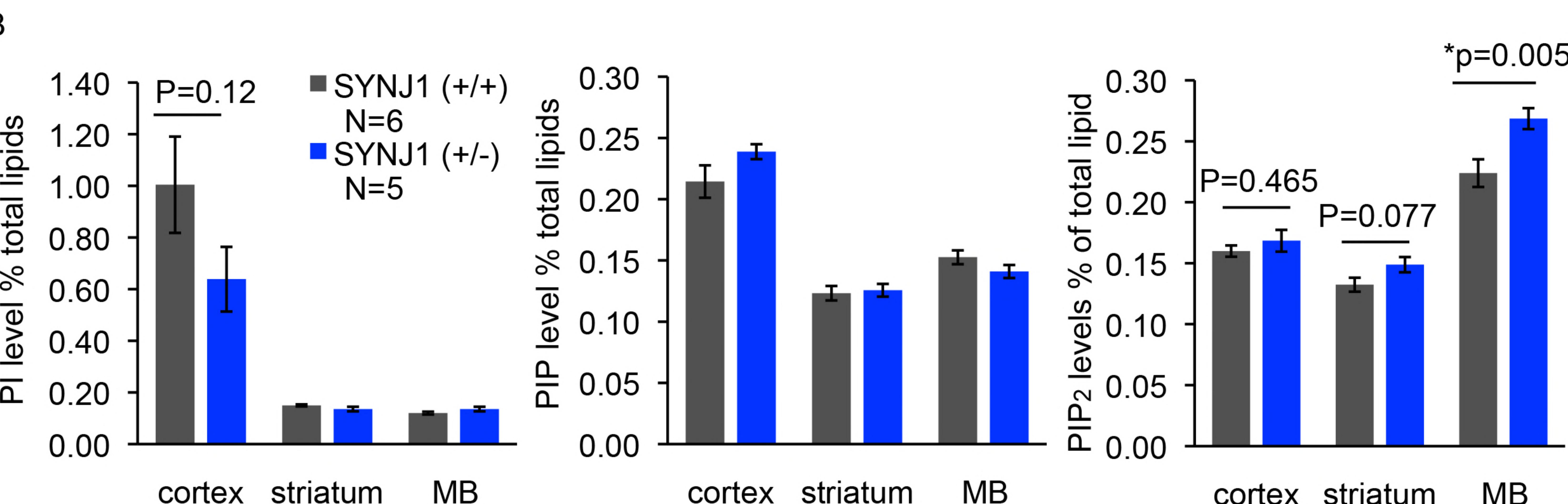
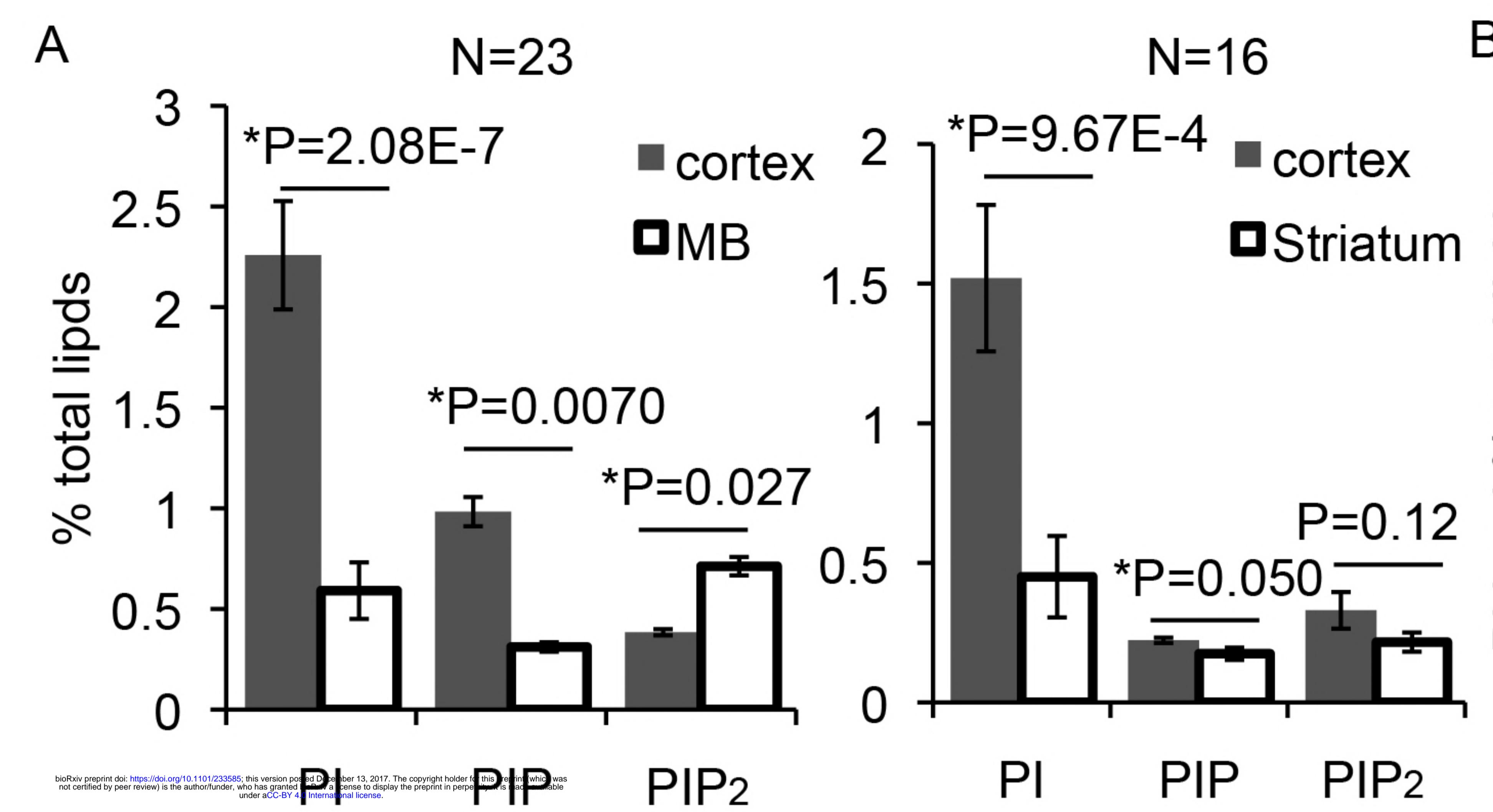
1 represents the mean and the standard error for the number of DAergic terminals sampled from
2 10-20 images for an individual mouse (see Materials and Methods / Data analysis). P value is
3 from two-sample Student's *t* tests **C**) DA content and its metabolites levels in the striatum of 12
4 months old male mice measured by HPLC. P values in both **B** and **C** are calculated by two-
5 sample Student's *t* tests.

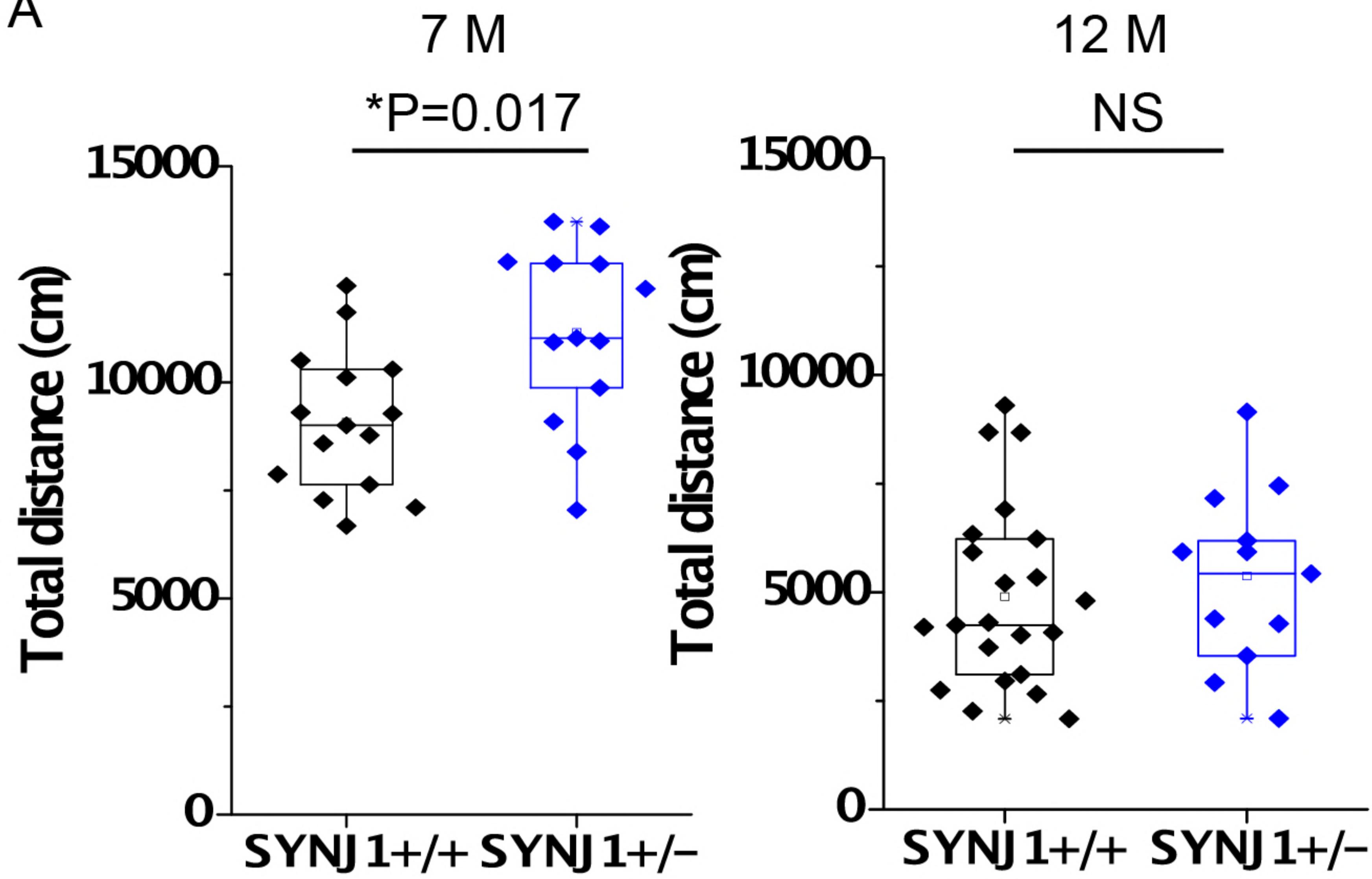

6 **Figure 5-Figure Supplement 1. *SYNJ1*^{+/−} mice do not exhibit loss of DAergic cell bodies**

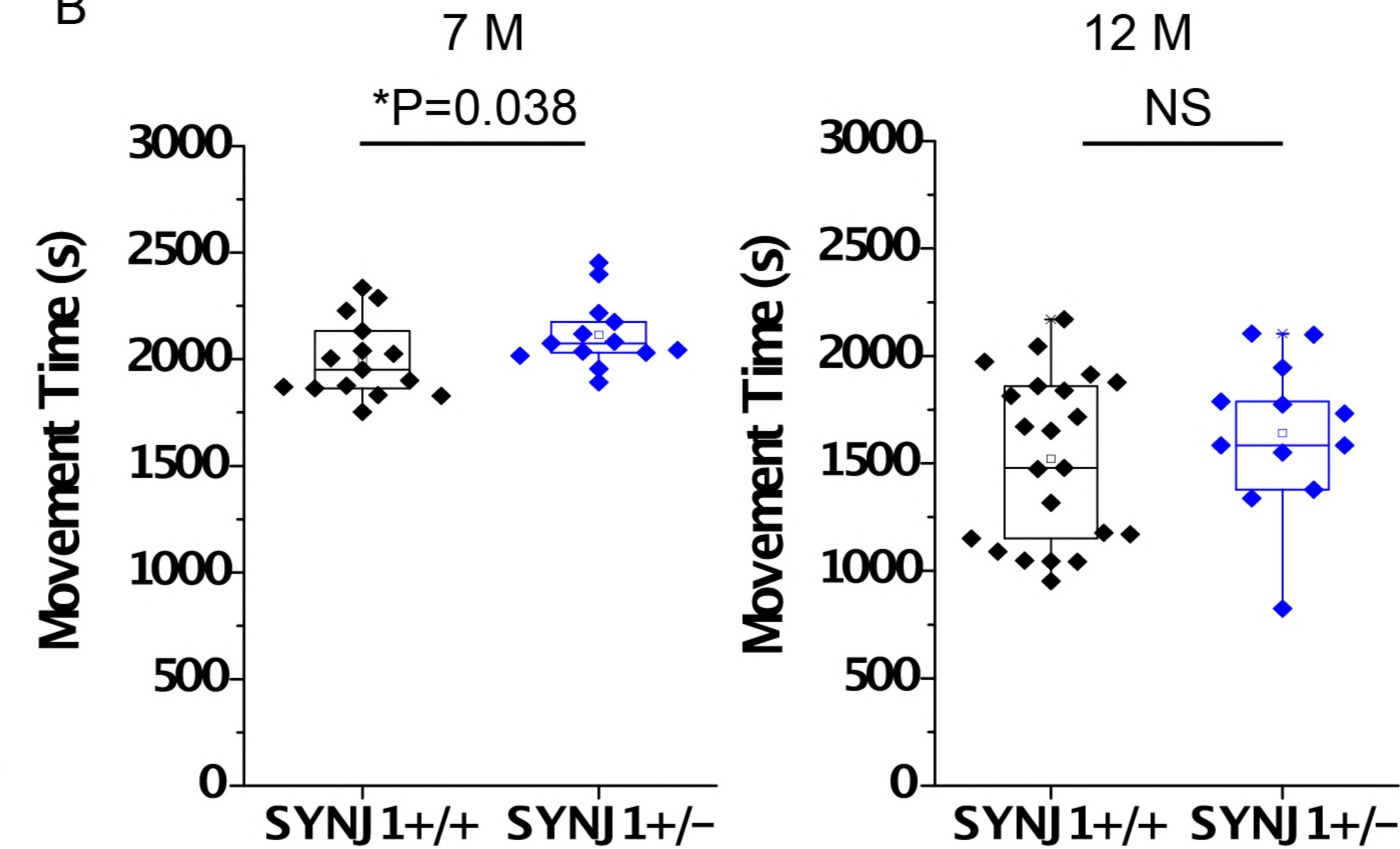
7 **A)** Representative images showing TH immunolabeling (DAB enhanced, brown) and Nissl
8 counter staining (blue) at the ventral midbrain from a *SYNJ1*^{+/−} mouse and a *SYNJ*^{+/+} littermate.
9 Scale bar, 200 μ m. **B)** Stereological analysis estimating total number of TH and Nissl positive
10 neurons in male *SYNJ1*^{+/−} mice (N = 4) and *SYNJ*^{+/+} littermates (N = 5) as well as the
11 percentage of TH positive neurons did not reveal any difference.

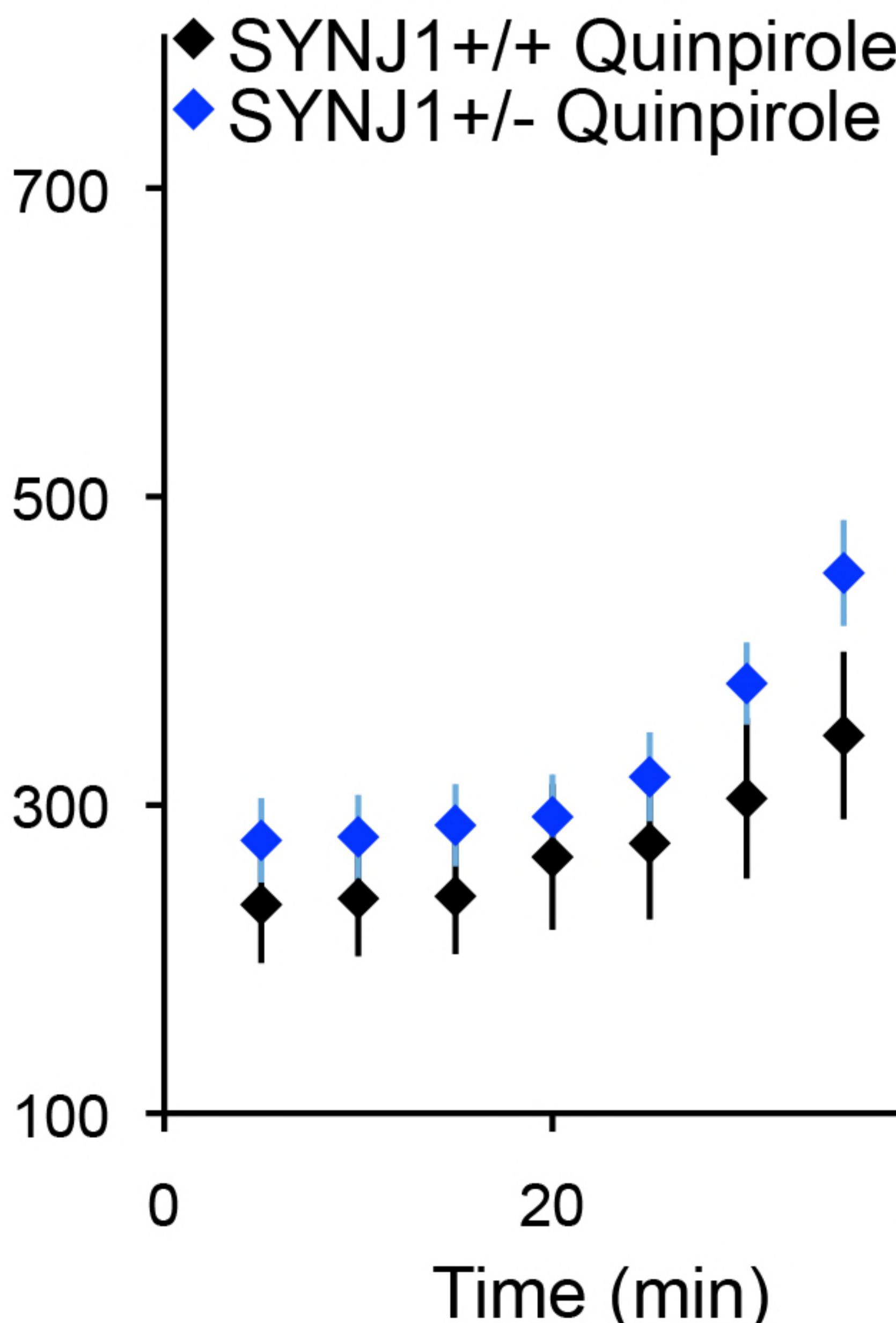
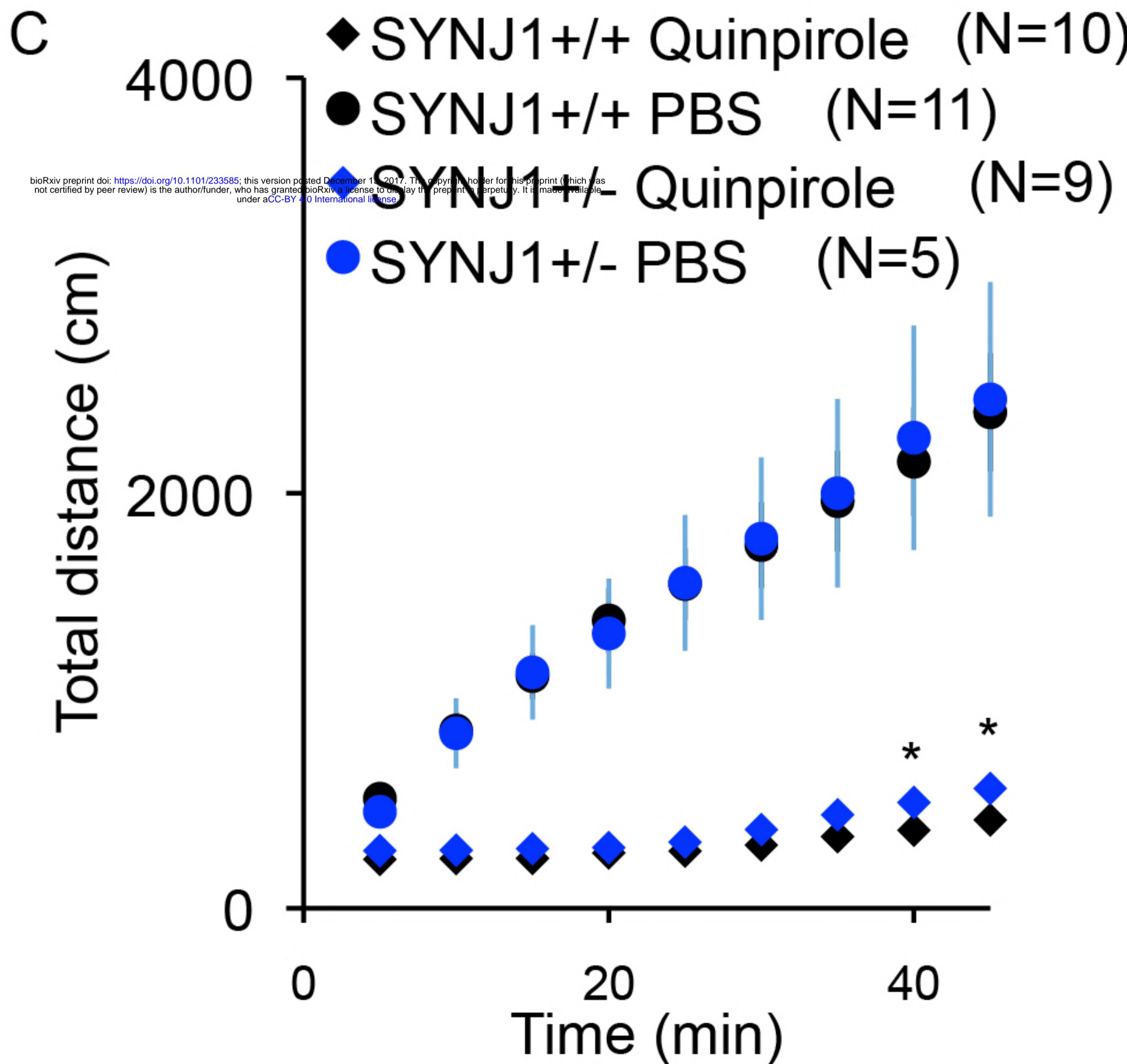


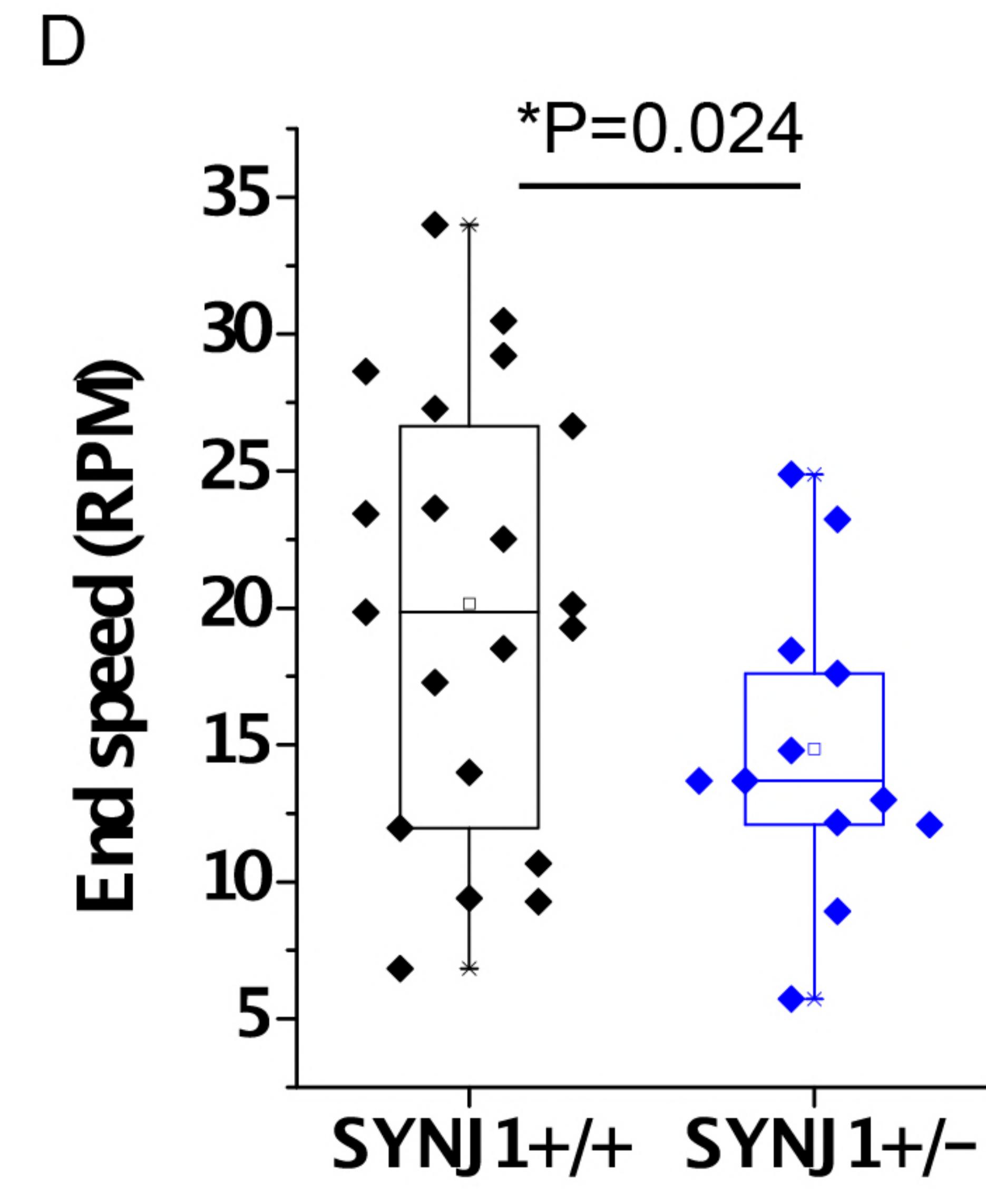






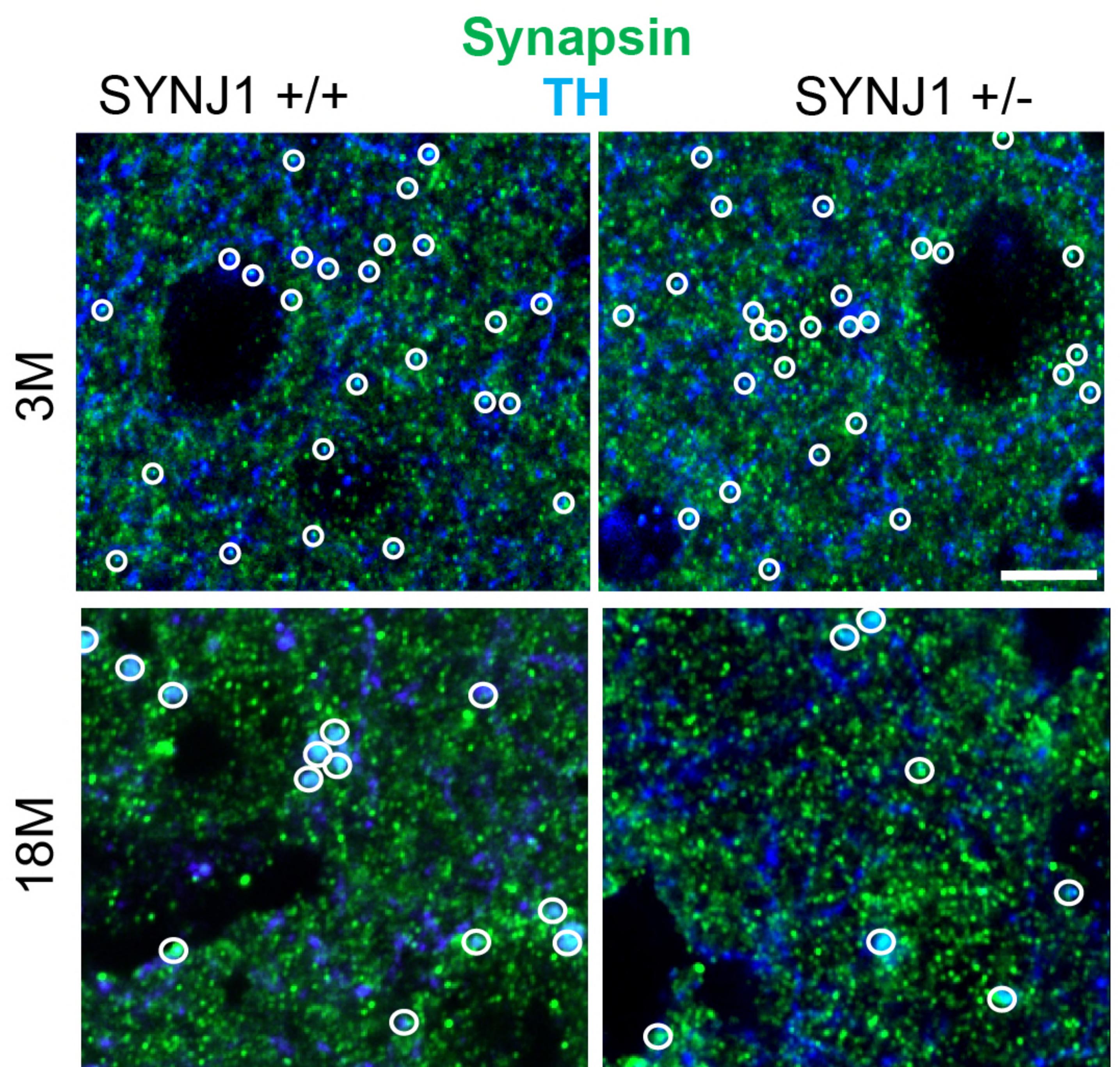





A

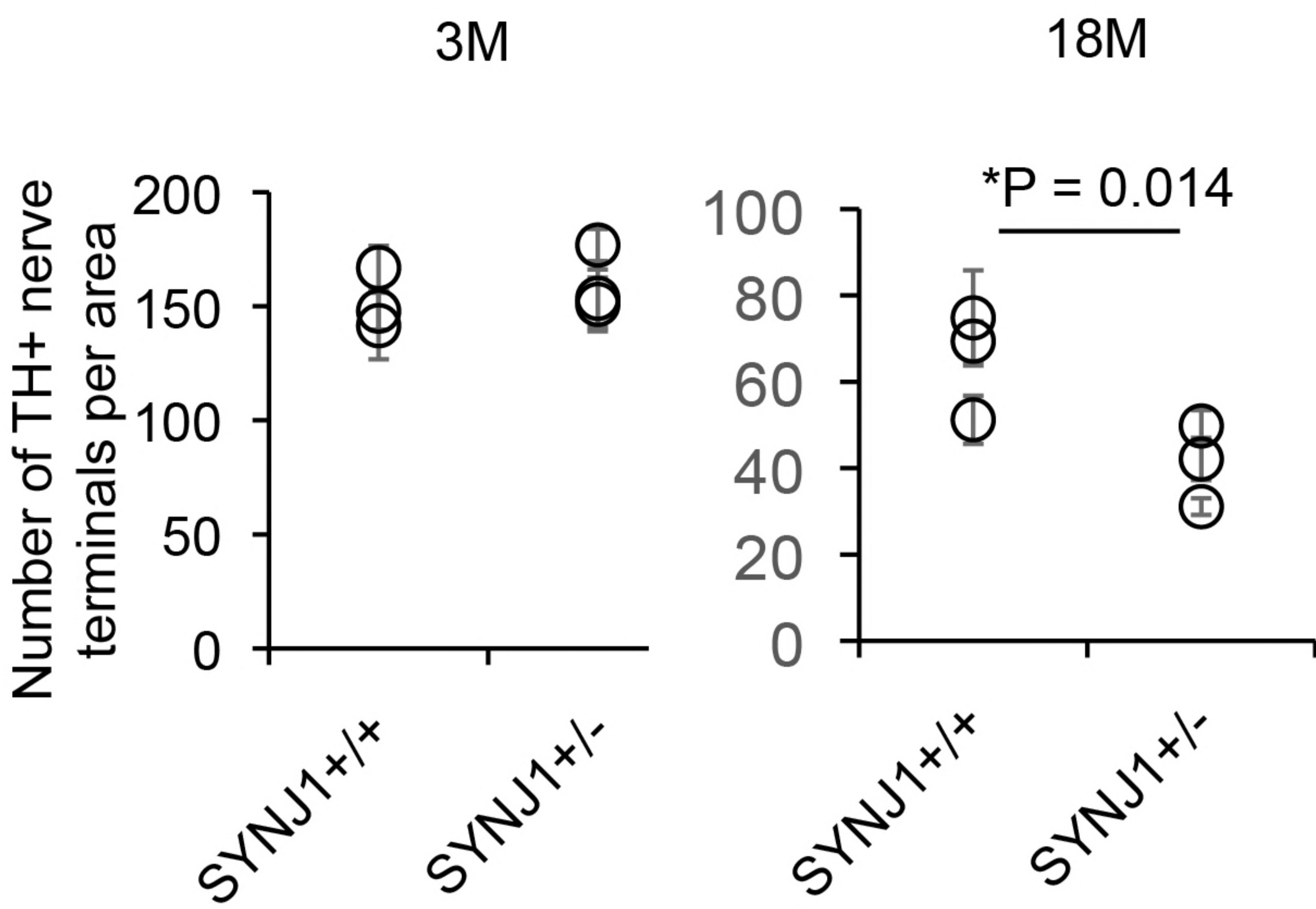

B

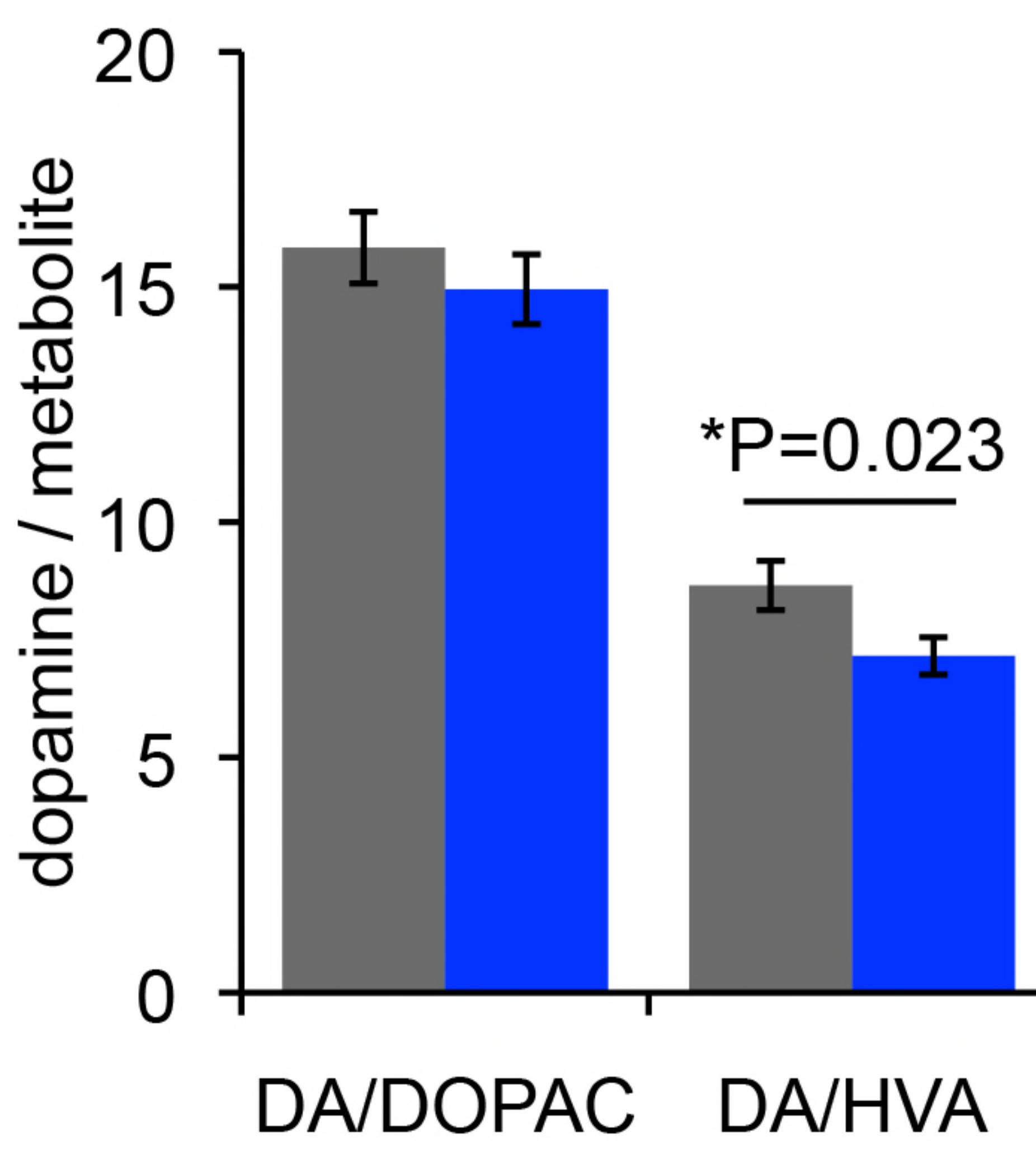
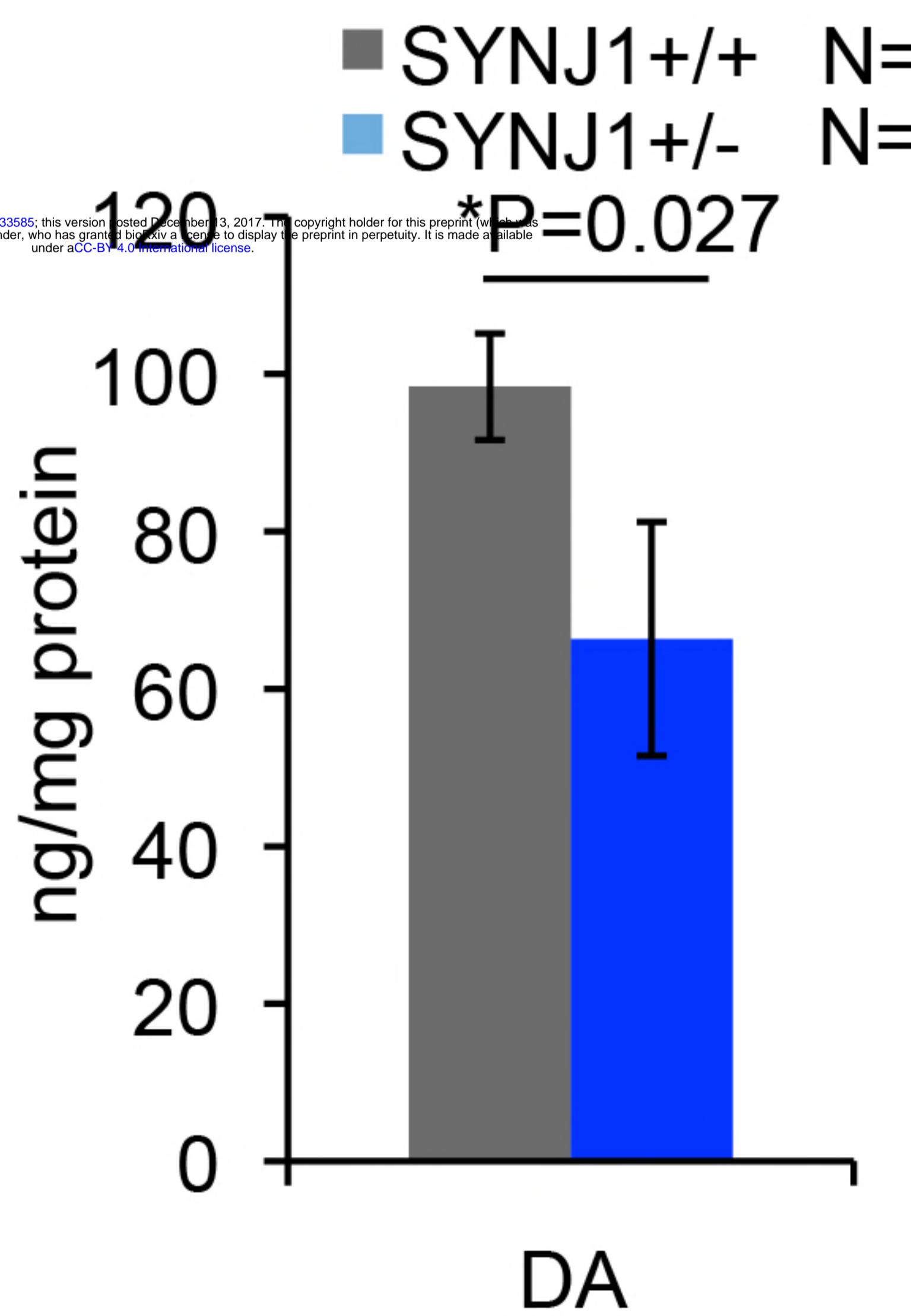


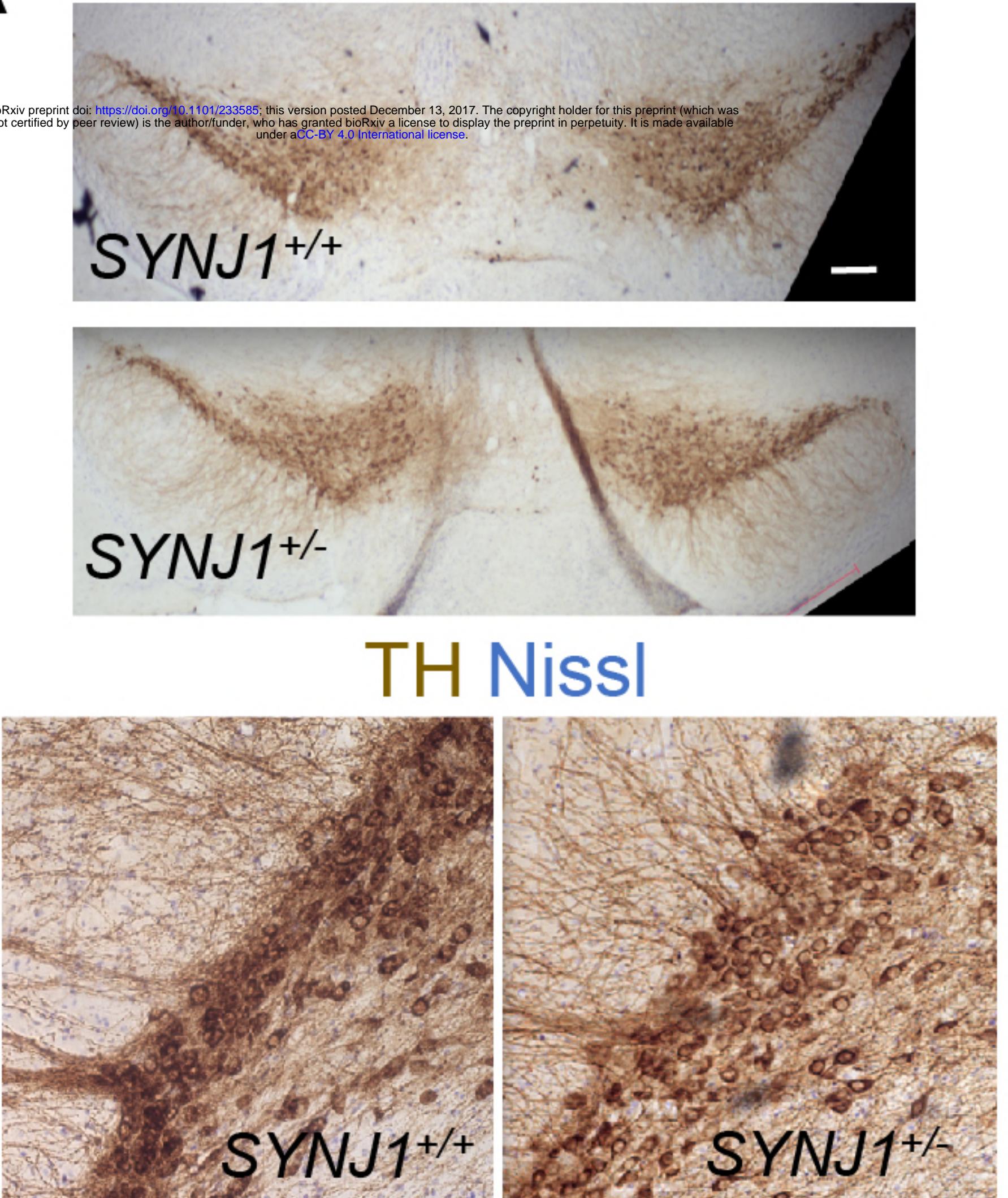
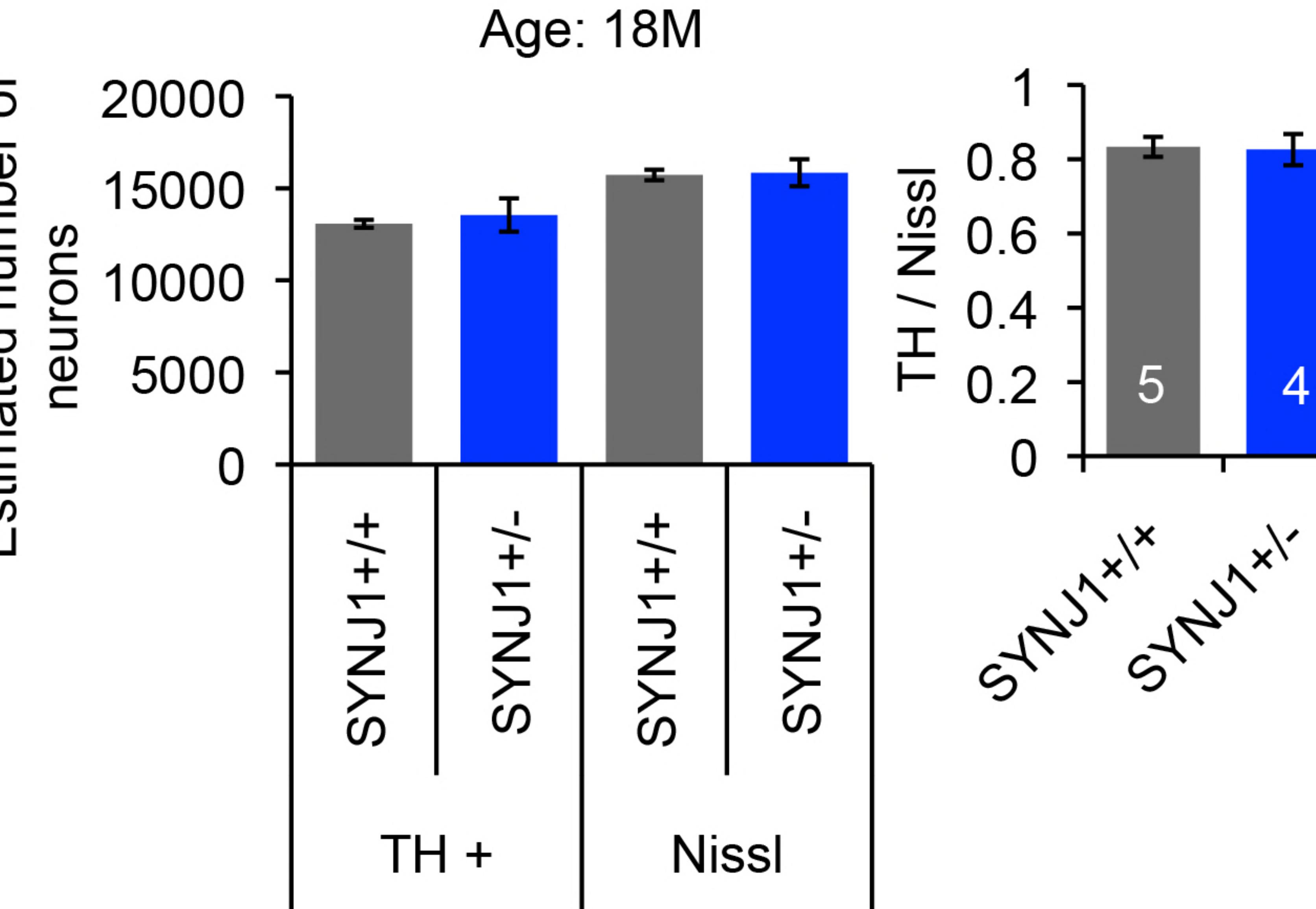


A


B


C


D



A

B

C

A**B**