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 2 

Decision bias is traditionally conceptualized as an internal reference against which 26 

sensory evidence is compared. Instead, we show that individuals implement decision 27 

bias by shifting the rate of sensory evidence accumulation towards a decision bound. 28 

Participants performed a target detection task while we recorded EEG. We 29 

experimentally manipulated participants’ decision criterion for reporting targets using 30 

different stimulus-response reward contingencies, inducing either a liberal or a 31 

conservative bias. Drift diffusion modeling revealed that a liberal strategy biased 32 

sensory evidence accumulation towards target-present choices. Moreover, a liberal 33 

bias resulted in stronger midfrontal pre-stimulus 2-6 Hz (theta) power and 34 

suppression of pre-stimulus 8—12 Hz (alpha) power in posterior cortex. The alpha 35 

suppression in turn mediated the output activity of visual cortex, as expressed in 36 

59—100 Hz (gamma) power. These findings show that observers can intentionally 37 

control cortical excitability to strategically bias evidence accumulation towards the 38 

decision bound that maximizes their reward. 39 

 40 

Introduction 41 

Perceptual decisions arise not only from the evaluation of sensory evidence, but are 42 

often biased towards one or another choice alternative by environmental factors, 43 

perhaps as a result of task instructions and/or stimulus-response reward 44 

contingencies (White & Poldrack, 2014). The ability to willfully control decision bias 45 

could potentially enable the behavioral flexibility required to survive in an ever-46 

changing and uncertain environment. But despite its important role in decision 47 

making, the neural mechanisms underlying decision bias are not fully understood.  48 

The traditional account of decision bias comes from signal detection theory 49 

(SDT) (Green & Swets, 1966). In SDT, decision bias is quantified by estimating the 50 
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relative position of a decision point or ‘criterion’ in between sensory evidence 51 

distributions for noise and signal (see Figure 1A). In this framework, a more liberal 52 

decision bias arises by moving the criterion closer towards the noise distribution (see 53 

green arrow in Figure 1A). Although SDT has been very successful at quantifying 54 

decision bias, how exactly bias affects decision making and how it is reflected in 55 

neural activity remains unknown.  56 

One reason for this lack of insight may be that SDT does not have a temporal 57 

component to track how decisions are reached over time (Fetsch, Kiani, & Shadlen, 58 

2014). As an alternative to SDT, the drift diffusion model (DDM) conceptualizes 59 

perceptual decision making as the accumulation of noisy sensory evidence over time 60 

into an internal decision variable (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; 61 

Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). A decision in this model is made 62 

when the decision variable crosses one of two decision bounds corresponding to the 63 

choice alternatives. After one of the bounds is reached, the corresponding decision 64 

can subsequently either be actively reported, for example by means of a button 65 

press indicating a detected signal, or it could remain without behavioral report when 66 

no signal is detected (Ratcliff, Huang-Pollock, & McKoon, 2016). Within this 67 

framework, a strategic decision bias imposed by the environment can be modelled in 68 

two different ways: either by moving the starting point of evidence accumulation 69 

closer to one of the boundaries (see green arrow in Figure 1B), or by biasing the rate 70 

of the evidence accumulation process itself towards one of the boundaries (see 71 

green arrow in Figure 1C). In both the SDT and DDM frameworks, decision bias 72 

shifts have little effect on the sensitivity of the observer when distinguishing signal 73 

from noise; they predominantly affect the relative response ratios (and in the case of 74 

DDM the speed with which one or the other decision bound is reached). There has 75 
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been some evidence to suggest that decision bias induced by shifting the criterion is 76 

best characterized by a drift bias in the DDM (Urai, de Gee, & Donner, 2018; White & 77 

Poldrack, 2014). However, the drift bias parameter has as yet not been related to a 78 

well-described neural mechanism. 79 

 80 

  81 

Figure 1 | Theoretical accounts of decision bias. A. Signal-detection-theoretic account of decision 82 

bias. Signal and noise+signal distributions are plotted as a function of the strength of internal sensory 83 

evidence. The decision point (or criterion) that determines whether to decide signal presence or 84 

absence is plotted as a vertical criterion line c, reflecting the degree of decision bias. c can be shifted 85 

left- or rightwards to denote a more liberal or conservative bias, respectively (green arrow indicates a 86 

shift towards more liberal). B, C: Drift diffusion model (DDM) account of decision bias, in which 87 

decisions are modelled in terms of a set of parameters that describe a dynamic process of sensory 88 

evidence accumulation towards one of two decision bounds. When sensory input is presented, 89 

evidence starts to accumulate (drift) over time after initialization at the starting point z. A decision is 90 

made when the accumulated evidence either crosses decision boundary a (signal presence) or 91 

decision boundary 0 (no signal). After a boundary is reached, the corresponding decision can be 92 

either actively reported by a button press (e.g. for signal-present decisions), or remain implicit, without 93 

a response (for signal-absent decisions). The DDM can capture decision bias through a shift of the 94 

starting point of the evidence accumulation process (panel B) or through a shift in bias in the rate of 95 

evidence accumulation towards the different choices (panel C). These mechanisms are dissociable 96 

through their differential effect on the shape of the reaction time (RT) distributions, as indicated by the 97 

curves above and below the graphs for target-present and target-absent decisions, respectively. 98 

Panels B. and C. are modified and reproduced with permission from Urai, de Gee, & Donner (2018) 99 

(Figure 1, published under a CC BY 4.0 license). 100 
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 101 

 Regarding the neural underpinnings of decision bias, there have been a 102 

number of reports about a correlational relationship between cortical population 103 

activity measured with EEG and decision bias. For example, spontaneous trial-to-104 

trial variations in pre-stimulus oscillatory activity in the 8—12 Hz (alpha) band have 105 

been shown to correlate with decision bias and confidence (Iemi, Chaumon, Crouzet, 106 

& Busch, 2017; Limbach & Corballis, 2016; Samaha, Iemi, & Postle, 2017). Alpha 107 

oscillations, in turn, have been proposed to be involved in the gating of task-relevant 108 

sensory information (Jensen & Mazaheri, 2010) possibly encoded in high-frequency 109 

(gamma) oscillations in visual cortex (Ni et al., 2016; Popov, Kastner, & Jensen, 110 

2017). Although these reports suggest links between pre-stimulus alpha 111 

suppression, sensory information gating and decision bias, they do not uncover 112 

whether pre-stimulus alpha plays an instrumental role in decision bias and how 113 

exactly this might be achieved. Specifically, it is unknown whether an experimentally 114 

induced shift in decision bias is implemented in the brain by willfully adjusting pre-115 

stimulus alpha in sensory areas.  116 

Here, we explicitly investigate these potential mechanisms by employing a 117 

task paradigm in which shifts in decision bias were experimentally induced within 118 

participants through (a) instruction and (b) asymmetries in stimulus-response reward 119 

contingencies during a visual target detection task. By applying drift diffusion 120 

modeling to the participants’ choice behavior, we show that the effect of strategically 121 

adjusting decision bias is best captured by the drift bias parameter, which is thought 122 

to reflect the rate of sensory evidence accumulation towards one of the two decision 123 

bounds. To substantiate a neural mechanism for this effect, we demonstrate that this 124 

bias shift is accompanied by changes in pre-stimulus midfrontal 2–6 Hz (theta) 125 
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power, as well as changes in sensory alpha suppression. Pre-stimulus alpha 126 

suppression in turn mediates the output post-stimulus activity of visual cortex, as 127 

reflected in gamma power modulation. Critically, we show that gamma activity 128 

accurately predicts the strength of evidence accumulation bias within participants, 129 

providing a direct link between the proposed mechanism and decision bias. 130 

Together, these findings identify the neural mechanism by which intentional control 131 

of cortical excitability is applied to strategically bias perceptual decisions in order to 132 

maximize reward in a given ecological context. 133 

 134 

Results 135 

Manipulation of decision bias affects sensory evidence accumulation 136 

In three EEG recording sessions, human participants (N = 16) viewed a continuous 137 

stream of horizontal, vertical and diagonal line textures alternating at a rate of 25 138 

textures/second. The participants’ task was to detect an orientation-defined square 139 

presented in the center of the screen and report it via a button press (Figure 2A). 140 

Trials consisted of a fixed-order sequence of textures embedded in the continuous 141 

stream (total sequence duration 1 second). A square appeared in the fifth texture of 142 

a trial in 75% of the presentations (target trials), while in 25% a homogenous 143 

diagonal texture appeared in the fifth position (nontarget trials). Although the onset of 144 

a trial within the continuous stream of textures was not explicitly cued, the similar 145 

distribution of reaction times in target and nontarget trials suggests that participants 146 

used the temporal structure of the task even when no target appeared (Figure 2—147 

figure supplement 1A). Consistent and significant EEG power modulations after trial 148 

onset (even for nontarget trials) further confirm that subjects registered trial onsets in 149 
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the absence of an explicit cue, plausibly using the onset of a fixed order texture 150 

sequence as an implicit cue (Figure 2—figure supplement 1B).  151 

In alternating nine-minute blocks of trials, we actively biased participants’ 152 

perceptual decisions by instructing them either to report as many targets as possible 153 

(“Detect as many targets as possible!”; liberal condition), or to only report high-154 

certainty targets (“Press only if you are really certain!”; conservative condition). 155 

Participants were free to respond at any time during a block whenever they detected 156 

a target. A trial was considered a target present response when a button press 157 

occurred before the fixed-order sequence ended (i.e. within 0.84 s after onset of the 158 

fifth texture containing the (non)target, see Figure 2A). We provided auditory 159 

feedback and applied monetary penalties following missed targets in the liberal 160 

condition and following false alarms in the conservative condition (Figure 2A; see 161 

Methods for details). The median number of trials for each SDT category across 162 

participants was 1206 hits, 65 false alarms, 186 misses and 355 correct rejections in 163 

the liberal condition, and 980 hits, 12 false alarms, 419 misses and 492 correct 164 

rejections in the conservative condition. 165 

Participants reliably adopted the intended decision bias shift across the two 166 

conditions, as shown by both the hit rate and the false alarm rate going down in 167 

tandem as a consequence of a more conservative bias (Figure 2B). The difference 168 

between hit rate and false alarm rate was not significantly modulated by the 169 

experimental bias manipulations (p = 0.81, two-sided permutation test, 10,000 170 

permutations, see Figure 2B). However, target detection performance computed 171 

using standard SDT d’ (perceptual sensitivity, reflecting the distance between the 172 

noise and signal distributions in Figure 1A)(Green & Swets, 1966) was slightly higher 173 

during conservative (liberal: d’ = 2.0 (s.d. 0.90) versus conservative: d’ = 2.31 (s.d. 174 
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0.82), p = 0.0002, see Figure 2C, left bars). We quantified decision bias using the 175 

standard SDT criterion measure c, in which positive and negative values reflect 176 

conservative and liberal biases, respectively (see the blue and red vertical lines in 177 

Figure 1A). This uncovered a strong experimentally induced bias shift from the 178 

conservative to the liberal condition (liberal: c = – 0.13 (s.d. 0.4), versus 179 

conservative: c = 0.73 (s.d. 0.36), p = 0.0001, see Figure 2C), as well as a 180 

conservative average bias across the two conditions (c = 0.3 (s.d. 0.31), p = 0.0013). 181 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 182 

Figure 2 | Strategic decision bias shift towards liberal biases evidence accumulation. A. 183 

Schematic of the visual stimulus and task design. Participants viewed a continuous stream of full-184 

screen diagonally, horizontally and vertically oriented textures at a presentation rate of 40 ms (25 Hz). 185 

After random inter-trial intervals, a fixed-order sequence was presented embedded in the stream. The 186 

fifth texture in each sequence either consisted of a single diagonal orientation (target absent), or 187 

contained an orthogonal orientation-defined square (either 45° or 135° orientation). Participants 188 

decided whether they had just seen a target, reporting detected targets by button press. Liberal and 189 
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conservative conditions were administered in alternating nine-minute blocks by penalizing either 190 

misses or false alarms, respectively, using aversive tones and monetary deductions. Depicted square 191 

and fixation dot sizes are not to scale. B. Average detection rates (hits and false alarms) during both 192 

conditions. Miss rate is equal to 1 – hit rate since both are computed on stimulus present trials, and 193 

correct-rejection rate is equal to 1 – false alarm rate since both are computed on stimulus absent 194 

trials, together yielding the four SDT stimulus-response categories C. SDT parameters for sensitivity 195 

and criterion. D. Schematic and simplified equation of drift diffusion model accounting for reaction 196 

time distributions for actively reported target-present and implicit target-absent decisions. Decision 197 

bias in this model can be implemented by either shifting the starting point of the evidence 198 

accumulation process (Z), or by adding an evidence-independent constant (‘drift bias’, db) to the drift 199 

rate. See text and Figure 1 for details. Notation: dy, change in decision variable y per unit time dt; v·dt, 200 

mean drift (multiplied with 1 for signal + noise (target) trials, and -1 for noise-only (nontarget) trials); 201 

db·dt, drift bias; and cdW, Gaussian white noise (mean = 0, variance = c2·dt). E. Difference in 202 

Bayesian Information Criterion (BIC) goodness of fit estimates for the drift bias and the starting point 203 

models. A lower delta BIC value indicates a better fit, showing superiority of the drift bias model to 204 

account for the observed results. F. Estimated model parameters for drift rate and drift bias in the drift 205 

bias model. Error bars, SEM across 16 participants. ***p < 0.001; n.s., not significant. Panel D. is 206 

modified and reproduced with permission from (de Gee et al., 2017) (Figure 4A, published under a 207 

CC BY 4.0 license). 208 

The following source data and figure supplements are available for Figure 2:  209 

Source data 1. This csv table contains the data for Figure 2 panels B, C, E and F. 210 

Figure supplement 1. Behavioral and neurophysiological evidence that participants were sensitive to 211 

the implicit task structure. 212 

Figure supplement 2. Signal-detection-theoretic behavioral measures during both conditions 213 

correspond closely to drift diffusion modeling parameters. 214 

Figure supplement 3. Single-participant drift diffusion model fits for the drift bias model for both 215 

conditions. 216 
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Because the SDT framework is static over time, we further investigated how 217 

bias affected various components of the dynamic decision process by fitting different 218 

variants of the drift diffusion model (DDM) to the behavioral data (Figure 1B, C) 219 

(Ratcliff & McKoon, 2008). The DDM postulates that perceptual decisions are 220 

reached by accumulating noisy sensory evidence towards one of two decision 221 

boundaries representing the choice alternatives. Crossing one of these boundaries 222 

can either trigger an explicit behavioral report to indicate the decision (for target-223 

present responses in our experiment), or remain implicit (i.e. without active 224 

response, for target-absent decisions in our experiment). The DDM captures the 225 

dynamic decision process by estimating parameters reflecting the rate of evidence 226 

accumulation (drift rate), the separation between the boundaries, as well as the time 227 

needed for stimulus encoding and response execution (non-decision time) (Ratcliff & 228 

McKoon, 2008). The DDM is able to estimate these parameters based on the shape 229 

of the RT distributions for actively reported (target-present) decisions along with the 230 

total number of trials in which no response occurred (i.e. implicit target-absent 231 

decisions) (Ratcliff et al., 2016).  232 

We fitted two variants of the DDM to distinguish between two possible 233 

mechanisms that can bring about a change in choice bias: one in which the starting 234 

point of evidence accumulation moves closer to one of the decision boundaries 235 

(‘starting point model’, Figure 1B) (Mulder, Wagenmakers, Ratcliff, Boekel, & 236 

Forstmann, 2012), and one in which the drift rate itself is biased towards one of the 237 

boundaries (de Gee et al., 2017) (‘drift bias model’, see Figure 1C, referred to as drift 238 

criterion by Rattclif and McKoon (2008)). The drift bias parameter is determined by 239 

estimating the contribution of an evidence-independent constant added to the drift 240 

(Figure 2D). In the two respective models, we freed either the drift bias parameter 241 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

(db, see Figure 2D) for the two conditions while keeping starting point (z) fixed 242 

across conditions (for the drift bias model), or vice versa (for the starting point 243 

model). Permitting only one parameter at a time to vary freely between conditions 244 

allowed us to directly compare the models without having to penalize either model 245 

for the number of free parameters. These alternative models make different 246 

predictions about the shape of the RT distributions in combination with the response 247 

ratios: a shift in starting point results in more target-present choices particularly for 248 

short RTs, whereas a shift in drift bias grows over time, resulting in more target-249 

present choices also for longer RTs (de Gee et al., 2017; Ratcliff & McKoon, 2008; 250 

Urai et al., 2018). The RT distributions above and below the evidence accumulation 251 

graphs in Figure 1B and 1C illustrate these different effects. In both models, all of the 252 

non-bias related parameters (drift rate v, boundary separation a and non-decision 253 

time u+w, see Figure 2D) were also allowed to vary by condition.  254 

We found that the starting point model provided a worse fit to the data than 255 

the drift bias model (starting point model, Bayesian Information Criterion (BIC) = 256 

79381; drift bias model, BIC = 79262, Figure 2E, see Methods for details). 257 

Specifically, for 15/16 participants, the drift bias model provided a better fit than the 258 

starting point model, for 12 of which delta BIC > 6, indicating strong evidence in favor 259 

of the drift bias model. Despite the lower BIC for the drift bias model, however, we 260 

note that to the naked eye both models provide similarly reasonable fits to the single 261 

participant RT distributions (Figure 2—figure supplement 3). Finally, we compared 262 

these two models to a model in which both drift bias and starting point were fixed 263 

across the conditions, while still allowing the non-bias-related parameters to vary per 264 

condition. This model provided the lowest goodness of fit (delta BIC > 6 for both 265 

models for all participants).  266 
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Given the superior performance of the drift bias model (in terms of BIC), we 267 

further characterized decision making under the bias manipulation using parameter 268 

estimates from this model, but we come back to the implausibility of the starting point 269 

model further below when inspecting the lack of pre-stimulus baseline effects in 270 

sensory or motor cortex. Drift rate, reflecting the participants’ ability to discriminate 271 

targets and nontargets, was somewhat higher in the conservative compared to the 272 

liberal condition (liberal: v = 2.39 (s.d. 1.07), versus conservative: v = 3.06 (s.d. 273 

1.16), p = 0.0001, permutation test, Figure 2F, left bars). Almost perfect correlations 274 

across participants in both conditions between DDM drift rate and SDT d’ provided 275 

strong evidence that the drift rate parameter captures perceptual sensitivity (liberal, r 276 

= 0.98, p = 1e–10; conservative, r = 0.96, p = 5e–9, see Figure 2—figure supplement 277 

2A).  278 

Regarding the DDM bias parameters, the condition-fixed starting point 279 

parameter in the drift bias model was smaller than half the boundary separation (i.e. 280 

closer to the target-absent boundary (z = 0.24 (s.d. 0.06), p < 0.0001, tested against 281 

0.5)), indicating an overall conservative starting point across conditions (Figure 2—282 

figure supplement 2D), in line with the overall positive SDT criterion (see Figure 2C, 283 

right panel). Strikingly, however, whereas the drift bias parameter was on average 284 

not different from zero in the conservative condition (db = –0.04 (s.d. 1.17), p = 285 

0.90), drift bias was strongly positive in the liberal condition (db = 2.08 (s.d. 1.0), p = 286 

0.0001; liberal vs conservative: p = 0.0005; Figure 2F, right bars). The overall 287 

conservative starting point combined with a condition-specific neutral drift bias 288 

explained the conservative decision bias (as quantified by SDT criterion) in the 289 

conservative condition (Figure 2C). Likewise, in the liberal condition, the overall 290 

conservative starting point combined with a condition-specific positive drift bias 291 
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(pushing the drift towards the target-present boundary) explained the neutral bias 292 

observed with SDT criterion (c around zero for liberal, see Figure 2C). 293 

Convergent with these modelling results, drift bias was strongly anti-correlated 294 

across participants with both SDT criterion (r = –0.89 for both conditions, p = 4e–6) 295 

and average reaction time (liberal, r = –0.57, p = 0.02; conservative, r = –0.82, p = 296 

1e–4, see Figure 2—figure supplement 2B and 2C). The strong correlations between 297 

drift rate and d’ on the one hand, and drift bias and c on the other, provide 298 

converging evidence that the SDT and DDM frameworks capture similar underlying 299 

mechanisms, while the DDM additionally captures the dynamic nature of perceptual 300 

decision making by linking the decision bias manipulation to the evidence 301 

accumulation process itself. As a control, we also correlated starting point with 302 

criterion, and found that the correlations were less strong in both conditions (liberal, r 303 

= –0.75.; conservative, r = –0.77), suggesting that the drift bias parameter better 304 

captured decision bias as instantiated by SDT. 305 

Finally, the bias manipulation also affected two other parameters in the drift 306 

bias model that were not directly related to sensory evidence accumulation: 307 

boundary separation was slightly but reliably higher during the liberal compared to 308 

the conservative condition (p < 0.0001), and non-decision time (comprising time 309 

needed for sensory encoding and motor response execution) was shorter during 310 

liberal (p < 0.0001) (Figure 2—figure supplement 2D). In conclusion, the drift bias 311 

variant of the drift diffusion model best explained how participants adjusted to the 312 

decision bias manipulations. In the next sections, we used spectral analysis of the 313 

concurrent EEG recordings to identify a plausible neural mechanism that implements 314 

biased sensory evidence accumulation.  315 

 316 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

Task-relevant textures induce stimulus-related responses in visual cortex 317 

Sensory evidence accumulation in a visual target detection task presumably relies 318 

on stimulus-related signals processed in visual cortex. Such stimulus-related signals 319 

are typically reflected in cortical population activity exhibiting a rhythmic temporal 320 

structure (Buzsáki & Draguhn, 2004). Specifically, bottom-up processing of visual 321 

information has previously been linked to increased high-frequency (> 40 Hz, i.e. 322 

gamma) electrophysiological activity over visual cortex (Bastos et al., 2015; 323 

Michalareas et al., 2016; Popov et al., 2017; van Kerkoerle et al., 2014). Figure 3 324 

shows significant electrode-by-time-by-frequency clusters of stimulus-locked EEG 325 

power with respect to the condition-specific pre-trial baseline period (–0.4 to 0 s). We 326 

observed a total of four distinct stimulus-related modulations, which emerged after 327 

target onset and waned around the time of response: two in the high-frequency 328 

range (> 36 Hz, Figures 3A and 3C) and two in the low-frequency range (< 36 Hz, 329 

Figures 3B and 3D). First, we found a spatially focal modulation in a narrow 330 

frequency range around 25 Hz reflecting the steady state visual evoked potential 331 

(SSVEP) arising from entrainment by the visual stimulation frequency of our 332 

experimental paradigm (Figure 3A, bottom panel), as well as a second modulation 333 

from 42—58 Hz comprising the SSVEP’s harmonic (Figure 3A, top panel). Both 334 

SSVEP frequency modulations have a similar topographic distribution (see left 335 

panels of Figure 3A).  336 
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  337 

Figure 3 | EEG power modulations related to stimulus processing and motor response. Each 338 

panel row depicts a three-dimensional (electrodes-by-time-by-frequency) cluster of power modulation, 339 

time-locked both to trial onset (left two panels) and button press (right two panels). Power 340 

modulations outside of the significant clusters is masked out. Modulations were computed as the 341 

percent signal change from the condition-specific pre-stimulus period (–0.4 to 0 s) and averaged 342 

across conditions. Topographical scalp maps show spatial extent of clusters by integrating modulation 343 

over time-frequency bins. Time-frequency representations (TFRs) show modulation integrated over 344 

electrodes indicated by black circles in the scalp maps. Circle sizes indicate electrode weight in terms 345 

of proportion of time-frequency bins contributed to the TFR. P-values above scalp maps indicate 346 

multiple comparison-corrected cluster significance using a permutation test across participants (N = 347 

14). Solid vertical lines indicate the time of trial onset (left) or button press (right), dotted vertical lines 348 

indicate time of (non)target onset. Integr. M., integrated power modulation. A (Top) 42-58 Hz (SSVEP 349 
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harmonic) cluster. A (Bottom). Posterior 23–27 Hz (SSVEP) cluster. B. Posterior 59–100 Hz 350 

(gamma) cluster. The clusters in A (Top) and B were part of one large cluster (hence the same p-351 

value), and were split based on the sharp modulation increase precisely in the 42-58 Hz range. C. 352 

12–35 Hz (beta) suppression cluster located more posteriorly aligned to trial onset, and more left-353 

centrally when aligned to button press.  354 

 355 

Third, we observed a 59—100 Hz (gamma) power modulation (Figure 3B), 356 

after carefully controlling for high-frequency EEG artifacts due to small fixational eye 357 

movements (microsaccades) by removing microsaccade-related activity from the 358 

data (Hassler, Trujillo-Barreto, & Gruber, 2011; Hipp & Siegel, 2013; Yuval-359 

Greenberg, Tomer, Keren, Nelken, & Deouell, 2008), and by suppressing non-neural 360 

EEG activity through scalp current density (SCD) transformation (Melloni, 361 

Schwiedrzik, Wibral, Rodriguez, & Singer, 2009; Perrin, Pernier, Bertrand, & 362 

Echallier, 1989) (see Methods for details). Importantly, the topography of the 363 

observed gamma modulation was confined to posterior electrodes, in line with a role 364 

of gamma in bottom-up processing in visual cortex (Ni et al., 2016). Finally, we 365 

observed suppression of low-frequency beta (11—22 Hz) activity in posterior cortex, 366 

which typically occurs in parallel with enhanced stimulus-induced gamma activity 367 

(Donner & Siegel, 2011; Kloosterman et al., 2015; Meindertsma, Kloosterman, Nolte, 368 

Engel, & Donner, 2017; Werkle-Bergner et al., 2014)(Figure 3C). Response-locked, 369 

this cluster was most pronounced over left motor cortex (electrode C4), plausibly due 370 

to the right-hand button press that participants used to indicate target detection 371 

(Donner, Siegel, Fries, & Engel, 2009). In the next sections, we characterize these 372 

signals separately for the two conditions, investigating stimulus-related signals within 373 

a pooling of eleven occipito-parietal electrodes based on the gamma enhancement 374 

in Figure 3B (Oz, POz, Pz, PO3, PO4, and P1 to P6), and motor-related signals in 375 
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left-hemispheric beta (LHB) suppression in electrode C4 (Figure 3C) (O'Connell, 376 

Dockree, & Kelly, 2012). 377 

 378 

EEG power modulation time courses consistent with the drift bias model  379 

Our behavioral results suggest that participants biased sensory evidence 380 

accumulation in the liberal condition, rather than changing its starting point. We next 381 

sought to provide converging evidence for this conclusion by looking at pre-stimulus 382 

activity, post-stimulus activity, and motor-related EEG activity. Following previous 383 

studies, we hypothesized that a starting point bias would be reflected in a difference 384 

in pre-motor baseline activity between conditions before onset of the decision 385 

process (Afacan-Seref, Steinemann, Blangero, & Kelly, 2018; de Lange, Rahnev, 386 

Donner, & Lau, 2013), and/or in a difference in pre-stimulus activity such as seen in 387 

bottom up stimulus-related SSVEP and gamma power signals (Figure 4A shows the 388 

relevant clusters as derived from Figure 3). Thus, we first investigated the timeline of 389 

raw power in the SSVEP, gamma and LHB range between conditions (see Figure 390 

4B). None of these markers showed a meaningful difference in pre-stimulus baseline 391 

activity. Statistically comparing the raw pre-stimulus activity between liberal and 392 

conservative in a baseline interval between –0.4 to 0 s prior to trial onset yielded p = 393 

0.52, p = 0.51 and p = 0.91, permutation tests, for the respective signals. This 394 

confirms a highly similar starting point of evidence accumulation in all these signals. 395 

Next, we predicted that a shift in drift bias would be reflected in a steeper slope of 396 

post-stimulus ramping activity (leading up to the decision). We reasoned that the 397 

best way of ascertaining such an effect would be to baseline the activity to the 398 

interval prior to stimulus onset (using the interval between –0.4 to 0 s), such that any 399 

post-stimulus effect we find cannot be explained by pre-stimulus differences (if any). 400 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

The time course of post-stimulus and response-locked activity after baselining can 401 

be found in Figure 4C. All three signals showed diverging signals between the liberal 402 

and conservative condition after trial onset, consistent with adjustments in the 403 

process of evidence accumulation itself. Specifically, we observed higher peak 404 

modulation levels for the liberal condition in all three stimulus-locked signals (p = 405 

0.08, p = 0.002 and p = 0.023, permutation tests for the respective signals), and 406 

found a steeper slope towards the button press for LHB (p = 0.04). Finally, the event 407 

related potential in motor cortex also showed a steeper slope towards report for 408 

liberal (p = 0.07, Figure 4, bottom row, baseline plot is not meaningful for time-409 

domain signals due to mean removal during preprocessing). Taken together, these 410 

findings provide converging evidence that participants implemented a liberal decision 411 

bias by adjusting the rate of evidence accumulation towards the targent-present 412 

choice boundary, but not its starting point. In the next sections, we sought to identify 413 

a neural mechanism that could underlie these biases in the rate of evidence 414 

accumulation.  415 
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  416 

Figure 4 | Experimental task manipulations affect the time course of stimulus- and motor-417 

related EEG signals, but not its starting point. Raw power throughout the baseline period and time 418 

courses of power modulation time-locked to trial start and button press. A. Relevant electrode clusters 419 

and frequency ranges (from Figure 3): Posterior SSVEP, Posterior gamma and Left-hemispheric beta 420 

(LHB). B. The time course of raw power in a wide interval around the stimulus –0.8 to 0.8 s ms for 421 

these clusters. C. Stimulus locked and response locked percent signal change from baseline 422 

(baseline period: [-400,0] ms). Error bars, SEM. Black horizontal bar indicates significant difference 423 

between conditions, cluster-corrected for multiple comparison (p < 0.05, two sided). 424 

 425 

Liberal bias is reflected in pre-stimulus midfrontal theta enhancement and 426 

posterior alpha suppression 427 
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Given a lack of pre-stimulus (starting-point) differences in specific frequency ranges 428 

involved in stimulus processing or motor responses (Figure 4B), we next focused on 429 

other pre-stimulus differences that might be the root cause of the post-stimulus 430 

differences we observed in Figure 4C. To identify such signals, we computed 431 

spectral power in the pre-stimulus time window from –1 and 0 s and ran a cluster-432 

based permutation test across all electrodes and frequencies in the low-frequency 433 

domain (1–35Hz), looking for power modulations due to our experimental 434 

manipulations. Pre-stimulus spectral power indeed uncovered two distinct 435 

modulations in the liberal compared to the conservative condition: (1) theta 436 

modulation in midfrontal electrodes and (2) alpha modulation in posterior electrodes. 437 

Figure 5A depicts the difference between the liberal and conservative condition, 438 

confirming significant clusters (p< 0.05, cluster-corrected for multiple comparisons) 439 

of enhanced theta (2–6 Hz) in frontal electrodes (Fz, Cz, FC1,and FC2), as well as 440 

suppressed alpha (8—12 Hz) in a group of posterior electrodes, including all eleven 441 

electrodes selected previously based on post-stimulus gamma modulation (Figure 442 

3). The two modulations were uncorrelated across participants (r = 0.06, p = 0.82), 443 

suggesting they reflect different neural processes related to our experimental task 444 

manipulations. Taken together, these findings show that a strategic liberal bias shift 445 

results in increased tonic midfrontal theta as well as suppression of pre-stimulus 446 

alpha power. These findings are consistent with literature pointing to a role of 447 

midfrontal theta as a source of cognitive control signals originating from pre-frontal 448 

cortex (M. X. Cohen & Frank, 2009; van Driel, Ridderinkhof, & Cohen, 2012) and 449 

alpha in posterior cortex reflecting spontaneous trial-to-trial fluctuations in decision 450 

bias (Iemi et al., 2017). The fact that these pre-stimulus effects occur as a function of 451 

our experimental manipulation suggests that they are a hallmark of strategic bias 452 
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adjustment, rather than a mere correlate of spontaneous shifts in decision bias. 453 

Importantly, this finding implies that humans are able to actively control pre-stimulus 454 

alpha power in visual cortex (possibly through top-down signals from frontal cortex), 455 

plausibly acting to bias sensory evidence accumulation towards the response 456 

alternative that maximizes rewards. 457 

458 
Figure 5 | Adopting a liberal decision bias is reflected in increased midfrontal theta and 459 

suppressed pre-stimulus alpha power. A. Significant clusters of power modulation between liberal 460 

and conservative in a pre-stimulus window between -1 and 0 s before trial onset. When performing 461 

cluster-based permutation test over frequency (1-35 Hz) and all electrodes, two significant clusters 462 

emerged: theta (2-6 Hz, top), and alpha (8-12 Hz, bottom). Left panels: raw power spectra of pre-463 

stimulus neural activity for conservative and liberal separately in the significant clusters (for illustration 464 

purposes), Middle panels: Liberal – conservative raw power spectrum. Black horizontal bar indicates 465 

statistically significant frequency range (p < 0.05, cluster-corrected for multiple comparisons, two-466 

sided). Right panels: Corresponding liberal – conservative scalp topographic maps of the pre-stimulus 467 

raw power difference between conditions for EEG theta power (2-6 Hz) and alpha power (8-12 Hz). 468 

Plotting conventions as in Figure 3. Error bars, SEM across participants (N = 15). B. Probability 469 

density distributions of single trial alpha power values for both conditions, averaged across 470 

participants.  471 

 472 

Pre-stimulus alpha power mediates cortical gamma responses 473 
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Next, we asked how suppression of pre-stimulus alpha activity might bias the 474 

process of sensory evidence accumulation. One possibility is that alpha suppression 475 

influences evidence accumulation by modulating the susceptibility of visual cortex to 476 

sensory stimulation, a phenomenon dubbed ‘neural excitability’ (Iemi et al., 2017; 477 

Jensen & Mazaheri, 2010). We explored this possibility using a theoretical response 478 

gain model coined by Rajagovindan and Ding (2011). This model postulates that the 479 

relationship between the total synaptic input activity that a neuronal ensemble 480 

receives and the total output activity it produces is characterized by a sigmoidal 481 

function (red line in Figure 6A) – a notion that is biologically plausible (Destexhe, 482 

Rudolph, Fellous, & Sejnowski, 2001; Freeman, 1979). In this model, the total 483 

synaptic input into visual cortex consists of two components: (1) sensory input (i.e. 484 

due to sensory stimulation) and (2) ongoing fluctuations in endogenously generated 485 

(i.e. not sensory-related) neural activity. In our experiment, the sensory input into 486 

visual cortex can be assumed to be identical across trials, because the same 487 

sensory stimulus was presented in each trial (see Figure 2A). The endogenous input, 488 

in contrast, is thought to vary from trial to trial reflecting fluctuations in top-down 489 

cognitive processes such as attention. These fluctuations are assumed to be 490 

reflected in alpha power suppression, such that weaker alpha is associated with 491 

increased attention and stronger sensory responses (Figure 6B). Given the 492 

combined constant sensory and variable endogenous input in each trial (see 493 

horizontal axis in Figure 6A), the strength of the output responses of visual cortex 494 

are largely determined by the trial-to-trial variations in alpha strength (see vertical 495 

axis in Figure 6A). Furthermore, the sigmoidal shape of the input-output function 496 

results in an effective range in the center of the function’s input side which yields the 497 

strongest stimulus-induced output responses since the sigmoid curve there is 498 
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steepest. Mathematically, the effect of endogenous input on stimulus-induced output 499 

responses (see marked interval in Figure 6A) can be expressed as the first order 500 

derivative or slope of the sigmoid in Figure 6A, which is referred to as the response 501 

gain by Rajagovindan and Ding (2011). This derivative is plotted in Figure 6B (red 502 

line) across levels of pre-stimulus alpha power, predicting an inverted-U shaped 503 

relationship between alpha and response gain in visual cortex.  504 

Regarding our experimental conditions, the model not only predicts that the 505 

suppression of pre-stimulus alpha observed in the liberal condition reflects a shift in 506 

the operational range of alpha (see Figure 5B), but also that it increases the 507 

maximum output of visual cortex (a shift from the red to the blue line in Figure 6A). 508 

Therefore, the difference between stimulus conditions is not modeled using a single 509 

input-output function, but necessitates an additional mechanism that changes the 510 

input-output relationship itself. The exact nature of this mechanism is not known 511 

(also see Discussion). Rajagovindan and Ding suggest that top-down mechanisms 512 

modulate ongoing prestimulus neural activity to increase the slope of the sigmoidal 513 

function, but despite the midfrontal theta activity we observed, this hypothesis is 514 

somewhat elusive. We have no means to establish directly whether this relationship 515 

exists, and can merely reflect on the fact that this change in the input-output function 516 

is necessary to capture condition-specific effects of the input-output relationship, 517 

both in the data of Rajagovindan and Ding (2011) and in our own data. Thus, as the 518 

operational range of alpha shifts leftwards from conservative to liberal, the upper 519 

asymptote in Figure 6A moves upwards such that the total maximum output activity 520 

increases. This in turn affects the inverted-U-shaped relationship between alpha and 521 

gain in visual cortex (blue line in Figure 6B), leading to a steeper response curve in 522 

the liberal condition resembling a Gaussian (bell-shaped) function.  523 
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 524 

Figure 6 | Pre-stimulus alpha power mediates cortical gamma responses. A. Theoretical 525 

response gain model describing the transformation of stimulus-induced and endogenous input activity 526 

(denoted by Sx and SN respectively) to the total output activity (denoted by O(Sx + SN)) in visual cortex 527 

by a sigmoidal function. Different operational alpha ranges are associated with input-output functions 528 

with different slopes due to corresponding changes in the total output. B. Alpha-mediated output 529 

responses (solid lines) are formalized as the first derivative (slope) of the sigmoidal functions (dotted 530 

lines), resulting in inverted-U (Gaussian) shaped relationships between alpha and gamma, involving 531 

stronger response gain in the liberal than in the conservative condition C. Corresponding empirical 532 

data showing gamma modulation (same percent signal change units as in Figure 3) as a function of 533 

alpha bin. The location on the x-axis of each alpha bin was taken as the median alpha of the trials 534 

assigned to each bin and averaged across subjects. D-F. Model prediction tests. D. Raw pre-stimulus 535 

alpha power for both conditions, averaged across subjects. E. Post-stimulus gamma power 536 

modulation for both conditions averaged across the two middle alpha bins (5 and 6) in panel C. F. 537 

Liberal – conservative difference between the response gain curves shown in panel C, centered on 538 

alpha bin. Error bars, within-subject SEM across participants (N = 14). 539 
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 540 

The following source data is available for Figure 6:  541 

Source data 1. SPSS .sav file containing the data used in panels C, E, and F.  542 

 543 

To investigate sensory response gain across different alpha levels in our data, 544 

we used the post-stimulus gamma activity (see Figure 3) as a proxy for alpha-545 

mediated output gain in visual cortex (Bastos et al., 2015; Michalareas et al., 2016; 546 

Ni et al., 2016; Popov et al., 2017; van Kerkoerle et al., 2014). We exploited the large 547 

number of trials per participant per condition (range 543 to 1391 trials) by sorting 548 

each participant’s trials into ten equal-sized bins ranging from weak to strong alpha, 549 

separately for the two conditions. We then calculated the average gamma power 550 

modulation within each alpha bin and finally plotted the participant-averaged gamma 551 

across alpha bins for each condition in Figure 6C (see Methods for details). This 552 

indeed revealed an inverted-U shaped relationship between alpha and gamma, with 553 

a steeper curve for the liberal condition. 554 

To assess the model’s ability to explain the data, we statistically tested three 555 

predictions derived from the model. First, the model predicts overall lower average 556 

pre-stimulus alpha power for liberal than for conservative due to the shift in the 557 

operational range of alpha. This was confirmed in Figure 6D (p = 0.01, permutation 558 

test, see also Figures 4B and 4C). Second, the model predicts a stronger gamma 559 

response for liberal than for conservative around the peak of the gain curve (the 560 

center of the effective alpha range, see Figure 6B), which we indeed observed (p = 561 

0.024, permutation test on the average of the middle two alpha bins)(Figure 6E). 562 

Finally, the model predicts that the difference between the gain curves (when they 563 

are aligned over their effective ranges on the x-axis using alpha bin number, as 564 
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shown in Figure 6 – figure supplement 1A) also resembles a Gaussian curve (Figure 565 

6 – figure supplement 1B). Consistent with this prediction, we observed an 566 

interaction effect between condition (liberal, conservative) and bin number (1-10) 567 

using a standard Gaussian contrast in a 2-way repeated measures ANOVA (F(1,13) 568 

= 4.6, p = 0.051, partial η2 = 0.26). Figure 6F illustrates this finding by showing the 569 

difference between the two curves in Figure 6C as a function of alpha bin number 570 

(see Figure 6 – figure supplement 1C for the curves of both conditions as a function 571 

of alpha bin number). Subsequent separate tests for each condition indeed 572 

confirmed a significant U-shaped relationship between alpha and gamma in the 573 

liberal condition with a large effect size (F(1,13) = 7.7, p = 0.016, partial η2 = 0.37), 574 

but no significant effect in the conservative condition with only a small effect size 575 

(F(1,13) = 1.7, p = 0.22, partial η2 = 0.12, one-way repeated measures ANOVA’s 576 

with factor alpha bin, Gaussian contrast). 577 

Taken together, these findings suggest that the alpha suppression observed 578 

in the liberal compared to the conservative condition boosted stimulus-induced 579 

activity in the liberal condition, which in turn might have indiscriminately biased 580 

sensory evidence accumulation towards the target-present decision boundary. In the 581 

next section, we investigate a direct link between drift bias and stimulus-induced 582 

activity as measured through gamma. 583 

 584 

Visual cortical gamma activity predicts strength of evidence accumulation bias 585 

The findings presented so far suggest that behaviorally, a liberal decision bias shifts 586 

evidence accumulation towards target-present responses (drift bias in the DDM), 587 

while neurally it suppresses pre-stimulus alpha while enhancing poststimulus gamma 588 
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responses. In a final analysis, we asked whether alpha-binned gamma modulation is 589 

directly related to a stronger drift bias. To this end, we again applied the drift bias 590 

DDM to the behavioral data of each participant, but now freed the drift bias 591 

parameter not only for the two conditions, but also for the ten alpha bins for which we 592 

calculated gamma modulation (see Figure 6C). We directly tested the 593 

correspondence between DDM drift bias and gamma modulation using repeated 594 

measures correlation (Bakdash and Marusich, (2017), which takes all repeated 595 

observations across participants into account while controlling for non-independence 596 

of observations collected within each participant (see Methods for details). Gamma 597 

modulation was indeed correlated with drift bias in both conditions (liberal, r(125) = 598 

0.49, p = 5e-09; conservative, r(125) = 0.38, p = 9e-06) (Figure 7). We tested the 599 

robustness of these correlations by excluding the data points that contributed most to 600 

the correlations (as determined with Cook’s distance) and obtained qualitatively 601 

similar results, indicating these correlations were not driven by outliers (Figure 7, see 602 

Methods for details). To rule out that starting point could explain this correlation, we 603 

repeated this analysis while controlling for the starting point of evidence 604 

accumulation estimated per alpha bin within the starting point model. To this end, we 605 

regressed both bias parameters on gamma. Crucially, we found that in both 606 

conditions starting point bias did not uniquely predict gamma when controlling for 607 

drift bias (liberal: F(1,124) = 5.8, p = 0.017 for drift bias, F(1,124) = 0.3, p = 0.61 for 608 

starting point; conservative: F(1,124) = 8.7, p = 0.004 for drift bias, F(1,124) = 0.4, p 609 

= 0.53 for starting point. This finding again suggests that the drift bias model 610 

outperforms the starting point model when correlated to gamma power. As a final 611 

control, we also performed this analysis for the SSVEP (23–27 Hz) power 612 

modulation (see Figure 3B, bottom) and found a similar inverted-U shaped 613 
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relationship between alpha and the SSVEP for both conditions (Figure 7 – figure 614 

supplement 1A), but no correlation with drift bias (liberal, r(125) = 0.11, p = 0.72, 615 

conservative, r(125) = 0.22, p = 0.47) (Figure 7 – figure supplement 1B) or with 616 

starting point (liberal, r(125) = 0.08, p = 0.02, conservative, r(125) = 0.22, p = 0.95). 617 

This suggests that the SSVEP is similarly coupled to alpha as the stimulus-induced 618 

gamma, but is less affected by the experimental conditions and not predictive of 619 

decision bias shifts. Taken together, these results suggest that gamma modulation 620 

underlies biased sensory evidence accumulation. 621 

 622 

 623 

Figure 7 | Alpha-binned gamma modulation correlates with evidence accumulation bias. 624 

Repeated measures correlation between gamma modulation and drift bias for the two conditions. 625 

Each circle represents a participant’s gamma modulation within one alpha bin. Drift bias and gamma 626 

modulation scalars were residualized by removing the average within each participant and condition, 627 

thereby removing the specific range in which the participants values operated. Crosses indicate data 628 

points that were most influential for the correlation, identified using Cook’s distance. Correlations 629 

remained qualitatively unchanged when these data points were excluded (liberal, r(120) = 0.46, p = 630 

8e-07; conservative, r(121) = 0.27, p = 0.0009) Error bars, 95% confidence intervals after averaging 631 

across participants. 632 

The following source data and figure supplements are available for Figure 7:  633 

Source data 1. MATLAB .mat file containing the data used. 634 
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Figure supplement 1. Alpha-binned post-stimulus SSVEP modulation. 635 

Finally, we asked to what extent the enhanced tonic midfrontal theta may have 636 

mediated the relationship between alpha-binned gamma and drift bias. To answer 637 

this question, we entered drift bias in a 2-way repeated measures ANOVA with 638 

factors theta and gamma power (all variables alpha-binned), but found no evidence 639 

for mediation of the gamma-drift bias relationship by midfrontal theta (liberal, F(1,13) 640 

= 1.3, p = 0.25; conservative, F(1,13) = 0.003, p = 0.95). Thus, the enhanced 641 

midfrontal theta in the liberal condition plausibly reflects a top-down, attention-related 642 

signal indicating the need for cognitive control to avoid missing targets, but its 643 

amplitude seemed not directly linked to enhanced sensory evidence accumulation, 644 

as found for gamma. This latter finding suggests that the enhanced theta in the 645 

liberal condition served as an alarm signal indicating the need for a shift in response 646 

strategy, without specifying exactly how this shift was to be implemented (Cavanagh 647 

& Frank, 2014).  648 

 649 

Discussion 650 

Traditionally, bias has been conceptualized in SDT as a criterion threshold that is 651 

positioned at an arbitrary location between noise and signal-embedded-in-noise 652 

distributions of sensory evidence strengths. The ability to strategically shift decision 653 

bias in order to flexibly adapt to stimulus-response reward contingencies in the 654 

environment presumably increases chances of survival, but to date such strategic 655 

bias shifts as well as their neural underpinnings have not been demonstrated. Here, 656 

we compared two versions of the drift diffusion model to show that an experimentally 657 

induced bias shift affects the process of sensory evidence accumulation itself, rather 658 

than shifting a threshold entity as SDT implies. Moreover, we reveal the neural 659 
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signature of drift bias by showing that an experimentally induced liberal decision bias 660 

is accompanied by changes in midfrontal theta and posterior alpha suppression, 661 

resulting in enhanced gamma activity by increased response gain. 662 

Although previous studies have shown correlations between suppression of 663 

pre-stimulus alpha (8—12 Hz) power and a liberal decision bias during spontaneous 664 

fluctuations in alpha activity (Iemi et al., 2017; Limbach & Corballis, 2016), these 665 

studies have not established the effect of experimentally induced (within-subject) 666 

bias shifts. In the current study, by experimentally manipulating stimulus-response 667 

reward contingencies we show for the first time that pre-stimulus alpha can be 668 

actively modulated by a participant to achieve changes in decision bias, plausibly 669 

mediated by adjusting cognitive control signals originating from midfrontal cortex. 670 

Further, we show that alpha suppression in turn modulates gamma activity, in part by 671 

increasing the gain of cortical responses. Critically, gamma activity accurately 672 

predicted the strength of the drift bias parameter in the DDM drift bias model, thereby 673 

providing a direct link between our behavioral and neural findings. Together, these 674 

findings show for the first time that humans are able to actively implement decision 675 

biases by flexibly adapting neural excitability to strategically shift sensory evidence 676 

accumulation towards one of two decision bounds. 677 

Based on our results, we propose that decision biases are implemented by 678 

flexibly adjusting neural excitability in visual cortex. Figure 8 summarizes this 679 

proposed mechanism graphically by visualizing a hypothetical transition in neural 680 

excitability following a strategic liberal bias shift, as reflected in visual cortical alpha 681 

suppression (left panel). This increased excitability translates into stronger gamma-682 

band responses following stimulus onset (right panel, top). These increased gamma 683 

responses finally bias evidence accumulation towards the target-present decision 684 
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boundary during a liberal state, resulting in more target-present responses, whereas 685 

target-absent responses are decimated (blue RT distributions; right panel, bottom). 686 

Our experimental manipulation of decision bias in different blocks of trials suggests 687 

that decision makers are able to control this biased evidence accumulation 688 

mechanism willfully by adjusting cognitive control signals in frontal cortex, which in 689 

turn might have a top-down effect on alpha in visual cortex. 690 

 691 

Figure 8 | Illustrative graphical depiction of the excitability state transition from conservative 692 

to liberal, and subsequent biased evidence accumulation under a liberal bias. The left panel 693 

shows the transition from a conservative to a liberal condition block. The experimental induction of a 694 

liberal decision bias causes alpha suppression in visual cortex, which increases neural excitability. 695 

The right top panel shows increased gamma gain for incoming sensory evidence under conditions of 696 

high excitability. The right bottom panel shows how increased gamma-gain causes a bias in the drift 697 

rate, resulting in more ‘target present’ responses than in the conservative state. 698 

 699 

A neural mechanism that could underlie bias-related alpha suppression may 700 

be under control of the catecholaminergic neuromodulatory systems, consisting of 701 

the noradrenaline-releasing locus coeruleus (LC) and dopamine systems (Aston-702 

Jones & Cohen, 2005). These systems are able to modulate the level of arousal and 703 
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neural gain, and show tight links with pupil responses (de Gee et al., 2017; de Gee, 704 

Knapen, & Donner, 2014; Joshi, Li, Kalwani, & Gold, 2015; McGinley, David, & 705 

McCormick, 2015). Accordingly, pre-stimulus alpha power suppression has also 706 

recently been linked to pupil dilation (Meindertsma et al., 2017). From this 707 

perspective, our results reconcile previous studies showing relationships between a 708 

liberal bias, suppression of spontaneous alpha power and increased pupil size. 709 

Consistent with this, a recent monkey study observed increased neural activity 710 

during a liberal bias in the superior colliculus (Crapse, Lau, & Basso, 2018), a mid-711 

brain structure tightly interconnected with the LC (Joshi et al., 2015). Taken together, 712 

a more liberal within-subject bias shift (following experimental instruction and/or 713 

reward) might activate neuromodulatory systems that subsequently increase cortical 714 

excitability and enhance sensory responses for both stimulus and ‘noise’ signals in 715 

visual cortex, thereby increasing a person’s propensity for target-present responses 716 

(Iemi et al., 2017). 717 

We note that although the gain model is consistent with our data as well as 718 

the data on which the model was conceived (see Rajagovindan & Ding, 2011), we do 719 

not provide a plausible mechanism that could bring about the steepening in the U-720 

curved function observed in Figures 6C and 6F. Although Rajagovindan and Ding 721 

report a simulation in their paper suggesting that increased excitability could indeed 722 

cause increased gain, this shift could in principle either be caused by the alpha 723 

suppression itself, by the same signal that causes alpha suppression, or it could 724 

originate from an additional top-down signal from frontal brain regions. Our analysis 725 

of pre-stimulus signals indeed shows preliminary evidence for such a top-down 726 

signal, but how exactly the gain enhancement comes about remains an open 727 

question that should be addressed in future research. 728 
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Whereas we report a unique link between alpha-mediated gamma modulation 729 

and decision bias through the gain model, several previous studies have reported a 730 

link between alpha and objective performance instead of bias, particularly in the 731 

phase of alpha oscillations (Busch, Dubois, & VanRullen, 2009; Mathewson, Gratton, 732 

Fabiani, Beck, & Ro, 2009). Our findings can be reconciled with those by considering 733 

that detection sensitivity in many previous studies was often quantified in terms of 734 

raw stimulus detection rates, which do not dissociate objective sensitivity from 735 

response bias (see Figure 2B) (Green & Swets, 1966). Indeed, our findings are in 736 

line with recently reported links between decision bias and spontaneous fluctuations 737 

in excitability (Iemi et al., 2017; Iemi & Busch, 2017; Limbach & Corballis, 2016), 738 

suggesting an active role of neural excitability in decision bias.  739 

Further, one could ask whether the observed change in cortical excitability 740 

may reflect a change in target detection sensitivity (drift rate) rather than an 741 

intentional bias shift. This is unlikely because that would predict effects opposite to 742 

those we observed. We found increased excitability in the liberal condition compared 743 

to the conservative condition; if this were related to improved detection performance, 744 

one would predict higher sensitivity in the liberal condition, while we found higher 745 

sensitivity in the conservative condition (compare drift rate to drift bias in both 746 

conditions in Fig. 2C). This finding convincingly ties cortical excitability in our 747 

paradigm to decision bias, as opposed to detection sensitivity. Convergently, other 748 

studies also report a link between pre-stimulus low-frequency EEG activity and 749 

subjective perception, but not objective task performance (Benwell et al., 2017; Iemi 750 

& Busch, 2017).  751 

In summary, our results suggest that stimulus-induced responses are boosted 752 

during a liberal decision bias due to increased cortical excitability, in line with recent 753 
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work linking alpha power suppression to response gain (Peterson & Voytek, 2017). 754 

Future studies can now establish whether this same mechanism is at play in other 755 

subjective aspects of decision-making, such as confidence and meta-cognition 756 

(Fleming, Putten, & Daw, 2018; Samaha et al., 2017) as well as in a dynamically 757 

changing environment (Norton, Fleming, Daw, & Landy, 2017). Explicit manipulation 758 

of cortical response gain during a bias manipulation (by pharmacological 759 

manipulation of the noradrenergic LC-NE system; (Servan-Schreiber, Printz, & 760 

Cohen, 1990)) or by enhancing occipital alpha power using transcranial brain 761 

stimulation (Zaehle, Rach, & Herrmann, 2010) could further establish the underlying 762 

neural mechanisms involved in decision bias.  763 

In the end, although one may be unaware, every decision we make is 764 

influenced by biases that operate on one’s noisy evidence accumulation process. 765 

Understanding how these biases affect our decisions is crucial to enable us to 766 

control or invoke them adaptively (Pleskac, Cesario, & Johnson, 2017). Pinpointing 767 

the neural mechanisms underlying bias in the current elementary perceptual task 768 

may pave the way for understanding how more abstract and high-level decisions are 769 

modulated by decision bias (Tversky & Kahneman, 1974). 770 
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 777 

Data and code sharing 778 

The data analyzed in this study are publicly available on Figshare (Kloosterman et 779 

al., 2018). Analysis scripts are publicly available on Github (Kloosterman, 2018). 780 

 781 

Source data and figure supplements 782 

The following source data and figure supplements are included in this article: 783 

Figure 2 – Source data 1. (source_Figure2.mat.zip) 784 

Figure 2 – Figure supplements 1, 2 and 3. 785 

Figure 6 – Source data 1. (source_Figure6.sav.zip) 786 

Figure 6 – Figure supplement 1 787 

Figure 7 – Source data 1. (source_Figure7.mat.zip) 788 

Figure 7 – Figure supplement 1.  789 

 790 

Figure supplement legends 791 

Figure 2—figure supplement 1 | Behavioral and neurophysiological evidence that participants were 792 

sensitive to the implicit task structure. A. Participant-average RT distributions for hits and false alarms 793 

in both conditions. The presence of similar RT distributions for false alarms and hits indicates that 794 

participants were sensitive to trial onset despite the fact that trial onsets were only implicitly signaled. 795 

Error bars, SEM. B. Time-frequency representations of low-frequency EEG power modulations with 796 

respect to the pre-stimulus period (–0.4 – 0 s), pooled across the two conditions. Significant low-797 

frequency modulation occurred even for nontarget trials without overt response (correct rejections), 798 

indicating that participants detected the onset of a trial even when neither a target was presented nor 799 

a response was given. Saturated colors indicate clusters of significant modulation, cluster threshold p 800 
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< 0.05, two-sided permutation test across participants, cluster-�corrected; N = 15). Solid and dotted 801 

vertical lines respectively indicate the onset of the trial and the target stimulus. M, power modulation. 802 

 803 

Figure 2—figure supplement 2 | Signal-detection-theoretic (SDT) behavioral measures during 804 

both conditions correspond closely to drift diffusion modeling (DDM) parameters. A. Across-805 

participant Pearson correlation between d’ and drift rate for the two conditions. Each dot represents a 806 

participant. B. As A. but for correlation between criterion and DDM drift bias. The correlation is 807 

negative due to a lower criterion reflecting a stronger liberal bias. C. Left panel, mean reaction times 808 

(RT) for hits and false alarms for the two conditions. Middle and right panels, As A. but for correlation 809 

between RT for hits and drift bias. D. Parameter estimates in the drift bias DDM not related to 810 

evidence accumulation (drift rate). ***p < 0.001; n.s., not significant.  811 

 812 

Figure 2—figure supplement 3 | Single-participant drift diffusion model fits for the drift bias 813 

and starting point models for both conditions. Rows, single participant RT distributions and drift 814 

diffusion model fits for the two models for both conditions. 815 

 816 

Figure 6 – figure supplement 1 | Gain model predictions and corresponding empirical data 817 

plotted as a function of pre-stimulus alpha bin number. A. Model predictions for both conditions. 818 

The gain curve for the liberal condition is steeper than for the conservative condition. Binning trials 819 

based on alpha within each condition directly maps the peaks of the gain curves onto each other. B. 820 

Model prediction for liberal – conservative as a function of alpha bin number. The difference gain 821 

curve between the two conditions is again an inverted-U shaped function. C. Corresponding empirical 822 

data. The plot is identical to Figure 5C, except that the bin number is plotted instead of the actual 823 

alpha power for each condition.  824 

 825 

Figure 7 – figure supplement 1 | Alpha-binned post-stimulus SSVEP modulation. A. Inverted-U 826 

shaped relationship between alpha and SSVEP modulation, computed as the percent signal change 827 

23 – 27 Hz power modulation with respect to the pre-stimulus baseline. B. Correlations between 828 

SSVEP modulation and drift bias for both conditions. These non-significant correlations are overall 829 

weaker than for gamma (see Figure 6). 830 
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section in Materials 

and Methods  
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algorithm RRID:SCR_001622 

software, 

algorithm 
Presentation NeuroBS 

Presentation_v9.9, 

RRID:SCR_002521 
  

software, 

algorithm 

Custom 

analysis 

code 

Kloosterman 

(2018) 
https://github.com/ 

nkloost1/critEEG 

  

other 

EEG data 

experimental 

task 

Kloosterman 

et al.(2018) 

https://doi.org/10.6084/ 

m9.figshare.6142940 
  

 1073 

Participants Sixteen participants (eight females, mean age 24.1 years, ± 1.64) took 1074 

part in the experiment, either for financial compensation (EUR 10, - per hour) or in 1075 

partial fulfillment of first year psychology course requirements. Each participant 1076 

completed three experimental sessions on different days, each session lasting ca. 2 1077 

hours, including preparation and breaks. One participant completed only two 1078 

sessions, yielding a total number of sessions across subjects of 47. Due to technical 1079 

issues, for one session only data for the liberal condition was available. One 1080 

participant was an author. All participants had normal or corrected-to-normal vision 1081 

and were right handed. Participants provided written informed consent before the 1082 

start of the experiment. All procedures were approved by the ethics committee of the 1083 

University of Amsterdam. 1084 

Regarding sample size, our experiment consisted of 16 biological replications 1085 

(participants) and either two (one participant) or three (fifteen participants) technical 1086 

replications (i.e. experimental sessions). The sample size was determined based on 1087 

two criteria: 1) obtaining large amounts of data per participant (thousands of trials), 1088 

which is necessary to perform robust drift diffusion modelling of choice behavior and 1089 

obtain reliable EEG spectral power estimates for each of the ten bins of trials that 1090 

were created within participants, and 2) obtaining data from a sufficient number of 1091 
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participants to leverage across-subject variability in correlational analyses. Thus, we 1092 

emphasized obtaining many data points per participant relative to obtaining many 1093 

participants, while still preserving the ability to perform correlations across 1094 

participants. 1095 

All participants were included in the signal-detection-theoretical and drift 1096 

diffusion modeling analyses. One participant was excluded from the EEG analysis 1097 

due to excessive noise (EEG power spectrum opposite of 1/frequency). One further 1098 

participant was excluded from the analyses that included condition-specific gamma 1099 

because the liberal–conservative difference in gamma in this participant was > 3 1100 

standard deviations away from the other participants.  1101 

Stimuli Stimuli consisted of a continuous semi-random rapid serial visual 1102 

presentation (rsvp) of full screen texture patterns. The texture patterns consisted of 1103 

line elements approx. 0.07° thick and 0.4° long in visual angle. Each texture in the 1104 

rsvp was presented for 40 ms (i.e. stimulation frequency 25 Hz), and was oriented in 1105 

one of four possible directions: 0°, 45°, 90° or 135°. Participants were instructed to 1106 

fixate a red dot in the center of the screen. At random inter trial intervals (ITI’s) 1107 

sampled from a uniform distribution (ITI range 0.3 – 2.2 s), the rsvp contained a fixed 1108 

sequence of 25 texture patterns, which in total lasted one second. This fixed 1109 

sequence consisted of four stimuli preceding a (non-)target stimulus (orientations of 1110 

45°, 90°, 0°, 90° respectively) and twenty stimuli following the (non)-target 1111 

(orientations of 0°, 90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°, 0°, 135°, 0°, 45°, 90°, 45°, 1112 

90°, 135°, 0°, 135° respectively) (see Figure 2A). The fifth texture pattern within the 1113 

sequence (occurring from 0.16 s after sequence onset) was either a target or a 1114 

nontarget stimulus. Nontargets consisted of either a 45° or a 135° homogenous 1115 

texture, whereas targets contained a central orientation-defined square of 2.42° 1116 
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visual angle, thereby consisting of both a 45° and a 135° texture. 50% of all targets 1117 

consisted of a 45° square and 50% of a 135° square. Of all trials, 75% contained a 1118 

target and 25% a nontarget. Target and nontarget trials were presented in random 1119 

order. To avoid specific influences on target stimulus visibility due to presentation of 1120 

similarly or orthogonally oriented texture patterns temporally close in the cascade, no 1121 

45° and 135° oriented stimuli were presented directly before or after presentation of 1122 

the target stimulus. All stimuli had an isoluminance of 72.2 cd/m2. Stimuli were 1123 

created using MATLAB (The Mathworks, Inc., Natick, MA, USA; RRID:SCR_001622) 1124 

and presented using Presentation version 9.9 (Neurobehavioral systems, Inc., 1125 

Albany, CA, USA; RRID:SCR_002521).  1126 

Experimental design The participants’ task was to detect and actively report targets 1127 

by pressing a button using their right hand. Targets occasionally went unreported, 1128 

presumably due to constant forward and backward masking by the continuous 1129 

cascade of stimuli and unpredictability of target timing (Fahrenfort, Scholte, & 1130 

Lamme, 2007). The onset of the fixed order of texture patterns preceding and 1131 

following (non-)target stimuli was neither signaled nor apparent.  1132 

At the beginning of the experiment, participants were informed they could 1133 

earn a total bonus of EUR 30, -, on top of their regular pay of EUR 10, - per hour or 1134 

course credit. In two separate conditions within each session of testing, we 1135 

encouraged participants to use either a conservative or a liberal bias for reporting 1136 

targets using both aversive sounds as well as reducing their bonus after errors. In 1137 

the conservative condition, participants were instructed to only press the button 1138 

when they were relatively sure they had seen the target. The instruction on screen 1139 

before block onset read as follows: “Try to detect as many targets as possible. Only 1140 

press when you are relatively sure you just saw a target.” To maximize effectiveness 1141 
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of this instruction, participants were told the bonus would be diminished by ten cents 1142 

after a false alarm. During the experiment, a loud aversive sound was played after a 1143 

false alarm to inform the participant about an error. During the liberal condition, 1144 

participants were instructed to miss as few targets as possible. The instruction on 1145 

screen before block onset read as follows: “Try to detect as many targets as 1146 

possible. If you sometimes press when there was nothing this is not so bad”. In this 1147 

condition, the loud aversive sound was played twice in close succession whenever 1148 

they failed to report a target, and three cents were subsequently deducted from their 1149 

bonus. The difference in auditory feedback between both conditions was included to 1150 

inform the participant about the type of error (miss or false alarm), in order to 1151 

facilitate the desired bias in both conditions. After every block, the participant’s score 1152 

(number of missed targets in the liberal condition and number of false alarms in the 1153 

conservative condition) was displayed on the screen, as well as the remainder of the 1154 

bonus. After completing the last session of the experiment, every participant was 1155 

paid the full bonus as required by the ethical committee. 1156 

Participants performed six blocks per session lasting ca. nine minutes each. 1157 

During a block, participants continuously monitored the screen and were free to 1158 

respond by button press whenever they thought they saw a target. Each block 1159 

contained 240 trials, of which 180 target and 60 nontarget trials. The task instruction 1160 

was presented on the screen before the block started. The condition of the first block 1161 

of a session was counterbalanced across participants. Prior to EEG recording in the 1162 

first session, participants performed a 10-minute practice run of both conditions, in 1163 

which visual feedback directly after a miss (liberal condition) or false alarm 1164 

(conservative) informed participants about their mistake, allowing them to adjust their 1165 
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decision bias accordingly. There were short breaks between blocks, in which 1166 

participants indicated when they were ready to begin the next block. 1167 

Behavioral analysis We calculated each participant’s criterion c (Green & Swets, 1168 

1966) across the trials in each condition as follows: 1169 

� � �
1

2
 ��	
��‐ �����  �  �	��‐ ������ 

where hit-rate is the proportion target-present responses of all target-present trials, 1170 

false alarm (FA)-rate is the proportion target-present responses of all target-absent 1171 

trials, and Z(...) is the inverse standard normal distribution. Furthermore, we 1172 

calculated objective sensitivity measure d’ using: 1173 

 1174 

�� � �	
��‐ ����� �  �	��‐ ����� 

 1175 

as well as by subtracting hit and false alarm rates. Reaction times (RTs) were 1176 

measured as the duration between target onset and button press. 1177 

Drift diffusion modeling of choice behavior In order to be detected, the 40 ms-1178 

duration figure-ground targets used in our study undergo a process in visual cortex 1179 

called figure-ground segregation. This process has been well characterized in man 1180 

and monkey (Fahrenfort, Scholte, & Lamme, 2008; Lamme, 1995; Lamme, Zipser, & 1181 

Spekreijse, 2006; Supèr, Spekreijse, letters, 2003, 2003), and results from recurrent 1182 

processing to extract the surface region in visual cortex. Figure-ground segregation 1183 

is known to extend far beyond the mere presentation time of the stimulus, thus 1184 

providing a plausible neural basis for the evidence accumulation process. Further, a 1185 

central assumption of the drift diffusion model is that the process of evidence 1186 
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accumulation is gradual, independent of whether sensory input is momentary. 1187 

Indeed, the DDM was initially developed to explain reaction time distributions during 1188 

memory retrieval, in which evidence accumulation must occur through retrieval of a 1189 

memory trace within the brain, in the complete absence of external stimulus at the 1190 

time of the decision (Ratcliff, 1978). Our observed RT distributions show the typical 1191 

features that occur across many different types of decision and memory tasks, which 1192 

the DDM is so well able to capture, including a sharp leading edge and a long tail of 1193 

the distributions (see Figure 2-supplement 3). The success of the DDM in fitting 1194 

these data is consistent with previous work (e.g. Ratcliff (2006)) and might reflect the 1195 

fact that observers modulate the underlying components of the decision process also 1196 

when they do not control the stimulus duration (Kiani, Hanks, & Shadlen, 2008). 1197 

 We fitted the drift diffusion model to our behavioral data for each subject 1198 

individually, and separately for the liberal and conservative conditions. We fitted the 1199 

model using a G square method based on quantile RT’s (RT cutoff, 200 ms, for 1200 

details, see Ratcliff et al. (2016)), using a modified version of the HDDM 0.6.0 1201 

package (Wiecki, Sofer, & Frank, 2013). The RT distributions for target-present 1202 

responses were represented by the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles, and, along 1203 

with the associated response proportions, contributed to G square. In addition, a 1204 

single bin containing the number of target-absent responses contributed to G square. 1205 

Each model fit was run six times, after which the best fitting run was kept. Fitting the 1206 

model to RT distributions for target-present and target-absent choices (termed 1207 

‘stimulus coding’ in Wiecki et al. (2013)), as opposed to the more common fits of 1208 

correct and incorrect choice RT’s (termed ‘accuracy coding’ in Wiecki et al. (2013)), 1209 

allowed us to estimate parameters that could have induced biases in subjects’ 1210 

behavior. 1211 
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 Parameter recovery simulations showed that letting both the starting point of 1212 

the accumulation process and drift bias (an evidence-independent constant added to 1213 

the drift toward one or the other bound) free to vary with experimental condition is 1214 

problematic for data with no explicit target-absent responses (data not shown). Thus, 1215 

to test whether shifts in drift bias or starting point underlie bias we fitted three 1216 

separate models. In the first model (‘fixed model’), we allowed only the following 1217 

parameters to vary between the liberal and conservative condition: (i) the mean drift 1218 

rate across trials; (ii) the separation between both decision bounds (i.e., response 1219 

caution); and (iii) the non-decision time (sum of the latencies for sensory encoding 1220 

and motor execution of the choice). Additionally, the bias parameters starting point 1221 

and drift bias were fixed for the experimental conditions. The second model (‘starting 1222 

point model’) was the same as the fixed model, except that we let the starting point 1223 

of the accumulation process vary with experimental condition, whereas the drift bias 1224 

was kept fixed for both conditions. The third model (‘drift bias model’) was the same 1225 

as the fixed model, except that we let the drift bias vary with experimental condition, 1226 

while the starting point was kept fixed for both conditions. We used Bayesian 1227 

Information Criterion (BIC) to select the model which provided the best fit to the data 1228 

(Neath & Cavanaugh, 2012). The BIC compares models based on their maximized 1229 

log-likelihood value, while penalizing for the number of parameters. 1230 

Distinguishing DDM drift bias and drift rate In our task, only target-present 1231 

responses were coupled to a behavioral response (button-press), so we could 1232 

measure reaction times only for these responses, whereas reaction times for target-1233 

absent responses remained implicit. Thus, in our fitting procedure, the RT 1234 

distributions for target-present responses were represented by the 0.1, 0.3, 0.5, 0.7 1235 

and 0.9 quantiles, and, along with the associated response proportions, contributed 1236 
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to G square. In addition, a single bin containing the number of target-absent 1237 

responses contributed to G square. It has been shown that such a diffusion model 1238 

with an implicit (no response) boundary can be fit to data with almost the same 1239 

accuracy as fitting the two-choice model to two-choice data (Ratcliff et al., 2016). In a 1240 

diffusion model with an implicit (no response) boundary, both an increase in drift rate 1241 

and drift criterion would predict faster target-present responses. However, the key 1242 

distinction is that an increase in drift additionally predicts more correct responses (for 1243 

both target-present and target-absent responses), and an increase in drift criterion 1244 

shifts the relative fraction of target-present and target-absent responses (decision 1245 

bias). Because a single bin containing the number of target-absent responses 1246 

contributed to G square, our fitting procedure can distinguish between decision bias 1247 

versus drift rate. 1248 

EEG recording Continuous EEG data were recorded at 256 Hz using a 48-channel 1249 

BioSemi Active-Two system (BioSemi, Amsterdam, the Netherlands), connected to a 1250 

standard EEG cap according to the international 10-20 system. Electrooculography 1251 

(EOG) was recorded using two electrodes at the outer canthi of the left and right 1252 

eyes and two electrodes placed above and below the right eye. Horizontal and 1253 

vertical EOG electrodes were referenced against each other, two for horizontal and 1254 

two for vertical eye movements (blinks). We used the Fieldtrip toolbox (Oostenveld, 1255 

Fries, Maris, & Schoffelen, 2011) and custom software (Kloosterman, 2018) in 1256 

MATLAB R2016b (The Mathworks Inc., Natick, MA, USA; RRID:SCR_001622) to 1257 

process the data (see below). Data were re-referenced to the average voltage of two 1258 

electrodes attached to the earlobes.  1259 

Trial extraction and preprocessing We extracted trials of variable duration from 1 1260 

s before target sequence onset until 1.25 after button press for trials that included a 1261 
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button press (hits and false alarms), and until 1.25 s after stimulus onset for trials 1262 

without a button press (misses and correct rejects). The following constraints were 1263 

used to classify (non-)targets as detected (hits and false alarms), while avoiding the 1264 

occurrence of button presses in close succession to target reports and button 1265 

presses occurring outside of trials: 1) A trial was marked as detected if a response 1266 

occurred within 0.84 s after target onset; 2) when the onset of the next target 1267 

stimulus sequence started before trial end, the trial was terminated at the next trial’s 1268 

onset; 3) when a button press occurred in the 1.5 s before trial onset, the trial was 1269 

extracted from 1.5 s after this button press; 4) when a button press occurred 1270 

between 0.5 s before until 0.2 s after sequence onset, the trial was discarded. See 1271 

Kloosterman et al. (2015) and Meindertsma et al. (2017) for similar trial extraction 1272 

procedures. After trial extraction, channel time courses were linearly detrended and 1273 

the mean of every channel was removed per trial.  1274 

Artifact rejection Trials containing muscle artifacts were rejected from further 1275 

analysis using a standard semi-automatic preprocessing method in Fieldtrip. This 1276 

procedure consists of bandpass-filtering the trials of a condition block in the 110–125 1277 

Hz frequency range, which typically contains most of the muscle artifact activity, 1278 

followed by a Z-transformation. Trials exceeding a threshold Z-score were removed 1279 

completely from analysis. We used as the threshold the absolute value of the 1280 

minimum Z-score within the block, + 1. To remove eye blink artifacts from the time 1281 

courses, the EEG data from a complete session were transformed using 1282 

independent component analysis (ICA), and components due to blinks (typically one 1283 

or two) were removed from the data. In addition, to remove microsaccade-related 1284 

artifacts we included two virtual channels in the ICA based on channels Fp1 and 1285 

Fp2, which included transient spike potentials as identified using the saccadic 1286 
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artefact detection algorithm from Hassler et al. (2011). This yielded a total number of 1287 

channels submitted to ICA of 48 + 2 = 50. The two components loading high on 1288 

these virtual electrodes (typically with a frontal topography) were also removed. 1289 

Blinks and eye movements were then semi-automatically detected from the 1290 

horizontal and vertical EOG (frequency range 1–15 Hz; z-value cut-off 4 for vertical; 1291 

6 for horizontal) and trials containing eye artefacts within 0.1 s around target onset 1292 

were discarded. This step was done to remove trials in which the target was not 1293 

seen because the eyes were closed. Finally, trials exceeding a threshold voltage 1294 

range of 200 μV were discarded. To attenuate volume conduction effects and 1295 

suppress any remaining microsaccade-related activity, the scalp current density 1296 

(SCD) was computed using the second-order derivative (the surface Laplacian) of 1297 

the EEG potential distribution (Perrin et al., 1989). 1298 

ERP analysis We computed event-related potentials in electrode C4 by low-pass 1299 

filtering the time-domain data up to 8 Hz followed by averaging all trials within 1300 

participant per condition.  1301 

Spectral analysis We used a sliding window Fourier transform (Mitra & Pesaran, 1302 

1999); step size, 50 ms; window size, 400 ms; frequency resolution, 2.5 Hz) to 1303 

calculate time-frequency representations (spectrograms) of the EEG power for each 1304 

electrode and each trial. We used a single Hann taper for the frequency range of 3–1305 

35 Hz (spectral smoothing, 4.5 Hz, bin size, 1 Hz) and the multitaper technique for 1306 

the 36 – 100 Hz frequency range (spectral smoothing, 8 Hz; bin size, 2 Hz; five 1307 

tapers). See Kloosterman et al. (2015) and Meindertsma et al. (2017) for similar 1308 

settings. Finally, to investigate spectral power also < 3 Hz, we ran an additional time-1309 

frequency analysis with a window size of 1 s (i.e. frequency resolution 1 Hz) 1310 
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centered on the time point 0.5 s before trial onset (frequency range 1–35 Hz, no 1311 

spectral smoothing, bin size 0.5 Hz). 1312 

Spectrograms were aligned to the onset of the stimulus sequence containing 1313 

the (non)target. Power modulations during the trials were quantified as the 1314 

percentage of power change at a given time point and frequency bin, relative to a 1315 

baseline power value for each frequency bin (Figure 3). We used as a baseline the 1316 

mean EEG power in the interval 0.4 to 0 s before trial onset, computed separately for 1317 

each condition. If this interval was not completely present in the trial due to 1318 

preceding events (see Trial extraction), this period was shortened accordingly. We 1319 

normalized the data by subtracting the baseline from each time-frequency bin and 1320 

dividing this difference by the baseline (x 100 %). For the analysis of raw pre-1321 

stimulus power modulations, no baseline correction was applied on the raw scalp 1322 

current density values. We focused our analysis of EEG power modulations around 1323 

target onsets on those electrodes that processed the visual stimulus. To this end, we 1324 

averaged the power modulations or raw power across eleven occipito-parietal 1325 

electrodes that showed stimulus-induced responses in the gamma-band range (59–1326 

100 Hz). See Kloosterman et al. (2015) and Meindertsma et al. (2017) for a similar 1327 

procedure. 1328 

Statistical significance testing of EEG power modulations across space, time 1329 

and frequency. To determine clusters of significant modulation with respect to the 1330 

pre-stimulus baseline without any a priori selection, we ran statistics across space-1331 

time-frequency bins using paired t-tests across subjects performed at each bin. 1332 

Single bins were subsequently thresholded at p < 0.05 and clusters of contiguous 1333 

time-space-frequency bins were determined. Cluster significance was assessed 1334 

using a cluster-based permutation procedure (1000 permutations). For visualization 1335 
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purposes, we integrated (using the matlab trapz function) power modulation in the 1336 

time-frequency representations (TFR’s, left panels) across the highlighted electrodes 1337 

in the topographies (right panels). For the topographical scalp maps, modulation was 1338 

integrated across the saturated time-frequency bins in the TFRs. To test at which 1339 

frequencies raw prestimulus EEG power differed between the liberal and 1340 

conservative conditions, we performed this analysis across electrodes and space 1341 

after taking the liberal – conservative difference at each frequency bin (Figure 4C) 1342 

(see Statistical comparisons). 1343 

Response gain model test To test the predictions of the gain model, we first 1344 

averaged activity in the 8–12 Hz range from 0.8 to 0.2 s before trial onset (staying 1345 

half our window size from trial onset, to avoid mixing pre- and poststimulus activity, 1346 

also see Iemi et al. (2017)), yielding a single scalar alpha power value per trial. If this 1347 

interval was not completely present in the trial due to preceding events (see Trial 1348 

extraction), this period was shortened accordingly. Trials in which the scalar was > 3 1349 

standard deviations away from the participant’s mean were excluded. We then 1350 

sorted all single-trial alpha values for each participant and condition in ascending 1351 

order and assigned them to ten bins of equal size, ranging from weakest to strongest 1352 

alpha. Adjacent bin ranges overlapped for 50% to stabilize estimates. Then we 1353 

averaged the corresponding gamma modulation of the trials belonging to each bin 1354 

(consisting of the average power modulation within 59–100 Hz 0.2 to 0.6 s after trial 1355 

onset, see Figure 3). Finally, we averaged across participants and plotted the 1356 

median alpha value per bin averaged across participants against gamma 1357 

modulation. See Rajagovindan and Ding (2011) for a similar procedure. To 1358 

statistically test for the existence of inverted U-shaped relationships between alpha 1359 

and gamma, we performed a one-way repeated measures ANOVA on gamma 1360 
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modulation with factor alpha bin (10 bins) to each condition separately and a two-1361 

way repeated measures ANOVA with factors bin and condition for testing the liberal–1362 

conservative difference (Figure 5F). Given the model prediction of a Gaussian-1363 

shaped relationship between alpha and gamma, we constructed a Gaussian contrast 1364 

using the normal Gaussian shape with unit standard deviation (contrast values: -1365 

1000, -991, -825, 295, 2521, 2521, 295, -825, -991, -1000, values were chosen to 1366 

sum to zero). For plotting purposes (Figure 5C-F), we computed within-subject error 1367 

bars by removing within each participant the mean across conditions from the 1368 

estimates.  1369 

Correlation between gamma modulation and drift bias To link DDM drift bias and 1370 

cortical gamma power, we re-fitted the DDM drift bias model while freeing the drift 1371 

bias parameter both for each condition as well as for the ten alpha bins, while freeing 1372 

the other parameters (drift rate, boundary separation, non-decision time) for each 1373 

condition and fixing starting point across conditions. We then used repeated 1374 

measures correlation to test whether stronger gamma was associated with stronger 1375 

bias. Repeated measures correlation determines the common within-individual 1376 

association for paired measures assessed on two or more occasions for multiple 1377 

individuals by controlling for the specific range in which individuals’ measurements 1378 

operate, and correcting the correlation degrees of freedom for non-independence of 1379 

repeated measurements obtained from each individual. Specifically, the correlation 1380 

degrees of freedom were 14 participants × 10 observations – Number of participants 1381 

– 1 = 140 – 14 – 1 = 125. Repeated measures correlation tends to have much 1382 

greater statistical power than conventional correlation across individuals because 1383 

neither averaging nor aggregation is necessary for an intra-individual research 1384 

question. Please see Bakdash and Marusich (2017) for more information. We 1385 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2018. ; https://doi.org/10.1101/229989doi: bioRxiv preprint 

https://doi.org/10.1101/229989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 56

assessed the impact of single observations on the correlations by excluding 1386 

observations exceeding five times the average Cook’s distance of all values within 1387 

each condition (five observations for liberal and four for conservative) and 1388 

recomputing the correlations. 1389 

Statistical comparisons We used two-sided permutation tests (10,000 1390 

permutations) (Efron & Tibshirani, 1998) to test the significance of behavioral effects 1391 

and the model fits. Permutation tests yield p = 0 if the observed value falls outside 1392 

the range of the null distribution. In these cases, p < 0.0001 is reported in the 1393 

manuscript. The standard deviation (s.d.) is reported as a measure of spread along 1394 

with all participant-averaged results reported in the text. To quantify power 1395 

modulations after (non-)target onset, we tested the overall power modulation for 1396 

significant deviations from zero. For these tests, we used a cluster-based 1397 

permutation procedure to correct for multiple comparisons (Maris & Oostenveld, 1398 

2007). For time-frequency representations along with spatial topographies of power 1399 

modulation, this procedure was performed across all time-frequency bins and 1400 

electrodes; for frequency spectra across all electrodes and frequencies; for power 1401 

and ERP time courses, across all time bins. To test the existence of inverted-U 1402 

shaped relationships between gamma and alpha bins, we conducted repeated 1403 

measures ANOVA’s and Gaussian shaped contrasts (see section Response gain 1404 

model test for details) using SPSS 23 (IBM, Inc.). We used multiple regression to 1405 

assess whether starting point could account for the correlation between gamma and 1406 

drift bias. We used Pearson correlation to test the link between parameter estimates 1407 

of the DDM and SDT frameworks and repeated measures correlation to test the link 1408 

between gamma power and drift bias (see previous section). 1409 
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