

1 **VlbZIP30 of grapevine functions in drought tolerance via the abscisic
2 acid core signaling pathway**

3

4 Mingxing Tu^{1,2,*}, Xianhang Wang^{1,2,*}, Yanxun Zhu^{1,2}, Dejun Wang^{1,2}, Xuechuan
5 Zhang³, Ye Cui³, Yajuan Li^{1,2}, Min Gao^{1,2}, Zhi Li^{1,2}, Xiping Wang^{1,2,†}

6

7 ¹State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture,
8 Northwest A&F University, Yangling, Shaanxi 712100, China

9 ²Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in
10 Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling,
11 Shaanxi 712100, China

12 ³Biomarker Technologies Corporation, Beijing 101300, China

13

14 * These authors contributed equally to this work.

15 † Correspondence: wangxiping@nwsuaf.edu.cn

16

17

18 **Running title: VlbZIP30 positively regulate plant drought tolerance**

19

20

21 **Highlight**

22 *VlbZIP30* positively regulate plant drought tolerance through regulated the expression
23 of 27 grapevine candidate genes via G-box *cis*-element (MCACGTGK) in ABA
24 signaling pathway.

25

26

27

28 **Abstract**

29 Drought stress limits the growth and development of grapevines, thereby reducing
30 productivity, but the mechanisms by which grapevines respond to drought stress
31 remain largely uncharacterized. Here, we characterized a group A bZIP gene from
32 'Kyoho' grapevine, *VlbZIP30*, which was shown to be induced by abscisic acid (ABA)
33 and dehydration stress. Overexpression of *VlbZIP30* in transgenic *Arabidopsis*
34 enhanced dehydration tolerance during seed germination, and in the seedling and
35 adult stages. Transcriptome analysis revealed that a major proportion of ABA- and/or
36 drought-responsive genes are transcriptionally regulated by *VlbZIP30* during ABA or
37 mannitol treatment at the cotyledon greening stage. We identified an *A. thaliana*
38 G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in
39 the promoters of the 39 selected *A. thaliana* genes up-regulated in the transgenic
40 plants and in the 35 grapevine homologs, respectively. Subsequently, using two
41 grapevine-related databases, we found that 74% and 84% (a total of 27 genes) of the
42 detected grapevine genes were significantly up-regulated by ABA and drought stress,
43 respectively, suggesting that these 27 genes involve in ABA or dehydration stress and
44 may be regulated by *VlbZIP30* in grapevine. We propose that *VlbZIP30* functions as a
45 positive regulator of drought-responsive signaling in the ABA core signaling pathway.

46

47 **Keywords**

48 Grapevine, *VlbZIP30*, Drought stress, ABA, RNA-seq, G-box.

49

50

51

52

53

54

55

56 **Introduction**

57 Grapevines are amongst the world's major fruit crops, and their fruits can be
58 consumed either fresh or dried or be processed into wines, spirits and vinegar, or
59 transformed into pharmaceutical products that promote human health (Pilati *et al.*,
60 2017). However, abiotic stress, such as drought, perturb the metabolism and growth of
61 grapevines, leading to a loss of yield and reduced fruit quality (Ferreira *et al.*, 2004).
62 Consequently, increasing the resistance of grapevines to drought stress is an important
63 factor in ensuring yield stability.

64 Stress signaling in plants can be transduced by various signaling components,
65 including second messengers (e.g. Ca^{2+}), signal transduction factors, including protein
66 kinases and phosphatases, hormones such as abscisic acid (ABA), and transcription
67 factors (TFs). Such signaling associated with drought has been shown to cause
68 changes in physiological, morphological and molecular processes, including the
69 activation of many drought stress-related genes and the accumulation of a range of
70 proteins, reflecting a drought stress response (Zhu, 2002; Yamaguchi-Shinozaki and
71 Shinozaki, 2006; Lata and Prasad, 2011; Tang *et al.*, 2012).

72 ABA is considered to be a stress hormone and has been particularly associated
73 with drought tolerance, although it is also involved in various developmental
74 processes, including seed germination, seedling growth and development (Finkelstein
75 *et al.*, 2002; Tang *et al.*, 2012). In the context of a drought response it has been shown
76 to mediate stomatal closure and to promote cuticular wax biosynthesis (Nambara and
77 Kuchitsu, 2011). Analyses of the underlying molecular mechanisms have
78 demonstrated that both ABA-dependent and ABA-independent pathways are involved
79 in drought stress responses (Shinozaki and Yamaguchi-Shinozaki, 2000;
80 Yamaguchi-Shinozaki and Shinozaki, 2006). ABA-mediated drought tolerance
81 involves complex signaling networks, the core components of which have been
82 identified. Briefly, when ABA is present, it binds to the ABA receptors
83 PYR/PYL/RCAR (PYRABACTIN RESISTANCE1/PYR1-like/REGULATORY
84 COMPONENT OF ABA RECEPTOR1), which interact with the PP2C (PROTEIN

85 PHOSPHATASE 2C) proteins, forming a complex and releasing the inhibitory effect
86 of PP2Cs on SnRK2 (SUCROSE-NONFERMENTING1-RELATED PROTEIN
87 KINASE2) protein kinases. The activated SnRK2s proteins subsequently
88 phosphorylate different downstream TFs, such as AREB1
89 (ABA-RESPONSE-ELEMENT BINDING1) and ABI5 (ABA INSENSITIVE5),
90 which regulate the expression of ABA-responsive genes (Fujii and Zhu, 2009; Fujita
91 *et al.*, 2009; Ma *et al.*, 2009; Nakashima *et al.*, 2009; Park *et al.*, 2009; Danquah *et al.*,
92 2014).

93 TFs are generally identified according to conserved sequences, known as the
94 DNA-binding domains. One of the largest TF families in higher plants is the bZIP
95 family, members of which are characterized by a basic region/leucine zipper domain
96 (Van Leene *et al.*, 2016). Previous studies have shown that bZIP proteins function as
97 regulators of signaling networks by specifically binding *cis*-elements containing an
98 core ACGT, such as the ABA-responsive element (ABRE; PyACGTGGC), the G-box
99 (CACGTG) and the C-box (GACGTC) (Yamaguchi-Shinozaki *et al.*, 1990; Foster *et*
100 *al.*, 1994), in the promoters of their target genes, to either activate or repress their
101 expression (Mitsuda and Ohme-Takagi, 2009).

102 A number of studies have shown that bZIP TFs are important regulators of
103 drought stress signaling in the ABA-dependent pathway, mostly in association with
104 seed germination and post-germination growth. The involvement of bZIP TFs (*ABF1*,
105 *AREB1/ABF2*, *ABF3*, *AREB2/ABF4*) in the regulation of drought responses was first
106 reported in the model plant *Arabidopsis thaliana* (Kang *et al.*, 2002; Kim *et al.*, 2004;
107 Fujita *et al.*, 2005; Yoshida *et al.*, 2010; Yoshida *et al.*, 2015). Following these studies,
108 drought-related bZIP genes have been identified in a range of other species, including
109 *OsABI5* in rice (*Oryza sativa*) (Zou *et al.*, 2008), *LIP19* in wheat (*Triticum aestivum*)
110 (Kobayashi *et al.*, 2008), *ABP9* in maize (*Zea mays*) (Zhang *et al.*, 2011), *SlAREB1* in
111 tomato (*Solanum lycopersicum*) (Orellana *et al.*, 2010), *GmbZIP1* in soybean (*Glycine
max*) (Gao *et al.*, 2011), *ThbZIP1* in *Tamarix hispida* (Ji *et al.*, 2013), *CaBZ1* in hot
113 pepper (*Capsicum annuum*) (Moon *et al.*, 2015), and *PtrABF* in trifoliate orange
114 (*Citrus trifoliata*) (Zhang *et al.*, 2015).

115 In order to improve the typically poor drought resistance of grapevines,
116 researchers have focused their attention on the identification of drought-related TFs.
117 Several, such as *CBF1/2/3/4* (Xiao *et al.*, 2006; Siddiqua and Nassuth, 2011; Li *et al.*,
118 2013), *WRKY11* (Liu *et al.*, 2011a), *ERF1/2/3* (Zhu *et al.*, 2013), *NAC26* (Fang *et al.*,
119 2016), and *PAT1* (Yuan *et al.*, 2016), have been identified and their overexpression in
120 *A. thaliana* has been shown to enhance drought resistance. However, to date, only a
121 few grapevine bZIP TFs have been functionally characterized during a drought stress
122 response (Gao *et al.*, 2014; Tu *et al.*, 2016a, b), and their regulatory mechanisms are
123 not well understood.

124 In this current study, we cloned a group A bZIP TF, *VlbZIP30*, from ‘Kyoho’
125 grapevine (*Vitis labrusca*×*V. vinifera*) and ectopically expressed it in *A. thaliana*. The
126 results of physiological and transcriptomic analyses of the transgenic lines are
127 presented and its putative function in drought-responsive signaling via the ABA
128 signaling pathway in grapevine is discussed.

129

130 Materials and methods

131 *Plant material and growth conditions*

132 The two-year-old ‘Kyoho’ grapevine (*Vitis labrusca*×*V. vinifera*) plants used in this
133 study were grown in the grapevine repository of the Northwest A&F University,
134 Yangling, Shaanxi, China. *A. thaliana* ecotype Columbia (Col-0) plants used as both
135 wild type (WT) and for transgenic experiments were grown in a greenhouse at 21°C
136 under long-day (LD) conditions (16 h light/8 h dark).

137

138 *Dehydration stress and ABA treatment of grapevine leaves*

139 For dehydration treatments, grapevine shoots with three well-developed leaves were
140 detached and immediately placed on dry filter paper in an illumination incubator at
141 25°C, with a relative humidity of 60-70%, under LD conditions (16 h light/8 h dark).
142 For ABA treatments, leaves were sprayed with 100 µM ABA while the shoots were
143 immersed in water, and the plants were then placed under the same ambient

144 conditions as above. Leaves from the same position were collected from three
145 independent replicates of each treatment at 1, 2, 4, 6, 9, 12, and 24 h after initiating
146 treatment. The 0 h samples were collected before each treatment was initiated and
147 used as control samples. All samples were immediately frozen in liquid nitrogen and
148 stored at -80°C until further analysis.

149

150 *Bioinformatic analysis*

151 Full-length amino acid sequences of bZIP TFs from *A. thaliana* and grapevine were
152 obtained from The Arabidopsis Information Resource (TAIR;
153 <http://www.arabidopsis.org/index.jsp>) and EnsemblPlants
154 (<http://plants.ensembl.org/index.html>), respectively. Multiple amino acid sequence
155 alignments were generated using DNAMAN software (Version 5.2.2.0,
156 LynnonBiosoft, USA) with default parameters, and a phylogenetic tree was
157 constructed using the neighbor-joining (NJ) method and MEGA software (version
158 5.05), with 1,000 bootstrap replicates, as previously described (Tu *et al.*, 2016b). The
159 predicted phosphorylation sites (C1, C2, C3, and C4) and highly conserved bZIP
160 domain were analyzed as previously described (Fujita *et al.*, 2005).

161

162 *Transformation and characterization of transgenic plants*

163 The plant transformation vectors 35S:*VlbZIP30* and Pro*VlbZIP30*:*GUS* (β -glucosidase,
164 details of vector construction are supplied in Supplementary Method S1) were
165 transformed into *A. thaliana* by the floral dip method using *Agrobacterium*
166 *tumefaciens* (strain GV3101) (Clough and Bent, 1998).

167 For each construct, seeds of the T0 and T1 plants were screened on
168 Murashige-Skoog (MS) agar medium supplemented with 100 mg/L kanamycin. For
169 phenotypic investigation, the three T3 homozygous lines (OE1, OE6 and OE23) with
170 the highest levels of *VlbZIP30* expression, were used. To assess the expression of
171 *GUS* in the Pro*VlbZIP30*:*GUS* transgenic plants, T3 homozygous lines from 3
172 independent transgenic lines were analyzed. Seeds from each of the three selected T3
173 homozygous lines and from WT plants were vernalized and sterilized as previously

174 described (Tu *et al.*, 2016b).

175

176 *Histochemical GUS assay*

177 An *in situ* GUS activity assay was performed as previously described (Tu *et al.*,
178 2016b).

179

180 *Osmotic stress and ABA treatment of transgenic seedlings*

181 WT and transgenic seeds were harvested at the same time. For seed germination and
182 cotyledon greening analyses, approximately 100 seeds from WT and each
183 35S:VlbZIP30 line (OE1, OE6 and OE23) were grown on MS agar medium, MS agar
184 medium containing 300mM or 350 mM mannitol, or on MS agar medium containing
185 0.5 μ M or 1 μ M ABA, at 21°C with a 16 h light/8 h dark cycle. Germination and
186 cotyledon greening rates were defined as the obvious emergence of the seedling
187 radicle through the seed coat and green coloration of cotyledons, respectively (Tu *et*
188 *al.*, 2016b). The seedlings were sampled after counting to measure the endogenous
189 ABA contents.

190 For the osmotic stress and ABA treatments, 7-day-old WT and transgenic
191 seedlings were transferred from MS medium plates into MS agar medium, or MS agar
192 medium supplemented with 300 mM or 350 mM mannitol, or MS agar medium
193 supplemented with 50 μ M or 100 μ M ABA. The root lengths were measured 7 d after
194 the transfer.

195

196 *Transcriptome analysis and identification of differentially expressed genes (DEGs)*

197 Seeds from WT and transgenic lines were cultivated on MS agar medium, with or
198 without stress treatment (0.5 μ M ABA or 300 mM mannitol) for 7 d, and collected for
199 RNA extraction. For each RNA purification biological replicate, 300 seedlings of WT
200 or the OE lines from three MS agar plates were pooled to form a single sample. Three
201 independent RNA samples were used for each experiment.

202 Total RNA was extracted using the E.Z.N.A. Plant RNA Kit (Omega Bio-tek,
203 USA, R6827-01) according to the manufacturer's protocol (Invitrogen). RNA

204 concentration and integrity were confirmed using a NanoDrop 2000
205 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and an Agilent
206 2100 Bioanalyzer (Agilent Technologies, CA, USA). The construction of RNA-Seq
207 libraries and sequencing were performed by the Biomarker Biotechnology
208 Corporation (Beijing, China). The libraries were generated using the NEBNext
209 UltraTM RNA Library Prep Kit for Illumina (NEB, USA) following the
210 manufacturer's recommendations. Sequencing of the purified libraries was carried out
211 using an Illumina HiseqXten platform (Illumina, NEB, USA) generating paired-end
212 reads. The raw reads were cleaned by removing reads containing adapter sequences,
213 reads containing poly-N and low quality reads. The cleaned reads from each sample
214 were aligned to the *A. thaliana* reference genome from TAIR using the Tophat2
215 software (Kim *et al.*, 2013). Gene expression levels were determined by fragments per
216 kilobase of transcript per million fragments mapped (FPKM), and the DEGs were
217 identified using edgeR software (Robinson *et al.*, 2010), with a threshold of false
218 discovery rate (FDR)<0.05 and absolute log2FC (fold change)>1. All raw sequence
219 data in this study have been submitted to the NCBI Short Read Archive (SRA) under
220 BioProject accession number PRJNA419694.

221

222 *Transcriptome data analysis*

223 The Venn diagrams were made using the BMK Cloud platform (www.biocloud.net).
224 Annotations for DEGs were retrieved from TAIR. Gene Ontology (GO) enrichment
225 analyses were performed for the functional categorization of DEGs based on the
226 PageMan profiling tool (Usadel *et al.*, 2006) and Arabidopsis Functional Modules
227 Supporting Data (Heyndrickx and Vandepoele, 2012). The grapevine orthologs of the
228 *A. thaliana* genes were identified using TBLASTX software (Altschul *et al.*, 1997)
229 with the highest score. Motif predictions were performed using the promoter region
230 1,500bp upstream of the start codons of the *A. thaliana* (AT) and grapevine (VIT)
231 genes using DREME software (<http://meme-suite.org/tools/dreme>). The heat maps
232 were constructed using HemI software (Deng *et al.*, 2014). To identify the predicted
233 grapevine genes, two grapevine-related ABA (Pilati *et al.*, 2017) and drought stress

234 (Rocheta *et al.*, 2016) databases were downloaded from the National Center for
235 Biotechnology Information (NCBI) under BioProject accession number
236 PRJNA369777 and the Gene Expression Omnibus (GEO) database under the number
237 GSE57669.

238

239 *Water loss assay and drought treatment of mature transgenic seedlings*

240 For the water loss assay, rosette leaves of 3-week-old WT and transgenic plants were
241 detached and immediately placed on dry filter paper. The samples, together with the
242 paper, were then placed in the laboratory at ambient temperature with a relative
243 humidity of 45-50%, and weighed at the indicated times. The fresh weight of the
244 leaves was measured every 30 min to calculate relative water loss. The leaves were
245 sampled after dehydration to examine cell death phenotypes, measure endogenous
246 ABA content, antioxidant enzyme activity, and levels of ROS. The 0 h samples
247 collected before dehydration were used as the negative control. For the drought
248 treatment, plants were initially grown for 3 weeks under a normal watering regime
249 and then water was withheld for 8 d. Survival rates were scored after re-watering for 3
250 days. Well-watered plants were used as the negative control.

251

252 *Analysis of electrolyte leakage, MDA content, cell death, reactive oxygen species*
253 *(ROS) levels, antioxidant enzyme activity and ABA content*

254 The relative electrolyte leakage, MDA content and antioxidant enzyme activity were
255 measured as previously described (Tu *et al.*, 2016b), as was ABA content (Tu *et al.*,
256 2016a). Histochemical staining procedures were used to detect *in situ* reactive oxygen
257 species (ROS) levels and dead cells as previously described (Tu *et al.*, 2016b).

258

259 *Stomatal aperture analysis*

260 Stomatal aperture assays were performed as previously described (Tu *et al.*, 2016b).

261

262 *RNA extraction and quantitative real-time PCR (qRT-PCR)*

263 Total RNA was extracted from the grapevine leaves at 8 time points (0, 1, 2, 4, 6, 9,

264 12, and 24 h) after ABA and dehydration treatment using the E.Z.N.A._Plant RNA Kit
265 (Omega Bio-tek, USA, R6827-01) following the manufacturer's instructions, as was
266 total *A. thaliana* RNA from the leaves of 3-week-old WT and OE lines collected
267 before and after dehydration. The qRT-PCR analyses were conducted using SYBR
268 Premix Ex Taq II (TliRNaseH Plus) (TaKaRa Biotechnology) and a StepOnePlusTM
269 RT-PCR instrument from Thermo Fisher Scientific with the following thermal profile:
270 95°C for 30 s, 45 cycles of 95°C for 5 s, and 60°C for 30 s. The expression levels of
271 the grape *ACTIN1* (VIT_04s0044g00580) or *A. thaliana* *ACTIN2* (AT3G18780) genes
272 were used as references. The specific primers for qRT-PCR are listed in
273 Supplementary Table S1. Relative expression levels were analyzed using the
274 StepOnePlus software (v. 2.3) and the Normalized Expression Method.

275

276 **Statistical analysis**

277 Data analysis was performed using Microsoft Excel (Microsoft Corporation, USA).
278 The data were plotted using SigmaPlot (v. 10.0, Systat Inc., CA, USA). Paired t tests
279 were performed to assess significant differences using the SPSS Statistics 17.0
280 software (IBM China Company Ltd., Beijing, China). All experiments were repeated
281 three times as independent analyses.

282

283 **Results**

284 *Identification of VlbZIP30, a group A bZIP TF from grapevine*

285 The *VlbZIP30* (VIT_13s0175g00120) cDNA is 978 bp long and encodes a protein of
286 325 amino acids. Amino acid sequence analysis showed that, in common with the 8
287 members of the *A. thaliana* ABF/DPBF bZIP subfamily, VlbZIP30 also contains a
288 leucine zipper domain (Jakoby *et al.*, 2002) and conserved domains predicted as
289 phosphorylation sites (C1, C2, C3 and C4) involved in drought stress or ABA
290 signaling (Fujita *et al.*, 2005) (Fig. 1). A phylogenetic analysis indicated that
291 VlbZIP30 is most closely related to the group A ABF/DPBF TFs, which have
292 previously been shown to be involved in ABA and drought stress signaling in *A.*

293 *thaliana* (Kang *et al.*, 2002; Kim *et al.*, 2002; Fujita *et al.*, 2005; Yoshida *et al.*, 2015),
294 and in grapevine (Nicolas *et al.*, 2014; Tu *et al.*, 2016a) (Fig. 2A).

295

296 *Expression of VlbZIP30 is induced by drought and ABA treatment*

297 To test whether *VlbZIP30* is involved in ABA and drought stress signaling, we first
298 evaluated the expression levels of *VlbZIP30* in grapevine following ABA or
299 dehydration treatments using qRT-PCR. As shown in Fig. 2B, ABA caused an increase
300 in *VlbZIP30* expression at 4 h and 6 h shortly after initiation of the treatment. The
301 expression peaked at 12 h, before decreasing for the next 24 h. Dehydration caused an
302 increase in *VlbZIP30* expression at 24 h.

303 Next, to investigate the temporal and spatial expression patterns of *VlbZIP30* in
304 more detail, histochemical GUS reporter experiments were performed with plants
305 grown under ABA and dehydration stress, as well as under normal conditions. Low
306 levels of GUS staining were observed in 2-d seeds at the germination stage, as well
307 as in 7 d and 14 d old seedlings (Fig. 2C, a, d and g), and GUS activity was
308 significantly enhanced after mannitol (Fig. 2C, b, e and h) and ABA (Fig. 2C, c, f and
309 i) treatments at the same stages. In mature plants, GUS staining was obviously
310 detected in stems, trichomes, flowers and siliques (Fig. 2C, n-q), while only slight
311 staining was detected in leaf petioles (Fig. 2C, j), and no staining was detected in
312 guard cells (Fig. 2C, l). However, after dehydration for 2 h, the leaf petioles and guard
313 cells showed an increase in GUS staining in 3-week-old plants (Fig. 2C, k, m). The
314 dehydration treatments had no effect on the size of the stomatal aperture. These
315 results suggest that *VlbZIP30* expression is regulated by ABA and drought stress.

316

317 *Overexpressing VlbZIP30 in A. thaliana reduces mannitol and ABA sensitivity during*
318 *seed germination and post-germination growth*

319 Three homozygous transformed lines (OE1, OE6 and OE23) with the highest levels of
320 *VlbZIP30* expression were selected based on qRT-PCR analysis (Supplementary Fig.
321 S1). Sterilized seeds of the transgenic lines and WT plants were cultivated on MS agar
322 medium, or MS agar medium containing 300 mM or 350 mM mannitol, or 0.5 μ M or

323 1 μ M ABA. The seed germination rates of the transgenic lines were not different to
324 the rates observed for the WT when grown on MS agar medium for 3 d. However, the
325 transgenic lines showed 20–32% and 6–13% higher seed germination than WT plants
326 after mannitol (300 mM and 350 mM) and ABA (0.5 μ M and 1 μ M) treatments,
327 respectively (Supplementary Fig. S2A, B). Given that ABA controls seed germination,
328 and that its biosynthesis can be affected by abiotic stress (Iuchi *et al.*, 2001; Fujii and
329 Zhu, 2009), we measured endogenous ABA contents. We found that ABA levels in the
330 transgenic lines were slightly higher than in WT following mannitol or ABA
331 treatments (Supplementary Fig. S2C).

332 We also examined cotyledon greening rates in plants grown on MS agar medium
333 for 7 d and observed that the transgenic lines and WT showed no significant
334 differences (Fig. 3A). However, the transgenic lines showed 30–39% and 19–20%
335 higher cotyledon greening rates than WT plants after 7 d with mannitol (300 mM and
336 350 mM) and ABA (0.5 μ M) treatments, respectively (Fig. 3B). The cotyledon
337 greening rates of both transgenic lines and WT decreased substantially in response to
338 the 1 μ M ABA treatment, but the transgenic seedlings exhibited 4–6% higher
339 cotyledon greening rates than the WT (Fig. 3A, B). The cotyledon greening rates were
340 further tested at different time points after treatment with 350 mM mannitol or 1 μ M
341 ABA. As shown in Fig. 3C, neither the transgenic lines nor WT plants had greening
342 cotyledons 3 d after treatment with 350 mM mannitol. However, the cotyledon
343 greening rates of the transgenic lines were significantly higher than those of WT 4 d
344 after treatment, and gap gradually increased with time, and peaked at 7 d. When
345 grown on MS agar medium supplied with 1 μ M ABA, the cotyledon greening rates of
346 transgenic lines and WT showed no significant difference at 6, 7 and 8 d, while the
347 transgenic lines exhibited 11–12% and 29–35% higher cotyledon greening rates than
348 WT plants 9 d and 11 d after treatment, respectively (Fig. 3D). These results suggest
349 that over-expressing *VlbZIP30* reduced sensitivity of *A. thaliana* seedlings to
350 mannitol and ABA. In addition, the endogenous ABA levels in the transgenic lines
351 were higher than those in WT after exposure to 350 mM mannitol (Fig. 3E),
352 suggesting that the transgenic plants were insensitive to mannitol, possibly due to

353 altered endogenous ABA levels.

354 To further characterize morphological changes of WT and transgenic seedlings in
355 response to the mannitol and ABA treatments, the various seed genotypes described
356 above were grown on MS agar medium, with or without 300 mM mannitol, or 0.5 μ M
357 ABA for 14 d. As shown in Fig. 4A, the size of cotyledons and roots of the transgenic
358 seedlings were significantly bigger and longer than those of WT following both
359 treatments, while there was no differences observed under control conditions.

360 To determine whether the transgenic lines had longer primary roots as a
361 consequence of precocious germination or development of post-germination growth,
362 7-d-old transgenic lines and WT seedlings grown on MS agar medium were
363 transferred to MS agar medium with or without mannitol or ABA, and grown for
364 another 7 d. When grown on MS agar medium, the primary root lengths were similar;
365 however, when grown on MS agar medium containing mannitol (300 mM and 350
366 mM) or ABA (50 μ M and 100 μ M), the transgenic lines had relatively longer primary
367 roots than WT seedlings under mannitol treatment, while there was no significant
368 difference in response to the ABA treatment (Fig. 4B, C). This indicated that
369 *VlbZIP30* plays a role in suppressing the retardation of germination mediated by ABA,
370 but not in root growth inhibition.

371 One effect of osmotic stress is membrane lipid peroxidation, and the levels of
372 electrolyte leakage and malondialdehyde (MDA) are often used as indicators of the
373 degree of cell membrane injury and tissue damage (Neill *et al.*, 2002; Pompelli *et al.*,
374 2010). We measured electrolyte leakage and MDA levels in the transgenic and WT
375 seedlings after 300 mM or 350 mM mannitol treatment and saw that under normal
376 growth conditions, there was no significant difference between the transgenic lines
377 and WT seedlings. However, following treatments with different mannitol
378 concentrations, the values in the transgenic lines were significantly lower than in WT,
379 indicating that the degree of membrane and tissue damage was less as a result of
380 *VlbZIP30*-overexpression (Fig. 4D, E). Taken together, these results indicated that
381 overexpressing *VlbZIP30* in *A. thaliana* enhanced osmotic stress tolerance not only at
382 the germination stage, but also during post-germination developmental processes.

383

384 *The expression of many ABA- or drought-responsive genes is induced in*
385 *VlbZIP30-overexpressing lines*

386 To examine the possible roles of *VlbZIP30* in transcriptional regulation in response to
387 ABA and osmotic stress, we performed a global transcriptome analysis to identify
388 DEGs between the WT and *VlbZIP30*-overexpressing lines using RNA-seq. Seeds
389 from WT and OE1 transgenic lines were cultivated on MS agar medium with or
390 without 0.5 μ M ABA or 300 mM mannitol for 7 d, and the seedlings were then
391 collected for transcriptome analysis (Fig. 3A, scheme summarized in Fig. 5A). DEGs
392 were defined based on a threshold of 2-fold change (FDR<0.05). We identified 10
393 genes that were up- and 10 that were down-regulated in the OE lines compared with
394 WT plants under control conditions (OEC / WTC, Fig. 5B, C). Details of these 20
395 genes, including their annotation and their expression levels are listed in
396 Supplementary Table S2. After treatments, a total of 1,735 and 2,203 up-regulated
397 genes and 1,734 and 1,764 down-regulated genes were identified in WT plants
398 subjected to ABA (WTA / WTC) and mannitol (WTM / WTC) stress, respectively
399 (Fig. 5B, C). A total of 1,510 and 1,494 up-regulated genes, and 1,058 and 729
400 down-regulated genes were found in the OE lines subjected to ABA (OEA / OEC) and
401 mannitol (OEM / OEC) stress, respectively (Fig. 5B, C). We also identified 359 and
402 139 genes that were up- and down-regulated, respectively, in the OE lines compared
403 with WT plants when treated with ABA (OEA / WTA, Fig. 5B, C), while 783 and 344
404 genes were up- and down-regulated, respectively, when treated with mannitol (OEM /
405 WTM, Fig. 5B, C).

406 To deduce the possible functions of the *VlbZIP30*-induced genes, we performed a
407 gene ontology (GO) analysis of the genes, whose expression levels were significantly
408 altered in the OE lines compared with the WT plants in response to ABA (OEA /
409 WTA) or mannitol stress (OEM / WTM), using the PageMan profiling tool (Usadel *et*
410 *al.*, 2006). This revealed that some genes encode TFs, and some genes are putatively
411 involved in photosynthesis, stress, signaling, transport, development and several other
412 metabolic pathways involving hormones, amino acids and lipids (Fig. 6).

413 To better understand the role of *VlbZIP30* in ABA and osmotic stress signaling,
414 the OEA / OEC and OEA / WTA intersecting genes (up-regulated genes, 29+53;
415 down-regulated genes, 8+11) and the OEM / OEC and OEM / WTM intersecting
416 genes (up-regulated genes, 47+115; down-regulated genes, 5+16) were selected for
417 further analysis (Fig. 5B, C). We identified all of the 248 (210 up-regulated genes, 38
418 down-regulated genes) genes mentioned above, and found that 38% (95/248) genes
419 had been identified in *A. thaliana*. Among them, 54 genes were involved in abiotic
420 stress, including stress-responsive genes (*RD20*, *RD22*, *RD26*, *SIS* and *ERD10*), ABA
421 signaling genes (*AFP1*, *AFP3*, *HB7*, *HB12*, *NCED3*, *MAPKKK18*, *PYL6*), PP2C
422 genes (*ABI1*, *ABI2*, *HAI1*, *HAI2*, *HAB1* and *PP2CA*), TFs (*ABF2*, *ABF3*, *ABF4*,
423 *DREB1A*, *NFYA5*, *NFYB2*, *NAP*, *MYB74*, *WRKY28*, *ERF053* and *bHLH129*), and
424 others (Table 1). The other 41 genes were involved in other processes such as wax
425 biosynthesis (*ABCG19*), photosynthesis, transport, hormone signaling
426 (brassinosteroids, ethylene and cytokinins), mineral homeostasis (Fe, Ca, Pi and S)
427 and others (Supplementary Table S3). We noted that the genes involved in hormone
428 signaling were almost all down-regulated in the OE lines compared with WT plants in
429 response to both treatments, while the genes involved in mineral homeostasis were
430 almost all up-regulated in the OE lines compared with WT plants following ABA
431 treatment (Supplementary Table S3). To date, the functions of these genes
432 characterized in *Arabidopsis* were consistent with the results of GO analysis (Fig. 6).

433 To confirm the RNA-seq results, we examined the expression of 20
434 drought-responsive genes by qRT-PCR and saw that the expression changes of all
435 these genes were similar in the RNA-seq and qRT-PCR data. As shown in Fig. 7, the
436 expression of four stress-marker genes and six ABA signaling genes, but not *NCED3*,
437 was up-regulated during both treatments in OE lines compared with WT plants. There
438 were increased transcript levels of the ABA biosynthesis related gene *NCED3* in the
439 OE lines during mannitol stress, which correlated with the endogenous ABA content
440 (Fig. 3E). Furthermore, the expression of several marker genes in the core ABA
441 signaling network, including PP2Cs and *PYL6*, also showed significant change.
442 Specifically, the expression of 4 PP2Cs significantly increased in the OE lines relative

443 to WT plants, while the expression of *PYL6* decreased in OE lines compared with WT
444 plants during mannitol stress.

445

446 *The presence of a potential G-box motif in VlbZIP30 induced genes*

447 To identify candidate *VlbZIP30* target genes, promoter analyses of the DEGs between
448 OE lines and WT plants under control conditions (10 up-regulated and 10
449 down-regulated genes) and during ABA or mannitol treatment (210 up-regulated and
450 38 down-regulated genes) were performed using the DREME motif discovery tool.
451 All up-regulated and all down-regulated genes were divided in two clusters performed
452 promoter analyses, respectively. Excitingly, We identified a potential G-box
453 *cis*-element motif (ACGTGKV; E-value, 2.5e-017) including a 4-bp core sequence
454 (ACGT) that is known to be a bZIP binding motif, as being significantly enriched in
455 the promoters of the up-regulated genes (Fig. 8A), in that 85% (187/220) carried this
456 motif in their upstream 1,500 bp promoter region. The G-box motif was not enriched
457 in the down-regulated genes. We next analyzed the number and location of the G-box
458 motifs in the 187 gene promoters, and observed that many genes carried 1 to 3 G-box
459 motifs, and that the highest G-box frequency was within the first 300 bp from the start
460 codon site (Fig. 8C, E).

461 ABRE (PyACGTGGC) and G-box (CACGTG) elements have previously been
462 identified as *cis*-binding elements for bZIP proteins that regulate gene expression in
463 response to ABA or drought stress in many plants, such as *A. thaliana* (Uno *et al.*,
464 2000), rice (Liu *et al.*, 2014), wheat (Wang *et al.*, 2016), soybean (Liao *et al.*, 2008),
465 tomato (Hsieh *et al.*, 2010), maize (Zhang *et al.*, 2011), orange (Zhang *et al.*, 2015),
466 potato (Muniz Garcia *et al.*, 2012), and *Tamarix hispida* (Ji *et al.*, 2015). We searched
467 the grapevine genome for homologs of the identified *A. thaliana* up-regulated (220)
468 and down-regulated (48) genes (Fig. 5D, E; Supplementary Data S1) and a promoter
469 analysis performed using the DREME motif discovery tool. Homologs were found of
470 195 of the up-regulated and 44 of the down-regulated genes (Supplementary Data S1).
471 Using the same analytical method, surprising, a potential G/C-box *cis*-element motif
472 (MCACGTS; E-value, 8.3e-018) including the core sequence (ACGT) was found to

473 be significantly enriched in the homologs to the up-regulated genes (Fig. 8B). We
474 determined that 55% (108/195) of the up-regulated genes had at least one G/C-box
475 motif in their upstream 1,500 bp promoter region, while this motif was not enriched in
476 the down-regulated genes. Many of the 195 genes carried 1 or 2 G/C box motifs, and
477 the highest frequency was seen in these quence up to 300 bp from start codon site (Fig.
478 8D, F), similar to the *A. thaliana* genes (Fig. 8C, E).

479 Next, those genes with three or more G-box (*A. thaliana*) or G/C-box (grapevine)
480 motifs were selected (Piya *et al.*, 2017). We found that 52% (97/187) of the *A.*
481 *thaliana* genes and 50% (54/108) of the grapevine genes had at least three motifs and
482 that all of the latter had G-box, but not C-box motifs. We scanned the
483 above-mentioned 97 *A. thaliana* genes and 54 grapevine genes containing three or
484 more G-box motifs, and found that 61 of the *A. thaliana* genes were homologous to
485 one of the 54 grapevine genes. Of the 97 and 61 *A. thaliana* genes, we identified 39
486 with three or more G-box motifs in their promoters by Venn diagram (Fig. 9A).
487 Another DREME promoter analysis of these 39 genes revealed 4 enriched motifs,
488 including a perfect G-box (CACGTG, E-value: 9.0e-012), a GAGA-box
489 (DAGAGAGA, E-value: 1.1e-005), an AAGAAAAR motif (E-value: 7.9e-004), and a
490 TATA-box (ABATATAT, E-value: 9.9e-004) (Fig. 9B). The frequencies of the G-box
491 in the *VlbZIP30*-induced 39 and 220 *A. thaliana* genes were 89.7% and 70.0%,
492 respectively, while the frequency in the whole genome was 51.5%, suggesting an
493 enrichment in the *VlbZIP30* induced genes. Such an enrichment was not found for the
494 other three motifs (Fig. 9B).

495 In grapevine, 88 homologs of the 97 *A. thaliana* genes were found. Among the
496 88 and 54 grapevine genes, we identified 35 with at least three G-box motifs in their
497 promoters by Venn diagram (Fig. 9C). Three enriched motifs, including a potential
498 grapevine G-box (MCACGTGK, E-value: 1.9e-009), a GAGA-box (RAGAGARA,
499 E-value: 2.4e-007), and a CACSTC (E-value: 3.5e-004) motif were identified in these
500 35 genes (Fig. 9D). Among them, the frequencies of the G-box in the predicted
501 *VlbZIP30*-induced 35 and 196 grapevine genes were 100.0% and 77.4%, respectively,
502 while the frequency of the G-box in the whole genome was 59.0%, again indicating

503 an enrichment in the predicted *VlbZIP30* induced genes. These results suggest that the
504 35 grapevine genes may be regulated by *VlbZIP30* via the potential G-box. The names
505 and gene IDs of the 35 grapevine genes and 39 *A. thaliana* genes are listed in
506 Supplementary Data S2.

507

508 *The expression of the predicted VlbZIP30 induced genes with at least three potential*
509 *G-box motifs was up-regulated in grapevine following both ABA and drought*
510 *treatments*

511 To investigate the potential roles of the 35 identified grapevine genes in ABA and
512 drought stress, two different grapevine-related databases for ABA (Pilati *et al.*, 2017)
513 and drought (Rocheta *et al.*, 2016) stress treatments were analyzed. RNA-seq analysis
514 was performed of grapevine berry skins with or without ABA treatment for 20 h and
515 44 h. A GrapeGene GeneChips® data analysis was performed of leaves from two *Vitis*
516 *vinifera* L. varieties (Trincadeira, TR and Touriga Nacional, TN) grown under control
517 and drought greenhouse conditions, as well as fully irrigated and non-irrigated field
518 conditions. We compared the genes in those datasets with the 35 predicted grapevine
519 genes, and found that 31 and 25 appeared in the RNA-seq and GeneChips® data (Fig.
520 10A). Of these, 74% (23/31) and 84% (21/25) were significantly up-regulated
521 following the ABA and drought treatments, respectively (Fig. 10A). Six genes only
522 responded to ABA and 4 only responded to drought, and 17 responded to both
523 treatments (Fig. 10A). The detailed expression data for these 27 genes (Fig. 10A) are
524 shown in heat map diagrams in Fig. 10B.

525 We randomly selected 16 genes of the 27 genes induced by ABA or drought
526 stress, for confirmatory qRT-PCR expression analysis, using the previously mentioned
527 grapevine leaf samples subjected to ABA or dehydration treatment. The results were
528 consistent with the results previously published (Fig. 10C; Supplementary Fig. S3).
529 Interestingly, *ABF2/bZIP39* (VIT_18s0001g10450), which was characterized as being
530 involved in ABA signaling in grapevine cell culture, has been reported to transiently
531 trans-activate the expression of *NAC17* (VIT_19s0014g03290) and *PUB19*
532 (VIT_17s0000g08080) following ABA treatment (Nicolas *et al.*, 2014; Pilati *et al.*,

533 2017). In addition, overexpression of this gene in *A. thaliana* enhances tolerance to
534 drought stress through the ABA signaling pathway (Tu *et al.*, 2016a), suggesting that
535 *NAC17* and *PUB19* may enhance drought stress in grapevine.

536

537 *VlbZIP30* overexpressing *A. thaliana* lines showed enhanced dehydration tolerance at
538 the adult stage

539 To further investigate the potential function of *VlbZIP30* in dehydration stress, the
540 *VlbZIP30*-overexpressing (OE1, OE6 and OE23) lines and WT plants were grown for
541 3 weeks under normal growth conditions and then exposed to dehydration stress by
542 withholding water for 8 d. All of the WT plants showed severe wilting symptoms,
543 while only slight wilting was observed in the OE lines (Fig. 11A). Only 25% of the
544 WT plants recovered after 3 d of rehydration, while the OE lines rapidly recovered,
545 and 69–94% of the OE lines survived (Fig. 11A). We excised the aerial parts of the
546 OE lines and WT plants and water loss was examined over time. The OE lines lost
547 water more slowly than WT plants (Fig. 11B, C) and, consistent with the visible
548 phenotypes, when leaves were stained with trypan blue, those of WT showed a deeper
549 staining than those of the OE lines (Fig. 11B), suggesting a higher rate of cell death
550 after 3 h dehydration. Since ROS triggered by drought stress can cause oxidative
551 damage to cellular membranes, and ultimately result in cell death (You *et al.*, 2014),
552 we measured ROS levels, as well as the activities of antioxidant enzymes (SOD, CAT
553 and POD) in WT and OE lines before and after dehydration for 3 h. WT plants
554 accumulated more ROS and had lower antioxidant enzyme activities than OE lines
555 after 3 h dehydration (Supplementary Fig. S4), consistent with the cell death data.
556 These results suggest that *VlbZIP30* promotes dehydration stress responses.

557 It has been reported that some guard cells of drought-tolerant plants are
558 hypersensitive to ABA (Fujita *et al.*, 2005; Sakuraba *et al.*, 2015), and this prompted
559 us to test whether the enhanced dehydration resistance of the OE lines was associated
560 with ABA-regulated stomatal closure. We measured stomatal aperture in the leaves of
561 3-week-old WT and OE lines in the presence of 10 µM ABA, but after 1 h of ABA
562 treatment, no significant difference was observed (Supplementary Fig. S5). We then

563 measured the endogenous ABA content before and after dehydration and while there
564 was no difference under normal conditions, the ABA content of the OE lines was
565 higher than in WT plants after dehydration for 1 h or 2 h (Fig. 11D). These results
566 suggested that the OE lines had enhanced drought resistance due to ABA signaling,
567 but not because of ABA-regulated stomatal closure.

568 Subsequently, by reading a large number of articles and analyzing the
569 transcriptome data, we identified 6 genes (*MYB94*, *MYB96*, *KCS6*, *KCS12*, *LACS3*,
570 and *ABCG19*) involved in cuticular wax biosynthesis that were significantly
571 up-regulated in the OE lines compared with WT plants under mannitol stress (Table 1;
572 Supplementary Table S3). Previous studies showed that *A. thaliana* can adapt to
573 drought stress through *MYB94*- and *MYB96*-mediated regulation of cuticular wax
574 biosynthesis via a downstream branch of the ABA core signaling pathway that is
575 different from the stomata closure sub-branch of ABA signaling (Seo *et al.*, 2011; Cui
576 *et al.*, 2016; Lee *et al.*, 2016a). Seo *et al.* (2011) suggested that the *MYB96* TF
577 promotes drought resistance by regulating cuticular wax biosynthetic genes (including
578 *KCS6*, *KCS12*, *LACS3*, and *ABCG19*) in the ABA-dependent pathway. We found that
579 the expression of *MYB96* gradually increased after 1 and 2 h of dehydration stress in
580 both WT and OE lines, but that it significantly increased in the OE lines compared
581 with the WT (Fig. 11E). The expression level of *KCS6*, a *MYB96* direct binding target
582 (Seo *et al.*, 2011; Lee *et al.*, 2016a), showed the same trend. The expression of
583 another cuticular wax biosynthetic gene, *LACS3*, was also up-regulated in the OE
584 lines compared with WT after dehydration for 1 h. However, the expression levels of
585 the stress-marker genes, *RD20*, *RD26* and *ERD10*, were not significantly different
586 between WT and OE lines in response to dehydration. *AFP1* and *AFP3*, which encode
587 ABI five binding proteins, regulate the drought response in germinating *A. thaliana*
588 seeds and seedlings, and their mutation results in ABA hypersensitivity (Garcia *et al.*,
589 2008). We observed that the expression of these genes significantly increased in OE
590 lines compared with WT after 2 h of dehydration stress. The expression of the ABA
591 core signaling network genes *ABI1*, *HAI1*, *HAI2* (PP2Cs), and *PYL6* was also
592 measured, and while *HAI1* and *HAI2* were significantly up-regulated in the OE lines

593 after 2 h of dehydration stress, the expression of *PYL6* was significantly
594 down-regulated. *HB7* and *HB12*, which are positive transcriptional regulators of
595 PP2Cs, suppress the transcription of *PYL5* and *PYL8* in response to ABA, and
596 enhance drought tolerance as mediators of a negative feedback effect on ABA
597 signaling in *A. thaliana* (Valdes *et al.*, 2012). Here, we found that the expression of
598 *HB7* was up-regulated in the OE lines after 1 h of dehydration stress compared with
599 the WT. In addition, transcript levels of the ABA biosynthesis marker gene, *NCED3*,
600 were higher in the OE lines after 1 h or 2 h of dehydration stress compared with the
601 WT. Finally, the expression of *ABF3*, a key TF involved in the ABA signaling
602 pathway (Kang *et al.*, 2002), significantly increased in the OE lines after 2 h of
603 dehydration stress compared with the WT.

604 Finally, to investigate whether cuticular wax biosynthetic genes were induced by
605 dehydration stress in grapevine, we examined the transcript levels of *KCS6*
606 (VIT_14s0006g02990) and *LACS4* (VIT_02s0025g01410), which are homologous to
607 *A. thaliana* *KCS6* (AT1G68530) and *LACS3* (AT1G64400), and found both to be
608 induced by dehydration stress, peaking at 24 h (Supplementary Fig. S3).

609

610 **Discussion**

611 Early studies identified three bZIP-type ABRE-binding proteins, *AREB1*, *AREB2* and
612 *AREB3* from *A. thaliana*, using an ABRE motif (Uno *et al.*, 2000), and *ABF3* and
613 *ABF4/AREB2* were shown to play important roles in response to ABA and drought
614 stress signaling (Kim *et al.*, 2004). *AREB1* enhances drought resistance in *A. thaliana*,
615 involving the ABA signaling pathway (Fujita *et al.*, 2005). In addition, Furihata *et al.*
616 (2006) showed that exogenous ABA activates the SnRK2 protein kinases, and that the
617 activated SnRK2 proteins phosphorylate a Ser/Thr residue in the conserved domains
618 (C1, C2, C3 and C4) of the downstream *AREB1* gene, allowing it to bind to the
619 *cis*-acting ABRE element of downstream drought-related genes. The mechanism
620 involving *AREB1* in the ABA core signaling pathway in *A. thaliana* is also present in
621 economically important crops, such as rice. For example, ABA and drought stress can

622 trigger a rice SnRK2 protein kinase to phosphorylate rice bZIP TF, *TRAB1*, a homolog
623 of *A. thaliana AREB1* and *AREB2* (Kagaya *et al.*, 2002; Kobayashi *et al.*, 2005). Chae
624 *et al.* (2007) found that another rice bZIP TF, *OREB1*, can also be phosphorylated by
625 a SnRK2 family protein kinase, *OSRK1*. These studies suggest that similar regulatory
626 responses to stress are evolutionarily conserved in plants.

627 In this study, we identified a group A bZIP TF, *VlbZIP30*, from grapevine.
628 Phylogenetic analyses indicated that *VlbZIP30* is most closely related to ABF/DPBF
629 TFs of group A, with conserved domains predicted to contain phosphorylation sites
630 (C1, C2, C3 and C4) (Fujita *et al.*, 2005), suggesting that the *VlbZIP30* may be
631 involved in drought stress and ABA core signaling (Fig. 1; Fig. 2A). Further work is
632 still required to verify whether the conserved domains (C1, C2, C3 and C4) of
633 *VlbZIP30* are phosphorylated and that the protein is involved in the ABA core
634 signaling pathway.

635 Previous studies have demonstrated that overexpressing drought-induced genes
636 in *A. thaliana* can cause hypersensitivity to ABA and increase tolerance to drought
637 stress (Fujita *et al.*, 2005). In this study, overexpressing *VlbZIP30* in *A. thaliana* did
638 not make the plants more sensitive to ABA, but increased their osmotic stress
639 tolerance during germination and post-germination growth. Similar results were
640 reported for *SAD1*, *AtTPS1*, *AtHD2C*, *CaXTH3*, *OsMYB3R-2* and *ABO3* (Xiong *et al.*,
641 2001; Avonce *et al.*, 2004; Cho *et al.*, 2006; Sridha and Wu, 2006; Dai *et al.*, 2007;
642 Ren *et al.*, 2010). Given that *VlbZIP30* is a TF, its role in osmotic stress response is
643 likely to involve regulating downstream gene expression. Indeed, a majority of the
644 ABA- and drought-induced genes tested were induced in *VlbZIP30*-overexpressing *A.*
645 *thaliana* following ABA and mannitol treatment. Ninety-five (38%) of the 248 genes
646 identified (Fig. 5) have previously been identified and of these 54 were involved in
647 abiotic stress, including stress marker genes (*RD20*, *RD22*, *RD26* and others), ABA
648 core signaling components (6 PP2Cs: *ABI1*, *ABI2*, *HAI1*, *HAI2*, *HAB1*, *PP2CA*, and
649 *PYL6*), TFs (*ABF2*, *ABF3*, *ABF4* and others) (Table 1). Nine *A. thaliana* PP2Cs
650 belonging to cluster A have been identified (Schweighofer *et al.*, 2004), and studies
651 have shown that 6 of them (*ABI1*, *ABI2*, *HAI1*, *HAI2*, *HAB1*, and *PP2CA*) function as

652 negative regulators of ABA signaling, with their mutants showing hypersensitivity to
653 ABA during seed germination and seedling growth (Merlot *et al.*, 2001; Saez *et al.*,
654 2006; Yoshida *et al.*, 2006; Bhaskara *et al.*, 2012). In addition, the *ABII*, *ABI2*, *HAI1*
655 and *HAI2* genes are known to act in a negative feedback regulatory loop of the ABA
656 signaling pathway (Merlot *et al.*, 2001; Bhaskara *et al.*, 2012). A sextuple mutant
657 impaired in six PYR/PYL receptors was shown to be very insensitive to ABA during
658 seed germination and seedling growth (Gonzalez-Guzman *et al.*, 2012). Here, we
659 found that the transcript levels of the 6 PP2Cs were all significantly higher in the
660 *VlbZIP30*-overexpressing lines in response to osmotic stress, while the expression of
661 *PYL6* was lower (Table 1). Consistent with this, the OE lines were found to be
662 insensitive to ABA. These results suggested that *VlbZIP30* may play a role in the
663 ABA core signaling pathway under osmotic stress conditions, and be involved in a
664 negative feedback regulatory loop of the ABA signaling pathway in *A. thaliana* during
665 the seedling stage.

666 Previous studies have shown that guard-cell movement mediated by ABA is a
667 primary mechanism to prevent water loss under dehydration stress conditions (Kang
668 *et al.*, 2002; Fujita *et al.*, 2005). In this study, we found the stomatal closure regulated
669 by ABA to be impaired in the OE lines (Supplementary Fig. S5), but that the
670 expression of the stress-marker genes (*RD20*, *RD26* and *ERD10*) was not be
671 significantly different between the WT and OE lines. However, the expression levels
672 of cuticular wax biosynthesis genes (*MYB96*, *KCS6* and *LACS3*) were significantly
673 up-regulated in the OE lines compared with WT plants at the adult stage under
674 dehydration stress (Fig. 11E). In addition, the expression of *HB7* and two PP2C genes
675 (*HAI1* and *HAI2*), which are mediators of a negative feedback regulatory loop of the
676 ABA core signaling pathway in *A. thaliana* (Bhaskara *et al.*, 2012; Valdes *et al.*,
677 2012), were up-regulated in the OE lines compared with WT plants under dehydration
678 stress (Fig. 11E). Our data suggest that overexpression of *VlbZIP30* enhances the
679 tolerance of *A. thaliana* to dehydration stress at the adult stage through regulating
680 cuticular wax biosynthesis related genes in the ABA signaling pathway. This is
681 consistent with previous studies (Seo *et al.*, 2011; Cui *et al.*, 2016; Lee *et al.*, 2016a).

682 The ABRE (PyACGTGGC) and G-box (CACGTG) elements were identified as
683 bZIP TF *cis*-binding elements regulating gene expression in response to ABA and
684 drought stress in many plants, including *A. thaliana* (Uno *et al.*, 2000), rice (Liu *et al.*,
685 2014) and wheat (Wang *et al.*, 2016). In this study, we identified 39 *A. thaliana* genes
686 and 35 predicted grapevine genes (Supplementary Data S2) that may be directly or
687 indirectly regulated by *VlbZIP30*. Seventeen (43.6%) of the 39 *A. thaliana* genes have
688 been found to be involved in drought stress, including *RD26*, *AFP1/3*, *PP2CA*,
689 *HAI1/2*, *ABF3*, *NAP*, *MYB74*, *WRKY28* and *PUB19* (Table 1), implying that our
690 analytical methods and results are very credible. Other genes found here that have not
691 been previously characterized may therefore also be involved in drought stress
692 signaling. In contrast, there has been little characterization of the 35 grapevine genes,
693 and only 3 were identified as being involved in ABA or drought stress signaling.
694 *ABF2/bZIP39* (VIT_18s0001g10450), which has been associated with both stimuli
695 (Nicolas *et al.*, 2014; Tu *et al.*, 2016a), can transiently transactivate the expression of
696 *NAC17* (VIT_19s0014g03290) and *PUB19* (VIT_17s0000g08080) in response to
697 ABA treatment (Nicolas *et al.*, 2014; Pilati *et al.*, 2017).

698 A perfect *A. thaliana* G-box (CACGTG) and a putative grapevine G-box
699 (MCACGTGK) element were significantly enriched in the promoter of the 39 *A.*
700 *thaliana* genes and 35 predicted grapevine genes (Fig. 9B, D). The highly conserved
701 G-box motif (CACGTG) is regulated by bZIP TFs in organisms ranging from yeast to
702 humans (Ezer *et al.*, 2017). Ezer *et al.* (2017) constructed an available gene
703 expression network (www.araboccis.org) for prediction of genes regulating the G-box,
704 or a set of genes regulated by the G-box. They identified approximately 2,000
705 seedling-expressed genes expressed in 229 RNA-seq samples of 7-d-old *A. thaliana*
706 seedlings that are highly likely to be regulated by a perfect G-box motif (CACGTG)
707 in their promoter, and predicted how bZIP proteins might regulate these genes.
708 These results suggest that *VlbZIP30* is likely to enhance *A. thaliana* drought tolerance
709 by regulating downstream genes containing a perfect G-box (CACGTG). Large-scale
710 transcriptome analyses also show that the G-box (CACGTG) was highly enriched in
711 stress-responsive genes in grapevines (Wong *et al.*, 2017). These results suggest a

712 general conservation in promoter framework, gene expression dynamics and gene
713 regulatory networks. We also used two different grapevine-related databases to gain
714 support for the potential roles of the 35 grapevine genes in ABA and drought stress.

715 We noted that 74% and 84% (a total of 27) candidate genes were significantly
716 up-regulated under ABA or drought treatment, respectively (Fig. 10A, B), and that the
717 expression of some of these genes was up to 64-fold induced (Fig. 10B). In addition,
718 we found by qRT-PCR analysis that the expression levels of 16 randomly selected
719 genes from the 27 genes (including *VvPP2C9*, *VvPP2C37* and *VvABF2*) were
720 significantly up-regulated by ABA or dehydration treatment (Fig. 10C; Supplementary
721 Fig. S3), suggesting that the 27 candidate genes may involve in ABA or dehydration
722 stress in grapevine. These results suggest that *VlbZIP30* may be involved in drought
723 stress signaling in grapevine via regulation of the 27 grapevine genes containing the
724 grapevine G-box (MCACGTGK). This conclusion is supported by the observation
725 that 17 of the 39 *A. thaliana* homologous genes have previously been found to be
726 involved in drought stress. Further studies be required to elucidate the functions of
727 these regulated ABA and drought stress regulated grapevine genes.

728

729 **Supplementary data**

730 Fig. S1. *VlbZIP30* mRNA levels in wild-type (WT) and transgenic plants analyzed by
731 qRT-PCR.

732 Fig. S2. Phenotypes of wild type (WT) and *VlbZIP30* overexpressing transgenic lines
733 at the seed germination stage under mannitol and abscisic acid (ABA) treatments.

734 Fig. S3. Gene expression profiles of selected *VlbZIP30*-induced grapevine candidate
735 genes analyzed using qRT-PCR.

736 Fig. S4. Reactive oxygen species (ROS) levels and oxidative enzyme activities in wild
737 type (WT) and transgenic lines (OE).

738 Fig. S5. Stomatal closure in response to 10 μ M exogenous ABA in 3-week-old wild
739 type (WT) and transgenic lines (OE).

740 Table S1. Specific primers used for qRT-PCR. F, forward; R, reverse.

741 Table S2. Differentially expressed genes in the *VlbZIP30* transgenic plants (OE / WT)
742 based on an expression level differences (FDR<0.05) of at least two-fold under
743 control conditions from the transcriptome data.

744 Table S3. Selected genes involved in other biological processes based on expression
745 level differences (FDR<0.05) of at least two-fold in the *VlbZIP30* transgenic plants
746 under ABA or mannitol stress treatment from the transcriptome data.

747 Data S1. Grapevine homologs of the up-regulated genes identified in *Arabidopsis*
748 *thaliana* OE lines compared with WT plants.

749 Data S2. Names and annotations of 35 grapevine genes and 39 *Arabidopsis thaliana*
750 genes.

751 Methods S1. Vector construction.

752

753 **Author contribution**

754 X. Wang and M. Tu designed the study. M. Tu and X.H. Wang contributed to the
755 experiments, X.H. Wang and D. Wang constructed the vectors, Y. Zhu performed the
756 qRT-PCR analysis, M. Tu and D. Wang performed data analysis. M. Tu, X.H. Wang,
757 X. Zhang and Y. Cui performed transcriptome data analysis, Z. Li, Y. Li and M. Gao
758 assisted with the data analysis. M. Tu and X. Wang wrote the manuscript. All of the
759 authors approved the final manuscript.

760

761 **Acknowledgments**

762 This work was supported by the National Natural Science Foundation of China
763 (31572110), as well as the Program for Innovative Research Team of Grape
764 Germplasm Resources and Breeding (2013KCT-25). We thank PlantScribe ([www.](http://www.plantscribe.com)
765 [plantscribe.com](http://www.plantscribe.com)) for careful editing of this manuscript.

766

767 **References**

768 **Altschul SF, Madden TL, Schaffer AA, et al.** 1997. Gapped BLAST and PSI-BLAST: a new
769 generation of protein database search programs. *Nucleic acids research* **25**, 3389-3402.

770 **Aubert Y, Vile D, Pervent M, et al.** 2010. RD20, a stress-inducible caleosin, participates in stomatal
771 control, transpiration and drought tolerance in *Arabidopsis thaliana*. *Plant Cell Physiology* **51**,
772 1975-1987.

773 **Avonce N, Leyman B, Mascorro-Gallardo JO, et al.** 2004. The *Arabidopsis* trehalose-6-P synthase
774 AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. *Plant Physiology* **136**,
775 3649-3659.

776 **Babitha KC, Ramu SV, Pruthvi V, et al.** 2013. Co-expression of AtbHLH17 and AtWRKY28 confers
777 resistance to abiotic stress in *Arabidopsis*. *Transgenic research* **22**, 327-341.

778 **Bhaskara GB, Nguyen TT, Verslues PE.** 2012. Unique drought resistance functions of the highly
779 ABA-induced clade A protein phosphatase 2Cs. *Plant Physiology* **160**, 379-395.

780 **Brauer EK, Ahsan N, Dale R, et al.** 2016. The Raf-like Kinase ILK1 and the High Affinity K⁺
781 Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. *Plant Physiology*
782 **171**, 1470-1484.

783 **Brinker M, Brosche M, Vinocur B, et al.** 2010. Linking the salt transcriptome with physiological
784 responses of a salt-resistant *Populus* species as a strategy to identify genes important for stress
785 acclimation. *Plant Physiology* **154**, 1697-1709.

786 **Buxdorf K, Yaffe H, Barda O, Levy M.** 2013. The effects of glucosinolates and their breakdown
787 products on necrotrophic fungi. *PLoS One* **8**, e70771.

788 **Chae M-J, Lee J-S, Nam M-H, et al.** 2007. A rice dehydration-inducible SNF1-related protein kinase2
789 phosphorylates an abscisic acid responsive elementbinding factor and associates with ABA signaling.
790 *Plant Molecular Biology*, 63, 151-169.

791 **Cho SK, Kim JE, Park JA, Eom TJ, Kim WT.** 2006. Constitutive expression of abiotic
792 stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase
793 homolog, improves drought and salt tolerance in transgenic *Arabidopsis* plants. *FEBS letters* **580**,
794 3136-3144.

795 **Clough SJ, Bent AF.** 1998. Floral dip: a simplified method for *Agrobacterium*-mediated

796 transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735-743.

797 **Cui F, Brosche M, Lehtonen MT, et al.** 2016. Dissecting Abscisic Acid Signaling Pathways Involved
798 in Cuticle Formation. *Molecular plant* **9**, 926-938.

799 **Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K.** 2007. Overexpression of an R1R2R3 MYB
800 gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic *Arabidopsis*.
801 *Plant Physiology* **143**, 1739-1751.

802 **Danquah A, de Zelicourt A, Colcombet J, Hirt H.** 2014. The role of ABA and MAPK signaling
803 pathways in plant abiotic stress responses. *Biotechnol Adv* **32**, 40-52.

804 **Denekamp M, Smeekens SC.** 2003. Integration of wounding and osmotic stress signals determines the
805 expression of the AtMYB102 transcription factor gene. *Plant Physiology* **132**, 1415-1423.

806 **Deng W, Wang Y, Liu Z, Cheng H, Xue Y.** 2014. HemI: a toolkit for illustrating heatmaps. *PLoS One*
807 **9**, e111988.

808 **Ezer D, Shepherd SJK, Brestovitsky A, et al.** 2017. The G-Box Transcriptional Regulatory Code in
809 *Arabidopsis*. *Plant Physiology* **175**, 628-640.

810 **Fang LC, Su LY, Sun XM, et al.** 2016. Expression of *Vitis amurensis* NAC26 in *Arabidopsis* enhances
811 drought tolerance by modulating jasmonic acid synthesis. *Journal of Experimental Botany* **67**,
812 2829-2845.

813 **Ferreira RB, Monteiro SS, Picarra-Pereira MA, Teixeira AR.** 2004. Engineering grapevine for
814 increased resistance to fungal pathogens without compromising wine stability. *Trends Biotechnol* **22**,
815 168-173.

816 **Finkelstein RR, Gampala SSL, Rock CD.** 2002. Abscisic acid signaling in seeds and seedlings. *The*
817 *Plant Cell* **14**, S15-S45.

818 **Foster R, Izawa T, Chua NH.** 1994. Plant bZIP proteins gather at ACGT elements. *FASEB journal* :
819 official publication of the Federation of American Societies for Experimental Biology **8**, 192-200.

820 **Fujii H, Zhu JK.** 2009. *Arabidopsis* mutant deficient in 3 abscisic acid-activated protein kinases
821 reveals critical roles in growth, reproduction, and stress. *Proceedings of the National Academy of*
822 *Sciences of the United States of America* **106**, 8380-8385.

823 **Fujita M, Fujita Y, Maruyama K, et al.** 2004. A dehydration-induced NAC protein, RD26, is
824 involved in a novel ABA-dependent stress-signaling pathway. *The Plant journal : for cell and molecular*
825 *biology* **39**, 863-876.

826 **Fujita Y, Fujita M, Satoh R, et al.** 2005. AREB1 is a transcription activator of novel
827 ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. *The Plant Cell*
828 **17**, 3470-3488.

829 **Fujita Y, Nakashima K, Yoshida T, et al.** 2009. Three SnRK2 Protein Kinases are the Main Positive
830 Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. *Plant Cell*
831 *Physiology* **50**, 2123-2132.

832 **Furihata T, Maruyama K, Fujita Y, et al.** 2006. Abscisic acid-dependent multisite phosphorylation
833 regulates the activity of a transcription activator AREB1. *Proceedings of the National Academy of*
834 *Sciences of the United States of America* **103**, 1988-1993.

835 **Gao M, Zhang H, Guo C, et al.** 2014. Evolutionary and Expression Analyses of Basic Zipper
836 Transcription Factors in the Highly Homozygous Model Grape PN40024 (*Vitis vinifera* L.). *Plant*
837 *Molecular Biology Reporter* **32**, 1085-1102.

838 **Gao S, Guo W, Feng W, et al.** 2016. LTP3 contributes to disease susceptibility in Arabidopsis by
839 enhancing abscisic acid (ABA) biosynthesis. *Molecular plant pathology* **17**, 412-426.

840 **Gao SQ, Chen M, Xu ZS, et al.** 2011. The soybean GmbZIP1 transcription factor enhances multiple
841 abiotic stress tolerances in transgenic plants. *Plant Molecular Biology* **75**, 537-553.

842 **Garcia ME, Lynch T, Peeters J, Snowden C, Finkelstein R.** 2008. A small plant-specific protein
843 family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds
844 and seedlings. *Plant Molecular Biology* **67**, 643-658.

845 **Gonzalez-Guzman M, Pizzio GA, Antoni R, et al.** 2012. Arabidopsis PYR/PYL/RCAR receptors
846 play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic
847 acid. *The Plant Cell* **24**, 2483-2496.

848 **Heyndrickx KS, Vandepoele K.** 2012. Systematic identification of functional plant modules through
849 the integration of complementary data sources. *Plant Physiology* **159**, 884-901.

850 **Hsieh EJ, Cheng MC, Lin TP.** 2013. Functional characterization of an abiotic stress-inducible
851 transcription factor AtERF53 in *Arabidopsis thaliana*. *Plant Molecular Biology* **82**, 223-237.

852 **Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya, Tsai YC, Chan MT.** 2010. A tomato bZIP
853 transcription factor, SIAREB, is involved in water deficit and salt stress response. *Planta* **231**,
854 1459-1473.

855 **Huang YC, Niu CY, Yang CR, Jinn TL.** 2016. The Heat Stress Factor HSF16b Connects ABA

856 Signaling and ABA-Mediated Heat Responses. *Plant Physiology* **172**, 1182-1199.

857 **Hwang SM, Kim DW, Woo MS, et al.** 2014. Functional characterization of Arabidopsis HsfA6a as a
858 heat-shock transcription factor under high salinity and dehydration conditions. *Plant, cell and*
859 *environment* **37**, 1202-1222.

860 **Iuchi S, Kobayashi M, Taji T, et al.** 2001. Regulation of drought tolerance by gene manipulation of
861 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. *The*
862 *Plant journal : for cell and molecular biology* **27**, 325-333.

863 **Jakoby M, Weisshaar B, Droke-Laser W, et al.** 2002. bZIP transcription factors in Arabidopsis.
864 *Trends in Plant Science* **7**, 106-111.

865 **Ji X, Liu G, Liu Y, Zheng L, Nie X, Wang Y.** 2013. The bZIP protein from Tamarix hispida, ThbZIP1,
866 is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. *BMC*
867 *plant biology* **13**, 151.

868 **Ji X, Liu G, Liu Y, Nie X, Zheng L, Wang Y.** 2015. The regulatory network of ThbZIP1 in response
869 to abscisic acid treatment. *Frontiers in Plant Science* **6**, 25.

870 **Kagaya Y, Hobo T, Murata M, Ban A, Hattori T.** 2002. Abscisic acid-induced transcription is
871 mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. *The Plant*
872 *Cell* **14**, 3177-3189.

873 **Kang JY, Choi HI, Im MY, Kim SY.** 2002. Arabidopsis basic leucine zipper proteins that mediate
874 stress-responsive abscisic acid signaling. *The Plant Cell* **14**, 343-357.

875 **Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL.** 2013. TopHat2: accurate
876 alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome biology*
877 **14**, R36.

878 **Kim S, Kang JY, Cho DI, Park JH, Kim SY.** 2004. ABF2, an ABRE-binding bZIP factor, is an
879 essential component of glucose signaling and its overexpression affects multiple stress tolerance. *The*
880 *Plant Journal* **40**, 75-87.

881 **Kim SY, Ma J, Perret P, Li Z, Thomas TL.** 2002. Arabidopsis ABI5 subfamily members have
882 distinct DNA-binding and transcriptional activities. *Plant Physiology* **130**, 688-697.

883 **Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S.** 2008. Development of
884 abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. *Journal of*
885 *Experimental Botany* **59**, 891-905.

886 **Kobayashi Y, Murata M, Minami H, et al.** 2005. Abscisic acid-activated SNRK2 protein kinases
887 function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response
888 element-binding factors. *The Plant journal : for cell and molecular biology* **44**, 939-949.

889 **Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T.** 2011. EDL3 is an F-box
890 protein involved in the regulation of abscisic acid signalling in *Arabidopsis thaliana*. *Journal of*
891 *Experimental Botany* **62**, 5547-5560.

892 **Kovacs D, Kalmar E, Torok Z, Tompa P.** 2008. Chaperone activity of ERD10 and ERD14, two
893 disordered stress-related plant proteins. *Plant Physiology* **147**, 381-390.

894 **Kumimoto RW, Siriwardana CL, Gayler KK, et al.** 2013. NUCLEAR FACTOR Y transcription
895 factors have both opposing and additive roles in ABA-mediated seed germination. *PLoS One* **8**,
896 e59481.

897 **Lata C, Prasad M.** 2011. Role of DREBs in regulation of abiotic stress responses in plants. *Journal of*
898 *Experimental Botany* **62**, 4731-4748.

899 **Lee SB, Kim HU, Suh MC.** 2016a MYB94 and MYB96 Additively Activate Cuticular Wax
900 Biosynthesis in *Arabidopsis*. *Plant Cell Physiology* **57**, 2300-2311.

901 **Lee SH, Li CW, Koh KW, Chuang HY, Chen YR, Lin CS, Chan MT.** 2014. MSRB7 reverses
902 oxidation of GSTF2/3 to confer tolerance of *Arabidopsis thaliana* to oxidative stress. *Journal of*
903 *Experimental Botany* **65**, 5049-5062.

904 **Lee WJ, Jeong CY, Kwon J, Van Kien V, Lee D, Hong SW, Lee H.** 2016b. Drastic anthocyanin
905 increase in response to PAP1 overexpression in *fls1* knockout mutant confers enhanced osmotic stress
906 tolerance in *Arabidopsis thaliana*. *Plant Cell Reports* **35**, 2369-2379.

907 **Li C, Lv J, Zhao X, et al.** 2010. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic
908 acid and salinity stress plays a positive role in stress tolerance. *Plant Physiology* **154**, 211-221.

909 **Li JT, Wang NA, Xin HP, Li SH.** 2013. Overexpression of VaCBF4, a transcription factor from *Vitis*
910 *amurensis*, improves cold tolerance accompanying increased resistance to drought and salinity in
911 *Arabidopsis*. *Plant Molecular Biology Reporter* **31**, 1518-1528.

912 **Li WX, Oono Y, Zhu J, et al.** 2008. The *Arabidopsis* NFYA5 transcription factor is regulated
913 transcriptionally and posttranscriptionally to promote drought resistance. *The Plant Cell* **20**, 2238-2251.

914 **Liao Y, Zou HF, Wei W, et al.** 2008. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function
915 as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic *Arabidopsis*.

916 Planta **228**, 225-240.

917 **Liu C, Mao B, Ou S, et al.** 2014. OsbZIP71, a bZIP transcription factor, confers salinity and drought
918 tolerance in rice. Plant Molecular Biology **84**, 19-36.

919 **Liu HY, Yang WL, Liu DC, Han YP, Zhang AM, Li SH.** 2011a. Ectopic expression of a grapevine
920 transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Molecular
921 Biology Reports **38**, 417-427.

922 **Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF.** 2013. Arabidopsis Di19 functions as
923 a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress.
924 Molecular plant **6**, 1487-1502.

925 **Liu YC, Wu YR, Huang XH, Sun J, Xie Q.** 2011b. AtPUB19, a U-box E3 ubiquitin ligase, negatively
926 regulates abscisic acid and drought responses in Arabidopsis thaliana. Molecular plant **4**, 938-946.

927 **Lucinski R, Jackowski G.** 2013. AtFtsH heterocomplex-mediated degradation of apoproteins of the
928 major light harvesting complex of photosystem II (LHCII) in response to stresses. J Plant Physiol **170**,
929 1082-1089.

930 **Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E.** 2009. Regulators of PP2C
931 Phosphatase Activity Function as Abscisic Acid Sensors. Science **324**, 1064-1068.

932 **Martinez F, Arif A, Nebauer SG, et al.** 2015. A fungal transcription factor gene is expressed in plants
933 from its own promoter and improves drought tolerance. Planta **242**, 39-52.

934 **Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J.** 2001. The ABI1 and ABI2 protein
935 phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The
936 Plant journal : for cell and molecular biology **25**, 295-303.

937 **Mitsuda N, Ohme-Takagi M.** 2009. Functional analysis of transcription factors in Arabidopsis. Plant
938 Cell Physiology **50**, 1232-1248.

939 **Moon SJ, Han SY, Kim DY, et al.** 2015. Ectopic expression of a hot pepper bZIP-like transcription
940 factor in potato enhances drought tolerance without decreasing tuber yield. Plant Molecular Biology **89**,
941 421-431.

942 **Muniz Garcia MN, Giammaria V, Grandellis C, Tellez-Inon MT, Ulloa RM, Capiati DA.** 2012.
943 Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L.
944 that is phosphorylated by StCDPK2 in vitro. Planta **235**, 761-778.

945 **Nakashima K, Fujita Y, Kanamori N, et al.** 2009. Three Arabidopsis SnRK2 Protein Kinases,

946 SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, Involved in ABA Signaling are
947 Essential for the Control of Seed Development and Dormancy. *Plant Cell Physiology* **50**, 1345-1363.

948 **Nambara E, Kuchitsu K.** 2011. Opening a new era of ABA research. *J Plant Res* **124**, 431-435.

949 **Neill S, Desikan R, Hancock J.** 2002. Hydrogen peroxide signalling. *Curr Opin Plant Biol* **5**, 388-395.

950 **Nelson DE, Repetti PP, Adams TR, et al.** 2007. Plant nuclear factor Y (NF-Y) B subunits confer
951 drought tolerance and lead to improved corn yields on water-limited acres. *Proceedings of the National
952 Academy of Sciences of the United States of America* **104**, 16450-16455.

953 **Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F.** 2014. The basic
954 leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is
955 an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. *Plant
956 Physiology* **164**, 365-383.

957 **Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA.** 2010. The
958 transcription factor SIAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic
959 stress-related genes in tomato. *Plant, cell and environment* **33**, 2191-2208.

960 **Osakabe Y, Mizuno S, Tanaka H, et al.** 2010. Overproduction of the membrane-bound receptor-like
961 protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. *The Journal of biological
962 chemistry* **285**, 9190-9201.

963 **Park SY, Fung P, Nishimura N, et al.** 2009. Abscisic Acid Inhibits Type 2C Protein Phosphatases via
964 the PYR/PYL Family of START Proteins. *Science* **324**, 1068-1071.

965 **Pilati S, Bagagli G, Sonego P, et al.** 2017. Abscisic Acid Is a Major Regulator of Grape Berry
966 Ripening Onset: New Insights into ABA Signaling Network. *Frontiers in Plant Science* **8**, 1-16.

967 **Piya S, Kihm C, Rice JH, Baum TJ, Hewezi T.** 2017. Cooperative Regulatory Functions of miR858
968 and MYB83 during Cyst Nematode Parasitism. *Plant Physiology* **174**, 1897-1912.

969 **Pompelli MF, Martins SC, Antunes WC, Chaves AR, DaMatta FM.** 2010. Photosynthesis and
970 photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. *J
971 Plant Physiol* **167**, 1052-1060.

972 **Rai A, Umashankar S, Rai M, Kiat LB, Bing JA, Swarup S.** 2016. Coordinate Regulation of
973 Metabolite Glycosylation and Stress Hormone Biosynthesis by TT8 in Arabidopsis. *Plant Physiology*
974 **171**, 2499-2515.

975 **Ren X, Chen Z, Liu Y, et al.** 2010. ABO3, a WRKY transcription factor, mediates plant responses to

976 abscisic acid and drought tolerance in *Arabidopsis*. *The Plant journal : for cell and molecular biology*
977 **63**, 417-429.

978 **Robinson MD, McCarthy DJ, Smyth GK.** 2010. edgeR: a Bioconductor package for differential
979 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140.

980 **Rocheta M, Coito JL, Ramos MJ, Carvalho L, Becker JD, Carbonell-Bejerano P, Amancio S.**
981 2016. Transcriptomic comparison between two *Vitis vinifera* L. varieties (Trincadeira and Touriga
982 Nacional) in abiotic stress conditions. *BMC plant biology* **16**, 224.

983 **Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL.** 2006. Enhancement of
984 abscisic acid sensitivity and reduction of water consumption in *Arabidopsis* by combined inactivation
985 of the protein phosphatases type 2C ABI1 and HAB1. *Plant Physiology* **141**, 1389-1399.

986 **Sakuraba Y, Kim YS, Han SH, Lee BD, Paek NC.** 2015. The *Arabidopsis* Transcription Factor
987 NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate
988 Feed-Forward Regulatory Loop Involving NAP. *The Plant Cell* **27**, 1771-1787.

989 **Schweighofer A, Hirt H, Meskiene I.** 2004. Plant PP2C phosphatases: emerging functions in stress
990 signaling. *Trends in Plant Science* **9**, 236-243.

991 **Selvaraj MG, Ishizaki T, Valencia M, et al.** 2017. Overexpression of an *Arabidopsis thaliana*
992 galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the
993 field. *Plant biotechnology journal* **15**, 1465-1477.

994 **Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM.** 2011. The MYB96 transcription factor
995 regulates cuticular wax biosynthesis under drought conditions in *Arabidopsis*. *The Plant Cell* **23**,
996 1138-1152.

997 **Shinozaki K, Yamaguchi-Shinozaki K.** 2000. Molecular responses to dehydration and low
998 temperature: differences and cross-talk between two stress signaling pathways. *Current Opinion in
999 Plant Biology* **3**, 217-223.

1000 **Siddiqua M, Nassuth A.** 2011. *Vitis* CBF1 and *Vitis* CBF4 differ in their effect on *Arabidopsis* abiotic
1001 stress tolerance, development and gene expression. *Plant, Cell and Environment* **34**, 1345-1359.

1002 **Sridha S, Wu K.** 2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in
1003 *Arabidopsis*. *The Plant journal : for cell and molecular biology* **46**, 124-133.

1004 **Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK.** 2013. Ectopic expression of *Arabidopsis*
1005 glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. *PLoS One* **8**, e59924.

1006 **Tajdel M, Mitula F, Ludwikow A.** 2016. Regulation of Arabidopsis MAPKKK18 by ABI1 and
1007 SnRK2, components of the ABA signaling pathway. *Plant signaling & behavior* **11**, e1139277.

1008 **Tang N, Zhang H, Li XH, Xiao JH, Xiong LZ.** 2012. Constitutive Activation of Transcription Factor
1009 OsbZIP46 Improves Drought Tolerance in Rice. *Plant Physiology* **158**, 1755-1768.

1010 **Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, Wang S.** 2015. An ABA down-regulated bHLH
1011 transcription repressor gene, bHLH129 regulates root elongation and ABA response when
1012 overexpressed in Arabidopsis. *Scientific reports* **5**, 17587.

1013 **Tu MX, Wang XH, Huang L, Guo RR, Zhang HJ, Cai JS, Wang XP.** 2016a. Expression of a grape
1014 bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple
1015 abiotic stresses. *Plant Cell Tissue and Organ Culture* **125**, 537-551.

1016 **Tu MX, Wang XH, Feng TY, et al.** 2016b. Expression of a grape (*Vitis vinifera*) bZIP transcription
1017 factor, VIbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination
1018 and seedling establishment. *Plant Science* **252**, 311-323.

1019 **Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.** 2000. Arabidopsis
1020 basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction
1021 pathway under drought and high-salinity conditions. *Proceedings of the National Academy of Sciences*
1022 of the United States of America

1023 **Usadel B, Nagel A, Steinhauser D, et al.** 2006. PageMan: an interactive ontology tool to generate,
1024 display, and annotate overview graphs for profiling experiments. *BMC bioinformatics* **7**, 535.

1025 **Valdes AE, Overnas E, Johansson H, Rada-Iglesias A, Engstrom P.** 2012. The
1026 homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate
1027 abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities.
1028 *Plant Molecular Biology* **80**, 405-418.

1029 **van Hengel AJ, Roberts K.** 2003. AtAGP30, an arabinogalactan-protein in the cell walls of the
1030 primary root, plays a role in root regeneration and seed germination. *The Plant journal : for cell and*
1031 *molecular biology* **36**, 256-270.

1032 **Van Leene J, Blomme J, Kulkarni SR, et al.** 2016. Functional characterization of the Arabidopsis
1033 transcription factor bZIP29 reveals its role in leaf and root development. *Journal of Experimental*
1034 *Botany* **67**, 5825-5840.

1035 **Wang J, Li Q, Mao X, Li A, Jing R.** 2016. Wheat Transcription Factor TaAREB3 Participates in

1036 Drought and Freezing Tolerances in Arabidopsis. International journal of biological sciences **12**,
1037 257-269.

1038 **Wei T, Deng K, Liu D, et al.** 2016. Ectopic Expression of DREB Transcription Factor, AtDREB1A,
1039 Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza. Plant Cell Physiology **57**, 1593-1609.

1040 **Wong DCJ, Lopez Gutierrez R, Gambetta GA, Castellarin SD.** 2017. Genome-wide analysis of
1041 cis-regulatory element structure and discovery of motif-driven gene co-expression networks in
1042 grapevine. DNA research : an international journal for rapid publication of reports on genes and
1043 genomes **24**, 311-326.

1044 **Xiao H, Siddiqua M, Braybrook S, et al.** 2006. Three grape CBF/DREB1 genes respond to low
1045 temperature, drought and abscisic acid. Plant, Cell and Environment **29**, 1410-1421.

1046 **Xiong L, Gong Z, Rock CD, et al.** 2001. Modulation of abscisic acid signal transduction and
1047 biosynthesis by an Sm-like protein in Arabidopsis. Developmental cell **1**, 771-781.

1048 **Xu R, Wang Y, Zheng H, et al.** 2015. Salt-induced transcription factor MYB74 is regulated by the
1049 RNA-directed DNA methylation pathway in Arabidopsis. Journal of Experimental Botany **66**,
1050 5997-6008.

1051 **Yamaguchi-Shinozaki K, Shinozaki K.** 2006. Transcriptional regulatory networks in cellular
1052 responses and tolerance to dehydration and cold stresses. In Annual Review of Plant Biology, pp.
1053 781-803.

1054 **Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua NH.** 1990. Analysis of an ABA-responsive rice
1055 gene promoter in transgenic tobacco. Plant Molecular Biology **15**, 905-912.

1056 **Yoshida R, Hobo T, Ichimura K, et al.** 2002. ABA-activated SnRK2 protein kinase is required for
1057 dehydration stress signaling in Arabidopsis. Plant Cell Physiology **43**, 1473-1483.

1058 **Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K.**
1059 2015. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression
1060 downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant, Cell and
1061 Environment **38**, 35-49.

1062 **Yoshida T, Nishimura N, Kitahata N, et al.** 2006. ABA-hypersensitive germination3 encodes a
1063 protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination
1064 among Arabidopsis protein phosphatase 2Cs. Plant Physiology **140**, 115-126.

1065 **Yoshida T, Fujita Y, Sayama H, et al.** 2010. AREB1, AREB2, and ABF3 are master transcription

1066 factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress
1067 tolerance and require ABA for full activation. *The Plant Journal* **61**, 672-685.

1068 **You J, Zong W, Hu H, Li X, Xiao J, Xiong L.** 2014. A STRESS-RESPONSIVE NAC1-regulated
1069 protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance
1070 through abscisic acid-independent reactive oxygen species scavenging in rice. *Plant Physiology* **166**,
1071 2100-2114.

1072 **Yuan YY, Fang LC, Karungo SK, Zhang LL, Gao YY, Li SH, Xin HP.** 2016. Overexpression of
1073 VaPAT1, a GRAS transcription factor from *Vitis amurensis*, confers abiotic stress tolerance in
1074 *Arabidopsis*. *Plant Cell Reports* **35**, 655-666.

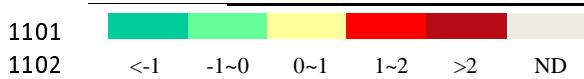
1075 **Zhang Q, Wang M, Hu J, Wang W, Fu X, Liu JH.** 2015. PtrABF of *Poncirus trifoliata* functions in
1076 dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species
1077 homeostasis. *Journal of Experimental Botany* **66**, 5911-5927.

1078 **Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J.** 2008. Water deficits and heat shock effects on
1079 photosynthesis of a transgenic *Arabidopsis thaliana* constitutively expressing ABP9, a bZIP
1080 transcription factor. *Journal of Experimental Botany* **59**, 839-848.

1081 **Zhang X, Wang L, Meng H, Wen HT, Fan YL, Zhao J.** 2011. Maize ABP9 enhances tolerance to
1082 multiple stresses in transgenic *Arabidopsis* by modulating ABA signaling and cellular levels of reactive
1083 oxygen species. *Plant Molecular Biology* **75**, 365-378.

1084 **Zhu JK.** 2002. Salt and drought stress signal transduction in plants. *Annual Review of Plant Biology*
1085 **53**, 247-273.

1086 **Zhu ZG, Shi JL, Xu WR, et al.** 2013. Three ERF transcription factors from Chinese wild grapevine
1087 *Vitis pseudoreticulata* participate in different biotic and abiotic stress-responsive pathways. *J Plant*
1088 *Physiol* **170**, 923-933.


1089 **Zou MJ, Guan YC, Ren HB, Zhang F, Chen F.** 2008. A bZIP transcription factor, OsABI5, is
1090 involved in rice fertility and stress tolerance. *Plant Molecular Biology* **66**, 675-683.

1091
1092
1093
1094
1095
1096
1097

1098 **Table 1.** Selected genes involved in abiotic stress with expression changes (FDR<0.05) of at least twofold in the
 1099 *VlbZIP30* transgenic plants under different experiments from the microarray.
 1100

Locus	Symbol	Description	Reference	Log ₂ FC (OE / WT)		
				C	M	A
Stress-responsive gene						
AT2G33380	RD20	stress-inducible caleosin	Aubert <i>et al.</i> , 2010	-0.421	2.781	2.083
AT5G25610	RD22	responsive to dehydration protein	Yoshida <i>et al.</i> , 2002	-0.080	1.160	0.121
AT4G27410	RD26	dehydration-induced NAC protein	Fujita <i>et al.</i> , 2004	0.187	1.325	0.560
AT2G42530	COR15B	cold-regulated protein	Nelson <i>et al.</i> , 2007	0.329	1.833	1.511
AT2G18050	HIS1-3	dehydration-inducible histone gene	Zhang <i>et al.</i> , 2008	0.711	1.106	-0.089
AT5G02020	SIS	involved in salt tolerance	Brinker <i>et al.</i> , 2010	0.176	1.530	1.219
AT1G20450	ERD10	early responsive to dehydration	Kovacs <i>et al.</i> , 2008	0.217	0.906	1.214
ABA signaling						
AT1G69260	AFP1	ABI five binding protein	Garcia <i>et al.</i> , 2008	0.187	1.275	0.646
AT3G29575	AFP3	ABI five binding protein	Garcia <i>et al.</i> , 2008	0.286	1.256	0.560
AT4G26080	ABI1	protein phosphatase 2C protein	Merlot <i>et al.</i> , 2001	0.186	1.217	-0.060
AT5G57050	ABI2	protein phosphatase 2C protein	Merlot <i>et al.</i> , 2001	0.147	1.192	0.303
AT5G59220	HAI1	protein phosphatases 2C protein	Bhaskara <i>et al.</i> , 2012	0.219	2.543	1.931
AT1G07430	HAI2	protein phosphatases 2C protein	Bhaskara <i>et al.</i> , 2012	0.887	2.247	0.365
AT1G72770	HAB1	protein phosphatases 2C protein	Saez <i>et al.</i> , 2006	-0.003	1.255	0.675
AT3G11410	PP2CA	protein phosphatases 2C protein	Yoshida <i>et al.</i> , 2006	0.384	1.634	-0.077
AT2G46680	HB7	involved in ABA signaling pathway	Valdes <i>et al.</i> , 2012	-0.017	1.555	0.619
AT3G61890	HB12	involved in ABA signaling pathway	Valdes <i>et al.</i> , 2012	-0.029	2.007	0.879
AT3G14440	NCED3	key enzyme in ABA biosynthesis	Iuchi <i>et al.</i> , 2001	0.833	1.845	0.125
AT1G05100	MAPKKK18	involved in ABA signaling pathway	Tajdel <i>et al.</i> , 2016	ND	1.550	1.137
AT2G40330	PYL6	core regulatory component of ABA receptor	Gonzalez-Guzman <i>et al.</i> , 2012	-0.342	-1.213	ND
Transcription factor						
AT4G05100	MYB74	R2R3-MYB family gene	Xu <i>et al.</i> , 2015	0.275	1.672	0.691
AT4G21440	MYB102	R2R3-MYB family gene	Denekamp and Smeekens, 2003	ND	1.630	0.332
AT4G34000	ABF3	ABRE-binding transcription factor	Kang <i>et al.</i> , 2002	0.013	1.129	0.565
AT1G45249	ABF2	ABRE-binding transcription factor	Fujita <i>et al.</i> , 2005	0.001	1.954	0.722
AT3G19290	ABF4	ABRE-binding transcription factor	Kang <i>et al.</i> , 2002	0.053	1.050	0.473
AT4G25480	DREB1A	DRE-binding transcription factor	Wei <i>et al.</i> , 2016	0.286	2.020	-0.402
AT1G54160	NFYA5	CCAAT-binding transcription factor	Li <i>et al.</i> , 2008	0.342	1.469	0.367
AT5G47640	NFYB2	His-like transcription factor	Kumimoto <i>et al.</i> , 2013	0.200	2.885	0.755
AT1G69490	NAP	NAC family transcription factor	Sakuraba <i>et al.</i> , 2015	0.377	1.297	0.867
AT4G09820	TT8	bHLH transcription factor	Rai <i>et al.</i> , 2016	-0.591	1.963	0.201
AT4G18170	WRKY28	WRKY transcription factor	Babitha <i>et al.</i> , 2013	-0.577	1.277	0.594
AT2G20880	ERF053	ethylene response factor	Hsieh <i>et al.</i> , 2013	ND	ND	3.986
AT2G43140	BHLH129	bHLH transcription factor	Tian <i>et al.</i> , 2015	-0.21	-1.005	ND
AT3G23250	MYB15	R2R3-MYB family gene	Li <i>et al.</i> , 2010	-0.098	-1.527	-0.437
Disease						

AT5G59310	LTP4	susceptibility to pseudomonas	Gao <i>et al.</i> , 2016	0.198	1.467	0.086
AT1G75040	PR5	pathogenesis-related gene	Liu <i>et al.</i> , 2013	-0.542	2.521	ND
AT1G54040	ESP	involved in necrotrophic fungi resistance	Buxdorf <i>et al.</i> , 2013	ND	2.064	1.439
Hsp						
AT3G22830	HSFA6B	heat stress transcription factor	Huang <i>et al.</i> , 2016	0.129	1.648	0.465
AT5G43840	HSFA6A	heat stress transcription factor	Hwang <i>et al.</i> , 2014	ND	2.398	1.028
Metabolism						
AT2G39800	P5CS1	involved in proline biosynthesis	Martinez <i>et al.</i> , 2015	0.251	1.798	1.564
AT1G56650	MYB75	involved in anthocyanin metabolism	Lee <i>et al.</i> , 2016b	ND	1.730	0.606
AT3G63060	EDL3	regulate anthocyanin accumulation	Koops <i>et al.</i> , 2011	-0.121	1.232	0.026
AT2G05100	LHCB2.1	chlorophyll a/b-binding proteins	Lucinski and Jackowski, 2013	-0.311	1.240	0.651
AT2G05070	LHCB2.2	chlorophyll a/b-binding proteins	Lucinski and Jackowski, 2013	-0.294	1.601	0.818
AT3G27690	LHCB2.4	chlorophyll a/b-binding proteins	Lucinski and Jackowski, 2013	-0.103	1.920	1.153
AT3G47600	MYB94	activate cuticular wax biosynthesis	Lee <i>et al.</i> , 2016a	0.134	1.913	0.312
AT5G62470	MYB96	activate cuticular wax biosynthesis	Lee <i>et al.</i> , 2016a	0.241	2.048	0.738
AT2G33790	ATAGP30	arabinogalactan protein	van Hengel and Roberts, 2003	0.543	-0.042	1.253
Transporter						
AT1G22370	AtUGT85A5	UDP-glycosyl transferase	Sun <i>et al.</i> , 2013	0.051	1.118	0.621
AT4G13420	HAK5	high affinity K ⁺ transporter	Brauer <i>et al.</i> , 2016	0.460	0.154	-1.043
AT2G02930	ATGSTF3	glutathione transferase (GST)	Lee <i>et al.</i> , 2014	-0.316	-0.977	-1.478
Enzyme						
AT1G56600	AtGolS2	galactinol synthase	Selvaraj <i>et al.</i> , 2017	-0.059	1.157	-0.073
AT1G60190	PUB19	U-Box E3 Ubiquitin Ligase	Liu <i>et al.</i> , 2011b	-0.059	1.157	-0.073
AT1G69270	RPK1	leucine-rich receptor-like kinase	Osakabe <i>et al.</i> , 2010	0.148	1.057	-0.006

1103 FDR, false discovery rate; FC, fold change; OE / WT, overexpression line / wild type; M, mannitol; A, ABA; ND, 1104 not detected

1105

1106

1107

1108

1109

1110

1111 **Figure legends**

1112 **Fig. 1.** Multiple sequence alignment. Full-length sequence comparison of VlbZIP30
1113 (VIT_13s0175g00120) with the ABF/DPBF subfamily of group A bZIP proteins from
1114 *Arabidopsis thaliana* (AT) and grapevine (*Vitis vinifera*, VIT). AtABF1 (AT1G49720),
1115 AtABF2 (AT1G45249), AtABF3 (AT4G34000), AtABF4 (AT3G19290), AtDPBF1
1116 (AT2G36270), AtDPBF2 (AT3G44460), AtDPBF3 (AT3G56850), AtDPBF4
1117 (AT2G41070) and VvABF2 (VIT_18s0001g10450) were used for the alignment.
1118 Conserved residues with 100%, 75-99 % or 33-75% amino identity are shaded in
1119 black, dark gray and light gray, respectively. The conserved bZIP domains are
1120 indicated with black rectangles. Putative phosphorylation sites (C1, C2, C3 and C4,
1121 underlined) are marked with asterisks.

1122

1123 **Fig. 2.** Phylogenetic analysis of VlbZIP30 and expression analysis of *VlbZIP30*. (A)
1124 The phylogenetic tree represents VlbZIP30 (black circle) and other bZIP amino acid
1125 sequences from *Arabidopsis thaliana* (AT) and grapevine (*Vitis vinifera*, VIT). The
1126 clustering of the group A bZIP proteins and the other groups of bZIP proteins (group
1127 H, AtHY5; I, AtbZIP29; E, AtbZIP34; L, AtbZIP76; S AtGBF5; B, bZIP28; D
1128 AtTGA6; J, AtbZIP62; K, AtbZIP60; F, AtbZIP19; and C, AtBZO2H2) have
1129 previously been reported by Jakoby *et al.* (2002) and Nicolas *et al.* (2014). (B)
1130 Expression profiles of *VlbZIP30* in grapevine following abscisic acid (ABA) and
1131 dehydration treatments. Data represent the mean values \pm SE from three independent
1132 experiments. Asterisks indicate statistical significance (* $0.01 < P < 0.05$, ** $P < 0.01$,
1133 Student's *t*-test) between the treated and untreated control plants. (C) Patterns of
1134 *VlbZIP30* promoter-driven GUS (β -glucosidase) expression in *A. thaliana* at different
1135 growth stages. Mature embryos cultivated on Murashige-Skoog (MS) agar medium
1136 (a), or MS agar medium supplemented with 300 mM mannitol (b) or 0.5 μ M ABA (c)
1137 for 2 d. Scale bar = 500 μ m. Seven-day-old seedlings cultivated on MS agar medium
1138 (d), or MS agar medium supplemented with 300 mM mannitol (e) or 0.5 μ M ABA (f)
1139 for 7 d. Scale bar = 500 μ m. Fourteen-day-old seedlings transferred from MS medium

1140 plates into MS agar medium (g) or MS agar medium supplemented with 300 mM
1141 mannitol (h) or 100 μ M ABA (i) for 7 d. Scale bar = 2 mm. (j) 3-week-old plant. (k)
1142 3-week-old plant after dehydration for 2 h. (l) Guard cells of 3-week-old plant. Scale
1143 bar = 50 μ m. (m) Guard cells of 3-week-old plant after dehydration for 2 h. Scale bar
1144 = 50 μ m. (n) Inflorescence. Scale bar = 2 mm. (o) Leaf. Scale bar = 200 μ m. (p)
1145 Flower. Scale bar = 200 μ m. (q) Siliques. Scale bar = 2 mm.

1146

1147 **Fig. 3.** Phenotypes of wild type (WT) and *VlbZIP30* overexpressing (OE) transgenic
1148 lines at the greening cotyledon stage following mannitol and abscisic acid (ABA)
1149 treatments. (A) Greening cotyledons from WT and transgenic lines 7 d after seeds
1150 were cultivated on Murashige-Skoog (MS) agar medium, with or without 300 mM or
1151 350 mM mannitol, or 0.5 μ M or 1 μ M ABA. (B) Cotyledon greening rates of WT and
1152 transgenic lines 7 d after cultivation on MS agar medium with or without 300 mM or
1153 350 mM mannitol, or 0.5 μ M or 1 μ M ABA. (C) and (D) Cotyledon greening rates of
1154 WT and transgenic lines grown on MS basal medium containing 350 mM mannitol (C)
1155 or 1 μ M ABA (D). (E) Endogenous ABA levels of WT and transgenic lines 7 d after
1156 cultivation on MS agar medium, or MS agar medium containing 350 mM mannitol or
1157 1 μ M ABA. Three independent experiments were performed with ~100 seeds per
1158 experiment. Error bars indicate \pm SE. Asterisks indicate statistical significance (* $P < 0.01$
1159 < $P < 0.05$, ** $P < 0.01$, Student's *t*-test) between the transgenic and WT plants.

1160

1161 **Fig. 4.** Phenotypes of wild type (WT) and *VlbZIP30*-overexpressing (OE) transgenic
1162 lines at the post-germination growth stage during mannitol and abscisic acid (ABA)
1163 treatments. (A) Photographs of morphology in WT and transgenic lines 14 d after
1164 seeds were cultivated on Murashige-Skoog (MS) agar medium with or without 300
1165 mM mannitol or 0.5 μ M ABA. (B) Root length of WT and transgenic lines after 7 d of
1166 growth with or without mannitol (300 mM or 350 mM) or ABA (50 μ M or 100 μ M).
1167 (C) Photographs of 14-day-old seedlings transferred from MS agar medium to MS
1168 agar medium or MS agar medium supplemented with mannitol (300 mM or 350 mM)
1169 or ABA (50 μ M or 100 μ M) for 7 d. Electrolyte leakage (D) and malondialdehyde

1170 (MDA) content (E) of 14-day-old seedlings transferred from MS agar medium to MS
1171 agar medium or MS agar medium supplemented with mannitol (300 mM or 350 mM)
1172 or ABA (50 μ M or 100 μ M) for 7 d. In all cases, data represent mean values \pm SE from
1173 three independent experiments. Asterisks indicate statistical significance (* $0.01 < P <$
1174 0.05, ** $P < 0.01$, Student's *t*-test) between the transgenic and WT plants.

1175

1176 **Fig. 5.** Venn diagram representation of the differentially expressed genes (DEGs) in
1177 four comparisons of wild type (WT) and *VlbZIP30*-overexpressing plants (OE) grown
1178 under control conditions, abscisic acid (ABA) or mannitol stress. (A) Experimental
1179 set up: WT and OE transgenic seeds were cultivated on Murashige-Skoog (MS) agar
1180 medium (WTC, OEC) or MS agar medium supplemented with 0.5 μ M ABA (WTA,
1181 OEA) or 300 mM mannitol (WTM, OEM) for 7 d. (B) and (C) show the numbers of
1182 overlapping down-regulated and up-regulated genes, respectively. The numbers in
1183 brackets represent the total numbers of DEGs in different comparisons. The DEGs in
1184 red circles were selected for further analysis. (D) The selected up-regulated genes in
1185 the comparisons (OE / WT) under control conditions, ABA or mannitol stress in
1186 *Arabidopsis thaliana*. (E) The grapevine (*Vitis vinifera*) homologs of the selected *A.*
1187 *thaliana* DEGs from (D).

1188

1189 **Fig. 6.** Gene ontology (GO) analyses of the differentially expressed genes (DEGs) in
1190 the *VlbZIP30*-overexpressing plants (OE) compared with wild type (WT) plants in
1191 response to abscisic acid (ABA) (OEA / WTA) or mannitol stress (OEM / WTM). Bar
1192 graphs separately display the numbers of DEGs classified into each GO category
1193 among the genes up- or down-regulated in the comparisons (OE / WT) induced by
1194 ABA, mannitol, or ABA and mannitol treatment. GO analyses are based on the
1195 PageMan profiling tool (Usadel *et al.*, 2006) and the *Arabidopsis* Functional Modules
1196 Supporting Data (Heyndrickx and Vandepoele, 2012).

1197

1198 **Fig. 7.** Experimental validation of transcriptome data by expression analysis of
1199 representative drought-responsive genes in *Arabidopsis thaliana* using qRT-PCR. The

1200 expression level in the wild type (WT) plants under control conditions was defined as
1201 1.0. The *AtActin2* gene was used as an internal control. Data represent mean values
1202 \pm SE from three independent experiments. Asterisks indicate statistical significance
1203 (* $0.01 < P < 0.05$, ** $P < 0.01$, Student's *t*-test) between the overexpressing (OE) lines
1204 and WT plants.

1205

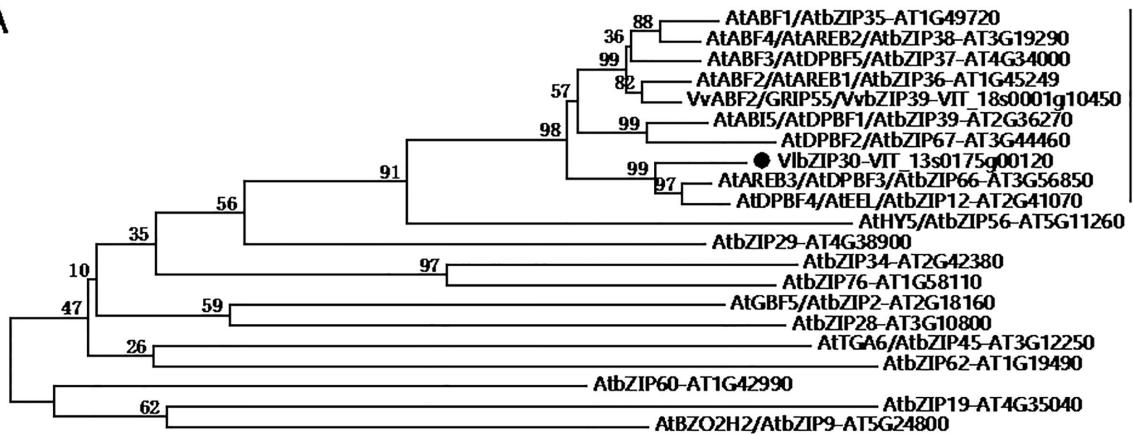
1206 **Fig. 8.** Enrichment of a potential G-box motif in *VlbZIP30* induced genes. (A) and (B)
1207 DREME motif analysis, showing the predicted G-box (ACGTGKV) motif (A) in the
1208 promoter regions of selected *Arabidopsis thaliana* up-regulated genes from the
1209 overexpressing (OE) lines, and the potential G/C-box (MCACGTS) motif (B) in the
1210 promoter regions of the corresponding grapevine (*Vitis vinifera*) homologs. (C) and
1211 (D) Number of predicted G-box motifs in the promoters of the selected *A. thaliana*
1212 genes (C), and the number of predicted G/C-box motifs in the promoter of the
1213 corresponding grapevine homologs (D). Predicted *VlbZIP30*-induced *A. thaliana* and
1214 grapevine genes with at least three G-box or G/C-box motifs were selected for further
1215 analyses (highlighted in blue). (E) and (F) Frequency of the predicted G-box motif in
1216 the promoters of the selected *A. thaliana* genes with respect to their distance from the
1217 start codon site (E), and the frequency of the potential G/C-box motif in the promoters
1218 of the corresponding grapevine homologs with respect to their distance from the start
1219 codon site (F).

1220

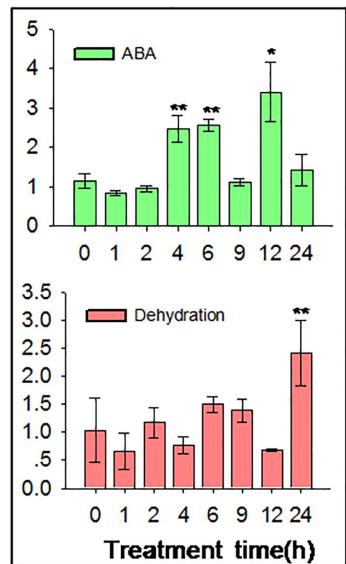
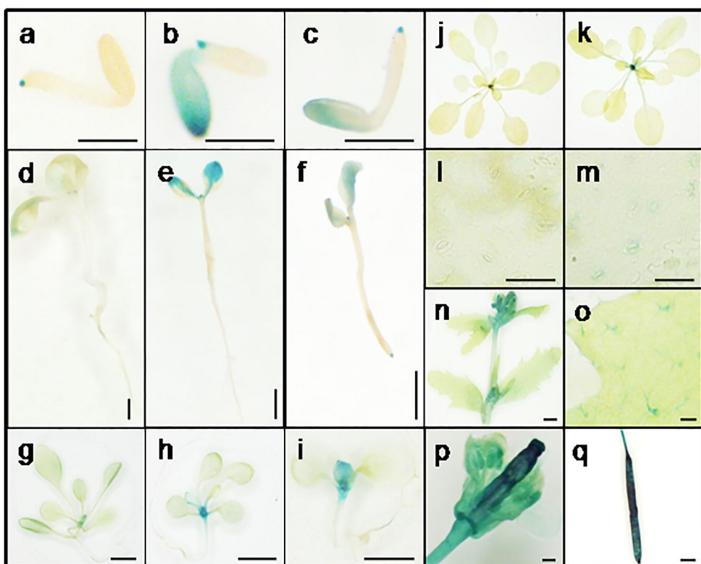
1221 **Fig. 9.** *In silico* promoter analyses of the selected *Arabidopsis thaliana* genes and the
1222 grapevine (*Vitis vinifera*) homologs. (A) Venn diagram showing the selected *A.*
1223 *thaliana* genes with 3 or more predicted G-box elements and the *A. thaliana*
1224 homologs of selected grapevine genes with 3 or more predicted G-box motifs. (C)
1225 Venn diagrams of the selected grapevine genes with 3 or more predicted G-box motifs
1226 and the grapevine homologs of the selected *A. thaliana* genes with 3 or more
1227 predicted G-box motifs. (B) and (D) The 1,500 bp promoter regions of the
1228 overlapping 39 *A. thaliana* genes from (A) and 35 grapevine genes from (C) were
1229 analyzed using the DREME motif enrichment tool. The potential *A. thaliana* G-box

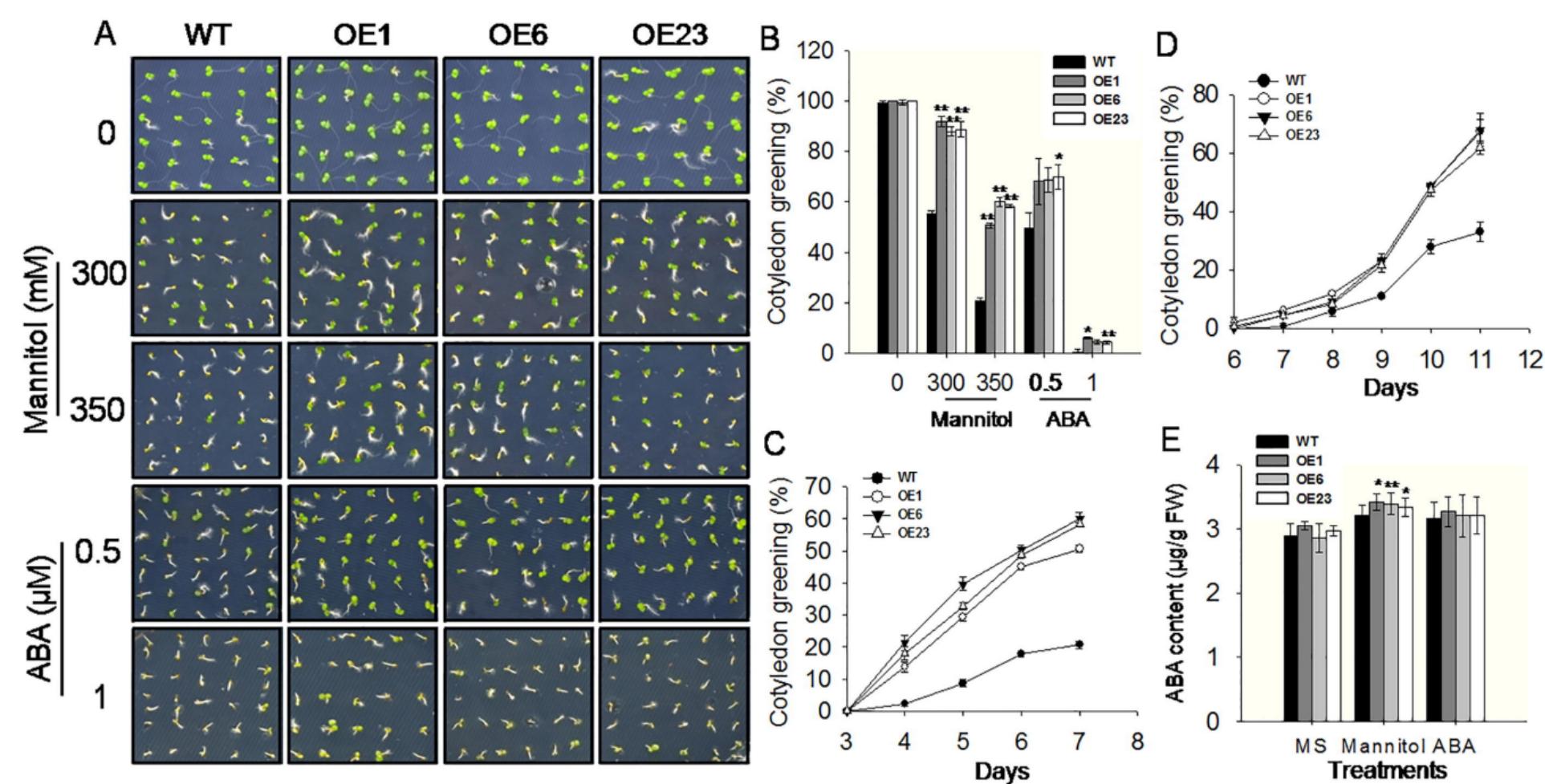
1230 and grapevine G-box motif enrichments were identified using the whole genome
1231 sequences from *A. thaliana* and grapevine as a reference.

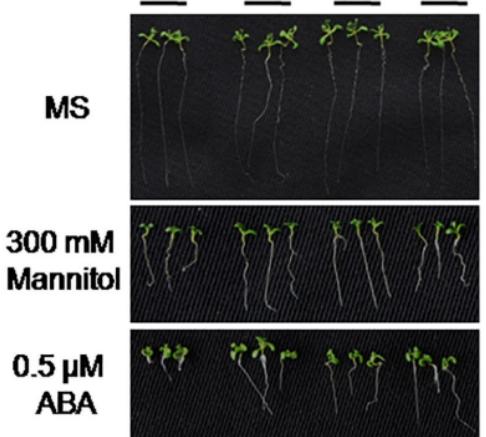
1232


1233 **Fig. 10.** The expression profiles of predicted *VlbZIP30* induced genes in grapevine
1234 (*Vitis vinifera*) following abscisic acid (ABA) or drought treatment. (A) Venn diagram
1235 of the selected up-regulated genes in two different grapevine-related databases (for
1236 ABA; Pilati *et al.*, 2017 and for drought stress; Rocheta *et al.*, 2016) with the 35
1237 predicted grapevine genes. Thirty-one and 25 predicted grapevine genes were present
1238 in the RNA-seq and GeneChips® data. The numbers in brackets represent the numbers
1239 of up-regulated genes in the two different grapevine-related databases. (B) Heat maps
1240 showing the expression of the 27 genes found in (A). RNA-seq analysis was
1241 performed of transcripts expressed in the skin of berries from grapevines treated, or
1242 not, with ABA for 20 h and 44 h. The GrapeGene GeneChips® data was derived from
1243 an analysis of the leaves of two *V. vinifera* L. varieties (Trincadeira, TR and Touriga
1244 Nacional, TN) grown under control and drought conditions in a greenhouse, as well as
1245 under fully irrigated and non-irrigated conditions in the field. Heat map color
1246 gradation in red indicates the increase in expression (log2 fold change). (C) Gene
1247 expression profiles of randomly selected *VlbZIP30*-induced grapevine candidate
1248 genes analyzed using qRT-PCR. For each gene, the expression level in the 0 h sample
1249 from the ABA and dehydration treatments was defined as 1.0. The *VvActin1* gene was
1250 used as an internal control. Data represent mean values ±SE from three independent
1251 experiments. Asterisks indicate statistical significance (* $0.01 < P < 0.05$, ** $P < 0.01$,
1252 Student's *t*-test) between the treated and untreated control plants.

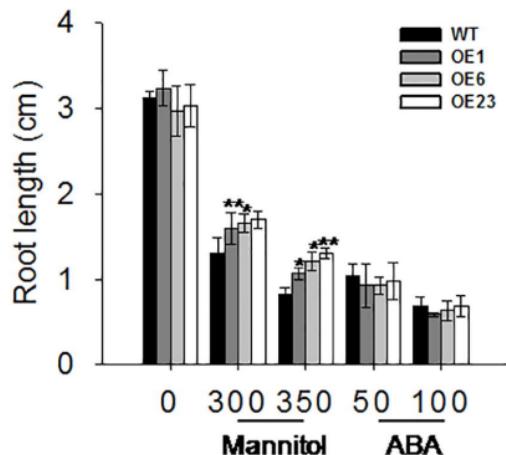
1253

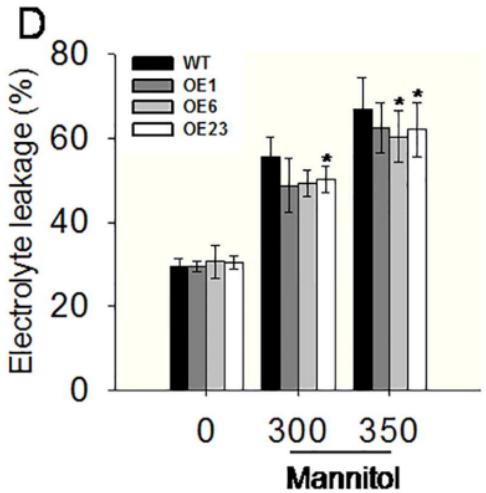


1254 **Fig. 11.** *VlbZIP30*-overexpressing *Arabidopsis thaliana* show enhanced dehydration
1255 tolerance at the adult stage. (A) Drought tolerance phenotypes and survival rates of
1256 wild type (WT) and transgenic (OE) lines grown in soil. Three-week-old plants (upper
1257 panel) were dehydrated for 8 d (middle panel) and then rehydrated for 3 d (lower
1258 panel). DDT: day of drought treatment. (B) Leaf phenotype of 3-week-old WT and

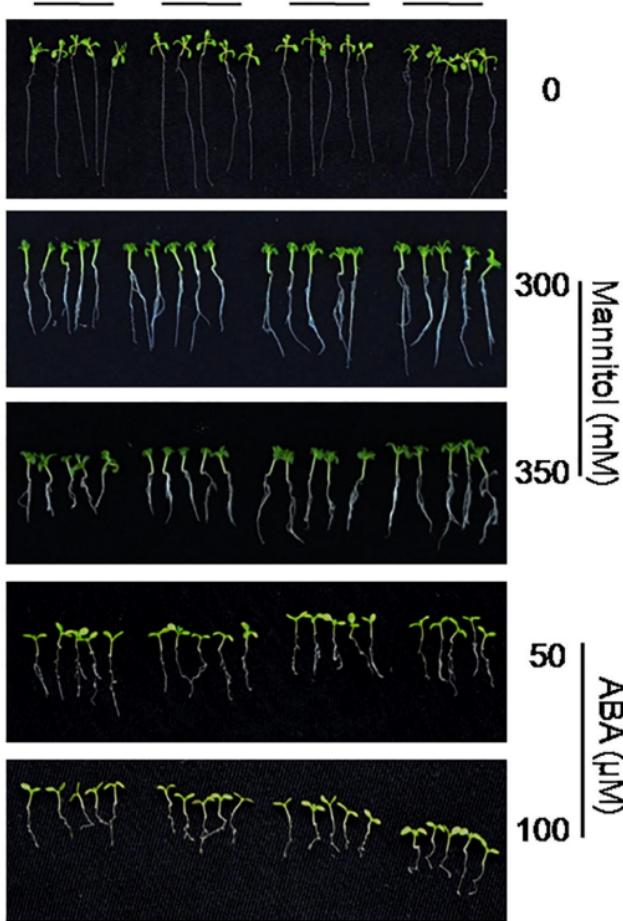

1259 OE lines before and after dehydration for 1, 2, 3 h. Staining with trypan blue of leaves
1260 detached from WT and OE lines and left to dehydrate for 3 h. (C) Relative water loss
1261 rates in WT and OE lines during 3 h of dehydration. (D) Endogenous abscisic acid
1262 (ABA) levels of WT and OE lines before and after dehydration for 1 h and 2 h. (E)
1263 Expression profiles of stress-related genes in WT and OE analyzed using qRT-PCR.
1264 Expression levels were based on total RNA extracted from the aerial parts of
1265 3-week-old WT and OE lines that had been dehydrated on dry filter paper for 0, 1, 2 h.
1266 The *AtActin2* gene was used as an internal control. In all cases, data represent mean
1267 values \pm SE from three independent experiments. Asterisks indicate statistical
1268 significance (* $0.01 < P < 0.05$, ** $P < 0.01$, Student's *t*-test) between the OE and WT
1269 plants.

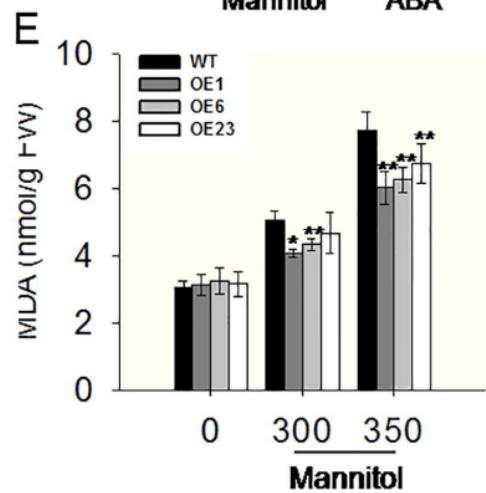

A

Group A

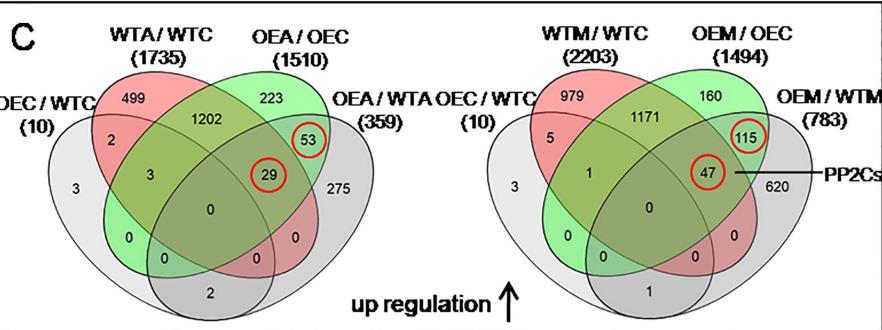
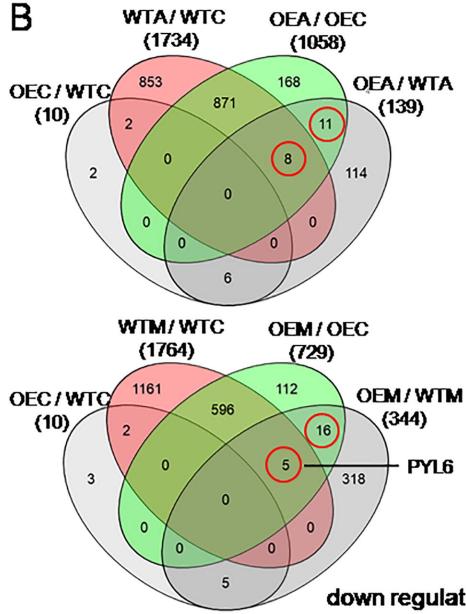
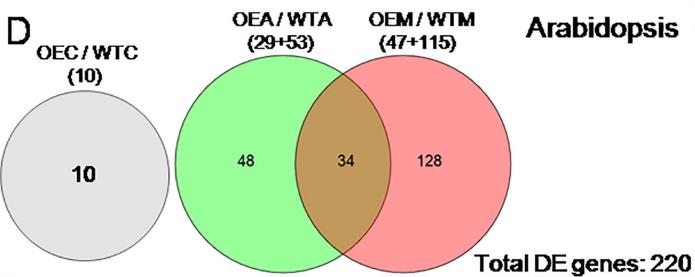
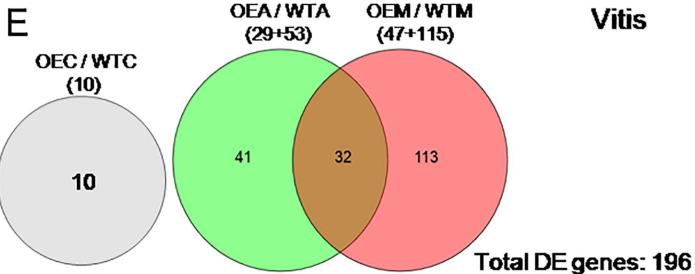

B**C**

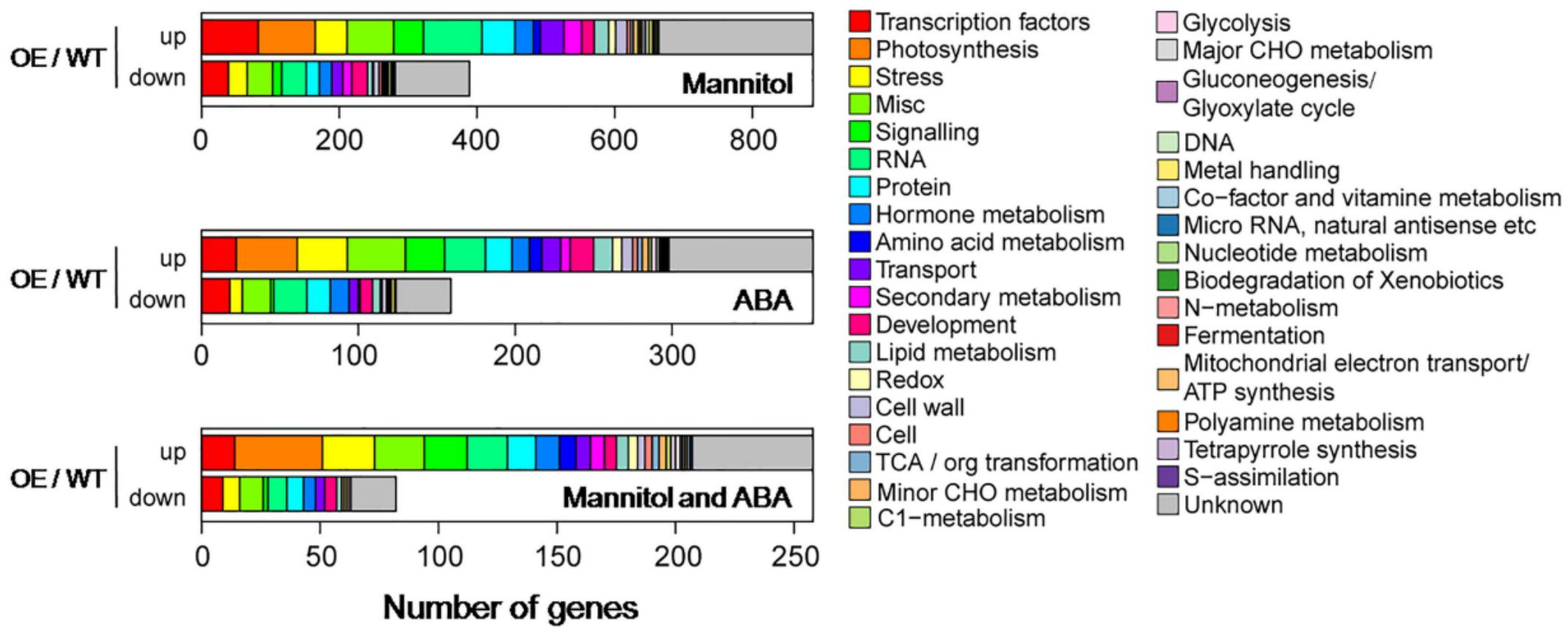

A WT OE1 OE6 OE23

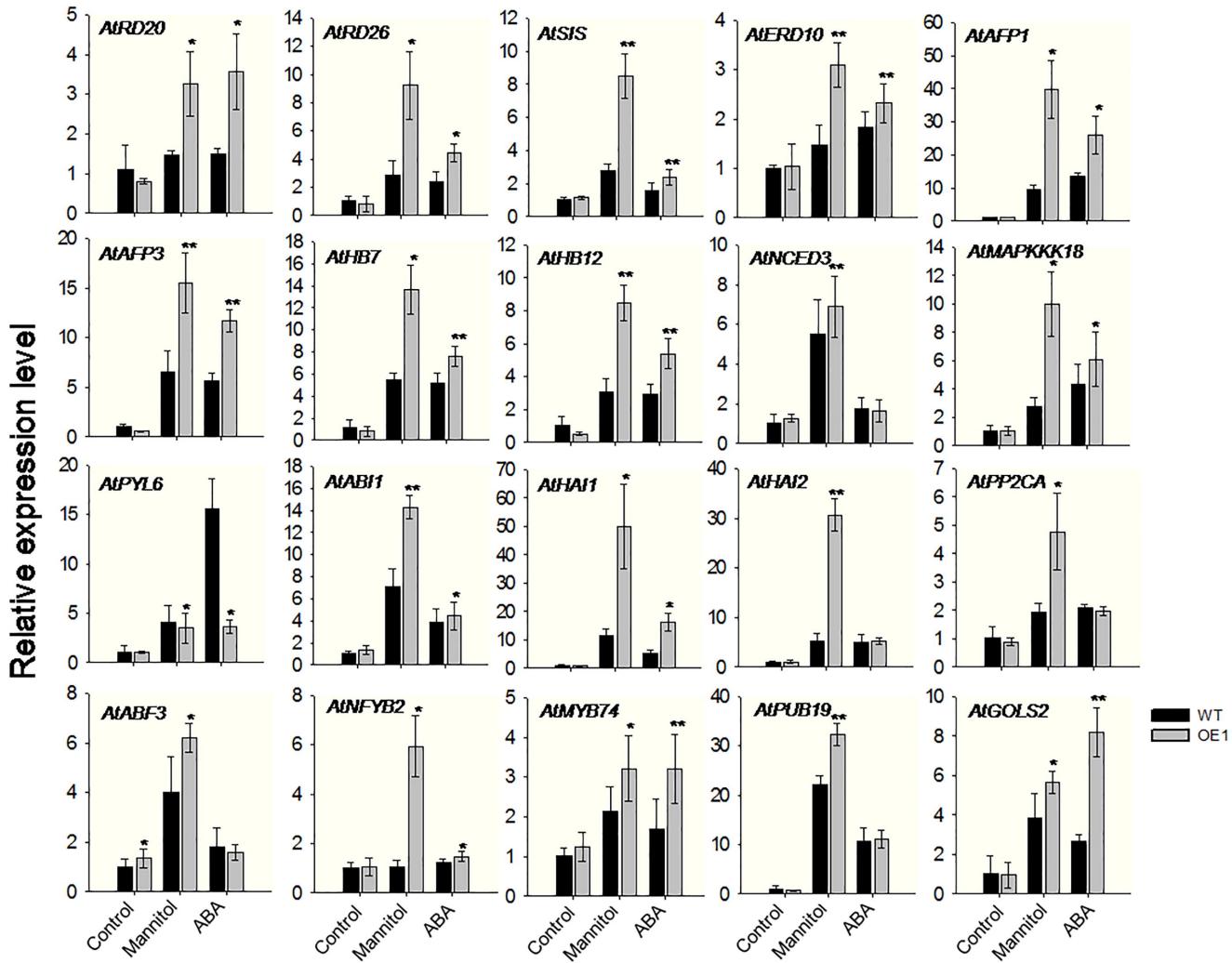

B


D

C WT OE1 OE6 OE23





E

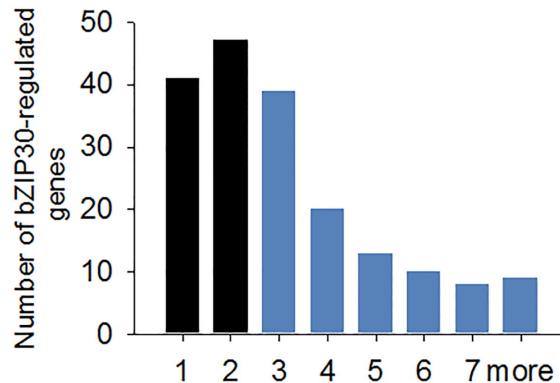



A

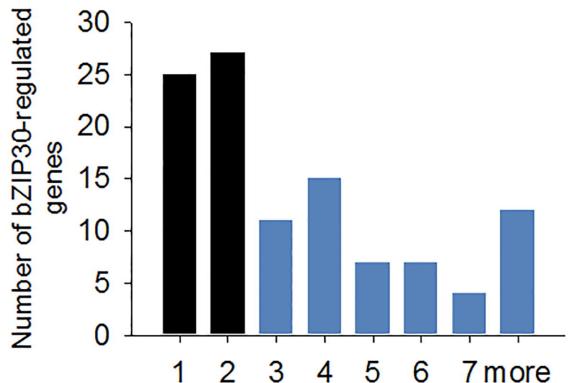
7 days

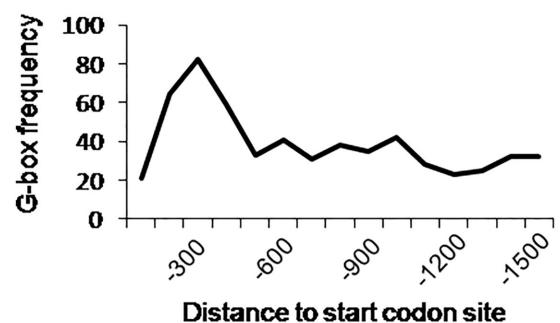
- WT control condition (WTC)
- OE control condition (OEC)
- WTABA treatment (WTA)
- OEABA treatment (OEA)
- WT mannitol treatment (WTM)
- OE mannitol treatment (OEM)

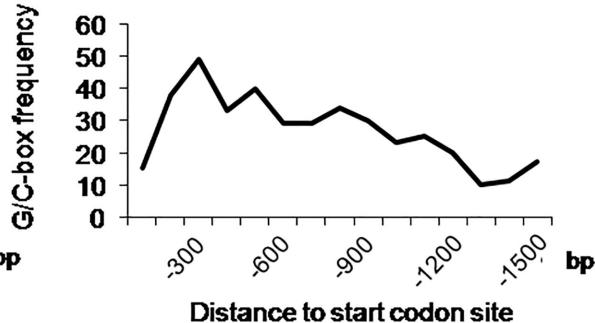
B**D****E**

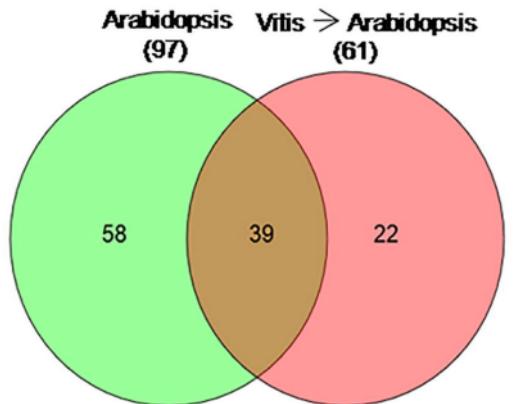


A

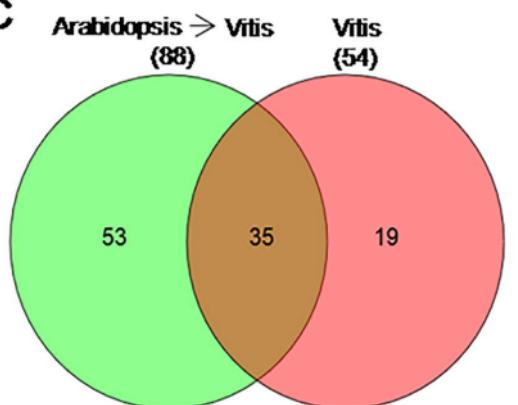

C


B

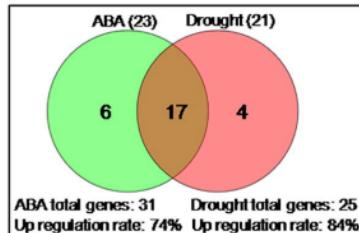

D



E

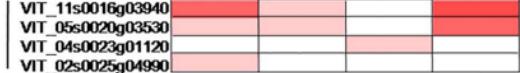
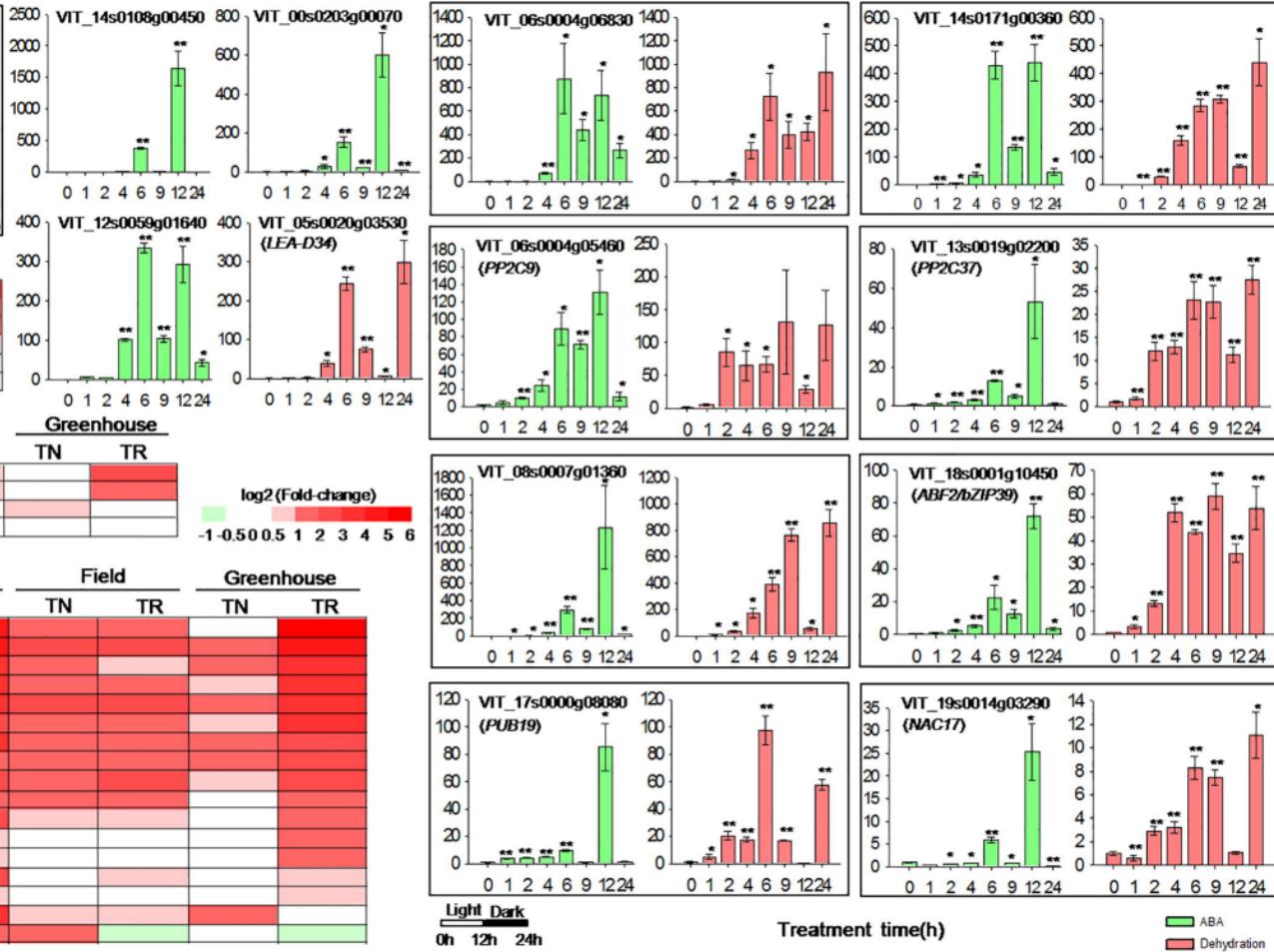


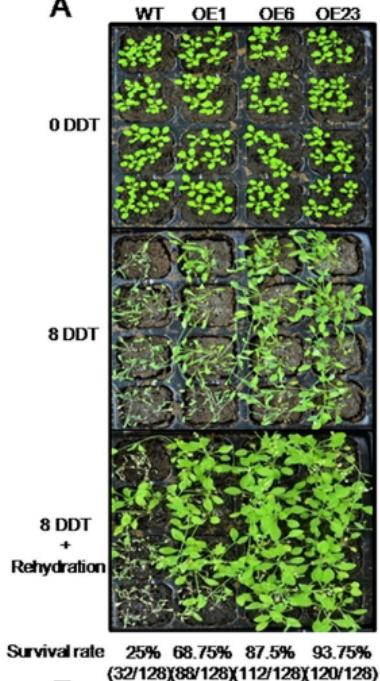
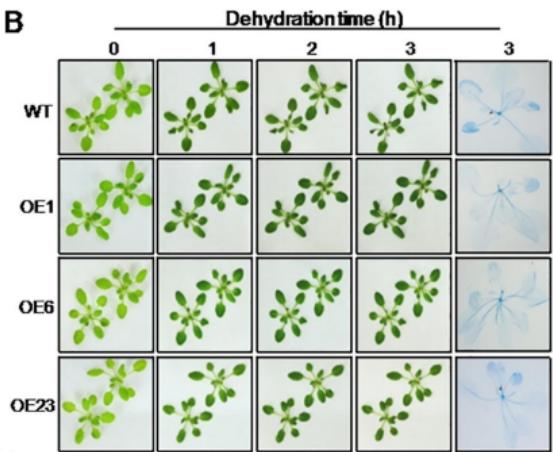
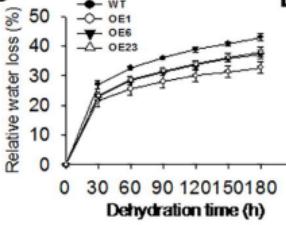
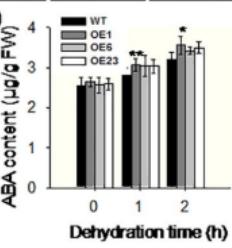
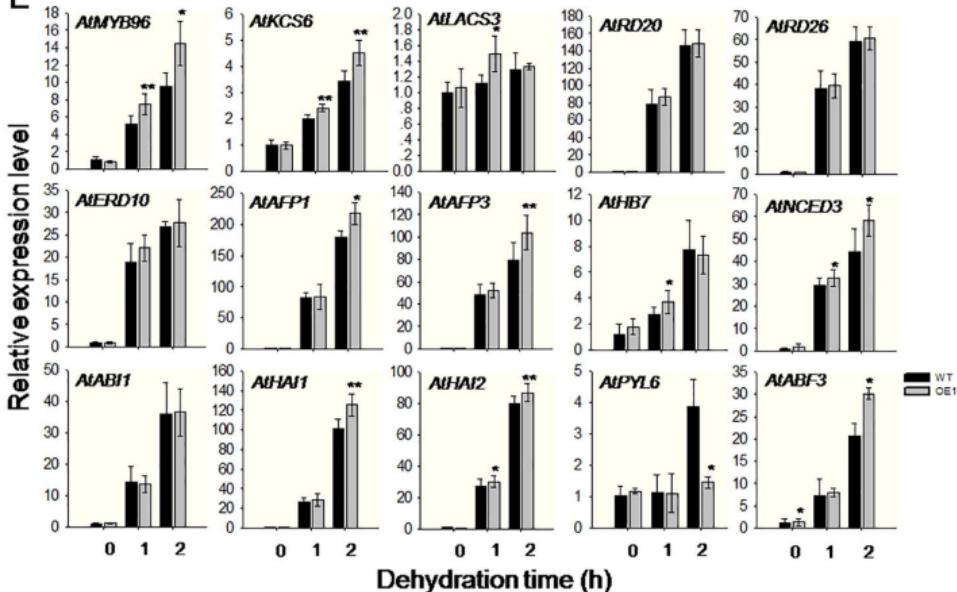
F



A

B	Motif	Logo	E-value	Frequency in the <i>VlbZ/P30</i> induced genes (%)		Frequency in the genome (%)
				In 39 genes	In 220 genes	
1	CACGTG		9.0e-012	89.7	70.0	51.5
2	DAGAGAGA		1.1e-005	76.9	70.5	69.4
3	AAGAAAAR		7.9e-004	92.3	85.7	80.2
4	ABATATAT		9.9e-004	76.9	66.7	52.6



C






D	Motif	Logo	E-value	Frequency in the predicted <i>VlbZ/P30</i> induced genes (%)		Frequency in the genome (%)
				In 35 genes	In 196 genes	
1	MCACGTGK		1.9e-009	100.0	77.4	59.0
2	RAGAGARA		2.4e-007	91.4	74.2	63.9
3	CACSTC		3.5e-004	100.0	85.5	87.9

A**B****Field****Greenhouse****TN****TR****TN****TR**

log₂ (Fold-change)

-1 0.5 0.5 1 2 3 4 5 6

ABA**Field****Greenhouse****20h****44h****TN****TR****TN****TR****Drought****ABA****and****Drought****C**

A**B****C****D****E**