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Abstract

How does attentional modulation of neural activity enhance performance? Here we use
a deep convolutional neural network as a large-scale model of the visual system to ad-
dress this question. We model the feature similarity gain model of attention, in which
attentional modulation is applied according to neural stimulus tuning. Using a variety
of visual tasks, we show that neural modulations of the kind and magnitude observed
experimentally lead to performance changes of the kind and magnitude observed ex-
perimentally. We find that, at earlier layers, attention applied according to tuning
does not successfully propagate through the network, and has a weaker impact on
performance than attention applied according to values computed for optimally mod-
ulating higher areas. This raises the question of whether biological attention might be
applied at least in part to optimize function rather than strictly according to tuning.
We suggest a simple experiment to distinguish these alternatives.

1. Introduction

Covert visual attention—applied according to spatial location or visual features—1

has been shown repeatedly to enhance performance on challenging visual tasks [10].2

To explore the neural mechanisms behind this enhancement, neural responses to the3

same visual input are compared under different task conditions. Such experiments have4

identified numerous neural modulations associated with attention, including changes5

in firing rates, noise levels, and correlated activity [83, 14, 22, 52]. But how do these6

neural activity changes impact performance? Previous theoretical studies have offered7

helpful insights on how attention may work to enhance performance [62, 71, 86, 11, 27,8

90, 26, 20, 4, 89, 8, 82, 88, 13]. However, much of this work is either based on small,9

hand-designed models or lacks direct mechanistic interpretability. Here, we utilize a10

large-scale model of the ventral visual stream to explore the extent to which neural11

changes like those observed experimentally can lead to performance enhancements on12

realistic visual tasks. Specifically, we use a deep convolutional neural network trained13

to perform object classification to test effects of the feature similarity gain model of14

attention [84].15

Deep convolutional neural networks (CNNs) are popular tools in the machine learn-16

ing and computer vision communities for performing challenging visual tasks [69].17

Their architecture—comprised of layers of convolutions, nonlinearities, and response18

pooling—was designed to mimic the retinotopic and hierarchical nature of the mam-19

malian visual system [69]. Models of a similar form have been used to study the20

Preprint submitted to TBD May 22, 2018

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 17, 2018. ; https://doi.org/10.1101/233338doi: bioRxiv preprint 

https://doi.org/10.1101/233338
http://creativecommons.org/licenses/by/4.0/


biological underpinnings of object recognition for decades [24, 70, 78]. Recently it has21

been shown that when these networks are trained to successfully perform object classi-22

fication on real-world images, the intermediate representations learned are remarkably23

similar to those of the primate visual system, making CNNs state-of-the-art models of24

the ventral stream [92, 37, 36, 38, 34, 9, 85, 46, 42]. A key finding has been the corre-25

spondence between different areas in the ventral stream and layers in the deep CNNs,26

with early convolutional layers best able to capture the representation of V1 and mid-27

dle and higher layers best able to capture V4 and IT, respectively [25, 21, 76]. Given28

that CNNs reach near-human performance on visual tasks and have architectural and29

representational similarities to the visual system, they are particularly well-positioned30

for exploring how neural correlates of attention impact behavior.31

One popular framework to describe attention’s effects on firing rates is the feature32

similarity gain model (FSGM). This model, introduced by Treue & Martinez-Trujillo,33

claims that a neuron’s activity is multiplicatively scaled up (or down) according to34

how much it prefers (or doesn’t prefer) the properties of the attended stimulus [84,35

51]. Attention to a certain visual attribute, such as a specific orientation or color,36

is generally referred to as feature-based attention (FBA). FBA effects are spatially37

global: if a task performed at one location in the visual field activates attention to38

a particular feature, neurons that represent that feature across the visual field will39

be affected [94, 73]. Overall, this leads to a general shift in the representation of the40

neural population towards that of the attended stimulus [17, 33, 65]. Spatial attention41

implies that a particular portion of the visual field is being attended. According to the42

FSGM, spatial location is treated as an attribute like any other. Therefore, a neuron’s43

modulation due to attention can be predicted by how well its preferred features and44

spatial receptive field align with the features and location of the attended stimulus.45

The effects of combined feature and spatial attention have been found to be additive46

[29].47

A debated issue in the attention literature is where in the visual stream attention48

effects can be seen. Many studies of attention focus on V4 and MT/MST [83], as49

these areas have reliable attentional effects. Some studies do find effects at earlier50

areas [60], though they tend to be weaker and occur later in the visual response [35].51

Therefore, a leading hypothesis is that attention signals, coming from prefrontal areas52

[58, 57, 3, 40], target later visual areas, and the feedback connections that those areas53

send to earlier ones cause the weaker effects seen there later [7, 47].54

In this study, we define the FSGM of attention mathematically and implement55

it in a deep CNN. By applying attention at different layers in the network and for56

different tasks, we see how neural changes at one area propagate through the network57

and change performance.58

2. Results59

The network used in this study—VGG-16, [79]—is shown in Figure 1A and ex-60

plained in Methods 4.1. Briefly, at each convolutional layer, the application of a given61

convolutional filter results in a feature map, which is a 2-D grid of artificial neurons62

that represent how well the bottom-up input at each location aligns with the filter.63

Therefore a ”retinotopic” layout is built into the structure of the network, and the64

same visual features are represented across that retinotopy (akin to how cells that pre-65

fer a given orientation exist at all locations across the V1 retinotopy). This network66
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Figure 1: Network Architecture and Feature-Based Attention Task Setup. A.) The model used is
a pre-trained deep neural network (VGG-16) that contains 13 convolutional layers (labeled in gray,
number of feature maps given in parenthesis) and is trained on the ImageNet dataset to do 1000-way
object classification. All convolutional filters are 3x3. B.) Modified architecture for feature-based
attention tasks. To perform our feature-based attention tasks, the final layer that was implement-
ing 1000-way softmax classification is replaced by binary classifiers (logistic regression), one for each
category tested (2 shown here, 20 total). These binary classifiers are trained on standard ImageNet
images. C.) Test images for feature-based attention tasks. Merged images (left) contain two transpar-
ently overlaid ImageNet images of different categories. Array images (right) contain four ImageNet
images on a 2x2 grid. Both are 224 x 224 pixels. These images are fed into the network and the
binary classifiers are used to label the presence or absence of the given category. D.) Performance of
binary classifiers. Box plots describe values over 20 different object categories (median marked in red,
box indicates lower to upper quartile values and whiskers extend to full range, with the exception
of outliers marked as dots). Standard images are regular ImageNet images not used in the binary
classifier training set.
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was explored in [25], where it was shown that early convolutional layers of this CNN67

are best at predicting activity of voxels in V1, while late convolutional layers are best68

at predicting activity of voxels in the object-selective lateral occipital area (LO).69

2.1. The Relationship between Tuning and Classification70

The feature similarity gain model of attention posits that neural activity is modu-71

lated by attention in proportion to how strongly a neuron prefers the attended features,72

as assessed by its tuning. However, the relationship between a neuron’s tuning and73

its ability to influence downstream readouts remains a difficult one to investigate bio-74

logically. We use our hierarchical model to explore this question. We do so by using75

backpropagation to calculate ”gradient values”, which we compare to tuning curves76

(see Methods 4.3 and 4.5.1 for details). Gradient values indicate the ways in which fea-77

ture map activities should change in order to make the network more likely to classify78

an image as being of a certain object category. Tuning values represent the degree to79

which the feature map responds preferentially to images of a given category. If there80

is a correspondence between tuning and classification, a feature map that prefers a81

given object category (that is, responds strongly to it) should also have a high positive82

gradient value for that category. In Figure 2A we show gradient values and tuning83

curves for three example feature maps. In Figure 2C, we show the average correlation84

coefficients between tuning values and gradient values for all feature maps at each of85

the 13 convolutional layers. As can be seen, tuning curves in all layers show higher86

correlation with gradient values than expected by chance (as assayed by shuffled con-87

trols), but this correlation is relatively low, increasing across layers from about .2 to .5.88

Overall tuning quality also increases with layer depth (Figure 2B), but less strongly.89

Even at the highest layers, there can be serious discrepancies between tuning and90

gradient values. In Figure 2D, we show the gradient values of feature maps at the final91

four convolutional layers, segregated according to tuning value. In red are gradient92

values that correspond to tuning values greater than one (for example, category 1293

for the feature map in the middle pane of Figure 2A). As these distributions show,94

strong tuning values can be associated with weak or even negative gradient values.95

Negative gradient values indicate that increasing the activity of that feature map96

makes the network less likely to categorize the image as the given category. Therefore,97

even feature maps that strongly prefer a category (and are only a few layers from the98

classifier) still may not be involved in its classification, or even be inversely related to99

it. This is aligned with a recent neural network ablation study that shows category100

selectivity does not predict impact on classification [59].101

2.2. Feature-based Attention Improves Performance on Challenging Object Classifica-102

tion Tasks103

To determine if manipulation according to tuning values can enhance performance,104

we created challenging visual images composed of multiple objects for the network to105

classify. These test images are of two types: merged (two object images transparently106

overlaid, such as in [77]) or array (four object images arranged on a grid) (see Figure107

1C examples). The task for the network is to detect the presence of a given object108

category in these images. It does so using a series of binary classifiers trained on109

standard images of these objects, which replace the last layer of the network (Figure110

1B). The performance of these classifiers on the test images indicates that this is a111

challenging task for the network (64.4% on merged images and 55.6% on array, Figure112

1D. Chance is 50%), and thus a good opportunity to see the effects of attention.113
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Figure 2: Relationship Between Feature Map Tuning and Gradient Values. A.) Example tuning values
(green, left axis) and gradient values (purple, right axis) of three different feature maps from three
different layers (identified in titles, layers as labeled in Figure 1A) over the 20 tested object categories.
Tuning values indicate how the response to a category differs from the mean response; gradient values
indicate how activity should change in order to classify input as from the category. Correlation
coefficients between tuning curves and gradient values given in titles. B.) Tuning quality across layers.
Tuning quality is defined per feature map as the maximum absolute tuning value of that feature map.
Box plots show distribution across feature maps for each layer. Average tuning quality for shuffled
data: .372 ± .097 (this value does not vary significantly across layers) C.) Correlation coefficients
between tuning curves and gradient value curves averaged over feature maps and plotted across
layers (errorbars +/- S.E.M., data values in blue and shuffled controls in orange). D.) Distributions
of gradient values when tuning is strong. In red, histogram of gradient values associated with tuning
values larger than one, across all feature maps in layers 10, 11, 12, and 13. For comparison, histograms
of gradient values associated with tuning values less than one are shown in black (counts are separately
normalized for visibility, as the population in black is much larger than that in red).
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We implement feature-based attention in this network by modulating the activity114

of units in each feature map according to how strongly the feature map prefers the115

attended object category (see Methods 4.5.1 and 4.5). A schematic of this is shown116

in Figure 3A. The slope of the activation function of units in a given feature map is117

scaled according to the tuning value of that feature map for the attended category118

(positive tuning values increase the slope while negative tuning values decrease it).119

Thus the impact of attention on activity is multiplicative and bi-directional.120

The effects of attention are measured when attention is applied in this way at121

each layer individually, or all layers simultaneously (Figure 3B; solid lines). For both122

image types (merged and array), attention enhances performance and there is a clear123

increase in performance enhancement as attention is applied at later layers in the124

network (numbering is as in Figure 1A). In particular, attention applied at the final125

convolutional layer performs best, leading to an 18.8% percentage point increase in126

binary classification on the merged images task and 22.8% increase on the array images127

task. Thus, FSGM-like effects can have large beneficial impacts on performance.128

Attention applied at all layers simultaneously does not lead to better performance129

than attention applied at any individual layer. The reasons for this will be addressed130

later.131

Some components of the FSGM are debated, e.g. whether attention impacts re-132

sponses multiplicatively or additively [5, 2, 47, 55], and whether the activity of cells133

that do not prefer the attended stimulus is actually suppressed [6, 62]. Comparisons134

of different variants of the FSGM can be seen in Supplementary Figure 8. In general,135

multiplicative and bidirectional effects work best.136

We also measure performance when attention is applied using gradient values rather137

than tuning values (these gradient values are calculated to maximize performance138

on the binary classification task, rather than classify the image as a given category;139

therefore technically they differ from those shown in Figure 2, however in practice140

they are strongly correlated. See Methods 4.3 and 4.5.2 for details). Attention applied141

using gradient values shows the same layer-wise trend as when using tuning values.142

It also reaches the same performance enhancement peak when attention is applied at143

the final layers. The major difference, however, comes when attention is applied at144

middle layers of the network. Here, attention applied according to gradient values145

outperforms that of tuning values.146

2.3. Attention Strength and the Tradeoff between Increasing True and False Positives147

In the previous section, we examined the best possible effects of attention by choos-148

ing the strength for each layer and category that optimized performance. Here, we149

look at how performance changes as we vary the overall strength (β) of attention.150

In Figure 4A we break the binary classification performance into true and false151

positive rates. Here, each colored line indicates a different category and increasing dot152

size represents increasing strength of attention. Ideally, true positives would increase153

without an equivalent increase (and possibly with a decrease) in false positive rates.154

If they increase in tandem, attention does not have a net beneficial effect. Looking at155

the effects of applying attention at different layers, we can see that attention at lower156

layers is less effective at moving the performance in this space and that movement is in157

somewhat random directions, although there is an average increase in performance with158

moderate attentional strength. With attention applied at later layers, true positive159

rates are more likely to increase for moderate attentional strengths, while substantial160
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Figure 3: Effects of Applying Feature-Based Attention on Object Category Tasks. A.) Schematic of
how attention modulates the activity function. All units in a feature map are modulated the same
way. The slope of the activation function is altered based on the tuning (or gradient) value, f clk, of
a given feature map (here, the kth feature map in the lth layer) for the attended category, c, along
with an overall strength parameter β. Iijlk is the input to this unit from the previous layer. For
more information, see Methods 4.5. B.) Average increase in binary classification performance as a
function of layer attention is applied at (solid line represents using tuning values, dashed line using
gradient values, errorbars +/- S.E.M.). The final column corresponds to attention applied to all
layers simultaneously with the same strength (strengths tested are one-tenth of those when strength
applied to individual layers). In all cases, best performing strength from the range tested is used for
each instance. Performance shown separately for merged (left) and array (right) images. Gradients
perform significantly (p < .05, N = 20) better than tuning at layers 5-8 (p = 4.6e-3, 2.6e-5, 6.5e-3,
4.4e-3) for merged images and 5-9 (p = 3.1e-2, 2.3e-4, 4.2e-2, 6.1e-3, 3.1e-2) for array images.

false positive rate increases occur only with higher strengths. Thus, when attention161

is applied with modest strength at layer 13, most categories see a substantial increase162

in true positives with only modest increases in false positives. As strength continues163

to increase however, false positives increase substantially and eventually lead to a net164

decrease in overall classifier performance (representing as crossing the dotted line in165

Figure 4A).166

Applying attention according to negated tuning values leads to a decrease in true167

and false positive values with increasing attention strength, which decreases overall168

performance (Supplementary Figure 9A). This verifies that the effects of attention are169

not from non-specific changes in activity.170

Experimentally, when switching from no or neutral attention, neurons in MT171

showed an average increase in activity of 7% when attending their preferred motion172

direction (and similar decrease when attending the non-preferred) [51]. In our model,173

when β = .75 (roughly the value at which performance peaks at later layers; Figure 9),174

given the magnitude of the tuning values (average magnitude: .38), attention scales175

activity by an average of 28.5%. This value refers to how much activity is modulated176

in comparison to the β = 0 condition, which is probably more comparable to passive177

or anesthetized viewing, as task engagement has been shown to scale neural responses178

generally [64]. This complicates the relationship between modulation strength in our179

model and the values reported in the data.180

To allow for a more direct comparison, in Figure 4B, we collected the true and181

false positive rates obtained experimentally during different object detection tasks182

(explained in Methods 4.9), and plotted them in comparison to the model results183

when attention is applied at layer 13 using tuning values (pink line) or gradient value184

(brown line) (results are similar). Five experiments (second through sixth studies) are185
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Figure 4: Effects of Varying Attention Strength A.) Effect of increasing attention strength (β) in
true and false positive rate space for attention applied at each of four layers (layer indicated in
bottom right of each panel, attention applied using tuning values). Each line represents performance
for an individual category (only 10 categories shown for visibility), with each increase in dot size
representing a .15 increase in β. Baseline (no attention) values are subtracted for each category such
that all start at (0,0). The black dotted line represents equal changes in true and false positive rates.
B.) Comparisons from experimental data. The true and false positive rates from six experiments in
four previously published studies are shown for conditions of increasing attentional strength (solid
lines). Cat-Drawings=[50], Exp. 1; Cat-Images=[50],Exp. 2; Objects=[39], Letter-Aud.=[49], Exp.
1; Letter-Vis.=[49], Exp. 2. Ori-Change=[53]. See Methods 4.9 for details of experiments. Dotted
lines show model results for merged images, averaged over all 20 categories, when attention is applied
using either tuning (TC) or gradient (Grad) values at layer 13. Model results are shown for attention
applied with increasing strengths (starting at 0, with each increasing dot size representing a .15
increase in β). Receiver operating curve (ROC) for the model using merged images, which corresponds
to the effect of changing the threshold in the final, readout layer, is shown in gray.
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human studies. In all of these, uncued trials are those in which no information about186

the upcoming visual stimulus is given, and therefore attention strength is assumed to187

be low. In cued trials, the to-be-detected category is cued before the presentation of a188

challenging visual stimulus, allowing attention to be applied to that object or category.189

The majority of these experiments show a concurrent increase in both true and190

false positive rates as attention strength is increased (with the exception of Cat-Circ,191

which has a larger initial false positive rate and shows a decrease in false positives with192

stronger attention). The rates in the uncued conditions (smaller dots) are generally193

higher than the rates produced by the β = 0 condition in our model, consistent with194

neutrally cued conditions corresponding to β > 0. We find (see Methods 4.9), that the195

average corresponding β value for the neutral conditions is .37 and for the attended196

conditions .51. Because attention scales activity by 1 + βf lk
c (where f lk

c is the tuning197

value), these changes correspond to a ≈5% change in activity. Thus, according to our198

model, the size of observed performance changes is broadly consistent with the size of199

observed neural changes.200

The first dataset included in the plot (Ori-Change; yellow line in Figure 4B) comes201

from a macaque change detection study (see Methods 4.9 for details). Because the202

attention cue was only 80% valid, attention strength could be of three levels: low (for203

the uncued stimuli on cued trials), medium (for both stimuli on neutrally-cued trials),204

or high (for the cued stimuli on cued trials). Like the other studies, this study shows a205

concurrent increase in both true positive (correct change detection) and false positive206

(premature response) rates with increasing attention strength. However, for the model207

to achieve the performance changes observed between low and medium attention a208

roughly 12% activity change is needed, but average V4 firing rates recorded during209

this task show an increase of only 3.6%. This discrepancy may suggest that changes210

in correlations [14] or firing rate changes in areas aside from V4 also make important211

contributions to observed performance changes.212

Finally, we show the change in true and false positive rates when the threshold of213

the final layer binary classifier is varied (a ”receiver operating characteristic” analy-214

sis, Figure 4B, gray line; no attention was applied during this analysis). Comparing215

this to the pink line, it is clear that varying the strength of attention applied at the216

final convolutional layer has more favorable performance effects than altering the clas-217

sifier threshold (which corresponds to an additive effect of attention at the classifier218

layer). This points to the limitations that could come from attention targeting only219

downstream readout areas.220

Overall, the model roughly matches experiments in the amount of neural modula-221

tion needed to create the observed changes in true and false positive rates. However,222

it is clear that the details of the experimental setup are relevant, and changes aside223

from firing rate and/or outside the ventral stream also likely play a role [62].224

2.4. Feature-based Attention Enhances Performance on Orientation Detection Task225

Some of the results presented above, particularly those related to the layer at which226

attention is applied, may be influenced by the fact that we are using an object catego-227

rization task. To see if results are comparable using the simpler stimuli frequently used228

in macaque studies, we created an orientation detection task (Figure 5A). Here, binary229

classifiers trained on full-field oriented gratings are tested using images that contain230

two gratings of different orientation and color. The performance of these binary clas-231

sifiers without attention is above chance (distribution across orientations shown in232
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inset of Figure 5A). The performance of the binary classifier associated with vertical233

orientation (0 degrees) was abnormally high (92% correct without attention, other ori-234

entations average 60.25%) and this orientation was excluded from further performance235

analysis.236

Attention is applied according to orientation tuning values of the feature maps237

(tuning quality by layer is shown in Figure 5B) and tested across layers. We find238

(Figure 5D, solid line) that the trend in this task is similar to that of the object239

task: applying attention at later layers leads to larger performance increases (14.4%240

percentage point increase at layer 10). This is despite the fact that orientation tuning241

quality peaks in the middle layers.242

We also calculate the gradient values for this orientation detection task. While243

overall the correlations between gradient values and tuning values are lower (and even244

negative for early layers), the average correlation still increases with layer (Figure245

5C), as with the category detection task. Importantly, while this trend in correlation246

exists in both detection tasks tested here, it is not a universal feature of the network247

or an artifact of how these values are calculated. Indeed, an opposite pattern in248

the correlation between orientation tuning and gradient values is shown when using249

attention to orientation to classify the color of a stimulus with the attended orientation250

(Supplementary Figure 10A, Methods 4.4 and 4.5.2).251

The results of applying attention according to gradient values is shown in Figure252

5D (dashed line). Here again, using gradient value creates similar trends as using253

tuning values, with gradient values performing better in the middle layers.254

2.5. Feature-based Attention Primarily Influences Criteria and Spatial Attention Pri-255

marily Influences Sensitivity256

Signal detection theory is frequently used to characterize the effects of attention257

on performance [88]. Here, we use a joint feature-spatial attention task to explore258

effects of attention in the model. The task uses the same two-grating stimuli described259

above. The same binary orientation classifiers are used and the task of the model is260

to determine if a given orientation is present in a given quadrant. Performance is261

then measured when attention is applied according to orientation, quadrant, or both262

(effects are combined additively, for more, see Methods 4.5). Two key signal detection263

measurements are computed: criteria is a measure of the threshold that’s used to mark264

an input as positive, with a higher criteria leading to fewer positives; and sensitivity265

is a measure of the separation between the populations of true positive and negatives,266

with higher sensitivity indicating a greater separation.267

Figure 5E shows how criteria decreases more when feature-based attention is ap-268

plied alone than when spatial is. Intuitively, feature-based attention shifts the repre-269

sentations of all stimuli in the direction of the attended category, implicitly lowering270

the detection threshold. Sensitivity increases more for spatial attention alone than271

feature-based attention alone, indicating that spatial attention amplifies differences in272

the representation of whatever features are present. These general trends hold regard-273

less of the layer at which attention is applied. Changes in true and false positive rates274

for this task can be seen explicitly in Supplementary Figure 10B.275

Experimentally—in line with our results—spatial attention was found to increase276

sensitivity and (less reliably) decrease criteria [28, 19], and feature attention is known277

to decrease criteria, with minimal effects on sensitivity [68, 1]. A study that looked278

explicitly at the different effects of spatial and category-based attention [81] found279
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Figure 5: Attention Task and Results Using Oriented Gratings. A.) Orientation detection task.
Like with the object category detection tasks, separate binary classifiers trained to detect each of
9 different orientations replaced the final layer of the network. Test images included 2 oriented
gratings of different color and orientation located at 2 of 4 quadrants. Inset shows performance over
9 orientations without attention B.) Orientation tuning quality as a function of layer. C.) Average
correlation coefficient between orientation tuning curves and gradient curves across layers (blue).
Shuffled correlation values in orange. Errorbars are +/- S.E.M. D.) Comparison of performance on
orientation detection task when attention is determined by tuning values (solid line) or gradient
values (dashed line) and applied at different layers. As in Figure 3B, final column is performance
when attention is applied at all layers, and best performing strength is used in all cases. Errorbars are
+/- S.E.M. Gradients perform significantly (p = 1.9e− 2) better than tuning at layer 7. E.) Change
in signal detection values and performance (percent correct) when attention is applied in different
ways—spatial, feature (according to tuning), and both spatial and feature—for the task of detecting
a given orientation in a given quadrant. Top row is when attention is applied at layer 13 and bottom
when applied at layer 4.
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that spatial attention increases sensitivity more than category-based attention (most280

visible in their Experiment 3c, which uses natural images), and the effects of the two281

are additive.282

However, attention and priming are known to impact neural activity beyond pure283

sensory areas [41, 16]. This idea is borne out by a study that aimed to isolate the284

neural changes associated with sensitivity and criteria changes [48]. In this study, the285

authors designed behavioral tasks that encouraged changes in behavioral sensitivity286

or criteria exclusively: high sensitivity was encouraged by associating a given stimulus287

location with higher overall reward, while high criteria was encouraged by rewarding288

correct rejects more than hits (and vice versa for low sensitivity/criteria). Differences289

in V4 neural activity were observed between trials using high versus low sensitivity290

stimuli. No differences were observed between trials using high versus low criteria291

stimuli. This indicates that areas outside of the ventral stream (or at least outside292

V4) are capable of impacting criteria [80]. Importantly, it does not mean that changes293

in V4 don’t impact criteria, but merely that those changes can be countered by the294

impact of changes in other areas. Indeed, to create sessions wherein sensitivity was295

varied without any change in criteria, the authors had to increase the relative correct296

reject reward (i.e., increase the criteria) at locations of high absolute reward, which297

may have been needed to counter a decrease in criteria induced by attention-related298

changes in V4 (similarly, they had to decrease the correct reject reward at low reward299

locations). Our model demonstrates clearly how such effects from sensory areas alone300

can impact detection performance, which, in turn highlights the role downstream areas301

may play in determining the final behavioral outcome.302

2.6. Recordings Show How Feature Similarity Gain Effects Propagate303

To explore how attention applied at one location in the network impacts activity304

later on, we apply attention at various layers and ”record” activity at others (Figure305

6A, in response to full field oriented gratings). In particular, we record activity of fea-306

ture maps at all layers while applying attention at layers 2, 6, 8, 10, or 12 individually.307

To understand the activity changes occurring at each layer, we use an analysis from308

[51] that was designed to test for FSGM-like effects and is explained in Figure 6B.309

Here, the activity of a feature map in response to a given orientation when attention is310

applied is divided by the activity in response to the same orientation without attention.311

These ratios are organized according to the feature map’s orientation preference (most312

to least) and a line is fit to them. According to the FSGM of attention, this ratio313

should be greater than one for more preferred orientations and less than one for less314

preferred, creating a line with an intercept greater than one and negative slope.315

In Figure 6C, we plot the median value of the slopes and intercepts across all316

feature maps at a layer, when attention is applied at different layers (indicated by317

color). When attention is applied directly at a layer according to its tuning values318

(left), FSGM effects are seen by default (intercept values are plotted in terms of how319

they differ from one; comparable average values from [51] are intercept: .06 and slope:320

0.0166, but we are using β = 0 for the no-attention condition in the model which,321

as mentioned earlier, is not necessarily the best analogue for no-attention conditions322

experimentally. Therefore we use these measures to show qualitative effects). As these323

activity changes propagate through the network, however, the FSGM effects wear off,324

suggesting that activating units tuned for a stimulus at one layer does not necessarily325

activate cells tuned for that stimulus at the next. This misalignment between tuning326
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Figure 6: How Attention-Induced Activity Changes Propagate through the Network. A.) Recording
setup. The spatially averaged activity of feature maps at each layer was recorded (left) while attention
was applied at layers 2, 6, 8, 10, or 12 individually. Activity was in response to a full field oriented
grating. B.) Schematic of metric used to test for the feature similarity gain model. Activity when
a given orientation is present and attended is divided by the activity when no attention is applied,
giving a set of activity ratios. Ordering these ratios from most to least preferred orientation and
fitting a line to them gives the slope and intercept values plotted in (C). Intercept values are plotted
in terms of how they differ from 1, so positive values are an intercept greater than 1. (FSGM predicts
negative slope and positive intercept) C.) The median slope (solid line) and intercept (dashed line)
values as described in (B) plotted for each layer when attention is applied to the layer indicated by
the line color as labeled in (A). On the left, attention applied according to tuning values and on the
right, attention applied according to gradient values. D.) Fraction of feature maps displaying feature
matching behavior at each layer when attention is applied at the layer indicated by line color. Shown
for attention applied according to tuning (solid lines) and gradient values (dashed line).
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at one layer and the next explains why attention applied at all layers simultaneously327

isn’t more effective (Figure 3B). In fact, applying attention to a category at one layer328

can actually have effects that counteract attention at a later layer (see Supplementary329

Figure 11).330

In Figure 6C (right), we show the same analysis, but while applying attention331

according to gradient values. The effects at the layer at which attention is applied do332

not look strongly like FSGM, however FSGM properties evolve as the activity changes333

propagate through the network, leading to clear FSGM-like effects at the final layer.334

Finding FSGM-like behavior in neural data could thus be a result of FSGM effects at335

that area or non-FSGM effects at an earlier area (here, attention applied according to336

gradients which, especially at earlier layers, are not aligned with tuning).337

An alternative model of the neural effects of attention—the feature matching (FM)338

model—suggests that the effect of attention is to amplify the activity of a neuron when-339

ever the stimulus in its receptive field matches the attended stimulus. In Figure 6D,340

we calculate the fraction of feature maps at a given layer that show feature match-341

ing behavior (defined as having activity ratios greater than one when the stimulus342

orientation matches the attended orientation for both preferred and anti-preferred ori-343

entations). As early as one layer post-attention, some feature maps start showing344

feature matching behavior. The fact that the attention literature contains conflicting345

findings regarding the feature similarity gain model versus the feature matching model346

[61, 72] may result from this finding that FSGM effects can turn into FM effects as347

they propagate through the network. In particular, this mechanism can explain the348

observations that feature matching behavior is observed more in FEF than V4 [96] and349

that match information is more easily read out from perirhinal cortex than IT [63].350

Finally, we investigated the extent to which measures of attention’s neural effects351

correlate with changes in performance (see Methods 4.8). For this, we used a measure352

of FSGM-like activity that could be calculated on an image-by-image basis. We also353

created a separate measure, inspired by our gradient approach, that considers activity354

in light of its downstream effects. Specifically, we measure the extent to which activity355

when attention is applied becomes more like activity when images (in the absence of356

attention) are classified as containing the given orientation (”Vector Angle” method,357

see Figure 7A and B). For the purposes of this analysis, we consider images that,358

without attention, give false negative responses and measure performance as the rate359

at which these are converted to true positives by attention. For both measures and360

whether attention is applied according to tuning or gradients, activity changes are more361

correlated with performance in later layers (Figure 7C). When attention is applied362

with gradients, the gradient-inspired measure is better correlated with performance363

changes than the feature similarity gain model. When recording activity from early364

layers, this measure also performs better even when attention is applied according to365

tuning curves. As this new measure is experimentally testable, it would be valuable366

to see how well it predicts performance on real neural data.367

3. Discussion368

In this work, we utilized a deep convolutional neural network (CNN) as a model of369

the visual system to probe the relationship between neural activity and performance.370

Specifically, we provide a formal mathematical definition of the feature similarity gain371

model (FSGM) of attention, the basic tenets of which have been described in several372
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Figure 7: How Activity Changes Correlate with Performance Changes A.) A new measure of activity changes
inspired by gradient values. The gray vector represents the average pattern of neural activity in response to images
the classifier indicates as containing the given orientation (i.e., positively-classified in the absence of attention). The
blue vector (activity without attention) and red vector (activity vector when attention is applied) are then made
using images that contain the orientation but are not initially classified as containing it. Assuming that attention
makes activity look more like activity during positive classification, this measure compares the angle between the
positively-classified and with-attention vectors to the angle between the positively-classified and without-attention
vectors. We use cos(θ) as the measure, but results are similar using θ. B.) Using the same color scheme as Figure 6,
this plot shows how attention applied at different layers causes activity changes throughout the network, as measured
by the vector method introduced in (A). Specifically, the cosine of the angle between the positively-classified and
without-attention vectors is subtracted from the cosine of the angle between the positively-classified and with-
attention vectors. Solid lines indicate median value of this difference (across images) when attention is applied with
tuning curves and dashed line when applied with gradients. C.) The correlation coefficient between the change in
true positive rate with attention and activity changes as measured by: difference in cosines of angles (solid line)
or feature similarity gain model-like behavior (dashed line, see Methods 4.8 for how this is calculated). Activity
and performance changes are collected when attention is applied at different layers and various strengths according
to tuning curves (left) or gradient values (right). Correlation coefficients calculated for activity changes from both
application methods combined can be seen in Supplementary Figure 12
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experimental studies. This formalization allows us to investigate the FSGM’s ability373

to enhance a CNN’s performance on challenging visual tasks. We show that neural374

activity changes matching the type and magnitude of those observed experimentally375

can indeed lead to performance changes of the kind and magnitude observed experi-376

mentally. Furthermore, these results hold for a variety of tasks. We also use the full377

observability of the model to investigate the relationship between tuning and function.378

A finding from our model is that the layer at which attention is applied can have379

a large impact on performance: attention (particularly applied according to tuning)380

at early layers does little to enhance performance while attention at later layers such381

as 9-13 is most effective. According to [25], these layers correspond most to areas V4382

and LO. Such areas are known and studied for reliably showing attentional effects,383

whereas earlier areas such as V1 are generally not [47]. In a study involving detection384

of objects in natural scenes, the strength of category-specific preparatory activity in385

object selective cortex was correlated with performance, whereas such preparatory386

activity in V1 was anti-correlated with performance [65]. This is in line with our387

finding that feature-based attention effects at earlier areas can counter the beneficial388

effects of that attention at later areas (Supplementary Figure 11).389

While CNNs have representations that are similar to the ventral stream, they lack390

many biological details including recurrent connections, dynamics, cell types, and noisy391

responses. Preliminary work has shown that these elements can be incorporated into392

a CNN structure, and attention can enhance performance in this more biologically-393

realistic architecture [45]. Furthermore, while the current work does not include neural394

noise independent of the stimulus, the fact that a given image is presented in many395

contexts (different merged images or different array images) can be thought of as a396

form of highly structured noise that does produce variable responses to the same image.397

Another biological detail that this model lacks is ”skip connections,” where one398

layer feeds into both the layer directly after it and deeper layers after that [30, 32]399

as in connections from V2 to V4 or V4 to parietal areas [87]. Our results regarding400

propagation of changes through the network suggest that synaptic distance from the401

classifier is a relevant feature—one that is less straight forward to determine in a402

network with skip connections. It may be that thinking about visual areas in terms of403

their synaptic distance from decision-making areas such as prefrontal cortex [31] can404

be more useful for the study of attention than thinking in terms of their distance from405

the retina. Finally, a major challenge for understanding the biological implementation406

of selective attention is determining how such a precise attentional signal is carried by407

feedback connections. The machine learning literature on attention and learning may408

inspire useful hypotheses on underlying brain mechanisms [91, 43].409

While CNNs lack certain biological details, a benefit of using them as a model is410

the ability to backpropagate error signals and understand causal relationships. Here411

we use this to calculate gradient values that estimate how attention should modulate412

activity, and compare these to the tuning values that the FSGM uses. The facts that413

attention performs better in middle layers when guided by gradients than by tuning414

values, while the two have correlated values and behave similarly at late layers, raise415

an obvious question: are neurons really targeted according to their tuning, or does the416

brain use something like gradient values? In [12] the correlation coefficient between an417

index of tuning and an index of attentional modulation was .52 for a population of V4418

neurons, suggesting factors other than selectivity influence attention. Furthermore,419

many attention studies, including that one, use only preferred and anti-preferred stim-420
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uli and therefore don’t include a thorough investigation of the relationship between421

tuning and attentional modulation. [51] uses multiple stimuli to provide support for422

the FSGM, however the interpretation is limited by the fact that they only report423

population averages. [72] investigated the relationship between tuning strength and424

the strength of attentional modulation on a cell-by-cell basis. While they did find a425

correlation (particularly for binocular disparity tuning), it was relatively weak, which426

leaves room for the possibility that tuning is not the primary factor that determines427

attentional modulation.428

There is a simple experiment that would distinguish whether factors beyond tuning,429

such as gradients, play a role in guiding attention. It requires using two tasks with430

very different objectives, which should produce different gradients, but with the same431

attentional cue. An example is given by comparing Figure 5C to Supplementary Figure432

10A: various gratings of various colors are simultaneously shown, and the task is either433

to report whether a vertical (or other orientation) grating is present, or to report434

the color of the vertical grating, with attention being cued in both cases for vertical435

orientation. Gradient-based attention will produce different neural modulations for436

the two tasks, while the FSGM predicts identical modulations.437

A related finding from comparing gradient values with tuning values is that tuning438

does not always predict how effectively one unit in the network will impact downstream439

units or the classifier. In particular, applying attention according to gradient values440

leads to changes that are hard to interpret when looking through the lens of tuning,441

especially at earlier layers (Figure 6). However these changes eventually lead to large442

and impactful changes at later layers. Because experimenters can easily control the443

image, defining a cell’s function in terms of how it responds to stimuli makes practical444

sense. However, studies looking at the relationship between tuning and choice proba-445

bilities also suggest that a neuron’s preferred stimulus is not always an indication of446

its causal role in classification [93, 67]. Studies that activate specific neurons in one447

area and measure changes in another area or in behavioral output will likely be of448

significant value for determining function. Thus far, coarse stimulation protocols have449

found a relationship between the tuning of neural populations and their impact on450

perception [56, 18, 75]. Ultimately though, targeted stimulation protocols and a more451

fine-grained understanding of inter-area connections will be needed.452

4. Methods453

4.1. Network Model454

This work uses a deep convolutional neural network (CNN) as a model of the455

ventral visual stream. Convolutional neural networks are feedforward artificial neural456

networks that consist of a few basic operations repeated in sequence, key among them457

being the convolution. The specific CNN architecture used in the study comes from458

[79] (VGG-16D) and is shown in Figure 1A (a previous variant of this work used459

a smaller network [44]). For this study, all the layers of the CNN except the final460

classifier layer were pre-trained using backpropagation on the ImageNet classification461

task, which involves doing 1000-way object categorization (weights provided by [23]).462

The training of the top layer is described in subsequent sections. Here we describe the463

basic workings of the CNN model we use, with details available in [79].464

The activity values of the units in each convolutional layer are the result of applying465

a 2-D spatial convolution to the layer below, followed by positive rectification (rectified466
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Figure 8: Supplementary Figure Associated with Figure 3. A.) Schematics of how attention can
modulate the activity function. Feature-based attention modulates feature maps according to their
tuning values but this modulation can scale the activity multiplicatively or additively, and can either
only enhance feature maps that prefer the attended category (positive-only) or also decrease the
activity of feature maps that do not prefer it (bidirectional). See Methods 4.5.4 for details of these
implementations. The main body of this paper only uses multiplicative bi-directional. B.) Comparison
of binary classification performance when attention is applied in each of the four ways described in
(A). Considering the combination of attention applied to a given category at a given layer/layers
as an instance (20 categories * 14 layer options = 280 instances), histograms (left axis) show how
often the given option is the best performing, for merged (top) and array (bottom) images. Average
increase in binary classification performance for each option also shown (right axis, averaged across
all instances, errorbars ± S.E.M.).
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Figure 9: Supplementary Figure Associated with Figure 4. A.) Effect of strength increase in true
and false positive rate space when tuning values are negated. Negated tuning values have the same
overall level of positive and negative modulation but in the opposite direction of tuning for a given
category. Plot same as in Figure 4A. Layer attention applied at indicated in gray. Attention applied
in this way decreases true positives, and to a lesser extent false positives (the initial false positive rate
when no attention is applied is very low). B. Mean best performing strength (β value, using regular
non-negated attention) across categories as a function of the layer attention is applied at, according
to merged images task. Errorbars ± S.E.M.
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Figure 10: Supplementary Figure Associated with Figure 5. A.) ”Cross-featural” attention task (left).
Here, the final layer of the network is replaced with a color classifier and the task is to classify the
color of the attended orientation in a two-orientation stimulus. Gradient values calculated for this
task are correlated with orientation tuning values, and the mean correlation is plotted per layer (right,
as in Figure 5C) B.) Effect of strength increase in true and false positive rate space when attention is
applied according to quadrant, orientation, or both in the orientation detection task. Rates averaged
over orientations/locations. Increasing dot size corresponds to .2 increase in β each. No-attention
rates are subtracted and the black dotted line indicates equal increase in true and false positives.
Layer attention applied at indicated in gray.
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Figure 11: Supplementary Figure Associated with Figure 6. Feature attention at one layer often
suppresses activity of the attended features at later layers. Activity ratios are shown for when
attention is applied at various layers individually and activity is recorded from later layers. In all
cases, the category attended was the same as the one present in the input image (standard ImageNet
images used to ensure that these results are not influenced by the presence of other category features
in the input). Histograms are of ratios of feature map activity when attention is applied to the
category divided by activity when no attention is applied, split according to whether the feature map
prefers (red) or does not prefer (black) the attended category. In many cases, feature maps that
prefer the attended category have activity ratios less than one, indicating that attention at a lower
layer decreases the activity of feature maps that prefer the attended category. The misalignment
between lower and later layers is starker the larger the distance between the attended and recorded
layers. For example, when looking at layer 12, attention applied at layer 2 appears to increase and
decrease feature map activity equally, without respect to category preference. This demonstrates the
ability of attention at a lower layer to change activity in ways opposite of the effects of attention at
the recorded layer.
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Figure 12: Supplementary Figure Associated with Figure 7. The increase in true positive rate with
attention is correlated with activity changes as measured by: difference in cosines of angles (solid
line) or feature similarity gain model-like behavior. Activity and performance changes are collected
when attention is applied (at different layers and various strengths and according to tuning curves
or gradient values (that is, all the data generated by these means are combined, and correlation
coefficients are calculated; whereas in Figure 7C correlation coefficients were calculated separately for
instances when attention was applied according to tuning or according to gradients).
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linear ’ReLu’ nonlinearity):467

xlkij = [(W lk ? X l−1)ij]+ (1)

where ? indicates convolution, and [x]+ = x if x > 0, otherwise x = 0. W lk is the468

kth convolutional filter at the lth layer. The application of each filter results in a 2-D469

feature map (the number of filters used varies across layers and is given in parenthesis470

in Figure 1A). xlkij is the activity of the unit at the i, jth spatial location in the kth471

feature map at the lth layer. X l−1 is thus the activity of all units at the layer below472

the lth layer. The input to the network is a 224 by 224 pixel RGB image, and thus the473

first convolution is applied to these pixel values. Convolutional filters are 3x3. For the474

purposes of this study the convolutional layers are most relevant, and will be referred475

to according to their numbering in Figure 1A (numbers in parentheses indicate number476

of feature maps per layer).477

Max pooling layers reduce the size of the feature maps by taking the maximum478

activity value of units in a given feature map in non-overlapping 2x2 windows. Through479

this, the size of the feature maps decreases after each max pooling (layers 1 and 2: 224480

x 224; 3 and 4: 112 x 112; 5, 6, and 7: 56 x 56. 8, 9, and 10: 28 x 28; 11, 12, and 13:481

14 x 14).482

The final two layers before the classifier are each fully-connected to the layer below483

them, with the number of units per layer given in parenthesis in Figure 1A. Therefore,484

connections exist from all units from all feature maps in the last convolutional layer485

(layer 13) to all 4096 units of the next layer, and so on. The top readout layer of486

the network in [79] contained 1000 units upon which a softmax classifier was used to487

output a ranked list of category labels for a given image. Looking at the top-5 error488

rate (wherein an image is correctly labeled if the true category appears in the top five489

categories given by the network), this network achieved 92.7% accuracy. With the490

exception of the gradient calculations described below, we did not use this 1000-way491

classifier, but rather replaced it with a series of binary classifiers.492

4.2. Object Category Attention Tasks493

The tasks we use to probe the effects of feature-based attention in this network494

involve determining if a given object category is present in an image or not, similar to495

tasks used in [81, 66, 39]. To have the network perform this specific task, we replaced496

the final layer in the network with a series of binary classifiers, one for each category497

tested (Figure 1B). We tested a total of 20 categories: paintbrush, wall clock, seashore,498

paddlewheel, padlock, garden spider, long-horned beetle, cabbage butterfly, toaster,499

greenhouse, bakery, stone wall, artichoke, modem, football helmet, stage, mortar,500

consomme, dough, bathtub. Binary classifiers were trained using ImageNet images501

taken from the 2014 validation set (and were therefore not used in the training of502

the original model). A total of 35 unique true positive images were used for training503

for each category, and each training batch was balanced with 35 true negative images504

taken from the remaining 19 categories. The results shown here come from using505

logistic regression as the binary classifier, though trends in performance are similar if506

support vector machines are used.507

Once these binary classifiers are trained, they are then used to classify more chal-508

lenging test images. Experimental results suggest that classifiers trained on unat-509

tended and isolated object images are appropriate for reading out attended objects in510

cluttered images [95]. These test images are composed of multiple individual images511
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(drawn from the 20 categories) and are of two types: ”merged” and ”array”. Merged512

images are generated by transparently overlaying two images, each from a different513

category (specifically, pixel values from each are divided by two and then summed).514

Array images are composed of four separate images (all from different categories) that515

are scaled down to 112 by 112 pixels and placed on a two by two grid. The images that516

comprise these test images also come from the 2014 validation set, but are separate517

from those used to train the binary classifiers. See examples of each in Figure 1C. Test518

image sets are balanced (50% do contain the given category and 50% do not, 150 total519

test images per category). Both true positive and true negative rates are recorded and520

overall performance is the average of these rates.521

4.3. Object Category Gradient Calculations522

When neural networks are trained via backpropagation, gradients are calculated523

that indicate how a given weight in the network impacts the final classification. We524

use this same method to determine how a given unit’s activity impacts the final clas-525

sification. Specifically, we input a ”merged” image (wherein one of the images belongs526

to the category of interest) to the network. We then use gradient calculations to deter-527

mine the changes in activity that would move the 1000-way classifier toward classifying528

that image as belonging to the category of interest (i.e. rank that category highest).529

We average these activity changes over images and over all units in a feature map.530

This gives a single value per feature map:531

glkc = − 1

Nc

Nc∑
n=1

1

HW

H,W∑
i=1,j=i

∂E(n)

∂xlkij (n)
(2)

where H and W are the spatial dimensions of layer l and Nc is the total number of532

images from the category (here NC = 35, and the merged images used were generated533

from the same images used to generate tuning curves, described below). E(n) is534

the error of the 1000-way classifier in response to image n, which is defined as the535

difference between the activity vector of the final layer (after the soft-max operation)536

and a one-hot vector, wherein the correct label is the only non-zero entry. Because537

we are interested in activity changes that would decrease the error value, we negate538

this term. The gradient value we end up with thus indicates how the feature map’s539

activity would need to change to make the network more likely to classify an image as540

the desired category. Repeating this procedure for each category, we obtain a set of541

gradient values (one for each category, akin to a tuning curve), for each feature map:542

glk. Note that, as these values result from applying the chain rule through layers of543

the network, they can be very small, especially for the earliest layers. For this study,544

the sign and relative magnitudes are of more interest than the absolute values.545

4.4. Oriented Grating Attention Tasks546

In addition to attending to object categories, we also test attention on simpler547

stimuli. In the orientation detection task, the network detects the presence of a given548

orientation in an image. Again, the final layer of the network is replaced by a series549

of binary classifiers, one for each of 9 orientations (0, 20, 40, 60, 80, 100, 120, 140,550

and 160 degrees. Gratings had a frequency of .025 cycles/pixel). The training sets551

for each were balanced (50% had only the given orientation and 50% had one of 8552

other orientations) and composed of full field (224 by 224 pixel) oriented gratings in553
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red, blue, green, orange, or purple (to increase the diversity of the training images,554

they were randomly degraded by setting blocks of pixels ranging uniformly from 0%555

to 70% of the image to 0 at random). Test images were each composed of two oriented556

gratings of different orientation and color (same options as training images). Each557

of these gratings were of size 112 by 112 pixels and placed randomly in a quadrant558

while the remaining two quadrants were black (Figure 5A). Again, the test sets were559

balanced and performance was measured as the average of the true positive and true560

negative rates (100 test images per orientation).561

These same test images were used for a task wherein the network had to classify the562

color of the grating that had the attended orientation (cross-featural task paradigms563

like this are commonly used in attention studies, such as [74]). For this, the final layer564

of the network was replaced with a 5-way softmax color classifier. This color classifier565

was trained using the same full field oriented gratings used to train the binary classifiers566

(therefore, the network saw each color at all orientation values).567

For another analysis, a joint feature and spatial attention task was used. This568

task is almost identical to the setup of the orientation detection task, except that the569

searched-for orientation would only appear in one of the four quadrants. Therefore,570

performance could be measured when applying feature attention to the searched-for571

orientation, spatial attention to the quadrant in which it could appear, or both.572

4.5. How Attention is Applied573

This study aims to test variations of the feature similarity gain model of attention,574

wherein neural activity is modulated by attention according to how much the neuron575

prefers the attended stimulus. To replicate this in our model, we therefore must first576

determine the extent to which units in the network prefer different stimuli (”tuning577

values”). When attention is applied to a given category, for example, units’ activities578

are modulated according to these values.579

4.5.1. Tuning Values580

To determine tuning to the 20 object categories used, we presented the network581

with images of each object category (the same images on which the binary classifiers582

were trained) and measured the relative activity levels. Because feature attention is583

a spatially global phenomena [94, 73], we treat all units in a feature map identically,584

and calculate tuning by averaging over them.585

Specifically, for the kth feature map in the lth layer, we define rlk(n) as the activity in586

response to image n, averaged over all units in the feature map (i.e., over the spatial587

dimensions). Averaging these values over all images in the training sets (Nc = 35588

images per category, 20 categories. N=700) gives the mean activity of the feature map589

r̄lk:590

r̄lk =
1

N

N∑
n=1

rlk(n) (3)

Tuning values are defined for each object category, c as:591

f lk
c =

1
Nc

∑
n∈c r

lk(n)− r̄lk√
1
N

∑N
i=1(r

lk(n)− r̄lk)2
(4)

That is, a feature map’s tuning value for a given category is merely the average592

activity of that feature map in response to images of that category, with the mean593
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activity under all image categories subtracted, divided by the standard deviation of594

the activity across all images. These tuning values determine how the feature map is595

modulated when attention is applied to the category. Taking these values as a vector596

over all categories, flk, gives a tuning curve for the feature map. We define the overall597

tuning quality of a feature map as its maximum absolute tuning value: max(|flk|). To598

determine expected tuning quality by chance, we shuffled the responses to individual599

images across category and feature map at a given layer and calculated tuning quality600

for this shuffled data.601

We also define the category with the highest tuning value as that feature map’s602

most preferred, and the category with the lowest (most negative) value as the least or603

anti-preferred.604

We apply the same procedure to generate tuning curves for orientation by using605

the full field gratings used to train the orientation detection classifiers. The orientation606

tuning values were used when applying attention in these tasks.607

When measuring how correlated tuning values are with gradient values, shuffled608

comparisons are used. To do this shuffling, correlation coefficients are calculated from609

pairing each feature map’s tuning values with a random other feature map’s gradient610

values.611

4.5.2. Gradient Values612

In addition to applying attention according to tuning, we also attempt to generate613

the ”best possible” attentional modulation by utilizing gradient values. These gradient614

values are calculated slightly differently from those described above (4.3), because they615

are meant to represent how feature map activity should change in order to increase616

binary classification performance, rather than just increase the chance of classifying617

an image as a certain object.618

The error functions used to calculate gradient values for the category and orienta-619

tion detection tasks were for the binary classifiers associated with each object/orientation.620

A balanced set of test images was used. Therefore a feature map’s gradient value for621

a given object/orientation is the averaged activity change that would increase binary622

classification performance for that object/orientation. Note that on images that the623

network already classifies correctly, gradients are zero. Therefore, the gradient values624

are driven by the errors: false negatives (classifying an image as not containing the625

category when it does) and false positives (classifying an image as containing the cate-626

gory when it does not). In our detection tasks, the former error is more prevalent than627

the latter, and thus is the dominant impact on the gradient values. Because of this,628

gradient values calculated this way end up very similar to those described in Methods629

4.3, as they are driven by a push to positively classify the input as the given category.630

The same procedure was used to generate gradient values for the color classification631

task. Here, gradients were calculated using the 5-way color classifier: for a given632

orientation, the color of that orientation in the test image was used as the correct label,633

and gradients were calculated that would lead to the network correctly classifying the634

color. Averaging over many images of different colors gives one value per orientation635

that represents how a feature map’s activity should change in order to make the636

network better at classifying the color of that orientation.637

In the orientation detection task, the test images used for gradient calculations (50638

images per orientation) differed from those used to assess performance. For the object639

detection task, images used for gradient calculations (45 per category; preliminary640
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tests for some categories using 90 images gave similar results) were drawn from the641

same pool as, but different from, those used to test detection performance. Gradient642

values were calculated separately for merged and array images.643

4.5.3. Spatial Attention644

In the feature similarity gain model of attention, attention is applied according to645

how much a cell prefers the attended feature, and location is considered a feature like646

any other. In CNNs, each feature map results from applying the same filter at different647

spatial locations. Therefore, the 2-D position of a unit in a feature map represents648

more or less the spatial location to which that unit responds. Via the max-pooling649

layers, the size of each feature map shrinks deeper in the network, and each unit650

responds to a larger area of image space, but the ”retinotopy” is still preserved. Thus,651

when we apply spatial attention to a given area of the image, we enhance the activity652

of units in that area of the feature maps and decrease the activity of units in other653

areas. In this study, spatial attention is applied to a given quadrant of the image.654

4.5.4. Implementation Options655

The values discussed above determine how strongly different feature maps or units656

should be modulated under different attentional conditions. We will now lay out the657

different implementation options for that modulation. In the main body of this work,658

the multiplicative bidirectional form of attention is used. Other implementations are659

only used for the Supplementary Results.660

First, the modulation can be multiplicative or additive. That is, when attending661

to category c, the slope of the rectified linear units can be multiplied by a weighted662

function of the tuning value for category c:663

xlkij = (1 + βf lk
c )[(I ijlk)]+ (5)

with I ijlk representing input to the unit coming from layer l − 1. Alternatively, a664

weighted version of the tuning value can be added before the rectified linear unit:665

xlkij = [I lkij + µlβf
lk
c ]+ (6)

Strength of attention is varied via the weighting parameter, β. For the additive effect,666

manipulations are multiplied by µl, the average activity level across all units of layer667

l in response to all images (for each of the 13 layers respectively: 20, 100, 150, 150,668

240, 240, 150, 150, 80, 20, 20, 10, 1). When gradient values are used in place of tuning669

values, we normalize them by the maximum value at a layer, to be the same order of670

magnitude as the tuning values: gl/max(
∣∣gl
∣∣).671

Recall that for feature-based attention all units in a feature map are modulated672

the same way, as feature attention has been found to be spatially global. In the case673

of spatial attention, however, tuning values are not used and a unit’s modulation is674

dependent on its location in the feature map. Specifically, the tuning value term is set675

to +1 if the i, j position of the unit is in the attended quadrant and to -1 otherwise.676

For feature attention tasks, β ranged from 0 to a maximum of 11.85 (object attention)677

and 0 to 4.8 (orientation attention). For spatial attention tasks, it ranged from 0 to 1.678

Next, we chose whether attention only enhances units that prefer the attended679

feature, or also decreases activity of those that don’t prefer it. For the latter, the680
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tuning values are used as-is. For the former, the tuning values are positively-rectified:681

[f lk]+.682

Combining these two factors, there are four implementation options: additive683

positive-only, multiplicative positive-only, additive bidirectional, and multiplicative684

bidirectional.685

The final option is the layer in the network at which attention is applied. We try686

attention at all convolutional layers individually and simultaneously (when applying687

simultaneously the strength range tested is a tenth of that when applying to a single688

layer).689

4.6. Signal Detection Calculations690

For the joint spatial-feature attention task, we calculated criteria (c, ”threshold”)691

and sensitivity (d′) using true (TP) and false (FP) positive rates as follows [48] :692

c = −.5(Φ−1(TP ) + Φ−1(FP )) (7)

where Φ−1 is the inverse cumulative normal distribution function. c is a measure of693

the distance from a neutral threshold situated between the mean of the true negative694

and true positive distributions. Thus, a positive c indicates a stricter threshold (fewer695

inputs classified as positive) and a negative c indicates a more lenient threshold (more696

inputs classified as positive). The sensitivity was calculated as:697

d′ = Φ−1(TP )− Φ−1(FP ) (8)

This measures the distance between the means of the distributions for true negative698

and two positives. Thus, a larger d′ indicates better sensitivity.699

To prevent the individual terms in these expressions from going to ±∞, false700

positive rates of < .01 were set to .01 and true positive rates of > .99 were set to .99.701

4.7. ”Recording” Procedures702

We examined the effects that applying attention at certain layers in the network703

(specifically 2, 6, 8, 10, and 12) has on activity of units at other layers. Attention704

was applied with β = .5 unless otherwise stated. The recording setup is designed705

to mimic the analysis of [51]. Here, the images presented to the network are full-706

field oriented gratings of all orientation-color combinations. Feature map activity is707

measured as the spatially averaged activity of all units in a feature map in response to708

an image. Activity in response to a given orientation is further averaged over all colors.709

We calculate the ratio of activity when attention is applied to a given orientation710

(and the orientation is present in the image) over activity in response to the same711

image when no attention is applied. These ratios are then organized according to712

orientation preference: the most preferred is at location 0, then the average of next713

two most preferred at location 1, and so on with the average of the two least preferred714

orientations at location 4 (the reason for averaging of pairs is to match [51] as closely715

as possible). Fitting a line to these points gives a slope and intercept for each feature716

map (lines are fit using the least squares method). FSGM predicts a negative slope717

and an intercept greater than one.718

To test for signs of feature matching behavior, each feature map’s preferred (most719

positive tuning value) and anti-preferred (most negative tuning value) orientations720

are determined. Activity is recorded when attention is applied to the preferred or721
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anti-preferred orientation and activity ratios are calculated. According to the FSGM,722

activity when the preferred orientation is attended should be greater than when the723

anti-preferred is attended, regardless of whether the image is of the preferred or anti-724

preferred orientation. According to the feature matching (FM) model, however, ac-725

tivity when attending the presented orientation should be greater than activity when726

attending an absent orientation, regardless of whether the orientation is preferred or727

not. Therefore, we say that a feature map is displaying feature matching behavior728

if (1) activity is greater when attending the preferred orientation when the preferred729

is present versus when the anti-preferred is present, and (2) activity is greater when730

attending the anti-preferred orientation when the anti-preferred is present versus when731

the preferred is present. The second criteria distinguishes feature matching behavior732

from FSGM.733

4.8. Correlating Activity Changes with Performance734

We use two different measures of attention-induced activity changes in order to735

probe the relationship between activity and classification performance. In both cases,736

the network is performing the orientation detection task described in Figure 5A.737

The first measure is meant to capture feature similarity gain model-like behavior on738

an image-by-image basis (the measure illustrated in 6B is calculated over a population739

of images of different stimuli). Images that contain a given orientation are shown740

to the network and the spatially-averaged activity of feature maps is recorded when741

attention is applied to that orientation and when it is not. The ratio of these activities742

is then plotted against each feature map’s tuning value for the orientation. According743

to the FSGM, this ratio should be above 1 for feature maps with positive tuning values744

and less than one for those with negative tuning values. Therefore, we use the slope of745

the line fitted to these ratios plotted as a function of tuning values as an indication of746

the extent to which activity is FSGM-like (with positive slopes more FSGM-like). The747

median slope over a set of images of a given orientation is paired with the change in748

performance on those images with attention. This gives one pair for each combination749

of orientation, strength, and layer at which attention was applied (activity changes are750

only recorded if attention was applied at or before the recorded layer). The correlation751

coefficient between these value pairs is plotted as the dashed line in Figure 7C.752

The second measure aims to characterize activity in terms of the outcome of the753

classification, rather than the contents of the input (see Figure 7A for a visualization).754

First, for a particular orientation, images that both do and do not contain that orien-755

tation are shown to the network. Activity (spatially-averaged over each feature map)756

in response to images classified as containing the orientation (i.e., both true and false757

positives) is averaged in order to construct a vector in activity space that represents758

positive classification for a given layer. To reduce complications of working with vec-759

tors in high dimensions, principal components are found that capture at least 90% of760

the variance of the activity in response to all images, and all computations are done in761

this lower dimensional space. The next step is to determine if attention moves activity762

in a given layer closer to this direction of positive classification. For this, images that763

contain the given orientation (but were not positively-classified without attention) are764

used. For each image, the cosine of the angle between the positive-classification vector765

and the activity in response to the image is calculated. The median of these angles766

over a set of images is calculated separately for when attention is applied and when it767

is not. The difference between these medians (with-attention minus without-attention)768
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is paired with the change in performance that comes with attention on those images.769

Then the same correlation calculation is done with these pairs as described above.770

For activity recorded from the fully-connected layers (14 and 15), each of the indi-771

vidual units is used in place of spatially-averaged feature map activity.772

4.9. Experimental Data773

Model results were compared to previously published data coming from several774

studies. In [50], a category detection task was performed using stereogram stimuli775

(on object present trials, the object image was presented to one eye and a noise mask776

to another). The presentation of the visual stimuli was preceded by a verbal cue777

that indicated the object category that would later be queried (cued trials) or by778

meaningless noise (uncued trials). After visual stimulus presentation, subjects were779

asked if an object was present and, if so, if the object was from the cued category780

(categories were randomized for uncued trials). In Experiment 1 (’Cat-Drawings’ in781

Figure 4B), the object images were line drawings (one per category) and the stimuli782

were presented for 1.5 sec. In Experiment 2 (’Cat-Images’), the object images were783

grayscale photographs (multiple per category) and presented for 6 sec (of note: this784

presumably allows for several rounds of feedback processing, in contrast to our purely785

feedforward model). True positives were counted as trials wherein a given object786

category was present and the subject correctly indicated its presence when queried.787

False positives were trials wherein no category was present and subjects indicated that788

the queried category was present.789

In [49], a similar detection task was used. Here, subjects detected the presence of790

an uppercase letter that (on target present trials) was presented rapidly and followed791

by a mask. Prior to the visual stimulus, a visual (’Letter-Vis’) or audio (’Letter-Aud’)792

cue indicated a target letter. After the visual stimulus, the subjects were required to793

indicate whether any letter was present. True positives were trials in which a letter was794

present and the subject indicated it (only uncued trials or validly cued trials—where795

the cued letter was the letter shown—were considered here). False positives were trials796

where no letter was present and the subject indicated that one was.797

The task in [39] was also an object category detection task (’Objects’). Here, an798

array of several images was flashed on the screen with one image marked as the target.799

All images were color photographs of objects in natural scenes. In certain blocks,800

the subjects knew in advance which category they would later be queried about (cued801

trials). On other trials, the queried category was only revealed after the visual stimulus802

(uncued). True positives were trials in which the subject indicated the presence of the803

queried category when it did exist in the target image. False positives were trials in804

which the subject indicated the presence of the cued category when it was not in the805

target image. Data from trials using basic category levels with masks were used for806

this study.807

Finally, we include one study using macaques (’Ori-Change’) wherein both neural808

and performance changes were measured [53]. In this task, subjects had to report a809

change in orientation that could occur in one of two stimuli. On cued trials, the change810

occurred in the cued stimulus in 80% of trials and the uncued stimulus in 20% of tri-811

als. On neutrally-cued trials, subjects were not given prior information about where812

the change was likely to occur (50% at each stimulus). Therefore performance could813

be compared under conditions of low (uncued stimuli), medium (neutrally cued stim-814

uli), and high (cued stimuli) attention strength. Correct detection of an orientation815

30

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 17, 2018. ; https://doi.org/10.1101/233338doi: bioRxiv preprint 

https://doi.org/10.1101/233338
http://creativecommons.org/licenses/by/4.0/


change in a given stimulus (indicated by a saccade) is considered a true positive and a816

saccade to the stimulus prior to any orientation change is considered a false positive.817

True negatives are defined as correct detection of a change in the uncued stimulus818

(as this means the subject correctly did not perceive a change in the stimulus under819

consideration) and false negatives correspond to a lack of response to an orientation820

change. While this task includes a spatial attention component, it is still useful as a821

test of feature-based attention effects. Previous work has demonstrated that, during a822

change detection task, feature-based attention is deployed to the pre-change features823

of a stimulus [15, 54]. Therefore, because the pre-change stimuli are of differing orien-824

tations, the cueing paradigm used here controls the strength of attention to orientation825

as well.826

In cases where the true and false positive rates were not published, they were ob-827

tained via personal communications with the authors. Not all changes in performance828

were statistically significant, but we plot them to show general trends.829

We calculate the activity changes required in the model to achieve the behavioral830

changes observed experimentally by using the data plotted in Figure 4B. We determine831

the average β value for the neutral and cued conditions by finding the β value of the832

point on the model line nearest to the given data point. Specifically, we average the β833

values found for the four datasets whose experiments are most similar to our merged834

image task (Cat-Drawings, Cat-Images, Letter-Aud, and Letter-Vis).835
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