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Abstract23

Large-scale population based analyses coupled with advances in technology have demonstrated24

that the human genome is more diverse than originally thought. To date, this diversity has largely25

been uncovered using short read whole genome sequencing. However, standard short-read26

approaches, used primarily due to accuracy, throughput and costs, fail to give a complete picture of27

a genome. They struggle to identify large, balanced structural events, cannot access repetitive28

regions of the genome and fail to resolve the human genome into its two haplotypes. Here we29

describe an approach that retains long range information while harnessing the advantages of short30

reads. Starting from only ~1ng of DNA, we produce barcoded short read libraries. The use of novel31

informatic approaches allows for the barcoded short reads to be associated with the long molecules32

of origin producing a novel datatype known as ‘Linked-Reads’. This approach allows for33

simultaneous detection of small and large variants from a single Linked-Read library. We have34

previously demonstrated the utility of whole genome Linked-Reads (lrWGS) for performing35

diploid, de novo assembly of individual genomes (Weisenfeld et al. 2017). In this manuscript, we36

show the advantages of Linked-Reads over standard short read approaches for reference based37

analysis. We demonstrate the ability of Linked-Reads to reconstruct megabase scale haplotypes38

and to recover parts of the genome that are typically inaccessible to short reads, including39

phenotypically important genes such as STRC, SMN1 and SMN2. We demonstrate the ability of40

both lrWGS and Linked-Read Whole Exome Sequencing (lrWES) to identify complex structural41

variations, including balanced events, single exon deletions, and single exon duplications. The data42

presented here show that Linked-Reads provide a scalable approach for comprehensive genome43

analysis that is not possible using short reads alone.44
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Introduction45

Since the completion of the human genome project, many large scale consortia studies have46

applied whole genome sequencing to thousands of individuals from diverse populations across the47

globe, reshaping our understanding of human variation (Auton et al. 2015; Lek et al. 2016;48

Sudmant et al. 2015). To date, most genome analyses were performed with accurate,49

high-throughput short reads leading to robust analysis of small variants over non-repetitive parts50

of the genome, but only providing a small window into the landscape of larger structural variants51

(SVs). The application of recent technical advances in both sequencing and mapping to genome52

analysis have revealed that despite extensive information garnered from large population surveys53

utilizing short read whole genome sequencing (srWGS), we are still under-representing the54

amount of structural variation in the human population in these short read driven studies55

(Chaisson et al. 2014, 2017; Huddleston and Eichler 2016; Collins et al. 2017).56

The reconstruction of long range haplotypes (phasing) can be important for many biological57

studies. When analyzing data from rare disease cohorts, knowing if potentially pathogenic58

variants are in cis or trans is necessary for interpreting the impact of these variants. Additionally,59

haplotype information is necessary for understanding allele speci�c impacts on gene expression60

(Ramaker et al. 2017). In addition to the value that haplotype information can bring to interpreting61

variation data, studies also show that this information can be critical for variant identi�cation,62

particularly for SVs that are heterozygous in a sample (Huddleston and Eichler 2016). The ability to63

routinely obtain long range haplotype information could be bene�cial to genome studies.64

The limitations of short reads suggest the need for improved methods for genome analysis. Several65

long molecule sequencing and mapping approaches have been developed to address these issues66

(Carneiro et al. 2012; Nakano et al. 2017; Genomics 2017). While they provide powerful data for67

better understanding genome structure, their high input requirements, error rates and costs make68

them inaccessible to many applications, particularly those requiring thousands of samples69

(Chaisson et al. 2017). To address this need, we developed a technology that retains long range70

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/230946doi: bioRxiv preprint 

https://doi.org/10.1101/230946
http://creativecommons.org/licenses/by-nc-nd/4.0/


information while maintaining the bene�ts of short read sequencing. The core datatype,71

Linked-Reads, is generated by performing haplotype limiting dilution of long DNA molecules into72

>1 million barcoded partitions, synthesizing barcoded sequence libraries within those partitions,73

and then performing standard short read sequencing in bulk. The limited amount of DNA put into74

the system, coupled with novel algorithms, allow short reads to be associated with their long75

molecule of origin, in most cases, with high probability.76

The Linked-Read datatype was originally described in (Zheng et al. 2016) using the GemCodeTM
77

System. Here we describe improvements over GemCode using the ChromiumTM System. These78

improvements come from increasing the number of barcodes (737,000 to 4 million), and the79

number of partitions (100,000 to 1 million) as well as improving the biochemistry to substantially80

reduce coverage bias. These improvements eliminate the need for an additional short-read library.81

We also describe improvements to our analytical pipeline, Long RangerTM.82

We compare reference based analysis on multiple standard control samples using either a single83

Chromium Linked-Read library or a standard short read library for both whole genome (WGS) and84

whole exome sequencing (WES) approaches. We demonstrate the ability to construct accurate,85

multi-megabase haplotypes by coupling long molecule information with heterozygous variants86

within the sample. We show that a single Chromium library has comparable small variant87

sensitivity and speci�city to standard short read libraries and helps expand the amount of the88

genome that can be accessed and analyzed. We demonstrate the ability to identify large scale SVs,89

in control and validation samples, by taking advantage of the long range information provided by90

the barcoded library. Lastly, we assess the ability to identify variants in archival samples that had91

been previously assessed by orthogonal methods. These data show that a Chromium Linked-Reads92

provide more genome information than short reads alone.93
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Results94

Here we describe both the biochemistry improvements that generate barcoded reads, as well as95

algorithmic improvements that take advantage of these barcodes. It is important to note that96

Linked-Reads are paired-end short reads with a barcode on read 1 and can be used by many97

common short read tools. To fully realize the potential of Linked-Reads, additional algorithms that98

take advantage of these bar coded sequences and molecule information must be applied. In the99

following text, when we refer to Linked-Read WGS (lrWGS) we are referring to the combination of100

biochemistry and algorithm approaches applied.101

Improvements in Linked-Read data102

One limitation of the original GemCode approach was the need to combine the Linked-Read data103

with a standard short-read library for analysis. This was due to coverage imbalances seen in the104

GemCode library alone. To address this issue we modi�ed the original biochemistry, replacing it105

with an isothermal ampli�cation approach. The updated biochemistry now provides for more even106

genome coverage, approaching that of PCR-free short-read preparations (Figure 1).107

Additional improvements include increasing the number of barcodes from 737,000 to 4 million and108

the number of partitions from 100,000 to over 1 million. This allows for fewer DNA molecules per109

partition, or GEMs (Gelbead-in-EMulsion), and thus a greatly reduced background rate of barcode110

collisions: the rate at which two random loci occur in the same GEM (Supplemental Figure 1). The111

lowered background rate of barcode sharing increases the probability of correctly associating a112

short read to the correct molecule of origin, and increases the sensitivity for SV detection.113

Improved Genome and Exome Alignments114

Several improvements were made in the Long Ranger analysis pipeline to better take advantage of115

the Linked-Read data type. The �rst of these, the LariatTM aligner, expands on the ‘Read-Cloud’116
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approach (Bishara et al. 2015). Lariat (https://github.com/10XGenomics/lariat) re�nes alignments117

produced by the BWA aligner by examining reads that map to multiple locations and determining118

if they share barcodes with reads that have high quality unique alignments (Li 2013). If a con�dent119

placement can be determined by taking advantage of the barcode information of the surrounding120

reads, the quality score of the correct alignment is adjusted (Supplemental Section 1). This121

approach allows for the recovery of 36-44 Mb of genome coverage when compared to PCR free122

short reads aligned following GATK best practices. Conversely, only 1-4 Mb of the genome has123

coverage in the PCR free data that is not seen using lrWGS (Figure 2). When looking at the124

genome distribution of these alignment gains, the amount of recovered alignments using lrWGS125

varies from chromosome to chromosome, but is consistent across samples (Supplemental Figure 2).126

This is due to genome structure, as the ability of lrWGS to rescue repetitive sequence, using the127

Lariat algorithm, depends on the repeats being far enough apart that they are not likely to share a128

barcode. Only in this case can the Lariat algorithm resolve reads mapping to multiple locations.129

The sequence gained using lrWGS is dominated by regions annotated as segmental duplication130

(roughly 75%), with the alignments to the decoy sequence accounting for another 13% and exonic131

sequences accounting for roughly 5% (Supplemental 1.2, Supplemental Table 1, Figure 2). Molecule132

length also impacts the amount of sequence recovered (Supplemental Figure 3).133

When we look speci�cally at the ability of Lariat to improve read coverage over genes, we observe134

a net gain in gene coverage when performing lrWGS compared to srWGS, and even more robust135

improvement when performing lrWES compared to srWES (Supplemental Figure 4). When we136

limit the search space to a known set of 570 genes with closely related paralogs that confound137

short read alignment (NGS ‘dead zone’ genes (Mandelker et al. 2016)) we see a net gain in read138

coverage in 423 genes using lrWGS and 376 using lrWES. Further limiting the list to the 71 genes139

relevant to Mendelian disease, we see a net improvement in 51 of these genes using lrWGS and 41140

genes using lrWES (Figure 3). Exome analysis was limited to multiple replicates of a single control141

sample, NA12878.142
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Small variant calling143

Next, we assessed the performance of Linked-Reads for small variant calling (<50 bp). Small144

variant calling, particularly for single nucleotide variants (SNVs) outside of repetitive regions, is145

well powered by short reads because a high quality read alignment to the reference assembly is146

possible and the variant resides completely within the read. We used control samples, NA12878147

and NA24385 as test cases. We produced two small variant call sets for each sample, one generated148

by running paired-end 10x Linked-Read Chromium libraries through the Long Ranger (lrWGS)149

pipeline and one produced by analyzing paired-end reads from a PCR-free TruSeq library using150

GATK pipeline (PCR-) following best practices recommendations:151

https://software.broadinstitute.org/gatk/best-practices/. We made a total of 4,585,361 PASS variant152

calls from the NA12878 lrWGS set, and 4,622,282 from the corresponding NA12878 srWGS set, with153

4,436,102 calls in common to both sets (Table 1). Total numbers for both samples are in Table 1.154

In order to assess the accuracy of the variant calling in each data set, we used the hap.py tool155

(Krusche)(https://github.com/Illumina/hap.py, commit 6c907ce) to compare the lrWGS and PCR-156

VCFs to the Genome in a Bottle (GIAB) high con�dence call set (v. 3.2.2) (Zook et al. 2014). We157

chose this earlier version as it was the last GIAB data set that did not include 10x data as an input158

for their call set curation. This necessitated the use of GRCh37 as a reference assembly rather than159

the more current GRCh38 reference assembly. This limited us to analyzing only the 82.67% of SNV160

calls that overlap the high con�dence regions. Initial results suggested that the lrWGS calls had161

comparable sensitivity (>99.65%) and speci�city (>99.70%) for SNVs (Table 1). We observed slightly162

diminished indel sensitivity (>93.31%) and speci�city (>94.93%), driven largely by regions with163

extreme GC content and low complexity sequences (LCRs). Recent work suggests indel calling is164

still a challenging problem for many approaches, but that only 0.5% of LCRs overlap regions of the165

genome thought to be functional based on annotation or conservation (Li et al. 2017). Additionally,166

we compared the sensitivity of homozygous and heterozygous calls (Supplemental Table 2). Both167

lrWGS and PCR- have higher sensitivity and speci�city for homozygous alternate variants than168
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heterozygous variants.169

The GIAB high con�dence data set is known to be quite conservative and we wished to explore170

whether there was evidence for variants called outside of the GIAB set in the lrWGS. We utilized171

publicly available 40x coverage PacBio data sets available from the GIAB consortium (Zook et al.172

2016) to evaluate Linked-Read putative false positive variant calls. Initial manual inspection of 25173

random locations suggested that roughly half of the hap.py identi�ed lrWGS false positive calls174

were well supported by short read or PacBio evidence, and were haplotype consistent in lrWGS175

and were likely called false positive due to de�ciencies in the GIAB truth set (Supplemental Table176

3). We then did a global analysis of all 9,513 SNV and 18,030 indel putative false positive calls177

identi�ed in NA12878 and looked for evidence of the alternate alleles in aligned PacBio reads only.178

This analysis provided evidence that 2,377 SNV and 12,812 indels of the GIAB determined false179

positive calls were likely valid calls (Supplemental Figure 5, Supplemental File 1). This prompted180

us to extend our analysis to include 69.72 Mb for NA12878 and 70.66 Mb for NA24385 of the181

genome corresponding to regions of 2-6-fold degeneracy as determined by the ‘CRG Alignability182

track’ in addition to the GIAB de�ned con�dent regions (see Methods for details on GIAB++ BED).183

We reanalyzed the variant calls with the hap.py tool with the augmented con�dent regions. This184

allowed us to identify an additional 19,688 SNV and 5,444 indels as true positives. We anticipate185

that this is a conservative estimate since our hap.py de�ned false positive calls are in�ated due to186

little or no PacBio or short-read coverage in many of these regions. Of the total putative false187

positive calls exclusive to the GIAB++ analysis, 61.95% (45,665) of SNVs and 42.08% (4,637) of indels188

could not be validated because of little or no PacBio read coverage (Supplemental Figure 5). These189

data show the lrWGS approach provides for the identi�cation of more small variants than can be190

identi�ed by short read only approaches, driven by an increase in the percentage of the genome for191

which lrWGS can obtain high quality alignments (see Table 1).192
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Haplotype reconstruction and phasing193

An advantage of Linked-Reads is the ability to reconstruct multi-megabase haplotypes from194

genome sequence data (called phase blocks) for a single sample. Haplotype reconstruction195

increases sensitivity for calling heterozygous variants, particularly SVs (Huddleston et al. 2016). It196

also improves variant interpretation by providing information on the physical relationship of197

variants, such as whether variants within the same gene are in cis or trans. In the control samples198

analyzed, we see phase block N50 values for lrWGS of 10.3 Mb for NA12878, 9.58Mb for NA24385,199

16.8 Mb for NA19240 and 302 kb for lrWES using Agilent SureSelect v6 baits on NA12878. This200

allowed for complete phasing of 91.1% for NA12878 genome, 90.9% for NA24385 genome, and201

91.0% for NA19240 genome, and an average of 91% for NA12878 exome. Phase block length is a202

function of input molecule length, molecule size distribution and of sample heterozygosity extent203

and distribution. At equivalent mean molecule lengths, phase blocks will be longer in more diverse204

samples (Figure 4, Supplemental Figure 6). For samples with similar heterozygosity, longer input205

molecules will increase phase block lengths (Supplemental Figure 7).206

We assessed the accuracy of our phasing calls by comparing the Linked-Read phasing results to207

published phasing results derived from pedigree sequencing. We compare our NA12878 results208

with the Illumina Platinum genomes (Eberle et al. 2017) phasing results derived from jointly209

phasing the 17 member CEPH pedigree. Following the previous analysis (Amini et al. 2014), we210

decompose phasing errors into “short-switches” and “long-switches”. Short-switches are de�ned211

by a small number of isolated variants incorrectly phased, whereas “long-switches” are those212

errors in which an incorrect junction is formed that persists for many variants across a longer213

distance. The rate of each switch type is measured per phased heterozygous variant. We also214

measure 1) the rate at which a given SNP is correctly phased to other variants in its phase block215

(which heavily penalizes long switch errors inside large phase blocks), and 2) for SNPs inside a216

gene boundary, the rate at which a SNP inside a gene is correctly phased to other variants in the217

gene. Independent studies have demonstrated that Linked-Read phasing has best in class accuracy218
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compared to a variety of other phasing methods (Chaisson et al. 2017; Choi et al. 2018). Short219

switch error rates average ~0.0002, long switch error rates average ~2e-5, and within-phase-block220

correct rate has an average of ~0.98. See Supplemental Table 4 for details.221

Phase block construction using lrWES is additionally constrained by the bait set used to perform222

the capture and the reduced variation seen in coding sequences. In order to analyze factors223

impacting phase block construction, we assessed four samples with known compound224

heterozygous variants in three genes known to cause Mendelian disease, DYSF, POMT2, and TTN.225

The variant separation ranged from 33 Kb to over 188 Kb (Table 2). Initial DNA extractions yielded226

long molecules ranging in mean size from 75 Kb - 112 Kb. We analyzed these samples using the227

Agilent SureSelect V6 exome bait set, with downsampling of sequence data to both 7.25 Gb (~60x228

coverage) and 12 Gb of sequence (~100x coverage). In all cases, the variants were phased with229

respect to each other and determined to be in trans, as previously determined by orthogonal assays.230

By comparing the phasing of NA12878 Linked-Read exome data to phasing determined from231

pedigree analysis of the Illumina Platinum Genomes CEPH pedigree (including NA12878) we are232

able to determine that the global probability a SNP is phased correctly within a gene ranges from233

99.95-99.99%, making mis-phasing of two heterozygous variants in a gene relative to each other a234

very rare event.235

In three of the four cases, the entire gene was phased. The DYSF gene was not completely phased236

in any sample because the distance between heterozygous SNPs at the 3’ end of the gene was237

substantially longer than the mean molecule length. This gene is in the top 5% of genes intolerant238

to variation as determined by the RVIS metric, a measure of evolutionary constraint, suggesting239

that reduced exonic heterozygosity over the gene would be a common occurrence impairing240

complete phasing (Petrovski et al. 2013).241

Many samples of interest have already been extracted using standard methods not optimized for242

high molecular weight DNA and may not be available for a fresh re-extraction to obtain DNA243

optimized for length. For this reason, we wanted to understand the impact of reduced molecule244
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length on our ability to phase the genes and variants in these samples. We took the original freshly245

extracted long molecules and sheared them to various sizes, aiming to assess lengths ranging from246

5Kb to the original full length samples (Table 2). These results illustrate the complex interplay247

between molecule length distribution and the observed heterozygosity within a region. For248

example, in sample B12-21, with variants in TTN that are 53 Kb apart, the variants could be phased,249

even with the smallest molecule size. However in sample B12-122, with variants in POMT2 only 33250

Kb apart, variant phasing is lost at 20 Kb DNA lengths. This appeared to be due to a higher rate of251

heterozygous variation in TTN allowing the phasing of distant heterozygous sites to occur by252

phasing the many other heterozygous variants that occurred between them. A general lack of253

variation in POMT2 precluded such stitching together of shorter molecules by phasing of254

intermediate heterozygous variation. To con�rm this, we assessed the maximum distance between255

heterozygous sites observed in each gene. We then plotted the di�erence between the inferred256

molecule length and this distance and against the molecule length and assessed the impact on257

causative SNP phasing (Figure 5). In general, when the maximum distance between heterozygous258

SNPs is greater than the molecule length (negative values), the ability to phase causative SNPs259

decreases. There are exceptions to this as the longer molecules in the molecule size distribution260

will sometimes allow tiling between the variants, therefore extending phase block size beyond261

what would be expected based on the mean length alone.262

Linked-Reads allow for the reconstruction of long haplotypes, or phase blocks. Optimizing for long263

input molecules provides for maximum phase block size, but even shorter molecule lengths can264

provide gene level phasing. Further, in the context of sequencing for the identi�cation of disease,265

causative heterozygous variants would be expected to aid in the phasing of the disease-causing266

gene as they would provide the necessary variation to distinguish the two haplotypes.267
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Structural variant detection268

Structural variants remain one of the most di�cult types of variation to accurately ascertain, in269

part because they tend to cluster in duplicated and repetitive regions, but also because the various270

signals for these events can be challenging to detect with short reads. Accurate and speci�c SV271

detection is challenging due in large part to the limitations of assessing long range information272

using short reads, which only provide information over short distances. Another complicating273

factor is the many types of structural variants, each requiring the detection of a di�erent signal274

depending on the type and mechanism of the event (Alkan et al. 2011; Collins et al. 2017). There is275

increasing evidence that grouping reads by their source haplotype improves SV sensitivity, but this276

is not commonly done in practice (Huddleston et al. 2016; Chaisson et al. 2017). It is of interest to277

identify the full range of SVs, particularly larger SVs as these larger events are more frequently278

associated with changes in gene expression signatures (Chiang et al. 2017).279

Large-scale SVs (>30K)280

Long Ranger uses two novel algorithms to identify large SVs, one that assesses deviations from281

expected barcode coverage and one that looks for unexpected barcode overlap between distant282

regions. The barcode coverage algorithm is useful for assessing CNVs, while the barcode overlap283

method can detect a variety of SVs, but fails to detect terminal events (See Supplemental Section 3).284

SV calls are a standard output of the Long Ranger pipeline and are described using standard �le285

formats. We used two approaches to assess lrWGS performance on large SVs. First, we compared286

SV calls from the NA12878 sample to validated calls described in a recent publication of a structural287

variant classi�er, svclassify (Parikh et al. 2016). Next, we obtained the GeT-RM CNVPanel, a288

collection of known events including large deletions, duplications, inversions, balanced289

translocations and unbalanced translocations designed to assess performance of clinical aCGH.290

Long Ranger identi�es event types by matching to simple models of deletions, duplications and291

inversions. Therefore, there are additional events where Long Ranger identi�es clear evidence for292
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anomalous barcode overlap, but is unable to match the event to one of the pre-de�ned models.293

These unde�ned events are rendered as unknown and represent de�ciencies in SV annotation. The294

validated call set published with svclassify (Parikh et al. 2016) contains deletions and insertions, but295

no balanced events. By contrast, the Long Ranger pipeline output contains deletions, duplications296

and balanced events, but Long Ranger does not currently call insertions (Supplemental Table 5).297

We �rst consider deletion variants >30 Kb. There are 11 of these in the svclassify set and 17 in the298

Long Ranger PASS set, with 8 being common to both (Table 3). All of the variants that match299

svclassify events also show Mendelian consistency and breakpoint agreement within the300

CEU/CEPH trio. Of the three svclassify calls not called by Long Ranger, one is called by Long301

Ranger as an event <30kb, one is called but �ltered to the candidate list due to overlap with a302

segmental duplication, and one is an error in the svclassify set relative to GRCh37.p13303

(Supplemental Section 4.1). We checked for Mendelian consistency in the 9 events unique to the304

Long Ranger set. Eight of these events showed consistent inheritance, though two had inconsistent305

breakpoints when compared to the parents (Supplemental Table 6). One of these breakpoint306

inconsistent events entirely contains a breakpoint consistent event on the same haplotype. The307

second breakpoint inconsistent event overlaps an additional inheritance-consistent Long Ranger308

call, and thus represents a failure of the algorithm to annotate the event as being a more complex309

event. The �nal event called by Long Ranger, but not showing inheritance consistency, is a call in310

the telomeric region of chr2 that overlaps a known reference assembly issue. The call appears to be311

made due to a drop in phased coverage on one haplotype immediately adjacent to a known312

reference gap, and is likely a false positive.313

We next tested 23 samples with 29 validated balanced or unbalanced SVs from the GeT-RM314

CNVPanel available from Coriell. These cell lines have multiple, orthogonal assays con�rming the315

presence of their described structural variants. We detected 27 of the 29 structural variants,316

correctly characterizing 22 of the 23 samples tested (Supplemental Table 7). One additional event317

was in the ‘candidate’ SV list as it overlaps a segmental duplication, which are known problematic318

regions for SV calling. The missed event is a balanced translocation with a breakpoint in a319
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heterochromatic region of chromosome 16. This region is represented by Ns in the reference320

assembly and will be invisible to any sequence-based method relying on the reference genome321

(Schneider et al. 2017).322

We also assessed the impact of sequence depth on large SV identi�cation. Deletion and duplication323

signals were detectable with as little as 5Gb (~1x genomic read coverage) (Supplemental Figure 8).324

Balanced events required roughly 50Gb of sequence for the algorithm to call these events, though325

signal in the data suggested algorithmic improvements could lessen this requirement326

(Supplemental Figure 9).327

Intermediate SV Calls (50bp - 30Kb)328

We next considered deletions between 50 bp and 30 Kb in the NA12878 sample. The Long Ranger329

pipeline was run using GATK and thus we can obtain two sets of �les: deletion and insertion calls330

from GATK that are approximately 250bp or less, and deletion calls from Long Ranger algorithms.331

As Long Ranger only calls deletions, we only considered these calls in the following analysis. We332

also ran the LUMPY (Layer et al., 2014) algorithm using the developer recommendations but333

without tuning parameters (Supplemental Table 8: SuppTable8_IntSVs). We obtained 1,824 deletion334

calls from GATK and 4,118 from Long Ranger, with 1,699 of these being heterozygous (Table 4).335

This compares to 6,965 deletions >50bp per sample in a study combining the output of 13 di�erent336

algorithms on short read data (Chaisson et al. 2017). This same study also used long reads to337

identify 9,488 deletions >50bp per sample, underscoring the challenges of identifying these events338

with short reads.339

Using only the output of Long Ranger, we compared our calls to the calls in svclassify. We340

identi�ed 2,017 calls (88.4%), with 2,048 (49.6%) labeled as false positives (Table 4). Combining the341

GATK and Long Ranger calls keeps recall roughly the same, but lowers the precision roughly 10%342

(Supplemental Table 8). Of note, the Long Ranger calls provide improved detection of larger SVs,343

with an expected bump around 300 bp, likely accounted for by better representation of ALUs344
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(Figure 6).345

While sensitivity of the Long Ranger approach is good, this comes at the expense of speci�city346

(Table 4, Supplemental Table 8). Given the bias in speci�city in phased versus unphased regions,347

we expect that algorithmic improvements will produce further gains in sensitivity and speci�city348

for this class of variants. Additionally, we suspect the small number of events <200 bp in the349

svclassify set is not representative of the true number of calls in a given sample.350

Linked-Reads provide improvements for SV detection over standard short read approaches.351

However, there is ample room for algorithmic improvement using SVs. For example, approaches352

based on local reassembly could be utilized for insertion discovery.353

Analysis of samples from individuals with inherited disease354

We went on to investigate the utility of Linked-Read analysis on samples with known variants. In355

particular, we were interested in events that are typically di�cult with a standard, short read356

exome. We were able to obtain samples from a cohort that had been assessed using a high depth357

NGS-based inherited predisposition to cancer screening panel. This cohort contained samples with358

known exon level deletion and duplication events. We analyzed these 12 samples from 9359

individuals using an Agilent SureSelect V6 Linked-Read exome at both 7.25 Gb (equivalent to ~60x360

raw coverage) and 12 Gb (~100x) coverage (Table 5). For three samples patient-derived cell lines361

were available in addition to archival DNA, allowing us to investigate the impact of DNA length362

on exon-level deletion/duplication calling.363

We were able to identify 5 of the 9 expected exon-level events in these samples in at least one364

sample type/depth combination. In 2 samples, increasing depth to 12Gb enabled calling that was365

not possible at 7.25Gb (Samples D and F (archival), Table 5). For the three samples with matched366

cell lines and archival DNA, two had variants that could not be called in either sample type at367

either depth, while sample F could be called at both depths for the longer DNA extracted from the368

cell line, but could only be called at the higher depth in the shorter archival sample. Because the369
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algorithms for calling these variants are written to make use of phasing and barcode information,370

there is a striking correlation between the ability to phase the gene and to call the variant, with no371

variants successfully called in samples that could not be phased over the region of interest.372

For two of the samples where Linked-Read exome sequencing was unable to phase or call the373

known variant, we performed lrWGS. In one case, the presence of intronic heterozygous variation374

was able to restore phasing to the gene and the known event was called. In the second case, there375

was still insu�cient heterozygous variation in the sample to allow phasing and the event was not376

called. This again demonstrates that phasing is dependent both on molecule length as well as377

sample heterozygosity. Some samples in this group had decreased diversity in the regions of378

interest compared to other samples, and we were less likely to be able to call variants in these379

samples. (Supplemental Figure 10). Generally, it should be possible to increase the probability of380

phasing a gene in an exome assay by augmenting the bait set to provide coverage for very381

common (MAF > 25%) intronic variant SNPs, thus preserving the cost savings of exome analysis,382

but increasing the power of the Linked-Reads to phase. The number of additional probes could be383

minimized with long molecules. Despite this, samples with generally reduced heterozygosity will384

remain di�cult to phase and completely characterize. However, the addition of read385

coverage-based algorithms, such as those used with standard short read exome sequencing, would386

likely increase sensitivity in unphased regions.387

One sample in this set contained both a single exon event and a large variant in the PMS2 gene.388

Despite phasing the PMS2 gene we were unable to call this variant in either genome or exome389

sequencing. Manual inspection of the data reveals increased phased barcode coverage in the PMS2390

region, supporting the presence of a large duplication that was missed by the SV calling algorithms391

(Supplemental Figure 11). This indicates room for additional improvements in the variant calling392

algorithms.393

Linked-Reads provide a better �rst line approach than standard short read assays to assess394

individuals for variants in these genes. While we were not able to identify 100% of the events, we395
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were able to identify 5 of 9 of these events using a standard exome based approach, rather than a396

specialized assay. Improved baiting approaches, the addition of standard short read algorithms, or397

WGS should improve that ability to identify these variants. Lastly, there is room for algorithmic398

improvement as at least one variant had clear signal in the Linked-Read data, but failed to be399

recognized by current algorithms.400

Discussion401

Short read sequencing has become the workhorse of human genomics. This cost e�ective, high402

throughput, and accurate base calling approach provides robust analysis of short variants in403

unique regions of the genome, but struggles to reliably call SVs, cannot assess variation across the404

entire genome, and fails to reconstruct long range haplotypes (Sudmant et al. 2015). Recent studies405

have highlighted the importance of including haplotype information and more complete SV406

identi�cation in genome studies (Chaisson et al. 2017, 2017). Analyzing human genomes in their407

diploid context will be a critical step forward in genome analysis (Aleman 2017). Toolkits that408

support the representation of sequence and variation, a necessary component of supporting true,409

diploid assembly, are now becoming available (Garrison et al. 2018). We have described an410

improved implementation of Linked-Reads, a method that improves the utility of short read411

sequencing. The increased number of partitions and improved biochemistry mean a single412

Linked-Read library, constructed from ~1 ng of DNA, can be used for genome analysis. This413

approach, coupled with novel algorithms in Long Ranger, allows short reads to reconstruct414

multi-megabase phase blocks, identify large balanced and unbalanced structural variants, and415

identify small variants, even in regions of the genome typically recalcitrant to short read416

approaches.417

Some limitations to this approach currently exist. We observe a loss of coverage in regions of the418

genome that show extreme GC content. We additionally see reduced performance in small indel419

calling, though this largely occurs in homopolymer regions and LCRs. Recent work suggests420
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ambiguity in such regions may be tolerated for a large number of applications (Li et al. 2017).421

Although Linked-Reads can resolve many repetitive elements and genome regions, highly422

repetitive sequences that are larger than the length of input DNA are not resolvable by423

Linked-Reads. This limitation is common to all technologies currently available, including424

long-read sequencing. Repeat copies that reside on the same molecule will be subject to the same425

limitations as standard short read approaches. It is also clear that algorithmic improvements to426

Long Ranger would improve variant calling, particularly as some classes of variants, such as427

insertions, are not yet attempted. However, this is not uncommon for new data types and there has428

already been some progress in this area (Spies et al. 2016; Elyanow et al. 2017; Xia et al. 2017;429

Karaoglanoglu et al. 2018). An additional limitation in this study is the reliance on a reference430

sample for calling variants, which creates reference bias and the inability to call variants in regions431

that are not resolved in the reference, as was the case with the structural variant in the pericentric432

region on chromosome 16. To bypass any reference bias, Linked-Read data can also be used to433

perform diploid de novo assembly in combination with an assembly program, Supernova434

(Weisenfeld et al. 2017).435

Despite these limitations, Linked-Read sequencing provides a clear advantage over short reads436

alone. This pipeline allows for the construction of long range haplotypes as well as the437

identi�cation of short variants and SVs from a single library and analysis pipeline. No other438

approach, to our knowledge, that scales to thousands of genomes provides this level of detail for439

genome analysis. Other recent studies have demonstrated the power of Linked-Reads to resolve440

complex variants in both germline and cancer samples (Collins et al. 2017; Greer et al. 2017;441

Viswanathan et al.; Nordlund et al. 2018). Recent work demonstrates that Linked-Reads442

outperforms the switch accuracy and phasing completeness of other haplotyping methods, and443

provides multi-MB phase blocks (Chaisson et al. 2017). In another report, Linked-Reads and the444

Supernova assembly algorithm have been used to perform de novo assembly on 17 individuals to445

identify novel sequence (Wong et al. 2018). The ability to provide reference free analysis promises446

to increase our understanding of diverse populations. Finally, the ability to represent and analyze447
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genomes in terms of haplotypes, rather than compressed haploid representations, represents a448

crucial shift in our approach to genomics, allowing for a more complete and accurate449

reconstruction of individual genomes.450

Methods451

Samples and DNA Isolation Control samples (NA12878, NA19240, NA24385, NA19240, and452

NA24385) were obtained as fresh cultured cells from the Coriell Cell biorepository453

(https://catalog.coriell.org/1/NIGMS). DNA was isolated using the Qiagen MagAttract HMW DNA454

kit and quanti�ed on a Qubit �uorometer following recommended protocols:455

https://support.10xgenomics.com/genome-exome/index/doc/456

user-guide-chromium-genome-reagent-kit-v2-chemistry.457

Samples with known large SVs were obtained as cell lines from the NIGMS Human Genetic Cell458

Repository at the Coriell Institute for Medical Research (repository ID numbers are listed in Table459

s1). Frozen cell pellets were thawed rapidly at 37◦C in 1mL PBS. High molecular weight DNA was460

then extracted following recommended protocols, as above.461

Clinical samples from individuals with known heterozygous variants in three Mendelian disease462

loci (DYSF, POMT2 and TTN ) were collected at the Massachusetts General Hospital, Analytic and463

Translational Genetics Unit and shipped to 10x genomics as cell lines. Genomic DNA was464

extracted from each cell line as described above. Use of samples from the Broad Institute was465

approved by the Partners IRB (protocol 2013P001477).466

Clinical samples from individuals with inherited cancer were collected at The Institute of Cancer467

Research, London and shipped to 10x genomics as cell lines or archival DNA. This sample cohort468

was previously accessed for predisposition to cancer. Samples were recruited through the Breast469

and Ovarian Cancer Susceptibility (BOCS) study and the Royal Marsden Hospital Cancer Series470

(RMHCS) study, which aimed to discover and characterize disease predisposition genes. All471
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patients gave informed consent for use of their DNA in genetic research. The studies have been472

approved by the London Multicentre Research Ethics Committee (MREC/01/2/18) and Royal473

Marsden Research Ethics Committee (CCR1552), respectively. Samples were also obtained through474

clinical testing by the TGLclinical laboratory, an ISO 15189 accredited genetic testing laboratory.475

The consent given from patients tested through TGLclinical includes the option of consenting to476

the use of samples/data in research; all patients whose data was included in this study approved477

this option. DNA was extracted from cell lines as described above and archival DNA samples were478

checked for size and quality according to manufacturer’s recommendations: https://support.479

10xgenomics.com/genome-exome/sample-prep/doc/demonstrated-protocol-hmw-dna-qc .480

ChromiumTM Linked-Read Library Preparation 1.25 ng of high molecular weight DNA was loaded481

onto a Chromium controller chip, along with 10x Chromium reagents (either v1.0 or v2.0) and gel482

beads following recommended protocols:483

https://assets.contentful.com/an68im79xiti/4z5JA3C67KOyCE2ucacCM6/484

d05ce5fa3dc4282f3da5ae7296f2645b/CG00022_GenomeReagentKitUserGuide_RevC.pdf. The initial485

part of the library construction takes place within droplets containing beads with unique barcodes486

(called GEMs). The library construction incorporates a unique barcode that is adjacent to read one.487

All molecules within a GEM get tagged with the same barcode, but because of the limiting dilution488

of the genome (roughly 300 haploid genome equivalents) the chances that two molecules from the489

same region of the genome are partitioned in the same GEM is very small. Thus, the barcodes can490

be used to statistically associate short reads with their source long molecule.491

Target enrichment for the Linked-Read whole exome libraries was performed using Agilent Sure492

Select V6 exome baits following recommended protocols:493

https://assets.contentful.com/an68im79xiti/Zm2u8VlFa8qGYW4SGKG6e/494

4bddcc3cd60201388f7b82d241547086/CG000059_DemonstratedProtocolExome_RevC.pdf.495

Supplemental Figure 12 describes targeted sequencing with Linked-Reads.496

GemCodeTM Linked-Read Library Preparation497
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For the GemCode comparator analyses, Linked-Read libraries were prepared for truth samples498

NA12878, NA12877, and NA12882 using a GemCode controller and GemCode V1 reagents499

following published protocols (Zheng et al. 2016).500

TruSeq PCR-free Library Preparation501

350-800 ng of genomic DNA was sheared to a size of ~385 bp using a Covaris®M220 Focused502

Ultrasonicator using the following shearing parameters: Duty factor = 20%, cycles per burst = 200,503

time = 90 seconds, Peak power 50. Fragmented DNA was then cleaned up with 0.8x SPRI beads and504

left bound to the beads. Then, using the KAPA Library Preparation Kit reagents (KAPA505

Biosystems, Catalog # KK8223), DNA fragments bound to the SPRI beads were subjected to end506

repair, A-base tailing and Illumina®‘PCR-free’ TruSeq adapter ligation (1.5 µM �nal concentration507

of adapter was used). Following adapter ligation, two consecutive SPRI cleanup steps (1.0X and508

0.7X) were performed to remove adapter dimers and library fragments below ~150 bp in size. No509

library PCR ampli�cation enrichment was performed. Libraries were then eluted o� the SPRI510

beads in 25 ul elution bu�er and quanti�ed with quantitative PCR using KAPA Library Quant kit511

(KAPA Biosystems, Catalog # KK4824) and an Agilent Bioanalyzer High Sensitivity Chip (Agilent512

Technologies) following the manufacturer’s recommendations.513

Target enrichment for the Linked-Read whole exome libraries was performed using Agilent Sure514

Select V6 exome baits following recommended protocols.515

Sequencing Libraries were sequenced on a combination of Illumina®instruments (HiSeq®2500,516

HiSeq 4000, and HiSeq X). Paired-End sequencing read lengths were as follows: TruSeq and517

Chromium whole genome libraries (2X150bp); Chromium whole exome libraries (2X100bp or518

114bp, 98bp), and Gemcode libraries (2X98bp). lrWGS libraries are typically sequenced to 128 Gb,519

compared to 100 Gb for standard TruSeq PCR-free libraries. The additional sequence volume520

compensates for sequencing the barcodes as well a small number of additional sources of wasted521

data and gives an average, de-duplicated coverage of approximately 30x. To demonstrate the extra522

sequence volume is not the driver of the improved alignment coverage, we performed a gene523
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�nishing comparison at matched volume (100Gb lrWGS and 100Gb TruSeq PCR-) and continue to524

see coverage gains (Supplemental Figure 12).525

Analysis526

Comparison of 10X and GATK Best Practices We ran the GATK Best practices pipeline to generate527

variant calls for TruSeq PCR-free data using the latest GATK3.8 available at the time. We �rst528

subsample the reads to obtain 30x whole genome coverage. The read set is then aligned to GRCh37,529

speci�cally the hg19-2.2.0 reference using BWA-MEM (version 0.7.12). The reads are then sorted,530

the duplicates are marked, and the bam is indexed using picard tools (version 2.9.2). We then531

perform indel realignment and recalibrate the bam (base quality score recalibration) using known532

indels from Mills Gold Standard and 1000G project and variants from dbsnp (version 138). Finally533

we call both indel and SNVs from the bam using HaplotypeCaller and genotype it to produce a534

single vcf �le. This vcf �le is then compared using hap.py (https://github.com/Illumina/hap.py,535

commit 6c907ce) to the truth variant set curated by Genome in a Bottle on con�dent regions of the536

genome. We calculate sensitivity and speci�city for both SNVs and indels to contrast the �delity of537

the Long Ranger short variant caller and the GATK-Best Practices pipeline. All Long Ranger runs538

were performed with a pre-release build of Long Ranger version 2.2 utilizing GATK as a base539

variant caller. Long Ranger 2.2 adds a large-scale CNV caller that employs barcode coverage540

information and incremental algorithmic improvements. Long Ranger 2.2 has since been released.541

Development of extended truth set542

Any putative false positive variant found in the TruSeq/GATK or Chromium/Long Ranger VCFs,543

was tested for support in the PacBio data. Raw PacBio FASTQs were aligned to the reference using544

BWA-MEM -x pacbio (Li 2013). To test a variant, we fetch all PacBio reads covering the variant545

position, and retain the substring aligned within 50bp of the variant on the reference. We re-align546

the PacBio read sequence to the +/-50bp interval of the reference, and the same interval with the547

alternate allele applied. A read is considered to support the alternate allele if the alignment score548
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to the alt-edited template exceeds the alignment score of the reference template. A variant was549

considered to be validated if at least 2 PacBio reads supported the alt allele, at least 10 PacBio reads550

covered the locus, and the overall alternate allele fraction seen in the PacBio reads was at least 25%.551

We selected regions of 2-6 fold degeneracy as determined by the ‘CRG Alignability’ track (Derrien552

et al. 2012) as regions where improved alignment is likely to yield credible novel variants. We took553

the union of the GIAB con�dent regions BED �le with these regions to determine the GIAB++554

con�dent regions BED. The amount of sequence added to the GIAB++ BED di�ers by sample, as555

the original GIAB con�dent regions are sample speci�c.556

Structural variant comparison against deletion ground truth After segmenting the Long Ranger557

deletion calls by size, we overlapped them to the svclassify set (Parikh et al. 2016) using the bedr558

package and bedtools v2.27.1 (Quinlan and Hall 2010). We retained for further analysis those559

>30kb showing at least 50% reciprocal overlap. We also searched for Mendelian inheritance560

patterns on NA12878’s parents (NA12891 and NA12892) in these large SVs and breakpoint561

co-location. We annotated 8 overlapping events and they showed almost perfect breakpoint and562

Mendelian inheritance agreement within the CEU/CEPH trio. All their genotypes were phased too.563

In the svclassify overlapping deletions, all of the breakpoints except for the 3’ most in564

chr5:104,432,114-104,503,672 had a read’s length distance from each other. We then curated the565

remaining 9 events called by Long Ranger that were not in the svclassify set. Of notice is that one566

event (chr1:189,704,517-189,783,347) is contained within a larger deletion567

(chr1:189,690,000-189,790,000). Among the non-overlapping deletions, were six large SVs568

presenting breakpoint and Mendelian consistency in the phased genotypes. The other three569

(chr1:189,690,000-189,790,000; chr11:55,360,000-55,490,000; chr2:242,900,000-243,080,000) had very570

di�erent breakpoints, unphased but consistent genotypes or no support from the parents.571

We took the Long Ranger deletion calls between 50bp and 30kb generated by both Long Ranger572

algorithms and GATK and merged them using SURVIVOR (Je�ares et al. 2017) allowing variants573

up to 50bp apart to be merged. SURVIVOR was used again with a 50bp merge distance to merge574
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the Long Ranger deletion callset with deletions in the svclassify set. The resulting merged VCFs575

were then parsed to determine overlap and support for Long Ranger calls.576
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Figure 1: Coverage Evenness.

Distribution of read coverage for the entire human genome (GRCh37). Comparisons between 10x587

Genomics Chromium Genome (CrG), 10x Genomics GemCode (GemCode), and Illumina TruSeq588

PCR-free standard short-read NGS library preparations (Standard Short Read (PCR-Free)).589

Sequencing was performed in an e�ort to match coverage (see methods). Note the shift of the CrG590
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curve to the right, showing the improved coverage of Chromium vs. GemCode. X-axis represents591

the fold read coverage across the genome. Y-axis represents the total number of bases covered at592

any given read depth.593
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Figure 2: Comparison of unique genome coverage by assay.

The y-axis shows the amount of sequence with a coverage of >=5 reads at MapQ >=30. Column 1594

shows amount of the genome covered by 10x Chromium where PCR-free TruSeq does not meet595

that metric. Column 2 shows the amount of the genome covered by PCR-free TruSeq where 10x596

Chromium does not meet the metric. Column 3 shows the net gain of genome sequence with high597

quality alignments when using 10x Chromium versus PCR-free TruSeq. The comparison was598

performed on samples with matched sequence coverage (see methods).599
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Figure 3: Gene �nishing metrics.

Gene �nishing metrics for whole genome and whole exome sequencing across selected gene sets.600

Genome is shown on left, exome on right. Gene �nishing is a metric used for expressing gene601

coverage and completeness. Finishing is de�ned as the percentage of exonic bases with at least 10x602

coverage for genome (Panel A) and at least 20x for exome (Panel B) (Mapping quality score603

>=MapQ30). CrG is Chromium Linked-Reads and TruSeq is PCR-free TruSeq. Top row: Gene604

�nishing statistics for 7 disease relevant gene panels. Shown is the average value across all genes605

in each panel. While Chromium provides a coverage edge in all panel sets, the impact is606
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particularly profound for ‘NGS Dead Zone’ genes. Panels C-F show the net coverage di�erences607

for individual genes when comparing Chromium to PCR-free TruSeq. Each bar shows the608

di�erence between the coverage in PCR-free TruSeq from the coverage in 10x Chromium. Panel C609

and D show the 570 NGS ‘dead zone’ genes for genome (panel C) and exome (panel D). Panels E610

and F limit the graphs to the list of NGS dead zone genes implicated in Mendelian disease. In611

panels C-F, the blue coloring highlights genes that are inaccessible to short read approaches, but612

accessible using CrG; the yellow coloring indicates genes where CrG is equivalent to short reads or613

provides only modest improvement. The red coloring shows genes with a slight coverage increase614

in TruSeq, though these genes are typically still accessible to CrG. Highlighted with an asterisk are615

the genes SMN1, SMN2 and STRC. The comparison was performed on samples with matched616

coverage (see methods).617
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Figure 4: Haplotype reconstruction and phasing.

A. Inferred Length weighted mean molecule length plotted against N50 of called Phase blocks618
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(both metrics reported by Long Ranger) and di�erentiated by sample ID and heterozygosity.619

Heterozygosity was calculated by dividing the total number of heterozygous positions called by620

Long Ranger by the total number of non-N bases in the reference genome (GRCh37). Two621

replicates of NA19240 and 5 replicates of NA12878 were used. Samples with higher heterozygosity622

produce longer phase blocks than samples with less diversity when controlling for input molecule623

length. B. Phase block distributions across the genome for input length matched Chromium624

Genome samples NA12878 and NA19240. Phase blocks are shown as displayed in Loupe Genome625

BrowserTM. Solid colors indicate phase blocks.626
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Figure 5: Validated examples of impact of molecule length on phasing (7.25Gb).

Blue dots represent samples for which the variants of interest are not phased, and green dots627

represent samples for which there is phasing of the variants of interest. At longer molecule lengths628

(>50kb), the molecule length was always longer than the maximum distance between heterozygous629

SNPs in a gene, and phasing between the causative SNPs was always observed. As molecule length630

shortens, it becomes more likely that the maximum distance between SNPs exceeds the molecule631

length (re�ected as a negative di�erence value) and phasing between the causative SNPs was never632

observed in these cases. When maximum distance is similar to the molecule length causative SNPs633

may or may not be phased. This is likely impacted by the molecule length distribution within the634

sample.635
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Figure 6: Deletions size distributions

Long Ranger calls intersected with the svclassify truth set by size. True positive calls are blue, false636

negative calls are green and false positive calls are orange. Most false positives are present in the637

<250bp size range, re�ecting the lack of small deletions in the svclassify set. Peaks corresponding638

to Alu and L1/L2 elements can be seen at ~320bp and ~6kbp respectively.639
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Tables640

Table 1: Summary of variant call numbers with respect to GIAB

NA12878 lrWGS NA12878 srWGS NA24385 lrWGS NA24385 srWGS

Total Variants 4,600,606 4,651,391 4,504,190 4,564,102

Total SNVs 3,808,856 3,760,296 3,731,448 3,689,866

Sensitivity (SNVs) 0.9965260 0.9978873 0.9972462 0.9984250

Speci�city (SNVs) 0.9969829 0.9984747 0.9977549 0.9990125

SNVs in con�dent regions 3,153,057 3,152,799 3,053,304 3,053,249

SNVs in truth set 3,143,316 3,147,610 3,046,234 3,049,835

Sensitivity (SNVs) (++) 0.9944987 0.9954084 0.9966197 0.9973968

Speci�city (SNVs) (++) 0.9745175 0.9879275 0.9703781 0.9838542

SNVs in con�dent regions (++) 3,266,048 3,224,849 3,151,491 3,111,146

SNVs in truth set (++) 3,182,558 3,185,469 3,057,434 3,059,818

Total indels 791,750 891,095 772,742 874,236

Sensitivity (indels) 0.9339752 0.9733969 0.9330855 0.9772879

Speci�city (indels) 0.9501310 0.9820730 0.9493424 0.9851534

Indels in con�dent regions 361,547 368,216 347,786 354,897

Indels in truth set 334,577 348,699 321,517 336,748

Sensitivity (indels) (++) 0.9226400 0.9645790 0.9056345 0.9743154

Speci�city (indels) (++) 0.9234368 0.9636761 0.8854908 0.9331947

Indels in con�dent regions (++) 379,399 383,935 474,879 491,054

Indels in truth set (++) 341,279 356,792 411,130 442,309

Table 1: The table shows the counts of variants (SNV and indel) from variant calls generated in641

four experiments: NA12878 Linked-Reads WGS data run through Long Ranger (NA12878 lrWGS),642

NA12878 TruSeq PCR-free data run through GATK-Best Practices pipeline (NA12878 srWGS),643

NA24385 Linked-Reads WGS data run through Long Ranger (NA24385 lrWGS), NA24385 TruSeq644

PCR-free data run through GATK-Best Practices pipeline (NA24385 srWGS). These variants were645
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compared to the GIAB VCF truth set and GIAB BED con�dent regions using hap.py and data is646

shown per variant type for count of variants in the truth set and in the con�dent regions (along647

with sensitivity and speci�city). Data is also shown for the same quantities when the variant calls648

were compared to the extended truth set (GIAB++ VCF) and the augmented con�dent region649

(GIAB++ BED).650
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Table 2: Gene, variant distance and RVIS score for clinically-relevant

genes

Sample Gene Var1 Var2 Var

distance

RVIS

score

RVIS % Molecule

length

Var

phased?

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 13,553 bp No

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 16,911 bp No

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 18,439 bp No

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 18,461 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 19,309 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 21,226 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 34,800 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 42,939 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 85,077 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 88,410 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 119,747 bp Yes

B12-38 DYSF chr2:71,778,243dupT chr2:71,817,342_71,817,343delinsAA 39,097 bp -1.31 4.65% 130,101 bp Yes

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 10,609 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 12277 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 15,536 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 16,546 bp No
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Table 2: Gene, variant distance and RVIS score for clinically-relevant

genes (continued)

Sample Gene Var1 Var2 Var

distance

RVIS

score

RVIS % Molecule

length

Var

phased?

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 20,782 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 21,106 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 21,858 bp No

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 54,569 bp Yes

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 55,546 bp Yes

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 107,082 bp Yes

B12-112 POMT2 chr14:77,745,107A>G chr14:77,778,305C>T 33,198 bp -0.93 9.68% 112,692 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 17,432 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 18,128 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 18,158 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 20,756 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 28,799 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 29,796 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 47,443 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 63,218 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 64,199 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 67,034 bp Yes

37

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 14, 2018. 
; 

https://doi.org/10.1101/230946
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/230946
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Gene, variant distance and RVIS score for clinically-relevant

genes (continued)

Sample Gene Var1 Var2 Var

distance

RVIS

score

RVIS % Molecule

length

Var

phased?

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 90,767 bp Yes

B12-21 TTN chr2:179,585,773C>A chr2:179,531,966C>A 53,807 bp 2.17 98.04% 93,253 bp Yes

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 13,118 bp Yes

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 16,791 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 18,192 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 18,841 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 28,033 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 30,653 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 32,530 bp No

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 69,939 bp Yes

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 87,045 bp Yes

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 88,605 bp Yes

UC-394 TTN chr2:179,584,098C>T chr2:179,395,221T>A 188,877 bp 2.17 98.04% 89,863 bp Yes
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Table 2: Impact of molecule length and constraint on the ability of Linked-Reads to phase causative651

variants. As molecule length increases within a sample, the likelihood that two causative variants652

will be phased relative to each other also increases. However, genes that are not highly constrained653

(e.g. TTN ) are more likely to show phasing between distant variants at small molecule lengths654

because more heterozygous variants are likely to occur between those variants than in highly655

constrained genes.656
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Table 3: SV Intersections

Query

Number

Query

Overlap

Target

Number

Target

Overlap

>=30kb 17 8 11 8

<30kb 5136 2024 2294 2024

Table 3: Di�erent intersections of Long Ranger SV calls with a ground truth dataset published657

(Parikh et al. 2016). Comparison class identi�ed in the leftmost column. Large deletions (>=30kb)658

intersected against all deletions >=30kb in the ground truth set. Smaller deletions (<30kb), marked659

as PASS by our algorithm, intersected against the full deletion ground truth set.660
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Table 4: Intermediate SV Calls

Intermediate SV metrics NA12878

Number of deletion calls from LongRanger 4,118

Number of heterozygous calls 1,699

Number of homozygous calls 2,630

Number of calls that match Svclassify truth set (Recall) 2,017 (88.4%)

Number of false positive calls (Precision) 2,048 (49.6%)

Table 4: Intermediate SV (50bp to 30kbp) results. The number of calls generated by the661

intermediate SV algorithms are reported and broken down by inferred zygosity. SURVIVOR662

(Je�ares et al. 2017) was used to merge these intermediate SVs with the svclassify (Parikh et al.663

2016) truth set which had also been subsetted to the same size range, and the resulting true664

positive and false positive rates are reported as well as the associated recall and precision.665
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Table 5: Gene, variant type and pipeline call for clinically-relevant genes

Sample Gene Variant type Source Assay Calc mean

length

Region

phased?

Called by >=1

method?

A MSH2 Single Exon Duplication Archival DNA SureSelectV6, 7.25Gb (60x) 64kb No No

A MSH2 Single Exon Duplication Archival DNA SureSelectV6, 12Gb (100x) 53kb No No

B PMS2 Single Exon Duplication Archival DNA SureSelectV6, 7.25Gb (60x) 65kb Yes Yes

B PMS2 Single Exon Duplication Archival DNA SureSelectV6, 12Gb (100x) 59kb Yes Yes

C BRCA1 Single Exon Duplication Cell line SureSelectV6, 7.25Gb (60x) 96kb No No

C BRCA1 Single Exon Duplication Cell line SureSelectV6, 12Gb (100x) 78kb No No

C BRCA1 Single Exon Duplication Cell line Whole Genome, 128Gb (30x) 88kb No No

C BRCA1 Single Exon Duplication Archival DNA SureSelectV6, 7.25Gb (60x) 28kb No No

C BRCA1 Single Exon Duplication Archival DNA SureSelectV6, 12Gb (100x) 27kb No No

D BRCA2 Single Exon Duplication Archival DNA SureSelectV6, 7.25Gb (60x) 24kb No No

D BRCA2 Single Exon Duplication Archival DNA SureSelectV6, 12Gb (100x) 19kb Yes Yes

E BRCA1 Two exon deletion Cell line SureSelectV6, 7.25Gb (60x) 106kb No No

E BRCA1 Two exon deletion Cell line SureSelectV6, 12Gb (100x) 98kb No No

E BRCA1 Two exon deletion Archival DNA SureSelectV6, 7.25Gb (60x) 71kb No No

E BRCA1 Two exon deletion Archival DNA SureSelectV6, 12Gb (100x) 80kb No No

F BRCA1 Two exon deletion Cell line SureSelectV6, 7.25Gb (60x) 97kb Yes Yes

F BRCA1 Two exon deletion Cell line SureSelectV6, 12Gb (100x) 107kb Yes Yes
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Table 5: Gene, variant type and pipeline call for clinically-relevant genes

(continued)

Sample Gene Variant type Source Assay Calc mean

length

Region

phased?

Called by >=1

method?

F BRCA1 Two exon deletion Archival DNA SureSelectV6, 7.25Gb (60x) 15kb No No

F BRCA1 Two exon deletion Archival DNA SureSelectV6, 12Gb (100x) 12kb Yes Yes

G PMS2 Two exon deletion Archival DNA SureSelectV6, 7.25Gb (60x) 57kb Yes Yes

G PMS2 Two exon deletion Archival DNA SureSelectV6, 12Gb (100x) 48kb Yes Yes

H PMS2 2-3 exon deletion Archival DNA SureSelectV6, 7.25Gb (60x) 54kb Yes Yes

H PMS2 2-3 exon deletion Archival DNA SureSelectV6, 12Gb (100x) 42kb Yes Yes

I PMS2 Large structural variant Archival DNA SureSelectV6, 7.25Gb (60x) 43kb Yes No

I PMS2 Large structural variant Archival DNA SureSelectV6, 12Gb (100x) 35kb Yes No

I PMS2 Large structural variant Archival DNA Whole genome, 128Gb (30x) 28kb Yes No

I MSH2 Two exon deletion Archival DNA SureSelectV6, 7.25Gb (60x) 43kb No No

I MSH2 Two exon deletion Archival DNA SureSelectV6, 12Gb (100x) 35kb No No

I MSH2 Two exon deletion Archival DNA Whole genome, 128Gb (30x) 28kb Yes Yes
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Table 5: Ability of Linked-Reads to call variation in samples with known exon-level deletions and666

duplications. Exome or whole genome sequencing was used on samples freshly extracted from cell667

lines or on archival DNA samples. The ability of the barcode-aware algorithms to call exon-level668

events is completely dependent on phasing. Longer DNA length and increased sequencing669

coverage sometimes improve variant calling, but this appears to be rescued by enabling phasing.670
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