

Exploring the Genetics of Lesion and Nodal Resistance in Pea (*Pisum sativum* L.) to *Sclerotinia sclerotiorum* Using Genome-wide Association Studies and RNA-Seq

Hao-Xun Chang¹, Hyunkyu Sang¹, Jie Wang², Kevin E. McPhee³,
Xiaofeng Zhuang⁴, Lyndon D. Porter⁵, and Martin I. Chilvers^{1*}

¹ Department of Plant, Soil and Microbial Sciences. Michigan State University.

East Lansing, MI 48824.

²Department of Plant Biology. Michigan State University. East Lansing, MI 48824.

³ Department of Plant Sciences and Plant Pathology, Montana State University.

Bozeman, MT 59717.

⁴ Department of Horticulture and Crop Science. The Ohio State University. Wooster, OH 43210

⁵ USDA-ARS, Prosser, WA 99350.

* Corresponding author: Martin I. Chilvers, chilvers@msu.edu

Key words: Genome-wide association study (GWAS), Glutathione S-transferase (GST), Nodal resistance, Pea (*Pisum sativum* L.), RNA-Seq, White mold (*Sclerotinia sclerotiorum*)

Abstract

The disease white mold caused by the fungus *Sclerotinia sclerotiorum* is a significant threat to pea production and improved resistance to this disease is needed. Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (*Pisum sativum* L.)-*S. sclerotiorum* pathosystem. Other than nodal resistance, different pea lines display different levels of stem lesion size restriction, referred to as lesion resistance. It is unclear whether the genetics of lesion resistance and nodal resistance are identical or different. This study applied genome-wide association studies (GWAS) and RNA-Seq to understand the genetic makeup of these two types of resistance. The time series RNA-Seq experiment consisted

32 of two pea lines (the susceptible 'Lifter' and the partially resistant PI 240515), two treatments
33 (mock samples and *S. sclerotiorum* inoculated samples), and three time points (12, 24, and 48
34 hours post-inoculation). Integrated results from GWAS and RNA-Seq analyses identified
35 different redox-related transcripts for lesion and nodal resistances. A transcript encoding a
36 glutathione S-transferase was the only shared resistance source for both phenotypes. There were
37 more leucine rich-repeat containing transcripts found for lesion resistance, while different
38 candidate resistance transcripts such as a VQ motif-containing protein and a myo-inositol
39 oxygenase were found for nodal resistance. This study demonstrated the robustness of combining
40 GWAS and RNA-Seq for identifying white mold resistance in pea, and results suggest different
41 genetics underlying lesion and nodal resistance.

42

43 1 | INTRODUCTION

44

45 *Sclerotinia sclerotiorum* (Lib.) de Bary the causal agent of white mold disease, is one of the most
46 destructive plant pathogens worldwide. *S. sclerotiorum* is capable of infecting more than 400
47 host plants and causes millions of dollars of crop yield losses each year (Bolton, Thomma, &
48 Nelson, 2006). Several studies have reported different secondary metabolites, effectors, and
49 pathogenicity factors of *S. sclerotiorum* that are involved in establishing the infection (Bolton,
50 Thomma, & Nelson, 2006; Mbengue et al., 2016; Wei & Clough, 2016). One of the well-known
51 virulence strategies is the production of oxalic acid, which creates a low pH and acidic
52 environment for infection (Xu et al., 2015). Oxalic acid suppresses reactive oxygen species
53 (ROS) produced by plants at the beginning of infection and generates a reducing status that
54 favors colonization (Williams et al., 2011). Fine-tuned redox homeostasis from the initial
55 reducing status to the later oxidative status in plant tissues is important for *S. sclerotiorum* to
56 switch from the initial hemibiotrophic lifestyle to the later necrotrophic lifestyle (Kabbage,
57 Yarden, & Dickman, 2015). Studies searching for plant resistance to *S. sclerotiorum* have found
58 quantitative interactions (McCaghey et al., 2017), and potential resistance genes included those
59 with functions to maintain ROS and redox stresses during *S. sclerotiorum* infection (Girard et al.,
60 2017; Seifbarghi et al., 2017; Zhou, Sun, & Xing, 2013).

61

62 Pea (*Pisum sativum* L.) is an important legume crop in the United States, and white mold
63 continuously causes substantial damage and yield reduction (Tayeh et al., 2015). Similar to
64 soybean, *S. sclerotiorum* infection primarily begins when ascospores of *S. sclerotiorum* colonize
65 blooms and invade through petioles into the stem. Severely infected plants will wilt and lodge.
66 Resistance to white mold in pea has been observed via two different phenotypes, the first is
67 lesion size where the length of stem lesion is measured after inoculation. The second phenotype
68 is referred to as nodal resistance, and appears to be a unique mode of resistance which has been
69 observed in some varieties of pea and soybean (Calla et al., 2009; Porter, Hoheisel, & Coffman,
70 2009; Porter, 2011). Nodal resistance can be defined as the inhibition of lesion expansion at a
71 node limiting pathogen colonization of plant stem tissue. Restriction of lesion expansion at the
72 nodes has also been observed for stem-infecting fungi such as *Diaporthe* and *Macrophomina*
73 species on soybean and cowpea (Hobbs, Schmitthenner, & Ellett, 1981; Muchero et al., 2011).
74 However, nodal resistance has been rarely documented and other than knowing lignin content is
75 negatively correlated with nodal resistance in soybean (Peltier et al., 2009), our understanding is
76 limited.

77

78 Transcriptomics and differential expression (DE) analysis using RNA-Seq have become a
79 standard approach to identifying resistance genes for white mold, and many studies have applied
80 this approach to oilseed rape (*Brassica napus*) (Girard et al., 2017; Seifbarghi et al., 2017;
81 Zhuang et al., 2012). While most of these studies focused on the expression comparisons
82 between a resistant and a susceptible variety, the genetic diversity of white mold resistance in *B.*
83 *napus* might be underestimated using only this approach. Genome-wide association study
84 (GWAS) is a robust approach to map white mold resistance and to capture the resistance
85 diversity in a germplasm collection (Moellers et al., 2017; Wei et al. 2016; Wei et al. 2017). The
86 GWAS approach has been demonstrated in soybean (*Glycine max* Merr. L.) resistance to *S.*
87 *sclerotiorum* where numerous SNPs associated with this quantitative resistance were discovered
88 (Bastien, Sonah, & Belzile, 2014; Moellers et al., 2017; Wu et al., 2016a). However, mapping
89 results may discover single nucleotide polymorphisms (SNPs) that locate in intergenic genomic
90 regions, and the interpretation of a confidence interval relies on the size of linkage
91 disequilibrium (Bush & Moore, 2012). RNA-Seq and GWAS both have their advantages, but
92 combined they provide a powerful tool to discover not only active genes that express in response

93 to treatments, but also genetic diversity and SNPs associated with the treatment. This combined
94 strategy has been applied to understand white mold resistance and yields in *B. napus* (Lu et al.,
95 2017; Wei et al., 2016) but not in pea. Because genes that can be found by both GWAS and
96 RNA-Seq will have higher potential in contributing to white mold resistance, this study aimed to
97 understand and compare the genetics of lesion and nodal resistance by applying both GWAS and
98 RNA-Seq approaches in the pea-*Sclerotinia sclerotiorum* pathosystem.

99

100 **2 | MATERIALS AND METHODS**

101

102 **2.1 | GWAS: data source and analysis**

103 Data used for GWAS was published in Porter, Hoheisel, & Coffman (2009). Briefly, there were
104 282 pea lines with a mean lesion resistance rating. The white mold fungus (*Sclerotinia*
105 *sclerotiorum*) Scl02-05 isolated from pea in Quincy, Washington, USA in 2003 was used for
106 inoculations (Porter, Hoheisel, & Coffman, 2009). A mean lesion resistance rating was obtained
107 after 72 hpi in a humid greenhouse and day/night temperature ranges around 28°C /15°C. There
108 were 266 pea accessions with nodal resistance ratings. Nodal resistance was measured using an
109 ordinal scale from 0 to 5 after two weeks post inoculation, where 0 = dead plant; 1 = lesion
110 expanded down the stem from the fourth inoculated node to the first node; 2 = lesion expanded
111 from the fourth to the second node; 3 = lesion expanded from the fourth node to the third node; 4
112 = lesion did not expand beyond the initial inoculation point at the fourth node (Porter, Hoheisel,
113 & Coffman, 2009). There were four to eight replications to represent each accession. The USDA
114 Pea Single Plant Plus Collection with single nucleotide polymorphism (SNP) data included in
115 this study (Holdsworth et al., 2017). Association test was conducted in PLINK version 1.9
116 (Purcell et al., 2007). Population stratification was controlled using a pairwise identity-by-state
117 (IBS) clustering with a maximum clustering node of 2 and a *p* value cutoff of 0.05 for the
118 pairwise population concordance test. The IBS clustering matrix was included in a basic
119 association test, and a minor allele frequency (MAF) of 0.05 was applied. The empirical *q* value
120 at 0.01 from an adaptive permutation test with default parameters was used to determine
121 association significance. The GBS raw reads containing significant SNPs were searched against
122 the Trinity *de novo* transcriptome (assembled in the following sections) using BLASTN to
123 acquire annotations at an E value cutoff of 10⁻⁵.

124

125 **2.2 | Plant inoculations for RNA-Seq**

126 A white mold-susceptible pea (*Pisum sativum* L.) cultivar 'Lifter' (PI 628276) and a white mold-
127 partially resistant pea accession, PI 240515, were used in this study. The same *Sclerotinia*
128 *sclerotiorum* isolate (Scl02-05) used to generate the GWAS data was used for RNA-Seq
129 experiments. Seeds from 'Lifter' and PI 240515 were planted at a depth of 1 cm in pasteurized
130 soil in a plastic pot (approximately 170 cm³). The soil consisted of a mixture of 85 L of Special
131 Blend Soil Mix (Sun Gro Horticulture, Bellevue, WA), 113 L of propagation-grade coarse perlite
132 (Supreme Perlite Company, Portland, OR), and 900 g of Scotts Osmocote Classic 14-14-14 (The
133 Scotts Company, Marysville, Ohio). Plants were grown in a growth chamber at 23°C/20°C
134 (day/night), with a photoperiod of 14 h and 170 µmol quanta (s⁻¹m⁻²) for two weeks. One day
135 before *Sclerotinia sclerotiorum* inoculations, pea plants were covered with a thick transparent
136 plastic cover, which filtered the amount of light reaching the plants down to 45-55 µmol quanta
137 (s⁻¹m⁻²), and maintained a high humidity (RH %; 86.91 ± 13.45; WatchDog 1000 Series,
138 Spectrum Technologies Inc., Aurora, IL). Pea plants were inoculated at the fourth node leaf axil
139 with a 49 mm³ *S. sclerotiorum* colonized agar plug from the leading edge of a culture grown on
140 potato dextrose agar (PDA; BD Company, Sparks, MD). Mock inoculations were performed
141 with sterile PDA plugs.

142

143 **2.3 | RNA extraction and sequencing**

144 The RNA-Seq experiment had a time series factorial design with two varieties ('Lifter' and PI
145 240515), two treatments (mock and *S. sclerotiorum* inoculation), and three time points at 12, 24
146 and 48 hours post inoculation (hpi). For each condition, two biological replicates of pea samples
147 were collected. In order to acquire RNA samples that provide both expression data for lesion and
148 nodal resistance, tissues within 2 cm of the inoculated fourth node were collected from at least
149 12 plants for each biological replicate. These tissues were immediately frozen in liquid nitrogen.
150 Total RNA was isolated using Trizol® reagent (Invitrogen, CA) according to manufacturer's
151 instructions. DNase digestion (Promega, WI) was performed on the RNA extract to remove
152 potential DNA contamination. RNA samples were further purified using the RNeasy Plant Mini
153 Kit (Qiagen, Valencia, CA) and quality verified using a 2100 Bioanalyzer RNA Nanochip
154 (Agilent, Santa Clara, CA). Samples achieved a RNA integrity number (RIN) value above 7.5

155 and were quantified using the Qubit ® 2.0 Fluorometer (Invitrogen, Carlsbad, CA) and a total of
156 10 µg RNA was used for cDNA library preparations following the Illumina TruSeq RNA
157 Preparation Kit manufacturer's instructions (Illumina, San Diego, CA). A paired-end 2×75 base
158 sequencing was run on the Illumina GA IIx sequencer (Illumina, San Diego, CA) at the Research
159 and Technology Support Facility at Michigan State University.

160

161 **2.4 | *De novo* transcriptome assembly**

162 Illumina raw reads were quality checked using FastQC version 0.11.5 (Andrews, 2010) and
163 quality controlled using FASTX-toolkit version 0.0.14 (Gordon, 2014). Reads with 90 percent
164 length above Phred score 30 were kept for analyses. Trimmomatic version 0.33 was used to
165 remove adapters and to separate paired reads and single reads (Bolger, Lohse & Usadel, 2014),
166 and only paired reads were used for *de novo* assembly. All samples were pooled and aligned to
167 the complete nearly gapless *S. sclerotiorum* genome sequence (Derbyshire et al., 2017) using the
168 sensitive mode of Bowtie2 version 2.2.6 and Tophat2 version 2.1.0 (Kim et al., 2013). Reads
169 unmapped to *S. sclerotiorum* genome were *de novo* assembled by Trinity version 2.4.0 using K-
170 mer size 25, 29, and 32 (Grabherr et al., 2011; Haas et al., 2013).

171

172 **2.5 | Differential expression (DE), heatmap clustering, and gene ontology (GO) analyses**

173 A k-mer index of 31 bp was built for the Trinity *de novo* transcriptome and paired-end reads
174 were pseudo-aligned to the index using Kallisto version 0.43.0 with 1000 bootstrap (Bray et al.,
175 2017). DE analysis was conducted using Sleuth version 3 in default mode using transcripts per
176 million (TPM) normalization (Bray et al., 2017). The default filter setting was applied such that
177 transcripts with more than 5 estimated counts in 47 percent of samples were kept for DE
178 analysis. The principal component analysis (PCA) was used to visualize variation structure
179 among all samples, and the hierarchical clustering using Ward's criterion. D2 method was
180 applied to group transcripts in the heatmap analysis (Murtagh & Legendre, 2014). A time series
181 model with three explanatory variables, including the variety ('Lifter' and PI 240515), the
182 treatment (mock and *S. sclerotiorum* inoculation), and the time (12, 24, and 48 hpi), were
183 included in a full model whereas a reduced model excluded a variable of interest. A model
184 comparison using likelihood ratio test was used to identify transcripts with DE in response to the
185 variable of interest, and a multiple comparison-corrected *q* value at 0.05 was used to determine

186 the significance. *De novo* transcripts were functionally annotated by soybean coding sequences
187 using BLASTN at an E value cutoff of 10^{-5} , and soybean gene models with orthologous *de novo*
188 transcripts of pea were subjected to agriGO v2.0 singular enrichment analysis (SEA) using
189 Fisher's exact test with Yekutieli correction to control false discovery rate (FDR) at 0.05 in
190 multiple-tests (Tian et al. 2017).

191

192 **3 | RESULTS**

193

194 **3.1 | Phenotype data for lesion and nodal resistance**

195 There were 282 and 266 pea germplasm lines screened for lesion and nodal resistance,
196 respectively. While the lesion resistance distribution approximated a normal distribution (Fig.
197 1a), the nodal resistance distribution was highly skewed toward zero with only 12 germplasm
198 lines rated with a score above 3 (Fig. 1b). The lesion resistance and nodal resistance have a
199 significant negative correlation (Pearson's correlation coefficient: -0.19, $p < 0.05$) due to the
200 inverse scales, meaning higher value of lesion resistance and lower value of nodal resistance
201 represented the susceptibility. The mild correlation indicated the possibility of different genetic
202 mechanisms of these two types of resistances (Fig. 1c). The white mold susceptible line 'Lifter'
203 and the white mold partially resistant line PI 240515 were selected for RNA-Seq. PI 240515
204 displays not only a slower disease progress compared to the susceptible 'Lifter' under growth
205 chamber conditions (Fig. 1d), but also a better resistance performance in field trials (McPhee &
206 Muehlbauer. 2002; Zhuang et al., 2013). A time course RNA-Seq experiment was set up in a
207 factorial design, and a total of 12 samples with about 700 million reads were acquired from
208 Illumina sequencing (Table S1).

209

210 **3.2 | GWAS**

211 A total of 35,658 SNPs were included in the association analysis using PLINK (Purcell et al.,
212 2007). There were 206 and 118 SNPs found to be significantly associated with lesion and nodal
213 resistance, respectively (Table S2 and S3, respectively). Without a standard genome for pea, the
214 position and chromosome information for SNPs were deficient and it also made the annotation to
215 these SNPs difficult. In order to understand the annotations of these significant SNPs, the
216 original genotyping-by-sequencing (GBS) raw reads harboring each SNP were retrieved

217 (Holdsworth et al., 2017) and searched against our RNA-Seq *de novo* transcriptome using
218 BLASTN.

219

220 **3.3 | De novo transcriptome assembly**

221 Using a stringent quality control threshold that keeps only raw reads with 90 percent of bases
222 above Phred score of 30 (error rate 0.001%, one error per thousand bases), paired-end reads were
223 mapped to the complete nearly gapless *S. sclerotiorum* genome using Tophat2 (Derbyshire et al.,
224 2017; Kim et al., 2013). The *de novo* transcriptome using k-mer of 29 bp, which contains 96,588
225 transcripts including isoforms, resulted in the highest assembly quality (Table 1) similar to a
226 previous *de novo* transcriptome of pea (Kerr et al., 2017), and the re-mapped rate at 80% was
227 satisfactory based on an empirical threshold of Trinity (Grabherr et al., 2011; Haas et al., 2013).
228 Accordingly, the k-mer 29 *de novo* transcriptome was selected and a total of 60,598 transcripts
229 were extracted from the longest representative isoform per gene model in the k-mer 29 *de novo*
230 transcriptome (Table 1).

231

232 **3.4 | Annotation of candidate resistance genes using GWAS and RNA-Seq**

233 There were 206 significant SNPs associated with lesion resistance, but only 96 SNPs were
234 matched to *de novo* transcripts. Among these 96 *de novo* transcripts, 66 of them could be
235 annotated with an orthologous soybean gene (Table 2, Table S2). In terms of nodal resistance,
236 there were 118 significant associated SNPs, and 61 SNPs could be matched to *de novo*
237 transcripts. Among these 61 *de novo* transcripts, 33 of them could be annotated with an
238 orthologous soybean gene (Table 3, Table S3). In comparing the GWAS for lesion and nodal
239 resistance, only one SNP (TP13557) can be found in both cases, and the *de novo* transcript
240 containing this SNP was annotated as a putative glutathione S-transferase (GST) (similar to
241 soybean gene Glyma.06G117800). The results supported the negative phenotypic correlation and
242 suggested the genetic backgrounds of lesion and nodal resistance were different. Other potential
243 transcripts found in GWAS with resistance functions included redox enzymes, cytochromes,
244 leucine rich-repeat (LRR)-containing proteins, ABC transporters, armadillo (ARM) repeat-
245 containing protein, pentatricopeptide repeat (PPR)-containing proteins, and tetratricopeptide
246 repeat (TPR)-containing proteins (Collier & Moffett, 2009; Sharma & Pandey, 2015).

247

248 **3.5 | PCA of RNA-Seq samples**

249 In order to understand the gene expression difference of the susceptible ‘Lifter’ and the partially
250 resistant PI 240515 especially for those candidate resistance transcripts found in GWAS, the
251 paired-end reads of each sample were pseudo-aligned to the *de novo* transcriptome containing
252 60,598 transcripts using Kallisto. A total of 17,220 genes with at least 5 estimated counts in 47%
253 of samples and these transcripts were kept for PCA. The expressions were normalized using
254 TPM approach and quantified by Sleuth (Bray et al., 2017). *S. sclerotiorum* inoculation appeared
255 to be the strongest influential factor to explain the variations of gene expression and the first
256 principal component explained about 75% of variance (x axis). The treatments separated samples
257 to two different spaces. Mock samples were clustered in one spot regardless of the pea lines and
258 the time points, meaning relatively similar expression patterns (Fig. 2). For *S. sclerotiorum*-
259 inoculated samples, the time points appeared to be the second most influential factor as samples
260 from the same time point grouped close to each other.

261

262 **3.6 | DE, heatmap clustering, and GO analysis.**

263 A total of 17,220 genes were analyzed for DE using a time series model. Transcripts were
264 clustered into four groups based on their expression patterns in the heatmap (Fig. 3). While
265 cluster III contains 12,668 transcripts that are generally down-regulated, cluster IV contains
266 2,902 transcripts that are generally up-regulated in the *S. sclerotiorum* inoculated samples
267 regardless of the pea lines. On the other hand, cluster I and II, which contain 1,506 and 954
268 transcripts, respectively, do not have clear expression pattern differences in *S. sclerotiorum*
269 inoculated samples compared to mock samples. While GO analysis using the SEA approach
270 identified general biological process, cellular component, and molecular function for transcripts
271 in the cluster I, II, and III (Figure S1, S2 & S3), transcripts in the cluster IV were significantly
272 enriched for oxidation reduction in the biological process (GO0055114, FDR: 7.99×10^{-9}) and
273 oxidoreductase activity in the molecular function (GO0016491, FDR: 3.36×10^{-11}). These results
274 indicated that many transcripts highly induced in cluster IV after *S. sclerotiorum* inoculation
275 were related to redox maintenance (Fig. 4a). Other than transcripts with potential redox
276 balancing functions, significant enrichment for transcripts with cofactor-, vitamin-, heme-, or
277 iron-binding functions were also found (Fig. 4b). Because it has been suggested that oxalic acid
278 stimulates iron release and soybeans were shown to express higher ferritin for capturing iron and

279 maintaining iron homeostasis during infection (Calla et al. 2014), the enrichment results of these
280 element-binding transcripts in pea may indicate the homeostasis struggle during infection.
281 Although most transcripts in cluster IV had higher expression after *S. sclerotiorum* inoculation,
282 only a few transcripts displayed significantly higher expression in PI240515 than 'Lifter', and
283 together with the results from GO analysis, the possibilities that transcripts in the cluster IV are
284 genes involved in common responses to pathogen infection could not be excluded.

285

286 In order to identify candidate genes governing *S. sclerotiorum* resistance, two assumptions
287 were made: (i) a candidate gene should respond to *S. sclerotiorum* inoculation, and (ii) the
288 expression of a candidate gene should have up-regulated and significant DE in the *S.*
289 *sclerotiorum*-inoculated samples of PI 240515 compared to the *S. sclerotiorum*-inoculated
290 samples of 'Lifter', but not the mock samples of PI 240515 compared to the mock samples of
291 'Lifter'. A Venn diagram was illustrated to indicate the number of DE transcripts for four
292 different comparisons (Fig. 5). Two of these sections fulfill our assumptions. The first contains
293 119 transcripts, which is the overlapping area among the purple (transcripts of 'Lifter' with DE
294 in *S. sclerotiorum* inoculated samples compared to mock samples), red (transcripts of PI 240515
295 with DE in *S. sclerotiorum* inoculated samples compared to mock samples), and yellow blocks
296 (transcripts of *S. sclerotiorum* inoculated samples with DE in PI 240515 compared to 'Lifter')
297 but not the green block (transcripts of mock samples with DE in PI 240515 compared to 'Lifter')
298 (Table S4). The second section which fulfills the assumptions contains 29 transcripts, which
299 corresponds to the overlapping area of the red and yellow blocks (transcripts with DE in PI
300 240515 but not 'Lifter', and these transcripts had DE in PI 240515 compared to 'Lifter' under *S.*
301 *sclerotiorum* inoculation) (Table S5). While most of these transcripts (119 + 29 transcripts) had
302 lower expression in PI 240515 compared to 'Lifter' after *S. sclerotiorum* inoculation, a few
303 transcripts had higher expression in PI 240515 than 'Lifter' after *S. sclerotiorum* inoculation,
304 including three transcripts that encode LRR receptor-like kinase (LRR-RLK). The first LRR-
305 RLK is TRINITY_DN22904_c0_g1_i2, which had nearly zero expression in mock samples, but
306 the expressions were induced higher in PI 240515 than 'Lifter' after *S. sclerotiorum* inoculation
307 (Fig. 6a). The expressions of TRINITY_DN23231_c0_g2_i2 and
308 TRINITY_DN18054_c0_g1_i1 were higher in PI 240515 than 'Lifter' after *S. sclerotiorum*
309 inoculation, but their expressions were down-regulated after *S. sclerotiorum* inoculation

310 compared to mock samples (Fig. 6b,c). On the other hand, the expression of
311 TRINITY_DN4777_c0_g1_i1 was generally higher in ‘Lifter’ than PI 240515, and *S.*
312 *sclerotiorum* inoculation caused up-regulation more in ‘Lifter’ than PI 240525 (Fig. 6d) and the
313 expression of TRINITY_DN21848_c0_g1_i1 was higher in mock samples than in *S.*
314 *sclerotiorum* inoculated samples (Fig. 6e).

315

316 **3.7 | Integration of GWAS and RNA-Seq results**

317 Integration of results from DE analyses and GWAS identified additional candidate resistance
318 genes, however, most transcripts were down-regulated after *S. sclerotiorum* inoculation (Fig. 3),
319 and only a few transcripts had significantly higher expression in PI 240515 than ‘Lifter’ (Fig. 7,
320 8). The transcript (TRINITY_DN7903_c0_g1_i2) found for both lesion and nodal resistance,
321 which encodes a putative GST, had differential expression after *S. sclerotiorum* inoculation (Fig.
322 7a). There were two LRR-containing DE transcripts (TRINITY_DN11274_c0_g2_i1 and
323 TRINITY_DN21987_c1_g2_i1) that significantly associated with lesion resistance (Table 2; Fig.
324 7b,c). Additionally, five DE transcripts annotated as an ARM repeat superfamily protein
325 (TRINITY_DN21727_c0_g1_i1), an oxidoreductase (TRINITY_DN15345_c0_g1_i2), a UDP-
326 arabinopyranose mutase (TRINITY_DN12885_c0_g1_i1), a multiple drug resistance ABC
327 transporter (TRINITY_DN23674_c1_g2_i1), and a cytochrome b5
328 (TRINITY_DN29578_c0_g1_i1), were all significantly associated with lesion resistance (Table
329 2; Fig. 7d-g). On the other hand, there were five DE transcripts annotated as an ACT domain
330 repeat protein (TRINITY_DN5298_c0_g1_i1), a VQ motif-containing protein
331 (TRINITY_DN25769_c0_g1_i1), a β-glucosidase (TRINITY_DN23515_c1_g1_i4), a myo-
332 inositol oxygenase (TRINITY_DN21524_c0_g1_i1), and a cytochrome b-561
333 (TRINITY_DN16214_c1_g2_i1) that were significantly associated with nodal resistance (Fig.
334 8a-e). Among these transcripts, a putative coiled-coil nucleotide-binding site leucine rich repeat
335 (CC-NBS-LRR) protein appeared to be the most interesting as a lesion resistance candidate
336 because its expression was up-regulated in PI 240515 but down-regulated in ‘Lifter’ after 12 hpi
337 (Fig. 7b). As for nodal resistance, only the putative cytochrome b-561 had higher expression in
338 PI 240515 than ‘Lifter’, and other transcripts mostly had higher DE in ‘Lifter’ than PI 240515
339 (Fig. 8e).

340

341 4 | DISCUSSION

342

343 **4.1 | Redox homeostasis is important for both lesion and nodal resistance**

344 In this study, we aimed to understand the genetic makeup of lesion and nodal resistance in pea
345 for resistance to *S. sclerotiorum*. Although there was a weak phenotypic correlation between
346 stem lesion and nodal resistance, GWAS identified different SNPs associated with lesion and
347 nodal resistance ratings. Among hundreds of SNPs, there was only one SNP (C/T), TP13557,
348 found for both phenotypic ratings. The SNP was mapped to a transcript that encodes for a
349 putative glutathione S-transferase (GST) of pea. Interestingly, GST of corn (*Zea mays*) has been
350 identified as a pleiotropic resistance gene for three fungal diseases, southern leaf blight (caused
351 by *Cochliobolus heterostrophus*), gray leaf spot (caused by *Cercospora* species), and northern
352 leaf blight (caused by *Setosphaeria turcica*) in a multivariate mapping study (Wisser et al.,
353 2011). While the significant SNP located in the 3'-UTR of corn GST, three nonsynonymous
354 substitutions were found in the coding sequence, and one of them (histidine to aspartic acid) may
355 contribute about 6% of resistance (Wisser et al., 2011). Other studies also pointed out the
356 importance of GST in potato, rice, and tobacco to *Phytophthora infestans*, *Magnaporthe oryzae*,
357 and two *Colletotrichum* species, respectively (Dean, Goodwin, & Hisang, 2005; Leonards-
358 Schippers et al., 1994; Wisser et al., 2005). Moreover, most studies focusing on *B. napus*
359 resistance to *S. sclerotiorum* also identified GST regardless of the methodologies, GWAS or
360 RNA-Seq (Girard et al., 2017; Wei et al. 2016; Wu et al., 2016a). A recent GWAS for soybean
361 resistance to *S. sclerotiorum* also identified soybean GST (Wei et al. 2017) which was also noted
362 to have high expression in a transcriptomic study (Calla et al. 2014). Consistently, our results
363 also pointed out GST of pea may play a fundamental role in lesion and nodal resistance to *S.*
364 *sclerotiorum*. GST has diverse molecular functions in a cell to balance redox homeostasis, and
365 glutathione is important for maintaining a reducing status for cell survival (Tew, 2007).
366 Accordingly, GST may be involved in prohibiting the switch from hemibiotrophic to
367 necrotrophic stage of *S. sclerotiorum*. Another GST function is to detoxify phytotoxins and
368 oxidative substances such as ROS (Wisser et al., 2011), and these functions may slow *S.*
369 *sclerotiorum* infection and plant cell death. Other than GST, redox-related genes were up-
370 regulated after *S. sclerotiorum* inoculation and were significantly enriched in cluster IV, and
371 redox-related enzymes such as an oxidoreductase and a cytochrome b-561 were found in GWAS

372 for lesion or nodal resistance, respectively. Although the molecular function of cytochrome b-
373 561 in plant resistance is not clear, it has been also discovered for *S. sclerotiorum* resistance in *B.*
374 *napus* using GWAS and RNA-Seq (Wei et al., 2016). Surprisingly, our combined RNA-Seq and
375 GWAS strategy to search for *S. sclerotiorum* resistance in pea ended up with results similar to
376 the study of *B. napus*, where β -glucosidase, TPR-containing protein, ARM repeat superfamily
377 protein, cytochrome b-561, LRR-containing proteins, and the GST were also found for *B. napus*
378 (Table S2, S3; Wei et al., 2016). Together, our results support the importance of homeostasis for
379 *S. sclerotiorum* resistance, and we identified many potential redox-related transcripts as well as
380 others with roles in basal resistance to white mold.

381

382 **4.2 | Lesion resistance**

383 Several LRR-containing genes were found in transcriptomic studies of *B. napus*-*S. sclerotiorum*
384 (Wei et al., 2016; Wu et al., 2016b). The results of our study also discovered several up-
385 regulated LRR-containing transcripts for lesion resistance but not nodal resistance. Two
386 transcripts with evidence from both GWAS and RNA-Seq are a putative CC-NBS-LRR protein
387 and an LRR-RLK protein (Fig. 7b,c). Both transcripts had higher expression in PI 240515 at 12
388 hpi but the expressions dropped over time to the expression level of 'Lifter'. Although it is well
389 known that LRR-containing proteins contribute to R-gene based resistance in plants to biotrophic
390 pathogens (Kushalappa, Yogendra, & Karre, 2016), it is unclear how much these LRR-
391 containing transcripts are involved in lesion resistance to *S. sclerotiorum*. Moreover, these LRR-
392 containing transcripts were not discovered in GWAS for nodal resistance, which indicated the
393 possibility that the lesion resistance relies on LRR-containing proteins more than nodal
394 resistance. Other than the LRR type of tandem repeats, several ARM repeat-containing proteins
395 were found for lesion resistance by GWAS (Table 2, Table S2). It has been shown that an ARM-
396 containing ligase in rice negatively controls resistance (Li et al., 2012; Sharma & Pandey, 2015),
397 indicating higher expression in 'Lifter' might favor *S. sclerotiorum* infection (Fig. 7d). While
398 plant cell wall synthesis enzymes such as cellulose synthase were identified, only a putative
399 UDP-arabinopyranose mutase was up-regulated after *S. sclerotiorum* inoculation (Fig. 7f).
400 Similarly, two pleiotropic drug resistance ABC transporters were found (Table 2) but only one
401 displayed up-regulation after *S. sclerotiorum* inoculation (Fig. 7g). It has been shown that a
402 pleiotropic drug resistance ABC transporter is involved in resistance to *Botrytis cinerea*, a

403 closely-related fungal species to *S. sclerotiorum* (Stukkens et al., 2005). Accordingly, our results
404 suggested diverse mechanisms were involved in lesion resistance to limit *S. sclerotiorum*
405 expansion.

406

407 **4.3 | Nodal resistance**

408 Five transcripts found by both GWAS and RNA-Seq had higher DE after *S. sclerotiorum*
409 inoculation (Fig. 7). While the ACT domain repeat-containing proteins have diverse functions in
410 plant physiologies (Feller, Yuan, & Grotewold, 2017), the β -glucosidase might be involved in
411 cell wall reinforcement or releasing damage associated molecular patterns (DAMP) (Duran-
412 Flires & Heil, 2016). Additionally, one of the transcripts identified for nodal resistance is a
413 putative VQ motif-containing protein, which had higher expression in ‘Lifter’ than PI 240515 at
414 24 hpi (Fig. 8b). It has been shown that two VQ motif-containing proteins, VQ12 and VQ29, in
415 *Arabidopsis* negatively regulate resistance to *B. cinerea*. Down regulation of VQ12 and VQ29 by
416 miRNA silencing promoted *Arabidopsis* resistance to *B. cinerea* while overexpression increased
417 susceptibility (Wang et al., 2015). In addition, overexpression of *Arabidopsis* VQ5 and VQ20
418 demonstrated enhanced susceptibility to *B. cinerea* and *Pseudomonas syringae* (Cheng et al.,
419 2012). These discoveries might help to explain the potential functions of this VQ motif-
420 containing protein in pea and higher expression in ‘Lifter’ at 24 hpi potentially favoring *S.*
421 *sclerotiorum* infection.

422

423 Another transcript with earlier and higher expression in ‘Lifter’ was a putative myo-inositol
424 oxygenase (Fig. 7d). Myo-inositol is a product catalyzed from glucose-6-phosphate by the myo-
425 inositol-1-phosphate synthase, and it can be further metabolized into UDP-glucuronic acid by
426 myo-inositol oxygenase (Kanter et al., 2005). One of the functions of UDP-glucuronic acid is
427 being the precursor of plant cell wall polysaccharides, and under the circumstance, earlier and
428 higher expression of this transcript in ‘Lifter’ may indicate the need of plant cell wall
429 reinforcement under high *S. sclerotiorum* pressure. Gene expression difference for myo-inositol
430 metabolism was also reported in resistant and susceptible soybeans to *S. sclerotiorum* (Calla et
431 al., 2009). Additionally, myo-inositol is also the precursor of galactinol, which has been
432 suggested to induce resistance against syncytia development for the cyst nematode *Heterodera*
433 *schachtii* (Siddeigue et al., 2014). When myo-inositol oxygenase processes myo-inositol into

434 UDP-glucuronic acid, the metabolism bypasses and reduces the production of galactinol for
435 inducing disease resistance signaling (Cho et al., 2010; Kim et al., 2008). Under this scenario,
436 disease progress in ‘Lifter’ could be faster than in PI 240515. Because the expression patterns of
437 nodal resistance-related transcripts generally had a delay in PI 240515 compared to ‘Lifter’ and
438 because *S. sclerotiorum* can still infect PI 240515 albeit at a slower rate than ‘Lifter’, it is
439 possible that down-regulation of transcripts favoring *S. sclerotiorum* infection underlies nodal
440 resistance in PI 240515. More studies are needed to reveal the molecular mechanisms of nodal
441 resistance.

442

443 **4.4. | Summary**

444 In this study, we applied GWAS and RNA-Seq to understand lesion and nodal resistance in pea
445 to *S. sclerotiorum*. Other than a transcript encoding GST, which was discovered for both lesion
446 and nodal resistance, our results pointed out different mechanisms underlying lesion and nodal
447 resistance. We revealed SNPs exclusively for the lesion and nodal resistance, and together with
448 time series DE analyses, we suggested these two types of white mold resistance are differently
449 controlled by a diverse of genetic mechanisms.

450

451 **ACKNOWLEDGEMENTS**

452 This study was supported by the National Sclerotinia Initiative, grant ID: 58-5442-9-239, USDA-
453 ARS. We thank Patricia Santos and J. Alejandro Rojas for helpful discussions in preparation of
454 this manuscript.

455

456 **ACCESSION NUMBER**

457 The Illumina sequences were deposited at SRA database under BioProject accession
458 number PRJNA261444.

459

460 **CONFLICT OF INTEREST**

461 The authors claimed no conflict of interest.

462

463 **AUTHOR CONTRIBUTION**

464 H.X.C., H.S., X.Z., and L.P. conducted plant inoculation and phenotyping. H.X.C., H.S., and
465 J.W. performed data analyses. K.M., L.P., and M.I.C. maintained plant and fungal materials.

466 X.Z. generated the RNA-Seq data. H.X.C. and M.I.C. led the manuscript writing, and all the co-
467 authors refined and approved the manuscript.

468

469 REFERENCES

470

471 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available
472 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>

473 Bastien, M., Sonah, H., & Belzile, F. (2014). Genome wide association mapping of *Sclerotinia*
474 *sclerotiorum* resistance in soybean with a genotyping-by-sequencing approach. *Plant*
475 *Genome*, 7, 1-13. doi:10.3835/plantgenome2013.10.0030

476 Bolger, A.M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
477 sequence data. *Bioinformatics*, 30, 2114-2120. doi:10.1093/bioinformatics/btu170

478 Bolton, M.D., Thomma, B.P.H.J., & Nelson, B.D. (2006). *Sclerotinia sclerotiorum* (Lib.) de
479 Bary: biology and molecular traits of a cosmopolitan pathogen. *Molecular Plant Pathology*,
480 7, 1-16. doi: 10.1111/J.1364-3703.2005.00316.X

481 Bray, N.L., Pimentel, H., Melsted, P., & Pachter, L. (2017). Near-optimal probabilistic RNA-Seq
482 quantification. *Nature Biotechnology*, 34, 525-527.

483 Bush, W.S., & Moore, J.H. (2012). Chapter 11: genome-wide association studies. *PLoS*
484 *Computational Biology*, 8, e1002822. doi:10.1371/journal.pcbi.1002822

485 Calla, B., Young, T., Radwan, O., Hartman, G.L., & Clough, S.J. (2009). Gene expression
486 profiling soybean stem tissue early response to *Sclerotinia sclerotiorum* and *in silico*
487 mapping in relation to resistance markers. *Plant Genome*, 2, 149-166.
488 doi:10.3835/plantgenome2008.02.0008

489 Calla, B., Blahut-beatty, L., Koziol, L., Simmonds, D.H., & Clough, S.J. (2014). Transcriptome
490 analyses suggest a disturbance of iron homeostasis in soybean leaves during white mold
491 disease establishment. *Molecular Plant Pathology*, 15, 576-588. doi: 10.1111/mpp.12113

492 Cheng, Y., Zhou, Y., Yang, Y., Chi, Y.-J., Zhou, J., Chen, J.-Y., ... Chen, Z. (2012). Structural
493 and functional analysis of VQ motif-containing proteins in *Arabidopsis* as interacting
494 proteins of WRKY transcription factors. *Plant Physiology*, 159, 810-825. doi:
495 10.1104/pp.112.196816

496 Cho, S.M., Kang, E.Y., Kim, M.S., Yoo, S.J., Im, Y.J., Kim, Y.C., ... Cho, B.H. (2010).
497 Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of
498 systemic fungal resistance in *Arabidopsis thaliana*. *Botany*, 88, 452-461. doi: 10.1139/B10-
499 009

500 Collier, S.M., & Moffett, P. (2009). NB-LRRs work a “bait and switch” on pathogens. *Trends in*
501 *Plant Science*, 14, 521-529. doi: 10.1016/j.tplants.2009.08.001

502 Dean, J.D., Goodwin, P.H., & Hisang, T. (2005). Induction of glutathion S-transferase genes of
503 *Nicotiana benthamiana* following infection by *Colletotrichum destructivum* and *C.*
504 *orbiculare* and involvement of one in resistance. *Journal of Experimental Botany*, 56, 1525-
505 1533. doi: 10.1093/jxb/eri145

506 Derbyshire, M., Denton-Giles, M., Hegedus, D., Seifbarghi, S., Rolins, J., van Kan, J., ... Oliver,
507 R. (2017). The complete genome sequence of phytopathogenic fungus *Sclerotinia*
508 *sclerotiorum* reveals insights into the genome architecture of broad host range pathogens.
509 *Genome Biology and Evolution*, 9, 593-618. doi:10.1093/gbe/evx030

510 Duran-Flires, D., & Heil, M. (2016). Sources of specificity in plant damaged-self recognition.
511 *Current Opinion in Plant Biology*, 32, 77-87. doi: 10.1016/j.pbi.2016.06.019

512 Feller, A., Yuan, L., & Grotewold, E. (2017). The BID domain in plant bHLH proteins is like an
513 ACT-like domain. *Plant Cell*, 29, 1800-1802. doi: 10.1105/tpc.17.00356

514 Gordon, A. (2014). FASTX-toolkit. Available online at
515 http://hannonlab.cshl.edu/fastx_toolkit/index.html

516 Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., ... Regev A.
517 (2011). Full-length transcriptome assembly from RNA-seq data without a reference
518 genome. *Nature Biotechnology*, 29, 644-52. doi: 10.1038/nbt.1883

519 Girard, I.J., Tong, C., Becker, M.G., Mao, X., Huang, J., de Kievit, T. ... Belmonte, M.F. (2017).
520 RNA sequencing of *Brassica napus* reveals cellular redox control of *Sclerotinia* infection.
521 *Journal of Experimental Botany*, erx338. doi: 10.1093/jxb/erx338

522 Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., ... Regev A.
523 (2013). *De novo* transcript sequence reconstruction from RNA-seq using the Trinity
524 platform for reference generation and analysis. *Nature Protocol*, 8, 1494-512. doi:
525 10.1038/nprot.2013.084

526 Hobbs, T.Q., Schmitthenner, A.E., & Ellett, C.W. (1981) Top dieback of soybean caused by
527 *Diaporthe phaseolorum* var. *caulivora*. *Plant Disease*, 65, 618-620.

528 Holdsworth, W.L., Gazacve, E., Cheng, P., Myers, J.R., Gore, M.A., Coyne, C.J., ... Mazourek,
529 M. (2017). A community resource for exploring and utilizing genetic diversity in the USDA
530 pea single plant plus collection. *Horticulture Research*, 4, 17017.
531 doi:10.1038/hortres.2017.17

532 Kabbage, M., Yarden, O., & Dickman, M.B. (2015). Pathogenic attributes of *Sclerotinia*
533 *sclerotiorum*: switching from a biotrophic to necrotrophic lifestyle. *Plant Science*, 233, 53-
534 60. doi: 10.1016/j.plantsci.2014.12.018

535 Kanter, U., Usadel, B., Guerineau, F., Li, Y., Pauly, M., & Tenhaken, R. (2005). The inositol
536 oxygenase gene family of *Arabidopsis* is involved in the biosynthesis of nucleotide sugar
537 precursors for cell-wall matrix polysaccharides. *Planta*, 221, 243-254. doi: 10.1007/s00425-
538 004-1441-0

539 Kerr, S.C., Gaiti, F., Beveridge, C.A., & Tanurdzic, M. (2017). *De novo* transcriptome assembly
540 reveals high transcriptional complexity in *Pisum sativum* axillary buds and shows rapid
541 changes in expression of diurnally regulated genes. *BMC Genomics*, 18, 221. doi:
542 10.1186/s12864-017-3577-x

543 Kim, D., Pertea, G., Trapnell, C., Pimental, H., Kelly, R., & Salzberg, S.L. (2013). TopHat2:
544 accurate alignment of transcriptomes in the presence of insertions, deletions and gene
545 fusions. *Genome Biology*, 14, R36. doi: 10.1186/gb-2013-14-4-r36

546 Kim, M.S., Cho, S.M., Kang, E.Y., Im, Y.J., Hwangbo, H., Kim, Y.C., ... Cho, B.H. (2008).
547 Galactinol is a signaling component of the induced systemic resistance caused by
548 *Pseudomonas chlororaphis* O6 root colonization. *Molecular Plant-Microbe Interactions*,
549 21, 1643-1653. doi: 10.1094/MPMI-21-12-1643

550 Kushalappa, A.C., Yogendra, K.N., & Karre, S. (2016). Plant innate immune response:
551 qualitative and quantitative resistance. *Critical Reviews in Plant Sciences*, 35, 38-55. doi:
552 10.1080/07352689.2016.1148980

553 Leonards-Schippers, C., Gieffers, W., Schafer-Pregl, R., Ritte, E., Knapp, S.J., Salamini, F., &
554 Gebhardt, C. (1994). Quantitative resistance to *Phytophthora infestans* in potato: a case
555 study for QTL mapping in an allogamous plant species. *Genetics*, 137, 67-77.

556 Li, W., Ahn, I., Ning, Y., Park, C.-H., Zeng, L., Whitehill, J.G.A., ... Wang, G.-L. (2012). The
557 U-box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in
558 *Arabidopsis*. *Plant Physiology*, 159, 239-250. doi: 10.1104/pp.111.192617

559 Lu, K., Peng, L., Zhang, C. Lu, J., Yang, B., Xiao, Z., ..., Li, Jiana. (2017). Genome-wide
560 association and transcriptome analyses reveal candidate genes underlying yield-determining
561 traits in *Brassica napus*. *Frontiers in Plant Science*, 8, 206. doi: 10.3389/fpls.2017.00206

562 Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., ..., Raffaela, S.
563 (2016) Emerging trends in molecular interactions between plants and the broad host range
564 fungal pathogens *Botrytis cinerea* and *Sclerotinia sclerotiorum*. *Frontiers in Plant Science*,
565 7, 422. doi: 10.3389/fpls.2016.00422

566 McCaghey, M., Willbur, J., Ranjan, A., Grau, C.R., Chapman, S., Diers, B., ..., Smith, D.L.
567 (2017). Development and evaluation of *Glycine max* germplasm lines with quantitative
568 resistance to *Sclerotinia sclerotiorum*. *Frontiers in Plant Science*, 8, 1495. doi:
569 10.3389/fpls.2017.01495

570 McPhee K. E., & Muehlbauer, F. J. (2002). Registration of 'LIFTER' green dry pea. *Crop
571 Science*, 42, 1377–1378.

572 Moellers, T.C., Singh, A., Zhang, J., Brungardt, J., Kabbage, M., Meuller, D.S., ... Singh, A.K.
573 (2017). Main and epistatic loci studies in soybean for *Sclerotinia sclerotiorum* resistance
574 reveal multiple modes of resistance in multi-environments. *Scientific Reports*, 7, 3554.
575 doi:10.1038/s41598-017-03695-9

576 Muchero, W., Ehlers, J.D., Close, T.J., & Roberts, P.A. (2011) Genic SNP markers and legume
577 synteny reveal candidate genes underlying QTL for *Macrophomina phaseolina* resistance
578 and maturity in cowpea [*Vigna unguiculata* (L) Walp.]. *BMC Genomics*, 12, 8.

579 Murtagh, F., & Legendre, P. (2014). Ward's hierarchical agglomerative clustering method:
580 which algorithms implement Ward's criterion? *Journal of Classification*, 31, 274-295. doi:
581 10.1007/s00357-014-9161-z

582 Peltier, A. J., Hatfield, R. D., & Grau, C. R. (2009). Soybean stem lignin concentration relates to
583 resistance to *Sclerotinia sclerotiorum*. *Plant Disease*, 93, 149-154. doi: 10.1094/PDIS-93-2-
584 0149

585 Porter, L.D., Hoheisel, G., & Coffman, V.A. (2009). Resistance of peas to *Sclerotinia*
586 *sclerotiorum* in the *Pisum* core collection. *Plant Pathology*, 58, 52-60. doi: 10.1111/j.1365-
587 3059.2008.01937.x

588 Porter, L. (2011). Selection of pea genotypes with partial resistance to *Sclerotinia sclerotiorum*
589 across a wide range of temperatures and periods of high relative humidity. *Euphytica*, 186,
590 671-678. doi: 10.1007/s10681-011-0531-x

591 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., ..., Sham,
592 P.C. (2007). PLINK: a tool set for whole-genome association and population-based linkage
593 analyses. *The American Journal of Human Genetics*, 81, 559-575. doi: 10.1086/519795

594 Seifbarghi, S., Borhan, M.H., Wei, Y., Coutu, C., Robinson, S.J., & Hegedus, D.D. (2017).
595 Changes in the *Sclerotinia sclerotiorum* transcriptome during infection of *Brassica napus*.
596 *BMC Genomics*, 18, 266. doi: 10.1186/s12864-017-3642-5

597 Sharma, M., & Pandey, G.K. (2015). Expansion and function of repeat domain proteins during
598 stress and development in plants. *Frontier in Plant Science*, 6, 1218. doi:
599 10.3389/fpls.2015.01218

600 Siddeigue, S., Endres, S., Sobczak, M., Radakovic Z.S., Fragner, L., Florian, M.W., ...
601 Bohlmann, H. (2014). Myo-inositol oxygenase is important for the removal of excess myo-
602 inositol from syncytia induced by *Heterodera schachtii* in *Arabidopsis* roots. *New*
603 *Phytologist*, 201, 476-485. doi: 10.1111/nph.12535

604 Stukkens, Y., Bultreays, A., Grec, S., Trombik, T., Vangam, D., & Boutry, M. (2005). NpPDR1,
605 a pleiotropic drug resistance-type ATP-binding cassette transporter from *Nicotiana*
606 *plumbaginifolia*, plays a major role in plant pathogen defense. *Plant Physiology*, 139, 341-
607 351. doi: 10.1104/pp.105.062372

608 Tayeh, N., Aubert, G., Oilet-Nayel, M., Lejeune-Henaut, I., Warkentin, T.D., & Burstin, J.
609 (2015). Genomic tools in pea breeding programs: status and perspectives. *Frontiers in Plant*
610 *Science*, 6, 1037. doi: 10.3389/fpls.2015.01037

611 Tew, K.D. (2007). Redox in redux: emergent roles for glutathione S- transferase P (GSTP) in
612 regulation of cell signaling and S-glutathionylation. *Biochemical pharmacology*, 73, 1257-
613 1269. doi:10.1016/j.bcp.2006.09.027

614 Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., ... Su, Z. (2017) agriGO v2.0: a GO analysis
615 toolkit for the agricultural community, 2017 update. *Nucleic Acid Research*, 45, W122-
616 W129. doi: 10.1093/nar/gkx382.

617 Wang, H., Hu, Y., Pan, J., & Yu, D. (2015). Arabidopsis VQ motif-containing proteins VQ12
618 and VQ29 negatively modulate basal defense against *Botrytis cinerea*. *Scientific Reports*, 5,
619 14185. doi: 10.1038/srep14185

620 Wei, L., Jian, H., Lu, K., Filardo, F., Yin, N., Liu, L., ... Li, J. (2016). Genome-wide association
621 analysis and differential expression analysis of resistance to *Sclerotinia* stem rot in *Brassica*
622 *napus*. *Plant Biotechnology Journal*, 14, 1368-1380. doi: 10.1111/pbi.12501

623 Wei, W., Mesquita, A.C.O., Figueiró, A.D.A., Wu, X., Manjunatha, S., Wickland,
624 D.P.,...Clough, S.J. (2017) Genome-wide association mapping of resistance to a Brazilian
625 isolate of *Sclerotinia sclerotiorum* in soybean genotypes mostly from Brazil. *BMC*
626 *Genomics*, 18, 849. doi: 10.1186/s12864-017-4160-1

627 Wei, W., & Clough, S.J. (2016) *Sclerotinia sclerotiorum*: molecular aspects in plant-pathogenic
628 interactions. *Revisao Anual De Patologia De Plantas*, 24, 174-189.

629 Williams, B., Kabbage, M., Kim, H.-J., Britt, R., and Dickman, M.B. (2011). Tipping the
630 balance: *Sclerotinia sclerotiorum* secreted oxalic acid suppresses host defenses by
631 manipulating the host redox environment. *PLoS Pathogens*, 7, e1002107.
632 doi:10.1371/journal.ppat.1002107

633 Wisser, R.J., Kolkman, J.M., Patzoldt, M.E., Holland, J.B., Yu, J., Krakowsky, M., ... Balunt-
634 Kurti, P.J. (2011). Multivariate analysis of maize disease resistances suggests a pleiotrophic
635 genetic basis and implicates a *GST* gene. *Proceedings of the National Academy of Sciences*,
636 108, 7338-7344. doi: 10.1073/pnas.1011739108

637 Wisser, R.J., Sun, Q., Hukbert, S.H., Kresovich, S., & Nelson, R.J. (2005). Identification and
638 characterization of regions of the rice genome associated with broad-spectrum, quantitative
639 disease resistance. *Genetics*, 169, 2277-2293. doi: 10.1534/genetics.104.036327

640 Wu, J., Zhao, Q., Liu, S., Shahid, M., Lan, L., Cai, G., ..., Zhou, Y. (2016a). Genomie-wide
641 association study identifies new loci for resistance to *Sclerotinia* stem rot in *Brassica napus*.
642 *Frontiers in Plant Science*, 7, 1418. doi: 10.3389/fpls.2016.01418

643 Wu, J., Zhao, Q., Yang, Q., Liu, H., Li, Q., Yi, X., ..., Zhou, Y. (2016b). Comparative
644 transcriptomic analysis uncovers the complex genetic network for resistance to *Sclerotinia*
645 *sclerotiorum* in *Brassica napus*. *Scientific Reports*, *6*, 19007. doi: 10.1038/srep19007

646 Xu, L., Xiang, M., White, D., & Chen, W. (2015). pH dependency of sclerotial development and
647 pathogenicity revealed by using genetically defined oxalate-minus mutants of *Sclerotinia*
648 *sclerotiorum*. *Environmental Microbiology*, *17*, 2896-2909. doi:10.1111/1462-2920.12818

649 Zhou, J., Sun, A., & Xing, D. (2013). NADPH oxidase confers *Arabidopsis* resistance to
650 *Sclerotinia sclerotiorum*. *Journal of Experimental Botany*, *64*, 3261-3272.
651 doi:10.1093/jxb/ert166

652 Zhuang, X., McPhee, K.E., Coram, T.E., Peever, T.L., & Chilvers, M.I. (2012). Rapid
653 transcriptome characterization and parsing of sequences in a non-model host-pathogen
654 interaction: pea-*Sclerotinia sclerotiorum*. *BMC Genomics*, *13*, 668. doi: 10.1186/1471-
655 2164-13-668

656 Zhuang, X., McPhee, K.E., Coram, T.E., Peever, T.L., & Chilvers, M.I. (2013). Development
657 and characterization of 37 novel EST-SSR markers in *Pisum sativum* (Fabaceae).
658 *Applications in Plant Sciences*, *1*, 1200249. doi:10.3732/apps.1200249

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674 **TABLES AND FIGURES**

675

676 **TABLE 1** Quality assessment of Trinity *de novo* transcriptome assemblies

Assembly statistics	K-mer 25	K-mer 29	K-mer 32
Total number of transcripts*	104,743	96,588	89,213
Transcript contig N50 (bp)	1,821	1,891	1,879
Mean length (bp)	1,120.68	1,158.61	1,139.89
Median length (bp)	746	780	746
Assembled bases (bp)	117,382,962	111,907,459	101,692,986
Total number of genes#	63,432	60,598	59,611
Gene contig N50 (bp)	1,506	1,608	1,611
Mean length (bp)	856.40	890.64	892.03
Median length (bp)	470	473	472
Assembled bases (bp)	54,323,175	53,970,897	53,175,090
Percentage of GC	38.58	38.64	38.66
RNA representation rate (%)	79.7	80.0	80.0

677 *Transcript statistics include isoforms.

678 #Gene statistics include only the longest transcript for all possible isoforms.

TABLE 2 Candidate resistance transcripts identified in GWAS for lesion resistance

SNP	GWAS q value	Allele	MAF	<i>De novo</i> transcript	E value*	Gm.W82.a2.v1	Annotation	Annotation E value
TP104551	1.41E-04	A/G	0.108	TRINITY_DN19399_c0_g1_i2	2.00E-06	Glyma.05G228200	Xylogalacturonan β-1,3-xylosyltransferase	0.00E+00
TP82039	1.22E-03	C/T	0.489	TRINITY_DN22733_c0_g1_i1	7.00E-25	Glyma.16G023200	TPR-containing protein	0.00E+00
TP132492	1.25E-03	C/A	0.100	TRINITY_DN11274_c0_g2_i1	2.00E-26	Glyma.20G193300	CC-NBS-LRR disease resistance protein	0.00E+00
TP176436	1.33E-03	A/G	0.356	TRINITY_DN15345_c0_g1_i2	6.00E-19	Glyma.19G233900	Oxidoreductase	0.00E+00
TP192026	2.68E-03	G/A	0.185	TRINITY_DN12885_c0_g1_i1	5.00E-26	Glyma.04G159700	UDP-arabinopyranose mutase	0.00E+00
TP58726	2.81E-03	C/T	0.145	TRINITY_DN21727_c0_g1_i1	7.00E-25	Glyma.17G090900	ARM repeat superfamily protein	0.00E+00
TP46107	3.03E-03	A/C	0.400	TRINITY_DN23674_c1_g2_i1	2.00E-26	Glyma.03G168000	Pleiotropic drug resistance ABC transporter	0.00E+00
59136_75	3.61E-03	A/G	0.085	TRINITY_DN24902_c0_g1_i1	5.00E-15	Glyma.16G130700	Serine carboxypeptidase	0.00E+00
64833_37	3.94E-03	T/C	0.426	TRINITY_DN21727_c0_g1_i1	1.00E-30	Glyma.17G090900	ARM repeat superfamily protein	0.00E+00
TP40425	3.96E-03	C/T	0.069	TRINITY_DN11862_c0_g1_i1	7.00E-25	Glyma.09G242500	PPR-containing protein	0.00E+00
TP5714	3.97E-03	A/G	0.160	TRINITY_DN8622_c0_g1_i2	7.00E-25	Glyma.20G013200	ARM repeat superfamily protein	0.00E+00
TP122891	4.37E-03	C/T	0.065	TRINITY_DN20767_c0_g1_i1	7.00E-25	Glyma.06G065000	Cellulose synthase	0.00E+00
TP107762	4.65E-03	C/G	0.348	TRINITY_DN21987_c1_g2_i1	2.00E-19	Glyma.08G284100	LRR-RLK	0.00E+00
TP105293	7.28E-03	C/T	0.490	TRINITY_DN22449_c0_g1_i1	2.00E-26	Glyma.13G359600	PPR-containing protein	0.00E+00
TP14472	7.60E-03	A/G	0.108	TRINITY_DN23601_c0_g1_i1	2.00E-19	Glyma.08G160900	ABC transporter	0.00E+00
54792_76	7.91E-03	C/G	0.321	TRINITY_DN23920_c0_g1_i14	2.00E-15	Glyma.13G370300	Pleiotropic drug resistance ABC transporter	0.00E+00
TP56848	9.05E-03	A/C	0.193	TRINITY_DN23559_c0_g2_i3	2.00E-26	Glyma.06G178400	Copper amine oxidase	0.00E+00
67025_44	9.21E-03	T/C	0.352	TRINITY_DN29578_c0_g1_i1	6.00E-27	Glyma.06G131900	Cytochrome b5	1.00E-85
TP184273	9.52E-03	A/T	0.055	TRINITY_DN22193_c0_g1_i4	7.00E-25	Glyma.19G004700	ARM repeat superfamily protein	0.00E+00
TP13557	9.82E-03	C/T	0.194	TRINITY_DN7903_c0_g1_i2	7.00E-25	Glyma.06G117800	Glutathione S-transferase	0.00E+00

* E value of BLASTN using a GBS read containing the significant SNP against the *de novo* transcriptome.

TABLE 3 Candidate resistance transcripts identified in GWAS for nodal resistance

SNP	GWAS q value	Allele	MAF	<i>De novo</i> transcript	E value*	Gm.W82.a2.v1	Annotation	Annotation E value
56725_68	3.74E-03	G/C	0.197	TRINITY_DN5298_c0_g1_i1	3.00E-30	Glyma.05G107600	ACT domain repeat protein	0.00E+00
TP41550	4.50E-03	A/G	0.167	TRINITY_DN25769_c0_g1_i1	7.00E-25	Glyma.09G051900	VQ motif-containing protein	7.00E-39
TP13557	4.59E-03	C/T	0.194	TRINITY_DN7903_c0_g1_i2	7.00E-25	Glyma.06G117800	Glutathione S-transferase	0.00E+00
TP52272	4.64E-03	T/C	0.106	TRINITY_DN23515_c1_g1_i4	1.00E-15	Glyma.12G053900	β -glucosidase	0.00E+00
TP164197	4.83E-03	T/A	0.093	TRINITY_DN41476_c0_g1_i1	2.00E-26	Glyma.08G254000	PPR repeat-containing protein	0.00E+00
161268_51	5.04E-03	T/C	0.095	TRINITY_DN21874_c0_g2_i1	4.00E-35	Glyma.04G029500	RING/U-box superfamily protein	0.00E+00
53592_14	6.47E-03	C/T	0.147	TRINITY_DN21524_c0_g1_i1	4.00E-35	Glyma.05G224500	Myo-inositol oxygenase	0.00E+00
TP108888	6.96E-03	C/T	0.248	TRINITY_DN21142_c0_g2_i2	7.00E-25	Glyma.06G183500	Protein kinase superfamily protein	4.00E-63
TP119499	7.49E-03	T/C	0.053	TRINITY_DN43663_c0_g1_i1	2.00E-12	Glyma.18G202100	Calcium-dependent protein kinase	0.00E+00
TP163256	8.04E-03	A/G	0.357	TRINITY_DN7950_c0_g1_i1	7.00E-25	Glyma.07G018400	Peroxisome-related protein	0.00E+00
14350_13	8.25E-03	A/G	0.124	TRINITY_DN16214_c1_g2_i1	2.00E-32	Glyma.09G011200	Cytochrome b-561	0.00E+00
TP164952	9.52E-03	T/C	0.097	TRINITY_DN23515_c1_g1_i4	2.00E-06	Glyma.12G053900	β -glucosidase	0.00E+00
123212_21	9.66E-03	G/A	0.155	TRINITY_DN21917_c0_g1_i2	2.00E-27	Glyma.11G202700	TPR repeat-containing protein	0.00E+00
33803_4	9.96E-03	C/T	0.058	TRINITY_DN23419_c1_g1_i6	4.00E-35	Glyma.07G151800	β -glucosidase	8.00E-59

* E value of BLASTN using a GBS read containing the significant SNP against the *de novo* transcriptome.

FIGURE 1 Lesion and nodal resistance phenotypes of pea lines used in GWAS, and phenotypes of 'Lifter' and PI 240515 used in RNA-Seq. (a) Phenotypic distribution of lesion resistance (lesion size in centimeter). (b) Phenotypic distribution of nodal resistance (score 0 = dead plant, 4 = lesion restricted to the inoculated node number 4). (c) Pearson's correlation between lesion and nodal resistance demonstrates slight but significant negative correlation (-0.19, $p < 0.05$; negative due to the inverse rating scale for nodal resistance). (d) Phenotypic difference between a susceptible cultivar 'Lifter' and a partially resistant accession PI 240515 over time. A potato dextrose agar block containing actively growing hyphal tips of *S. sclerotiorum* was used for inoculation. PI 240515 has partial resistance and displays slower disease progress compared to susceptible 'Lifter'. Infection and damping-off can be observed in 'Lifter' as early as 12 hpi and 24 hpi, respectively, but not PI 240515. Infection expands in 'Lifter' as early at 48 hpi, and infection can be observed around the inoculated site of PI 240515 at 48 hpi

FIGURE 2 Principal component analysis. The distribution of samples are mostly influenced by the *Sclerotinia sclerotiorum* inoculation, as demonstrated by the grouping of mock inoculated samples. Principal component 1 explains about 75% of total variance from the expression based on the normalized transcripts per million.

FIGURE 3 Heatmap and clustering analysis for DE transcripts over time. Transcripts with an asterisk have significant DE between 'Lifter' and PI 240515 only in *S. sclerotiorum*-inoculated samples but not mock samples. Clustering analysis breaks the 17,220 transcripts into four clusters. Cluster III contains transcripts that are generally down-regulated in *S. sclerotiorum* inoculated samples, and cluster IV contains transcripts that are up-regulated in *S. sclerotiorum* inoculated samples. Although cluster IV has higher expression after *S. sclerotiorum* inoculation, a few transcripts displayed significantly higher expression in PI 240515 than 'Lifter', indicating most of the transcripts in cluster IV may be involved in common responses to pathogen infection but not necessarily candidate resistance genes.

FIGURE 4 Gene ontology (GO) using singular enrichment analysis for transcripts in the cluster IV. (a) Significant GO terms in the biological process. (b) Significant GO terms in the molecular functions. Color panel shows significant enrichment from level 1 in yellow color to level 9 in red color for both (a) and (b).

FIGURE 5 Venn diagram comparisons of time series differential expression analyses. In green, transcripts with significant DE between ‘Lifter’ and PI 240515 in mock samples. In yellow, transcripts with significant DE between ‘Lifter’ and PI 240515 in *S. sclerotiorum* inoculated samples. In purple, transcripts of ‘Lifter’ with significant DE between mock samples and *S. sclerotiorum*-inoculated samples. In pink, transcripts of PI 240515 with significant DE between mock samples and *S. sclerotiorum*-inoculated samples. To narrow the candidate resistance genes pool from all DE, two assumptions were made: (i) a candidate gene should respond to *S. sclerotiorum* inoculation, and (ii) the expression of a candidate gene should have up-regulated and significant DE in the *S. sclerotiorum*-inoculated PI 240515 compared to the *S. sclerotiorum*-inoculated ‘Lifter’ samples, but not the mock samples of PI 240515 compared to the mock samples of ‘Lifter’.

FIGURE 6 Time course expressions of LRR-RLK transcripts identified from DE analyses. M represents mock samples, and WM represents *S. sclerotiorum*-inoculated samples. (a) TRINITY_DN22904_c0_g1_i2 (b) TRINITY_DN23231_c0_g2_i2 (c) TRINITY_DN18054_c0_g1_i1 (d) TRINITY_DN4777_c0_g1_i1 (e) TRINITY_DN21848_c0_g1_i1.

FIGURE 7 Time course expressions of candidate lesion resistance transcripts identified from both DE analyses and GWAS. M represents mock samples, and WM represents *S. sclerotiorum*-inoculated samples. (a) TRINITY_DN7903_c0_g1_i2 (b) TRINITY_DN11274_c0_g2_i1 (c) TRINITY_DN21987_c1_g2_i1 (d) TRINITY_DN21727_c0_g1_i1 (e) TRINITY_DN15345_c0_g1_i2 (f) TRINITY_DN12885_c0_g1_i1 (g) TRINITY_DN23674_c1_g2_i1 (h) TRINITY_DN29578_c0_g1_i1

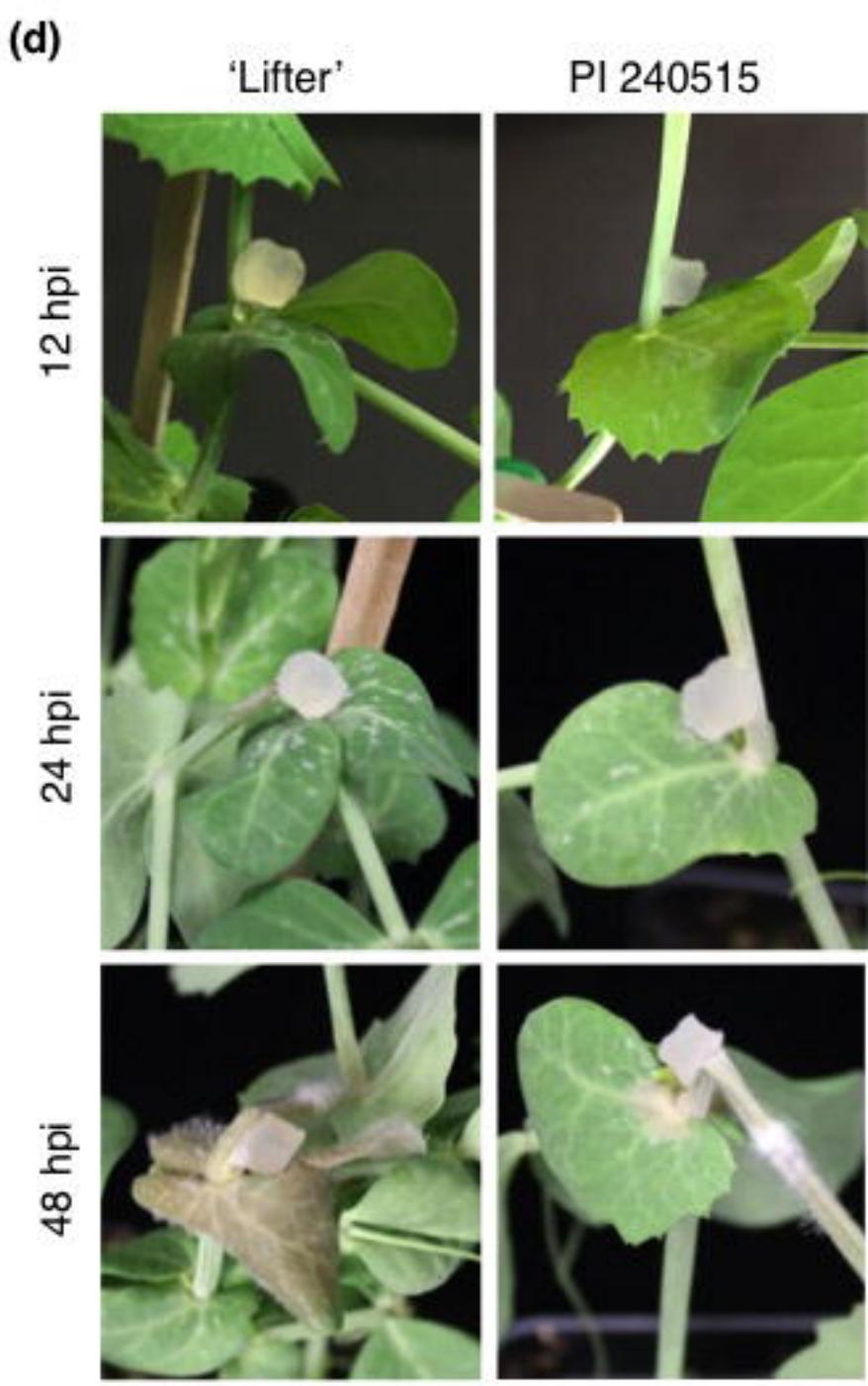
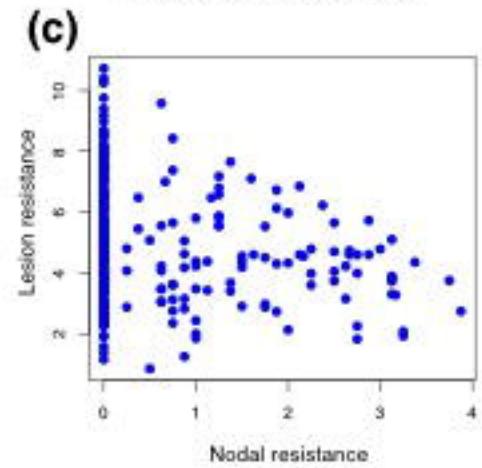
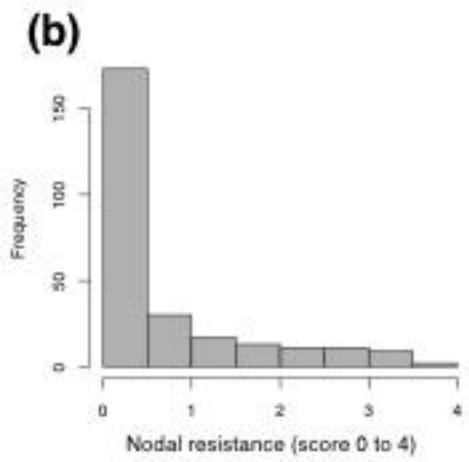
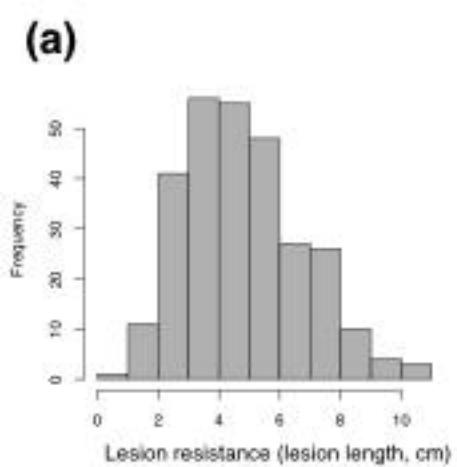
FIGURE 8 Time course expressions of candidate nodal resistance transcripts identified from both DE analyses and GWAS. M represents mock samples, and WM represents *S. sclerotiorum*-inoculated samples. (a) TRINITY_DN5298_c0_g1_i1 (b) TRINITY_DN25769_c0_g1_i1 (c) TRINITY_DN23515_c1_g1_i4 (d) TRINITY_DN21524_c0_g1_i1 (e) TRINITY_DN16214_c1_g2_i1

SUPPLEMENTARY TABLES

TABLE S1 Illumina sequencing statistics

TABLE S2 Significant SNPs associated with lesion resistance

TABLE S3 Significant SNPs associated with nodal resistance





TABLE S4 Significant DEs of the 119 candidate transcripts controlling *S. sclerotiorum* resistance and susceptibility

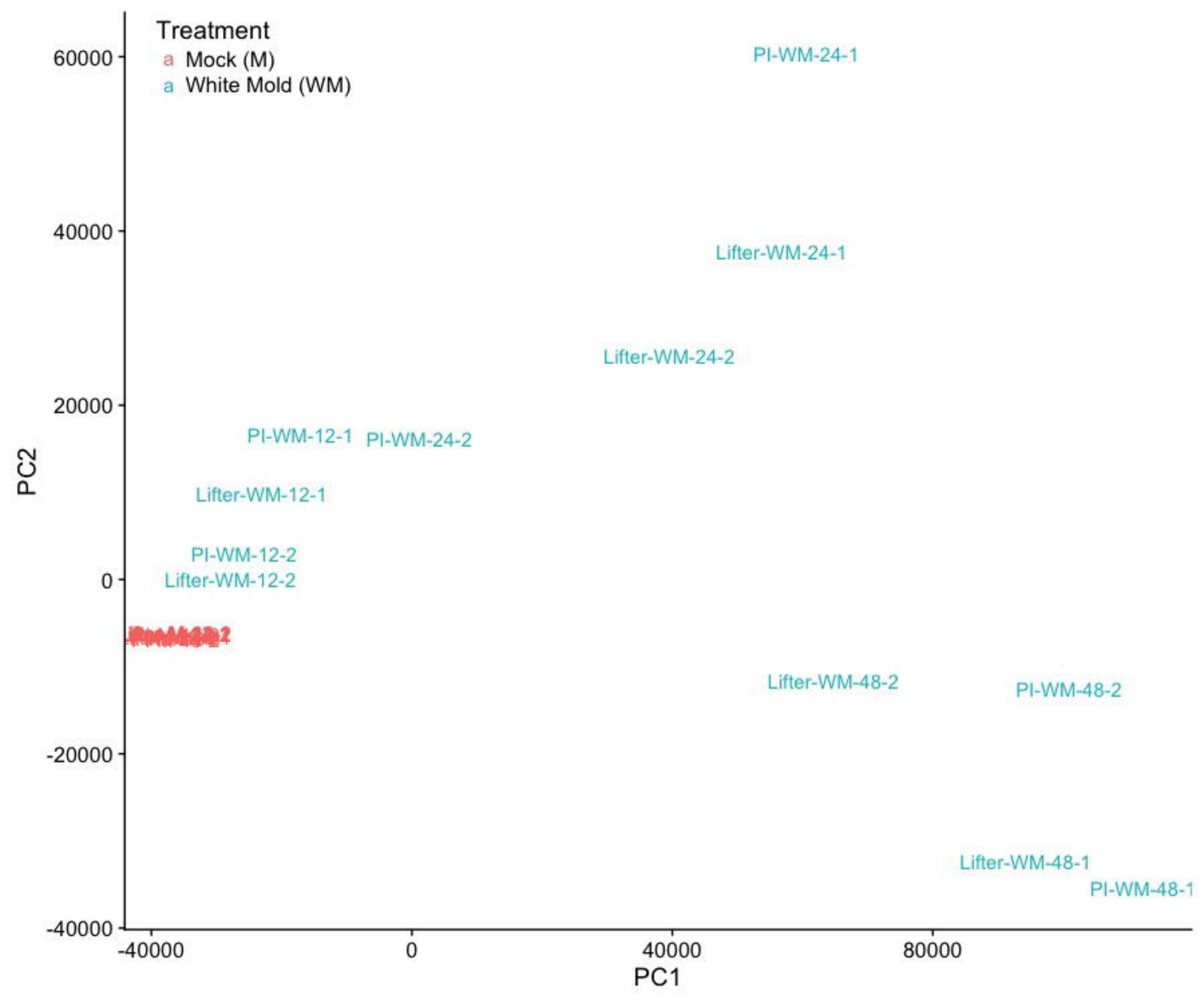

TABLE S5 Significant DEs of the 135 candidate transcripts controlling *S. sclerotiorum* resistance and susceptibility

FIGURE S1 Gene Ontology (GO) using singular enrichment analysis for transcripts in the cluster I. (a) Biological process. (b) Cellular component. (c) Molecular function.

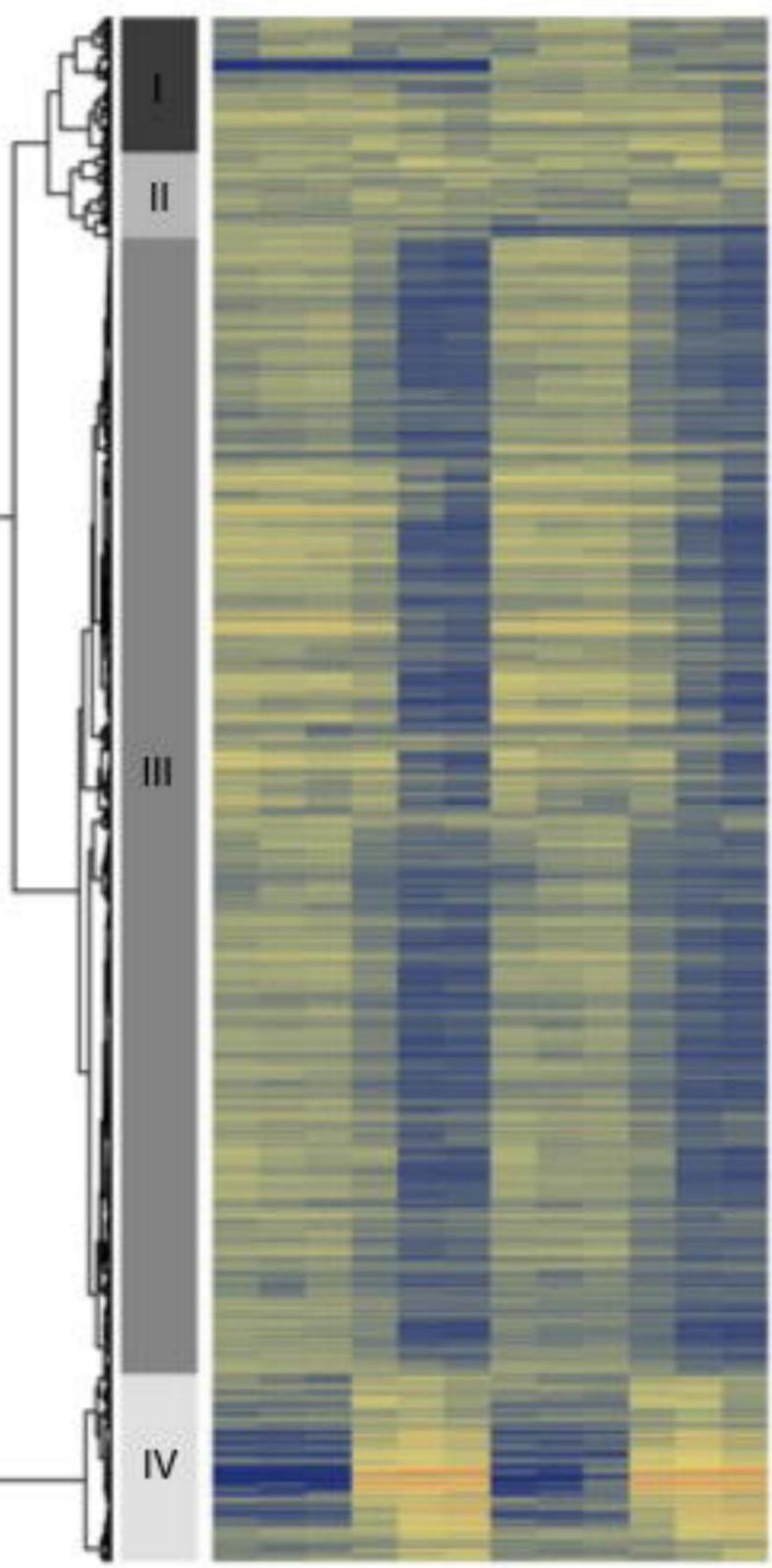
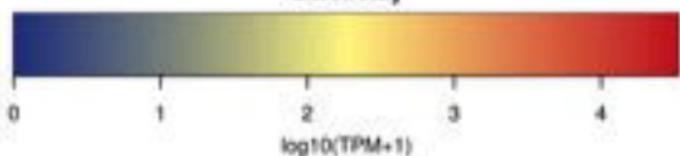
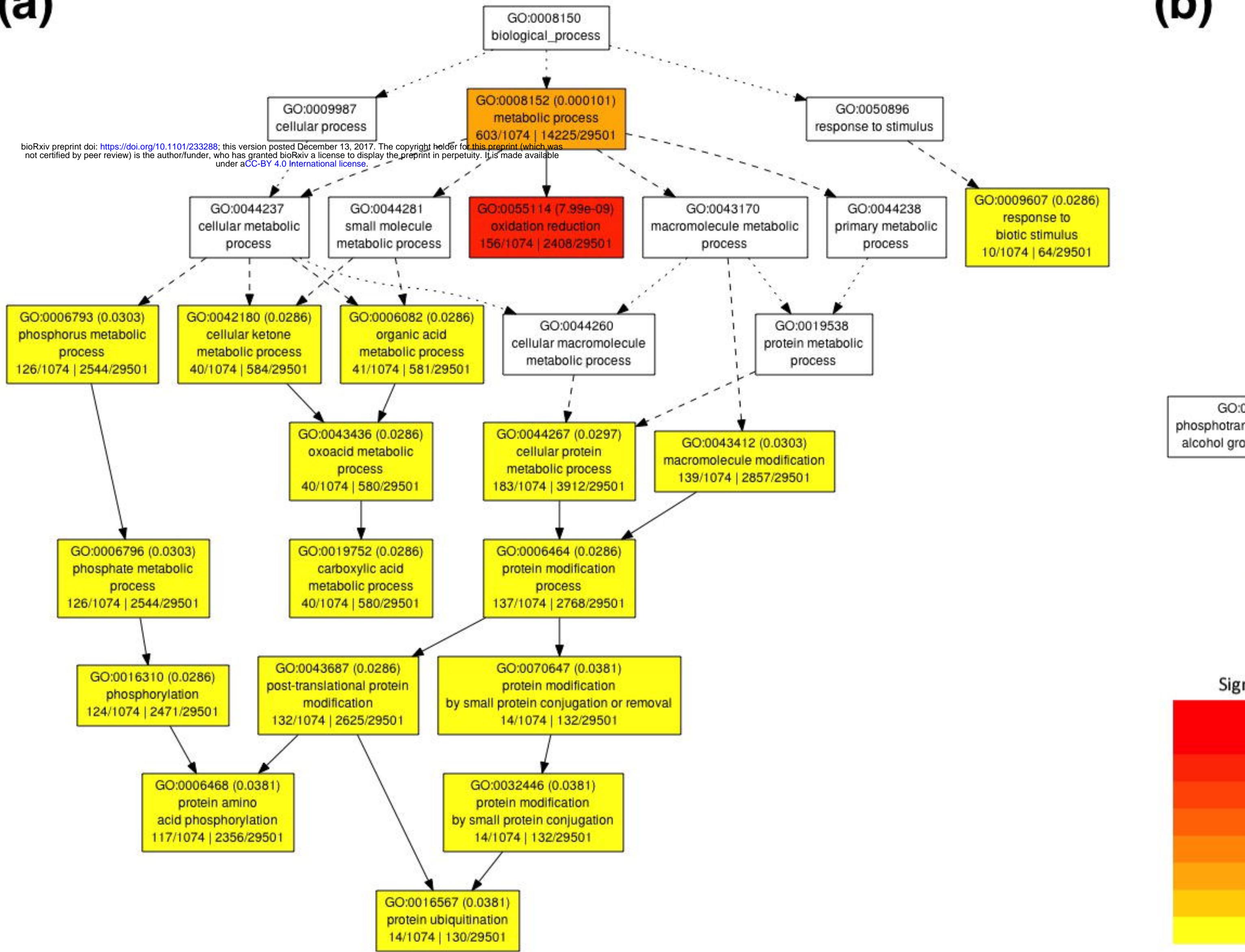
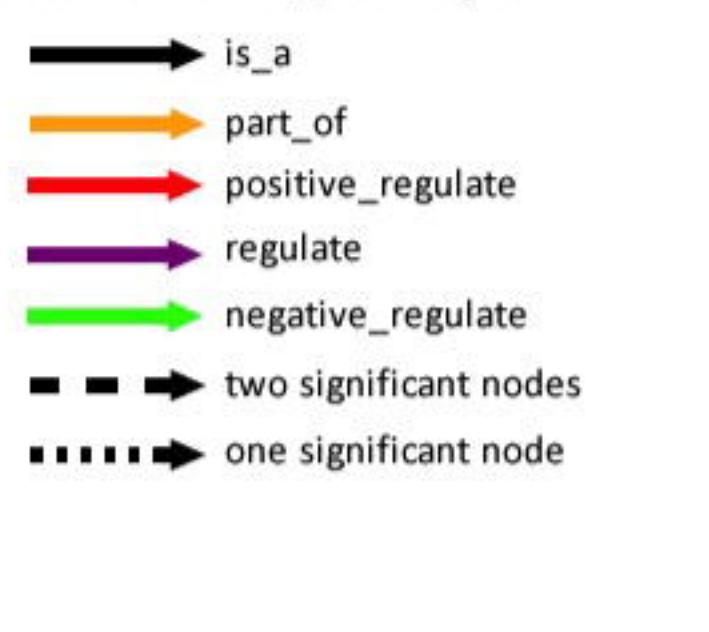


FIGURE S2 Gene Ontology (GO) using singular enrichment analysis for transcripts in the cluster II. (a) Biological process. (b) Cellular component. (c) Molecular function.

FIGURE S3 Gene Ontology (GO) using singular enrichment analysis for transcripts in the cluster III. Only some GO terms in the cellular component category were significant.




Color Key

L100r-M-12 L100r-M-24 L100r-M-48 L100r-VM4-12 L100r-VM4-24 L100r-VM4-48 P1240515-M-12 P1240515-M-24 P1240515-M-48 P1240515-VM4-12 P1240515-VM4-24 P1240515-VM4-48

(a)**(b)**

Significance levels and Arrow types Diagram

'Lifter'

WM Inoculation

bioRxiv preprint doi: <https://doi.org/10.1101/233288>; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Mock

11

35

61

33

71

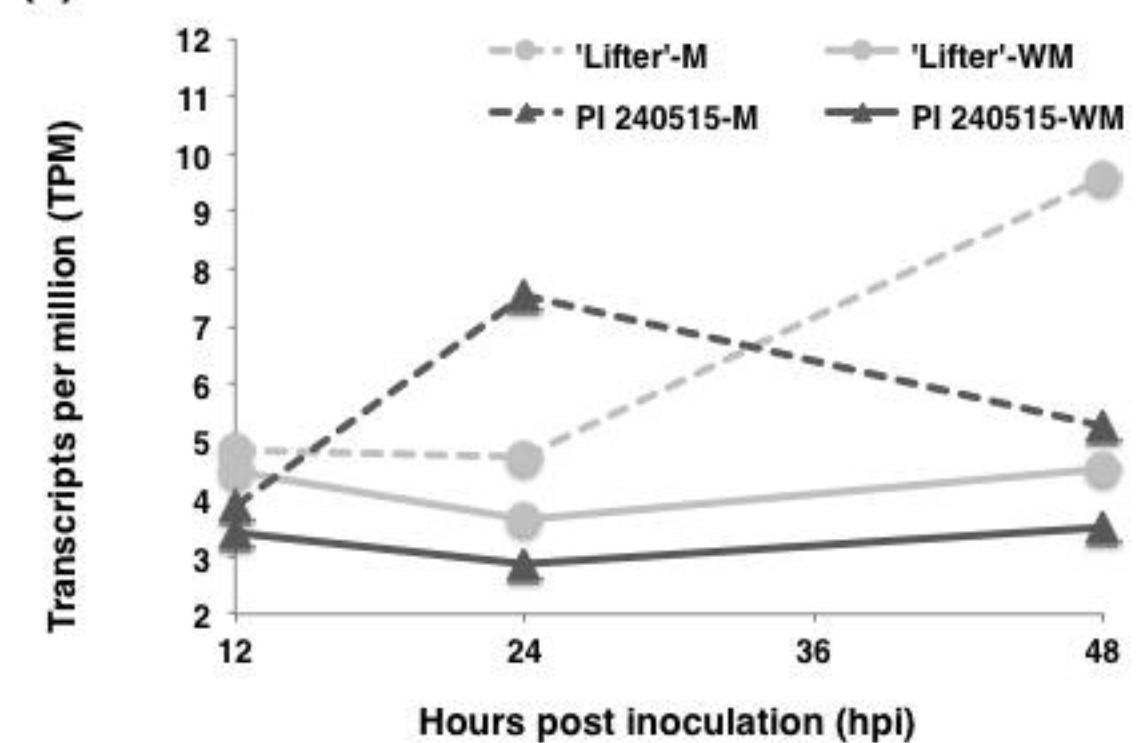
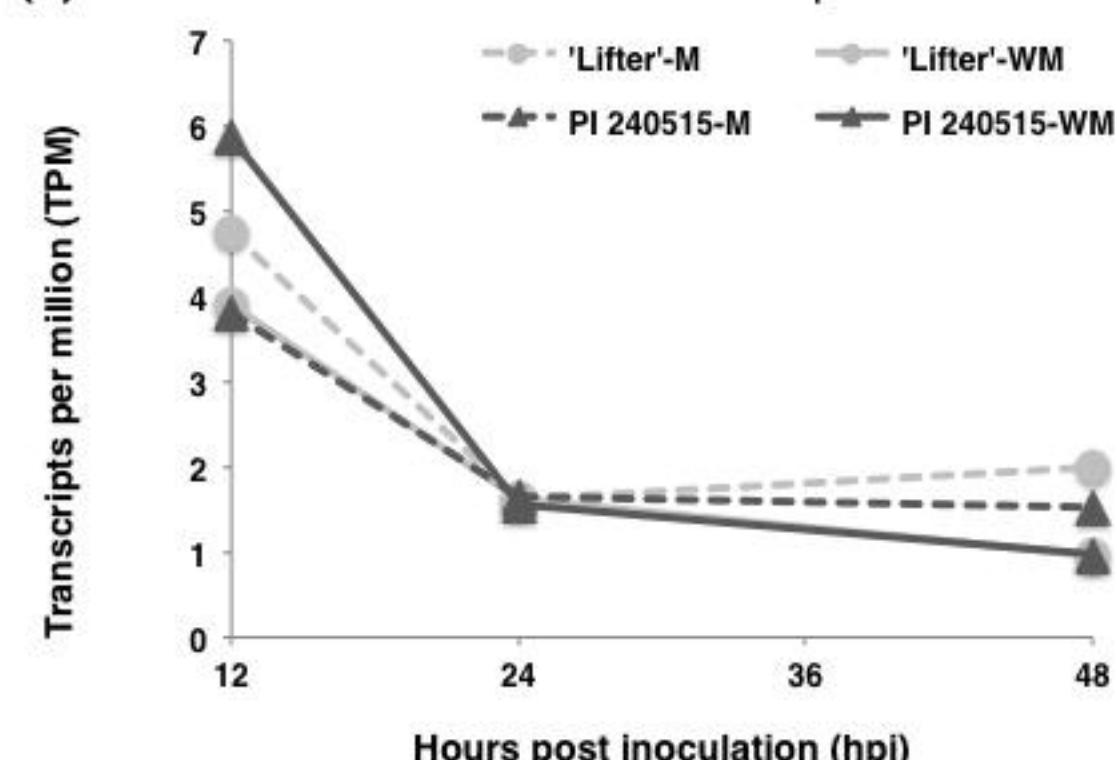
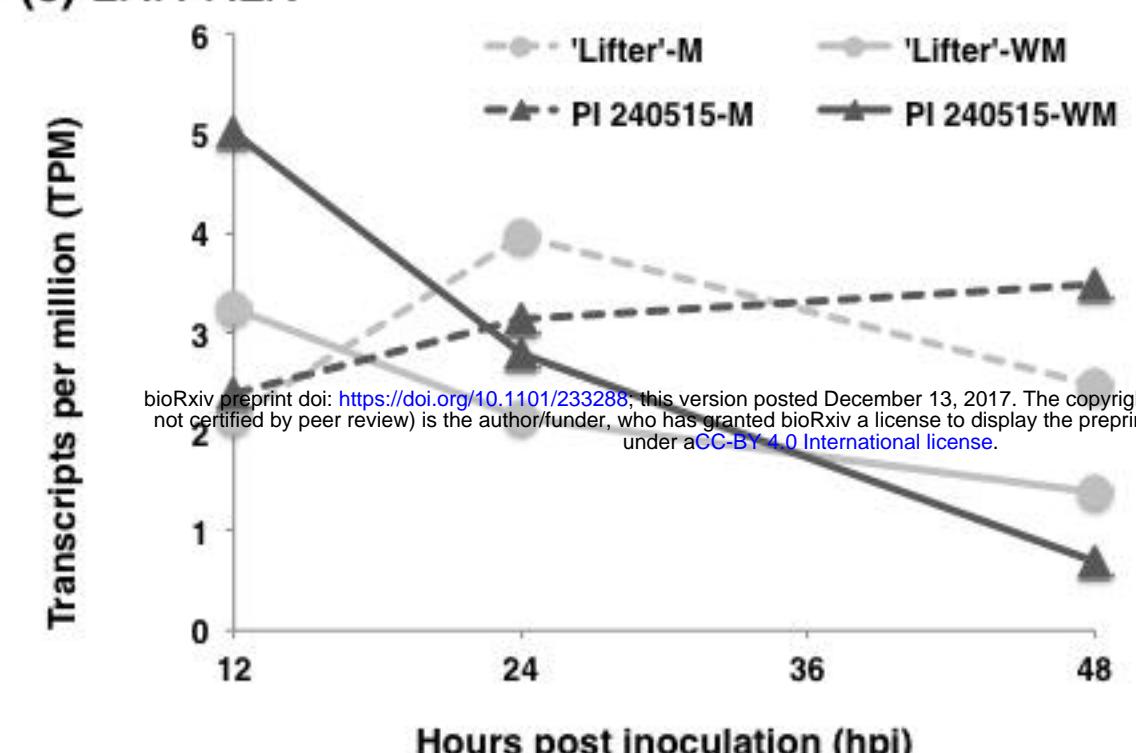
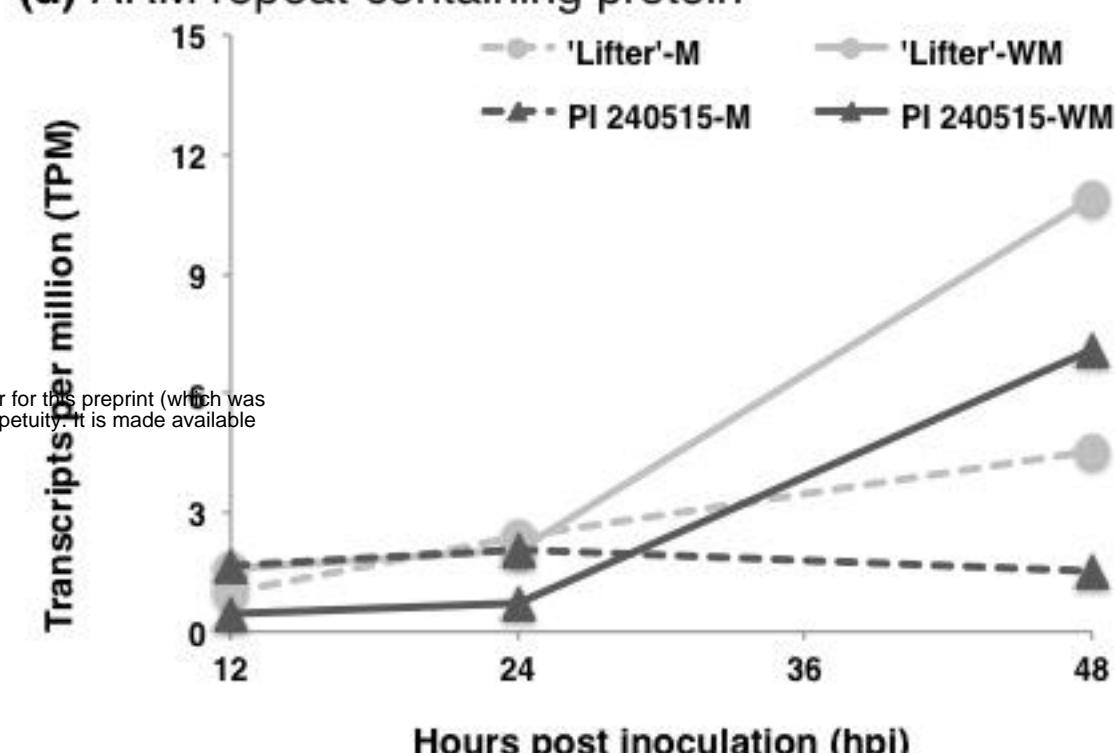
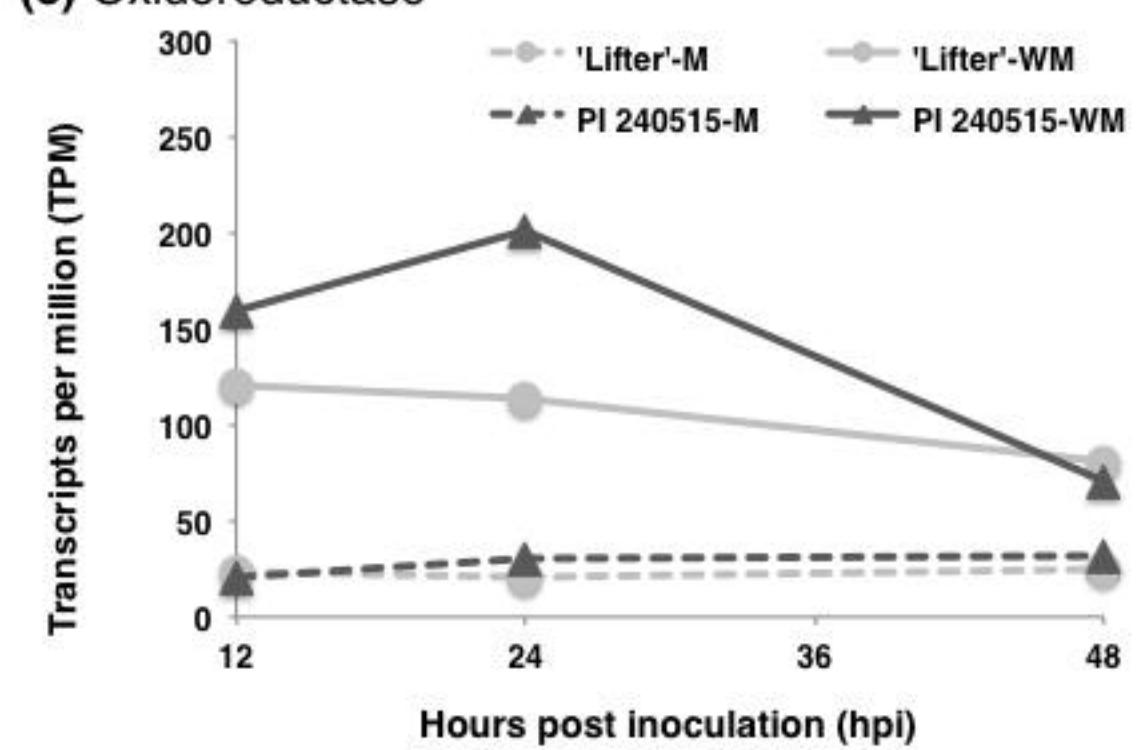
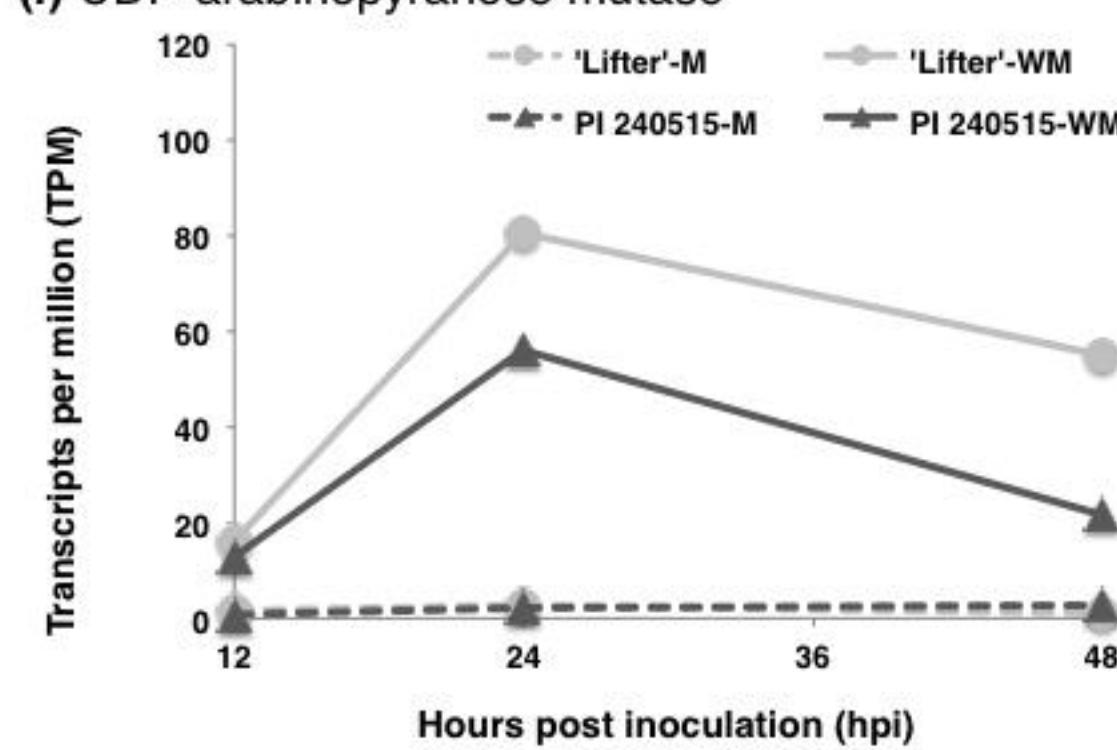
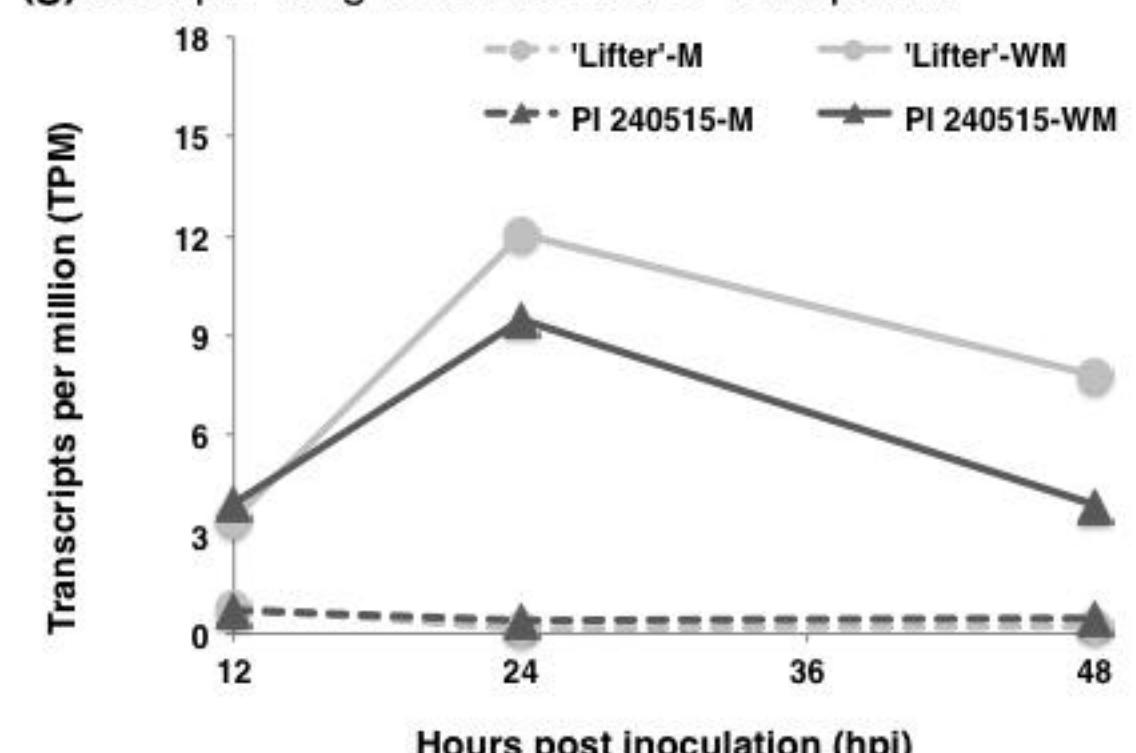
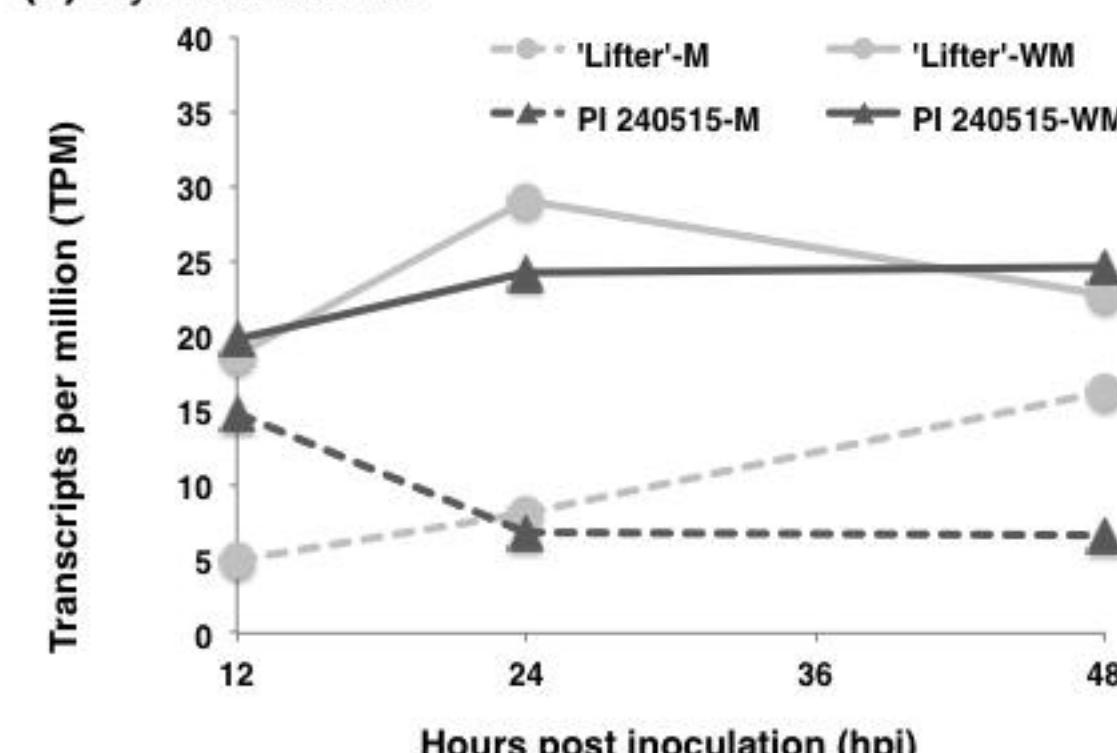
124

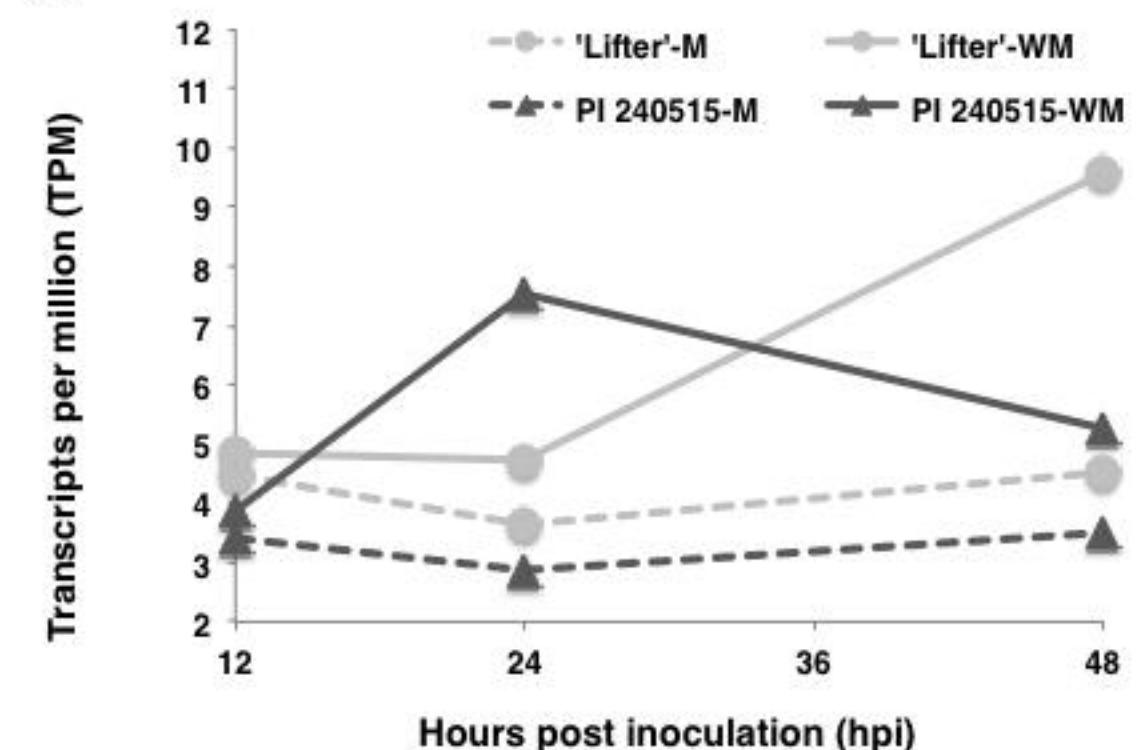
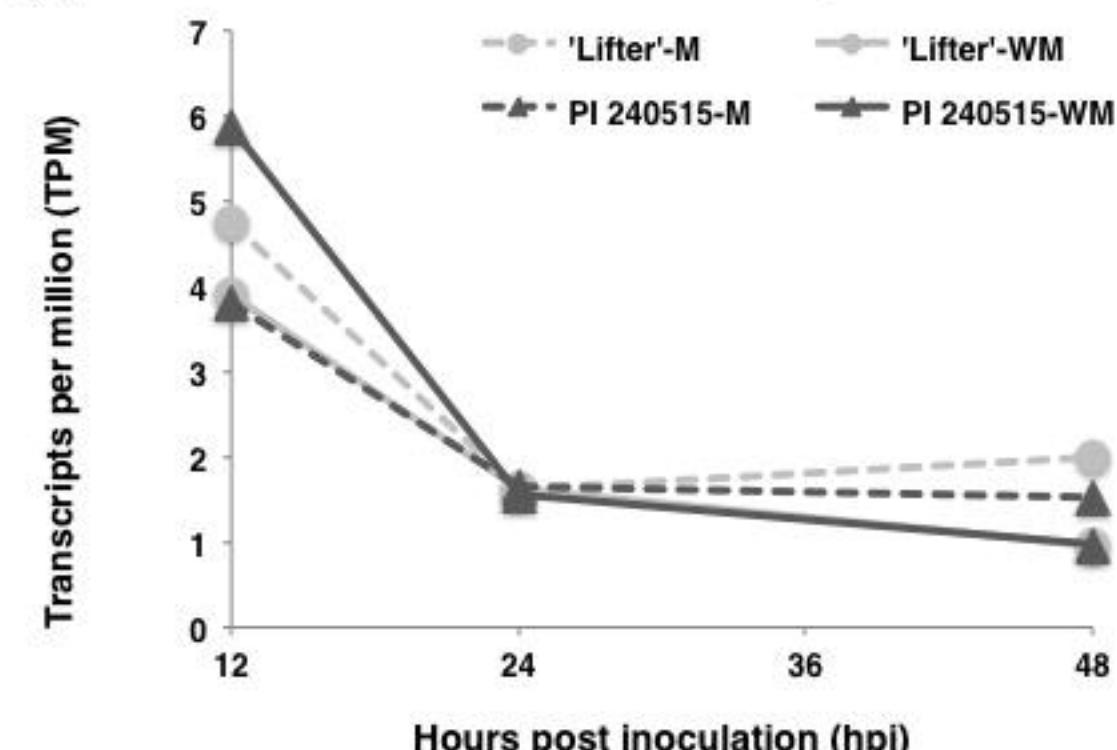
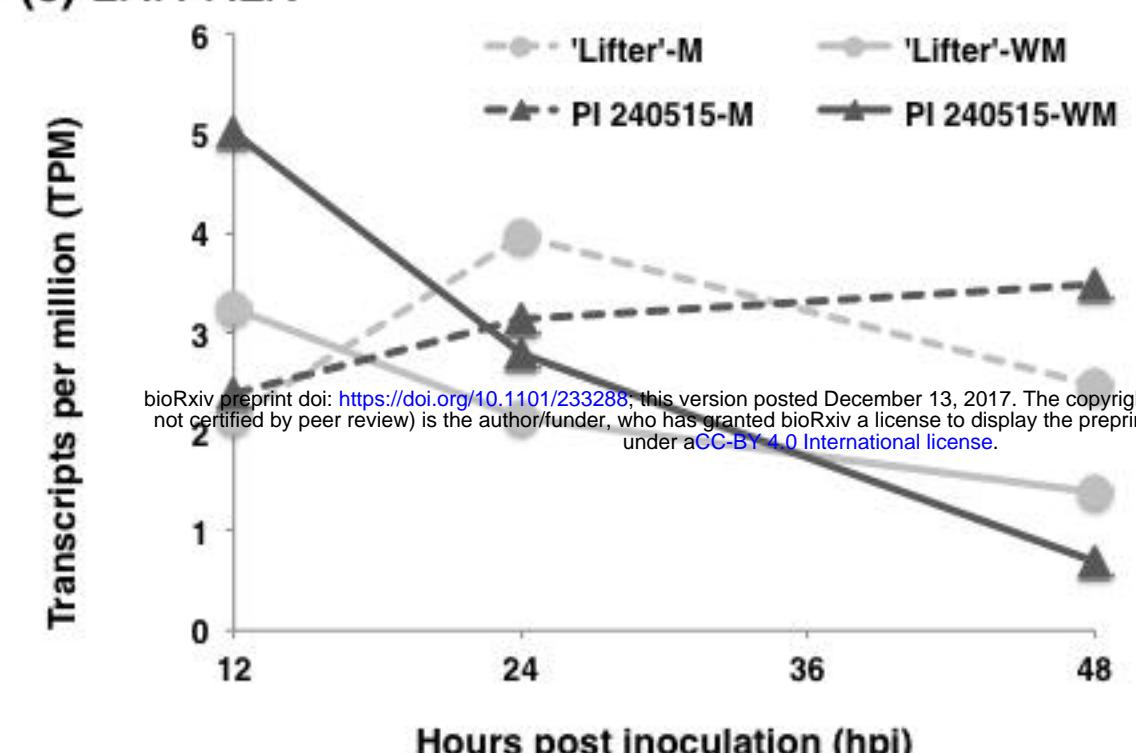
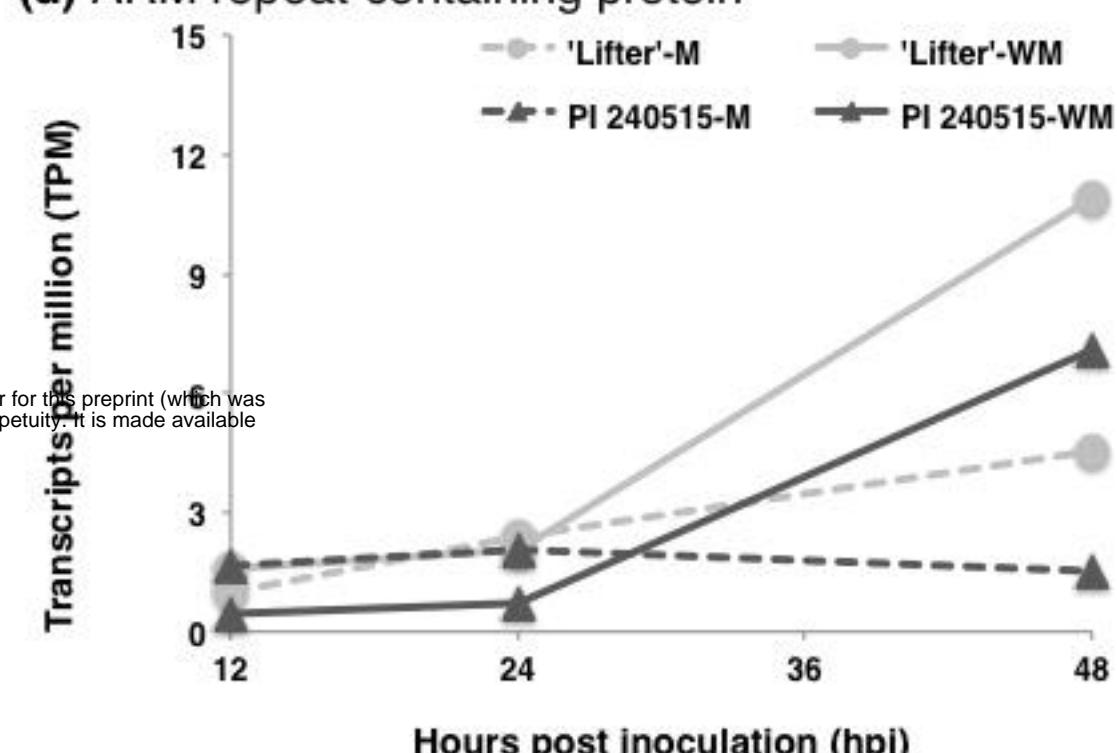
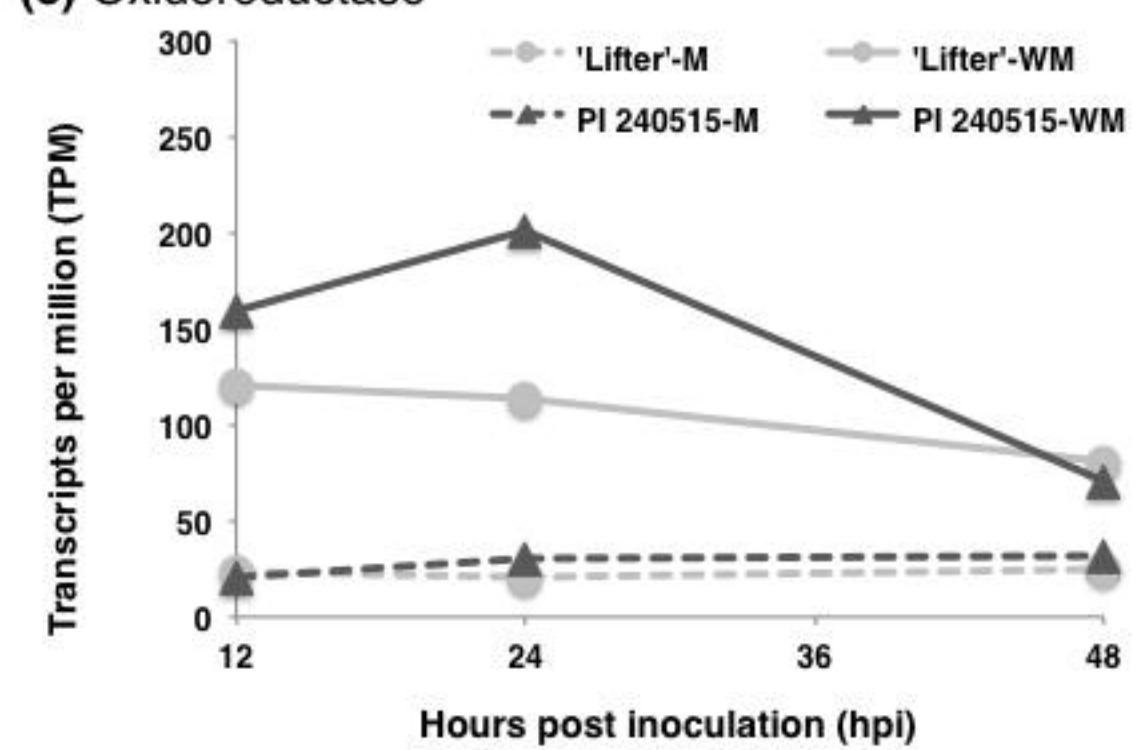
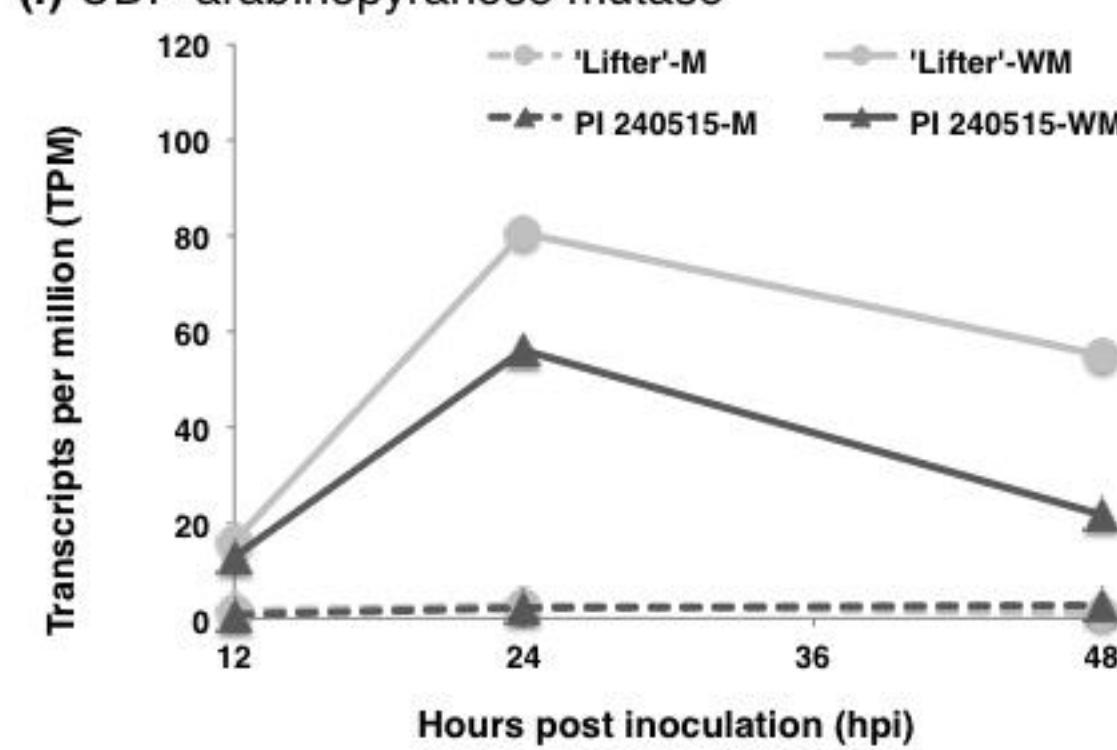
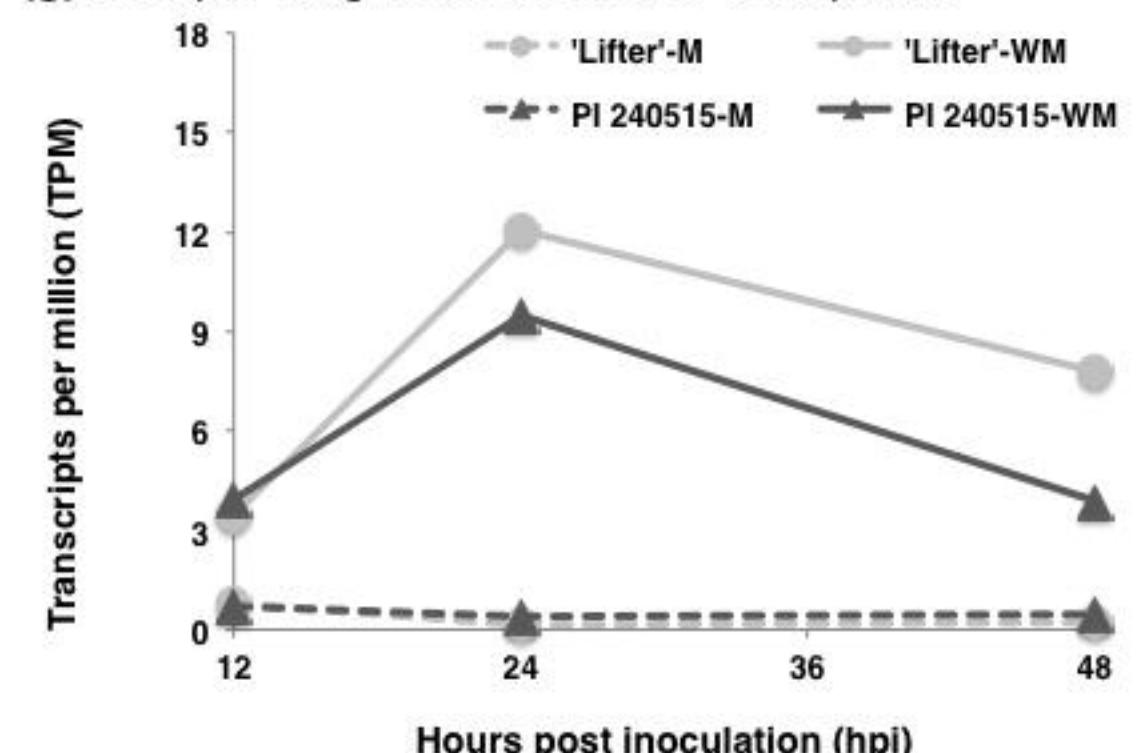
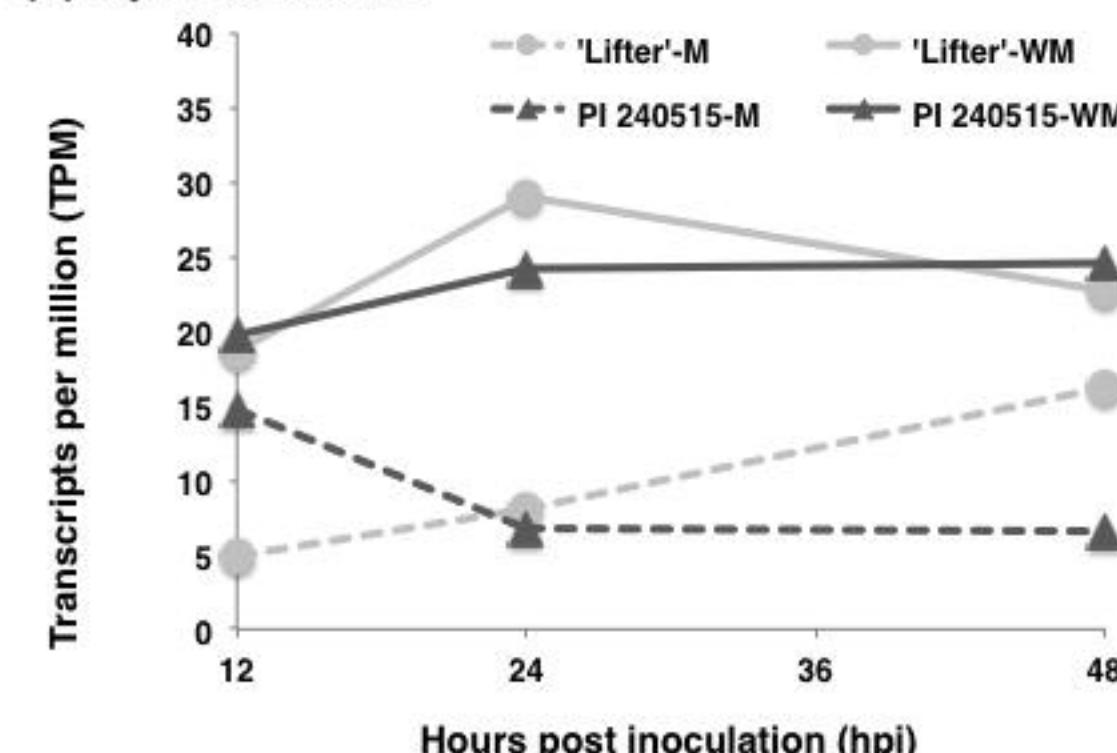
93

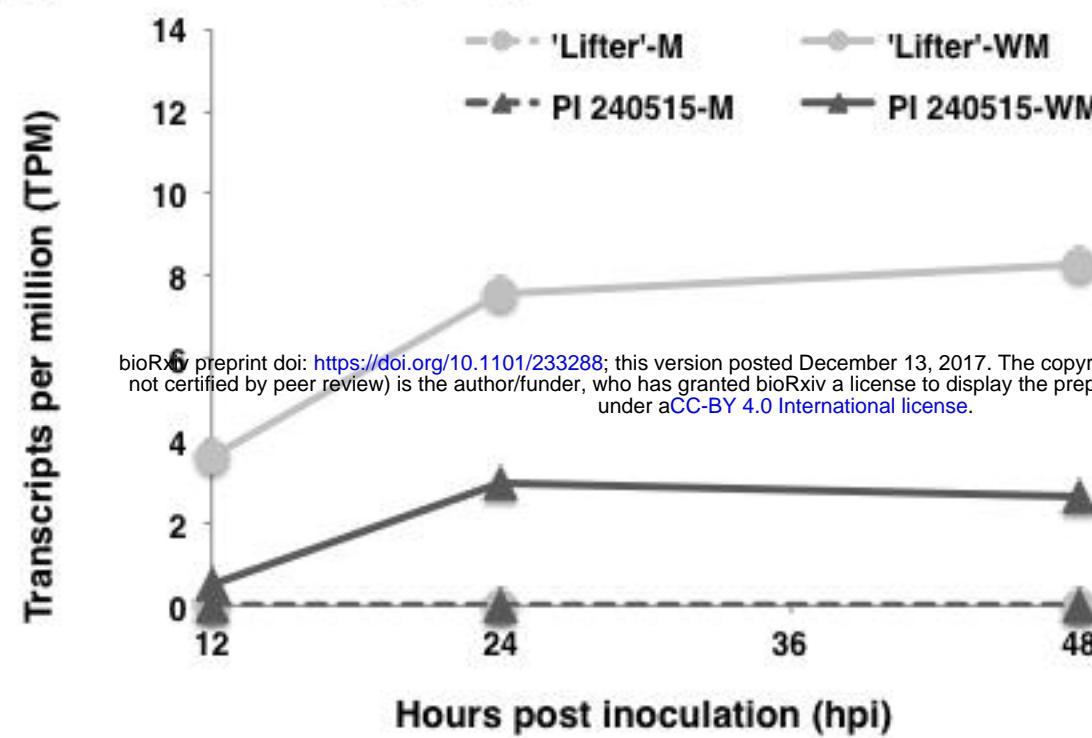
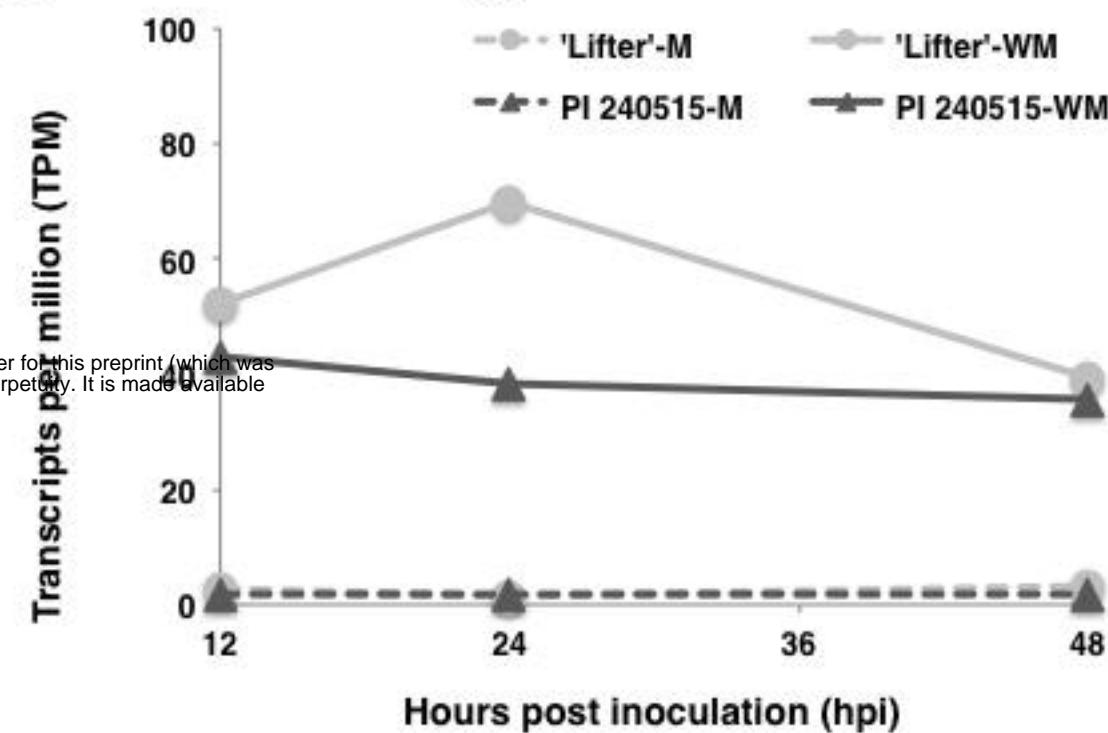
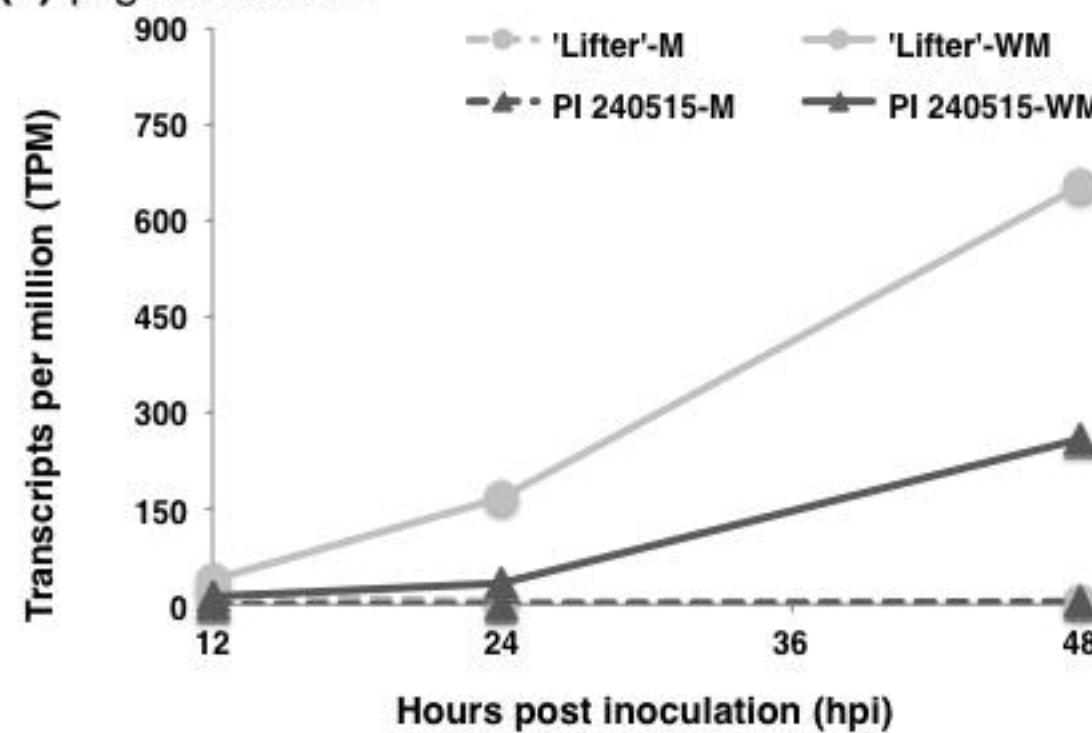
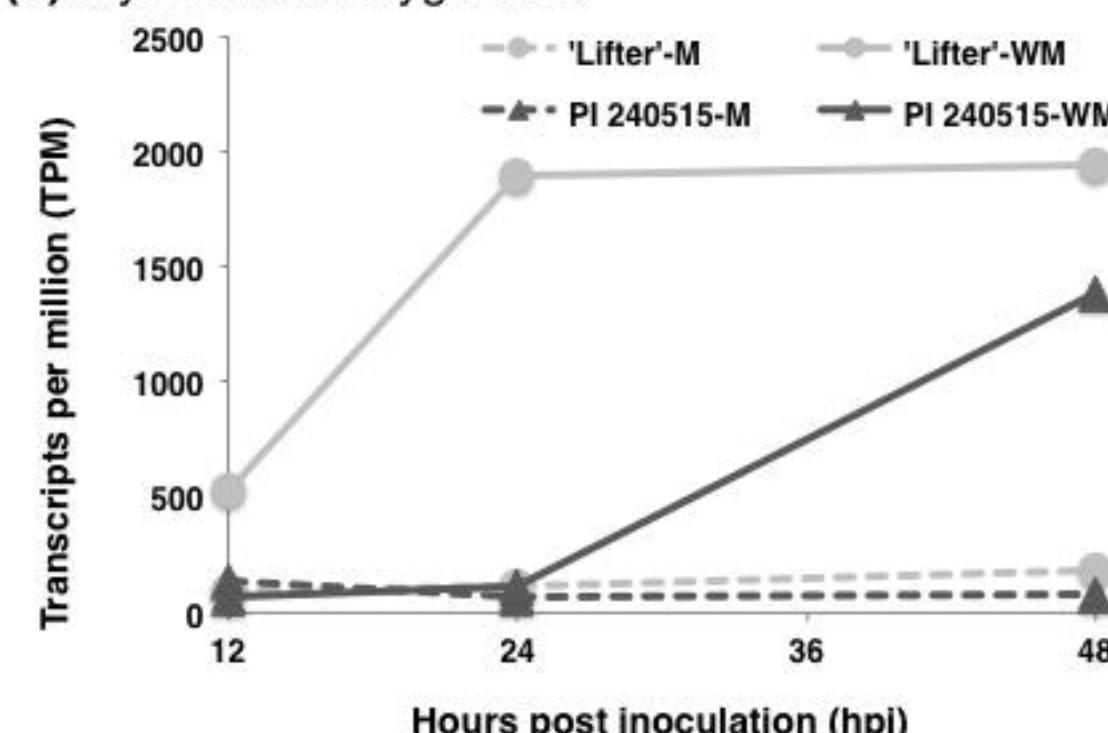
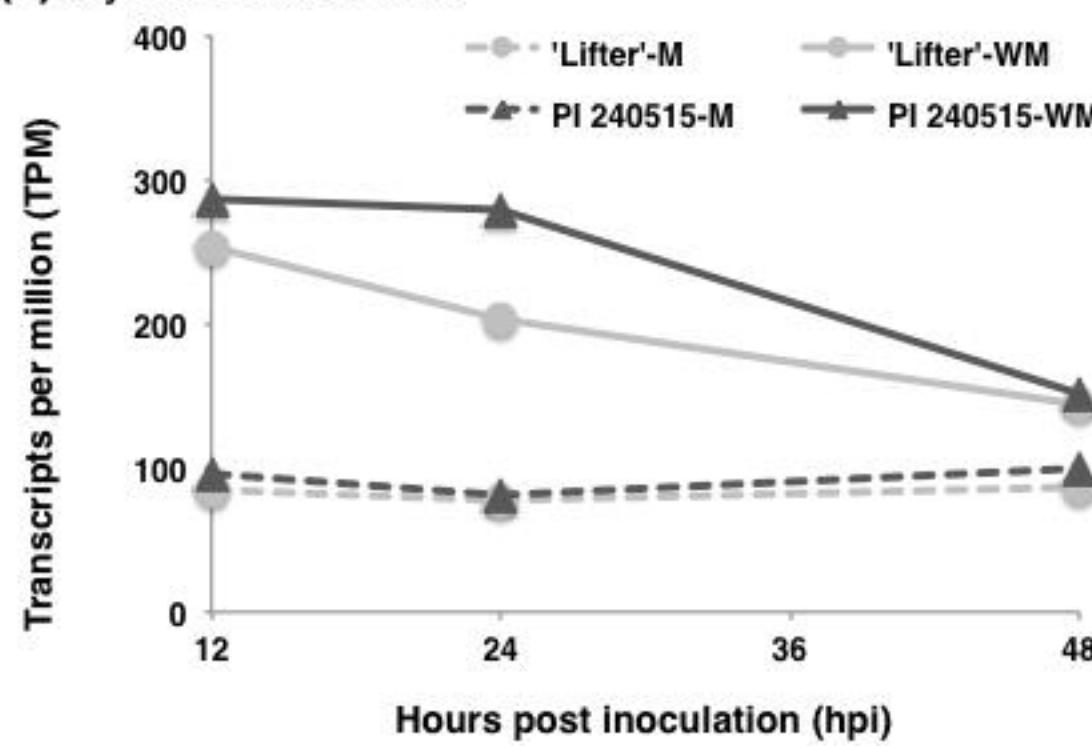
125

110

931









29









119






1474

11355

PI 240515

(a) Glutathione S-transferase**(b) CC-NBS-LRR disease resistance protein****(c) LRR-RLK****(d) ARM repeat-containing protein****(e) Oxidoreductase****(f) UDP-arabinopyranose mutase****(g) Multiple drug resistance ABC transporter****(h) Cytochrome b5**

(a) Glutathione S-transferase**(b) CC-NBS-LRR disease resistance protein****(c) LRR-RLK****(d) ARM repeat-containing protein****(e) Oxidoreductase****(f) UDP-arabinopyranose mutase****(g) Multiple drug resistance ABC transporter****(h) Cytochrome b5**

(a) ACT domain repeat protein**(b) VQ motif-containing protein****(c) β -glucosidase****(d) Myo-inositol oxygenase****(e) Cytochrome b-561**