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Abstract

Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this
evolution through cycles of mutation and selection leading to enhanced antibody specificity and
affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to
understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the
conformational flexibility of the antibody’s antigen-binding paratope to minimize entropic losses
incurred upon binding. In recent years, computational and experimental approaches have tested this
hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the
Complementarity Determining Region (CDR) loops that typically comprise the paratope and in
particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a
few exceptions, and previous studies were limited to a small handful of cases. Here, we determined
the structural flexibility of the CDR-H3 loop for thousands of recently-determined homology models
of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear
delineation in the flexibility of naive and antigen-experienced antibodies. To account for possible
sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein
Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a
slight decrease in the CDR-H3 loop flexibility when comparing affinity-matured antibodies to naive
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antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating
molecular dynamics (MD) simulations, revealed a spectrum of changes in flexibility. Our results
suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.

1 I ntroduction

Antibodies are proteins produced by the B cells of jawed vertebrates that play a central role in the
adaptive immune system. They recognize a variety of pathogens and induce further immune response
to protect the organism from external perturbation. Molecules that are bound by antibodies are
referred to as antigen and are recognized by the antibody variable domain (Fv), which is comprised
of a variable heavy (Vy) and light (V) domain. To overcome the challenge of recognizing a vast
array of targets — the number of antigens being far greater than the number of antibody germline
genes — antibodies rely on combinatoric and genetic mechanisms that increase sequence diversity
(1-3). Starting from a limited array of germline genes, a naive antibody is generated by productive
pairing of a randomly recombined Vy, assembled from V-, D-, and J-genes on the heavy locus, and
randomly recombined V., assembled from V- and J-genes on the kappa and lambda loci (1). Next, in
a process known as affinity maturation, iterations of somatic hypermutation are followed by selection
to evolve the antibody in specific response to a particular antigen. This evolution results in the
gradual accumulation of mutations across the entire antibody, with higher mutation rates in the six
complementarity determining regions (CDRs) than in the framework regions (FRs) (4, 5). The CDRs
are hypervariable loops comprising a binding interface on the Fv domain beta-sandwich framework,
with three loops contributed by each chain; the light chain CDRs are denoted as L1, L2, and L3 and
the heavy chain CDRs are H1, H2, and H3. The five non-H3 CDRs can be readily classified into a
discrete amount of canonical structures (6-10) because they possess limited diversity in both
sequence and structure. The CDR-H3 on the other hand is the focal point of VV(D)J recombination,
resulting in exceptional diversity of both structure and sequence. While all CDRs contribute to
antigen binding, the diverse CDR-H3 is often the most important CDR for antigen recognition (11-
15). Thus, to understand the role of B cells in adaptive immunity and how they evolve antibodies
capable of binding specific antigens, we must first understand the effects of affinity maturation on the
CDRs, and in particular on the CDR-H3.

Over the last 20 years, the structural effects of affinity maturation have been studied with an
assortment of experimental and computational methods. X-ray crystallography has been used to
compare antigen-inexperienced (naive) and antigen-experienced (mature) antibodies with both
antigen present and absent. Analysis of the catalytic antibodies 48G7, AZ-28, 28B4, and 7G12
showed a 1.2 A average increase in Ca RMSD of the CDR-H3 upon antigen binding in the naive
over that of the mature antibody, whereas motion in the other CDRs varied (16-20). Beyond
structural studies, surface plasmon resonance (SPR) has been used to assess the energetics and
association/dissociation rate constants of antibody-antigen binding. Manivel et al. studied a panel of
14 primary (naive) and 11 secondary (mature) response anti-peptide antibodies, observing that
affinity maturation resulted in increases in the association rate and corresponding changes in the
entropy of binding (21). Schmidt et al. saw the opposite when studying a broadly neutralizing
influenza virus antibody, observing that affinity maturation resulted primarily in a decrease in the
dissociation rate, with little effect on the association rate (22). Isothermal calorimetry (ITC) has also
been used to determine antigen-binding energetics including the enthalpic and entropic contributions.
For nine anti-fluorescein antibodies, including 4-4-20 and eight anti-MPTS antibodies, ITC results
revealed diverse effects of affinity maturation: 14 of 17 mature antibodies bound antigen in an
enthalpically favorable and entropically unfavorable manner, yet 3 of 17 showed the opposite, with
entropically favorable and enthalpically unfavorable binding energetics (23, 24). Three-pulse photon
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83  echo peak shift (3PEPS) spectroscopy has been used to quantify dynamics of chromophore-bound
84  antibodies on short timescales of femto- to nanoseconds. 3PEPS spectroscopy results from a panel of
85 18 antibodies showed that mature antibodies can possess a range of motions from small
86  rearrangements such as side-chain motions to large rearrangements such as loop motions (23-25). In
87  aspecific comparison of naive vs. mature, for the 4-4-20 antibody, the mature antibody was found to
88  have smaller motions, i.e. to be more rigid, than naive (23-28). Antibody dynamics have also been
89  studied by hydrogen—deuterium exchange mass spectroscopy (HDX-MS), which in contrast to
90 3PEPS probes timescales of seconds to hours. Comparison of three naive and mature anti-HIV
91 antibodies showed changes in CDR-L2/H2, but not in CDR-H3 dynamics (29). Finally, MD
92 simulations have been used to study antibody dynamics on intermediate timescales of nano- to
93  microseconds. MD simulations showed rigidification and reduction of CDR-H3 loop motion upon
94  maturation for seven studied naive/mature antibodies, with two exceptions, depending on the specific
95 study (22, 28, 30-34). In an orthogonal protein design approach to examine the CDR-H3 loop
96 flexibility, Babor et al and Willis et al. found that naive antibody structures are more optimal for
97 their sequences, when considering multiple CDR-H3 loop conformations (35, 36). In sum, past
98  studies focusing on the effects of affinity maturation on CDRs have found evidence suggesting that
99  mature antibodies have more structural rigidity and less conformational diversity than their naive
100  counterparts (16, 18, 19, 23-27).

101  With recent growth in the number of antibody structures deposited in the Protein Data Bank (PDB)
102  and development of homology models from high-throughput sequencing of paired V-V, genes in B
103  cells, we now have the datasets necessary to test the rigidity hypothesis on a large scale. Prior studies,
104  usually focused on a few antibodies at time, generally support the hypothesis that affinity maturation
105 rigidifies the CDR-H3 loop. Thus, we hypothesize that this effect should be observable in a
106  repertoire-scale study of thousands of antibodies. We first analyzed thousands of recently determined
107  RosettaAntibody homology models of the most common antibody sequences found in the human
108 peripheral blood cell repertoire (37). We estimated the structural flexibility of the CDR-H3 loop by
109  applying the Floppy Inclusions and Rigid Substructure Topography (FIRST) and the Pebble Game
110  (PG) algorithms to determine backbone degrees of freedom (DOFs). Surprisingly, we found no
111  difference in the CDR-H3 loop flexibility of the naive and mature antibody repertoires. We
112  considered alternative explanations for our results, which were incongruent with past studies, by
113  expanding our analysis to a large set of antibody crystal structures, including several previously
114  characterized antibodies, and extending our methods to include other measures of flexibility such as
115  B-factors and MD simulations. By all analysis methods, we found mixed results: some antibodies’
116  CDR-H3 loops were more flexible after affinity maturation whereas others’ became less flexible. In
117  summary, we find that while affinity maturation can modulate antibody binding activity by reducing
118 CDR-H3 structural flexibility, it does not necessarily do so.

119 2 Materialsand Methods

120 2.1 Immunomic Repertoire Modeling

121  Briefly, RosettaAntibody is an antibody modeling approach that assembles homologous structural
122  regions into a rough model and then refines the model through gradient-based energy minimization,
123  side-chain repacking, rigid-body docking, and de novo loop modeling of the CDR-H3. The approach
124 s fully detailed in (38) and (39). In a typical simulation, ~1,000 models are generated and the ten
125  lowest-energy models are retained. The immunomic repertoire we analyzed is from DeKosky and
126 Lungu, et al. (37). In that study, models were generated for each of the 500 most frequently occurring
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naive and mature antibody sequences in two donors (a total ~20,000 models representing the ~2,000
most frequent antibodies).

2.2 Structural Rigidity Deter mination

The flexibility or rigidity of the CDR-H3 loop backbone was determined by using several extensions
of the Pebble Game Algorithm (PG) (40-43) and method FIRST (44); we refer to here as FIRST-PG.
For a given protein structure, FIRST generates a molecular constraint network consisting of nodes
(atoms) and edges (interactions representing covalent bonds, hydrogen bonds, hydrophobics etc.).
Each potential hydrogen bond is assigned an energy in kcal/mol which is dependent on donor-
hydrogen acceptor geometry. FIRST is run with a selected hydrogen-bonding energy cutoff, where
all bonds weaker than this cutoff are ignored in the network. On the resulting network, the PG
algorithm is then used to identify rigid clusters, flexible regions, and overall available conformational
degrees of freedom (DOFs). For a given antibody structure, DOFs for the protein backbone of the
CDR-H3 loop were calculated at every hydrogen-bonding energy cutoff value between 0 to —7
kcal/mol in increment steps of 0.01 kcal/mol. This calculation was repeated for every member of that
antibody ensemble (i.e. ten lowest energy models of the ensemble) and finally, at each energy cutoff,
the DOF count was averaged over the entire ensemble. For a given energy cutoff and a given member
of the ensemble, the DOF count for the CDR-H3 loop (residues 95-102) was obtained by calculating
the maximum number of pebbles that belong to the backbone atoms (Ca, C, N) of the CDR-H3 loop
(40).

2.3 Degreeof Freedom Scaling

To compare flexibility across CDR-H3 loops of different lengths, the DOF metric computed above is

scaled by a theoretical maximum DOF. We define sDOF =%, where, 2L (the loop length in

residues) represents the backbone degrees of freedom (torsion angles: ¢,y), and 6 represents the
trivial but ever-present rigid-body DOFs (rotations/translations in 3D).

24 AreaUnder Curve Calculation

The area under the curve (AUC) is approximated by simple numerical integral (akin to trapezoidal
integration), where the first term defines a rectangle and the second term defines a triangle:

AUC =X (x; — Xj—1) " Yi—1 t+ % (X — %2 Vi — Yi1)-
25 Crystallographic Dataset

On June 27" 2017, a summary file was generated from the Structural Antibody Database (SAbDab)
(45), using the “non-redundant search” option to search for antibodies with maximum 99% sequence
identity, paired heavy and light chains, and a resolution cutoff of 3.0 A. The summary file, containing
1021 antibodies, was used as input to a SAbDab download script which yielded corresponding
sequences, Chothia-numbered PDBs, and IMGT data (on occasion this had to be updated to match
the reported germline in the IMGT 3Dstructure-DB) (46). The structures were further pruned:
structures were omitted if there were unresolved CDR-H3 residues, as this would preclude flexibility
calculations, or if the antibody was neither human nor mouse, as this would prevent alignment to
germline. Prior to analysis, structures were truncated to the Fv region (removing all residues but light
chain residues numbered 1-108 and heavy chain residues numbered 1-112, in Chothia numbering)
and duplicate and non-antibody (for example, bound antigen) chains were removed. A total of 922
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167  antibody crystal structures were analyzed. The following CDR definitions were used throughout this
168  paper, in conjunction with the Chothia numbering scheme: L1 spans light chain residue numbers 24—
169 34, L2 spans 50-56, L3 spans 89-97, H1 spans heavy chain residue numbers 26-35, H2 spans 50-56,
170  and H3 spans 95-102.

171 2.6 Alignment to Germline

172  The germline of each antibody was determined by IMGT lookup (46) Then, BLASTP (version
173  2.2.29+) with the BLOSUM50 scoring matrix was used to align the antibody variable region heavy
174  and light sequences to corresponding germline sequences (IGHV, IGKV, and IGLV loci only,
175  downloaded from IMGT). The number of mismatches according to BLAST were considered as the
176  number of amino acid mutations from germline. Supplementary Table 1 details the PDB ID, CDR-
177  H3 length, number of heavy chain mutations, number of light chain mutations, heavy germline gene,
178 and light germline gene data for each structure in the dataset.

179 2.7 B-Factor Z-Score Calculation

180  Temperature factors (B-factors) were extracted for all Ca atoms in the variable region of the antibody
181  heavy chain (Vu, Chothia numbering 1-112). The arithmetic mean and sample standard deviation

182  values were calculated for the B-factors. For each Ca atom in the CDR-H3 region, residue numbers

183  spanning 95-102 under the Chothia numbering convention (11), the z-score was calculated as @

184  where x is the B-factor of the current Ca atom and ¢ and o are the mean and standard deviation of B-
185  factors for all Ca atoms in the Vy, respectively.

186 2.8 Rosetta Relaxation And Ensemble Generation

187  Antibody structural ensembles with 10 members were generated using either the Rosetta FastRelax
188 (47, 48) or Rosetta KIC protocol (49). The Rosetta FastRelax protocol consists of five cycles of side-
189  chain repacking and gradient-based energy minimization in the REF2015 version of the Rosetta
190  energy function (50). Thus, FastRelax ensembles explore the local energy minimum of the crystal
191  structure. The KIC ensembles are more diverse and representative of RosettaAntibody homology
192  models: each ensemble member was generated by running the CDR-H3 refinement step of the
193  RosettaAntibody protocol, consisting of Vy—V, docking, CDR-H3 loop remodeling, and all-CDR
194  loop minimization (38, 39). Sample command lines are given in the Supplementary Material. The
195  structural ensembles produced by both FastRelax and KIC were used for rigidity analysis.

196 29 Molecular Dynamics Simulations

197  The Fv regions were retrieved from the original PDB files. The MD simulations were performed
198  using the NAMD 2.12 package (51) with the CHARMM36m force field and the CMAP backbone
199  energy correction (52). The truncated Fv structures were solvated with TIP3P water in a rectangular
200  box such that the minimum distance to the edge of the box was 12 A under periodic boundary
201  conditions. Na or Cl ions were added to neutralize the protein charge, then further ions were added
202  corresponding to a salt solution of concentration 0.14 M. The time step was set to 2 fs throughout the
203  simulations. A cutoff distance of 10 A for Coulomb and van der Waals interactions was used. Long-
204  range electrostatics were evaluated through the Particle Mesh Ewald method (53).

205  The initial structures were energy-minimized by the conjugate gradient method (10,000 steps), and
206  heated from 50K to 300K during 100 ps, and the simulations were continued by 1 ns with NVT
207  ensemble, where protein atoms were held fixed whereas non-protein atoms freely moved. Further
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simulations were performed with NPT ensemble at 300K for 200 ns without any restraints other than
the SHAKE algorithm to constrain bonds involving hydrogen atoms. The last 180 ns of each
trajectory was used for the subsequent clustering analyses. Similar to a previous work (54), a total of
2000 evenly spaced frames from each trajectory were clustered based on root-mean-square deviation
(RMSD) of the Ca and CP atoms using the K-means clustering algorithm implemented in the
KCLUST module in the MMTSB tool set (55). The cluster radius was adjusted to maintain 20
clusters in each trajectory. The structure closest to the center of each cluster was chosen as a
representative structure of each cluster. The 10 representative structures were chosen from the top 10
largest clusters and these representative structures were energy-minimized by the conjugate gradient
method (10,000 steps) in a rectangular water box. The minimized antibody Fv structures were used
as the inputs for the rigidity analysis.

Root-mean-square quantities of the MD trajectories were calculated based on the last 180 ns
trajectories. After superposing Co atoms of the FR of the heavy chain (FRy) of each snapshot onto
Ca atoms of FRy of the reference structures (i.e. crystal structures), Ca-RMSD of CDR-H3 was
calculated as the time average. Similarly, after superposing Ca. atoms of entire Fv domains of each
snapshot onto those of the reference structures, the root-mean-square fluctuation (RMSF) of a residue
i was defined as the time average:

RMSF; = /{(x; — (x;))?)

where X; is the distance between the Co atom of the snapshots at a given time and the Ca atom of the
ith residue of the reference structures (56).

3 Results

3.1 Immunomic Repertoire Reveals No Difference in Flexibility between Naive and Mature
CDR-H3 Loops

We initially asked whether CDR-H3 loop rigidification, having been observed in many past studies,
was present in a large set of antibodies derived from human peripheral blood cells. Previously,
DeKosky and Lungu et al. used RosettaAntibody to model the structures of ~2,000 common
antibodies found in the peripheral blood cells of two human donors (37). Paired Vy—V_ sequences
were derived from either CD3"CD19°CD20°CD27™ naive B cells or CD3"CD19°CD20"CD27*
antigen experienced B cells (mature) isolated from peripheral mononuclear cells. RosettaAntibody
structural models were created by identifying homologous templates for the CDRs, Vu-V_
orientation, and FRs; assembling the templates into one model; de novo modeling the CDR-H3 loop;
rigid-body docking the V-V interface; side-chain packing; and minimizing in the Rosetta energy
function (38). Since de novo modeling of long loops is challenging, DeKosky and Lungu et al.
limited their antibody set to the more tractable subset of antibodies with CDR-H3 loop lengths under
16 residues. They compared their models for seven human germline antibodies with solved crystal
structures and found models had under 1.4 A backbone RMSD for the FR and under 2.4 A backbone
RMSD for the CDR-H3 loop.

We used the FIRST-PG method (40, 44) to estimate flexibility from the RosettaAntibody homology
models, determining the number of backbone DOFs for the CDR-H3 loop as each hydrogen bond is
broken in order from weakest to strongest. FIRST models the antibody as a molecular graph where
nodes represent atoms and edges represent atomic interactions. An extension of the PG algorithm
uses this molecular graph to compute the DOFs of the CDR-H3 loop. To mitigate the effects of
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homology modeling inaccuracies on the FIRST-PG analysis, we used an ensemble of ten lowest-
energy RosettaAntibody models. FIRST-PG analysis on structural ensembles has been shown to
predict hydrogen—deuterium exchange and protein flexibility (51). To account for varying CDR-H3
loop lengths, we scaled the calculated DOFs by a theoretical maximum value (Methods). Figure 1A
shows a curve of the scaled DOFs averaged over all naive or mature antibodies as a function of the
hydrogen-bonding energy cutoff used in the FIRST-PG analysis. At a cutoff of 0 kcal/mol, all
hydrogen bonds are intact and the average CDR-H3 loop scaled DOFs are about 20% of the
theoretical maximum. Moving from right to left on the plot increases the minimum energy cutoff for
including interactions in the FIRST graph; effectively hydrogen bonds of increasing strength are
“broken” and the available DOFs rise from 20% to over 90% of the maximum theoretical flexibility
while the loop becomes unstructured (unfolded) in FIRST.

In comparing the curves for naive and mature antibodies (Figure 1A), there is no difference in the
average, scaled DOFs. To quantify this comparison, we computed the average AUC plus-or-minus
one standard deviation for both antibody sets. The average AUC values are identical between naive
(-5.21 £ 0.44) and mature antibody repertoires (—5.23 = 0.44). This lack of difference persists (AUC
—158.15 + 11.98 [naive] vs. —156.97 + 11.56 [mature]) when accounting for CDR-H3 loop length
(Figure 1B), and so the observed similarity of DOFs in naive and mature antibodies is not due to
averaging over loops of different lengths. Thus, on the immunomic repertoire scale, we do not
observe the difference in flexibility between naive and mature antibodies predicted by the paratope
rigidification hypothesis.

Before amending the rigidification hypothesis in light of these results, we considered several
alternative explanations for our observations. First, we addressed whether the use of homology
models for flexibility analysis introduced inaccuracies by analyzing a large set of antibody crystal
structures and Rosetta-generated models from that set with varying quality, ranging from models
with sub-angstrom backbone RSMD to models that may be several angstroms off (and more
representative of an average homology model). Next, we addressed whether backbone DOFs, as
calculated by FIRST-PG, were a good measure of flexibility, by assessing flexibility through two
alternative measures: B-factors and MD simulations. Additionally, we addressed whether averaging
flexibilities and comparing across many germlines affected results, by detailed flexibility analysis of
previously studied naive—mature antibody pairs and RosettaAntibody-modeled pairs.

3.2 Only Small Flexibility Differences Are Observed Between Naive and Mature Antibodies
in the Crystallographic Set

3.2.1 Preparation of an Antibody Crystal Structure Dataset

Of course, the strongest critique of the immunomic antibody set is that these models are only
approximating the actual antibody structure. Thus, we applied FIRST-PG analysis to a large set of
antibody crystal structures. We curated the set of all non-redundant mouse and human antibody
crystal structures from SAbDab (45). To be consistent with the models produced by
RosettaAntibody, we truncated the structure of each antibody to only the Fv domain, excluding other
antibody regions or antigen. Then, we used IMGT/3Dstructure-DB (57) to identify the variable
domain genes and determined the number of somatic mutations by aligning the sequence derived
from the crystal structure to the IMGT-determined gene. We defined mature antibodies as those
possessing at least one somatic mutation in either VV gene. Our full dataset has 922 antibodies of
which 23 are naive. CDR-H3 loop lengths and germline assignments are summarized in
Supplementary Table 1. Summary statistics are plotted in Supplementary Figures 1-3.
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3.2.2 FIRST-PG Analysisof Crystal Structures

From the crystal structures, we created two sets of structural ensembles and assessed flexibility by
FIRST-PG. Flexibility analysis has previously been shown to be more accurate on ensembles in
comparison to analysis using single (snapshot) conformers (41, 58). Ensembles of ten representative
structures were generated from the initial crystal structure by using either using Rosetta FastRelax
(47) or the refinement step of RosettaAntibody (38, 39), which we term KIC ensembles after the loop
modeling algorithm used in refinement (49). Rosetta FastRelax samples structures around the
crystallographic, local energy-minimum, with typically < 1 A backbone RMSD, whereas the
refinement step of RosettaAntibody samples a more diverse set of low-energy CDR-H3 loop
conformations and Vy—V_ orientations. Thus, FastRelax ensembles are representative of the crystal
structures, whereas KIC ensembles are representative of RosettAntibody homology models. By
comparative FIRST-PG analysis of the two sets, we can assess the effects of modeling inaccuracies
on flexibility analysis.

The scaled DOFs as calculated by FIRST-PG for FastRelax ensembles of antibody crystal structures
are shown in Figure 2A. There are only minor differences between the naive and mature flexibility
curves and the AUC is similar for both sets (—4.70 £ 0.46 [naive] vs. —4.70 + 0.48 [mature]). Again,
we considered the possibility that different distributions of loop lengths in the two sets obscures the
affinity maturation contributions to flexibility. Therefore, we analyzed loops of length 10 (Figure
2B), the single most common length in our set. When loops of a single length were compared, there
was a separation between the naive and mature sets, with the naive antibody set average DOFs being
consistently greater than the mature set. The AUC values differ, but are within a standard deviation
(-128.2 £ 9.0 [naive] vs. —121.9 + 10.1 [mature]). We repeated FIRST-PG analysis for KIC
ensembles of antibody crystal structures and observed similar results (Supplementary Figure 4): for
scaled DOFs, the AUC was —5.91 + 0.20 (naive) vs. =5.81 + 0.26 (mature) and, for loops of length
10 only, the AUC was -154.10 + 4.80 (naive) vs. —=150.44 + 7.73 (mature). Thus, there does not
appear to be a large, consistent CDR-H3 loop flexibility difference across all antibodies, but rather
there is a small difference for antibodies with similar-length CDR-H3 loops.

3.2.3 B-Factor Analysisof Crystal Structures

However, we have not accounted for the possibility that backbone DOFs as calculated by FIRST-PG
may not capture the effects of affinity maturation on CDR-H3 loop flexibility. Thus, we assessed
loop flexibility as determined by atomic temperature factors or B-factors. In protein crystal
structures, B-factors measure the heterogeneity of atoms in the crystal lattice. Thus, rigid regions
have lower B-factors as they are more homogenous throughout the crystal whereas flexible regions
have higher B-factors as they are less homogenous throughout the crystal. B-factors are also affected
by crystal resolution, so we cannot compare raw values across structures of varying resolution.
Instead, we computed a normalized B-factor z-score, which has zero mean and unit standard
deviation for each antibody chain. Finally, to account for different CDR-H3 loop lengths, we
averaged the B-factor z-scores for the CDR-H3 loop residues.

Figure 3 shows the distributions of B-factor z-scores averaged over the CDR-H3 loop residues of
naive and mature antibodies. Both distributions span a similar range and overlap significantly, with
the naive curve peak shifted toward higher values than the mature. The majority of the naive CDR-
H3 loop B-factor z-score averages were positive (65%), whereas the majority of the mature CDR-H3
loop B-factor z-score averages were negative (64%). A two-sample Kolmogorov-Smirnov (KS) test
confirms the distributions to be distinct, with a maximum vertical deviation, D, of 0.36 and a p-value
of 0.006.
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However, we were concerned that the mixing of bound and unbound crystal structures would
influence results, as we previously observed bound structures to have lower average B-factors (59).
Furthermore, in the PDB-derived dataset, naive antibodies were mostly to be crystallized in the
unbound state (19 of 23), whereas mature antibodies were mostly to be co-crystallized with their
cognate antigen (544 of 899). In conjunction, these two observations suggested that the high number
of antigen-bound mature antibody crystal structures was the primary driver of the difference between
naive and mature B-factor z-scores. Thus, we compared the B-factor averages of unbound structures
only and found that while the distributions appear to be distinct (Figure 4), they fail a two-sample KS
test (D = 0.27, p = 0.15). As we conjectured, the primary difference was found to be between the
bound and unbound distributions (Figure 5), with a two-sample KS test confirming the difference
between the distributions (D = 0.31, p < 2.16E-16). Additionally, we considered other possible
origins of difference between the naive and mature distributions that are not related to affinity
maturation, including comparison across species, crystal structure resolutions, CDR-H3 loop lengths,
and if the CDR-H3 loop was at a crystal contact or not. We found none of these to have as clear of an
effect on the distribution of B-factor averages as whether or not antigen was bound (Supplementary
Figures 5 and 6). In summary, the distributions of B-factor z-score averages (Figures 3-5) suggest
that both the naive and mature antibody sets possess CDR-H3 loops of varying flexibility and that
neither set is significantly more flexible or rigid than the other.

3.3 Comparison of Mature to Naive-Reverted Models Reveals Varying Rigidification Across
Matched Pairs

Based on the B-factor results from the 922 analyzed crystal structures, we postulated that
rigidification was not a repertoire-wide phenomenon (i.e. all mature antibodies are not more rigid
than all naive antibodies), but it could still be plausible that matched paris of naive and mature
antibodies would reveal rigidification.

To investigate this hypothesis, we selected ten mature antibodies from our SAbDab set with CDR-H3
loops of length 10, a length for which loop modeling performs well (49, 60). To control for species,
half of the selected antibodies were human and half were mouse. We reverted the mature antibody
sequences to naive using the germline sequences from the aligned V-genes. We then used
RosettaAntibody to generate homology models for the naive-reverted sequences. We analyzed the
ensembles of the ten lowest-energy homology models using FIRST-PG. To ensure fair comparison,
we also used FIRST-PG to analyze homology model ensembles of the mature sequences. To provide
an estimate for the accuracy of RosettaAntibody homology models, we computed RMSDs for the
mature models using the known crystal structures and found all had sub-2-A CDR-H3 loop backbone
RMSD, calculated after alignment of the heavy chain FR, with 4 of 10 antibodies having sub-A
RMSD (Supplementary Figures 7-11).

Of the ten naive/mature antibody pairs we analyzed, six showed a decrease in flexibility and four
showed an increase in flexibility upon affinity maturation (Figure 6). These ten antibodies
demonstrate the breadth of possible affinity maturation effects, from an expected flexibility decrease
in antibody 2AGJ, with AUC decreasing by 9.34%, to the unexpected flexibility increase in antibody
1RZ7, with AUC increasing by 10.65%.

34 Analysisof 48G7 Antibody

Having analyzed 1911 models, 922 crystal structures, and 10 paired-reverted models, we had yet to
observe a consistent difference in CDR-H3 loop flexibility between naive and mature antibodies, as
previously reported in literature. Thus, we turned to three previously studied antibodies with known
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crystal structures and measured CDR-H3 loop flexibility. These are (1) the esterolytic antibody 48G7
(16, 32, 33, 35), (2) the anti-fluorescein antibody 4-4-20 (23, 26-28, 31, 33), and (3) a broadly
neutralizing influenza virus antibody (22). For all three antibodies, the effects of affinity maturation
on CDR-H3 loop flexibility have been previously studied by both experiment and simulation,
allowing comparison with our results. For brevity, we presently discuss the 48G7 antibody here, and
full results for all antibodies are available in the Supplementary Material.

The 48G7 antibody was first studied through crystallography, with structures capturing the bound
(holo) and unbound (apo) states of both the naive and mature antibody (16). Comparison between the
naive and mature CDR loop motions from the free to the bound state revealed minor changes, with
the mature CDR-H3 loop being slightly more rigid and moving an Angstrom less than the naive upon
antigen binding (Supplementary Figures 12 and 13). For each of the four crystal structures, we
extracted B-factors and computed B-factor z-scores for the CDR-H3 loop, measuring the distance
from the B-factor mean in standard deviations. B-factor z-scores for the CDR-H3 loop of apo-48G7
are shown in Figure 7A. The mature antibody has lower B-factors than the naive antibody throughout
the entire CDR-H3 loop. This observation also holds for the holo-48G7 antibody structures as well
(Supplementary Figure 14). Supplementary Table 2 summarizes B-factors averaged over the whole
CDR-H3 loop. These B-factor results agree with the prior crystallographic observations.

Prior follow-up studies on 48G7 used MD simulations to assess flexibility. Briefly, 500 ps short MD
simulations of the naive and mature antibodies in the presence of antigen with an explicit solvent
model (TIP3P) found the CDR-H3 loop to be more flexible in the naive than in the mature antibody
by comparison of RMSFs (30), but 15 ns MD simulations of the naive and mature antibodies in the
absence of antigen with an implicit solvent model (GB/SA) found no difference between the two,
again by comparison of RMSFs (32). Another study based on an elastic network model also
suggested that, in the absence of antigen, the fluctuations of the naive and mature 48G7 were similar,
but their binding mechanisms could differ depending on response to antigen binding; the naive
antibody shows a discrete conformational change induced by antigen whereas the mature antibody
shows lock-and-key binding where antigen reduce flexibility of the mature antibody (61). Due to the
contentious nature of these results, we ran 200 ns MD simulations for the apo-48G7 naive and mature
antibodies in the absence of antigen with an explicit solvent model (TIP3P). We measured both
RMSDs and RMSFs for the Ca atoms along the CDR-H3 loop and computed the difference between
the naive and mature antibodies (Supplementary Table 2). Figure 7B shows that the CDR-H3 loop
RMSFs are consistently greater for the mature than the naive 48G7 antibody.

Finally, as we have done through this study, we used FIRST-PG to measure CDR-H3 loop flexibility.
To limit the effects of crystal structure artifacts on FIRST-PG analysis, we used an ensemble of ten
representative structures, derived by clustering trajectory frames and selecting ten structurally distinct
cluster medians from the MD simulations, similar to a previous flexibility study for this antibody
(33). The CDR-H3 loop flexibility of apo-48G7, as determined by FIRST-PG analysis of MD
ensembles is shown in Figure 8. The FIRST-PG analysis showed no significant difference between
the mature and naive antibodies.

In addition to using MD simulations to generate ensembles, we used ensembles generated by
RosettaAntibody and Rosetta FastRelax, permitting direct comparison. The CDR-H3 loop flexibility
of apo-48G7, determined by FIRST-PG analysis of FastRelax and Rosetta Antibody ensembles, is
shown in Figure 8. The curves from FastRelax and the MD simulation are similar for low-energy
cutoffs (e.g. in the range of 0.0 to —3.0 kcal/mol), with the naive and mature DOFs being the same.
These curves diverge at higher-energy cutoffs where the FastRelax curve shows a more flexible naive
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427  antibody and the MD curve does not. The curve from RosettaAntibody ensembles differs from the
428  two and shows a more flexible mature antibody at low-energy cutoffs and a more flexible naive at
429  high-energy cutoffs. For less visual and more quantitative comparisons, we computed the AUC of the
430 DOF versus hydrogen-bonding energy cutoff plots (Supplementary Table 2). We find the AUC is
431  only slightly greater for naive than mature antibodies in the FastRelax and RosettaAntibody
432  ensembles, with the naive AUC reducing by only 3.9% and 0.2%, respectively, upon maturation. MD
433  ensembles show the opposite outcome, with the mature antibody having 1.3% greater AUC than the
434  naive.

435  Further validation was carried out on two other previously studied antibodies and reported in the
436  Supplementary Table 2 and Supplementary Figures 3 and 4. For the 4-4-20 antibody, antigen-bound
437  structures were compared and the average mature B-factors were within a standard deviation of the
438 naive. For the influenza antibody, average B-factors were compared between an unbound naive and a
439  bound mature crystal structure, showing significant rigidification. However, results are conflated due
440  to the lack of unbound crystal structures, as in bound structures antibody—antigen contacts artificially
441  increases rigidity of the CDR-H3 loop. In contrast to B-factor analyses, FIRST-PG analyses yielded
442  mixed results for these two antibodies. The 4-4-20 antibody was found to become more flexible upon
443  maturation by FIRST-PG analysis of all but Rosetta KIC ensembles. The influenza antibody was
444  found to become more rigid upon mature by FIRST-PG analysis of all but Rosetta FastRelax
445  ensembles. Finally, we analyzed RMSDs and RMSFs from MD simulations and found that the
446  mature 4-4-20 antibody has higher CDR-H3 loop RMSD, but lower RMSF, values than the naive
447  while the mature influenza antibody was found to have lower values for both (Supplementary Table
448  2). We consider the significance of these results and compare them in detail to past analyses of
449  flexibility in the Discussion section.

450 4 Discussion

451 4.1 TheVarying Effectsof Affinity Maturation on CDR-H3 Flexibility

452  Affinity maturation, through a series of somatic hypermutation events and selection processes, can
453  evolve a low-affinity, naive antibody to bind an antigen with both high affinity and specificity (62).
454  Elucidating the affinity maturation process is desirable to understand molecular evolution, develop
455  antibody engineering methods, and guide vaccine development (63). Past studies have suggested that,
456  with few exceptions (29, 64, 65), naive antibodies are highly flexible and maturation leads to
457  improved affinity and specificity through the optimization and rigidification of the antibody paratope,
458  and in particular the CDR-H3 loop (22, 27, 28, 31-33). However, these studies have been limited,
459  often focusing on a single antibody and assessing flexibility indirectly. We sought to test the
460 generalizability of the rigidification-upon-maturation hypothesis. We were enabled by the large
461 number of antibody structures in the PDB, homology models generated from high-throughput
462  repertoire sequencing data, and the FIRST-PG method for rapid structural flexibility calculation to
463  ask whether affinity maturation leads to CDR-H3 loop rigidification.

464  Unexpectedly, in a comparison of flexibility of repertoires, our data show little difference between
465 naive and mature antibodies: FIRST-PG calculations showed no difference for RosettaAntibody
466  homology model ensembles of the most common naive and mature antibodies in human peripheral
467  blood cells. The same calculations showed no difference in CDR-H3 loop DOFs of crystal structures
468 under two different refinement schemes (FastRelax and KIC). Even after accounting for the
469  presence/absence of antigen, CDR-H3 loop B-factor distributions were the same for both mature and
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naive antibody crystal structures. These results indicate that rigidification of the CDR-H3 loop does
not always occur upon affinity maturation.

Since our observations did not indicate clear rigidification over two sets of antibodies, we considered
the following possibilities: (1) comparison of different length CDR-H3 loops was unfair because
longer loops are inherently more flexible, (2) comparison of different antibodies was unfair because
different combinations of gene segments and V-V, pairs will result in different flexibilities, (3)
mutations within CDR-H3 loop, which we could not identify for the PDB set because of the
difficulty in D/J-gene alignments, may have modulated flexibilities of CDR-H3, (4) inaccuracies in
the computational methods could preclude observation of rigidification, and (5) FIRST-PG-measured
backbone DOFs are not a good measure of flexibility. To address the first concern, we analyzed
loops of consistent length via B-factor and FIRST-PG (Figures 1B & 2B, Supplementary Figures 4 &
5). We found that, according to KS testing and when accounting for the presence/absence of antigen,
B-factor distributions were not distinct for naive and mature sets of antibodies with 10-residue CDR-
H3 loops. We also found that FIRST-PG DOF AUCs of the naive and mature sets of antibodies with
the same length CDR-H3 loops were within a standard deviation for both RosettaAntibody,
FastRelax, and KIC ensembles. So, even when accounting for length, mature antibodies are not
significantly more rigid than naive ones.

To address the concern that comparison of sets of antibodies originating from different Vi and V.
genes is unfair, we analyzed mature/naive antibody pairs that had been previously studied and
mature/naive-reverted pairs that we generated with RosettaAntibody and analyzed by FIRST-PG
(Figures 6-8, Supplementary Table 2). We found that CDR-H3 loop B-factors did not always
indicate rigidification upon maturation and on one occasion we observed the reverse (Supplementary
Figure 16). We also found that mature antibodies did not always become more flexible upon naive
reversion, but instead displayed a breadth of behaviors (Figure 6). So, when analyzing matched
naive/mature pairs, we do not see consistent rigidification upon maturation.

Our analysis of previously studied naive/mature antibody pairs coupled with the earlier repertoire
analysis should alleviate concerns that our flexibility results for the PDB set were strongly affected
by our inability to align D/J-gene segments and thus consider mutations in the CDR-H3 loop. The
previously studied pairs included CDR-H3 mutations and the repertoire set had antibody sequences
determined by Illumina MiSeq sequencing with naive/mature status assigned by the absence/presence
of the CD27 cell-surface receptor. In both cases, the naive and mature sequences were determined
through the entire Fv and flexibility analysis still revealed mixed results.

Finally, to address the concern that RosettaAntibody models may not be accurate enough to be useful
for FIRST-PG calculations, we tested FIRST-PG on a range of structural ensembles with varying
deviation from the crystal structure. We found no difference in the naive vs. mature antibody CDR-
H3 loop AUC of the FIRST-PG results, regardless of the ensemble generation method used (Figure 2
and Supplementary Figure 4). We also determined flexibility through alternative measure such as
crystal structure B-factors and RMSFs in MD simulations. For both, affinity maturation was not
found to have a consistent, rigidifying effect. Thus, even if model inaccuracies confound analysis,
other data support the same hypothesis.

4.2 Comparison with Prior Results

Our analysis included several antibodies that have been the subject of previous flexibility studies,
permitting a direct comparison (Supplementary Table 4 summarizes past studies). One of the most
studied antibodies is the anti-fluorescein antibody, 4-4-20. Spectroscopic experiments measuring the

.. .. ) . . 12
This is a provisional file, not the final typeset article


https://doi.org/10.1101/230417
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230417; this version posted December 8, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

Repertoi re Analysis Of Rigiditynder aCC-BY-NC-ND 4.0 International license.

514  response of a fluorescent probe (fluorescein) and MD simulations measuring Ca atom fluctuations
515  suggested that somatic mutations restrict conformational fluctuations in the mature antibody (26, 28,
516  31). Our analysis of 4-4-20 was not as clear: we observed no significant difference in naive vs.
517  mature CDR-H3 loop crystallographic B-factors (Supplementary Figure 14) and found the mature
518 antibody to be more rigid in FIRST-PG calculations only in the —2.0-0.0 kcal/mol range of
519  hydrogen-bonding energy cutoffs (Supplemental Figure 15). Similar mixed results were observed by
520 Li et al. (33) who used a Distance Constraint Model (DCM) to analyze flexibility in an ensemble of
521  4-4-20 conformations drawn from MD simulations. They found increases in structural rigidity of the
522  CDR-H3 loop, as determined by the DCM, occurred upon affinity maturation, but these increases did
523  not correspond to decreases in dynamic conformational fluctuations, as determined by RMSFs from
524  MD simulations. Further studies artificially matured 4-4-20 by directed evolution, resulting in a
525  femtomolar-affinity antibody, 4M5.3 (66), but the crystal structures of 4M5.3 and 4-4-20 were
526  almost identical (the reported backbone RMSD is 0.60 A) and thermodynamic measurements
527  suggested that the affinity improvement was achieved primarily through the enthalpic interactions
528  with subtle conformational changes (67). This observation was contradicted by Fukunishi et al. (68),
529  who performed steered MD simulations to analyze the effects of the mutations on the flexibility of 4-
530 4-20 and 4M5.3. By applying external pulling forces between the antibodies and the antigen along a
531 reaction coordinate, they quantified the interactions and showed that, during the simulations,
532  fluctuations of the antibody, especially the CDR-H3, and of the antigen were indeed larger in 4-4-20
533  than in the more matured antibody, 4M5.3 (68). Thus, there is some variation not only in our results,
534  Dbutalso in the literature as to the effects of affinity maturation on 4-4-20.

535  Another set of well-studied antibodies are the four catalytic antibodies: 48G7, 7G12, 28B4, and AZ-
536  28. In fact, the first crystallography studies to suggest rigidification of the CDR-H3 loop as a
537  consequence of affinity maturation were performed on 48G7. Wedemayer et al. observed larger
538  structural rearrangements upon antigen binding in the CDR-H3 loop for the naive antibody than the
539  mature antibody (Supplementary Figure 12 & 13) (16). Crystallization of the naive unbound, naive
540  bound, mature unbound, and mature bound states for 7G12, 28B4, and AZ-28 revealed similar results
541 (18, 19). Additionally, MD simulations of the four catalytic antibodies in implicit solvent were used
542  to calculate CDR Ca atom B-factors (32). Wong et al. showed a decrease in mature CDR-H3 loop B-
543  factors in three cases (7G12, 28B4, and AZ-28) whereas no significant difference was observed for
544  48G7 (see Figure 2 in Wong et al.). Furthermore, for 48G7, Li et al. used MD simulation to generate
545  structural ensembles and DCM analysis to determine flexibility. They found that the mature CDR-H3
546  loop is more rigid than the naive, according to DCM, but used an unusual loop definition that
547  included five additional flanking residues (see Fig. 1 in Li et al.), making comparison challenging
548  (longer loops will be inherently more flexible), and they observed increases in the mature CDR-H3
549 loop RMSFs (see Fig. 8 in Li et al.) (33). Our analysis of CDR-H3 loop B-factors showed
550 rigidification for 48G7 and 7G12, but not for 28B4 and AZ-28 (Figure 7, Supplemental Figures 16 &
551 17). FIRST-PG analysis of FastRelax, RosettaAntibody, and MD ensemble for 48G7 showed slight
552  to no rigidification (Figure 7). Finally, MD simulations for 48G7 showed no difference in naive
553  versus mature CDR-H3 loop flexibility as determined by FIRST-PG and revealed higher RMSFs for
554  the mature loop. Our mixed results for the effects of affinity maturation on 48G7 are consistent with
555  literature, but there is variation between our results and the literature as to the effects of affinity
556  maturation on the other catalytic antibodies.

557  Finally, Schmidt et al. used X-ray crystallography, MD simulations, and thermodynamics
558 measurements to investigate how somatic mutations affected the binding mechanism of anti-
559 influenza antibodies (22). They identified three mature antibodies, their unmutated common ancestor
560 (UCA), and a common intermediate, all derived from a subject immunized with an influenza vaccine.
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The affinities of the mature antibodies were about 200-fold better than the UCA. MD simulations of
the UCA and the mature antibodies showed that CDR-H3 loop of the UCA could sample more
diverse conformations than the mature antibodies, whose CDR-H3 loop sampled only conformations
optimal for antigen binding, supporting the hypothesis that somatic mutations rigidify antibody
structures. In another study by the same group (69), further MD simulations were performed on the
same systems, showing that, although many somatic mutations typically accumulate in broadly
neutralizing antibodies during maturation, only a handful of mutations substantially stabilize CDR-
H3 and hence enhance the affinity of the antibodies for antigen. In our studies, all the results for the
anti-influenza antibody, except FIRST-PG flexibility calculations for the Rosetta FastRelax
ensemble, show rigidification of the CDR-H3 loop as an effect of affinity maturation and are in
agreement with the detailed analysis of Schmidt et al.

For these three antibody families we analyzed in detail, we observed mixed effects of affinity
maturation on two (catalytic antibodies and 4-4-20) and clear rigidification in one (anti-influenza
antibody). For the two with mixed results, we note that past work has also shown conflicting results.
We interpret these results as supportive of our repertoire-wide analysis that affinity maturation does
not always rigidify the CDR-H3 loop.

4.3 Biophysical properties underlying antibody binding

Why is antibody CDR-H3 loop rigidification not a consistent result of affinity maturation? Consider
the process of affinity maturation, which selects for antibody-antigen binding and against
interactions with self or damaged antibodies (i.e. when deleterious mutations are introduced by
activation-induced cytidine deaminase) (70). Under these selection pressures, what is the benefit of
CDR-H3 loop rigidification? Loop rigidification can only decrease the protein-entropy cost for
antibody-antigen binding, having ostensibly no effect on enthalpy and solvent entropy of binding,
and self-interactions. If CDR-H3 loop rigidification is just one of many biophysical mechanisms that
can be selected for during affinity maturation, then we do not expect to observe it consistently, in line
with our results.

What are the other possible mechanisms then? Surprisingly, mutations leading to multi-specificity or
promiscuity may be beneficial to selection: antibodies are multivalent, so an antibody capable of
binding multiple antigens with intermediate affinity can gain an effective advantage through
cooperative binding over an antibody capable of binding only one antigen. Unsurprisingly, multi-
specific mature antibodies have been observed. Take for example the anti-hapten antibody, SPE7
(71). Crystal structures of SPE7 with different antigens and in its apo-state demonstrate that SPE7
can assume different conformations. Motivated by these observations, Wang et al. exploited MD
simulations to investigate the binding mechanisms of SPE7 (72). The MD simulations and
subsequent analyses suggested that multi-specific antigen binding is mediated by a combined
mechanism of conformer selection and induced fit. This behavior could not have arisen if CDR H3
loop rigidification were a consistent result of affinity maturation.

5 Conclusions

We have conducted the largest-scale flexibility study of antibody CDR-H3 loops, analyzing ~1,000
crystal structures and ~2,000 homology models. We used B-factors and FIRST-PG to assess
flexibility. We sought to identify the effects of affinity maturation on CDR-H3 loop flexibility,
expecting the CDR-H3 loop to rigidify. We found that there were no differences in the CDR-H3 loop
B-factor distributions or FIRST-PG DOFs for naive vs. mature antibody crystal structures and in the
CDR-H3 FIRST-PG DOFs for homology models of repertoires of naive and mature antibodies.
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605  These findings suggest that there is no general difference between naive and mature antibody CDR-
606 H3 loop flexibility in repertoires of naive and mature antibodies. However, we observed
607  rigidification of the CDR-H3 loop for some antibodies when the mature antibody was compared
608 directly to its germline predecessor. So, it is possible that increased rigidity occurs alongside other
609  affinity-increasing changes. We conclude that pre-configuration of the paratope (which typically
610  contains the CDR-H3 loop) is just one of many mechanisms for increasing affinity.

611  Further work must be done to address the issues observed here, i.e. inconsistent results across the
612  different methods used to measure flexibility. One possible route is to explore experimental methods
613 that directly measure protein dynamics across several timescales, and use them to study a relatively
614 large (more than one or two antibodies) and diverse (e.g. from different source organisms or capable
615 of binding different antigens) set of antibodies. For example, HDX-MS is capable of identifying
616  protein regions with dynamics on timescales from milliseconds to days (73).

617  Finally, we note the need for more rapid and accurate antibody modeling methods. With the advent
618 of high-throughput sequencing, there now exits a plethora of antibody sequence data, but little
619  structural data. Accurate modeling can overcome the lack of high-throughput structure determination
620 method and provide crucial structural data. These structures can then be used to address scientific
621  questions on a larger scale than before, on the scale of the human antibody repertoire.
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883  Figurel. FIRST-PG analysis of the immunomic antibody set created by Rosetta Antibody modeling,
884  with naive antibody data shown in blue and mature antibody data shown in orange and standard error
885  of the mean shown in a lighter shade of the respective color. FIRST-PG analysis calculates the DOFs
886 of CDR-H3 loop as a function of hydrogen-bonding energy cutoff. (A) When comparing DOFs

887  scaled to a theoretical maximum as a function of hydrogen-bonding energy cutoff for the entire set,
888  the values are similar for both naive (AUC £ SD = -5.2 £ 0.44) and mature (AUC £ SD =-5.2 +
889  0.44) antibodies. (B) Comparison of DOFs for a single length without scaling yields similar results,
890 compare the naive AUC = SD at —158.15 + 11.98 and mature at —-156.97 + 11.56.
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893  Figure2. FIRST-PG analysis of the crystallographic antibody set, with naive antibody data shown in
894  Dblue and mature antibody data shown in orange and standard error of the mean shown in a lighter
895  shade of the respective color. (A) When comparing DOFs scaled to a theoretical maximum as a

896  function of hydrogen-bonding energy cutoff for the entire set, the values are similar for both naive
897 (AUC =-4.7 £ 0.46) and mature (AUC = -4.7 + 0.48) antibodies. (B) Comparison of DOFs for a
898  single length without scaling reveals naive antibodies to possess a slightly higher DOF value than
899  mature antibodies at the same hydrogen-bonding energy cutoff. AUCs however are within a standard

900 deviation, compare naive at —128.82 *+ 8.99 and mature at —121.85 + 10.09.
901
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903  Figure 3. Distributions of CDR-H3 loop average B-factors for the crystallographic set of antibodies.
904  Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1, whereas
905  smoothed densities are normalized to integrate to 1. Distributions split by number of somatic

906  mutations appear distinct, despite significant overlap (mature shown in dark orange, naive shown in
907  dark blue). A two-sample KS test confirms different underlying distributions with a p-value of 0.006
908  and maximum vertical deviation, D, of 0.36.
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911 Figure4. Distributions of CDR-H3 loop average B-factors for the crystallographic set of unbound
912  antibodies. Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1,
913  whereas smoothed densities are normalized to integrate to 1. Distributions split by number of somatic
914  mutations appear distinct, despite significant overlap (mature shown in dark orange, naive shown in
915  dark blue). However, a two-sample KS test indicates identical underlying distributions with a p-value
916  of 0.15 and maximum vertical deviation, D, of 0.27.
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Figure5. Distributions of CDR-H3 loop average B-factors for the crystallographic set of antibodies.
Bars show binned counts in intervals of 0.25, with the maximum bar height scaled to 1, whereas
smoothed densities are normalized to integrate to 1. Distributions split by whether or not antigen is
present in the crystal structure appear distinct (bound shown in red, unbound shown in purple). A
two-sample KS test confirms different underlying distributions with a p-value of 2.2E-16 and
maximum vertical deviation, D, of 0.31.
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926  Figure6. FIRST-PG analysis of ten RosettaAntibody-modeled mature/naive-reverted antibody pairs
927  (CDR-H3 loop length of 10). Naive values are colored blue, while mature values are color orange.
928  AUCs are reported in the bottom left of each sub-figure, with bold indicating the greater value. Four
929  out of the ten cases have mature antibodies with AUC greater than their naive counterparts.
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931

932  Figure?. Analysis of catalytic antibody 48G7. (A) Comparison of normalized B-factor values for the
933 CDR-H3 loop of the 48G7 antibody in crystal structures of the unbound naive (dark blue) and mature
934  (dark orange) antibodies. The dashed line indicates the average value and is outlined by a box defined
935 Dby the average plus-or-minus the standard deviation. (B) Comparison of CDR-H3 loop RMSFs for
936  the MD simulations of the naive and mature 48G7 antibodies.
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939  Figure8. Comparison of FIRST-PG results for naive (dark blue) and mature (dark orange) 48G7
940 antibodies using either Rosetta FastRelax, RosettaAntibody, or MD to generate 10-member

941  ensembles. FIRST-PG analysis calculates the DOFs of CDR-H3 loop as a function of hydrogen-

942  bonding energy cutoff. FIRST-PG analysis of the FastRelax ensemble shows similar DOF counts in
943  the range 0 to —3 kcal/mol for the naive and mature antibodies, however, for higher energy cutoffs,
944  the naive antibody has more DOFs, at the same energy cutoff, than the mature antibody. The result is
945  similar for the MD ensemble. On the other hand, FIRST-PG analysis of RosettaAntibody ensembles
946  shows the mature antibody possessing slightly more DOFs than the naive antibody at low-energy
947  cutoffs, with the opposite being true at high-energy cutoffs.
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