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Abstract

How does attentional modulation of neural activity enhance performance? Here we use
a deep convolutional neural network as a large-scale model of the visual system to ad-
dress this question. We model the feature similarity gain model of attention, in which
attentional modulation is applied according to neural stimulus tuning. Using a variety
of visual tasks, we show that neural modulations of the kind and magnitude observed
experimentally lead to performance changes of the kind and magnitude observed ex-
perimentally. We find that, at earlier layers, attention applied according to tuning
does not successfully propagate through the network, and has a weaker impact on
performance than attention applied according to values computed for optimally mod-
ulating higher areas. This raises the question of whether biological attention might be
applied at least in part to optimize function rather than strictly according to tuning.
We suggest a simple experiment to distinguish these alternatives.

1. Introduction

1 Covert visual attention—applied according to spatial location or visual features—
2 has been shown repeatedly to enhance performance on challenging visual tasks [10].
3 To explore the neural mechanisms behind this enhancement, neural responses to the
+ same visual input are compared under different task conditions. Such experiments have
s identified numerous neural modulations associated with attention, including changes
¢ in firing rates, noise levels, and correlated activity [83, 14, 22, 52]. But how do these
7 neural activity changes impact performance? Previous theoretical studies have offered
s helpful insights on how attention may work to enhance performance [62, 71, 86, 11, 27,
o 90, 26, 20, 4, 89, 8, 82, 88, 13]. However, much of this work is either based on small,
10 hand-designed models or lacks direct mechanistic interpretability. Here, we utilize a
u large-scale model of the ventral visual stream to explore the extent to which neural
12 changes like those observed experimentally can lead to performance enhancements on
13 realistic visual tasks. Specifically, we use a deep convolutional neural network trained
1 to perform object classification to test effects of the feature similarity gain model of
15 attention [84].

16 Deep convolutional neural networks (CNNs) are popular tools in the machine learn-
17 ing and computer vision communities for performing challenging visual tasks [69].
18 Their architecture—comprised of layers of convolutions, nonlinearities, and response
19 pooling—was designed to mimic the retinotopic and hierarchical nature of the mam-
2 malian visual system [69]. Models of a similar form have been used to study the
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2 biological underpinnings of object recognition for decades [24, 70, 78]. Recently it has
22 been shown that when these networks are trained to successfully perform object classi-
23 fication on real-world images, the intermediate representations learned are remarkably
2 similar to those of the primate visual system, making CNNs state-of-the-art models of
s the ventral stream [92, 37, 36, 38, 34, 9, 85, 46, 42]. A key finding has been the corre-
» spondence between different areas in the ventral stream and layers in the deep CNNs,
27 with early convolutional layers best able to capture the representation of V1 and mid-
2 dle and higher layers best able to capture V4 and IT, respectively [25, 21, 76]. Given
2 that CNNs reach near-human performance on visual tasks and have architectural and
s representational similarities to the visual system, they are particularly well-positioned
a1 for exploring how neural correlates of attention impact behavior.

32 One popular framework to describe attention’s effects on firing rates is the feature
13 similarity gain model (FSGM). This model, introduced by Treue & Martinez-Trujillo,
1 claims that a neuron’s activity is multiplicatively scaled up (or down) according to
3 how much it prefers (or doesn’t prefer) the properties of the attended stimulus [84,
s 51]. Attention to a certain visual attribute, such as a specific orientation or color,
w is generally referred to as feature-based attention (FBA). FBA effects are spatially
;s global: if a task performed at one location in the visual field activates attention to
5 a particular feature, neurons that represent that feature across the visual field will
o be affected [94, 73]. Overall, this leads to a general shift in the representation of the
a neural population towards that of the attended stimulus [17, 33, 65]. Spatial attention
» implies that a particular portion of the visual field is being attended. According to the
i FSGM, spatial location is treated as an attribute like any other. Therefore, a neuron’s
« modulation due to attention can be predicted by how well its preferred features and
55 spatial receptive field align with the features and location of the attended stimulus.
s The effects of combined feature and spatial attention have been found to be additive
w [29].

48 A debated issue in the attention literature is where in the visual stream attention
» effects can be seen. Many studies of attention focus on V4 and MT/MST [83], as
so these areas have reliable attentional effects. Some studies do find effects at earlier
si areas [60], though they tend to be weaker and occur later in the visual response [35].
s2 'Therefore, a leading hypothesis is that attention signals, coming from prefrontal areas
53 [58, 57, 3, 40], target later visual areas, and the feedback connections that those areas
s« send to earlier ones cause the weaker effects seen there later [7, 47].

55 In this study, we define the FSGM of attention mathematically and implement
ss it in a deep CNN. By applying attention at different layers in the network and for
s7  different tasks, we see how neural changes at one area propagate through the network
ss and change performance.

0 2. Results

60 The network used in this study—VGG-16, [79]—is shown in Figure 1A and ex-
s1 plained in Methods 4.1. Briefly, at each convolutional layer, the application of a given
&2 convolutional filter results in a feature map, which is a 2-D grid of artificial neurons
&3 that represent how well the bottom-up input at each location aligns with the filter.
s« Therefore a "retinotopic” layout is built into the structure of the network, and the
s same visual features are represented across that retinotopy (akin to how cells that pre-
e fer a given orientation exist at all locations across the V1 retinotopy). This network
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Figure 1: Network Architecture and Feature-Based Attention Task Setup. A.) The model used is
a pre-trained deep neural network (VGG-16) that contains 13 convolutional layers (labeled in gray,
number of feature maps given in parenthesis) and is trained on the ImageNet dataset to do 1000-way
object classification. All convolutional filters are 3x3. B.) Modified architecture for feature-based
attention tasks. To perform our feature-based attention tasks, the final layer that was implement-
ing 1000-way softmax classification is replaced by binary classifiers (logistic regression), one for each
category tested (2 shown here, 20 total). These binary classifiers are trained on standard ImageNet
images. C.) Test images for feature-based attention tasks. Merged images (left) contain two transpar-
ently overlaid ImageNet images of different categories. Array images (right) contain four ImageNet
images on a 2x2 grid. Both are 224 x 224 pixels. These images are fed into the network and the
binary classifiers are used to label the presence or absence of the given category. D.) Performance of
binary classifiers. Box plots describe values over 20 different object categories (median marked in red,
box indicates lower to upper quartile values and whiskers extend to full range, with the exception

of outliers marked as dots). Standard images are regular ImageNet images not used in the binary
classifier training set.
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& was explored in [25], where it was shown that early convolutional layers of this CNN
e are best at predicting activity of voxels in V1, while late convolutional layers are best
0 at predicting activity of voxels in the object-selective lateral occipital area (LO).

0 2.1. The Relationship between Tuning and Classification

7 The feature similarity gain model of attention posits that neural activity is modu-
22 lated by attention in proportion to how strongly a neuron prefers the attended features,
73 as assessed by its tuning. However, the relationship between a neuron’s tuning and
72 its ability to influence downstream readouts remains a difficult one to investigate bio-
7 logically. We use our hierarchical model to explore this question. We do so by using
7 backpropagation to calculate ”gradient values”, which we compare to tuning curves
77 (see Methods 4.3 and 4.5.1 for details). Gradient values indicate the ways in which fea-
7 ture map activities should change in order to make the network more likely to classify
7o an image as being of a certain object category. Tuning values represent the degree to
g0 which the feature map responds preferentially to images of a given category. If there
&1 is a correspondence between tuning and classification, a feature map that prefers a
22 given object category (that is, responds strongly to it) should also have a high positive
&3 gradient value for that category. In Figure 2A we show gradient values and tuning
s curves for three example feature maps. In Figure 2C, we show the average correlation
ss coefficients between tuning values and gradient values for all feature maps at each of
s the 13 convolutional layers. As can be seen, tuning curves in all layers show higher
& correlation with gradient values than expected by chance (as assayed by shuffled con-
ss trols), but this correlation is relatively low, increasing across layers from about .2 to .5.
o Overall tuning quality also increases with layer depth (Figure 2B), but less strongly.
% Even at the highest layers, there can be serious discrepancies between tuning and
a1 gradient values. In Figure 2D, we show the gradient values of feature maps at the final
o four convolutional layers, segregated according to tuning value. In red are gradient
o3 values that correspond to tuning values greater than one (for example, category 12
e for the feature map in the middle pane of Figure 2A). As these distributions show,
s strong tuning values can be associated with weak or even negative gradient values.
o Negative gradient values indicate that increasing the activity of that feature map
o7 makes the network less likely to categorize the image as the given category. Therefore,
e even feature maps that strongly prefer a category (and are only a few layers from the
o classifier) still may not be involved in its classification, or even be inversely related to
wo it. This is aligned with a recent neural network ablation study that shows category
1 selectivity does not predict impact on classification [59].

w2 2.2. Feature-based Attention Improves Performance on Challenging Object Classifica-
103 tion Tasks

104 To determine if manipulation according to tuning values can enhance performance,
s we created challenging visual images composed of multiple objects for the network to
s classify. These test images are of two types: merged (two object images transparently
07 overlaid, such as in [77]) or array (four object images arranged on a grid) (see Figure
s 1C examples). The task for the network is to detect the presence of a given object
we category in these images. It does so using a series of binary classifiers trained on
o standard images of these objects, which replace the last layer of the network (Figure
i 1B). The performance of these classifiers on the test images indicates that this is a
12 challenging task for the network (64.4% on merged images and 55.6% on array, Figure
s 1D. Chance is 50%), and thus a good opportunity to see the effects of attention.
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Figure 2: Relationship Between Feature Map Tuning and Gradient Values. A.) Example tuning values
(green, left axis) and gradient values (purple, right axis) of three different feature maps from three
different layers (identified in titles, layers as labeled in Figure 1A) over the 20 tested object categories.
Tuning values indicate how the response to a category differs from the mean response; gradient values
indicate how activity should change in order to classify input as from the category. Correlation
coefficients between tuning curves and gradient values given in titles. B.) Tuning quality across layers.
Tuning quality is defined per feature map as the maximum absolute tuning value of that feature map.
Box plots show distribution across feature maps for each layer. Average tuning quality for shuffled
data: .372 4 .097 (this value does not vary significantly across layers) C.) Correlation coefficients
between tuning curves and gradient value curves averaged over feature maps and plotted across
layers (errorbars +/- S.E.M., data values in blue and shuffled controls in orange). D.) Distributions
of gradient values when tuning is strong. In red, histogram of gradient values associated with tuning
values larger than one, across all feature maps in layers 10, 11, 12, and 13. For comparison, histograms
of gradient values associated with tuning values less than one are shown in black (counts are separately
normalized for visibility, as the population in black is much larger than that in red).
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114 We implement feature-based attention in this network by modulating the activity
us of units in each feature map according to how strongly the feature map prefers the
us attended object category (see Methods 4.5.1 and 4.5). A schematic of this is shown
u7 in Figure 3A. The slope of the activation function of units in a given feature map is
us scaled according to the tuning value of that feature map for the attended category
1o (positive tuning values increase the slope while negative tuning values decrease it).
20 Thus the impact of attention on activity is multiplicative and bi-directional.

121 The effects of attention are measured when attention is applied in this way at
122 each layer individually, or all layers simultaneously (Figure 3B; solid lines). For both
123 image types (merged and array), attention enhances performance and there is a clear
124 increase in performance enhancement as attention is applied at later layers in the
s network (numbering is as in Figure 1A). In particular, attention applied at the final
16 convolutional layer performs best, leading to an 18.8% percentage point increase in
127 binary classification on the merged images task and 22.8% increase on the array images
s task. Thus, FSGM-like effects can have large beneficial impacts on performance.

120 Attention applied at all layers simultaneously does not lead to better performance
1o than attention applied at any individual layer. The reasons for this will be addressed
131 later.

132 Some components of the FSGM are debated, e.g. whether attention impacts re-
133 sponses multiplicatively or additively [5, 2, 47, 55], and whether the activity of cells
13 that do not prefer the attended stimulus is actually suppressed [6, 62]. Comparisons
s of different variants of the FSGM can be seen in Supplementary Figure 8. In general,
s multiplicative and bidirectional effects work best.

137 We also measure performance when attention is applied using gradient values rather
133 than tuning values (these gradient values are calculated to maximize performance
130 on the binary classification task, rather than classify the image as a given category;
1o therefore technically they differ from those shown in Figure 2, however in practice
11 they are strongly correlated. See Methods 4.3 and 4.5.2 for details). Attention applied
12 using gradient values shows the same layer-wise trend as when using tuning values.
3 It also reaches the same performance enhancement peak when attention is applied at
s the final layers. The major difference, however, comes when attention is applied at
1us middle layers of the network. Here, attention applied according to gradient values
us outperforms that of tuning values.

w 2.3. Attention Strength and the Tradeoff between Increasing True and False Positives

148 In the previous section, we examined the best possible effects of attention by choos-
u ing the strength for each layer and category that optimized performance. Here, we
150 look at how performance changes as we vary the overall strength () of attention.

151 In Figure 4A we break the binary classification performance into true and false
12 positive rates. Here, each colored line indicates a different category and increasing dot
153 size represents increasing strength of attention. Ideally, true positives would increase
15« without an equivalent increase (and possibly with a decrease) in false positive rates.
155 1f they increase in tandem, attention does not have a net beneficial effect. Looking at
156 the effects of applying attention at different layers, we can see that attention at lower
157 layers is less effective at moving the performance in this space and that movement is in
158 somewhat random directions, although there is an average increase in performance with
159 moderate attentional strength. With attention applied at later layers, true positive
1o rates are more likely to increase for moderate attentional strengths, while substantial
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Figure 3: Effects of Applying Feature-Based Attention on Object Category Tasks. A.) Schematic of
how attention modulates the activity function. All units in a feature map are modulated the same
way. The slope of the activation function is altered based on the tuning (or gradient) value, fj., of
a given feature map (here, the k*" feature map in the Ith layer) for the attended category, c, along
with an overall strength parameter 5. I;j is the input to this unit from the previous layer. For
more information, see Methods 4.5. B.) Average increase in binary classification performance as a
function of layer attention is applied at (solid line represents using tuning values, dashed line using
gradient values, errorbars +/- S.E.M.). The final column corresponds to attention applied to all
layers simultaneously with the same strength (strengths tested are one-tenth of those when strength
applied to individual layers). In all cases, best performing strength from the range tested is used for
each instance. Performance shown separately for merged (left) and array (right) images. Gradients
perform significantly (p < .05, N = 20) better than tuning at layers 5-8 (p = 4.6e-3, 2.6e-5, 6.5¢-3,
4.4e-3) for merged images and 5-9 (p = 3.1e-2, 2.3e-4, 4.2e-2, 6.1e-3, 3.1e-2) for array images.

11 false positive rate increases occur only with higher strengths. Thus, when attention
12 is applied with modest strength at layer 13, most categories see a substantial increase
163 in true positives with only modest increases in false positives. As strength continues
1« to increase however, false positives increase substantially and eventually lead to a net
165 decrease in overall classifier performance (representing as crossing the dotted line in
166 Figure 4A)

167 Applying attention according to negated tuning values leads to a decrease in true
s and false positive values with increasing attention strength, which decreases overall
160 performance (Supplementary Figure 9A). This verifies that the effects of attention are
o not from non-specific changes in activity.

171 Experimentally, when switching from no or neutral attention, neurons in MT
12 showed an average increase in activity of 7% when attending their preferred motion
13 direction (and similar decrease when attending the non-preferred) [51]. In our model,
s when = .75 (roughly the value at which performance peaks at later layers; Figure 9),
115 given the magnitude of the tuning values (average magnitude: .38), attention scales
e activity by an average of 28.5%. This value refers to how much activity is modulated
177 in comparison to the 8 = 0 condition, which is probably more comparable to passive
s Or anesthetized viewing, as task engagement has been shown to scale neural responses
o generally [64]. This complicates the relationship between modulation strength in our
180 model and the values reported in the data.

181 To allow for a more direct comparison, in Figure 4B, we collected the true and
12 false positive rates obtained experimentally during different object detection tasks
183 (explained in Methods 4.9), and plotted them in comparison to the model results
8¢ when attention is applied at layer 13 using tuning values (pink line) or gradient value
155 (brown line) (results are similar). Five experiments (second through sixth studies) are
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Figure 4: Effects of Varying Attention Strength A.) Effect of increasing attention strength () in
true and false positive rate space for attention applied at each of four layers (layer indicated in
bottom right of each panel, attention applied using tuning values). Each line represents performance
for an individual category (only 10 categories shown for visibility), with each increase in dot size
representing a .15 increase in 3. Baseline (no attention) values are subtracted for each category such
that all start at (0,0). The black dotted line represents equal changes in true and false positive rates.
B.) Comparisons from experimental data. The true and false positive rates from six experiments in
four previously published studies are shown for conditions of increasing attentional strength (solid
lines). Cat-Drawings=[50], Exp. 1; Cat-Images=[50],Exp. 2; Objects=[39], Letter-Aud.=[49], Exp.
1; Letter-Vis.=[49], Exp. 2. Ori-Change=[53]. See Methods 4.9 for details of experiments. Dotted
lines show model results for merged images, averaged over all 20 categories, when attention is applied
using either tuning (TC) or gradient (Grad) values at layer 13. Model results are shown for attention
applied with increasing strengths (starting at 0, with each increasing dot size representing a .15
increase in ). Receiver operating curve (ROC) for the model using merged images, which corresponds
to the effect of changing the threshold in the final, readout layer, is shown in gray.
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1ss  human studies. In all of these, uncued trials are those in which no information about
17 the upcoming visual stimulus is given, and therefore attention strength is assumed to
188 be low. In cued trials, the to-be-detected category is cued before the presentation of a
19 challenging visual stimulus, allowing attention to be applied to that object or category.
190 The majority of these experiments show a concurrent increase in both true and
w1 false positive rates as attention strength is increased (with the exception of Cat-Circ,
12 which has a larger initial false positive rate and shows a decrease in false positives with
13 stronger attention). The rates in the uncued conditions (smaller dots) are generally
104 higher than the rates produced by the § = 0 condition in our model, consistent with
105 neutrally cued conditions corresponding to > 0. We find (see Methods 4.9), that the
ws average corresponding [ value for the neutral conditions is .37 and for the attended
17 conditions .51. Because attention scales activity by 1+ Bf* (where f* is the tuning
s value), these changes correspond to a ~5% change in activity. Thus, according to our
19 model, the size of observed performance changes is broadly consistent with the size of
200 observed neural changes.

201 The first dataset included in the plot (Ori-Change; yellow line in Figure 4B) comes
20 from a macaque change detection study (see Methods 4.9 for details). Because the
203 attention cue was only 80% valid, attention strength could be of three levels: low (for
200 the uncued stimuli on cued trials), medium (for both stimuli on neutrally-cued trials),
205 or high (for the cued stimuli on cued trials). Like the other studies, this study shows a
206 concurrent increase in both true positive (correct change detection) and false positive
207 (premature response) rates with increasing attention strength. However, for the model
28 to achieve the performance changes observed between low and medium attention a
200 roughly 12% activity change is needed, but average V4 firing rates recorded during
20 this task show an increase of only 3.6%. This discrepancy may suggest that changes
21 in correlations [14] or firing rate changes in areas aside from V4 also make important
212 contributions to observed performance changes.

213 Finally, we show the change in true and false positive rates when the threshold of
24 the final layer binary classifier is varied (a "receiver operating characteristic” analy-
x5 sis, Figure 4B, gray line; no attention was applied during this analysis). Comparing
216 this to the pink line, it is clear that varying the strength of attention applied at the
217 final convolutional layer has more favorable performance effects than altering the clas-
2 sifier threshold (which corresponds to an additive effect of attention at the classifier
20 layer). This points to the limitations that could come from attention targeting only
20 downstream readout areas.

221 Overall, the model roughly matches experiments in the amount of neural modula-
222 tion needed to create the observed changes in true and false positive rates. However,
23 it is clear that the details of the experimental setup are relevant, and changes aside
24 from firing rate and/or outside the ventral stream also likely play a role [62].

25 2.4. Feature-based Attention Enhances Performance on Orientation Detection Task

226 Some of the results presented above, particularly those related to the layer at which
27 attention is applied, may be influenced by the fact that we are using an object catego-
28 rization task. To see if results are comparable using the simpler stimuli frequently used
29 in macaque studies, we created an orientation detection task (Figure 5A). Here, binary
20 classifiers trained on full-field oriented gratings are tested using images that contain
2 two gratings of different orientation and color. The performance of these binary clas-
2 sifiers without attention is above chance (distribution across orientations shown in
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23 inset of Figure 5A). The performance of the binary classifier associated with vertical
24 orientation (0 degrees) was abnormally high (92% correct without attention, other ori-
25 entations average 60.25%) and this orientation was excluded from further performance
236 analysis.

237 Attention is applied according to orientation tuning values of the feature maps
23 (tuning quality by layer is shown in Figure 5B) and tested across layers. We find
20 (Figure 5D, solid line) that the trend in this task is similar to that of the object
20 task: applying attention at later layers leads to larger performance increases (14.4%
21 percentage point increase at layer 10). This is despite the fact that orientation tuning
22 quality peaks in the middle layers.

213 We also calculate the gradient values for this orientation detection task. While
214 overall the correlations between gradient values and tuning values are lower (and even
25 negative for early layers), the average correlation still increases with layer (Figure
26 HC), as with the category detection task. Importantly, while this trend in correlation
27 exists in both detection tasks tested here, it is not a universal feature of the network
xus or an artifact of how these values are calculated. Indeed, an opposite pattern in
a9 the correlation between orientation tuning and gradient values is shown when using
0 attention to orientation to classify the color of a stimulus with the attended orientation
1 (Supplementary Figure 10A, Methods 4.4 and 4.5.2).

252 The results of applying attention according to gradient values is shown in Figure
»3 bD (dashed line). Here again, using gradient value creates similar trends as using
4 tuning values, with gradient values performing better in the middle layers.

55 2.0. Feature-based Attention Primarily Influences Criteria and Spatial Attention Pri-
256 marily Influences Sensitivity

257 Signal detection theory is frequently used to characterize the effects of attention
»s on performance [88]. Here, we use a joint feature-spatial attention task to explore
0 effects of attention in the model. The task uses the same two-grating stimuli described
%0 above. The same binary orientation classifiers are used and the task of the model is
%1 to determine if a given orientation is present in a given quadrant. Performance is
»%2 then measured when attention is applied according to orientation, quadrant, or both
23 (effects are combined additively, for more, see Methods 4.5). Two key signal detection
%4 measurements are computed: criteria is a measure of the threshold that’s used to mark
%5 an input as positive, with a higher criteria leading to fewer positives; and sensitivity
x6 1S a measure of the separation between the populations of true positive and negatives,
27 with higher sensitivity indicating a greater separation.

268 Figure S5E shows how criteria decreases more when feature-based attention is ap-
x0 plied alone than when spatial is. Intuitively, feature-based attention shifts the repre-
a0 sentations of all stimuli in the direction of the attended category, implicitly lowering
on the detection threshold. Sensitivity increases more for spatial attention alone than
o feature-based attention alone, indicating that spatial attention amplifies differences in
a3 the representation of whatever features are present. These general trends hold regard-
o less of the layer at which attention is applied. Changes in true and false positive rates
o5 for this task can be seen explicitly in Supplementary Figure 10B.

276 Experimentally—in line with our results—spatial attention was found to increase
o sensitivity and (less reliably) decrease criteria [28, 19], and feature attention is known
zs  to decrease criteria, with minimal effects on sensitivity [68, 1]. A study that looked
oo explicitly at the different effects of spatial and category-based attention [81] found
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Figure 5: Attention Task and Results Using Oriented Gratings. A.) Orientation detection task.
Like with the object category detection tasks, separate binary classifiers trained to detect each of
9 different orientations replaced the final layer of the network. Test images included 2 oriented
gratings of different color and orientation located at 2 of 4 quadrants. Inset shows performance over
9 orientations without attention B.) Orientation tuning quality as a function of layer. C.) Average
correlation coefficient between orientation tuning curves and gradient curves across layers (blue).
Shuffled correlation values in orange. Errorbars are 4+/- S.E.M. D.) Comparison of performance on
orientation detection task when attention is determined by tuning values (solid line) or gradient
values (dashed line) and applied at different layers. As in Figure 3B, final column is performance
when attention is applied at all layers, and best performing strength is used in all cases. Errorbars are
+/- S.E.M. Gradients perform significantly (p = 1.9¢ — 2) better than tuning at layer 7. E.) Change
in signal detection values and performance (percent correct) when attention is applied in different
ways—spatial, feature (according to tuning), and both spatial and feature—for the task of detecting
a given orientation in a given quadrant. Top row is when attention is applied at layer 13 and bottom
when applied at layer 4.
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20 that spatial attention increases sensitivity more than category-based attention (most
21 visible in their Experiment 3c, which uses natural images), and the effects of the two
22 are additive.

283 However, attention and priming are known to impact neural activity beyond pure
2 sensory areas [41, 16]. This idea is borne out by a study that aimed to isolate the
s neural changes associated with sensitivity and criteria changes [48]. In this study, the
86 authors designed behavioral tasks that encouraged changes in behavioral sensitivity
27 Or criteria exclusively: high sensitivity was encouraged by associating a given stimulus
28  location with higher overall reward, while high criteria was encouraged by rewarding
20 correct rejects more than hits (and vice versa for low sensitivity/criteria). Differences
20 in V4 neural activity were observed between trials using high versus low sensitivity
201 stimuli. No differences were observed between trials using high versus low criteria
202 stimuli. This indicates that areas outside of the ventral stream (or at least outside
203 V4) are capable of impacting criteria [80]. Importantly, it does not mean that changes
24 in V4 don’t impact criteria, but merely that those changes can be countered by the
25 impact of changes in other areas. Indeed, to create sessions wherein sensitivity was
206 varied without any change in criteria, the authors had to increase the relative correct
207 reject reward (i.e., increase the criteria) at locations of high absolute reward, which
s may have been needed to counter a decrease in criteria induced by attention-related
20 changes in V4 (similarly, they had to decrease the correct reject reward at low reward
30 locations). Our model demonstrates clearly how such effects from sensory areas alone
;1 can impact detection performance, which, in turn highlights the role downstream areas
52 may play in determining the final behavioral outcome.

33 2.6. Recordings Show How Feature Similarity Gain Effects Propagate

304 To explore how attention applied at one location in the network impacts activity
w5 later on, we apply attention at various layers and "record” activity at others (Figure
w6 GA, in response to full field oriented gratings). In particular, we record activity of fea-
so7  ture maps at all layers while applying attention at layers 2, 6, 8, 10, or 12 individually.
308 To understand the activity changes occurring at each layer, we use an analysis from
20 [51] that was designed to test for FSGM-like effects and is explained in Figure 6B.
s Here, the activity of a feature map in response to a given orientation when attention is
su  applied is divided by the activity in response to the same orientation without attention.
a2 These ratios are organized according to the feature map’s orientation preference (most
a3 to least) and a line is fit to them. According to the FSGM of attention, this ratio
s should be greater than one for more preferred orientations and less than one for less
a5 preferred, creating a line with an intercept greater than one and negative slope.

316 In Figure 6C, we plot the median value of the slopes and intercepts across all
a7 feature maps at a layer, when attention is applied at different layers (indicated by
us color). When attention is applied directly at a layer according to its tuning values
a0 (left), FSGM effects are seen by default (intercept values are plotted in terms of how
20 they differ from one; comparable average values from [51] are intercept: .06 and slope:
;1 0.0166, but we are using § = 0 for the no-attention condition in the model which,
12 as mentioned earlier, is not necessarily the best analogue for no-attention conditions
23 experimentally. Therefore we use these measures to show qualitative effects). As these
24 activity changes propagate through the network, however, the FSGM effects wear off,
s suggesting that activating units tuned for a stimulus at one layer does not necessarily
w6 activate cells tuned for that stimulus at the next. This misalignment between tuning
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Figure 6: How Attention-Induced Activity Changes Propagate through the Network. A.) Recording
setup. The spatially averaged activity of feature maps at each layer was recorded (left) while attention
was applied at layers 2, 6, 8, 10, or 12 individually. Activity was in response to a full field oriented
grating. B.) Schematic of metric used to test for the feature similarity gain model. Activity when
a given orientation is present and attended is divided by the activity when no attention is applied,
giving a set of activity ratios. Ordering these ratios from most to least preferred orientation and
fitting a line to them gives the slope and intercept values plotted in (C). Intercept values are plotted
in terms of how they differ from 1, so positive values are an intercept greater than 1. (FSGM predicts
negative slope and positive intercept) C.) The median slope (solid line) and intercept (dashed line)
values as described in (B) plotted for each layer when attention is applied to the layer indicated by
the line color as labeled in (A). On the left, attention applied according to tuning values and on the
right, attention applied according to gradient values. D.) Fraction of feature maps displaying feature
matching behavior at each layer when attention is applied at the layer indicated by line color. Shown
for attention applied according to tuning (solid lines) and gradient values (dashed line).
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s7 at one layer and the next explains why attention applied at all layers simultaneously
»s isn’t more effective (Figure 3B). In fact, applying attention to a category at one layer
2o can actually have effects that counteract attention at a later layer (see Supplementary
10 Figure 11).

331 In Figure 6C (right), we show the same analysis, but while applying attention
s according to gradient values. The effects at the layer at which attention is applied do
33 not look strongly like FSGM, however FSGM properties evolve as the activity changes
s propagate through the network, leading to clear FSGM-like effects at the final layer.
15 Finding FSGM-like behavior in neural data could thus be a result of FSGM effects at
1 that area or non-FSGM effects at an earlier area (here, attention applied according to
s gradients which, especially at earlier layers, are not aligned with tuning).

338 An alternative model of the neural effects of attention—the feature matching (FM)
130 model—suggests that the effect of attention is to amplify the activity of a neuron when-
s ever the stimulus in its receptive field matches the attended stimulus. In Figure 6D,
s we calculate the fraction of feature maps at a given layer that show feature match-
s2 ing behavior (defined as having activity ratios greater than one when the stimulus
w3 orientation matches the attended orientation for both preferred and anti-preferred ori-
ue entations). As early as one layer post-attention, some feature maps start showing
us feature matching behavior. The fact that the attention literature contains conflicting
us  findings regarding the feature similarity gain model versus the feature matching model
a7 [61, 72] may result from this finding that FSGM effects can turn into FM effects as
us they propagate through the network. In particular, this mechanism can explain the
19 observations that feature matching behavior is observed more in FEF than V4 [96] and
30 that match information is more easily read out from perirhinal cortex than IT [63].
351 Finally, we investigated the extent to which measures of attention’s neural effects
32 correlate with changes in performance (see Methods 4.8). For this, we used a measure
3 of FSGM-like activity that could be calculated on an image-by-image basis. We also
34 created a separate measure, inspired by our gradient approach, that considers activity
55 in light of its downstream effects. Specifically, we measure the extent to which activity
36 when attention is applied becomes more like activity when images (in the absence of
37 attention) are classified as containing the given orientation (”Vector Angle” method,
13 see Figure 7TA and B). For the purposes of this analysis, we consider images that,
10 without attention, give false negative responses and measure performance as the rate
0 at which these are converted to true positives by attention. For both measures and
1 whether attention is applied according to tuning or gradients, activity changes are more
32 correlated with performance in later layers (Figure 7C). When attention is applied
3 with gradients, the gradient-inspired measure is better correlated with performance
s changes than the feature similarity gain model. When recording activity from early
s layers, this measure also performs better even when attention is applied according to
w6 tuning curves. As this new measure is experimentally testable, it would be valuable
7 to see how well it predicts performance on real neural data.

s 3. Discussion

369 In this work, we utilized a deep convolutional neural network (CNN) as a model of
s the visual system to probe the relationship between neural activity and performance.
sn Specifically, we provide a formal mathematical definition of the feature similarity gain
s model (FSGM) of attention, the basic tenets of which have been described in several
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Figure 7: How Activity Changes Correlate with Performance Changes A.) A new measure of activity changes
inspired by gradient values. The gray vector represents the average pattern of neural activity in response to images
the classifier indicates as containing the given orientation (i.e., positively-classified in the absence of attention). The
blue vector (activity without attention) and red vector (activity vector when attention is applied) are then made
using images that contain the orientation but are not initially classified as containing it. Assuming that attention
makes activity look more like activity during positive classification, this measure compares the angle between the
positively-classified and with-attention vectors to the angle between the positively-classified and without-attention
vectors. We use cos(f) as the measure, but results are similar using §. B.) Using the same color scheme as Figure 6,
this plot shows how attention applied at different layers causes activity changes throughout the network, as measured
by the vector method introduced in (A). Specifically, the cosine of the angle between the positively-classified and
without-attention vectors is subtracted from the cosine of the angle between the positively-classified and with-
attention vectors. Solid lines indicate median value of this difference (across images) when attention is applied with
tuning curves and dashed line when applied with gradients. C.) The correlation coefficient between the change in
true positive rate with attention and activity changes as measured by: difference in cosines of angles (solid line)
or feature similarity gain model-like behavior (dashed line, see Methods 4.8 for how this is calculated). Activity
and performance changes are collected when attention is applied at different layers and various strengths according
to tuning curves (left) or gradient values (right). Correlation coefficients calculated for activity changes from both
application methods combined can be seen in Supplementary Figure 12
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sr3  experimental studies. This formalization allows us to investigate the FSGM’s ability
s to enhance a CNN’s performance on challenging visual tasks. We show that neural
a5 activity changes matching the type and magnitude of those observed experimentally
s can indeed lead to performance changes of the kind and magnitude observed experi-
s mentally. Furthermore, these results hold for a variety of tasks. We also use the full
srs  observability of the model to investigate the relationship between tuning and function.
379 A finding from our model is that the layer at which attention is applied can have
30 a large impact on performance: attention (particularly applied according to tuning)
s at early layers does little to enhance performance while attention at later layers such
32 as 9-13 is most effective. According to [25], these layers correspond most to areas V4
;3 and LO. Such areas are known and studied for reliably showing attentional effects,
;s whereas earlier areas such as V1 are generally not [47]. In a study involving detection
s of objects in natural scenes, the strength of category-specific preparatory activity in
;6 Object selective cortex was correlated with performance, whereas such preparatory
w7 activity in V1 was anti-correlated with performance [65]. This is in line with our
s finding that feature-based attention effects at earlier areas can counter the beneficial
10 effects of that attention at later areas (Supplementary Figure 11).

300 While CNNs have representations that are similar to the ventral stream, they lack
s many biological details including recurrent connections, dynamics, cell types, and noisy
32 responses. Preliminary work has shown that these elements can be incorporated into
s3 & CNN structure, and attention can enhance performance in this more biologically-
s realistic architecture [45]. Furthermore, while the current work does not include neural
s noise independent of the stimulus, the fact that a given image is presented in many
ws contexts (different merged images or different array images) can be thought of as a
507 form of highly structured noise that does produce variable responses to the same image.
308 Another biological detail that this model lacks is ”skip connections,” where one
200 layer feeds into both the layer directly after it and deeper layers after that [30, 32]
w0 as in connections from V2 to V4 or V4 to parietal areas [87]. Our results regarding
w1 propagation of changes through the network suggest that synaptic distance from the
w2 classifier is a relevant feature—one that is less straight forward to determine in a
w03 network with skip connections. It may be that thinking about visual areas in terms of
as their synaptic distance from decision-making areas such as prefrontal cortex [31] can
w5 be more useful for the study of attention than thinking in terms of their distance from
w6 the retina. Finally, a major challenge for understanding the biological implementation
w7 of selective attention is determining how such a precise attentional signal is carried by
ws feedback connections. The machine learning literature on attention and learning may
w0 inspire useful hypotheses on underlying brain mechanisms [91, 43].

410 While CNNs lack certain biological details, a benefit of using them as a model is
an the ability to backpropagate error signals and understand causal relationships. Here
a2 we use this to calculate gradient values that estimate how attention should modulate
a3 activity, and compare these to the tuning values that the FSGM uses. The facts that
ae  attention performs better in middle layers when guided by gradients than by tuning
a5 values, while the two have correlated values and behave similarly at late layers, raise
a6 an obvious question: are neurons really targeted according to their tuning, or does the
sz brain use something like gradient values? In [12] the correlation coefficient between an
ss  index of tuning and an index of attentional modulation was .52 for a population of V4
a0 neurons, suggesting factors other than selectivity influence attention. Furthermore,
20 many attention studies, including that one, use only preferred and anti-preferred stim-
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a1 uli and therefore don’t include a thorough investigation of the relationship between
«2 tuning and attentional modulation. [51] uses multiple stimuli to provide support for
23 the FSGM, however the interpretation is limited by the fact that they only report
2¢ population averages. [72] investigated the relationship between tuning strength and
w5 the strength of attentional modulation on a cell-by-cell basis. While they did find a
w6 correlation (particularly for binocular disparity tuning), it was relatively weak, which
w27 leaves room for the possibility that tuning is not the primary factor that determines
w28 attentional modulation.

429 There is a simple experiment that would distinguish whether factors beyond tuning,
a0 such as gradients, play a role in guiding attention. It requires using two tasks with
a1 very different objectives, which should produce different gradients, but with the same
s attentional cue. An example is given by comparing Figure 5C to Supplementary Figure
a3 10A: various gratings of various colors are simultaneously shown, and the task is either
s to report whether a vertical (or other orientation) grating is present, or to report
is the color of the vertical grating, with attention being cued in both cases for vertical
a6 orientation. Gradient-based attention will produce different neural modulations for
a7 the two tasks, while the FSGM predicts identical modulations.

438 A related finding from comparing gradient values with tuning values is that tuning
a0 does not always predict how effectively one unit in the network will impact downstream
mo units or the classifier. In particular, applying attention according to gradient values
a1 leads to changes that are hard to interpret when looking through the lens of tuning,
w2 especially at earlier layers (Figure 6). However these changes eventually lead to large
w3 and impactful changes at later layers. Because experimenters can easily control the
ws image, defining a cell’s function in terms of how it responds to stimuli makes practical
ws sense. However, studies looking at the relationship between tuning and choice proba-
us  bilities also suggest that a neuron’s preferred stimulus is not always an indication of
a7 its causal role in classification [93, 67]. Studies that activate specific neurons in one
us area and measure changes in another area or in behavioral output will likely be of
uo  significant value for determining function. Thus far, coarse stimulation protocols have
o found a relationship between the tuning of neural populations and their impact on
s1 perception [56, 18, 75]. Ultimately though, targeted stimulation protocols and a more
ss2  fine-grained understanding of inter-area connections will be needed.

i3 4. Methods
wa 4.1. Network Model

455 This work uses a deep convolutional neural network (CNN) as a model of the
ss6  ventral visual stream. Convolutional neural networks are feedforward artificial neural
»s7 networks that consist of a few basic operations repeated in sequence, key among them
s being the convolution. The specific CNN architecture used in the study comes from
0 [79] (VGG-16D) and is shown in Figure 1A (a previous variant of this work used
w0 a smaller network [44]). For this study, all the layers of the CNN except the final
w1 classifier layer were pre-trained using backpropagation on the ImageNet classification
w2 task, which involves doing 1000-way object categorization (weights provided by [23]).
w3 The training of the top layer is described in subsequent sections. Here we describe the
s basic workings of the CNN model we use, with details available in [79)].

465 The activity values of the units in each convolutional layer are the result of applying
w6 a 2-D spatial convolution to the layer below, followed by positive rectification (rectified
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Figure 8: Supplementary Figure Associated with Figure 3. A.) Schematics of how attention can
modulate the activity function. Feature-based attention modulates feature maps according to their
tuning values but this modulation can scale the activity multiplicatively or additively, and can either
only enhance feature maps that prefer the attended category (positive-only) or also decrease the
activity of feature maps that do not prefer it (bidirectional). See Methods 4.5.4 for details of these
implementations. The main body of this paper only uses multiplicative bi-directional. B.) Comparison
of binary classification performance when attention is applied in each of the four ways described in
(A). Considering the combination of attention applied to a given category at a given layer/layers
as an instance (20 categories * 14 layer options = 280 instances), histograms (left axis) show how
often the given option is the best performing, for merged (top) and array (bottom) images. Average
increase in binary classification performance for each option also shown (right axis, averaged across
all instances, errorbars + S.E.M.).
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Figure 9: Supplementary Figure Associated with Figure 4. A.) Effect of strength increase in true
and false positive rate space when tuning values are negated. Negated tuning values have the same
overall level of positive and negative modulation but in the opposite direction of tuning for a given
category. Plot same as in Figure 4A. Layer attention applied at indicated in gray. Attention applied
in this way decreases true positives, and to a lesser extent false positives (the initial false positive rate
when no attention is applied is very low). B. Mean best performing strength (5 value, using regular
non-negated attention) across categories as a function of the layer attention is applied at, according
to merged images task. Errorbars + S.E.M.
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Figure 10: Supplementary Figure Associated with Figure 5. A.) ” Cross-featural” attention task (left).
Here, the final layer of the network is replaced with a color classifier and the task is to classify the
color of the attended orientation in a two-orientation stimulus. Gradient values calculated for this
task are correlated with orientation tuning values, and the mean correlation is plotted per layer (right,
as in Figure 5C) B.) Effect of strength increase in true and false positive rate space when attention is
applied according to quadrant, orientation, or both in the orientation detection task. Rates averaged
over orientations/locations. Increasing dot size corresponds to .2 increase in 8 each. No-attention
rates are subtracted and the black dotted line indicates equal increase in true and false positives.
Layer attention applied at indicated in gray.
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Figure 11: Supplementary Figure Associated with Figure 6. Feature attention at one layer often
suppresses activity of the attended features at later layers. Activity ratios are shown for when
attention is applied at various layers individually and activity is recorded from later layers. In all
cases, the category attended was the same as the one present in the input image (standard ImageNet
images used to ensure that these results are not influenced by the presence of other category features
in the input). Histograms are of ratios of feature map activity when attention is applied to the
category divided by activity when no attention is applied, split according to whether the feature map
prefers (red) or does not prefer (black) the attended category. In many cases, feature maps that
prefer the attended category have activity ratios less than one, indicating that attention at a lower
layer decreases the activity of feature maps that prefer the attended category. The misalignment
between lower and later layers is starker the larger the distance between the attended and recorded
layers. For example, when looking at layer 12, attention applied at layer 2 appears to increase and
decrease feature map activity equally, without respect to category preference. This demonstrates the
ability of attention at a lower layer to change activity in ways opposite of the effects of attention at
the recorded layer.
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Figure 12: Supplementary Figure Associated with Figure 7. The increase in true positive rate with
attention is correlated with activity changes as measured by: difference in cosines of angles (solid
line) or feature similarity gain model-like behavior. Activity and performance changes are collected
when attention is applied (at different layers and various strengths and according to tuning curves
or gradient values (that is, all the data generated by these means are combined, and correlation
coeflicients are calculated; whereas in Figure 7C correlation coefficients were calculated separately for
instances when attention was applied according to tuning or according to gradients).
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a7 linear 'ReLu’ nonlinearity):
wiy = (W% X705 (1)

ws where * indicates convolution, and [z], = x if z > 0, otherwise z = 0. W is the
w0 k'™ convolutional filter at the {** layer. The application of each filter results in a 2-D
s feature map (the number of filters used varies across layers and is given in parenthesis
o in Figure 1A). 2! is the activity of the unit at the i, spatial location in the kth
s feature map at the [** layer. X'~! is thus the activity of all units at the layer below
w3 the [ layer. The input to the network is a 224 by 224 pixel RGB image, and thus the
s first convolution is applied to these pixel values. Convolutional filters are 3x3. For the
a5 purposes of this study the convolutional layers are most relevant, and will be referred
w6 to according to their numbering in Figure 1A (numbers in parentheses indicate number
ar  of feature maps per layer).

a78 Max pooling layers reduce the size of the feature maps by taking the maximum
a0 activity value of units in a given feature map in non-overlapping 2x2 windows. Through
a0 this, the size of the feature maps decreases after each max pooling (layers 1 and 2: 224
w1 X 224; 3 and 4: 112 x 112; 5, 6, and 7: 56 x 56. 8, 9, and 10: 28 x 28; 11, 12, and 13:
w2 14 x 14)

483 The final two layers before the classifier are each fully-connected to the layer below
s them, with the number of units per layer given in parenthesis in Figure 1A. Therefore,
w5 connections exist from all units from all feature maps in the last convolutional layer
s (layer 13) to all 4096 units of the next layer, and so on. The top readout layer of
7 the network in [79] contained 1000 units upon which a softmax classifier was used to
ss output a ranked list of category labels for a given image. Looking at the top-5 error
w0 rate (wherein an image is correctly labeled if the true category appears in the top five
w0 categories given by the network), this network achieved 92.7% accuracy. With the
w1 exception of the gradient calculations described below, we did not use this 1000-way
w2 classifier, but rather replaced it with a series of binary classifiers.

w3 4.2. Object Category Attention Tasks

404 The tasks we use to probe the effects of feature-based attention in this network
w5 involve determining if a given object category is present in an image or not, similar to
ws tasks used in [81, 66, 39]. To have the network perform this specific task, we replaced
w7 the final layer in the network with a series of binary classifiers, one for each category
w8 tested (Figure 1B). We tested a total of 20 categories: paintbrush, wall clock, seashore,
w0 paddlewheel, padlock, garden spider, long-horned beetle, cabbage butterfly, toaster,
so0 greenhouse, bakery, stone wall, artichoke, modem, football helmet, stage, mortar,
s consomme, dough, bathtub. Binary classifiers were trained using ImageNet images
s taken from the 2014 validation set (and were therefore not used in the training of
s3 the original model). A total of 35 unique true positive images were used for training
sos for each category, and each training batch was balanced with 35 true negative images
sos taken from the remaining 19 categories. The results shown here come from using
so6 logistic regression as the binary classifier, though trends in performance are similar if
so7 support vector machines are used.

508 Once these binary classifiers are trained, they are then used to classify more chal-
so0 lenging test images. Experimental results suggest that classifiers trained on unat-
s tended and isolated object images are appropriate for reading out attended objects in
s cluttered images [95]. These test images are composed of multiple individual images
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sz (drawn from the 20 categories) and are of two types: "merged” and ”array”. Merged
s13 images are generated by transparently overlaying two images, each from a different
s category (specifically, pixel values from each are divided by two and then summed).
sis  Array images are composed of four separate images (all from different categories) that
si6  are scaled down to 112 by 112 pixels and placed on a two by two grid. The images that
si7 comprise these test images also come from the 2014 validation set, but are separate
si8 from those used to train the binary classifiers. See examples of each in Figure 1C. Test
s10 image sets are balanced (50% do contain the given category and 50% do not, 150 total
s0 test images per category). Both true positive and true negative rates are recorded and
s21 overall performance is the average of these rates.

s2 4.3. Object Category Gradient Calculations

523 When neural networks are trained via backpropagation, gradients are calculated
s« that indicate how a given weight in the network impacts the final classification. We
s use this same method to determine how a given unit’s activity impacts the final clas-
s26 sification. Specifically, we input a "merged” image (wherein one of the images belongs
27 to the category of interest) to the network. We then use gradient calculations to deter-
s mine the changes in activity that would move the 1000-way classifier toward classifying
s20 that image as belonging to the category of interest (i.e. rank that category highest).
s30 We average these activity changes over images and over all units in a feature map.
s This gives a single value per feature map:

1 O
k _
e = NC;HW

s2 where H and W are the spatial dimensions of layer [ and . is the total number of
s33  images from the category (here No = 35, and the merged images used were generated
s from the same images used to generate tuning curves, described below). E(n) is
s35 the error of the 1000-way classifier in response to image n, which is defined as the
s difference between the activity vector of the final layer (after the soft-max operation)
s and a one-hot vector, wherein the correct label is the only non-zero entry. Because
s we are interested in activity changes that would decrease the error value, we negate
s3 this term. The gradient value we end up with thus indicates how the feature map’s
sa0  activity would need to change to make the network more likely to classify an image as
sa the desired category. Repeating this procedure for each category, we obtain a set of
se2 gradient values (one for each category, akin to a tuning curve), for each feature map:
ss g%, Note that, as these values result from applying the chain rule through layers of
sae  the network, they can be very small, especially for the earliest layers. For this study,
sss  the sign and relative magnitudes are of more interest than the absolute values.

HW

OE(n)

1=1,7=1

sas 4.4. Oriented Grating Attention Tasks

547 In addition to attending to object categories, we also test attention on simpler
sis  stimuli. In the orientation detection task, the network detects the presence of a given
ss0 orientation in an image. Again, the final layer of the network is replaced by a series
ss0 of binary classifiers, one for each of 9 orientations (0, 20, 40, 60, 80, 100, 120, 140,
ss0 and 160 degrees. Gratings had a frequency of .025 cycles/pixel). The training sets
2 for each were balanced (50% had only the given orientation and 50% had one of 8
ss3 other orientations) and composed of full field (224 by 224 pixel) oriented gratings in
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s« red, blue, green, orange, or purple (to increase the diversity of the training images,
55 they were randomly degraded by setting blocks of pixels ranging uniformly from 0%
56 t0 70% of the image to 0 at random). Test images were each composed of two oriented
ss7 gratings of different orientation and color (same options as training images). Each
sss  Of these gratings were of size 112 by 112 pixels and placed randomly in a quadrant
50 while the remaining two quadrants were black (Figure 5A). Again, the test sets were
sso  balanced and performance was measured as the average of the true positive and true
s negative rates (100 test images per orientation).

562 These same test images were used for a task wherein the network had to classify the
ss  color of the grating that had the attended orientation (cross-featural task paradigms
s« like this are commonly used in attention studies, such as [74]). For this, the final layer
sss  0f the network was replaced with a 5-way softmax color classifier. This color classifier
ses was trained using the same full field oriented gratings used to train the binary classifiers
s (therefore, the network saw each color at all orientation values).

568 For another analysis, a joint feature and spatial attention task was used. This
se0  task is almost identical to the setup of the orientation detection task, except that the
st searched-for orientation would only appear in one of the four quadrants. Therefore,
s performance could be measured when applying feature attention to the searched-for
s2 - orientation, spatial attention to the quadrant in which it could appear, or both.

si3 4.5, How Attention is Applied

574 This study aims to test variations of the feature similarity gain model of attention,
s wherein neural activity is modulated by attention according to how much the neuron
sts  prefers the attended stimulus. To replicate this in our model, we therefore must first
s7 determine the extent to which units in the network prefer different stimuli (”tuning
s values” ). When attention is applied to a given category, for example, units’ activities
s7o - are modulated according to these values.

sso 4.9.1. Tuning Values

581 To determine tuning to the 20 object categories used, we presented the network
s2 with images of each object category (the same images on which the binary classifiers
ss3 were trained) and measured the relative activity levels. Because feature attention is
s a spatially global phenomena [94, 73|, we treat all units in a feature map identically,
sss and calculate tuning by averaging over them.

586 Specifically, for the &' feature map in the I*" layer, we define 7'¥(n) as the activity in
se7 Tesponse to image n, averaged over all units in the feature map (i.e., over the spatial
ses  dimensions). Averaging these values over all images in the training sets (N. = 35
se0 images per category, 20 categories. N=700) gives the mean activity of the feature map

s0 TUF:

| N
= 23 it m) 3)
n=1
s Tuning values are defined for each object category, ¢ as:

ék _ NLL szec ,,,lk(n) _ flk (4)
VE S ) - 72

502 That is, a feature map’s tuning value for a given category is merely the average
so3 activity of that feature map in response to images of that category, with the mean
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sa activity under all image categories subtracted, divided by the standard deviation of
ses the activity across all images. These tuning values determine how the feature map is
ss modulated when attention is applied to the category. Taking these values as a vector
sov over all categories, fj;, gives a tuning curve for the feature map. We define the overall
ss tuning quality of a feature map as its maximum absolute tuning value: max(|f|). To
s00 determine expected tuning quality by chance, we shuffled the responses to individual
00 images across category and feature map at a given layer and calculated tuning quality
o1 for this shuffled data.

602 We also define the category with the highest tuning value as that feature map’s
s0s most preferred, and the category with the lowest (most negative) value as the least or
s anti-preferred.

605 We apply the same procedure to generate tuning curves for orientation by using
s0os the full field gratings used to train the orientation detection classifiers. The orientation
s07 tuning values were used when applying attention in these tasks.

608 When measuring how correlated tuning values are with gradient values, shuffled
s00 comparisons are used. To do this shuffling, correlation coefficients are calculated from
s10  pairing each feature map’s tuning values with a random other feature map’s gradient
e values.

o1z 4.5.2. Gradient Values

613 In addition to applying attention according to tuning, we also attempt to generate
s1a  the "best possible” attentional modulation by utilizing gradient values. These gradient
a5 values are calculated slightly differently from those described above (4.3), because they
616 are meant to represent how feature map activity should change in order to increase
s17 binary classification performance, rather than just increase the chance of classifying
618 an image as a certain object.

619 The error functions used to calculate gradient values for the category and orienta-
20 tion detection tasks were for the binary classifiers associated with each object /orientation.
s21 A balanced set of test images was used. Therefore a feature map’s gradient value for
2 a given object/orientation is the averaged activity change that would increase binary
e23 classification performance for that object/orientation. Note that on images that the
s« network already classifies correctly, gradients are zero. Therefore, the gradient values
s are driven by the errors: false negatives (classifying an image as not containing the
e26 category when it does) and false positives (classifying an image as containing the cate-
s gory when it does not). In our detection tasks, the former error is more prevalent than
s the latter, and thus is the dominant impact on the gradient values. Because of this,
20 gradient values calculated this way end up very similar to those described in Methods
0 4.3, as they are driven by a push to positively classify the input as the given category.
631 The same procedure was used to generate gradient values for the color classification
s2 task. Here, gradients were calculated using the 5-way color classifier: for a given
s33 orientation, the color of that orientation in the test image was used as the correct label,
s« and gradients were calculated that would lead to the network correctly classifying the
35 color. Averaging over many images of different colors gives one value per orientation
36 that represents how a feature map’s activity should change in order to make the
sv network better at classifying the color of that orientation.

638 In the orientation detection task, the test images used for gradient calculations (50
s images per orientation) differed from those used to assess performance. For the object
s0 detection task, images used for gradient calculations (45 per category; preliminary
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a1 tests for some categories using 90 images gave similar results) were drawn from the
sz same pool as, but different from, those used to test detection performance. Gradient
sz values were calculated separately for merged and array images.

s 4.0.3. Spatial Attention

645 In the feature similarity gain model of attention, attention is applied according to
s how much a cell prefers the attended feature, and location is considered a feature like
sz any other. In CNNs, each feature map results from applying the same filter at different
sas  spatial locations. Therefore, the 2-D position of a unit in a feature map represents
s0 Mmore or less the spatial location to which that unit responds. Via the max-pooling
0 layers, the size of each feature map shrinks deeper in the network, and each unit
1 responds to a larger area of image space, but the "retinotopy” is still preserved. Thus,
2 when we apply spatial attention to a given area of the image, we enhance the activity
3 of units in that area of the feature maps and decrease the activity of units in other
s areas. In this study, spatial attention is applied to a given quadrant of the image.

5 4.0.4. Implementation Options

656 The values discussed above determine how strongly different feature maps or units
7 should be modulated under different attentional conditions. We will now lay out the
s different implementation options for that modulation. In the main body of this work,
0 the multiplicative bidirectional form of attention is used. Other implementations are
o only used for the Supplementary Results.

661 First, the modulation can be multiplicative or additive. That is, when attending
sz to category c, the slope of the rectified linear units can be multiplied by a weighted
63 function of the tuning value for category c:

zif = (L+ BIMIID]+ (5)

664 With I;,g representing input to the unit coming from layer [ — 1. Alternatively, a
s weighted version of the tuning value can be added before the rectified linear unit:

wiy = I + mBr+ (6)

s Strength of attention is varied via the weighting parameter, 3. For the additive effect,
s7 manipulations are multiplied by g, the average activity level across all units of layer
s [ in response to all images (for each of the 13 layers respectively: 20, 100, 150, 150,
ee0 240, 240, 150, 150, 80, 20, 20, 10, 1). When gradient values are used in place of tuning
e0  values, we normalize them by the maximum value at a layer, to be the same order of
en magnitude as the tuning values: g'/maz(|g'|).

672 Recall that for feature-based attention all units in a feature map are modulated
ez the same way, as feature attention has been found to be spatially global. In the case
o2 Of spatial attention, however, tuning values are not used and a unit’s modulation is
es  dependent on its location in the feature map. Specifically, the tuning value term is set
ers  to +1 if the ¢, 7 position of the unit is in the attended quadrant and to -1 otherwise.
o7 For feature attention tasks, 5 ranged from 0 to a maximum of 11.85 (object attention)
e and 0 to 4.8 (orientation attention). For spatial attention tasks, it ranged from 0 to 1.
679 Next, we chose whether attention only enhances units that prefer the attended
0 feature, or also decreases activity of those that don’t prefer it. For the latter, the
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s1 tuning values are used as-is. For the former, the tuning values are positively-rectified:
682 [flk]+

683 Combining these two factors, there are four implementation options: additive
e positive-only, multiplicative positive-only, additive bidirectional, and multiplicative
ess bidirectional.

686 The final option is the layer in the network at which attention is applied. We try
s attention at all convolutional layers individually and simultaneously (when applying
s simultaneously the strength range tested is a tenth of that when applying to a single
689 layer).

00 4.0. Signal Detection Calculations

601 For the joint spatial-feature attention task, we calculated criteria (¢, ”threshold”)
s> and sensitivity (d') using true (TP) and false (FP) positive rates as follows [48] :

c=—5(® (TP)+d (FP)) (7)

03 where ®~! is the inverse cumulative normal distribution function. c is a measure of
s the distance from a neutral threshold situated between the mean of the true negative
s0s and true positive distributions. Thus, a positive ¢ indicates a stricter threshold (fewer
s0s inputs classified as positive) and a negative c indicates a more lenient threshold (more
sov inputs classified as positive). The sensitivity was calculated as:

d =& YTP)—d ' (FP) (8)

os This measures the distance between the means of the distributions for true negative
0o and two positives. Thus, a larger d’ indicates better sensitivity.

700 To prevent the individual terms in these expressions from going to +oo, false
701 positive rates of < .01 were set to .01 and true positive rates of > .99 were set to .99.

02 4.7. "Recording” Procedures

703 We examined the effects that applying attention at certain layers in the network
e (specifically 2, 6, 8, 10, and 12) has on activity of units at other layers. Attention
705  was applied with § = .5 unless otherwise stated. The recording setup is designed

26 to mimic the analysis of [51]. Here, the images presented to the network are full-
707 field oriented gratings of all orientation-color combinations. Feature map activity is
s measured as the spatially averaged activity of all units in a feature map in response to
700 an image. Activity in response to a given orientation is further averaged over all colors.
70 We calculate the ratio of activity when attention is applied to a given orientation
m1 (and the orientation is present in the image) over activity in response to the same
712 image when no attention is applied. These ratios are then organized according to
713 orientation preference: the most preferred is at location 0, then the average of next
74 two most preferred at location 1, and so on with the average of the two least preferred
75 orientations at location 4 (the reason for averaging of pairs is to match [51] as closely
76 as possible). Fitting a line to these points gives a slope and intercept for each feature
7z map (lines are fit using the least squares method). FSGM predicts a negative slope
7e and an intercept greater than one.

710 To test for signs of feature matching behavior, each feature map’s preferred (most
720 Ppositive tuning value) and anti-preferred (most negative tuning value) orientations
721 are determined. Activity is recorded when attention is applied to the preferred or
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722 anti-preferred orientation and activity ratios are calculated. According to the FSGM,
723 activity when the preferred orientation is attended should be greater than when the
724 anti-preferred is attended, regardless of whether the image is of the preferred or anti-
s preferred orientation. According to the feature matching (FM) model, however, ac-
726 tivity when attending the presented orientation should be greater than activity when
727 attending an absent orientation, regardless of whether the orientation is preferred or
726 not. Therefore, we say that a feature map is displaying feature matching behavior
70 if (1) activity is greater when attending the preferred orientation when the preferred
720 is present versus when the anti-preferred is present, and (2) activity is greater when
721 attending the anti-preferred orientation when the anti-preferred is present versus when
72 the preferred is present. The second criteria distinguishes feature matching behavior
73 from FSGM.

14 4.8. Correlating Activity Changes with Performance

735 We use two different measures of attention-induced activity changes in order to
136 probe the relationship between activity and classification performance. In both cases,
7z the network is performing the orientation detection task described in Figure 5A.

738 The first measure is meant to capture feature similarity gain model-like behavior on
720 an image-by-image basis (the measure illustrated in 6B is calculated over a population
720 of images of different stimuli). Images that contain a given orientation are shown
1 to the network and the spatially-averaged activity of feature maps is recorded when
2 attention is applied to that orientation and when it is not. The ratio of these activities
73 is then plotted against each feature map’s tuning value for the orientation. According
7a to the FSGM, this ratio should be above 1 for feature maps with positive tuning values
75 and less than one for those with negative tuning values. Therefore, we use the slope of
s the line fitted to these ratios plotted as a function of tuning values as an indication of
747 the extent to which activity is FSGM-like (with positive slopes more FSGM-like). The
s median slope over a set of images of a given orientation is paired with the change in
79 performance on those images with attention. This gives one pair for each combination
750 of orientation, strength, and layer at which attention was applied (activity changes are
71 only recorded if attention was applied at or before the recorded layer). The correlation
72 coefficient between these value pairs is plotted as the dashed line in Figure 7C.

753 The second measure aims to characterize activity in terms of the outcome of the
75 classification, rather than the contents of the input (see Figure 7A for a visualization).
s First, for a particular orientation, images that both do and do not contain that orien-
56 tation are shown to the network. Activity (spatially-averaged over each feature map)
757 in response to images classified as containing the orientation (i.e., both true and false
758 positives) is averaged in order to construct a vector in activity space that represents
750 positive classification for a given layer. To reduce complications of working with vec-
760 tors in high dimensions, principal components are found that capture at least 90% of
71 the variance of the activity in response to all images, and all computations are done in
72 this lower dimensional space. The next step is to determine if attention moves activity
763 in a given layer closer to this direction of positive classification. For this, images that
764 contain the given orientation (but were not positively-classified without attention) are
s used. For each image, the cosine of the angle between the positive-classification vector
76 and the activity in response to the image is calculated. The median of these angles
77 over a set of images is calculated separately for when attention is applied and when it
s is not. The difference between these medians (with-attention minus without-attention)
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70 1S paired with the change in performance that comes with attention on those images.
770 'Then the same correlation calculation is done with these pairs as described above.

m For activity recorded from the fully-connected layers (14 and 15), each of the indi-
722 vidual units is used in place of spatially-averaged feature map activity.

s 4.9. Fxperimental Data

774 Model results were compared to previously published data coming from several
75 studies. In [50], a category detection task was performed using stereogram stimuli
76 (on object present trials, the object image was presented to one eye and a noise mask
77 to another). The presentation of the visual stimuli was preceded by a verbal cue
7s that indicated the object category that would later be queried (cued trials) or by
79 meaningless noise (uncued trials). After visual stimulus presentation, subjects were
70 asked if an object was present and, if so, if the object was from the cued category
71 (categories were randomized for uncued trials). In Experiment 1 (’Cat-Drawings’ in
72 Figure 4B), the object images were line drawings (one per category) and the stimuli
73 were presented for 1.5 sec. In Experiment 2 ("Cat-Images’), the object images were
78 grayscale photographs (multiple per category) and presented for 6 sec (of note: this
75  presumably allows for several rounds of feedback processing, in contrast to our purely
s feedforward model). True positives were counted as trials wherein a given object
77 category was present and the subject correctly indicated its presence when queried.
s False positives were trials wherein no category was present and subjects indicated that
780 the queried category was present.

790 In [49], a similar detection task was used. Here, subjects detected the presence of
791 an uppercase letter that (on target present trials) was presented rapidly and followed
792 by a mask. Prior to the visual stimulus, a visual ('Letter-Vis’) or audio ('Letter-Aud’)
793 cue indicated a target letter. After the visual stimulus, the subjects were required to
7« indicate whether any letter was present. True positives were trials in which a letter was
795 present and the subject indicated it (only uncued trials or validly cued trials—where
6 the cued letter was the letter shown—were considered here). False positives were trials
797 where no letter was present and the subject indicated that one was.

798 The task in [39] was also an object category detection task (’Objects’). Here, an
70 array of several images was flashed on the screen with one image marked as the target.
soo  All images were color photographs of objects in natural scenes. In certain blocks,
s the subjects knew in advance which category they would later be queried about (cued
s> trials). On other trials, the queried category was only revealed after the visual stimulus
so3  (uncued). True positives were trials in which the subject indicated the presence of the
sos queried category when it did exist in the target image. False positives were trials in
sos which the subject indicated the presence of the cued category when it was not in the
sos  target image. Data from trials using basic category levels with masks were used for
sor  this study.

808 Finally, we include one study using macaques (’Ori-Change’) wherein both neural
s0 and performance changes were measured [53]. In this task, subjects had to report a
s change in orientation that could occur in one of two stimuli. On cued trials, the change
su occurred in the cued stimulus in 80% of trials and the uncued stimulus in 20% of tri-
sz als. On neutrally-cued trials, subjects were not given prior information about where
sz the change was likely to occur (50% at each stimulus). Therefore performance could
s be compared under conditions of low (uncued stimuli), medium (neutrally cued stim-
a5 uli), and high (cued stimuli) attention strength. Correct detection of an orientation
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a5 change in a given stimulus (indicated by a saccade) is considered a true positive and a
s17  saccade to the stimulus prior to any orientation change is considered a false positive.
s1s True negatives are defined as correct detection of a change in the uncued stimulus
g0 (as this means the subject correctly did not perceive a change in the stimulus under
220 consideration) and false negatives correspond to a lack of response to an orientation
s21 change. While this task includes a spatial attention component, it is still useful as a
s22  test of feature-based attention effects. Previous work has demonstrated that, during a
23 change detection task, feature-based attention is deployed to the pre-change features
s of a stimulus [15, 54]. Therefore, because the pre-change stimuli are of differing orien-
g5 tations, the cueing paradigm used here controls the strength of attention to orientation
s6 as well.

827 In cases where the true and false positive rates were not published, they were ob-
28 tained via personal communications with the authors. Not all changes in performance
20 were statistically significant, but we plot them to show general trends.

830 We calculate the activity changes required in the model to achieve the behavioral
ssn  changes observed experimentally by using the data plotted in Figure 4B. We determine
sz the average [ value for the neutral and cued conditions by finding the § value of the
g33  point on the model line nearest to the given data point. Specifically, we average the
g3« values found for the four datasets whose experiments are most similar to our merged
s3s image task (Cat-Drawings, Cat-Images, Letter-Aud, and Letter-Vis).
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