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Abstract 20 

Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this 21 
evolution through cycles of mutation and selection leading to enhanced antibody specificity and 22 
affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to 23 
understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the 24 
conformational flexibility of the antibody’s antigen-binding paratope to minimize entropic losses 25 
incurred upon binding. In recent years, computational and experimental approaches have tested this 26 
hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the 27 
Complementarity Determining Region (CDR) loops that typically comprise the paratope and in 28 
particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a 29 
few exceptions, and previous studies were limited to a small handful of cases. Here, we determined 30 
the structural flexibility of the CDR-H3 loop for thousands of recently-determined homology models 31 
of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear 32 
delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible 33 
sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein 34 
Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a 35 
slight decrease in the CDR-H3 loop flexibility when comparing affinity-matured antibodies to naïve 36 
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antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating 37 
molecular dynamics (MD) simulations, revealed a spectrum of changes in flexibility. Our results 38 
suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.  39 

1 Introduction 40 

Antibodies are proteins produced by the B cells of jawed vertebrates that play a central role in the 41 
adaptive immune system. They recognize a variety of pathogens and induce further immune response 42 
to protect the organism from external perturbation. Molecules that are bound by antibodies are 43 
referred to as antigen and are recognized by the antibody variable domain (Fv), which is comprised 44 
of a variable heavy (VH) and light (VL) domain. To overcome the challenge of recognizing a vast 45 
array of targets — the number of antigens being far greater than the number of antibody germline 46 
genes — antibodies rely on combinatoric and genetic mechanisms that increase sequence diversity 47 
(1-3). Starting from a limited array of germline genes, a naïve antibody is generated by productive 48 
pairing of a randomly recombined VH, assembled from V-, D-, and J-genes on the heavy locus, and 49 
randomly recombined VL, assembled from V- and J-genes on the kappa and lambda loci (1). Next, in 50 
a process known as affinity maturation, iterations of somatic hypermutation are followed by selection 51 
to evolve the antibody in specific response to a particular antigen. This evolution results in the 52 
gradual accumulation of mutations across the entire antibody, with higher mutation rates in the six 53 
complementarity determining regions (CDRs) than in the framework regions (FRs) (4, 5). The CDRs 54 
are hypervariable loops comprising a binding interface on the Fv domain beta-sandwich framework, 55 
with three loops contributed by each chain; the light chain CDRs are denoted as L1, L2, and L3 and 56 
the heavy chain CDRs are H1, H2, and H3. The five non-H3 CDRs can be readily classified into a 57 
discrete amount of canonical structures (6-10) because they possess limited diversity in both 58 
sequence and structure. The CDR-H3 on the other hand is the focal point of V(D)J recombination, 59 
resulting in exceptional diversity of both structure and sequence. While all CDRs contribute to 60 
antigen binding, the diverse CDR-H3 is often the most important CDR for antigen recognition (11-61 
15). Thus, to understand the role of B cells in adaptive immunity and how they evolve antibodies 62 
capable of binding specific antigens, we must first understand the effects of affinity maturation on the 63 
CDRs, and in particular on the CDR-H3. 64 

Over the last 20 years, the structural effects of affinity maturation have been studied with an 65 
assortment of experimental and computational methods. X-ray crystallography has been used to 66 
compare antigen-inexperienced (naïve) and antigen-experienced (mature) antibodies with both 67 
antigen present and absent. Analysis of the catalytic antibodies 48G7, AZ-28, 28B4, and 7G12 68 
showed a 1.2 Å average increase in Cα RMSD of the CDR-H3 upon antigen binding in the naïve 69 
over that of the mature antibody, whereas motion in the other CDRs varied (16-20). Beyond 70 
structural studies, surface plasmon resonance (SPR) has been used to assess the energetics and 71 
association/dissociation rate constants of antibody–antigen binding. Manivel et al. studied a panel of 72 
14 primary (naïve) and 11 secondary (mature) response anti-peptide antibodies, observing that 73 
affinity maturation resulted in increases in the association rate and corresponding changes in the 74 
entropy of binding (21). Schmidt et al. saw the opposite when studying a broadly neutralizing 75 
influenza virus antibody, observing that affinity maturation resulted primarily in a decrease in the 76 
dissociation rate, with little effect on the association rate (22). Isothermal calorimetry (ITC) has also 77 
been used to determine antigen-binding energetics including the enthalpic and entropic contributions. 78 
For nine anti-fluorescein antibodies, including 4-4-20 and eight anti-MPTS antibodies, ITC results 79 
revealed diverse effects of affinity maturation: 14 of 17 mature antibodies bound antigen in an 80 
enthalpically favorable and entropically unfavorable manner, yet 3 of 17 showed the opposite, with 81 
entropically favorable and enthalpically unfavorable binding energetics (23, 24). Three-pulse photon 82 
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echo peak shift (3PEPS) spectroscopy has been used to quantify dynamics of chromophore-bound 83 
antibodies on short timescales of femto- to nanoseconds. 3PEPS spectroscopy results from a panel of 84 
18 antibodies showed that mature antibodies can possess a range of motions from small 85 
rearrangements such as side-chain motions to large rearrangements such as loop motions (23-25). In 86 
a specific comparison of naïve vs. mature, for the 4-4-20 antibody, the mature antibody was found to 87 
have smaller motions, i.e. to be more rigid, than naïve (23-28). Antibody dynamics have also been 88 
studied by hydrogen–deuterium exchange mass spectroscopy (HDX-MS), which in contrast to 89 
3PEPS probes timescales of seconds to hours. Comparison of three naïve and mature anti-HIV 90 
antibodies showed changes in CDR-L2/H2, but not in CDR-H3 dynamics (29). Finally, MD 91 
simulations have been used to study antibody dynamics on intermediate timescales of nano- to 92 
microseconds. MD simulations showed rigidification and reduction of CDR-H3 loop motion upon 93 
maturation for seven studied naïve/mature antibodies, with two exceptions, depending on the specific 94 
study (22, 28, 30-34). In an orthogonal protein design approach to examine the CDR-H3 loop 95 
flexibility, Babor et al and Willis et al. found that naive antibody structures are more optimal for 96 
their sequences, when considering multiple CDR-H3 loop conformations (35, 36). In sum, past 97 
studies focusing on the effects of affinity maturation on CDRs have found evidence suggesting that 98 
mature antibodies have more structural rigidity and less conformational diversity than their naïve 99 
counterparts (16, 18, 19, 23-27).  100 

With recent growth in the number of antibody structures deposited in the Protein Data Bank (PDB) 101 
and development of homology models from high-throughput sequencing of paired VH–VL genes in B 102 
cells, we now have the datasets necessary to test the rigidity hypothesis on a large scale. Prior studies, 103 
usually focused on a few antibodies at time, generally support the hypothesis that affinity maturation 104 
rigidifies the CDR-H3 loop. Thus, we hypothesize that this effect should be observable in a 105 
repertoire-scale study of thousands of antibodies. We first analyzed thousands of recently determined 106 
RosettaAntibody homology models of the most common antibody sequences found in the human 107 
peripheral blood cell repertoire (37). We estimated the structural flexibility of the CDR-H3 loop by 108 
applying the Floppy Inclusions and Rigid Substructure Topography (FIRST) and the Pebble Game 109 
(PG) algorithms to determine backbone degrees of freedom (DOFs). Surprisingly, we found no 110 
difference in the CDR-H3 loop flexibility of the naïve and mature antibody repertoires. We 111 
considered alternative explanations for our results, which were incongruent with past studies, by 112 
expanding our analysis to a large set of antibody crystal structures, including several previously 113 
characterized antibodies, and extending our methods to include other measures of flexibility such as 114 
B-factors and MD simulations. By all analysis methods, we found mixed results: some antibodies’ 115 
CDR-H3 loops were more flexible after affinity maturation whereas others’ became less flexible. In 116 
summary, we find that while affinity maturation can modulate antibody binding activity by reducing 117 
CDR-H3 structural flexibility, it does not necessarily do so.  118 

2 Materials and Methods 119 

2.1 Immunomic Repertoire Modeling 120 

Briefly, RosettaAntibody is an antibody modeling approach that assembles homologous structural 121 
regions into a rough model and then refines the model through gradient-based energy minimization, 122 
side-chain repacking, rigid-body docking, and de novo loop modeling of the CDR-H3. The approach 123 
is fully detailed in (38) and (39). In a typical simulation, ~1,000 models are generated and the ten 124 
lowest-energy models are retained. The immunomic repertoire we analyzed is from DeKosky and 125 
Lungu, et al. (37). In that study, models were generated for each of the 500 most frequently occurring 126 
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naïve and mature antibody sequences in two donors (a total ~20,000 models representing the ~2,000 127 
most frequent antibodies). 128 

2.2 Structural Rigidity Determination 129 

The flexibility or rigidity of the CDR-H3 loop backbone was determined by using several extensions 130 
of the Pebble Game Algorithm (PG) (40-43) and method FIRST (44); we refer to here as FIRST-PG. 131 
For a given protein structure, FIRST generates a molecular constraint network consisting of nodes 132 
(atoms) and edges (interactions representing covalent bonds, hydrogen bonds, hydrophobics etc.). 133 
Each potential hydrogen bond is assigned an energy in kcal/mol which is dependent on donor-134 
hydrogen acceptor geometry. FIRST is run with a selected hydrogen-bonding energy cutoff, where 135 
all bonds weaker than this cutoff are ignored in the network. On the resulting network, the PG 136 
algorithm is then used to identify rigid clusters, flexible regions, and overall available conformational 137 
degrees of freedom (DOFs). For a given antibody structure, DOFs for the protein backbone of the 138 
CDR-H3 loop were calculated at every hydrogen-bonding energy cutoff value between 0 to −7 139 
kcal/mol in increment steps of 0.01 kcal/mol. This calculation was repeated for every member of that 140 
antibody ensemble (i.e. ten lowest energy models of the ensemble) and finally, at each energy cutoff, 141 
the DOF count was averaged over the entire ensemble. For a given energy cutoff and a given member 142 
of the ensemble, the DOF count for the CDR-H3 loop (residues 95–102) was obtained by calculating 143 
the maximum number of pebbles that belong to the backbone atoms (Cα, C, N) of the CDR-H3 loop 144 
(40). 145 

2.3 Degree of Freedom Scaling 146 

To compare flexibility across CDR-H3 loops of different lengths, the DOF metric computed above is 147 

scaled by a theoretical maximum DOF. We define sDOF � DOF

����
, where, 2L (the loop length in 148 

residues) represents the backbone degrees of freedom (torsion angles: φ,ψ), and 6 represents the 149 
trivial but ever-present rigid-body DOFs (rotations/translations in 3D). 150 

2.4 Area Under Curve Calculation 151 

The area under the curve (AUC) is approximated by simple numerical integral (akin to trapezoidal 152 
integration), where the first term defines a rectangle and the second term defines a triangle: 153 

AUC 	 ∑��� 
 ��	
� · ��	
 � 


�
��� 
 ��	
���� 
 ��	
�. 154 

2.5 Crystallographic Dataset 155 

On June 27th, 2017, a summary file was generated from the Structural Antibody Database (SAbDab) 156 
(45), using the “non-redundant search” option to search for antibodies with maximum 99% sequence 157 
identity, paired heavy and light chains, and a resolution cutoff of 3.0 Å. The summary file, containing 158 
1021 antibodies, was used as input to a SAbDab download script which yielded corresponding 159 
sequences, Chothia-numbered PDBs, and IMGT data (on occasion this had to be updated to match 160 
the reported germline in the IMGT 3Dstructure-DB) (46). The structures were further pruned: 161 
structures were omitted if there were unresolved CDR-H3 residues, as this would preclude flexibility 162 
calculations, or if the antibody was neither human nor mouse, as this would prevent alignment to 163 
germline. Prior to analysis, structures were truncated to the Fv region (removing all residues but light 164 
chain residues numbered 1–108 and heavy chain residues numbered 1–112, in Chothia numbering) 165 
and duplicate and non-antibody (for example, bound antigen) chains were removed. A total of 922 166 
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antibody crystal structures were analyzed. The following CDR definitions were used throughout this 167 
paper, in conjunction with the Chothia numbering scheme: L1 spans light chain residue numbers 24–168 
34, L2 spans 50–56, L3 spans 89–97, H1 spans heavy chain residue numbers 26–35, H2 spans 50–56, 169 
and H3 spans 95–102. 170 

2.6 Alignment to Germline 171 

The germline of each antibody was determined by IMGT lookup (46) Then, BLASTP (version 172 
2.2.29+) with the BLOSUM50 scoring matrix was used to align the antibody variable region heavy 173 
and light sequences to corresponding germline sequences (IGHV, IGKV, and IGLV loci only, 174 
downloaded from IMGT). The number of mismatches according to BLAST were considered as the 175 
number of amino acid mutations from germline. Supplementary Table 1 details the PDB ID, CDR-176 
H3 length, number of heavy chain mutations, number of light chain mutations, heavy germline gene, 177 
and light germline gene data for each structure in the dataset. 178 

2.7 B-Factor Z-Score Calculation 179 

Temperature factors (B-factors) were extracted for all Cα atoms in the variable region of the antibody 180 
heavy chain (VH, Chothia numbering 1–112). The arithmetic mean and sample standard deviation 181 
values were calculated for the B-factors. For each Cα atom in the CDR-H3 region, residue numbers 182 

spanning 95–102 under the Chothia numbering convention (11), the z-score was calculated as 
��	
�

�
, 183 

where � is the B-factor of the current Cα atom and � and � are the mean and standard deviation of B-184 
factors for all Cα atoms in the VH, respectively.  185 

2.8 Rosetta Relaxation And Ensemble Generation 186 

Antibody structural ensembles with 10 members were generated using either the Rosetta FastRelax 187 
(47, 48) or Rosetta KIC protocol (49). The Rosetta FastRelax protocol consists of five cycles of side-188 
chain repacking and gradient-based energy minimization in the REF2015 version of the Rosetta 189 
energy function (50). Thus, FastRelax ensembles explore the local energy minimum of the crystal 190 
structure. The KIC ensembles are more diverse and representative of RosettaAntibody homology 191 
models: each ensemble member was generated by running the CDR-H3 refinement step of the 192 
RosettaAntibody protocol, consisting of VH–VL docking, CDR-H3 loop remodeling, and all-CDR 193 
loop minimization (38, 39). Sample command lines are given in the Supplementary Material. The 194 
structural ensembles produced by both FastRelax and KIC were used for rigidity analysis. 195 

2.9 Molecular Dynamics Simulations 196 

The Fv regions were retrieved from the original PDB files. The MD simulations were performed 197 
using the NAMD 2.12 package (51) with the CHARMM36m force field and the CMAP backbone 198 
energy correction (52). The truncated Fv structures were solvated with TIP3P water in a rectangular 199 
box such that the minimum distance to the edge of the box was 12 Å under periodic boundary 200 
conditions. Na or Cl ions were added to neutralize the protein charge, then further ions were added 201 
corresponding to a salt solution of concentration 0.14 M. The time step was set to 2 fs throughout the 202 
simulations. A cutoff distance of 10 Å for Coulomb and van der Waals interactions was used. Long-203 
range electrostatics were evaluated through the Particle Mesh Ewald method (53). 204 

The initial structures were energy-minimized by the conjugate gradient method (10,000 steps), and 205 
heated from 50K to 300K during 100 ps, and the simulations were continued by 1 ns with NVT 206 
ensemble, where protein atoms were held fixed whereas non-protein atoms freely moved. Further 207 
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simulations were performed with NPT ensemble at 300K for 200 ns without any restraints other than 208 
the SHAKE algorithm to constrain bonds involving hydrogen atoms. The last 180 ns of each 209 
trajectory was used for the subsequent clustering analyses. Similar to a previous work (54), a total of 210 
2000 evenly spaced frames from each trajectory were clustered based on root-mean-square deviation 211 
(RMSD) of the Cα and Cβ atoms using the K-means clustering algorithm implemented in the 212 
KCLUST module in the MMTSB tool set (55). The cluster radius was adjusted to maintain 20 213 
clusters in each trajectory. The structure closest to the center of each cluster was chosen as a 214 
representative structure of each cluster. The 10 representative structures were chosen from the top 10 215 
largest clusters and these representative structures were energy-minimized by the conjugate gradient 216 
method (10,000 steps) in a rectangular water box. The minimized antibody Fv structures were used 217 
as the inputs for the rigidity analysis. 218 

Root-mean-square quantities of the MD trajectories were calculated based on the last 180 ns 219 
trajectories. After superposing Cα atoms of the FR of the heavy chain (FRH) of each snapshot onto 220 
Cα atoms of FRH of the reference structures (i.e. crystal structures), Cα-RMSD of CDR-H3 was 221 
calculated as the time average. Similarly, after superposing Cα atoms of entire Fv domains of each 222 
snapshot onto those of the reference structures, the root-mean-square fluctuation (RMSF) of a residue 223 
i was defined as the time average: 224 

RMSF� �  ���x� 
 �x����� 

where xi is the distance between the Cα atom of the snapshots at a given time and the Cα atom of the 225 
ith residue of the reference structures (56).  226 

3 Results 227 

3.1 Immunomic Repertoire Reveals No Difference in Flexibility between Naïve and Mature 228 
CDR-H3 Loops 229 

We initially asked whether CDR-H3 loop rigidification, having been observed in many past studies, 230 
was present in a large set of antibodies derived from human peripheral blood cells. Previously, 231 
DeKosky and Lungu et al. used RosettaAntibody to model the structures of ~2,000 common 232 
antibodies found in the peripheral blood cells of two human donors (37). Paired VH–VL sequences 233 
were derived from either CD3−CD19+CD20+CD27− naïve B cells or CD3−CD19+CD20+CD27+ 234 
antigen experienced B cells (mature) isolated from peripheral mononuclear cells. RosettaAntibody 235 
structural models were created by identifying homologous templates for the CDRs, VH–VL 236 
orientation, and FRs; assembling the templates into one model; de novo modeling the CDR-H3 loop; 237 
rigid-body docking the VH–VL interface; side-chain packing; and minimizing in the Rosetta energy 238 
function (38). Since de novo modeling of long loops is challenging, DeKosky and Lungu et al. 239 
limited their antibody set to the more tractable subset of antibodies with CDR-H3 loop lengths under 240 
16 residues. They compared their models for seven human germline antibodies with solved crystal 241 
structures and found models had under 1.4 Å backbone RMSD for the FR and under 2.4 Å backbone 242 
RMSD for the CDR-H3 loop. 243 

We used the FIRST-PG method (40, 44) to estimate flexibility from the RosettaAntibody homology 244 
models, determining the number of backbone DOFs for the CDR-H3 loop as each hydrogen bond is 245 
broken in order from weakest to strongest. FIRST models the antibody as a molecular graph where 246 
nodes represent atoms and edges represent atomic interactions. An extension of the PG algorithm 247 
uses this molecular graph to compute the DOFs of the CDR-H3 loop. To mitigate the effects of 248 
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homology modeling inaccuracies on the FIRST-PG analysis, we used an ensemble of ten lowest-249 
energy RosettaAntibody models. FIRST-PG analysis on structural ensembles has been shown to 250 
predict hydrogen–deuterium exchange and protein flexibility (51). To account for varying CDR-H3 251 
loop lengths, we scaled the calculated DOFs by a theoretical maximum value (Methods). Figure 1A 252 
shows a curve of the scaled DOFs averaged over all naïve or mature antibodies as a function of the 253 
hydrogen-bonding energy cutoff used in the FIRST-PG analysis. At a cutoff of 0 kcal/mol, all 254 
hydrogen bonds are intact and the average CDR-H3 loop scaled DOFs are about 20% of the 255 
theoretical maximum. Moving from right to left on the plot increases the minimum energy cutoff for 256 
including interactions in the FIRST graph; effectively hydrogen bonds of increasing strength are 257 
“broken” and the available DOFs rise from 20% to over 90% of the maximum theoretical flexibility 258 
while the loop becomes unstructured (unfolded) in FIRST.   259 

In comparing the curves for naïve and mature antibodies (Figure 1A), there is no difference in the 260 
average, scaled DOFs. To quantify this comparison, we computed the average AUC plus-or-minus 261 
one standard deviation for both antibody sets.  The average AUC values are identical between naïve 262 
(−5.21 ± 0.44) and mature antibody repertoires (−5.23 ± 0.44). This lack of difference persists (AUC 263 
−158.15 ± 11.98 [naïve] vs. −156.97 ± 11.56 [mature]) when accounting for CDR-H3 loop length 264 
(Figure 1B), and so the observed similarity of DOFs in naïve and mature antibodies is not due to 265 
averaging over loops of different lengths. Thus, on the immunomic repertoire scale, we do not 266 
observe the difference in flexibility between naïve and mature antibodies predicted by the paratope 267 
rigidification hypothesis. 268 

Before amending the rigidification hypothesis in light of these results, we considered several 269 
alternative explanations for our observations. First, we addressed whether the use of homology 270 
models for flexibility analysis introduced inaccuracies by analyzing a large set of antibody crystal 271 
structures and Rosetta-generated models from that set with varying quality, ranging from models 272 
with sub-angstrom backbone RSMD to models that may be several angstroms off (and more 273 
representative of an average homology model). Next, we addressed whether backbone DOFs, as 274 
calculated by FIRST-PG, were a good measure of flexibility, by assessing flexibility through two 275 
alternative measures: B-factors and MD simulations. Additionally, we addressed whether averaging 276 
flexibilities and comparing across many germlines affected results, by detailed flexibility analysis of 277 
previously studied naïve–mature antibody pairs and RosettaAntibody-modeled pairs.  278 

3.2 Only Small Flexibility Differences Are Observed Between Naïve and Mature Antibodies 279 
in the Crystallographic Set 280 

3.2.1 Preparation of an Antibody Crystal Structure Dataset  281 

Of course, the strongest critique of the immunomic antibody set is that these models are only 282 
approximating the actual antibody structure. Thus, we applied FIRST-PG analysis to a large set of 283 
antibody crystal structures. We curated the set of all non-redundant mouse and human antibody 284 
crystal structures from SAbDab (45). To be consistent with the models produced by 285 
RosettaAntibody, we truncated the structure of each antibody to only the Fv domain, excluding other 286 
antibody regions or antigen. Then, we used IMGT/3Dstructure-DB (57) to identify the variable 287 
domain genes and determined the number of somatic mutations by aligning the sequence derived 288 
from the crystal structure to the IMGT-determined gene. We defined mature antibodies as those 289 
possessing at least one somatic mutation in either V gene. Our full dataset has 922 antibodies of 290 
which 23 are naïve. CDR-H3 loop lengths and germline assignments are summarized in 291 
Supplementary Table 1. Summary statistics are plotted in Supplementary Figures 1–3.  292 
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3.2.2 FIRST-PG Analysis of Crystal Structures 293 

From the crystal structures, we created two sets of structural ensembles and assessed flexibility by 294 
FIRST-PG. Flexibility analysis has previously been shown to be more accurate on ensembles in 295 
comparison to analysis using single (snapshot) conformers (41, 58). Ensembles of ten representative 296 
structures were generated from the initial crystal structure by using either using Rosetta FastRelax 297 
(47) or the refinement step of RosettaAntibody (38, 39), which we term KIC ensembles after the loop 298 
modeling algorithm used in refinement (49). Rosetta FastRelax samples structures around the 299 
crystallographic, local energy-minimum, with typically < 1 Å backbone RMSD, whereas the 300 
refinement step of RosettaAntibody samples a more diverse set of low-energy CDR-H3 loop 301 
conformations and VH–VL orientations. Thus, FastRelax ensembles are representative of the crystal 302 
structures, whereas KIC ensembles are representative of RosettAntibody homology models. By 303 
comparative FIRST-PG analysis of the two sets, we can assess the effects of modeling inaccuracies 304 
on flexibility analysis. 305 

The scaled DOFs as calculated by FIRST-PG for FastRelax ensembles of antibody crystal structures 306 
are shown in Figure 2A. There are only minor differences between the naïve and mature flexibility 307 
curves and the AUC is similar for both sets (−4.70 ± 0.46 [naïve] vs. −4.70 ± 0.48 [mature]). Again, 308 
we considered the possibility that different distributions of loop lengths in the two sets obscures the 309 
affinity maturation contributions to flexibility. Therefore, we analyzed loops of length 10 (Figure 310 
2B), the single most common length in our set. When loops of a single length were compared, there 311 
was a separation between the naïve and mature sets, with the naïve antibody set average DOFs being 312 
consistently greater than the mature set. The AUC values differ, but are within a standard deviation 313 
(−128.2 ± 9.0 [naïve] vs. −121.9 ± 10.1 [mature]). We repeated FIRST-PG analysis for KIC 314 
ensembles of antibody crystal structures and observed similar results (Supplementary Figure 4): for 315 
scaled DOFs, the AUC was −5.91 ± 0.20 (naïve) vs. −5.81 ± 0.26 (mature) and, for loops of length 316 
10 only, the AUC was −154.10 ± 4.80 (naïve) vs. −150.44 ± 7.73 (mature). Thus, there does not 317 
appear to be a large, consistent CDR-H3 loop flexibility difference across all antibodies, but rather 318 
there is a small difference for antibodies with similar-length CDR-H3 loops.  319 

3.2.3 B-Factor Analysis of Crystal Structures 320 

However, we have not accounted for the possibility that backbone DOFs as calculated by FIRST-PG 321 
may not capture the effects of affinity maturation on CDR-H3 loop flexibility. Thus, we assessed 322 
loop flexibility as determined by atomic temperature factors or B-factors. In protein crystal 323 
structures, B-factors measure the heterogeneity of atoms in the crystal lattice. Thus, rigid regions 324 
have lower B-factors as they are more homogenous throughout the crystal whereas flexible regions 325 
have higher B-factors as they are less homogenous throughout the crystal. B-factors are also affected 326 
by crystal resolution, so we cannot compare raw values across structures of varying resolution. 327 
Instead, we computed a normalized B-factor z-score, which has zero mean and unit standard 328 
deviation for each antibody chain. Finally, to account for different CDR-H3 loop lengths, we 329 
averaged the B-factor z-scores for the CDR-H3 loop residues.  330 

Figure 3 shows the distributions of B-factor z-scores averaged over the CDR-H3 loop residues of 331 
naïve and mature antibodies. Both distributions span a similar range and overlap significantly, with 332 
the naïve curve peak shifted toward higher values than the mature. The majority of the naïve CDR-333 
H3 loop B-factor z-score averages were positive (65%), whereas the majority of the mature CDR-H3 334 
loop B-factor z-score averages were negative (64%). A two-sample Kolmogorov–Smirnov (KS) test 335 
confirms the distributions to be distinct, with a maximum vertical deviation, D, of 0.36 and a p-value 336 
of 0.006.  337 
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However, we were concerned that the mixing of bound and unbound crystal structures would 338 
influence results, as we previously observed bound structures to have lower average B-factors (59). 339 
Furthermore, in the PDB-derived dataset, naïve antibodies were mostly to be crystallized in the 340 
unbound state (19 of 23), whereas mature antibodies were mostly to be co-crystallized with their 341 
cognate antigen (544 of 899). In conjunction, these two observations suggested that the high number 342 
of antigen-bound mature antibody crystal structures was the primary driver of the difference between 343 
naïve and mature B-factor z-scores. Thus, we compared the B-factor averages of unbound structures 344 
only and found that while the distributions appear to be distinct (Figure 4), they fail a two-sample KS 345 
test (D = 0.27, p = 0.15). As we conjectured, the primary difference was found to be between the 346 
bound and unbound distributions (Figure 5), with a two-sample KS test confirming the difference 347 
between the distributions (D = 0.31, p < 2.16E-16). Additionally, we considered other possible 348 
origins of difference between the naïve and mature distributions that are not related to affinity 349 
maturation, including comparison across species, crystal structure resolutions, CDR-H3 loop lengths, 350 
and if the CDR-H3 loop was at a crystal contact or not. We found none of these to have as clear of an 351 
effect on the distribution of B-factor averages as whether or not antigen was bound (Supplementary 352 
Figures 5 and 6). In summary, the distributions of B-factor z-score averages (Figures 3–5) suggest 353 
that both the naïve and mature antibody sets possess CDR-H3 loops of varying flexibility and that 354 
neither set is significantly more flexible or rigid than the other. 355 

3.3 Comparison of Mature to Naïve-Reverted Models Reveals Varying Rigidification Across 356 
Matched Pairs 357 

Based on the B-factor results from the 922 analyzed crystal structures, we postulated that 358 
rigidification was not a repertoire-wide phenomenon (i.e. all mature antibodies are not more rigid 359 
than all naïve antibodies), but it could still be plausible that matched paris of naïve and mature 360 
antibodies would reveal rigidification. 361 

To investigate this hypothesis, we selected ten mature antibodies from our SAbDab set with CDR-H3 362 
loops of length 10, a length for which loop modeling performs well (49, 60). To control for species, 363 
half of the selected antibodies were human and half were mouse. We reverted the mature antibody 364 
sequences to naïve using the germline sequences from the aligned V-genes. We then used 365 
RosettaAntibody to generate homology models for the naïve-reverted sequences. We analyzed the 366 
ensembles of the ten lowest-energy homology models using FIRST-PG. To ensure fair comparison, 367 
we also used FIRST-PG to analyze homology model ensembles of the mature sequences. To provide 368 
an estimate for the accuracy of RosettaAntibody homology models, we computed RMSDs for the 369 
mature models using the known crystal structures and found all had sub-2-Å CDR-H3 loop backbone 370 
RMSD, calculated after alignment of the heavy chain FR, with 4 of 10 antibodies having sub-Å 371 
RMSD (Supplementary Figures 7–11). 372 

Of the ten naïve/mature antibody pairs we analyzed, six showed a decrease in flexibility and four 373 
showed an increase in flexibility upon affinity maturation (Figure 6). These ten antibodies 374 
demonstrate the breadth of possible affinity maturation effects, from an expected flexibility decrease 375 
in antibody 2AGJ, with AUC decreasing by 9.34%, to the unexpected flexibility increase in antibody 376 
1RZ7, with AUC increasing by 10.65%.  377 

3.4 Analysis of 48G7 Antibody 378 

Having analyzed 1911 models, 922 crystal structures, and 10 paired-reverted models, we had yet to 379 
observe a consistent difference in CDR-H3 loop flexibility between naïve and mature antibodies, as 380 
previously reported in literature. Thus, we turned to three previously studied antibodies with known 381 
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crystal structures and measured CDR-H3 loop flexibility. These are (1) the esterolytic antibody 48G7 382 
(16, 32, 33, 35), (2) the anti-fluorescein antibody 4-4-20 (23, 26-28, 31, 33), and (3) a broadly 383 
neutralizing influenza virus antibody (22). For all three antibodies, the effects of affinity maturation 384 
on CDR-H3 loop flexibility have been previously studied by both experiment and simulation, 385 
allowing comparison with our results. For brevity, we presently discuss the 48G7 antibody here, and 386 
full results for all antibodies are available in the Supplementary Material. 387 

The 48G7 antibody was first studied through crystallography, with structures capturing the bound 388 
(holo) and unbound (apo) states of both the naïve and mature antibody (16). Comparison between the 389 
naïve and mature CDR loop motions from the free to the bound state revealed minor changes, with 390 
the mature CDR-H3 loop being slightly more rigid and moving an Angstrom less than the naïve upon 391 
antigen binding (Supplementary Figures 12 and 13). For each of the four crystal structures, we 392 
extracted B-factors and computed B-factor z-scores for the CDR-H3 loop, measuring the distance 393 
from the B-factor mean in standard deviations. B-factor z-scores for the CDR-H3 loop of apo-48G7 394 
are shown in Figure 7A. The mature antibody has lower B-factors than the naïve antibody throughout 395 
the entire CDR-H3 loop. This observation also holds for the holo-48G7 antibody structures as well 396 
(Supplementary Figure 14). Supplementary Table 2 summarizes B-factors averaged over the whole 397 
CDR-H3 loop. These B-factor results agree with the prior crystallographic observations. 398 

Prior follow-up studies on 48G7 used MD simulations to assess flexibility. Briefly, 500 ps short MD 399 
simulations of the naïve and mature antibodies in the presence of antigen with an explicit solvent 400 
model (TIP3P) found the CDR-H3 loop to be more flexible in the naïve than in the mature antibody 401 
by comparison of RMSFs (30), but 15 ns MD simulations of the naïve and mature antibodies in the 402 
absence of antigen with an implicit solvent model (GB/SA) found no difference between the two, 403 
again by comparison of RMSFs (32). Another study based on an elastic network model also 404 
suggested that, in the absence of antigen, the fluctuations of the naïve and mature 48G7 were similar, 405 
but their binding mechanisms could differ depending on response to antigen binding; the naïve 406 
antibody shows a discrete conformational change induced by antigen whereas the mature antibody 407 
shows lock-and-key binding where antigen reduce flexibility of the mature antibody (61). Due to the 408 
contentious nature of these results, we ran 200 ns MD simulations for the apo-48G7 naïve and mature 409 
antibodies in the absence of antigen with an explicit solvent model (TIP3P). We measured both 410 
RMSDs and RMSFs for the Cα atoms along the CDR-H3 loop and computed the difference between 411 
the naïve and mature antibodies (Supplementary Table 2). Figure 7B shows that the CDR-H3 loop 412 
RMSFs are consistently greater for the mature than the naïve 48G7 antibody.  413 

Finally, as we have done through this study, we used FIRST-PG to measure CDR-H3 loop flexibility. 414 
To limit the effects of crystal structure artifacts on FIRST-PG analysis, we used an ensemble of ten 415 
representative structures, derived by clustering trajectory frames and selecting ten structurally distinct 416 
cluster medians from the MD simulations, similar to a previous flexibility study for this antibody 417 
(33). The CDR-H3 loop flexibility of apo-48G7, as determined by FIRST-PG analysis of MD 418 
ensembles is shown in Figure 8. The FIRST-PG analysis showed no significant difference between 419 
the mature and naïve antibodies.  420 

In addition to using MD simulations to generate ensembles, we used ensembles generated by 421 
RosettaAntibody and Rosetta FastRelax, permitting direct comparison. The CDR-H3 loop flexibility 422 
of apo-48G7, determined by FIRST-PG analysis of FastRelax and Rosetta Antibody ensembles, is 423 
shown in Figure 8. The curves from FastRelax and the MD simulation are similar for low-energy 424 
cutoffs (e.g. in the range of 0.0 to −3.0 kcal/mol), with the naïve and mature DOFs being the same. 425 
These curves diverge at higher-energy cutoffs where the FastRelax curve shows a more flexible naïve 426 
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antibody and the MD curve does not. The curve from RosettaAntibody ensembles differs from the 427 
two and shows a more flexible mature antibody at low-energy cutoffs and a more flexible naïve at 428 
high-energy cutoffs. For less visual and more quantitative comparisons, we computed the AUC of the 429 
DOF versus hydrogen-bonding energy cutoff plots (Supplementary Table 2). We find the AUC is 430 
only slightly greater for naïve than mature antibodies in the FastRelax and RosettaAntibody 431 
ensembles, with the naïve AUC reducing by only 3.9% and 0.2%, respectively, upon maturation. MD 432 
ensembles show the opposite outcome, with the mature antibody having 1.3% greater AUC than the 433 
naïve.  434 

Further validation was carried out on two other previously studied antibodies and reported in the 435 
Supplementary Table 2 and Supplementary Figures 3 and 4. For the 4-4-20 antibody, antigen-bound 436 
structures were compared and the average mature B-factors were within a standard deviation of the 437 
naïve. For the influenza antibody, average B-factors were compared between an unbound naïve and a 438 
bound mature crystal structure, showing significant rigidification. However, results are conflated due 439 
to the lack of unbound crystal structures, as in bound structures antibody–antigen contacts artificially 440 
increases rigidity of the CDR-H3 loop. In contrast to B-factor analyses, FIRST-PG analyses yielded 441 
mixed results for these two antibodies. The 4-4-20 antibody was found to become more flexible upon 442 
maturation by FIRST-PG analysis of all but Rosetta KIC ensembles. The influenza antibody was 443 
found to become more rigid upon mature by FIRST-PG analysis of all but Rosetta FastRelax 444 
ensembles. Finally, we analyzed RMSDs and RMSFs from MD simulations and found that the 445 
mature 4-4-20 antibody has higher CDR-H3 loop RMSD, but lower RMSF, values than the naïve 446 
while the mature influenza antibody was found to have lower values for both (Supplementary Table 447 
2). We consider the significance of these results and compare them in detail to past analyses of 448 
flexibility in the Discussion section. 449 

4 Discussion 450 

4.1 The Varying Effects of Affinity Maturation on CDR-H3 Flexibility 451 

Affinity maturation, through a series of somatic hypermutation events and selection processes, can 452 
evolve a low-affinity, naïve antibody to bind an antigen with both high affinity and specificity (62). 453 
Elucidating the affinity maturation process is desirable to understand molecular evolution, develop 454 
antibody engineering methods, and guide vaccine development (63). Past studies have suggested that, 455 
with few exceptions (29, 64, 65), naïve antibodies are highly flexible and maturation leads to 456 
improved affinity and specificity through the optimization and rigidification of the antibody paratope, 457 
and in particular the CDR-H3 loop (22, 27, 28, 31-33). However, these studies have been limited, 458 
often focusing on a single antibody and assessing flexibility indirectly. We sought to test the 459 
generalizability of the rigidification-upon-maturation hypothesis. We were enabled by the large 460 
number of antibody structures in the PDB, homology models generated from high-throughput 461 
repertoire sequencing data, and the FIRST-PG method for rapid structural flexibility calculation to 462 
ask whether affinity maturation leads to CDR-H3 loop rigidification. 463 

Unexpectedly, in a comparison of flexibility of repertoires, our data show little difference between 464 
naïve and mature antibodies: FIRST-PG calculations showed no difference for RosettaAntibody 465 
homology model ensembles of the most common naïve and mature antibodies in human peripheral 466 
blood cells. The same calculations showed no difference in CDR-H3 loop DOFs of crystal structures 467 
under two different refinement schemes (FastRelax and KIC). Even after accounting for the 468 
presence/absence of antigen, CDR-H3 loop B-factor distributions were the same for both mature and 469 
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naïve antibody crystal structures. These results indicate that rigidification of the CDR-H3 loop does 470 
not always occur upon affinity maturation. 471 

Since our observations did not indicate clear rigidification over two sets of antibodies, we considered 472 
the following possibilities: (1) comparison of different length CDR-H3 loops was unfair because 473 
longer loops are inherently more flexible, (2) comparison of different antibodies was unfair because 474 
different combinations of gene segments and VH–VL pairs will result in different flexibilities, (3) 475 
mutations within CDR-H3 loop, which we could not identify for the PDB set because of the 476 
difficulty in D/J-gene alignments, may have modulated flexibilities of CDR-H3, (4) inaccuracies in 477 
the computational methods could preclude observation of rigidification, and (5) FIRST-PG-measured 478 
backbone DOFs are not a good measure of flexibility. To address the first concern, we analyzed 479 
loops of consistent length via B-factor and FIRST-PG (Figures 1B & 2B, Supplementary Figures 4 & 480 
5). We found that, according to KS testing and when accounting for the presence/absence of antigen, 481 
B-factor distributions were not distinct for naïve and mature sets of antibodies with 10-residue CDR-482 
H3 loops. We also found that FIRST-PG DOF AUCs of the naïve and mature sets of antibodies with 483 
the same length CDR-H3 loops were within a standard deviation for both RosettaAntibody, 484 
FastRelax, and KIC ensembles. So, even when accounting for length, mature antibodies are not 485 
significantly more rigid than naïve ones.  486 

To address the concern that comparison of sets of antibodies originating from different VH and VL 487 
genes is unfair, we analyzed mature/naïve antibody pairs that had been previously studied and 488 
mature/naïve-reverted pairs that we generated with RosettaAntibody and analyzed by FIRST-PG 489 
(Figures 6–8, Supplementary Table 2). We found that CDR-H3 loop B-factors did not always 490 
indicate rigidification upon maturation and on one occasion we observed the reverse (Supplementary 491 
Figure 16). We also found that mature antibodies did not always become more flexible upon naïve 492 
reversion, but instead displayed a breadth of behaviors (Figure 6). So, when analyzing matched 493 
naïve/mature pairs, we do not see consistent rigidification upon maturation.  494 

Our analysis of previously studied naïve/mature antibody pairs coupled with the earlier repertoire 495 
analysis should alleviate concerns that our flexibility results for the PDB set were strongly affected 496 
by our inability to align D/J-gene segments and thus consider mutations in the CDR-H3 loop. The 497 
previously studied pairs included CDR-H3 mutations and the repertoire set had antibody sequences 498 
determined by Illumina MiSeq sequencing with naïve/mature status assigned by the absence/presence 499 
of the CD27 cell-surface receptor. In both cases, the naïve and mature sequences were determined 500 
through the entire Fv, and flexibility analysis still revealed mixed results. 501 

Finally, to address the concern that RosettaAntibody models may not be accurate enough to be useful 502 
for FIRST-PG calculations, we tested FIRST-PG on a range of structural ensembles with varying 503 
deviation from the crystal structure. We found no difference in the naïve vs. mature antibody CDR-504 
H3 loop AUC of the FIRST-PG results, regardless of the ensemble generation method used (Figure 2 505 
and Supplementary Figure 4). We also determined flexibility through alternative measure such as 506 
crystal structure B-factors and RMSFs in MD simulations. For both, affinity maturation was not 507 
found to have a consistent, rigidifying effect.  Thus, even if model inaccuracies confound analysis, 508 
other data support the same hypothesis. 509 

4.2 Comparison with Prior Results  510 

Our analysis included several antibodies that have been the subject of previous flexibility studies, 511 
permitting a direct comparison (Supplementary Table 4 summarizes past studies). One of the most 512 
studied antibodies is the anti-fluorescein antibody, 4-4-20. Spectroscopic experiments measuring the 513 
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response of a fluorescent probe (fluorescein) and MD simulations measuring Cα atom fluctuations 514 
suggested that somatic mutations restrict conformational fluctuations in the mature antibody (26, 28, 515 
31). Our analysis of 4-4-20 was not as clear: we observed no significant difference in naïve vs. 516 
mature CDR-H3 loop crystallographic B-factors (Supplementary Figure 14) and found the mature 517 
antibody to be more rigid in FIRST-PG calculations only in the −2.0–0.0 kcal/mol range of 518 
hydrogen-bonding energy cutoffs (Supplemental Figure 15). Similar mixed results were observed by 519 
Li et al. (33) who used a Distance Constraint Model (DCM) to analyze flexibility in an ensemble of 520 
4-4-20 conformations drawn from MD simulations. They found increases in structural rigidity of the 521 
CDR-H3 loop, as determined by the DCM, occurred upon affinity maturation, but these increases did 522 
not correspond to decreases in dynamic conformational fluctuations, as determined by RMSFs from 523 
MD simulations. Further studies artificially matured 4-4-20 by directed evolution, resulting in a 524 
femtomolar-affinity antibody, 4M5.3 (66), but the crystal structures of 4M5.3 and 4-4-20 were 525 
almost identical (the reported backbone RMSD is 0.60 Å) and thermodynamic measurements 526 
suggested that the affinity improvement was achieved primarily through the enthalpic interactions 527 
with subtle conformational changes (67). This observation was contradicted by Fukunishi et al. (68), 528 
who performed steered MD simulations to analyze the effects of the mutations on the flexibility of 4-529 
4-20 and 4M5.3. By applying external pulling forces between the antibodies and the antigen along a 530 
reaction coordinate, they quantified the interactions and showed that, during the simulations, 531 
fluctuations of the antibody, especially the CDR-H3, and of the antigen were indeed larger in 4-4-20 532 
than in the more matured antibody, 4M5.3 (68). Thus, there is some variation not only in our results, 533 
but also in the literature as to the effects of affinity maturation on 4-4-20. 534 

Another set of well-studied antibodies are the four catalytic antibodies: 48G7, 7G12, 28B4, and AZ-535 
28. In fact, the first crystallography studies to suggest rigidification of the CDR-H3 loop as a 536 
consequence of affinity maturation were performed on 48G7. Wedemayer et al. observed larger 537 
structural rearrangements upon antigen binding in the CDR-H3 loop for the naïve antibody than the 538 
mature antibody (Supplementary Figure 12 & 13) (16). Crystallization of the naïve unbound, naïve 539 
bound, mature unbound, and mature bound states for 7G12, 28B4, and AZ-28 revealed similar results 540 
(18, 19). Additionally, MD simulations of the four catalytic antibodies in implicit solvent were used 541 
to calculate CDR Cα atom B-factors (32). Wong et al. showed a decrease in mature CDR-H3 loop B-542 
factors in three cases (7G12, 28B4, and AZ-28) whereas no significant difference was observed for 543 
48G7 (see Figure 2 in Wong et al.). Furthermore, for 48G7, Li et al. used MD simulation to generate 544 
structural ensembles and DCM analysis to determine flexibility. They found that the mature CDR-H3 545 
loop is more rigid than the naïve, according to DCM, but used an unusual loop definition that 546 
included five additional flanking residues (see Fig. 1 in Li et al.), making comparison challenging 547 
(longer loops will be inherently more flexible), and they observed increases in the mature CDR-H3 548 
loop RMSFs (see Fig. 8 in Li et al.) (33). Our analysis of CDR-H3 loop B-factors showed 549 
rigidification for 48G7 and 7G12, but not for 28B4 and AZ-28 (Figure 7, Supplemental Figures 16 & 550 
17). FIRST-PG analysis of FastRelax, RosettaAntibody, and MD ensemble for 48G7 showed slight 551 
to no rigidification (Figure 7). Finally, MD simulations for 48G7 showed no difference in naïve 552 
versus mature CDR-H3 loop flexibility as determined by FIRST-PG and revealed higher RMSFs for 553 
the mature loop. Our mixed results for the effects of affinity maturation on 48G7 are consistent with 554 
literature, but there is variation between our results and the literature as to the effects of affinity 555 
maturation on the other catalytic antibodies. 556 

Finally, Schmidt et al. used X-ray crystallography, MD simulations, and thermodynamics 557 
measurements to investigate how somatic mutations affected the binding mechanism of anti-558 
influenza antibodies (22). They identified three mature antibodies, their unmutated common ancestor 559 
(UCA), and a common intermediate, all derived from a subject immunized with an influenza vaccine. 560 
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The affinities of the mature antibodies were about 200-fold better than the UCA. MD simulations of 561 
the UCA and the mature antibodies showed that CDR-H3 loop of the UCA could sample more 562 
diverse conformations than the mature antibodies, whose CDR-H3 loop sampled only conformations 563 
optimal for antigen binding, supporting the hypothesis that somatic mutations rigidify antibody 564 
structures. In another study by the same group (69), further MD simulations were performed on the 565 
same systems, showing that, although many somatic mutations typically accumulate in broadly 566 
neutralizing antibodies during maturation, only a handful of mutations substantially stabilize CDR-567 
H3 and hence enhance the affinity of the antibodies for antigen. In our studies, all the results for the 568 
anti-influenza antibody, except FIRST-PG flexibility calculations for the Rosetta FastRelax 569 
ensemble, show rigidification of the CDR-H3 loop as an effect of affinity maturation and are in 570 
agreement with the detailed analysis of Schmidt et al. 571 

For these three antibody families we analyzed in detail, we observed mixed effects of affinity 572 
maturation on two (catalytic antibodies and 4-4-20) and clear rigidification in one (anti-influenza 573 
antibody). For the two with mixed results, we note that past work has also shown conflicting results. 574 
We interpret these results as supportive of our repertoire-wide analysis that affinity maturation does 575 
not always rigidify the CDR-H3 loop. 576 

4.3 Biophysical properties underlying antibody binding 577 

Why is antibody CDR-H3 loop rigidification not a consistent result of affinity maturation? Consider 578 
the process of affinity maturation, which selects for antibody–antigen binding and against 579 
interactions with self or damaged antibodies (i.e. when deleterious mutations are introduced by 580 
activation-induced cytidine deaminase) (70). Under these selection pressures, what is the benefit of 581 
CDR-H3 loop rigidification? Loop rigidification can only decrease the protein-entropy cost for 582 
antibody–antigen binding, having ostensibly no effect on enthalpy and solvent entropy of binding, 583 
and self-interactions. If CDR-H3 loop rigidification is just one of many biophysical mechanisms that 584 
can be selected for during affinity maturation, then we do not expect to observe it consistently, in line 585 
with our results. 586 

What are the other possible mechanisms then? Surprisingly, mutations leading to multi-specificity or 587 
promiscuity may be beneficial to selection: antibodies are multivalent, so an antibody capable of 588 
binding multiple antigens with intermediate affinity can gain an effective advantage through 589 
cooperative binding over an antibody capable of binding only one antigen. Unsurprisingly, multi-590 
specific mature antibodies have been observed. Take for example the anti-hapten antibody, SPE7 591 
(71). Crystal structures of SPE7 with different antigens and in its apo-state demonstrate that SPE7 592 
can assume different conformations. Motivated by these observations, Wang et al. exploited MD 593 
simulations to investigate the binding mechanisms of SPE7 (72). The MD simulations and 594 
subsequent analyses suggested that multi-specific antigen binding is mediated by a combined 595 
mechanism of conformer selection and induced fit. This behavior could not have arisen if CDR H3 596 
loop rigidification were a consistent result of affinity maturation. 597 

5 Conclusions 598 

We have conducted the largest-scale flexibility study of antibody CDR-H3 loops, analyzing ~1,000 599 
crystal structures and ~2,000 homology models. We used B-factors and FIRST-PG to assess 600 
flexibility. We sought to identify the effects of affinity maturation on CDR-H3 loop flexibility, 601 
expecting the CDR-H3 loop to rigidify. We found that there were no differences in the CDR-H3 loop 602 
B-factor distributions or FIRST-PG DOFs for naïve vs. mature antibody crystal structures and in the 603 
CDR-H3 FIRST-PG DOFs for homology models of repertoires of naïve and mature antibodies. 604 
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These findings suggest that there is no general difference between naïve and mature antibody CDR-605 
H3 loop flexibility in repertoires of naïve and mature antibodies. However, we observed 606 
rigidification of the CDR-H3 loop for some antibodies when the mature antibody was compared 607 
directly to its germline predecessor. So, it is possible that increased rigidity occurs alongside other 608 
affinity-increasing changes. We conclude that pre-configuration of the paratope (which typically 609 
contains the CDR-H3 loop) is just one of many mechanisms for increasing affinity.  610 

Further work must be done to address the issues observed here, i.e. inconsistent results across the 611 
different methods used to measure flexibility. One possible route is to explore experimental methods 612 
that directly measure protein dynamics across several timescales, and use them to study a relatively 613 
large (more than one or two antibodies) and diverse (e.g. from different source organisms or capable 614 
of binding different antigens) set of antibodies. For example, HDX-MS is capable of identifying 615 
protein regions with dynamics on timescales from milliseconds to days (73).  616 

Finally, we note the need for more rapid and accurate antibody modeling methods. With the advent 617 
of high-throughput sequencing, there now exits a plethora of antibody sequence data, but little 618 
structural data. Accurate modeling can overcome the lack of high-throughput structure determination 619 
method and provide crucial structural data. These structures can then be used to address scientific 620 
questions on a larger scale than before, on the scale of the human antibody repertoire. 621 
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11 Figures 881 

882 

Figure 1. FIRST-PG analysis of the immunomic antibody set created by Rosetta Antibody modelin883 
with naïve antibody data shown in blue and mature antibody data shown in orange and standard err884 
of the mean shown in a lighter shade of the respective color. FIRST-PG analysis calculates the DOF885 
of CDR-H3 loop as a function of hydrogen-bonding energy cutoff. (A) When comparing DOFs 886 
scaled to a theoretical maximum as a function of hydrogen-bonding energy cutoff for the entire set,887 
the values are similar for both naïve (AUC ± SD = −5.2 ± 0.44) and mature (AUC ± SD = −5.2 ± 888 
0.44) antibodies. (B) Comparison of DOFs for a single length without scaling yields similar results,889 
compare the naïve AUC ± SD at −158.15 ± 11.98 and mature at −156.97 ± 11.56. 890 
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892 

Figure 2. FIRST-PG analysis of the crystallographic antibody set, with naïve antibody data shown 893 

blue and mature antibody data shown in orange and standard error of the mean shown in a lighter 894 

shade of the respective color. (A) When comparing DOFs scaled to a theoretical maximum as a 895 

function of hydrogen-bonding energy cutoff for the entire set, the values are similar for both naïve 896 

(AUC = −4.7 ± 0.46) and mature (AUC = −4.7 ± 0.48) antibodies. (B) Comparison of DOFs for a 897 

single length without scaling reveals naïve antibodies to possess a slightly higher DOF value than 898 

mature antibodies at the same hydrogen-bonding energy cutoff. AUCs however are within a standar899 

deviation, compare naïve at −128.82 ± 8.99 and mature at −121.85 ± 10.09. 900 
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 902 

Figure 3. Distributions of CDR-H3 loop average B-factors for the crystallographic set of antibodies903 
Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1, whereas 904 
smoothed densities are normalized to integrate to 1. Distributions split by number of somatic 905 
mutations appear distinct, despite significant overlap (mature shown in dark orange, naïve shown in906 
dark blue). A two-sample KS test confirms different underlying distributions with a p-value of 0.00907 
and maximum vertical deviation, D, of 0.36. 908 
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 910 

Figure 4. Distributions of CDR-H3 loop average B-factors for the crystallographic set of unbound 911 
antibodies. Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1, 912 
whereas smoothed densities are normalized to integrate to 1. Distributions split by number of soma913 
mutations appear distinct, despite significant overlap (mature shown in dark orange, naïve shown in914 
dark blue). However, a two-sample KS test indicates identical underlying distributions with a p-val915 
of 0.15 and maximum vertical deviation, D, of 0.27.  916 

24 

d 
 1, 

atic 
 in 
alue 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/230417doi: bioRxiv preprint 

https://doi.org/10.1101/230417
http://creativecommons.org/licenses/by-nc-nd/4.0/


Repertoire Analysis of Rigidity 

 
2

 917 
Figure 5. Distributions of CDR-H3 loop average B-factors for the crystallographic set of antibodies918 
Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1, whereas 919 
smoothed densities are normalized to integrate to 1. Distributions split by whether or not antigen is 920 
present in the crystal structure appear distinct (bound shown in red, unbound shown in purple). A 921 
two-sample KS test confirms different underlying distributions with a p-value of 2.2E-16 and 922 
maximum vertical deviation, D, of 0.31. 923 
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925 

Figure 6. FIRST-PG analysis of ten RosettaAntibody-modeled mature/naïve-reverted antibody pair926 
(CDR-H3 loop length of 10). Naïve values are colored blue, while mature values are color orange. 927 
AUCs are reported in the bottom left of each sub-figure, with bold indicating the greater value. Fou928 
out of the ten cases have mature antibodies with AUC greater than their naïve counterparts. 929 
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931 

Figure 7. Analysis of catalytic antibody 48G7. (A) Comparison of normalized B-factor values for t932 
CDR-H3 loop of the 48G7 antibody in crystal structures of the unbound naïve (dark blue) and matu933 
(dark orange) antibodies. The dashed line indicates the average value and is outlined by a box defin934 
by the average plus-or-minus the standard deviation. (B) Comparison of CDR-H3 loop RMSFs for 935 
the MD simulations of the naïve and mature 48G7 antibodies. 936 
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 938 

Figure 8. Comparison of FIRST-PG results for naïve (dark blue) and mature (dark orange) 48G7 939 
antibodies using either Rosetta FastRelax, RosettaAntibody, or MD to generate 10-member 940 
ensembles. FIRST-PG analysis calculates the DOFs of CDR-H3 loop as a function of hydrogen-941 
bonding energy cutoff. FIRST-PG analysis of the FastRelax ensemble shows similar DOF counts in942 
the range 0 to −3 kcal/mol for the naïve and mature antibodies, however, for higher energy cutoffs, 943 
the naïve antibody has more DOFs, at the same energy cutoff, than the mature antibody. The result 944 
similar for the MD ensemble. On the other hand, FIRST-PG analysis of RosettaAntibody ensemble945 
shows the mature antibody possessing slightly more DOFs than the naïve antibody at low-energy 946 
cutoffs, with the opposite being true at high-energy cutoffs. 947 
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