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ON NEGATIVE HERITABILITY AND NEGATIVE ESTIMATES OF
HERITABILITY

DAVID STEINSALTZ, ANDY DAHL, AND KENNETH W. WACHTER

ABSTRACT. We consider the problem of interpreting negative maximum likelihood es-
timates of heritability that sometimes arise from popular statistical models of additive
genetic variation. These may result from random noise acting on estimates of genuinely
positive heritability, but we argue that they may also arise from misspecification of the
standard additive mechanism that is supposed to justify the statistical procedure. Re-
searchers should be open to the possibility that negative heritability estimates could reflect
a real physical feature of the biological process from which the data were sampled.

1. INTRODUCTION: THE MEANING OF HERITABILITY

1.1. Operational definitions of heritability. As Albert Jacquard [15] pointed out
decades ago, narrow-sense heritability — commonly denoted h? — has conventionally two
distinct meanings:

1. The proportion of total variance attributable to additive genetic effects;
2. The slope of the linear regression of children’s phenotypes on the mean parental
phenotypes.

Both meanings appear in the earliest works to give a quantitative operational definition to
heritability, in particular [21]. (For more about the history of the notion of heritability see
2].)

The correspondence between these two meanings depends on an additive model, where
genetic and non-genetic effects are independent and sum together to produce the pheno-
type. When we have general genetic relatedness (rather than parental relations with fixed
50% relatedness) heritability is analogous to a regression coefficient relating phenotypic
similarity to genotypic similarity.

We are particularly concerned here with the interpretation of negative estimates of heri-
tability. The appearance of negative estimates for a parameter of crucial scientific interest
that is prima facie positive is unusual, as has often been noted. Negative estimates of
the heritability parameter are often dismissed as a mathematical abstraction, values in a
range that arises purely formally and that may only be reported for formal purposes, as
part of an ensemble of estimates that collectively are unbiased. Several recent studies [32,
30, 3, 7, 34, 11, 10, 14] have reported individual negative heritability estimates in this
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way, including them in averages that themselves came out positive. We illustrate one such
analysis [17] using RNA-sequencing data from the GEUVADIS consortium in section 5.

In [16] a point estimate of —0.109 is obtained for heritability of horn length in Soay sheep.
It is immediately dismissed with the statement that “it is impossible to have negative
heritability” and the inference is drawn that the true heritability must actually be a small
positive number toward the upper end of the confidence interval.

We wish to argue that negative heritability estimates need to be taken more seriously.
The confusion, we contend, comes from the overlap between statistical models that oper-
ationalize the two different interpretations of heritability described above. The argument
for rejecting negative estimates appears compelling just so long as the focus is only on the
random-effects probability model in equation (1) that typically motivates our definition 1 of
heritability. Variance is nonnegative, hence the ratio of two variances cannot be negative.
The denominator represents total variance and the numerator represents one component
of variance, implying a ratio in [0, 1] if the two components are independent (as the model
presumes).

While “variance attributable to additive genetic effects” is a basic element of the genetic
model, it has no place in the statistical algorithms such as GREML derived from this
model that is widely used to estimate heritability from experimental data. The GREML
algorithm is actually (as we will explain in section 2.1) the realization of a multivariate
normal model that is naturally constrained to have the parameter h? > —1/(max{s?} — 1),
where (s;)I", are the singular values of the genotype matrix. If the phenotypes were
derived from summing independent additive genetic effects then the true h? must indeed
be nonnegative, but that must be recognized as an assumption that must be scientifically
warranted, as it is not compelled on formal grounds.

In contemporary analyses of genomic data, two roles played by alleles may be distin-
guished. Alleles exercise or tag actual causal influences on traits. Alleles also serve as
markers of family and ancestry, markers of relatedness among individuals that may struc-
ture historical, behavioral, social, and environmental influences on traits. As attention
expands beyond the additive genetic model to data-analytic genome-wide statistical stud-
ies, heritability and the parameter called heritability are not necessarily the same.

1.2. The meaning of negative heritability. Once we have accepted the GREML multi-
variate normal framework — which we will define precisely — we must admit the possibility
that the joint distribution of phenotypes and genotypes in a given dataset may be best
described by an h? value that is negative. The question this raises is, can such a negative
heritability estimate be biologically sensible? As described in Section 2, the parameter
for heritability may be identified, in a precise way, with a correlation between genotype
similarity and phenotype similarity. The model invites us to select an estimate of h? that
will best match the genetic covariance between individuals to the similarity in their traits.
Even if we want heritability to be interpreted in the first sense, as a partition of variance,
this will not, in general, be correct. All we have access to from the data is an estimate of
something like heritability in sense 2. High heritability means that individuals with similar
genotype tend to have similar trait values. Zero heritability means that genotypes tell us
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NEGATIVE HERITABILITY 3

nothing about similarities in trait values. Negative heritability, then, could be perfectly
sensible as a description of the data: It means that individuals with similar genotypes are
likely to have more divergent trait values than those with highly disparate genotypes.

Saying that a given set of data might be best described by a negative heritability estimate
goes only part of the way toward answering the question of the biological plausibility of
the concept. Suppose you were estimating the weight of water droplets by successively
adding them to a small container, and estimating the slope from the sequence of weights.
If the scale is sufficiently imprecise it is hardly unlikely that we could estimate a negative
slope, yet common sense tells us that negative estimates should be dismissed as unrealistic,
and truncated at zero (or combined with prior expectations to form a positive Bayesian
estimate). Statistical theory tells us that this system should produce slope estimates that
may be positive or negative, but that the probability of a negative estimate goes to zero
as the number of measurements goes to infinity, and the estimate converges to its true
(positive) value. The essential question is, is there a plausible mechanism that could
produce genuine negative heritability, so that as the amount of data generated by the
model goes to infinity, the estimate converges to a negative quantity.

The term “negative heritability” appeared for the first time, so far as we are aware, in
a paper [12] by J. B. S. Haldane, written around 1960, but first published posthumously
in 1996. Haldane described how the maternal-effect trait of neonatal jaundice could be
said to display negative heritability: Because the disease results from maternal antibodies
against a fetal antigen, it will not arise in a fetus whose mother herself experienced neonatal
jaundice.! Haldane then calculates a negative heritability from a model that is specialized
to the peculiar inheritance structure of neonatal jaundice.

We will suggest one such mechanism in Section 4. As with Haldane’s model (which may
be understood as a special case), this mechanism has implications which may be implausible
or even obviously false in a given experimental setting. It involves interactions between
individuals that are not primarily genetic, and so may be dismissed as irrelevant to the
study of genetic heritability. The point we want to suggest, though, is that as an abstract
physical mechanism that could be producing our data it is as mathematically plausible
as the linear random-effects model that undergirds GREML. This is only one example of
such a mechanism, and the conclusion we advocate is that negative heritability must be
acknowledged as a genuine phenomenon for genotype-phenotype data, even if it may be
reasonably excluded by the context of some particular studies. Thinking about what sorts
of biological settings could yield negative heritability can also prove an effective guide to
understanding when negative heritability estimates may be reliably truncated or ignored.

This is very much like the advice on “interpretation of negative components of variance”
propounded in a very different context by the statistician J. A. Nelder [22] in 1954. Nelder
considered the problem of ANOVA testing on split-plot experiments, where error for main
plots was found to be smaller than the error for subplots, producing a negative estimate for
the residual subplot error. As we have done here, Nelder showed how the apparently nega-
tive “variance component” could arise either from sampling error from a positive variance

1We thank Jonathan Marchini for pointing out this reference to us.
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component, or from a misspecification of the model, where correlations between measure-
ments have been neglected. “In any particular situation,” Nelder concludes, “it is the
statistician’s responsibility to decide which model is more appropriate.”

2. THE GREML MODEL AS LINEAR REGRESSION

2.1. The random-effects model. For the remainder of this paper we follow [26] in using
the letter 1 to represent heritability, to avoid the confusing implication built in to the
nomenclature h? that this parameter cannot be negative.

Underlying GREML, as well as alternative approaches to heritability estimation such as
LD-score and Haseman—Elston regression, is a basic random-effects model. Following the
notation of [26], our basic object is a data set consisting of an n X p matrix Z, taken to
represent the genotypes of n individuals, measured at p different loci. There is a vector y,
representing a scalar observation for each of the n individuals. The underlying observations
are counts of alleles taking the values 0,1, or 2, but the genotype matrix is centered to
have mean zero in each column and normalized to have mean square over the whole matrix
equal to 1. (Often, columns are further standardized to variance 1, but we do not make
this assumption). The model posits the existence of a random vector u € RP of genetic
influences from the individual SNPs such that

(1) y=Zu+e.

The vectors u and e are assumed to be independent and to have zero means and i.i.d.
normal components. The variances are determined by two parameters, which are to be
estimated: 6 represents the precision (reciprocal variance) of the non-genetic noise and
1) represents the heritability, entering the model as the ratio of genetic variance to total
variance. We will also use the notation ¢ = ¢/(1 — ) in some places, for concision.

The GREML model has been formulated as a random-effects model, but it is equivalent
to a multivariate normal model corresponding to the covariance matrix

(2) C? = 05" ((ho/(1— b)) A+ 1),

where A = ZZ*/p is the Genetic Relatedness Matrix (GRM), and 6y and 1)y are the true
values of the parameters. In this section we describe how the model may also be understood
as a linear regression model.

In their original paper [31], Yang and coauthors spell out an analogy between GCTA
and a different form of linear regression. They regress squared trait differences between
pairs of individuals on corresponding elements of the GRM, with n(n — 1)/2 points and
correlated errors (this is Haseman—Elston regression, which has recently become a popular
heritability estimation method due to its speed and robustness to some degree of model
misspecification [9, 5]). Instead, we draw an approximate comparison between GREML
and regression with n points and independent errors.

Let Z/,/p = U diag(s;) V* be the singular-value decomposition of Z/,/p, and rotate the
observations to diagonalize the covariance matrix, obtaining

z:=U"y.
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Because the columns of Z have zero means, one of the singular values is zero and the
corresponding column of U is proportional to a vector with all elements equal to 1. Thus
in each other (orthogonal) column of U the elements sum to zero, and each column defines
a contrast between weighted groupings of individuals in the sample.

The elements of z are independent centered normal random variables, and z; has variance
(1 + (o /(1 — 0))s?)/00. Tt follows that 22 6y(1 — 1bg) /(1 + ¥o(s? — 1)) are independent
chi-square random variables each on one degree of freedom and

log 27 = —log(fy) — log(1 — o) + log (1 +to(s] — 1)) +€

where the € are distributed as the logarithms of the independent chi-square variables,
long-tailed to the left, with mean ~ —1.302, standard deviation =~ 2.266, and skewness
~ —1.643.

The mean of s? is 1, and when 1(s? — 1) are uniformly small we may approximate our
equation by

(3) log z? ~ —log(6p) — log(1 — o) + 1#0(512 —1)+e€

Here 1)y takes on the role of the true slope for a regression of log 22 on (s? — 1). It can be
estimated by least squares, bearing in mind that the skew of the €] affects standard errors
of estimation.

Practitioners of GREML instead usually estimate ¢ via maximum likelihood. It is shown
in [26] that the maximum likelihood estimates can be expressed in terms of quantities

wi(y) == (1 =) /(1 +9(s? — 1)) and v;(¢p) := w;()2?. They satisfy
0 = Cov (W(?Z)),V(TZ)))

(®) e
O=n/> v
i=1

Here Cov is the empirical covariance of vector elements, an operation on vectors defined
by Cov(x,y) :=n"1 > (x; — Z)(y; — ¥), and Var is similarly defined. We also set m3(¢)) =
Y~ 2Var(w(1))), and omit the dependence on 1 when helpful. When g is modest and the
variance of the squared singular values is small, the least-squares and maximum likelihood
estimates are close to each other.

Suppose, however, that the true variances of the z; include a phenotypic contribution
that varies inversely with the singular values of Z. In the model developed in Section 4 to
first order in s? — 1 the true slope is (¢g — g — 1¥2) /(1 — 1)? as a function of a repulsion
parameter a. When g exceeds 1y, the true slope turns negative and estimated slopes
correctly include negative values. The precision of the estimated slopes depends on the
variance of the squared singular values. When the s? — 1 are tightly clustered, there will
be large standard errors for the estimates of .

2.2. Simulations. We illustrate in Figure 1 a close match between regression-based and
maximum likelihood estimates for ). The plot also emphasizes the wide estimation uncer-

tainty when the singular values s? are tightly clustered.
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We draw s? from the so-called independent setting, which assumes the genotype matrix
Z has independent entries. The known limiting measure for these singular values is the
Marcenko—Pastur distribution, from which we draw n equally-spaced values. We directly
simulate the independent whitened phenotypes z; as independent normal variables with
mean zero and variance (1 + (1o/(1 — v))s?)/0p. This procedure gives 1 estimates that
are approximately equivalent to those obtainable from simulating a random Z with i.i.d.
entries along with the associated random trait vector y. See section 5 of [26] for details.

We choose Z to have n = 375 rows and p = 1,000 columns, similar to the dimensions of
the cis-window genotype matrices in Section 5. Nonetheless, the s? from our independent
setting differ from those empirical singular value distributions. We could simulate a differ-
ent model for the GRM simply by choosing a different distribution for s?. We also choose
¥P* =0.50 and 0* = 1.

To compute the MLE, we solve the first equation in (4), a simple univariate function of
1), and substitute into the second equation. To compute our regression-based estimator,
we perform ordinary least squares regression of log(z2) on s? and an intercept.

Figure 1 shows a scatterplot of one realization of pairs (s?,log 212) The red line corre-
sponds to the true value of v, i.e. ¥* = .5, and describes the expectation of log(zf) as a
function of s? given §* = 1. The solid pink line corresponds to the ordinary least squares
estimate and is very similar to the dashed blue line for the MLE. Dotted green lines are
shown for several more distant alternative values for ¢. It is no wonder that slopes are
hard to pin down in the face of such huge scatter in observations.

3. BIAS FROM REJECTING NEGATIVE HERITABILITY ESTIMATES

The common practice of truncating the maximum likelihood calculation to non-negative
values introduces bias that is well-known and may be serious for samples of moderate size,
both when estimates are truncated at zero and when negatives are ignored. It is thus worth
looking beyond the original motivation to the actual structure of the GREML model and
considering what meaning negative parameter values might turn out to have.

The problem of estimating the probability of negative heritability estimates was studied
fifty years ago by [8]. We add here a few comments about how the framework described in
[26] may contribute to understanding the magnitude of the negative heritability estimate
problem that arises from sampling noise in settings where the true heritability is understood
to be nonnegative, hence where truncation at zero (or rejection of negative estimates) is
warranted and guarantees improved estimates in, say, mean squared error. We gain a rough
idea of the impact of rejecting negative estimates from a normal approximation

V2
VT

where X has standard normal distribution (see [26] for derivation). Rejecting estimates
where ¢ < 0, we have the conditioning bias

g () e
(5) BlY] o = -l s,

b — 4o = Yo(1 — 1o)X,
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*
— ¢ =05
— {ips=0.38

log(z’)

- - {, =048
W 040,1/3,2/3}

0.0 0.5 1.0 15 2.0 2.5 3.0

FIGURE 1. Linear-regression approximation of the estimation problem for
1. The solid red line shows the true line, corresponding to ¢ = 0.5, while
the blue and pink lines respond to the MLE and linear regression estimator,
respectively. The dotted green lines correspond to ¥ = 0,0.33,0.67,0.84.

here 29 = \/n72/v/2(1 — 1)) and @ is the standard normal c.d.f. If we instead truncate the
estimates — raising all negative ) to 0 — we get the truncation bias

5 (1 —=1o) e~28/2
(6) E[¢] — o ~ N 20 NG

4. THE PHENOTYPIC REPULSION MODEL

— wo(l — (I)(zo)).

The notion that new species force their way into phenotypic gaps in the existing ecological
community was termed by Darwin the “principle of divergence” and has been further
developed by ecologists under the name “phenotypic repulsion” or “phylogenetic repulsion”
[28]. Species living in close proximity — which are often closely related phylogenetically
— coexist by separating from each other phenotypically. A similar kind of competitive
exclusion has been proposed [27] on the individual level to explain observed pattern of
developmental variation within human families. Social niche-formation within families has
also been proposed by [13] — without an explicit mathematical model — as the basis for
an evaluation of gene-environment interaction based on misclassified twin types. While we
are not aware of mathematical models of this phenomenon, one could certainly imagine
local competition for sunlight, combined with range-limited seed dispersion, yielding an
effective phenotypic repulsion between related plants in a forest setting, or monozygotic
twins who seek to distinguish themselves from their sibling.
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We propose a model of phenotypic repulsion where individuals that are most closely
related genetically strive to avoid each other phenotypically. We begin with a model like
that described in Section 2.1, where individuals have phenotypes determined by normally
distributed effect sizes acting on their individual genotypes. We introduce a penalty term

to the probability, of the form
eXP{—Oéolgo > aijyiyj}
1<i<j<n

where a;; = %Zizl ZixZji, is the (i, j) entry of the GRM, and a < 1 is a parameter with
true value g measuring the extent to which genetically similar individuals are pushed to
have differing phenotypes. Of course, this setup could be generalized to higher-dimensional
phenotypes, with y;y; replaced by an arbitrary inner product. The penalty term is inspired
by the statistical mechanics models that have been applied to geographically-structured
population dynamics, such as the Contact Process [20], used to model the spread of epi-
demics.

Combining this specification with (2) we see that the phenotypes will now be multivariate
normal with mean 0 and covariance matrix

(7) 05" | (poA+1,) " +ag (A— 1)

It follows that the transformed phenotypes z = U*y are independent normal with mean
zero and variance

2
Var(z;) = 0" 1;_ P0s; 1

1 —ap + agsi (1 — ¢o) + aogos;

Suppose the data have come from this phenotypic—repulsion model, and we analyze them
using the random-effects model. While it is always possible to get 1/3 < 0 because of random
fluctuations, we would like to show that the heritability implied by this model is “really”
negative, in the sense that the distribution of 121 converges to a strictly negative value as
the number of subjects goes to co. This will follow from Proposition 4.1 (below) with

_ 14 ¢ot
f(t) 1 ag + Oé()(l — ¢O)t + Oéo(Z)ot2’

as long as ¢g < ap, since
$o — ao(1 + pot)?

f'(t) = Ve
(1 —ap + ap(l — ¢o)t + appot?)
which is less than 0 for all ¢ > 0.

In other words, to the extent that we say that heritability is defined by the linear model,
heritability can be negative if genotypes and phenotypes interact through the environment
in a manner like the phenotypic repulsion model. This will be true even if the phenotypic
interactions are limited to small family groups. We prove that this is the case — that the
heritability to which the estimates converge with increasing population size is negative —
in the following Proposition, which is proved in section ?7.
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Proposition 4.1. Suppose we have a family of n x n GRMs A,, for n — oo, with eigen-
values 33” We suppose that the distributions of eigenvalues converge to a nontrivial dis-
tribution do(s?).

Let U™ be the corresponding eigenvector matriz. For each n we have a multivariate nor-
mal random vector y™ with covariance matriz U™ diag(f(s% Z-))U(”)*, where f : RT — RT
is a strictly decreasing, continuously differentiable function. ‘We assume that the singular
values s, ; are bounded above by smax, and that

(8) Cii= inf (—f(t)>0.

0<t<s2

max

(We maintain the normalization assumption that ), ng,i =n.)

Let @n be the MLE for an observation y™, calculated from the random-effects model
with GRM A,,. Then 1& is bounded above in probability by a strictly negative quantity —9,
depending on C1 and the distribution o, as n — oo. That is, the probability of 1[171 > =0
goes to 0 as n — 0.

5. TRANSCRIPTOME-WIDE HERITABILITY ESTIMATION IN GEUVADIS

We end on a brief example to illustrate the practical significance of negative heritability
estimates. Although negative estimates of heritability for a single, fixed trait are rarely
published, it is common to include negative estimates when profiling heritability across a
large number of roughly exchangeable traits [32, 30, 3, 7, 34, 11, 10, 14]. Characteriz-
ing such -omic-wide heritability is common in functional genomics, where high-throughput
measurements of some genomic property are made at thousands of genomic positions. The
most common measurement is (RNA) gene expression, but other prominent examples in-
clude methylation levels, chromatin accessibility, expression response to stimuli, or protein
expression.

We analyzed an RNA-sequencing dataset from the consortium on Genetic European
Variation in Health and Disease (GEUVADIS) [17] 2. We aligned the raw transcript reads
from the European individuals to the reference hgl9 transcriptome with the RSEM software
package that implements an Expectation-Maximization (EM) algorithm [19]. We removed
perfectly correlated genes and genes with low expression mean or variance.

For each ¢ in 375 people and j in 4, 154 genes, we define the phenotype yl(j ) as log (1 + nij)
where n;; is the number of observed RNA reads for gene j measured in person i. Our
preprocessing resulted in a sample for 4, 154 genes measured on 375 people, each of which
we centered and scaled to mean zero, variance one.

Separately for each gene y), we estimate its cis-heritability, that is, the heritability in
expression levels explained by SNPs near to the gene. We do so by fitting our standard
model (1) with a genotype matrix Z () whose columns correspond to SNPs located up to
1 megabase upstream or downstream of gene j’s transcription start site. Restricting to
SNPs near a gene is a common way to enrich for functionally causal SNPs. We discard

2We thank David Siegel for help processing the GEUVADIS data.
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rare SNPs, which we define as SNPs with minor allele frequencies below 2.5%. Finally, we
remove genes with less than 1,000 corresponding SNPs, which excludes 35 genes.

The column dimensions (p) of the separate genotype matrices range from 1,000 to 20, 523
with a mean of 3,027 and median of 2,754. We fit each 1[1 with the maximum likelihood
routine from [6], yielding 4,119 values reflecting systematic variation across genes in their
cis-heritability, within the limits imposed by sampling error.

The distribution of the resulting transcriptome-wide (cis-)heritability estimates is shown
in Figure 2 in the form of a smoothed histogram. Clearly, a substantial number of the
estimates are negative. The mode is close to zero. Removing negative heritability estimates
increases the transcriptome-wide average heritability from 6.2% to 9.0%, and truncating
at zero increases it from 6.2% to 6.6%.

Distribution of cis—heritability in GEUVADIS gene expression

—— No PEER
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FIGURE 2. Transcriptome-wide density of gene expression cis-heritability
estimates in the GEUVADIS data.

We repeated the analysis with adjustments based on the technique of Probabilistic Es-
timation of Expression Residuals (PEER) [24]. We projected out the top 10 PEER factors
from the expression phenotypes and the SNPs in Z. This practice, or close variants based
on gene expression principal components [1] or surrogate variables [18], is nearly universal
in functional genomics [25]. The common aim of these approaches is to approximate latent
confounding variation, like experimental batch effects, which can be captured by dimen-
sionality reduction under certain assumptions. The confounder estimates are treated as
known covariates and residualized from the phenotype and genotype data.

Correcting for 10 PEER factors increases many of the 1[1 values and reduces the incidence
of negative 1& as shown in the green curve in Figure 2. However, it is clear that many
negative estimates remain. Negative estimates are bound to be part of the picture whenever
1 is small and estimated with low precision, both conditions which will likely hold in most
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functional genomic analyses for at least the near future. On the question of whether some
negative estimates may be meaningful reflections of non-genetic phenotypic structure, it is
well to keep an open mind.

6. PROOF OF PROPOSITION 4.1

Proof. We follow the general principle, enunciated by [29], that the MLE for the misspeci-
fied model will converge to the closest fit in the Kullback—Leibler sense. In other words, the
parameter estimate converges in probability to the location of the maximum expected value
of the log-likelihood function. The arguments of [29] do not apply directly here, because
we are not sampling i.i.d. random variables; however, the score function may be written

1 1 $
9 —— Gn(¥iXx) 1= ——— = i(P)ws,
®) 5@ N = S g & )
for —1/(s2,,. — 1) <9 < 1, where (;) are i.i.d. x} random variables and
(10) ai() | ———— —nflzn:;
! L—+sh j:11—¢+¢53w

f(si,i) Si,i

_ —1
1t vsi, \L-y+s2; lew%

We note that the maximum likelihood occurs either at a zero of G,,, or at ¢ =1 if G,
is everywhere positive. (It goes to 400 at the left boundary.) We restrict to ¥ € [S1, (2]
for some fixed 31 < B strictly in the interval (—1/(s2,, —1),1). The coefficients a;(v)) are
uniformly bounded and uniformly Lipschitz, so, by a variant of the central result of [33],
G (1;x) converges uniformly in ¢ to the function that is the limit of the expected values

' 1 SQ S2
GW) = lim Gu(¥i 1) = 75 Cove (1—{p(+)¢52’1—¢+¢52)'

The covariance is understood here to be with respect to S? having distribution ¢. (This
result does not satisfy exactly the conditions of [33], so we provide a proof of the result,
stated as Lemma 6.1.) We have assumed that the limiting distribution o for the squared
singular values is nontrivial, hence with nonzero variance. We may assume without loss of
generality that

n

Cy:=inf [ n7! sto—1]>0

" i=1 !
We need to show that G is negative for all ¢ above the bound given in (11).
Near ) = 0 the function G,,(3; 1) is well-behaved, and takes on the value Cov(f(s2 ;),s2 )

n,i/’ °n,
at 1 = 0. Since f(t)+ Cit is a decreasing function of ¢, for ¢ € [0, s we have by Harris’s

max]
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inequality [4, Theorem 2.15]

G(0) = Cov ( £(S?) + 182, 52) — ¢y Var (52)
< —C1Cs
<0.

We also have

(1=4)G' (1) = — Cov (

(8% S(8% - 1)
1 —t+1S27 (1 —1p+15?)?

(S2-1f(s?) 8
- cov <(1—w+ws2>2’ ] —w+w52)

-1 £(5?) S°
+(1—1) COV(1—¢+1/JS2’1—1/J+¢SQ>'

Since f is decreasing, we have for —s—1— < ¢ < 0 the bound

2512nax_ 1

|G ()] < 20850 f(0).

Thus G(¢) < 0 for all

€10
. v (mguror?)

It follows that G, (;x) is negative for all ¢ between 0 and the bound given in (11), with
probability tending to 1 as n — oc.

We note now that for ¢ € [0,1] f(¢)/(1 — 1 + ¢t) is a decreasing function of ¢, and
t/(1 — 1 + 9t) is increasing, so (again by Harris’s Inequality) G(¢)) < 0, which completes
the proof. O

Lemma 6.1. Let a : [0, Smax] X [f1, 52] = R be a function that is bounded and Lipschitz.
Let sp1,...,8nn be a triangular array of uniformly bounded real numbers, with a limiting
measure o, so thatn™* Yoy ds,; converges weakly to o, where 0, represents unit point mass
atx. Letxp1,...,Tny, be independent random variables with B[z, ;] = 1 and Var(zy, ;) <V

for a fixed number V. Define
Gn(w) = n_l Z xn,ia(sn,ia ¢) .
i=1

Then Gy, converges weakly in the uniform topology to

G() = /Osmax a(s,-)do(s).
That s,

n—oo
sup |G(¢) — Gu(¥))| ——p 0.
e[ fo)
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Proof. We have

sup_|G() = Gu(¥)| < sup |07t Y (wns — 1) alsuiv)|
¢6[51=52] wE[BLBQ] i=1

S etonin) = [ o ot

The Lipschitz property of a implies that the second term may be bounded, for any fixed
positive integer k, by

(12)

1<5<k

(13) (Bz —B1) + maX’ Y alsni ) —/0 " a(s,y) dos)|,
=1
where
)y = <1—i>ﬂl+iﬁgforl<]’<k‘,

a := max{sup |al, Lip(a)}

Because of the assumed weak convergence of the distribution of the s, ;, this converges to

%a(ﬁg — p1) as n — oo for each fixed k; hence the second term converges to 0 as n — oc.
To deal with the first term we use the standard method of chaining (cf. [23, chapter 3]):

We define finite skeletons of [31, Bs], subsets Dy C Dy C -+ - with |D;| = 27, defined by

{B1+22£ji_11(52_51) =0, ,21_1}

Note that each ¥ € D; for j > 1 has a unique nearest neighbour in D;_1, which we will
denote by v, and |¢p — 9’| = (B2 — $1)277 L. Define

n
-1
=n /2 Z ZTngi— 1 Sn,iawO) )

n n
R; ':géalg(n —1/2 ;(mm sm,@b ; Tpi— 1 sm,w)
We have .
E R <n V'Y a(sni o)’ <V,
For any collection of random variables &; ,l._.l. ,Em we know that
E [maxgg} <mmaxE [{,ﬂ ,
SO

E [Rﬂ <2 (2_j_1(ﬁ2 - 51)04)2 V =278y — B1)%a?V.
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By the Cauchy—Schwarz inquality we have
k 1/2\ 2
E [(Ro P Rkﬂ <(XE [Rﬂ ) < 202(Bs — B1)2V.
j=0
So finally, since

-1 Y ng — 1 n,iy < —1/2 3 R‘,
R D sl o) <R

i=1 s
we have
o 2 202V _ 2
S D S YA LG
¢€[ﬂ1752] i=1 n
By Markov’s inequality, combining this with (13) completes the proof. O
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