bioRxiv preprint doi: https://doi.org/10.1101/230086; this version posted February 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

pysster: Classification Of Biological Sequences By
Learning Sequence And Structure Motifs With
Convolutional Neural Networks

Stefan Budach " and Annalisa Marsico %"

TRNA Bioinformatics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany and
2Department of Mathematics and Computer Science, Free University Berlin, Berlin, 14195, Germany.

*To whom correspondence should be addressed.

Abstract

Summary: Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a
variety of tasks, including biological sequence classification. Available implementations, however, are
usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks
more easily we implemented pysster, a Python package for training CNNs on biological sequence data.
Sequences are classified by learning sequence and structure motifs and the package offers an automated
hyper-parameter optimization procedure and options to visualize learned motifs along with information
about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides
a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing
data set and CLIP-seq binding site sequences we demonstrate that pysster classifies sequences with
higher accuracy than other methods and is able to recover known sequence and structure motifs.
Availability: pysster is freely available at https://github.com/budach/pysster.

Contact: budach@molgen.mpg.de, marsico@molgen.mpg.de

1 Introduction

In recent years, deep convolutional neural networks (CNNs) have been
shown to be an accurate method for biological sequence classification
and sequence motif detection (Alipanahi et al., 2015) (Kelley et al.,
2016) (Angermueller et al., 2017). The increasing amount of sequence
data and the rise of general-purpose computing on Graphics Processing
Units (GPUs) have enabled CNNs to outperform other machine learning
methods, such as random forests and support vector machines, in terms of
both classification performance and runtime performance (Kelley et al.,
2016) (Angermueller et al., 2017). While a number of publications
have made use of CNNs on biological data, these implementations are
usually hard to reuse (Alipanahi er al., 2015) or tailored to a specific
problem, such as prediction of DNA CpG methylation from single-cell
data (Angermueller et al., 2017). Basset (Kelley et al., 2016) and iDeep
(Pan and Shen, 2017) represent more general frameworks for training of
CNNs on DNA and RNA data, respectively. However, they don’t provide
detailed motif interpretations, such as motif locations and class enrichment
of motifs, and they are not able to learn structure motifs in the RNA case.

To address these issues and to enable researchers to easily utilize CNNs,
we implemented pysster, a python package for training CNN classifiers on
biological sequences. Supervised classification is enabled by the automatic
detection of sequence motifs. Our package focuses on interpretability
and extends previous implementations by providing information about
the positional and class enrichment of learned motifs. Moreover, by
incorporating structure information, e.g. in the form of secondary structure
predictions for RNA sequences, it is possible to learn structure motifs
corresponding to the sequence motifs. We demonstrate that our tool is
able to learn well-known motifs for an RNA A-to-I editing data set and

multiple CLIP-seq data sets and that it outperforms GraphProt (Maticzka
et al., 2014), a state of the art classifier for RNA sequences and structures,
bothin terms of classification and runtime performance. Providing a simple
programming interface we hope that our package enables more researchers
to make effective use of CNNs in classifying and interpreting large sets of
biological sequences.

2 Implementation And Features

We implemented an established network architecture and multiple
interpretation options as an easy-to-use python package. The basic
architecture of the network consists of a variable number of convolutional
and max-pooling layers followed by a variable number of dense layers
(Figure 1A). These layers are interspersed by dropout layers after the input
layer and after every max-pooling and dense layer. Using an automated grid
search, the network can be tuned via a number of hyper-parameters, such
as number of convolutional layers, number of kernels, length of kernels
and dropout ratios. The main features of the package are:

e multi-class and single-label or multi-label classifications

o sensible default parameters and an optional hyper-parameter tuning

e learning of motifs + interpretation in terms of positional and class
enrichment (Figure S1) and motif co-occurrence (Figure S2)

e support of input strings over user-defined alphabets (i.e. applicable to
DNA, RNA and protein data)

e optional use of structure information, handcrafted features and
recurrent layers

e visualization of all network layers using visualization by optimization
(Olah et al., 2017)

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/230086; this version posted February 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is
the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

A) ACCTTAGA B) AU [Zenal = 4 [Zjoinedl = 16
U A GGGGUAUACCCC AAAABCBCDDDD
Input G-C
G-C
G-¢c SSSSHHHHSSSS
G-C |zstruct| =4
TA
CCT Convolution
S +
Max-pooling
Dense O
Output

Fig. 1. A) The basic network architecture consists of a variable number of convolutional/max-pooling stacks followed by a variable number of dense layers interspersed by dropout layers.

The network can be tuned via an extensive list of hyper-parameters. The network input are one-hot encoded sequences and the network outputs predicted probabilities, indicating class

membership. B) RNA sequence and structure input strings are encoded into a single string by combining the sequence alphabet and the secondary structure alphabet into an extended alphabet

consisting of arbitrary characters. Subsequently, this string is one-hot encoded and used as the network input. C) For the motif interpretation the string over the arbitrary alphabet can be

decoded into the two original strings to construct sequence logos for the original alphabets. The shown example motif corresponds to an ALU repeat motif found in the classification task

of RNA A-to-I editing sites (see the tutorial workflow on github for detailed information).

e seamless CPU or GPU computation by building on top of TensorFlow
(Abadi et al., 2016) and Keras (Chollet et al., 2015).

Structure information (e.g. for RNA in the form of dot-bracket strings
or annotated dot-bracket strings) is incorporated into the network by
encoding the given sequence string over an alphabet of size N and the
corresponding structure string over an alphabet of size M into a single new
string using an extended alphabet of size N*M (Figure 1B). The network
is then trained on these new strings, which can be decoded back into the
original strings after the training to enable the visualization of two motifs as
position-weight matrices (Figure 1C). Detailed descriptions of the model
and visualization options can be found in the tutorials and documentation.

3 Case Studies

Pysster is freely available at https:/github.com/budach/pysster. Its
documentation includes a workflow tutorial that showcases the main
functionality on an RNA A-to-I editing data set (Picardi et al., 2017).
Editing sites are known to be enriched in repetitive ALU sequences and
we show that we are able to classify the editing location with high accuracy
and that we learn known ALU motifs (Figure 1C). Finally, we have trained
our tool on sequences derived from CLIP-seq data for a number of RNA
binding proteins with known binding site motifs (Table S1). Similar to
GraphProt and ssHMM (Heller et al., 2017), an unsupervised hidden
Markov model-based approach for learning sequence/structure motifs,

pysster can recover the known motifs, but outperforms GraphProt both
in terms of classification and runtime performance.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature
biotechnology, 33(8), 831-838.

Angermueller, C., Lee, H. J., Reik, W., and Stegle, O. (2017). Deepcpg: accurate
prediction of single-cell dna methylation states using deep learning. Genome

Biology, 18(1), 67.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

Heller, D., Krestel, R., Ohler, U., Vingron, M., and Marsico, A. (2017). sshmm:
extracting intuitive sequence-structure motifs from high-throughput rna-binding
protein data. Nucleic acids research, 45(19), 11004-11018.

Kelley, D. R., Snoek, J., and Rinn, J. L. (2016). Basset: learning the regulatory
code of the accessible genome with deep convolutional neural networks. Genome
research, 26(7), 990-999.

Maticzka, D., Lange, S. J., Costa, F., and Backofen, R. (2014). Graphprot: modeling
binding preferences of rna-binding proteins. Genome biology, 15(1), R17.

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill.
https:/distill.pub/2017/feature-visualization.

Pan, X. and Shen, H.-B. (2017). Rna-protein binding motifs mining with a new
hybrid deep learning based cross-domain knowledge integration approach. BMC
bioinformatics, 18(1), 136.

Picardi, E., D’Erchia, A. M., Lo Giudice, C., and Pesole, G. (2017). Rediportal:
a comprehensive database of a-to-i rna editing events in humans. Nucleic acids
research, 45(D1), D750-D757.

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

class_0, ALU region (n = 4627)

150
»100
c
2
[]
Y 50
"o 50 100 150 200 250
sequence position
class_1, non-alu repetitive region (n = 1646)
1501
»n 1001
c
3
(o]
Y 50/
0 0 50 100 150 200 250
sequence position
class_2, non-repetitive region (n = 1217)
150+
» 100
c
3
o]
“ 50/
O_MMM-“J“MM_

0 50 100 150 200 250
sequence position

Figure S1. The histograms show the positional enrichment of a kernel (i.e. sequence
positions at which subsequences leading to kernel activations higher than a threshold have
been extracted from) for an RNA A-to-I editing classification data set consisting of three
classes and input sequences of length 300. The motif corresponding to the kernel is shown in
Figure 1C and is a known ALU repeat motif. The motif is therefore mainly found in the first
class and preferentially starts close to sequence position 150. More details about the data set
and the biological interpretation for this particular kernel can be found in the example
workflow tutorial at github.

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

ig b } W ” , ' .M w
i ' o i %

‘ ‘ i | | IIIi
zi | | ’ I i ” i i' ” u\ i i

Figure kernel ()
and in (mn) M()

e [class_2, n

{IU i\ K

) IS

4

m hi

i”

|

H / \ \
i | Hﬂ

activatio stering is
ve of both class enrichment (kernels enrich depleted in a certain class

he others), as well as motif co-occurrences The heatmap shown here refers to
S

ve motif co-occurrences, convolutional

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

. . sster ssHMM
Protein Literature py GraphProt Performance
(top 2) (from [2])
%“’U Uu n !A 1 2 3 4 5 6
mo o T M \U—@A—@% ROC-AUC PR-AUC (I:t:‘c'(‘)z‘(;‘s‘;
. m . sster 0.948 0.929 89
‘ LSS . ." A %PU) 0.949 0.932 105
2, A AU TmEmeEmE /,’/7\ﬁ - A A A 0.945 0.925 76
PUM2 | S8 I Sem (St — . sster 0.948 0.930 53
s f o Topyy 0944 o0om 49
[1] o IS 0.945 0.924 52
210 A Internal loop e
N NI QA GraphProt 0.853 0.853 2503
15 Exterior loop o .
. SSSS§§§§ (7776 training + 2592 test sequences)
::%5*5—1—8-
£10 g ! !A B 1 2 3 4 5 6
T s e o Muliloop =] ROC-AUC PR-AUC (1:;'(')2’5‘;;
o ; 0.963 0.949 101
: Sememmman " /P ; pysster 65 0953 sl
2 AA o Mg%gkégg (CPU) 0.965 0.955 84
QKI | a] Sem S} —{3r— 0966 0.959 55
1.2 3 4 5 6 \ pysster
) = (GPU) 0.966 0.955 44
(1] T 0962 0943 8
210 Internal loop \ S '— _ _
o MANA .. = T GraphProt 0.888 0.891 2014

Exterior loop

(6524 training + 2176 test sequences)

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

pysster ssHMM

(top 2) (from [2]) GraphProt Performance

Protein Literature

bits.

Multiloop
(seconds)

'° ! B 1 2 3 4 5 6
e Ailscs e e amt ROC-AUC PR-AUC |untime

N ier | 0837 0844 85
= C - PSeT 05 080 68
IGF2BP E&b&g@ 0.837 0.843 81
1/2/3 IGF2BP1 IGF2BP2 IGF2BP3 St 0.837 0.840 55
[1] - ‘(’éslitl‘;; 0837 0.843 51
0.836 0.843 50
e Internal looj
QQSSA& " GraphProt 0.701 0.663 2400
2 Euerortoop R L (7694 training + 2566 test sequences)
= TS
£10 A A A 1 2 i 4 5 6
o == ACCAATS Moo A F ROC-AUC PR-AUC Runtime
: o \ (seconds)
21 i sster 0.934 0.943 475
A %PU) 0.934 0.943 426
eyl n BN [0933 0.943 389
SFRS1/2 Stemy sster 0.933 0.943 208
%PU) 0.934 0.943 218
1 0.933 0.943 239
Internal loop P | = T —
A ST GraphProt 0.870 0.852 10730
B Exterior loo ..
£ ’ (32604 training + 10868 test sequences)
“S§_§§‘_S%

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

. . sster ssHMM
Protein Literature py GraphProt Performance
(top 2) (from [2])
%wu A! ! ! ! 1 2 3 4 5 6
WSS L MANER S Multiloop E—E—g—.’g o8] ROC-AUC PR-AUC Runtime
) (seconds)
- - 0.905 0.893 142
. S_S&sﬁri e R a0, ‘(’éslii‘;)r 0910 0.902 144
AU-rich e RXX 26 0.903 0.893 131
TAF2N stem-loops Som st S Hg%aHme- . sster 0.908 0.902 73
[4] . / ‘(’éPU) 0906 0.896 73
J 0.909 0.900 82
5 Internal loop o >
E@AQQS - GraphProt 0.700 0.658 3960
Exterior loo U—.{ —U—a—a— ..
s, ! 24 =] (12976 training + 4326 test sequences)
N JAQL"E ultiloo] i
Rt L ROC-AUC PR-AUC Runtime
(seconds)
g . sster 0.952 0.944 100
I = %PU) 0.953 0.947 101
UCAUY e ::kg QS 0953 0.946 96
NOVA [5] stem sster 0.954 0.949 56
: R %PU) 0.955 0949 58
= 0.956 0.948 53
2" Inemal loop - mm“_’yxm‘ﬁ_- === =
& A PRI GraphProt 0,881 0.886 2531

bits.

Exterior loop

(8348 training + 2784 test sequences)

Table S1. Performance comparison of pysster and GraphProt (v1.1.7) on CLIP-seq data for proteins with well-known RNA binding site motifs.

For these binary classification tasks positive sets contained bindings sites from the protein of interest and negative sets contained randomly

selected binding sites from 24 other proteins. All used sequences are of length 200 and centered at a binding site. Data are based on the ssHMM

paper and the measurement source code and full output is available at https://github.com/budach/pysster/tree/master/tutorials/rbp. Aside from

https://github.com/budach/pysster/tree/master/tutorials/rbp
https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

setting the motif length for GraphProt and the kernel length for pysster to 8 both tools were run with default parameters. Runtime includes RNA
secondary structure prediction, model training and prediction of held-out test sequences and was measured on a machine with two E5-2697Av4
CPUs (32 physical cores) and an Nvidia Titan X GPU. Due to the non-deterministic nature of neural networks pysster was run three times to
show that the predictive performance is stable. In addition, pysster performance is also shown for the CPU-only version. By default, pysster
produces 30 motifs and the two with the highest importance score showing enrichment in the positive set are featured in the table. For ssHMM
only the learned motifs are shown, as it is an unsupervised model only trained on the positive set.

References

[1] Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jungkamp, A.-C.,
Munschauer, M., ef al. (2010). Transcriptome-wide identification of rna-binding protein and microrna target sites by par-clip.
Cell, 141(1), 129-141.

[2] Heller, D., Krestel, R., Ohler, U., Vingron, M., and Marsico, A. (2017). sshmm: extracting intuitive sequence-structure motifs from
high-throughput rna-binding protein data. Nucleic acids research, 45(19), 11004-11018.

[3] Sanford, J. R., Wang, X., Mort, M., VanDuyn, N., Cooper, D. N., Mooney, S. D., Edenberg, H. J., and Liu, Y. (2009). Splicing factor
Sfrs1 recognizes a functionally diverse landscape of rna transcripts. Genome research, 19(3), 381-394.

[4] Hoell, J. I., Larsson, E., Runge, S., Nusbaum, J. D., Duggimpudi, S., Farazi, T. A., Hatner, M., Borkhardt, A., Sander, C., and Tuschl, T.
(2011). Rna targets of wild-type and mutant fet family proteins. Nature Structural and Molecular Biology, 18(12), 1428.

[5] Jensen, K. B., Dredge, B. K., Stefani, G., Zhong, R., Buckanovich, R. J., Okano, H. J., Yang, Y. Y., and Darnell, R. B. (2000). Nova-1
regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron, 25(2), 359-371.

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

