
pysster: Classification Of Biological Sequences By
Learning Sequence And Structure Motifs With
Convolutional Neural Networks

Stefan Budach 1,* and Annalisa Marsico 1,2,*

1RNA Bioinformatics, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany and
2Department of Mathematics and Computer Science, Free University Berlin, Berlin, 14195, Germany.

∗To whom correspondence should be addressed.

Abstract

Summary: Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a
variety of tasks, including biological sequence classification. Available implementations, however, are
usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks
more easily we implemented pysster, a Python package for training CNNs on biological sequence data.
Sequences are classified by learning sequence and structure motifs and the package offers an automated
hyper-parameter optimization procedure and options to visualize learned motifs along with information
about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides
a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing
data set and CLIP-seq binding site sequences we demonstrate that pysster classifies sequences with
higher accuracy than other methods and is able to recover known sequence and structure motifs.
Availability: pysster is freely available at https://github.com/budach/pysster.
Contact: budach@molgen.mpg.de, marsico@molgen.mpg.de

1 Introduction
In recent years, deep convolutional neural networks (CNNs) have been
shown to be an accurate method for biological sequence classification
and sequence motif detection (Alipanahi et al., 2015) (Kelley et al.,
2016) (Angermueller et al., 2017). The increasing amount of sequence
data and the rise of general-purpose computing on Graphics Processing
Units (GPUs) have enabled CNNs to outperform other machine learning
methods, such as random forests and support vector machines, in terms of
both classification performance and runtime performance (Kelley et al.,
2016) (Angermueller et al., 2017). While a number of publications
have made use of CNNs on biological data, these implementations are
usually hard to reuse (Alipanahi et al., 2015) or tailored to a specific
problem, such as prediction of DNA CpG methylation from single-cell
data (Angermueller et al., 2017). Basset (Kelley et al., 2016) and iDeep
(Pan and Shen, 2017) represent more general frameworks for training of
CNNs on DNA and RNA data, respectively. However, they don’t provide
detailed motif interpretations, such as motif locations and class enrichment
of motifs, and they are not able to learn structure motifs in the RNA case.

To address these issues and to enable researchers to easily utilize CNNs,
we implemented pysster, a python package for training CNN classifiers on
biological sequences. Supervised classification is enabled by the automatic
detection of sequence motifs. Our package focuses on interpretability
and extends previous implementations by providing information about
the positional and class enrichment of learned motifs. Moreover, by
incorporating structure information, e.g. in the form of secondary structure
predictions for RNA sequences, it is possible to learn structure motifs
corresponding to the sequence motifs. We demonstrate that our tool is
able to learn well-known motifs for an RNA A-to-I editing data set and

multiple CLIP-seq data sets and that it outperforms GraphProt (Maticzka
et al., 2014), a state of the art classifier for RNA sequences and structures,
both in terms of classification and runtime performance. Providing a simple
programming interface we hope that our package enables more researchers
to make effective use of CNNs in classifying and interpreting large sets of
biological sequences.

2 Implementation And Features
We implemented an established network architecture and multiple
interpretation options as an easy-to-use python package. The basic
architecture of the network consists of a variable number of convolutional
and max-pooling layers followed by a variable number of dense layers
(Figure 1A). These layers are interspersed by dropout layers after the input
layer and after every max-pooling and dense layer. Using an automated grid
search, the network can be tuned via a number of hyper-parameters, such
as number of convolutional layers, number of kernels, length of kernels
and dropout ratios. The main features of the package are:

• multi-class and single-label or multi-label classifications
• sensible default parameters and an optional hyper-parameter tuning
• learning of motifs + interpretation in terms of positional and class

enrichment (Figure S1) and motif co-occurrence (Figure S2)
• support of input strings over user-defined alphabets (i.e. applicable to

DNA, RNA and protein data)
• optional use of structure information, handcrafted features and

recurrent layers
• visualization of all network layers using visualization by optimization

(Olah et al., 2017)
1

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

A G AC TC T A

Input

Dense

Output

Convolution

Max-pooling
+

A
C
G
T

GGGGUAUACCCC

| RNA| = 4

SSSSHHHHSSSS

| struct| = 4

AAAABCBCDDDD

| joined| = 16

A

B

C

D

M

N

O

P

...

A) B)

C)

Fig. 1. A) The basic network architecture consists of a variable number of convolutional/max-pooling stacks followed by a variable number of dense layers interspersed by dropout layers.
The network can be tuned via an extensive list of hyper-parameters. The network input are one-hot encoded sequences and the network outputs predicted probabilities, indicating class
membership. B) RNA sequence and structure input strings are encoded into a single string by combining the sequence alphabet and the secondary structure alphabet into an extended alphabet
consisting of arbitrary characters. Subsequently, this string is one-hot encoded and used as the network input. C) For the motif interpretation the string over the arbitrary alphabet can be
decoded into the two original strings to construct sequence logos for the original alphabets. The shown example motif corresponds to an ALU repeat motif found in the classification task
of RNA A-to-I editing sites (see the tutorial workflow on github for detailed information).

• seamless CPU or GPU computation by building on top of TensorFlow
(Abadi et al., 2016) and Keras (Chollet et al., 2015).

Structure information (e.g. for RNA in the form of dot-bracket strings
or annotated dot-bracket strings) is incorporated into the network by
encoding the given sequence string over an alphabet of size N and the
corresponding structure string over an alphabet of size M into a single new
string using an extended alphabet of size N*M (Figure 1B). The network
is then trained on these new strings, which can be decoded back into the
original strings after the training to enable the visualization of two motifs as
position-weight matrices (Figure 1C). Detailed descriptions of the model
and visualization options can be found in the tutorials and documentation.

3 Case Studies
Pysster is freely available at https://github.com/budach/pysster. Its
documentation includes a workflow tutorial that showcases the main
functionality on an RNA A-to-I editing data set (Picardi et al., 2017).
Editing sites are known to be enriched in repetitive ALU sequences and
we show that we are able to classify the editing location with high accuracy
and that we learn known ALU motifs (Figure 1C). Finally, we have trained
our tool on sequences derived from CLIP-seq data for a number of RNA
binding proteins with known binding site motifs (Table S1). Similar to
GraphProt and ssHMM (Heller et al., 2017), an unsupervised hidden
Markov model-based approach for learning sequence/structure motifs,

pysster can recover the known motifs, but outperforms GraphProt both
in terms of classification and runtime performance.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nature
biotechnology, 33(8), 831–838.

Angermueller, C., Lee, H. J., Reik, W., and Stegle, O. (2017). Deepcpg: accurate
prediction of single-cell dna methylation states using deep learning. Genome

Biology, 18(1), 67.
Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.
Heller, D., Krestel, R., Ohler, U., Vingron, M., and Marsico, A. (2017). sshmm:

extracting intuitive sequence-structure motifs from high-throughput rna-binding
protein data. Nucleic acids research, 45(19), 11004–11018.

Kelley, D. R., Snoek, J., and Rinn, J. L. (2016). Basset: learning the regulatory
code of the accessible genome with deep convolutional neural networks. Genome
research, 26(7), 990–999.

Maticzka, D., Lange, S. J., Costa, F., and Backofen, R. (2014). Graphprot: modeling
binding preferences of rna-binding proteins. Genome biology, 15(1), R17.

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill.
https://distill.pub/2017/feature-visualization.

Pan, X. and Shen, H.-B. (2017). Rna-protein binding motifs mining with a new
hybrid deep learning based cross-domain knowledge integration approach. BMC
bioinformatics, 18(1), 136.

Picardi, E., D’Erchia, A. M., Lo Giudice, C., and Pesole, G. (2017). Rediportal:
a comprehensive database of a-to-i rna editing events in humans. Nucleic acids
research, 45(D1), D750–D757.

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S1. ​The histograms show the positional enrichment of a kernel (i.e. sequence
positions at which subsequences leading to kernel activations higher than a threshold have
been extracted from) for an RNA A-to-I editing classification data set consisting of three
classes and input sequences of length 300. The motif corresponding to the kernel is shown in
Figure 1C and is a known ALU repeat motif. The motif is therefore mainly found in the first
class and preferentially starts close to sequence position 150. More details about the data set
and the biological interpretation for this particular kernel can be found in the example
workflow tutorial at github.

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S2 ​. The heatmap shown here depicts a hierarchical clustering of both kernels (rows)
and input sequences (columns) of a standardized matrix M where each cell M(i,j) represents
the maximum activation value of kernel i for input sequence j. The resulting clustering is
indicative of both class enrichment (i.e. kernels enriched or depleted in a certain class
compared to the others), as well as motif co-occurrences. The heatmap shown here refers to
the classification results on the RNA A-to-I editing data set showcased in the github tutorial.
It is important to bear in mind that, besides putative motif co-occurrences, convolutional
neural network kernels tend to learn strong motifs multiple times and hence, these tend to be
clustered together. Nonetheless this visualization represents a valuable attempt to start
looking for co-occurring motifs.

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

Protein Literature pysster
(top 2) ssHMM

(from [2]) GraphProt Performance

PUM2

[1]

 ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.948
0.949
0.945

0.929
0.932
0.925

89
105
76

pysster
(GPU)

0.948
0.944
0.945

0.930
0.944
0.924

53
49
52

GraphProt 0.853 0.853 2503

(7776 training + 2592 test sequences)

QKI

[1]

 ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.963
0.965
0.965

0.949
0.953
0.955

101
81
84

pysster
(GPU)

0.966
0.966
0.962

0.959
0.955
0.943

55
44
43

GraphProt 0.888 0.891 2014

(6524 training + 2176 test sequences)

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

Protein Literature pysster
(top 2) ssHMM

(from [2]) GraphProt Performance

IGF2BP
1/2/3 [1]

 ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.837
0.835
0.837

0.844
0.840
0.843

85
68
81

pysster
(GPU)

0.837
0.837
0.836

0.840
0.843
0.843

55
51
50

GraphProt 0.701 0.663 2400

(7694 training + 2566 test sequences)

SFRS1/2
[3]

 ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.934
0.934
0.933

0.943
0.943
0.943

475
426
389

pysster
(GPU)

0.933
0.934
0.933

0.943
0.943
0.943

208
218
239

GraphProt 0.870 0.852 10730

(32604 training + 10868 test sequences)

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

Protein Literature pysster
(top 2) ssHMM

(from [2]) GraphProt Performance

TAF2N
AU-rich

stem-loops
[4]

 ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.905
0.910
0.903

0.893
0.902
0.893

142
144
131

pysster
(GPU)

0.908
0.906
0.909

0.902
0.896
0.900

73
73
82

GraphProt 0.700 0.658 3960

(12976 training + 4326 test sequences)

NOVA UCAUY
[5] ​______________

 ROC-AUC PR-AUC Runtime
(seconds)

pysster
(CPU)

0.952
0.953
0.953

0.944
0.947
0.946

100
101
96

pysster
(GPU)

0.954
0.955
0.956

0.949
0.949
0.948

56
58
53

GraphProt 0.881 0.886 2531

(8348 training + 2784 test sequences)

Table S1. Performance comparison of pysster and GraphProt (v1.1.7) on CLIP-seq data for proteins with well-known RNA binding site motifs.
For these binary classification tasks positive sets contained bindings sites from the protein of interest and negative sets contained randomly
selected binding sites from 24 other proteins. All used sequences are of length 200 and centered at a binding site. Data are based on the ssHMM
paper and the measurement source code and full output is available at ​https://github.com/budach/pysster/tree/master/tutorials/rbp​. Aside from

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://github.com/budach/pysster/tree/master/tutorials/rbp
https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

setting the motif length for GraphProt and the kernel length for pysster to 8 both tools were run with default parameters. Runtime includes RNA
secondary structure prediction, model training and prediction of held-out test sequences and was measured on a machine with two E5-2697Av4
CPUs (32 physical cores) and an Nvidia Titan X GPU. Due to the non-deterministic nature of neural networks pysster was run three times to
show that the predictive performance is stable. In addition, pysster performance is also shown for the CPU-only version. By default, pysster
produces 30 motifs and the two with the highest importance score showing enrichment in the positive set are featured in the table. For ssHMM
only the learned motifs are shown, as it is an unsupervised model only trained on the positive set.

References

[1] Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M., Jungkamp, A.-C.,
 Munschauer, M., ​et al.​ (2010). Transcriptome-wide identification of rna-binding protein and microrna target sites by par-clip.
 ​Cell​, ​141​(1), 129–141.

[2] Heller, D., Krestel, R., Ohler, U., Vingron, M., and Marsico, A. (2017). sshmm: extracting intuitive sequence-structure motifs from
 high-throughput rna-binding protein data. ​Nucleic acids research​, ​45​(19), 11004–11018.

[3] Sanford, J. R., Wang, X., Mort, M., VanDuyn, N., Cooper, D. N., Mooney, S. D., Edenberg, H. J., and Liu, Y. (2009). Splicing factor
 Sfrs1 recognizes a functionally diverse landscape of rna transcripts. ​Genome research​, ​19​(3), 381–394.

[4] Hoell, J. I., Larsson, E., Runge, S., Nusbaum, J. D., Duggimpudi, S., Farazi, T. A., Hafner, M., Borkhardt, A., Sander, C., and Tuschl, T.
 (2011). Rna targets of wild-type and mutant fet family proteins. ​Nature Structural and Molecular Biology​, ​18​(12), 1428.

[5] Jensen, K. B., Dredge, B. K., Stefani, G., Zhong, R., Buckanovich, R. J., Okano, H. J., Yang, Y. Y., and Darnell, R. B. (2000). Nova-1
 regulates neuron-specific alternative splicing and is essential for neuronal viability. ​Neuron​, ​25​(2), 359–371.

.CC-BY-NC-ND 4.0 International licensethe author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 6, 2018. ; https://doi.org/10.1101/230086doi: bioRxiv preprint

https://doi.org/10.1101/230086
http://creativecommons.org/licenses/by-nc-nd/4.0/

