

1 **Isolation of nucleic acids from low biomass samples: detection and removal**
2 **of sRNA contaminants**

3

4 *Anna Heintz-Buschart*, Dilmurat Yusuf, Anne Kaysen, Alton Etheridge, Joëlle V. Fritz, Patrick May,*
5 *Carine de Beaufort, Bimal B. Upadhyaya, Anubrata Ghosal, David J. Galas, and Paul Wilmes**

6

7 * To whom correspondence should be addressed. Paul Wilmes; Tel: 00352-466644-6188; Fax: 00352-
8 466644-6949; Email: paul.wilmes@uni.lu; Anna Heintz-Buschart; Tel: 0049-345-558-5225; Email:
9 anna.heintz-buschart@idiv.de

10

11 *Anna Heintz-Buschart*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg,
12 4362 Esch-sur-Alzette, Luxembourg; present address: German Centre for Integrative Biodiversity
13 Research (iDiv) Leipzig-Halle-Jena, 04103 Leipzig, Germany, and Department of Soil Ecology,
14 Helmholtz-Centre for Environmental Research GmbH (UFZ), 06120 Halle (Saale), Germany; email:
15 anna.heintz-buschart@idiv.de

16 *Dilmurat Yusuf*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362
17 Esch-sur-Alzette, Luxembourg; present address: Dilmurat Yusuf, Bioinformatics Group, Department
18 of Computer Science, University of Freiburg, Freiburg, 79110, Germany; email:
19 dyusuf@informatik.uni-freiburg.de

20 *Anne Kaysen*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-
21 sur-Alzette, Luxembourg; present address: Centre Hospitalier de Luxembourg, 1210 Luxembourg,
22 Luxembourg; email: anne.kaysen@ext.uni.lu

23 *Alton Etheridge*, Pacific Northwest Research Institute, Seattle, WA, 98122, USA; email:
24 aetheridge@pnri.org

25 *Joëlle V. Fritz*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-
26 sur-Alzette, Luxembourg; present address: Centre Hospitalier de Luxembourg, 1210 Luxembourg,
27 Luxembourg; email: joelle.penny-fritz@ext.uni.lu

28 *Patrick May*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-
29 sur-Alzette, Luxembourg; email: patrick.may@uni.lu
30 *Carine de Beaufort*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362
31 Esch-sur-Alzette, Luxembourg and Centre Hospitalier de Luxembourg, 1210 Luxembourg,
32 Luxembourg; email: carine.debeaufort@chl.lu
33 *Bimal B. Upadhyaya*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362
34 Esch-sur-Alzette, Luxembourg; email: upadhyaya.bimalbabu@gmail.com
35 *Anubrata Ghosal*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362
36 Esch-sur-Alzette, Luxembourg; present address: Department of Biology, Massachusetts Institute of
37 Technology, Cambridge, MA 02139, United States; email: anubrata@mit.edu
38 *David J. Galas*, Pacific Northwest Research Institute, Seattle, WA, 98122, USA; email:
39 dgalas@pnri.org
40 *Paul Wilmes*, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-
41 sur-Alzette, Luxembourg; email: paul.wilmes@uni.lu
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56 **ABSTRACT**

57 **Background:** Sequencing-based analyses of low-biomass samples are known to be prone to
58 misinterpretation due to the potential presence of contaminating molecules derived from laboratory
59 reagents and environments. Due to its inherent instability, contamination with RNA is usually
60 considered to be unlikely.

61 **Results:** Here we report the presence of small RNA (sRNA) contaminants in widely used microRNA
62 extraction kits and means for their depletion. Sequencing of sRNAs extracted from human plasma
63 samples was performed and significant levels of non-human (exogenous) sequences were detected.
64 The source of the most abundant of these sequences could be traced to the microRNA extraction
65 columns by qPCR-based analysis of laboratory reagents. The presence of artefactual sequences
66 originating from the confirmed contaminants were furthermore replicated in a range of published
67 datasets. To avoid artefacts in future experiments, several protocols for the removal of the
68 contaminants were elaborated, minimal amounts of starting material for artefact-free analyses were
69 defined, and the reduction of contaminant levels for identification of *bona fide* sequences using ‘ultra-
70 clean’ extraction kits was confirmed.

71 **Conclusion:** This is the first report of the presence of RNA molecules as contaminants in laboratory
72 reagents. The described protocols should be applied in the future to avoid confounding sRNA studies.

73

74 **KEYWORDS:**

75 RNA sequencing; artefact removal; exogenous RNA in human blood plasma; contaminant RNA; spin
76 columns

77

78

79

80

81

82

83

84 **BACKGROUND**

85 The characterization of different classes of small RNAs (sRNAs) in tissues and bodily fluids holds
86 great promise in understanding human physiology as well as in health-related applications. In blood
87 plasma, microRNAs and other sRNAs are relatively stable, and microRNAs in particular are thought
88 to reflect a system-wide state, making them potential biomarkers for a multitude of human diseases
89 [1]. Different mechanisms of sRNA delivery as a means of long-distance intercellular communication
90 have been recognized in several eukaryotes [2-7]. In addition, inter-individual, inter-species and even
91 inter-kingdom communications via sRNAs have been proposed [8-12], and some cases of microRNA-
92 based control by the host [13,14] or pathogens [15,16] have been demonstrated.

93 As exogenous RNAs have been detected in the blood plasma of humans and mice [17,18], the
94 potential for exogenous RNA-based signalling in mammals is the subject of significant current debate
95 [19,20]. Diet-derived exogenous microRNAs have been proposed to exert an influence on human
96 physiology [21,22], as have bacterial RNAs, which can be secreted in the protective environment of
97 outer membrane vesicles [23-25]. However, a heated discussion has at the same time been triggered
98 around the genuineness of the observations of these exogenous sRNAs in human blood [26-28] and
99 the possibility of dietary uptake of sRNAs [29-31]. This discussion happens at a time where DNA
100 sequencing-based analyses of low-biomass samples have been recognized to be prone to confounding
101 by contaminants [32]. From initial sample handling [33], to extraction kits [34], to sequencing
102 reagents [35], multiple sources of DNA contamination and artefactual sequencing data have been
103 described.

104 Here, we report the contamination of widely used silica-based columns for the isolation of micro- and
105 other small RNAs with RNA, which was apparent from sRNA sequencing data and was subsequently
106 validated by qPCR. These artefactual sRNA sequences were also apparent in numerous published
107 datasets. Furthermore, approaches for the depletion of the contaminants from the columns as well as
108 an evaluation of a newer ultra-clean kit are presented, along with the determination of a minimum safe
109 input volume to suppress the signal of the contaminant sequences in RNA sequencing data of human
110 blood plasma samples. The potential presence of *bona fide* exogenous sRNA species in human plasma

111 is examined. Finally, recommendations for the control and interpretation of sRNA sequencing data
112 from low-biomass samples are provided.

113

114 **RESULTS**

115 *Initial detection of exogenous sRNAs in human blood plasma*

116 sRNA was extracted from 100 μ l blood plasma samples of ten healthy individuals and sequenced
117 using regular RNeasy columns (workflow in **Figure 1**). The read profiles were mined for putative
118 exogenous (non-human) sequences (Material and Methods). Among the potential exogenous
119 sequences were 19 sequences that occurred with more than 1,000 counts per million (cpm) in all
120 samples. To rule out sequencing errors or contamination during sequencing library preparation, a
121 qPCR approach was developed to assess the presence of non-human sequences in the sRNA
122 preparations from plasma. Six of the 19 highly abundant sRNA sequences from plasma that could not
123 be mapped to the human genome were chosen for validation by qPCR (**Table 1**).

124

125 *qPCR assays for putative exogenous sRNAs in human blood plasma*

126 Synthetic sRNAs with the putative exogenous sequences found in plasma were poly-adenylated and
127 reverse transcribed to yield cDNA, used for optimisation of PCR primers and conditions (**Table 1**).
128 All primer sets yielded amplicons with single peaks in melting temperature analysis and efficiency
129 values above 80 %. The optimised qPCR assays were then employed to test for the presence of the
130 highly abundant sRNAs potentially representing exogenous sequences (workflow in **Figure 1**) in the
131 human plasma samples used for the initial sequencing experiment. The qPCR assays confirmed the
132 presence of these sRNAs in the sRNA preparations used for sequencing (**Figure 2A**), yielding
133 amplicons with melting temperatures expected from the synthetic sRNAs. To rule out contamination
134 of the water used in the sRNA preparations, a water control was also examined. No amplification was
135 observed in all but one assay, where amplification of a product with a different melting temperature
136 occurred (**Figure 2A**). Thus, for the assays, contamination of the water could be ruled out.

137

138

139 *Non-human sequences derived from column contaminants*

140 To analyse whether the validated non-human sequences occurring in the sRNA extracts of plasma
141 were present in any lab wear, a series of control experiments were carried out (**Additional Figure 1**).
142 When nucleic acid- and RNase-free water (QIAGEN) was used as input to the miRNeasy
143 Serum/Plasma kit (QIAGEN) instead of plasma (“mock-extraction”), all tested non-human sequences
144 could be amplified from the mock-extract (**Figure 2B**). This indicates that one of the components of
145 the extraction kit or lab-ware was contaminated with the non-human sequences. To locate the source
146 of contamination, mock-extractions were performed by omitting single steps of the RNA-isolation
147 protocol except for the elution step. Amplification from the resulting mock-extracts was tested for the
148 most abundant non-human sequence (sRNA 1). In all cases, the sRNA 1 could be amplified (data not
149 shown). We therefore carried out a simple experiment, in which nucleic acid- and RNase-free water
150 was passed through an otherwise untreated spin column. From this column eluate, all target sequences
151 could be amplified, in contrast to the nucleic acid- and RNase-free water (**Figure 2B**). The most
152 abundant non-human sequences in the plasma sequencing experiments were therefore most likely
153 contaminants originating from the untreated RNeasy columns.

154

155 *Detection of contaminant sequences in public datasets*

156 To assess whether our observation of contaminant sRNAs was also pertinent in other sequencing
157 datasets of low-input samples, the levels of confirmed contaminant sRNA sequences in published
158 datasets [17,18,29,36-53] were assessed. Irrespective of the RNA isolation procedure applied, non-
159 target sequences were detected (making up between 5 and over 99 % of the sequencing libraries for
160 the human samples; **Additional Table 1**). As shown in **Figure 3**, the six contaminant sequences
161 which had been confirmed by qPCR were found in all analysed samples of low biomass samples
162 which were extracted with regular miRNeasy kits, but the sequences were found at lower levels in
163 studies with more biomass input [29,37,39] and hardly ever [40] in studies where samples were
164 extracted using other methods (**Additional Table 1**). Within each study where the confirmed
165 contaminant sequences were detected, the relative levels of the contaminant sequences were
166 remarkably stable (**Additional Figure 2**).

167 *Depletion of contaminants from isolation columns*

168 In order to eliminate contamination from the columns to allow their use in studies of environmental
169 samples or potential exogenous sRNAs from human samples, we were interested in the nature of these
170 contaminants. The fact that they can be poly-adenylated by RNA-poly-A-polymerase points to them
171 being RNA. Treatment of the eluate with RNase prior to cDNA preparation also abolished
172 amplification (data not shown), but on-column DNase digest did not reduce their levels (**Figure 2C**).
173 These findings suggest that the contaminants were RNAs.

174 Contaminating sequences could potentially be removed from the RNeasy columns using RNase, but
175 as RNases are notoriously difficult to inactivate and RNases remaining on the column would be
176 detrimental to sRNA recovery, an alternative means of removing RNA was deemed desirable.
177 Loading and incubation of RNeasy columns with the oxidant sodium hypochlorite and subsequent
178 washing with RNase-free water to remove traces of the oxidant reduced amplifiability of unwanted
179 sRNA by at least 100 times (**Figure 2D**), while retaining the columns' efficiency to isolate sRNAs
180 from samples applied afterwards. Elimination of contaminant sRNAs from the RNeasy columns by
181 washing with RNase-free water (**Figure 2D**; average +/- standard deviation of the contaminant
182 reduction by 80 +/- 10 %) or treatment with sodium hydroxide (average +/- standard deviation of the
183 contaminant reduction by 70 +/- 15 %) was not sufficient to remove the contaminants completely.

184

185 *Ultra-clean extraction kits*

186 Recently, RNeasy columns from an ultra-clean production have become available from QIAGEN
187 within the miRNeasy Serum/Plasma Advanced Kit. We compared the levels of the previously
188 analysed contaminant sequences in the flow-through of mock-extractions using 4 batches of ultra-
189 clean RNeasy columns to 2 batches of the regular columns by qPCR. In all cases, marked reductions
190 in the contaminant levels were observed in the clean columns (**Figure 4A**; 4 to 4,000 fold; median 60).
191 To obtain an overview over potential other contaminants, sRNA sequencing of the mock-extracts
192 from these six batches of spin columns was performed. With regards to the six previously analysed
193 contaminant sequences, the results were similar to those of the qPCR assays (**Additional Figure 3**).
194 Additionally, for the ultra-clean RNeasy columns, a smaller spectrum of other potential contaminant

195 sequences was observed (**Figure 4B&C**) and those sequences made up a smaller proportion of the
196 eluate sequences (**Figure 4D**).

197 As our initial analyses of plasma samples extracted using regular RNeasy spin columns had revealed
198 contaminant levels of up to 7000 cpm, we were interested to define a safe input amount for human
199 plasma for both column types that would be sufficient to suppress the contaminant signals to below
200 100 cpm. For this, we performed a titration experiment (**Additional Figure 3B**), isolating sRNA from
201 a series of different input volumes of the same human plasma sample on four batches of RNeasy
202 columns (2 batches of regular columns, 2 batches of ultra-clean columns) with subsequent sequencing.
203 As expected from reagent contaminants, the observed levels of the contaminant sequences were
204 generally inversely dependent on the plasma input volume (**Figure 5A**). In addition and in accordance
205 with the earlier mock-extraction results, the levels of contaminant sequences were lower or they were
206 completely absent in the ultra-clean columns (see levels for 100 μ l input in **Figure 5B**). An input
207 volume of 100 μ l plasma was sufficient to reduce all contaminant sequences to below 100 cpm when
208 using the ultra-clean spin columns.

209

210 *Potential plasma-derived exogenous RNAs*

211 Finally, to detect potential exogenous sRNAs, we mined the plasma datasets used in the well-
212 controlled titration experiment for sequences that do not originate from the human genome and were
213 not detected in any of the mock-extracts. On average, 5 % of the sequencing reads of sRNA isolated
214 from plasma did not map to the human genome. 127 sequences which did not map to the human
215 genome assembly hg38 were detected in the majority of the plasma samples and were not represented
216 in the control samples (empty libraries, column eluates or water). Out of these, 3 sequences had low
217 complexity and 81 could be matched to sequences in the NCBI-nr that are not part of the current
218 version of the human genome assembly (hg38) but annotated as human sequences or to sequences
219 from other vertebrates. Of the 43 remaining sequences which matched to bacterial, fungal or plant
220 sequences, 22 matched best to genera which have previously been identified as a source of
221 contaminations of sequencing kits [35]. The remaining 21 sequences displayed very low (up to 47
222 cpm), yet consistent relative abundances in the 28 replicates of a plasma sample from the one healthy

223 individual. Their potential origins were heterogeneous, including fungi and bacteria, with a notable
224 enrichment in *Lactobacillus* sequences (**Additional Table 2**).

225

226 **DISCUSSION**

227 Several instances of contamination of laboratory reagents with DNA, which can confound the analysis
228 of sequencing data, have been reported in recent years [32,35,54,55]. In contrast, the contamination of
229 reagents with RNA has not yet been reported. Contamination with RNA is usually considered very
230 unlikely, due to the ubiquitous presence of RNases in the environment and RNA's lower chemical
231 stability due to being prone to hydrolysis, especially at higher pH. However, our results suggest that
232 the detected contaminants were not DNA, but RNA, because treatment with RNase and not DNase
233 could decrease the contaminant load. In addition, the contaminating molecules could not be amplified
234 without poly-adenylation and reverse-transcription. The stability of the contaminants is likely due to
235 the extraction columns being RNase-free and their silica protecting loaded sRNAs from degradation.
236 While the results presented here focused on one manufacturer's spin column-based extraction kit, for
237 which contaminants were validated, other RNA-stabilizing or extraction reagents may carry RNA
238 contaminations. This is suggested by previously observed significant batch effects of sequencing data
239 derived from samples extracted with a number of different extraction kits [27]. Based on the analysis
240 of the published data sets, where significant numbers of sequences that did not map to the source
241 organism's genome were found independent of the RNA extraction kit used, the potential
242 contaminants in other extraction kit would have different sequences than the ones confirmed by qPCR
243 here.

244 The results presented here should help to assess the question whether exogenous sRNA species
245 derived from oral intake [18] or the human microbiome [17,38,56] really occur frequently in human
246 plasma or are merely artefacts [26]. While the limited data from this study (one healthy person) points
247 to very low levels and a small spectrum of potential foreign sRNAs, properly controlled studies using
248 laboratory materials without contaminants on individuals or animals with conditions that limit
249 gastrointestinal barrier function will shed more light on this important research question in the future.

250

251 **CONCLUSIONS**

252 The reported contaminant sequences can confound studies of organisms whose transcriptomes contain
253 sequences similar to the contaminants. They can also give rise to misinterpretation in studies without
254 *a priori* knowledge of the present organisms as well as lead to the overestimation of miRNA yields in
255 low-biomass samples. Therefore, based on the present study, care has to be taken when analysing
256 low-input samples, in particular for surveys of environmental or otherwise undefined sources of
257 RNAs. A number of recommendations can be conceived based on the presented data (**Figure 6**):
258 Extraction columns should be obtained as clean as possible. Simple clean-up procedures can also
259 reduce contaminants. The input mass of sRNA should be as high as possible, e.g. for human plasma
260 volumes above 100 µl are preferable. Extraction controls should always be sequenced with the study
261 samples. To facilitate library preparation for the extraction controls, spike-in RNAs with defined
262 sequences can be used. They should be applied at concentrations similar to the levels of RNA found
263 in the study samples. As the spike-in signal can drown out the contaminants, it is necessary to avoid
264 too high concentrations for the spike-ins. Sequences found in the extraction controls should be treated
265 as artefacts and removed from the sequencing data. Independent techniques that are more robust to
266 low input material, such as qPCR or ddPCR, should be applied to both study samples and controls in
267 case of doubt.

268

269 **METHODS**

270 *Blood plasma sampling*

271 Written informed consent was obtained from all blood donors. The sample collection and analysis was
272 approved by the Comité d'Ethique de Recherche (CNER; Reference: 201110/05) and the National
273 Commission for Data Protection in Luxembourg. Blood was collected by venepuncture into EDTA-
274 treated tubes. Plasma was prepared immediately after blood collection by centrifugation (10 min at
275 1,000 x g) and platelets were depleted by a second centrifugation step (5 min at 10,000 x g). The
276 blood plasma was flash-frozen in liquid nitrogen and stored at -80 °C until extraction.

277

278

279 *Use of sRNA isolation columns*

280 Unless stated otherwise, 100 μ l blood plasma was lysed using the QIAzol (QIAGEN) lysis reagent
281 prior to binding to the column, as recommended by the manufacturer. RNeasy MinElute spin columns
282 from the miRNeasy Serum/Plasma Kit (QIAGEN) were then loaded, washed and dried, and RNA was
283 eluted as recommended by the manufacturer's manual. We further tested four batches of ultra-clean
284 RNeasy MinElute columns, which underwent an ultra-clean production process (UCP) to remove
285 potential nucleic acid contaminations, including environmental sRNAs. These columns were treated
286 as recommended in the manual of the miRNeasy Serum/Plasma Advanced Kit (QIAGEN). All eluates
287 were stored at -80 °C until analysis.

288 For the mock-extractions, ultra-clean or regular RNeasy columns were loaded with the aqueous phase
289 from a QIAzol extraction of nucleic acid- and RNase-free water (QIAGEN) instead of plasma. For
290 mock-extractions with a defined spike-in, the aqueous phase was spiked with synthetic *hsa-miR-486-*
291 3p RNA (Eurogentec) to yield 40,000 copies per μ l eluate. To obtain column eluates, spin columns
292 were not loaded, washed or dried. Instead, 14 μ l of RNase-free water (QIAGEN) was applied directly
293 to a new column and centrifuged for 1 min.

294 To eliminate environmental sRNAs from the regular RNeasy columns, the columns were incubated
295 with 500 μ l of a sodium hypochlorite solution (Sigma; diluted in nuclease free water (Invitrogen) to
296 approx. 0.5 %) for 10 min at room temperature. Columns were subsequently washed 10 times with
297 500 μ l nuclease free water (Invitrogen), before use. Similarly, in the attempt to remove sRNAs by
298 application of sodium hydroxide, 500 μ l 50 mM NaOH were incubated on the spin columns for 5 min,
299 followed by incubation with 50 mM HCl for 5 min, prior to washing the columns 10 times with
300 500 μ l nuclease-free water (Invitrogen) before use.

301

302 *Real-time PCR*

303 5 μ l of eluted RNA was polyadenylated and reverse-transcribed to cDNA using the qScript
304 microRNA cDNA Synthesis Kit (Quanta BIOSCIENCES). 1 μ l of cDNA (except for the initial
305 plasma experiment, where 0.2 μ l cDNA were used) was amplified by use of sequence-specific
306 forward primers (see **Table 1**, obtained from Eurogentec) or the miR486-5p specific assay from

307 Quanta BIOSCIENCES, PerfeCTa Universal PCR Primer and PerfeCTa SYBR Green SuperMix
308 (Quanta BIOSCIENCES) in a total reaction volume of 10 µl. Primers were added at a final
309 concentration of 0.2 µM. Primer design and amplification settings were optimised with respect to
310 reaction efficiency and specificity. Efficiency was calculated using a dilution series covering seven
311 orders of magnitude of template cDNA reverse transcribed from synthetic sRNA. Real-time PCR was
312 performed on a LightCycler® 480 Real-Time PCR System (Roche) including denaturation at 95 °C
313 for 2 min and 40 cycles of 95 °C for 5 sec, 54-60 °C for 15 sec (for annealing temperatures see **Table**
314 **1**), and 72 °C for 15 sec. All reactions were carried out in duplicates. No-template-controls were
315 performed analogously with water as input. Cp values were obtained using the second derivative
316 procedure provided by the LightCycler® 480 Software, Version 1.5. Cp data were analysed using the
317 comparative C_T method ($\Delta\Delta C_T$).

318

319 *sRNA seq: library preparation and sequencing*

320 sRNA libraries were made using the TruSeq small RNA library preparation kit (Illumina) according
321 to the manufacturer's instructions, except that the 3' and 5' adapters were diluted 1:3 before use.
322 PCR-amplified libraries were size selected using a PippinHT instrument (Sage Science), collecting the
323 range of 121-163 bp. Completed, size-selected libraries were run on a High Sensitivity DNA chip on
324 a 2100 Bioanalyzer (Agilent) to assess library quality. Concentration was determined by qPCR using
325 the NEBNext Library Quant kit (NEB). Libraries were pooled, diluted and sequenced with 75 cycle
326 single-end reads on a NextSeq 500 (Illumina) according the manufacturer's instructions. The
327 sequencing reads can be accessed at NCBI's short read archive via PRJNA419919 (for sample
328 identifiers and accessions see **Additional Table 1**).

329

330 *Initial analysis: plasma-derived sRNA sequencing data*

331 For the initial analysis of plasma-derived sRNA sequencing data, FastQC
332 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>) was used to determine over-represented
333 primer and adapter sequences, which were subsequently removed using cutadapt
334 (<http://dx.doi.org/10.14806/ej.17.1.200>). This step was repeated recursively until no over-represented

335 primer or adapter sequences were detected. 5'-Ns were removed using fastx_clipper of the FASTX-
336 toolkit. Trimmed reads were quality-filtered using fastq_quality_filter of the FASTX-toolkit (with -q
337 30 -p 90; http://hannonlab.cshl.edu/fastx_toolkit). Finally, identical reads were collapsed, retaining the
338 read abundance information using fastx_collapse of the FASTX-toolkit. The collapsed reads were
339 mapped against the human genome (GRCh37), including RefSeq exon junction sequences, as well as
340 prokaryotic, viral, fungal, plant and animal genomes from Genbank [57] and the Human Microbiome
341 Project [58] using Novoalign V2.08.02 (<http://www.novocraft.com>; **Additional Table 3**). These
342 organisms were selected based on the presence in the human microbiome, human nutrition and the
343 public availability of the genomes. As reads were commonly mapping to genomic sequences of
344 multiple organisms, and random alignment can easily occur between short sequences and reference
345 genomes, the following approach was taken to refine their taxonomic classification: First, reads were
346 attributed to the human genome if they mapped to it. Secondly, reads mapping to each reference
347 genome was compared to mapping of a shuffled decoy read set. Based on this, the list of reference
348 genomes was limited to the genomes recruiting at least one read with a minimum length of 25 nt. Loci
349 on non-human genomes were established by the position of the mapping reads. The number of
350 mapping reads per locus was adjusted using a previously established cross-mapping correction [59].
351 Finally, the sequences of the loci, the number of mapping reads and their potential taxonomy were
352 extracted.

353

354 *sRNA sequence analysis of controls*

355 For the subsequent analysis of the mock-extractions, column eluates and nucleic acid- and RNase-free
356 water, and no-template controls as well as human plasma samples, extracted using either regular or
357 ultra-clean RNeasy columns, the trimming and quality check of the reads was done analogously to the
358 description above. Collapsed reads were mapped against the most recent version of the human
359 genome (hg38) either to remove operator-derived sequences or to distinguish the reads mapping to the
360 human genome in the different datasets. Sequencing was performed in two batches, with one batch
361 filling an entire flow cell, and one mixed with other samples. The latter batch of samples was
362 sequenced on the same flow cell as sRNAs extracted from *Salmonella typhimurium* LT2. To avoid

363 misinterpretations due to multiplexing errors, reads mapping to *Salmonella typhimurium* LT2 [60]
364 (Genbank accession AE006468) were additionally removed in this batch. To limit the analysis to only
365 frequently occurring sequences and therefore avoid over-interpretation of erroneous sequences, only
366 read sequences that were found at least 30 times in all analysed samples together were retained for
367 further analysis. Public sRNA datasets of low-input samples (see **Additional Table 1**) were analysed
368 in a fashion analogous to the study's control and plasma samples. As the published studies consisted
369 of different numbers of samples, no overall threshold was imposed, but to limit the analysis to
370 frequently occurring sequences, singleton reads were removed.
371 To compare the sequencing results to the qPCR-based results and to detect the same sequences in
372 public datasets, reads matching the sequences assayed by qPCR were determined by clustering the
373 trimmed, filtered and collapsed sRNA reads with 100 % sequence identity and 14 nt alignment length
374 with the primer sequences, while allowing the sRNA reads to be longer than the primer sequences,
375 using CD-HIT-EST-2D (parameters -c 1 -n 8 -G 0 -A 14 -S2 40 -g 1 -r 0) [61].
376 To compare the diversity and levels of putative contaminant sequences in the different samples,
377 identical reads derived from all study samples (that did not map to the human genome) were clustered
378 using CD-HIT-EST [61], and a table with the number of reads sequenced for each sample per
379 sequence was created using R v.3.0.2. This table was also used to extract candidate sequences from
380 the study plasma samples that are likely exogenous plasma sRNAs, based on the following criteria:
381 for a sequence to be considered a potential exogenous plasma sRNA, it had to be non-identical to any
382 of the sequences assigned to the confirmed contaminant sequences (**Table 1**), and it had to be absent
383 from at least 90 % of the controls (no-library controls, water and spike-in controls, eluates and mock-
384 extracts) and never detected in any of these controls with at least 10 copy numbers, and it had to be
385 detected by more than 3 reads in more than 7 of the 28 libraries generated from the plasma titration
386 experiment. These thresholds were chosen in order to make the analysis robust against multiplexing
387 errors (e.g. which would result in false-negative identifications if a sequence that is very dominant in
388 a plasma sample is falsely assigned to the control-samples), while at the same time making it sensitive
389 to low-abundant sequences (which would not be detected in every library). To confirm the non-human
390 origin and find potential microbial taxa of origin for these sequences, they were subsequently

391 searched within the NCBI nr database using megablast and blastn web tools, with parameters auto-set
392 for short inputs [62-64]. All sequences with best hits to human sequences or other vertebrates were
393 removed, because they were potentially human. The remaining sequences were matched against a set
394 of genera previously reported [35] to be common sequencing kit contaminants. Sequences with better
395 hits to non-contaminant taxa than contaminant taxa were kept as potential exogenous sequences.

396

397 *Additional Files*

398 The following Additional Files are available online: **Additional Figures 1-3; Additional Table 1**: list
399 of the generated datasets and analysed published datasets; **Additional Table 2**: potential exogenous
400 sRNA sequences detected in human plasma after removal of contaminants; **Additional Table 3**: list
401 of the species whose reference genomes and cDNA collections were used in the initial analysis.

402

403

404 **LIST OF ABBREVIATIONS**

405 qPRC: real-time quantitative polymerase chain reaction

406 sRNA: small RNA

407

408

409 **DECLARATIONS**

410 *Ethics approval and consent to participate*

411 Written informed consent was obtained from all blood donors. The sample collection and analysis was
412 approved by the Comité d'Ethique de Recherche (CNER; Reference: 201110/05) and the National
413 Commission for Data Protection in Luxembourg.

414

415 *Consent for publication*

416 Written consent for analysis of genetic material and publication was obtained from all blood donors.

417

418 *Availability of data and materials*

419 The datasets generated and analysed during the current study are available in the NCBI short read
420 archive under BioProject PRJNA419919. Human reads from some datasets generated and analysed
421 during the current study are not publicly available due to privacy concerns, but are available from the
422 corresponding authors on reasonable request. Accessions of publically available data analysed during
423 the current study are listed in **Additional Table 1**. Scripts for the analysis of the data from sRNA
424 sequencing of column eluates and the plasma titration experiment is available at
425 <https://git.ufz.de/metaOmics/contaminomics>.

426

427 *Competing interests*

428 P.W. has received funding and in-kind contributions toward this work from QIAGEN GmbH, Hilden,
429 Germany. All other authors declare that they have no competing interests.

430

431 *Funding*

432 This work was supported by the Luxembourg National Research Fund (FNR) through an ATTRACT
433 programme grant (ATTRACT/A09/03), CORE programme grant (CORE/15/BM/10404093) and
434 Proof-of-Concept Programme Grant (PoC/13/02) to P.W., an Aide à la Formation Recherche grant
435 (Ref. no. 1180851) to D.Y., an Aide à la Formation Recherche grant (Ref. no. 5821107) and a CORE
436 grant (CORE14/BM/8066232) to J.V.F., a National Institutes of Health Extracellular RNA
437 Communication Consortium award (1U01HL126496) to D.J.G., and by the University of
438 Luxembourg (ImMicroDyn1). The funding bodies had no role in the design of the study and
439 collection, analysis, and interpretation of data and in writing the manuscript.

440

441 *Authors' contributions*

442 AH-B designed the experiments, performed experiments and sequencing data analyses, coordinated
443 the study and wrote the manuscript. DY designed and performed the initial sequencing data analyses.
444 AK, JVF and AG performed experiments. AE performed the sRNA sequencing. PM and BBU
445 performed additional computational analyses. CdB obtained donor consents, performed the blood

446 sampling and contributed to the initiation of the study. DJG and PW initiated and supervised the study.
447 DY, AK, AE, JV, PM and PW contributed to the writing of the manuscript. All authors contributed
448 to the interpretation of the data and read and approved the final manuscript.

449

450 *Acknowledgements*

451 *In silico* analyses presented in this paper were carried out using the HPC facilities of the University of
452 Luxembourg [65] whose administrators are acknowledged for excellent support.

453

454

455 **REFERENCES**

456 1. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al.

457 Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci.
458 U.S.A. 2008;105:10513–8.

459 2. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of
460 mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.
461 2007;9:654–9.

462 3. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of
463 microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal.
464 2009;2:ra81.

465 4. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES,
466 Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci.
467 U.S.A. 2010;107:6328–33.

468 5. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs
469 in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–5.

470 6. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are

471 transported in plasma and delivered to recipient cells by high-density lipoproteins. *Nat. Cell Biol.*
472 Nature Publishing Group; 2011;13:423–33.

473 7. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes
474 carry a population of circulating microRNAs independent of vesicles in human plasma. *Proc. Natl.*
475 *Acad. Sci. U.S.A.* 2011;108:5003–8.

476 8. Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI. Trans-specific gene silencing
477 between host and parasitic plants. *Plant J.* 2008;56:389–97.

478 9. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast
479 milk. *Silence.* 2010;1:7.

480 10. Knip M, Constantin ME, Thordal-Christensen H. Trans-kingdom cross-talk: small RNAs on the
481 move. *PLoS Genet.* 2014;10:e1004602.

482 11. Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, et al. Sources and
483 Functions of Extracellular Small RNAs in Human Circulation. *Annu. Rev. Nutr.* 2016;36:301–36.

484 12. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, et al. A Novel
485 Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. *PLoS*
486 *Pathog.* 2016;12:e1005672.

487 13. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of
488 sickle cell erythrocyte microRNAs into *Plasmodium falciparum* inhibits parasite translation and
489 contributes to malaria resistance. *Cell Host Microbe.* 2012;12:187–99.

490 14. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, et al. The Host Shapes the Gut
491 Microbiota via Fecal MicroRNA. *Cell Host Microbe.* 2016;19:32–43.

492 15. Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, Kaloshian I, et al. Fungal small RNAs suppress
493 plant immunity by hijacking host RNA interference pathways. *Science.* 2013;342:118–23.

494 16. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, et al. Exosomes
495 secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate
496 immunity. *Nature Communications*. 2014;5:5488.

497 17. Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, et al. The complex exogenous RNA
498 spectra in human plasma: an interface with human gut biota? Wang K, Li H, Yuan Y, Etheridge A,
499 Zhou Y, Huang D, et al., editors. *PLoS ONE*. 2012;7:e51009.

500 18. Zhang Y, Wiggins BE, Lawrence C, Petrick J, Ivashuta S, Heck G. Analysis of plant-derived
501 miRNAs in animal small RNA datasets. *BMC Genomics*. 2012;13:381.

502 19. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically
503 targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. *Nature*
504 Publishing Group. 2011;22:107–26.

505 20. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911
506 directly targets influenza A viruses. *Cell Research*. 2015;25:39–49.

507 21. Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, et al. Assessing the survival of exogenous plant
508 microRNA in mice. *Food Sci Nutr*. 2014;2:380–8.

509 22. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs Are Absorbed in Biologically
510 Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and Affect Gene Expression in
511 Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers. *Journal of*
512 *Nutrition*. 2014;144:1495–500.

513 23. Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS, Yusuf D, et al. The
514 extracellular RNA complement of *Escherichia coli*. *MicrobiologyOpen*. 2015;4:252–66.

515 24. Celluzzi A, Masotti A. How Our Other Genome Controls Our Epi-Genome. *Trends Microbiol*.
516 2016;24:777–87.

517 25. Blenkiron C, Simonov D, Muthukaruppan A, Tsai P, Dauros P, Green S, et al. Uropathogenic
518 Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA. Cascales E, editor.
519 PLoS ONE. 2016;11:e0160440–16.

520 26. Witwer KW. Contamination or artifacts may explain reports of plant miRNAs in humans. The
521 Journal of Nutritional Biochemistry. 2015;26:1685.

522 27. Kang W, Bang-Berthelsen CH, Holm A, Houben AJS, Müller AH, Thymann T, et al. Survey of
523 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA. Cold
524 Spring Harbor Lab; 2017;23:433–45.

525 28. Witwer KW, Zhang C-Y. Diet-derived microRNAs: unicorn or silver bullet? Genes & Nutrition.
526 BioMed Central; 2017;12:15.

527 29. Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral
528 bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. 2013;31:965–7.

529 30. Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in
530 vertebrates: Concepts in search of corroboration. Bioessays. 2014;36:394–406.

531 31. Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal Milk-derived
532 MicroRNAs. Journal of Biological Chemistry. American Society for Biochemistry and Molecular
533 Biology; 2015;290:23680–91.

534 32. Lusk RW. Diverse and widespread contamination evident in the unmapped depths of high
535 throughput sequencing data. PLoS ONE. 2014;9:e110808.

536 33. Salzberg SL, Breitwieser FP, Kumar A, Hao H, Burger P, Rodriguez FJ, et al. Next-generation
537 sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol
538 Neuroinflamm. 2016;3:e251.

539 34. Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T, Rein-Weston A, et al. The Perils of

540 Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid
541 Extraction Spin Columns. *J. Virol.* 2013;87:11966–77.

542 35. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory
543 contamination can critically impact sequence-based microbiome analyses. *BMC Biol.* BioMed
544 Central; 2014;12:87.

545 36. Huang X, Yuan T, Tschanne M, Sun Z, Jacob H, Du M, et al. Characterization of human plasma-
546 derived exosomal RNAs by deep sequencing. *BMC Genomics.* 2013;14:319.

547 37. Spornraft M, Kirchner B, Haase B, Benes V, Pfaffl MW, Riedmaier I. Optimization of Extraction
548 of Circulating RNAs from Plasma – Enabling Small RNA Sequencing. Antoniewski C, editor. PLoS
549 ONE. 2014;9:e107259.

550 38. Beatty M, Guduric-Fuchs J, Brown E, Bridgett S, Chakravarthy U, Hogg RE, et al. Small RNAs
551 from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. *BMC*
552 *Genomics.* BioMed Central; 2014;15:933.

553 39. Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D, et al. Dysregulation of
554 microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. *J. Clin.*
555 *Invest.* 2015;125:681–6.

556 40. Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, et al. Nuclear-localized tiny RNAs
557 are associated with transcription initiation and splice sites in metazoans. *Nat Struct Mol Biol.*
558 2010;17:1030–4.

559 41. Chen C, Ai H, Ren J, Li W, Li P, Qiao R, et al. A global view of porcine transcriptome in three
560 tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA
561 sequencing. *BMC Genomics.* BioMed Central; 2011;12:448.

562 42. Liu J-L, Liang X-H, Su R-W, Lei W, Jia B, Feng X-H, et al. Combined Analysis of MicroRNome
563 and 3'-UTRome Reveals a Species-specific Regulation of Progesterone Receptor Expression in the

564 Endometrium of Rhesus Monkey. *J. Biol. Chem.* 2012;287:13899–910.

565 43. Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M, et al. Transcriptome-
566 wide Analysis of Regulatory Interactions of the RNA-Binding Protein HuR. *Mol. Cell.* Elsevier Inc;
567 2011;43:340–52.

568 44. Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T, et al. Regulation of MicroRNA
569 Expression and Abundance during Lymphopoiesis. *Immunity.* Elsevier Ltd; 2010;32:828–39.

570 45. Wei Y, Chen S, Yang P, Ma Z, Kang L. Characterization and comparative profiling of the small
571 RNA transcriptomes in two phases of locust. *Genome Biology.* 2009;10:R6.

572 46. Mayr C, Bartel DP. Widespread Shortening of 3′UTRs by Alternative Cleavage and
573 Polyadenylation Activates Oncogenes in Cancer Cells. *Cell.* Elsevier Ltd; 2009;138:673–84.

574 47. Su R-W, Lei W, Liu J-L, Zhang Z-R, Jia B, Feng X-H, et al. The Integrative Analysis of
575 microRNA and mRNA Expression in Mouse Uterus under Delayed Implantation and Activation.
576 Wang H, editor. *PLoS ONE.* 2010;5:e15513–8.

577 48. Chen X, Yu X, Cai Y, Zheng H, Yu D, Liu G, et al. Next-generation small RNA sequencing for
578 microRNAs profiling in the honey bee *Apis mellifera*. *Insect Mol Biol.* 2010;19:799–805.

579 49. Legeai F, Rizk G, Walsh T, Edwards O, Gordon K, Lavenier D, et al. Bioinformatic prediction,
580 deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid,
581 *Acyrthosiphon pisum*. *BMC Genomics.* BioMed Central; 2010;11:281.

582 50. Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, et al. Analysis of microRNA
583 transcriptome by deep sequencing of small RNA libraries of peripheral blood. *BMC Genomics.*
584 BioMed Central; 2010;11:288.

585 51. Liu S, Li D, Li Q, Zhao P, Xiang Z, Xia Q. MicroRNAs of *Bombyx mori* identified by Solexa
586 sequencing. *BMC Genomics.* BioMed Central; 2010;11:148.

587 52. Lian L, Qu L, Chen Y, Lamont SJ, Yang N. A Systematic Analysis of miRNA Transcriptome in
588 Marek's Disease Virus-Induced Lymphoma Reveals Novel and Differentially Expressed miRNAs.
589 Watson M, editor. PLoS ONE. 2012;7:e51003–13.

590 53. Nolte-'t Hoen ENM, Buermans HPJ, Waasdorp M, Stoorvogel W, Wauben MHM, 't Hoen PAC.
591 Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of
592 small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Research.
593 2012;40:9272–85.

594 54. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, et al. Comparison of
595 placenta samples with contamination controls does not provide evidence for a distinct placenta
596 microbiota. Microbiome. BioMed Central; 2016;4:29.

597 55. Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA contamination
598 of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass
599 samples. Gut Pathog. BioMed Central; 2016;8:24.

600 56. Yeri A, Courtright A, Reiman R, Carlson E, Beecroft T, Janss A, et al. Total Extracellular Small
601 RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects. Sci Rep. 2017;7:44061.

602 57. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank.
603 Nucleic Acids Res. 2012;41:D36–D42.

604 58. The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The
605 NIH Human Microbiome Project. Genome Research. 2009;19:2317–23.

606 59. de Hoon MJL, Taft RJ, Hashimoto T, Kanamori-Katayama M, Kawaji H, Kawano M, et al. Cross-
607 mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing
608 libraries. Genome Research. 2010;20:257–64.

609 60. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete
610 genome sequence of *Salmonella enterica* serovar *Typhimurium* LT2. Nature. 2001;413:852–6.

611 61. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
612 sequencing data. *Bioinformatics*. 2012;28:3150–2.

613 62. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J. Mol.*
614 *Biol.* 1990;215:403–10.

615 63. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. Database indexing
616 for production MegaBLAST searches. *Bioinformatics*. 2008;24:1757–64.

617 64. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.*
618 2016;44:D7–D19.

619 65. Varrette S, Bouvry P, Cartiaux H, Georgatos F. Management of an academic HPC cluster: The UL
620 experience. *IEEE*; 2014;:959–67.

621

622 **Table 1.** Sequences of non-human sRNAs found in plasma preparations, synthetic sRNA templates,
623 primers and annealing temperatures.

Name	RNA sequence	average counts per million in 10 plasma samples	potential origin of sequence	primer sequence	annealing temperature
sRNA 1	(CU)AACAGACCGAGGACU UGAA(U)	133,700	algae	AACAGACCGAGGACTTGAA	57 °C
sRNA 2	ACGGACAAGAAUAGGCUU CGGCU	8,000	fungi or plants	ACGGACAAGAATAGGCTTC	54 °C
sRNA 3	GCCUUGGUUGUAGGAUCU GU	8,200	plants	GCCTTGGTTGTAGGATCTGT	57 °C
sRNA 4	GCCAGCAUCAGUUCGGUG UG	6,800	bacteria	CAGCATCAGTCGGTGTG	57 °C
sRNA 5	GAGAGUAGGACGUUGCCA GGUU	3,900	bacteria	AGTAGGACGTTGCCAGGTT	57 °C
sRNA 6	UUGAAGGGUCGUUCGAGA CCAGGACGUUGAUAGGCU GGGUG	3,400	bacteria	GAAGGGTCGTCGAGACC	57 °C
hsa-miR486-5p	UCCUGUACUGAGCUGCCC CGAG		human	-*	60 °C

624

625 **FIGURE TITLES AND LEGENDS**

626 **Figure 1 - Workflow:** Workflow of the initial screen for and validation of exogenous sRNA
627 sequences in human plasma samples.

628

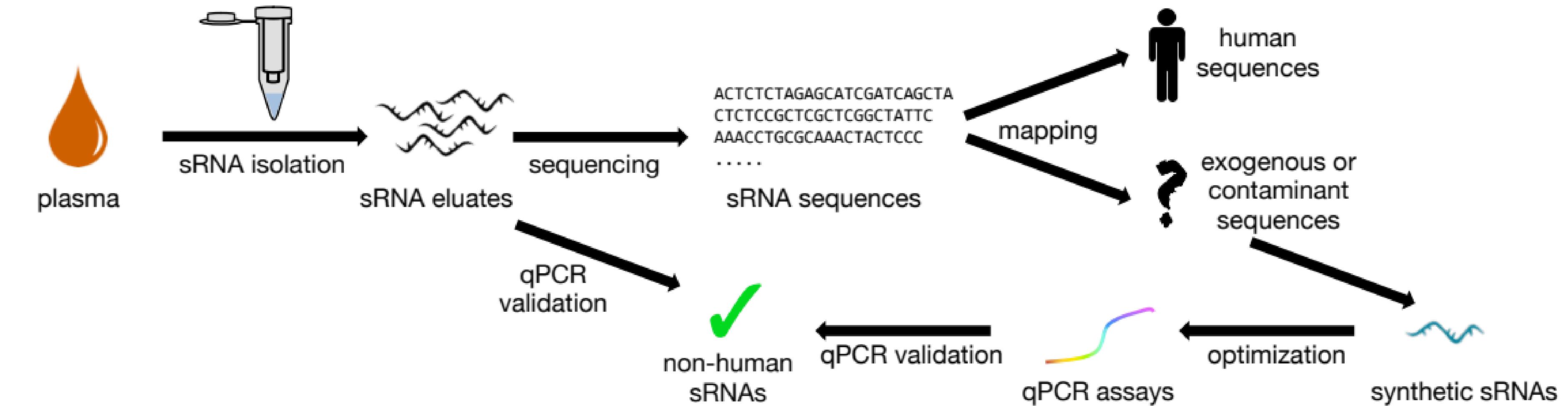
629 **Figure 2 - Detection of non-human sRNA species in column eluates and their removal from**
630 **columns:** **A)** qPCR amplification of six non-human sRNA species in extracts from human plasma and
631 qPCR control (water). **B)** Detection of the same sRNA species in mock-extracts without input to
632 extract columns and water passed through extraction columns (“eluate”). **C)** Levels of the same sRNA
633 species in mock-extracts without and with DNase treatment during the extraction. **D)** Relative levels
634 of sRNA remaining after pre-treatment of extraction columns with bleach or washing ten times with
635 water, detected after eluting columns with water. **All:** mean results of three experiments, measured in
636 reaction duplicates; error bars represent one standard deviation. Experiments displayed in panels **B**
637 and **D** were performed on the same batch of columns, **A** and **C** on independent batches.

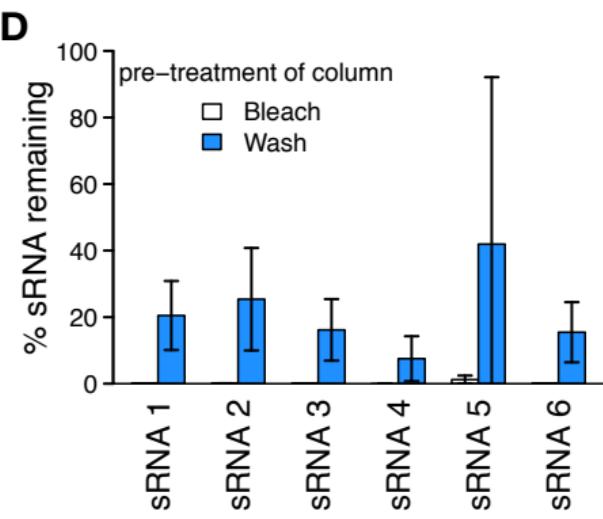
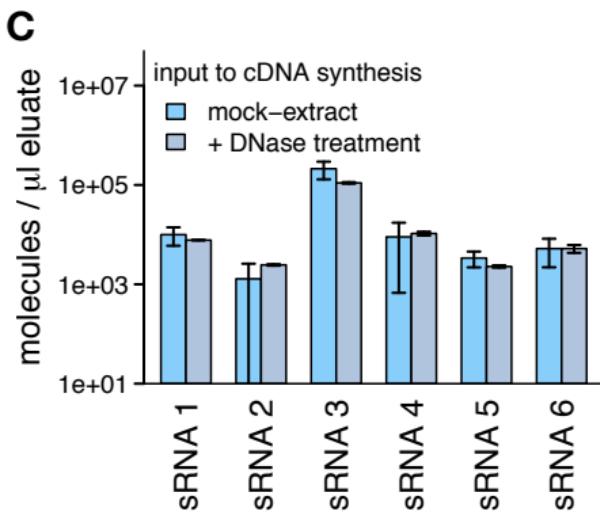
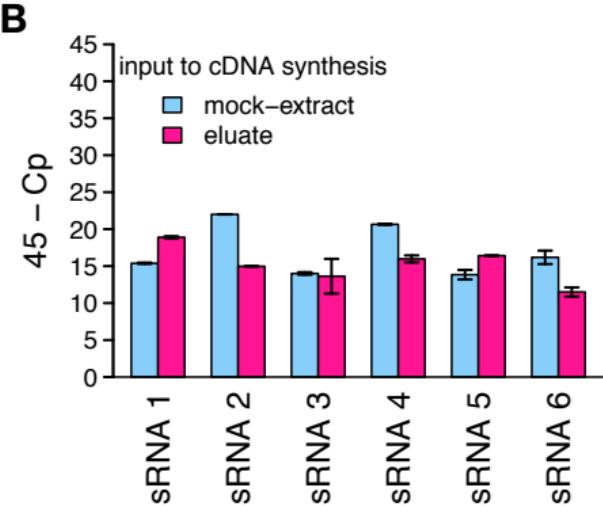
638

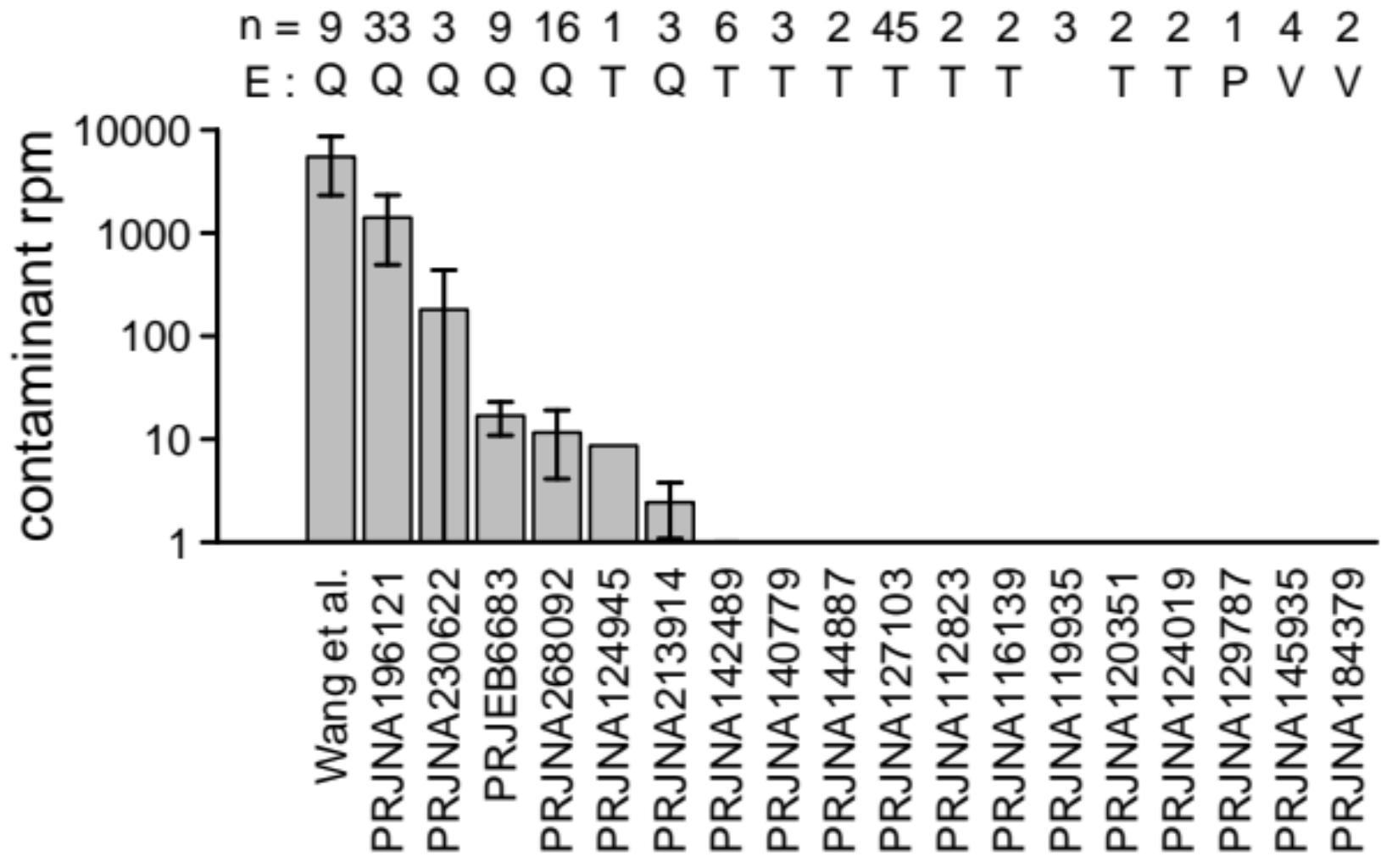
639 **Figure 3 - Detection of contaminant sequences in published sRNA sequencing datasets of low**
640 **biomass samples:** Datasets are referenced by NCBI bioproject accession or first author of the
641 published manuscript. n: number of samples in the dataset. E: extraction kit used (if this information
642 is available) – Q: regular miRNeasy (QIAGEN), T: TRIzol (Thermo Fisher), P: mirVana PARIS RNA
643 extraction kit (Thermo Fisher), V: mirVana RNA extraction kit with phenol. rpm: reads per million.
644 Error bars indicate one standard deviation.

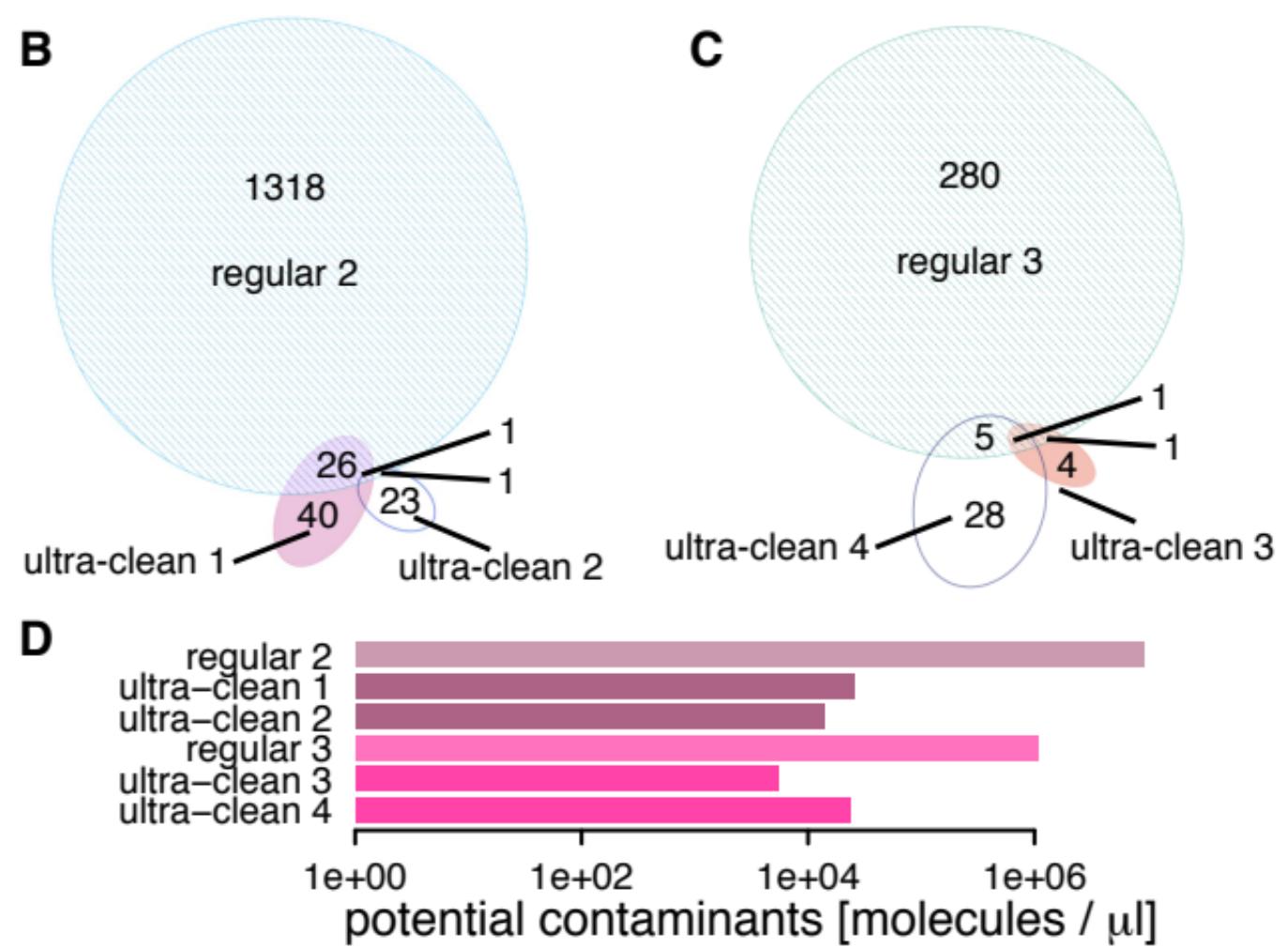
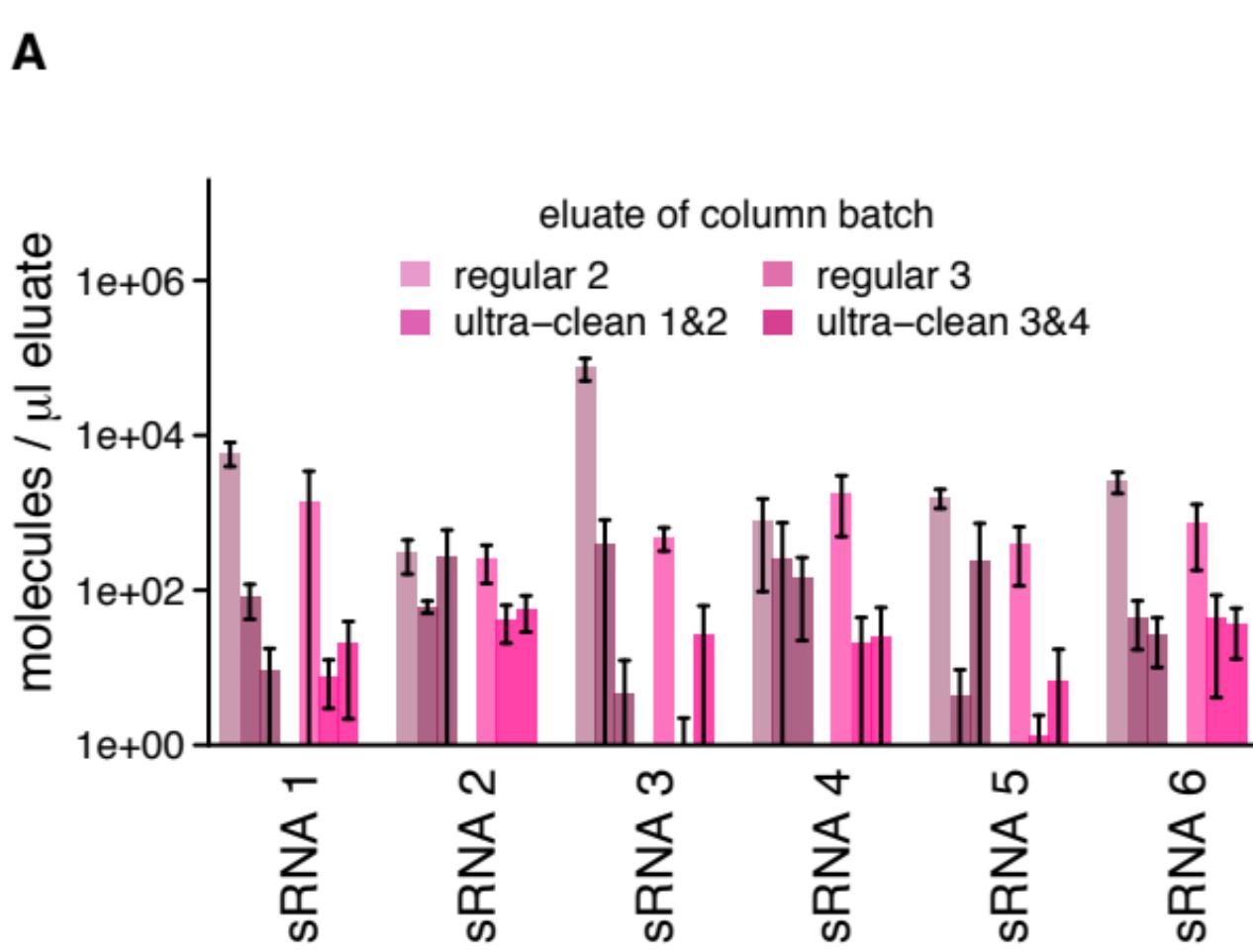
645

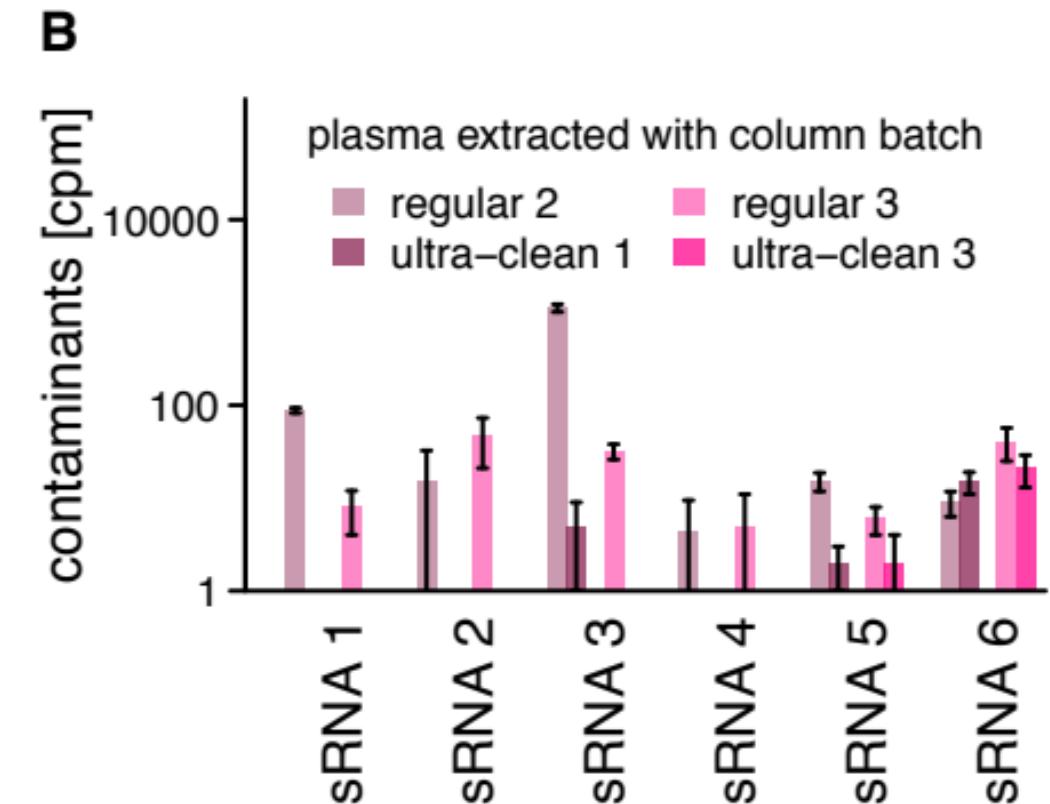
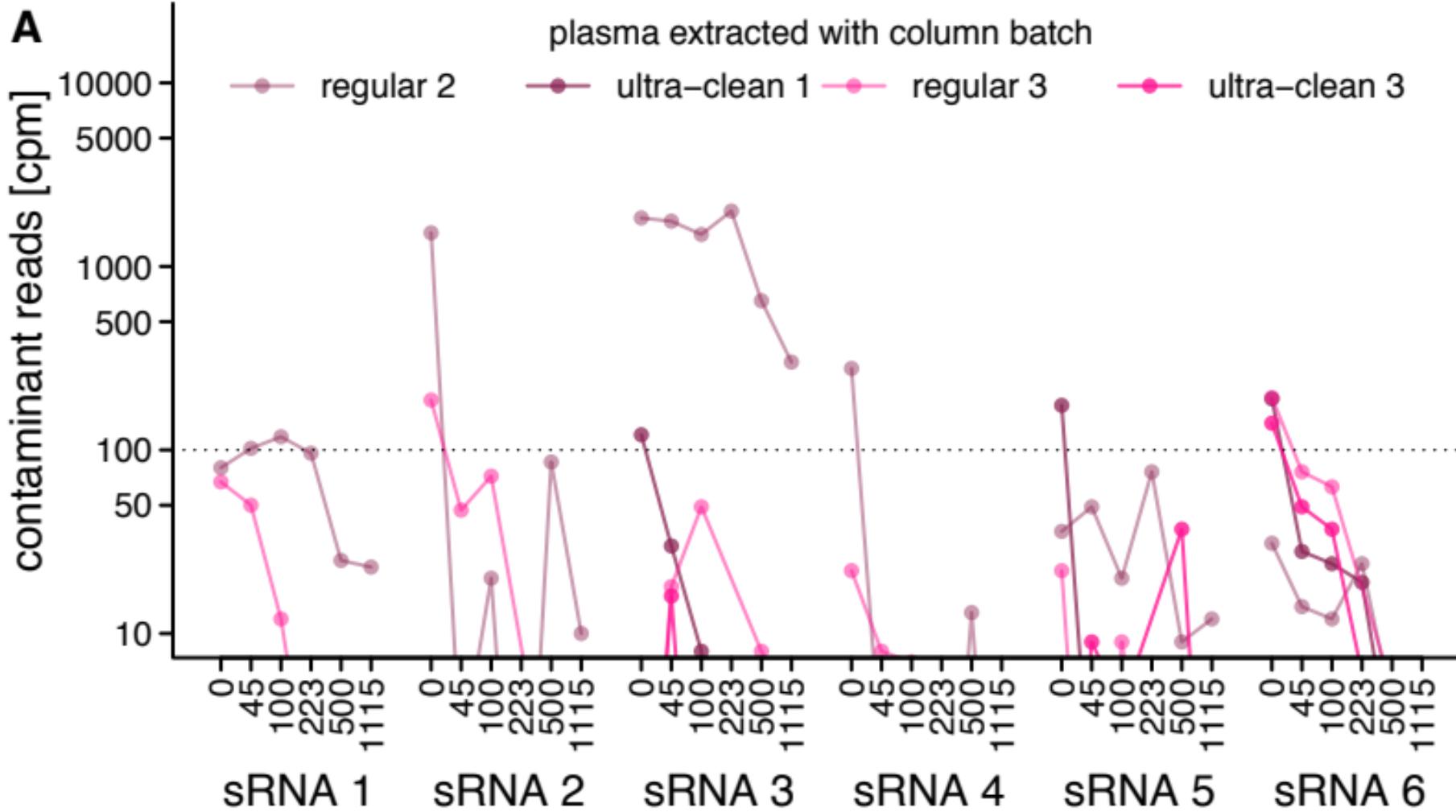
646 **Figure 4 - Confirmed and potential contaminant sequences in eluates of regular and ultra-clean**
647 **RNeasy spin columns:** **A)** Levels of contaminant sequences in eluates of two batches of regular and
648 four batches of ultra-clean spin columns, based on qPCR; ultra-clean batches 1 and 2 are cleaned-up
649 versions of regular batch 2 and ultra-clean batches 3 and 4 are cleaned-up versions of regular batch 3;
650 error bars indicate one standard deviation. **B&C)** Numbers of different further potential contaminant
651 sequences on the regular and ultra-clean spin columns from two different batches. **D)** Total levels of


652 further potential contaminant sequences, based on sRNA sequencing data normalized to spike-in
653 levels. cpm: counts per million.




654


655 **Figure 5 - Titration experiment:** Detection of contaminants in sRNA preparations of human plasma
656 using different input volumes and extraction columns. **A)** Detected levels of the six contaminant
657 sRNA sequences in sRNA sequencing data of preparations using 0 to 1115 μ l human plasma and
658 regular or ultra-clean RNeasy spin columns. **B)** Detailed view of the data displayed in **A** for 100 μ l
659 human plasma as input to regular and ultra-clean RNeasy spin columns. cpm: counts per million; error
660 bars indicate one standard deviation.



661



662 **Figure 6 - Summary:** Recommendations for artefact-free analysis of sRNA by sequencing.

