

1 Timing of host feeding drives rhythms in parasite replication

2 Kimberley F. Prior^{1*}, Daan R. van der Veen², Aidan J. O'Donnell¹, Katherine Cumnock⁴, David
3 Schneider⁴, Arnab Pain⁵, Amit Subudhi⁵, Abhinay Ramaprasad⁵, Samuel S.C. Rund³, Nicholas J.
4 Savill^{1,3} & Sarah E. Reece^{1,3}

5

6

7

8 ¹Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK

9 ²Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

10 ³Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK

11 ⁴Department of Microbiology and Immunology, Stanford University, CA, USA

12 ⁵King Abdullah University of Science and Technology, Saudi Arabia

13

14 *Corresponding author

15 E-mail: kimberley.prior@ed.ac.uk (KFP)

16

17 **Abstract**

18 Circadian rhythms enable organisms to synchronise the processes underpinning survival and
19 reproduction to anticipate daily changes in the external environment. Recent work shows that daily
20 (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions
21 with their hosts. Because parasite rhythms matter for their fitness, understanding how they are
22 regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we
23 examine how host circadian rhythms influence rhythms in the asexual replication of malaria
24 parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the
25 disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of
26 hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host's peripheral
27 oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We
28 demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative
29 to the rhythms of parasites in night-fed hosts. Our results reveal that the host's peripheral rhythms
30 (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-
31 entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further
32 investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition,
33 we show that parasite rhythms resynchronise to the altered host feeding rhythms when food
34 availability is shifted, which is not mediated through rhythms in the host immune system. Our
35 observations suggest that parasites actively control their developmental rhythms. Finally, counter to
36 expectation, the severity of disease symptoms expressed by hosts was not affected by
37 desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease
38 ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and
39 has broad implications for applied bioscience.

40

41

42

43 Author summary

44 How cycles of asexual replication by malaria parasites are coordinated to occur in synchrony
45 with the circadian rhythms of the host is a long-standing mystery. We reveal that rhythms associated
46 with the time-of-day that hosts feed are responsible for the timing of rhythms in parasite
47 development. Specifically, we altered host feeding time to phase-shift peripheral rhythms, whilst
48 leaving rhythms driven by the central circadian oscillator in the brain unchanged. We found that
49 parasite developmental rhythms remained synchronous but changed their phase, by 12 hours, to
50 follow the timing of host feeding. Furthermore, our results suggest that parasites themselves
51 schedule rhythms in their replication to coordinate with rhythms in glucose in the host's blood, rather
52 than have rhythms imposed upon them by, for example, host immune responses. Our findings reveal
53 a novel relationship between hosts and parasites that if disrupted, could reduce both the severity
54 and transmission of malaria infection.

55

56 Introduction

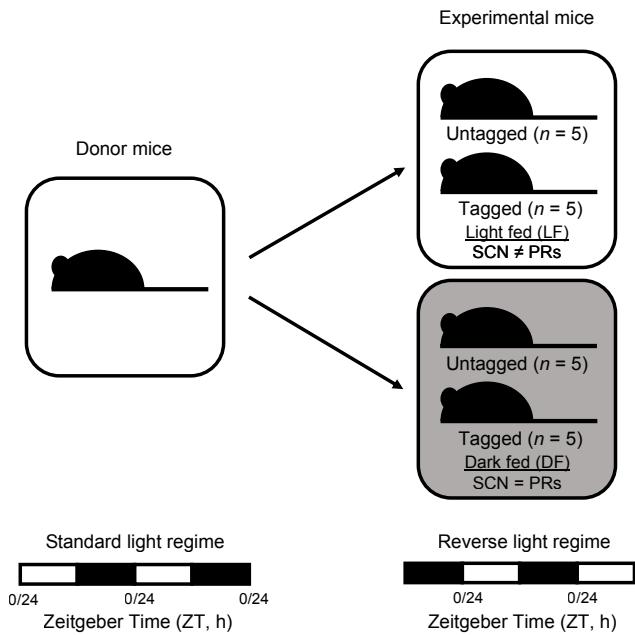
57 The discovery of daily rhythms in parasites dates back to the Hippocratic era and a
58 taxonomically diverse range of parasites (including fungi, helminths, Coccidia, nematodes,
59 trypanosomes, and malaria parasites [1-6]) display rhythms in development and several behaviours.
60 Yet, how rhythms in many parasite traits are established and maintained remains mysterious, despite
61 their significance, as these traits underpin the replication and transmission of parasites [7]. For
62 example, metabolic rhythms of *Trypanosoma brucei* have recently been demonstrated to be under
63 the control of an oscillator belonging to the parasite, but the constituents of this oscillator are
64 unknown [8]. In most organisms, endogenous circadian oscillators ("clocks") involve transcription-
65 translation feedback loops whose timing is synchronised to external cues, such as light-dark and
66 feeding-fasting cycles [9,10] but there is generally little homology across taxa in the genes
67 underpinning oscillators. Multiple, convergent, evolutionary origins for circadian oscillators is thought
68 to be explained by the fitness advantages of being able to anticipate and exploit predictable daily

69 changes in the external environment, as well as keeping internal processes optimally timed [11,12].
70 Indeed, the 2017 Nobel Prize in Physiology/Medicine recognises the importance of circadian
71 oscillators [13,14].

72 The environment that an endoparasite experiences inside its host is generated by many
73 rhythmic processes, including daily fluctuations in the availability of resources, and the nature and
74 strength of immune responses [15,16]. Coordinating development and behaviour with rhythms in the
75 host (or vector) matters for parasite fitness [17]. For example, disrupting synchrony between rhythms
76 in the host and rhythms in the development of malaria parasites during asexual replication reduces
77 parasite proliferation and transmission potential [18,19]. Malaria parasites develop synchronously
78 during cycles of asexual replication in the host's blood and each developmental stage occurs at a
79 particular time-of-day. The synchronous bursting of parasites at the end of their asexual cycle, when
80 they release their progeny to infect new red blood cells, causes fever with sufficient regularity (24,
81 48, or 72 hourly, depending on the species) to have been used as a diagnostic tool. Malaria parasites
82 are assumed to be intrinsically arrhythmic and mathematical modelling suggests that rhythms in host
83 immune effectors, particularly inflammatory responses, could generate rhythms in the development
84 of malaria parasites via time-of-day-specific killing of different parasite developmental stages [20,21].
85 However, the relevant processes operating within real infections remain unknown [22].

86 Our main aim is to use the rodent malaria parasite *Plasmodium chabaudi* to ask which
87 circadian rhythms of the host are involved in scheduling rhythms in parasite development. In the
88 blood, *P. chabaudi* develops synchronously and asexual cycles last 24 hours, bursting to release
89 progeny (schizogony) in the middle of the night when mice are awake and active. We perturbed host
90 feeding time (timing of food intake), which is known to desynchronise the phase of rhythms from the
91 host's central and peripheral oscillators, and we then examined the consequences for parasite
92 rhythms. In mammals, the central oscillator in the brain (suprachiasmatic nuclei of the hypothalamus,
93 SCN), is entrained by light [10,23]. The SCN is thought to shape rhythms in physiology and behaviour
94 (peripheral rhythms) by entraining peripheral oscillators via hormones such as glucocorticoids [24].
95 However, oscillators in peripheral tissues are self-sustained and can also be entrained by several

96 non-photic cues, such as the time-of-day at which feeding occurs [25,26]. Thus, eating at the wrong
97 time-of-day (e.g. diurnal feeding in nocturnal mice) leads to altered timing of oscillators, and their
98 associated rhythms in peripheral tissues. This phase-shift is particularly apparent in the liver where
99 an inversion in the peak phase of expression of the circadian oscillator genes *Per1* and *Per2* occurs
100 [26]. Importantly, eating at the wrong time-of-day does not alter rhythmic outputs from the central
101 oscillator [25].

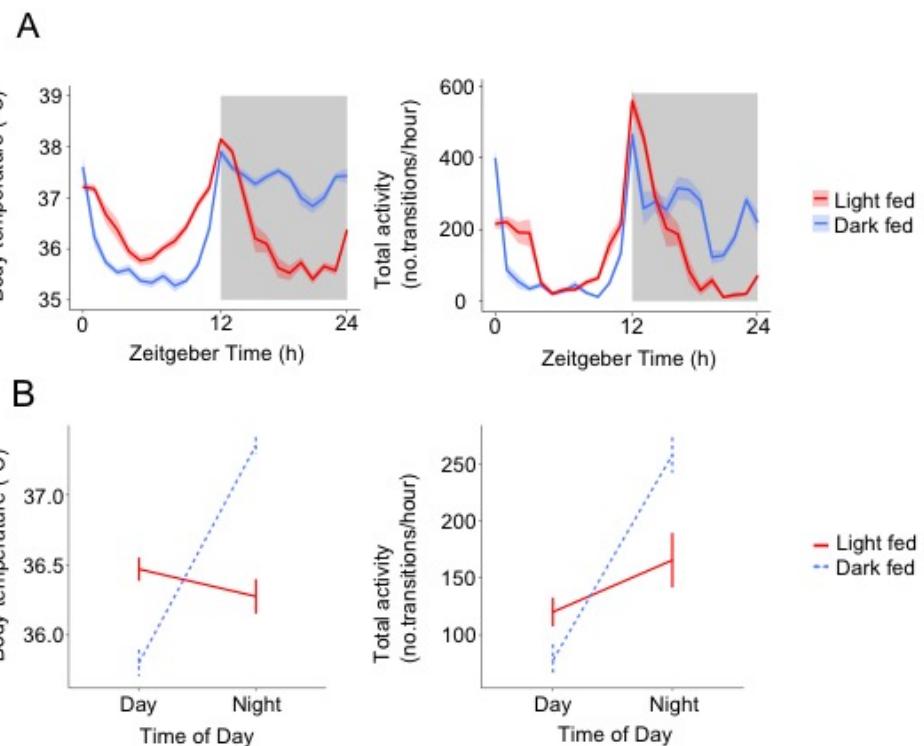

102 In murine hosts with an altered (diurnal) feeding schedule, the development rhythms of
103 parasites remained synchronous but became inverted relative to the rhythms of parasites in hosts
104 fed at night. Thus, feeding-related outputs from the hosts peripheral timing system, not the SCN, are
105 responsible for the timing (phase) of parasite rhythms. We also reveal that the inversion of parasite
106 rhythms corresponds to a phase-shift in blood glucose rhythms. That parasites remain synchronous
107 during the rescheduling of their rhythm coupled with evidence that immune responses do not set the
108 timing of parasite rhythms, suggests parasites are responsible for scheduling their developmental
109 rhythm, and may express their own circadian rhythms and/or oscillators. Furthermore, our perturbed
110 feeding regimes are comparable to shift work in humans. This lifestyle is well-known for increasing
111 the risk of non-communicable diseases (cancer, type 2 diabetes etc. [27]) but our data suggest the
112 severity of malaria infection (weight loss, anaemia) is not exacerbated by short-term
113 desynchronisation of the central and peripheral oscillators.

114

115 **Results & Discussion**

116 First, we examined the effects of changing the time of food intake on the phasing of circadian
117 rhythms in host body temperature and locomotor activity (Fig 1). Body temperature is a commonly
118 used phase marker of circadian timing because core body temperature increases during activity and
119 decreases during sleep [28,29]. Mice were given access to food for 12 hours in each circadian cycle,
120 either in the day (LF, light fed) or night (DF, dark fed). All food was available *ad libitum* and available
121 from ZT 0-12 (ZT refers to 'Zeitgeber Time'; ZT 0 is the time in hours since lights on) for LF mice,

122 and from ZT 12-24 for DF mice. All experimental mice were entrained to the same reversed
123 photoperiod, lights on: 7pm (ZT 0/24), lights off: 7am (ZT 12), for 2 weeks prior to starting the
124 experiment (Fig 1).



125

126 **Fig 1. Experimental design, feeding time.** Infections were initiated with parasites raised in donor
127 mice entrained to a standard light regime [lights on: 7am (ZT 0/24) and lights off: 7pm (ZT 12)] and
128 used to create experimental infections in hosts entrained to a reverse light regime of 12-hours light:
129 12-hours dark [lights on: 7pm (ZT 0/24), lights off: 7am (ZT 12); ZT is Zeitgeber Time: hours after
130 lights on], leading to a 12-hour phase difference in SCN rhythms of donor and host, and
131 subsequently, parasite infections (see Materials and Methods for the rationale). Hosts were then
132 assigned to one of the two treatment groups. One group (N=10) were allowed access to food
133 between ZT0 and ZT12 ("light fed mice", LF, food access during the day) and the other group (N=10)
134 allowed access to food between ZT12 and ZT0 ("dark fed mice", DF, food access during the night).
135 Body temperature and locomotor activity were recorded from a subset of RFID "tagged" mice in each
136 group (N=5 per group). Changing feeding time (day time feeding of nocturnal mice) desynchronises
137 rhythmic outputs from the central (SCN) oscillator and the peripheral (peripheral rhythms, PRs)
138 oscillators ("SCN ≠ PRs"), whereas the SCN and peripheral rhythms remain synchronised in mice
139 fed at night ("SCN = PRs").

140 We found a significant interaction between feeding treatment (LF or DF) and the time-of-day
141 (day (ZT 0-12) or night (ZT 12-24)) that mice experience elevated body temperatures ($\chi^2_{(5,6)} = 75.89$,
142 $p < 0.0001$) and increase their locomotor activity ($\chi^2_{(5,6)} = 39.57$, $p < 0.0001$; S1 Table). Specifically,
143 DF mice have elevated body temperature and are mostly active during the night (as expected)
144 whereas LF mice show no such day-night difference in body temperature and locomotor activity, due
145 to a lack of night time elevation in both measures where food and light associated activity are
146 desynchronised (Fig 2). We also find the centres of gravity (CoG; a general phase marker of

147 circadian rhythms, estimated with CircWave), are slightly but significantly earlier in LF mice for both
148 body temperature (approximately 2 hours advanced: $\chi^2_{(3,4)} = 28.17, p < 0.0001$) and locomotor
149 activity (approximately 4 hours advanced: $\chi^2_{(3,4)} = 27.32, p < 0.0001$) (S1 Table). Therefore, the LF
150 mice experienced a significant change in the daily profile of activity, which is reflected in some phase
151 advance (but not inversion) relative to DF mice, and significant disruption to their body temperature
152 and locomotor activity rhythms, particularly during the night. Because an altered feeding schedule
153 does not affect the phase of the SCN [25], our data suggest that rhythms in body temperature and
154 locomotor activity in LF mice are shaped by both rhythms in feeding and the light-dark cycle [30].
155 Finally, the body weight of LF and DF mice did not differ significantly after 4 weeks ($\chi^2_{(3,4)} = 0.02, p$
156 = 0.9) and both groups equally gained weight during the experiment (S1 Fig), corroborating that LF
157 mice were not calorie restricted.

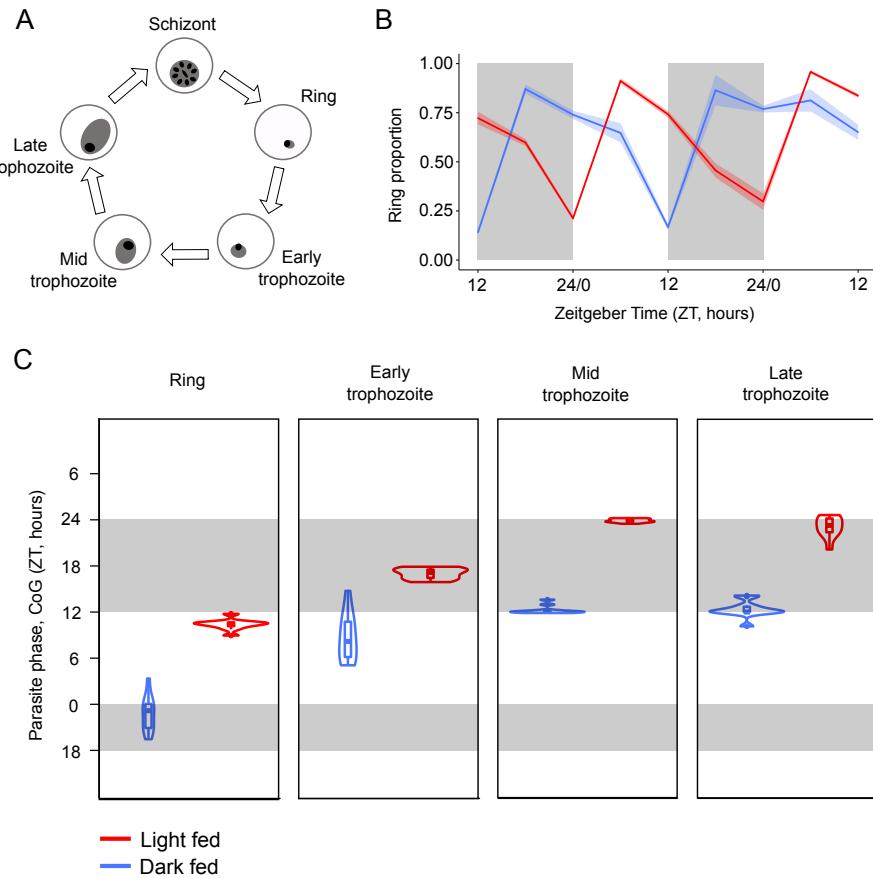
158
159 **Fig 2. Feeding nocturnal mice in the day time disrupts rhythms in body temperature and**
160 **locomotor activity.** (A) Hourly mean \pm SEM body temperature and locomotor activity (number of
161 transitions per hour is the average number of movements a mouse makes in an hour, between
162 antennae on the Home Cage Analysis system, see Materials and Methods) and (B) interaction
163 between time-of-day and treatment group on body temperature and locomotor activity (calculating
164 the mean temperature/activity across the day, ZT 0-12, and night, ZT 12-24, \pm SEM) averaged from
165 48 hours of monitoring mice before infection. N=5 for each of the light fed (LF, red) and dark fed (DF,
166 blue) groups. Light and dark bars indicate lights on and lights off (lights on: ZT 0/24, lights off: ZT
167 12).

168 Having generated hosts in which the phase relationship between the light-entrained SCN and
169 food-entrained rhythms are altered (LF mice) or not (DF mice), we then infected all mice with the
170 rodent malaria parasite *Plasmodium chabaudi adami* genotype DK (Fig 1) from donor mice
171 experiencing a light-dark cycle 12 hours out of phase with the experimental host mice. After allowing
172 the parasite's developmental rhythms to become established (see Materials and Methods) we
173 compared the rhythms of parasites in LF and DF mice. We hypothesised that if parasite rhythms are
174 solely determined by rhythms driven by the host's SCN (which are inverted in the host mice
175 compared to the donor mice), parasite rhythms would equally shift and match in LF and DF mice
176 because both groups of hosts were entrained to the same light-dark conditions. Yet, if rhythms in
177 body temperature or locomotor activity directly or indirectly (via entraining other oscillators)
178 contribute to parasite rhythms, we expected that parasite rhythms would differ between LF and DF
179 hosts. Further, if feeding directly or indirectly (via food-entrained oscillators) drives parasite rhythms,
180 we predicted that parasite rhythms would become inverted (Fig 1).

181 In the blood, *P. chabaudi* parasites transition through five developmental stages during each
182 (~24hr) cycle of asexual replication (Fig 3A) [6,31]. We find that four of the five developmental stages
183 (rings, and early-, mid-, and late-trophozoites) display 24hr rhythms in both LF and DF mice (Fig 3B,
184 S2 Table, S2 Fig). The fifth stage - schizonts - appear arrhythmic but this stage sequesters in the
185 host's tissues [32,33] and so, are rarely collected in venous blood samples. Given that all other
186 stages are rhythmic, and that rhythms in ring stages likely require their parental schizonts to have
187 been rhythmic, we expect schizonts are rhythmic but that sequestration prevents a reliable
188 assessment of their rhythms.

189

190


191

192

193

194

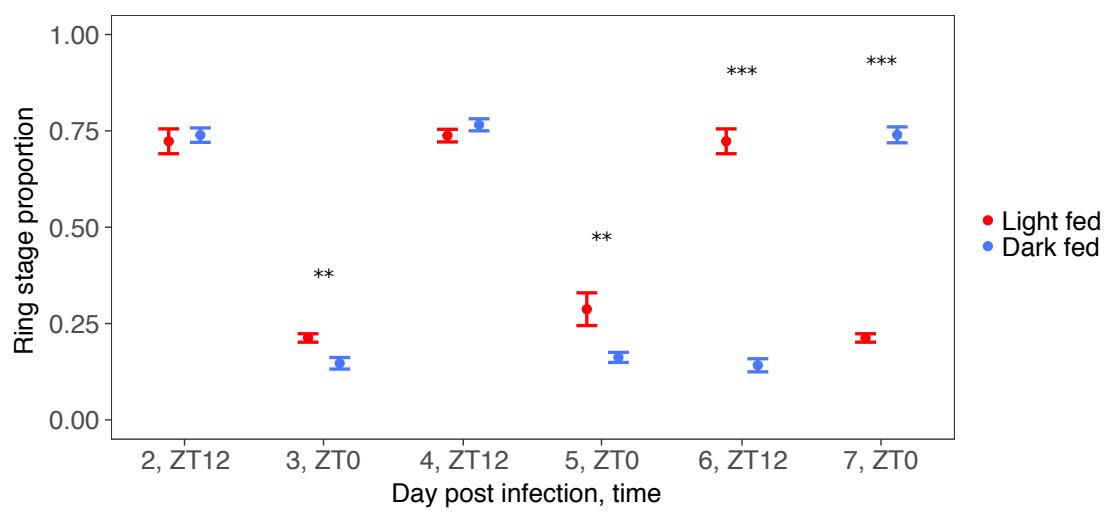
195

196

197 **Fig 3. Parasite rhythms are inverted in hosts fed during the day compared to the night. (A)**
198 The asexual cycle of malaria parasites is characterised by five morphologically distinct
199 developmental stages (ring, early trophozoite, mid trophozoite, late trophozoite) differentiated by
200 parasite size within the red blood cell, the size and number of nuclei, and the appearance of
201 haemozoin [31]. (B) Mean \pm SEM (N=10 per group) proportion of observed parasites in the blood at
202 ring stage in light fed mice (red; allowed access to food during the day, between ZT 0 and ZT 12)
203 and dark fed mice (blue; allowed access to food during the night, between ZT 12 and ZT 24). The
204 proportion of parasites at ring stage in the peripheral blood is highest at night (ZT 22) in dark fed
205 mice but in the day (ZT 10) for light fed mice, illustrating the patterns observed for all other (rhythmic)
206 stages (see Fig S2). (C) CoG (estimate of phase) in ZT (h) for each rhythmic parasite stage in the
207 blood. Each violin illustrates the median \pm IQR overlaid with probability density (N=10 per group).
208 The height of the violin illustrates the variation in the timing of the CoGs between mice and the width
209 illustrates the frequency of the CoGs at particular times within the distribution. Sampling occurred
210 every 6 hours days 6-8 post infection. Light and dark bars indicate lights on and lights off (lights on:
211 ZT 0, lights off: ZT 12).

212 The CoG estimates for ring, and early-, mid-, and late-trophozoite stages are approximately
213 10-12 hours out-of-phase between the LF and DF mice (Fig 3B,C, S2 Table). For example, rings
214 peak at approximately ZT 10 in LF mice and peak close to ZT 23 in DF mice. The other stages peak
215 in sequence. Schizogony (when parasites burst to release their progeny) occurs immediately prior
216 to reinvasion, therefore we expect it occurs during the day for the LF mice and night for DF mice [7].
217 The almost complete inversion in parasite rhythms between LF and DF mice demonstrates that

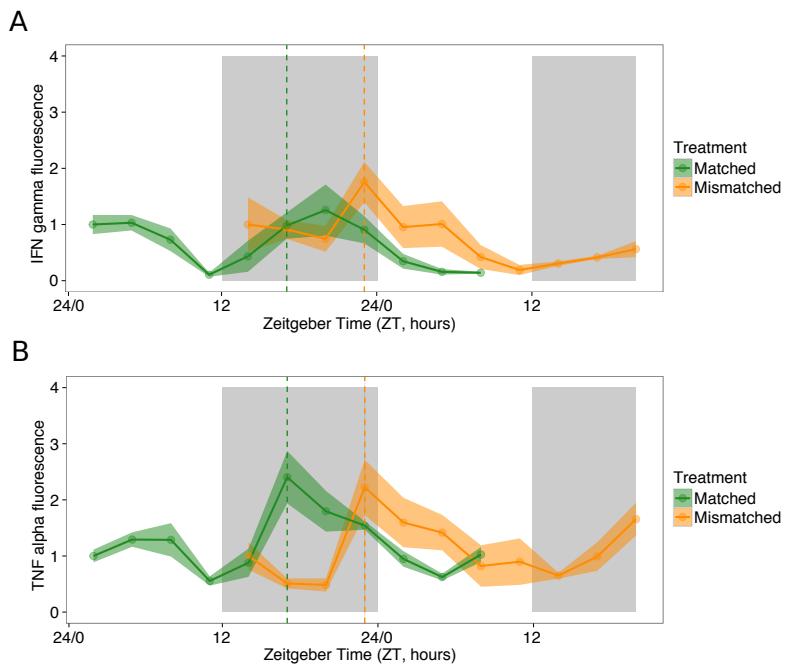
218 feeding-related rhythms are responsible for the phase of parasite rhythms, with little to no apparent
219 contribution from the SCN and/or the light: dark cycle.


220 Changing the feeding time of nocturnal mice to the day time has similarities with shift work in
221 diurnal humans [34]. This lifestyle is associated with an increased risk of acquiring non-
222 communicable diseases (e.g. cancer, diabetes) [35] and has been recapitulated in mouse models
223 [e.g. 36,37,38]. In contrast, in response to perturbation of their feeding rhythm, infections are not
224 more severe in hosts whose circadian rhythms are desynchronised (i.e. LF hosts). Specifically, all
225 mice survived infection and virulence (measured as host anaemia; reduction in red blood cells) of
226 LF and DF infections is not significantly different (comparing minimum red blood cell density, $\chi^2_{(3,4)}$
227 = 0.11, $p = 0.74$; S3A Fig). As described above, changes in body mass were not significantly different
228 between treatments (S1 Fig). Using a longer-term model for shift work may reveal differences in
229 infection severity, especially when combined with the development of non-communicable disease.

230 There are no significant differences between parasite densities in LF and DF hosts during
231 infections (LF versus DF on day 6 post infection, $\chi^2_{(3,5)} = 0.66$, $p = 0.42$, S3B Fig). This can be
232 explained by both groups being mismatched to the SCN of the host, which we have previously
233 demonstrated to have negative consequences for *P. chabaudi* [18]. Our previous work was carried
234 out using *P. chabaudi* genotype AJ so is not directly comparable to our results presented here,
235 because DK is a less virulent genotype [39]. Instead, a comparison of our results to data collected
236 previously for genotype DK, in an experiment where SCN rhythms of donor and host mice were
237 matched (see Materials and Methods; infections were initiated with the same strain, sex, and age of
238 mice, the same dose at ring stage) reveals a cost of mismatch of donor and host entrainment.
239 Specifically, parasite density on day 6 (when infections have established but before parasites start
240 being cleared by host immunity) is significantly lower in infections mismatched to the SCN (LF and
241 DF) compared to infections matched to the SCN ($\chi^2_{(3,5)} = 16.71$, $p = 0.0002$, difference = 2.21e+10
242 parasites per ml blood) (see S4A Fig). In keeping with a difference in parasite replication, hosts with
243 matched infections reach lower red blood cell densities ($\chi^2_{(3,5)} = 18.87$, $p < 0.0001$, mean difference
244 = 5.29e+08 red blood cells per ml blood).

245 The mismatched and matched infections compared above also differ in whether hosts had
246 food available throughout the 24-hour cycle or for 12 hours only (LF and DF). Restricting food to 12
247 hours per day does not affect host weight (S1 Fig) and mice still undergo their main activity bout at
248 lights off even when food is available all the time. Therefore, we propose that rather than feeding
249 duration, mismatch to the host SCN for as few as 5 cycles is costly to parasite replication and reduces
250 infection severity. Because peripheral and SCN driven rhythms are usually in synchrony, we suggest
251 parasites use information from food-entrained oscillators, or metabolic processes, to ensure their
252 development is timed to match the host's SCN rhythms.

253 Instead of organising their own rhythms (i.e. using an “oscillator” whose time is set by a
254 “Zeitgeber” or by responding directly to time-of-day cues), parasites may allow outputs of food-
255 entrained host oscillators to enforce developmental rhythms. Previous studies have focused on
256 rhythmic immune responses as the key mechanism that schedules parasite rhythms (via
257 developmental-stage and time-of-day specific killing [20,21]). Evidence that immune responses are
258 rhythmic in naïve as well as infected hosts is increasing [15,16], but the extent to which
259 peripheral/food-entrained oscillators and the SCN drive immune rhythms is unclear. Nonetheless,
260 we argue that rhythms in host immune responses do not play a significant role in scheduling
261 parasites for the following reasons: First, mismatch to the host's peripheral rhythms (which occurs
262 in DF mice but not LF mice as a feature of our experimental design) does not cause a significant
263 reduction in parasite number (S3B Fig), demonstrating that stage-specific killing cannot cause the
264 differently phased parasite rhythms in LF and DF mice. Second, while changing feeding time appears
265 to disrupt some rodent immune responses [40,41], effectors important in malaria infection, including
266 leukocytes in the blood, do not entrain to feeding rhythms [42,43]. Third, inflammatory responses
267 important for killing malaria parasites are upregulated within hours of blood stage infection [44] so
268 their footprint on parasite rhythms should be apparent from the first cycles of replication [19]. In
269 contrast, rhythms of parasites in LF and DF mice do not significantly diverge until 5-6 days post
270 infection, after 5 replication cycles (S3 Table, Fig 4). Fourth, an additional experiment (see Materials
271 and Methods) reveals that rhythms in the major inflammatory cytokines that mediate malaria infection


272 (e.g. IFN-gamma and TNF-alpha: [45,46,47,48]) follow the phase of parasite rhythms (Fig 5), with
273 other cytokines/chemokines also experiencing this phenomenon (S5 Fig). Specifically, mice infected
274 with *P. chabaudi* genotype AS undergoing schizogony at around midnight (ZT17), produce peaks in
275 the cytokines IFN-gamma and TNF-alpha at ZT21 and ZT19 respectively. Whereas mice infected
276 with mismatched parasites undergoing schizogony around ZT23 (6 hours later), experience 3-6 hour
277 delays in the peaks of IFN-gamma and TNF-alpha (IFN-gamma: ZT0, TNF-alpha: ZT1). Thus, even
278 if parasites at different development stages differ in their sensitivity to these cytokines, these immune
279 rhythms could only serve to increase synchrony in the parasite rhythm but not change its timing.

280

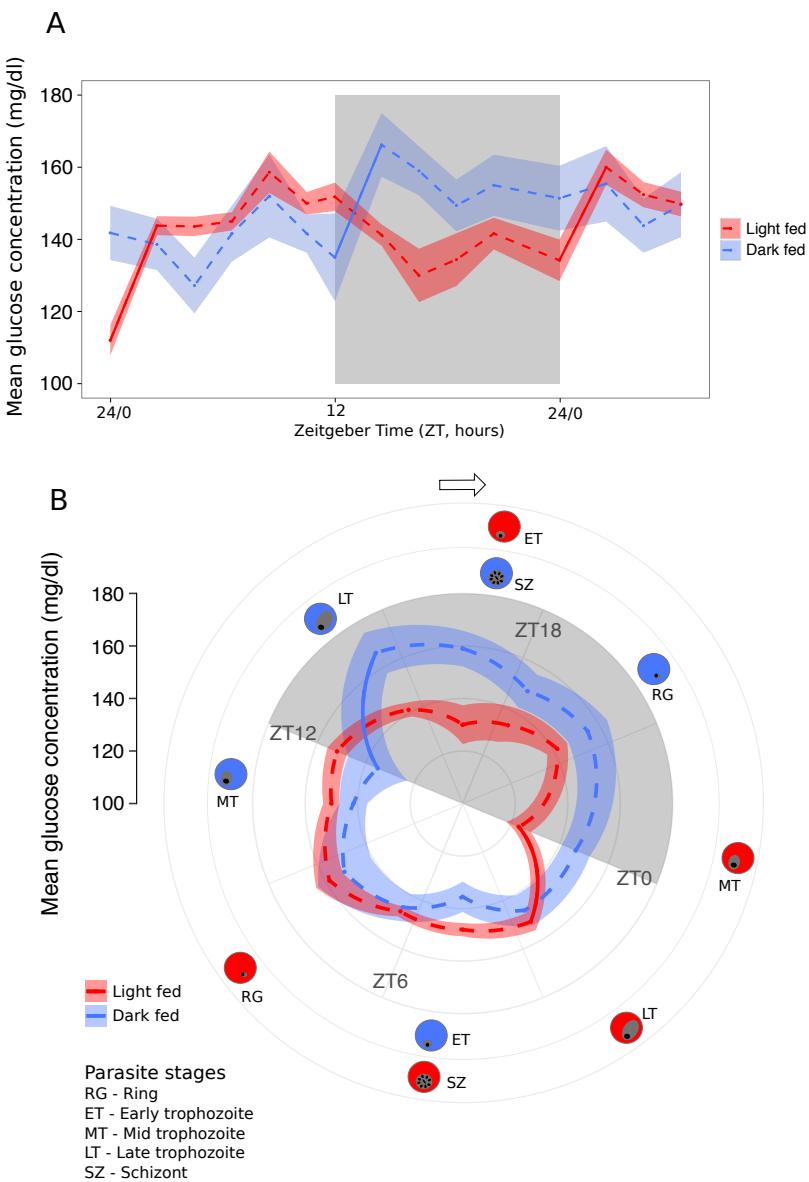
281 **Fig 4. Parasite rhythms in light and dark fed mice significantly diverge by day 5-6 post**
282 **infection.** The proportion of ring stage parasites across infections (light fed mice, red, and dark fed
283 mice, blue) as a phase marker reveals that rhythms of parasites in light fed mice (red) and dark fed
284 mice (blue) diverge. Mice were sampled at ZT 12 on days 2, 4 and 6 and at ZT 0 on days 3, 5 and 7
285 post infection (see Fig 3 and S2 Fig). Consistent significant differences (**, $p < 0.05$; ***, $p < 0.001$)
286 between feeding treatments begins on day 5. By days 6-7 post infection, rings in light fed mice are
287 present at ZT12 while rings in dark fed mice are present at ZT 0, indicating that parasites in dark fed
288 mice have rescheduled. Ring stages are presented as the phase marker because this is the most
289 accurately quantified stage but other stages follow a similar pattern (S3 Table). Mean \pm SEM is
290 plotted and N=10 for each treatment group.

291

292

293 **Fig 5. Rhythms in inflammatory cytokines follow rhythms in parasite development.** Mean \pm
294 SEM (N=4 per time point) for cytokines (A) IFN-gamma and (B) TNF-alpha for parasites matched
295 and mismatched to the SCN rhythms of the host (matched: green, mismatched: orange). Sampling
296 occurred every 3 hours on days 4-5 post infection. Matched parasites undergo schizogony around
297 ZT 17, (indicated by green dashed line) and mismatched parasites undergo schizogony 6 hours
298 later, around ZT 23 (indicated by orange dashed line). IFN-gamma peaks at ZT 21.29 in matched
299 infections (green) and at ZT 0 in mismatched infections (orange). TNF-alpha peaks at ZT 19.26 in
300 matched infections (green) and at ZT 1.29 in mismatched infections (orange). Light and dark bars
301 indicate lights on and lights off (lights on: ZT 0, lights off: ZT 12).

302 More in-depth analysis of LF and DF infections provides further support that parasites actively
303 organise their developmental rhythms. We examined whether parasites in DF mice maintain
304 synchrony and duration of different developmental stages during rescheduling to the host's SCN
305 rhythms. Desynchronisation of oscillators manifests as a reduction in amplitude in rhythms that are
306 driven by more than one oscillator (e.g. parasite and host oscillator). No loss in amplitude suggests
307 that parasites shift their timing as a cohort without losing synchrony. Parasite rhythms in LF and DF
308 mice did not differ significantly in amplitude ($\chi^2_{(6,7)} = 1.53, p = 0.22$, S4A Table) and CoGs for
309 sequential stages are equally spaced ($\chi^2_{(10,18)} = 11.75, p = 0.16$, S2 Table) demonstrating that
310 parasite stages develop at similar rates in both groups. The rhythms of parasites in LF and DF mice
311 were not intensively sampled until days 6-8 PI, raising the possibility that parasites lost and regained
312 synchrony before this. Previously collected data for *P. chabaudi* genotype AS infections mismatched


313 to the host SCN by 12 hours that have achieved a 6-hour shift by day 4 PI also exhibit synchronous
314 development (S4B Table and S6 Fig), suggesting that parasites reschedule in synch.

315 That parasite rhythms do not differ significantly between LF and DF mice until day 5-6 post
316 infection (Fig 4) could be explained by the parasites experiencing a phenomenon akin to jet lag. Jet
317 lag results from the fundamental, tissue-specific robustness of circadian oscillators to perturbation,
318 which slows down the phase shift of individual oscillators to match a change in 'time-zone' [10]. We
319 propose that the most likely explanation for the data gathered from our main experiment for genotype
320 DK, and that collected previously for AJ and AS, is that parasites possess intrinsic oscillators that
321 shift collectively, in a synchronous manner, by a few hours each day, until they re-entrain to the new
322 'time-zone'. Because there is no loss of amplitude of parasite rhythms, it is less likely that individual
323 parasites possess intrinsic oscillators that re-entrain at different rates to the new 'time-zone'. The
324 recently demonstrated ability of parasites to communicate decisions about asexual to sexual
325 developmental switches [49] could also be involved in organising asexual development.

326 If parasites have evolved a mechanism to keep time and schedule their rhythms, what
327 external information might they synchronise to? Despite melatonin peaks in lab mice being brief and
328 of low concentration [50,51], the host's pineal melatonin rhythms have been suggested as a parasite
329 time cue [52]. However, we can likely rule pineal melatonin, and other glucocorticoids, out because
330 they are largely driven by rhythms of the SCN, which follow the light-dark cycle and have not been
331 shown to phase shift by 12 hours as a result of perturbing feeding timing [25]; some glucocorticoid
332 rhythms appear resistant to changing feeding time [53]. Whether extra-pineal melatonin, produced
333 by the gut for example [54], could influence the rhythms of parasites residing in the blood merits
334 further investigation. Body temperature rhythms have recently been demonstrated as a Zeitgeber for
335 an endogenous oscillator in trypanosomes [8]. Malaria parasites are able to detect and respond to
336 changes in environmental temperature to make developmental transitions in the mosquito phase of
337 their lifecycle [55,56], and may deploy the same mechanisms to organise developmental transitions
338 in the host. Body temperature rhythms did not fully invert in LF mice but they did exhibit unusually
339 low (i.e. day time) temperatures at night. Thus, for body temperature to be a time-of-day cue or

340 Zeitgeber it requires that parasites at early developmental stages (e.g. rings or early trophozoites)
341 are responsible for time-keeping because they normally experience low temperatures during the day
342 when the host is resting. The same logic applies to rhythms in locomotor activity because it is very
343 tightly correlated to body temperature (Pearson's correlation $R=0.85$, 95% CI: 0.82-0.88). Locomotor
344 activity affects other rhythms, such as physiological oxygen levels (daily rhythms in blood and tissue
345 oxygen levels), which can reset circadian oscillators [57] and have been suggested as a time cue for
346 filarial nematodes [4].

347 Feeding rhythms were inverted in LF and DF mice and so, the most parsimonious explanation
348 is that parasites are sensitive to rhythms related to host metabolism and/or food-entrained oscillators.
349 Malaria parasites have the capacity to actively alter their replication rate in response to changes in
350 host nutritional status [58]. Thus, we propose that parasites also possess a mechanism to coordinate
351 their development with rhythms in the availability of nutritional resources in the blood. Rhythms in
352 blood glucose are a well-documented consequence of rhythms in feeding timing [59] and glucose is
353 an important resource for parasites [60]. We performed an additional experiment to quantify blood
354 glucose rhythms in (uninfected) LF and DF mice (Fig 6A,B). Despite the homeostatic regulation of
355 blood glucose, we find its concentration varies across the circadian cycle, and is borderline
356 significantly rhythmic in DF mice ($p = 0.07$, peak time = ZT17.84, estimated with CircWave) and
357 follows a significantly 24-hour pattern in LF mice ($p < 0.0001$, peak time = ZT8.78). Glucose
358 rhythms/patterns are shaped by feeding regime (time-of-day: feeding treatment $\chi^2_{(18,32)} = 45.49$, $p <$
359 0.0001). Specifically, during the night, DF mice have significantly higher blood glucose than LF mice
360 ($t = 3.41$, $p = 0.01$, difference $20.6\text{mg/dl} \pm 7.32$) and there is a trend for LF mice to have higher blood
361 glucose than DF mice during the day ($t = -0.94$, $p = 0.78$, difference $7.9\text{mg/dl} \pm 9.86$).

362 **Fig 6. Feeding mice in the day time affects blood glucose regulation.** A) Mean \pm SEM (N=5 per
363 group) for light fed mice (LF, white bars; allowed access to food from ZT 0-ZT 12) and dark fed mice
364 (DF, grey bars; allowed access to food from ZT 12-ZT 0). Blood glucose concentration was
365 measured every \sim 2 hours for 30 hours from ZT 0. Steep increases in blood glucose concentration
366 occur as a result of the main bout of feeding in each group (i.e. just after lights on in LF mice and
367 lights off in DF mice, illustrated by the regions with solid lines connecting before and after the main
368 bout, see S5 Table), and suggests glucose concentration is inverted during the night. Light and dark
369 bars indicate lights on and lights off (lights on: ZT 0, lights off: ZT 12). B) as for A, but plotted as a
370 polar graph with corresponding developmental stages for each treatment group (red, LF; blue DF)
371 on the perimeter.

372 Titrating whether glucose availability is high or low would only provide parasites with
373 information on whether it is likely to be day or night, and a 12-hour window in which to make
374 developmental transitions should erode synchrony, especially as glucose rhythms are weak in DF
375 mice. Instead, parasites may use the sharp rise in blood glucose that occurs in both LF and DF mice
376 after their main bout of feeding as a cue for dusk (S5 Table; regions with solid lines connecting before

377 and after feeding in Fig 6). In line with the effects of feeding timing we observe in mice, a recent
378 study of humans reveals that changing feeding time can induce a phase-shift in glucose rhythms,
379 but not insulin rhythms [43]. Alternatively, parasites may be sensitive to fluctuations in other factors
380 due to rhythms in food intake, such as amino acids [61] or other rhythmic metabolites that appear
381 briefly in the blood after feeding, changes in oxygen consumption, blood pressure or blood pH
382 [62,63].

383 In summary, we show that peripheral, food-entrained host rhythms, but not central, light-
384 entrained host rhythms are responsible for the timing of developmental transitions during the asexual
385 replication cycles of malaria parasites. Taken together, our observations suggest that parasites have
386 evolved a time-keeping mechanism that uses daily fluctuations in resource availability (e.g. glucose)
387 as a time-of-day cue or Zeitgeber to match the phase of asexual development to the host's SCN
388 rhythms. Why coordination with the SCN is important remains mysterious. Uncovering how parasites
389 tell the time could enable an intervention (ecological trap) to "trick" parasites into adopting suboptimal
390 rhythms for their fitness.

391 Materials and Methods

392 We conducted an experiment to investigate whether host peripheral rhythms or those driven by the
393 SCN affect rhythms in the asexual development of malaria parasites. Our findings stimulated the
394 analysis of four further data sets stemming from three independent experiments. Here, we detail the
395 approach used for our main experiment "Effect of feeding time on parasite rhythms" before briefly
396 outlining the approaches used in the analyses of additional data "Costs of mismatch to host SCN
397 rhythms", "Rhythms in cytokines during malaria infection", "Synchrony during rescheduling" and
398 "Effect of feeding time on blood glucose rhythms".

399 Effect of feeding time on parasite rhythms

400 Experimental design

401 Both LF (“light-fed mice”, access to food during the day, ZT 0-12) and DF (“dark-fed mice”, access
402 to food during the night, ZT 12-0) mice were kept in the same light-dark cycle to ensure the phase
403 of their central oscillators did not differ (because the SCN is primarily entrained by light [23]) (Fig 1).
404 Changing host feeding time in LF mice created an in-host environment where peripheral rhythms
405 associated with feeding are out of phase with the SCN, but in phase in DF mice. Every 12 hours,
406 food was added/removed from cages and the cages thoroughly checked for evidence of hoarding,
407 which was never observed. All experimental infections were initiated with parasites from donor mice
408 in light-dark cycles that were out of phase with the experimental host’s light-dark cycles by 12 hours,
409 leading to a 12-hour phase difference in SCN entrainment of donor and host. Specifically, infections
410 were initiated with ring stage parasites (which appear in the early morning) collected from donor mice
411 and injected immediately into host mice which experiencing their evening. Parasites that are
412 mismatched by 12 hours to mice with synchronised SCN and peripheral rhythms (i.e. DF mice) take
413 around one week to reschedule [64,65,18]. Therefore, if peripheral rhythms but not SCN rhythms,
414 affect parasite rhythms, by starting infections with mismatched parasites we expected that parasites
415 in DF mice would reschedule within 7 days whereas rhythms in the LF mice would not change (or
416 change less). Because rhythms generally return to their original state after perturbation faster than
417 they can be shifted from homeostasis [66], studying the change in rhythms of mismatched parasites
418 ensured we could observe any divergence between parasite rhythms in LF and DF mice before host
419 immune responses and anaemia clear infections.

420 Parasites and hosts

421 We used 20 eight-week-old male mice, strain MF1 (in house supplier, University of Edinburgh),
422 entrained to a reverse lighting schedule for 2 weeks before starting the experiment. After
423 entrainment, mice were randomly allocated to one of two feeding treatments for the entire experiment
424 (Fig 1). After 2 weeks on the assigned feeding treatment we recorded body temperature and
425 locomotor activity for 48 hours. We used BioThermo13 RFID (radio frequency identification) tags
426 (Biomark, Idaho, USA) in conjunction with a Home Cage Analysis system (Actual HCA, Actual
427 Analytics Ltd, Edinburgh, Scotland), which enables body temperature and locomotor activity

428 readings to be taken every 0.05 seconds without disturbing the animals (using a network of antennae
429 spaced approximately 10.9 cm apart). Next, all mice were intravenously infected with 1×10^7
430 *Plasmodium chabaudi adami* (avirulent genotype, DK) parasitised red blood cells (at ring stage). We
431 used DK to minimise disruption to host feeding compared to infection with more virulent genotypes
432 that cause more severe sickness [39]. All mice were blood sampled from the tail vein twice daily
433 (ZT0 and ZT12) on days 0-5 and every 6 hours from days 6-8 post infection (PI). The densities and
434 developmental stages of parasites in experimental infections were determined from thin blood
435 smears (day 2 PI onwards, when parasites become visible in the blood) and red blood cell (RBC)
436 densities by flow cytometry (Beckman Coulter).

437 **Costs of mismatch to host SCN rhythms**

438 We compared the performance of parasites in our main experiment (in which infections were initiated
439 with parasites from donor mice that were mismatched to the host's SCN rhythms by 12 hours), to
440 the severity of infections when infections are initiated with parasites from donor mice that are
441 matched to the host's SCN rhythms. Twelve infections were established in the manner used in our
442 main experiment (eight-week-old male mice, strain MF1, intravenously infected with 1×10^7 *P.*
443 *chabaudi* DK parasitised RBC), except that donor SCN rhythms were matched to the experimental
444 host's SCN rhythm and hosts had access to food day and night. Densities of parasites were
445 quantified from blood smears and RBC density by flow cytometry on day 6 and 9 PI, respectively.
446 We chose to compare parasite density in matched infections to LF and DF infections on day 6 PI
447 because parasites are approaching peak numbers in the blood (before host immunity starts to clear
448 infections) and their high density facilitates accurate quantification when using microscopy.

449 **Rhythms in cytokines during malaria infection**

450 This experiment probes whether host immune responses mounted during the early phase of malaria
451 infection could impose development rhythms upon parasites. We entrained N=86 eight-week-old
452 female mice, strain MF1, to either a reverse lighting schedule (lights on 7pm, lights off 7am, N=43)
453 or a standard lighting schedule (lights on 7am, lights off 7pm, N=43). Donor mice, infected with *P.*

454 *chabaudi* genotype AS, were entrained to a standard lighting schedule to generate infections
455 matched and 12 hours mismatched relative to the SCN in the experimental mice. Mice were
456 intravenously injected with 1×10^7 parasitised RBC at ring stage. Genotype AS has intermediate
457 virulence [39] and was used to ensure immune responses were elicited by day 4 PI. We terminally
458 sampled 4 mice every 3 hours over 30 hours starting on day 4 PI, taking blood smears, red blood
459 cell counts and collecting plasma for Luminex cytokine assays.

460 Cytokines were assayed by the Human Immune Monitoring Centre at Stanford University using
461 mouse 38-plex kits (eBiosciences/Affymetrix) and used according to the manufacturer's
462 recommendations with modifications as described below. Briefly, beads were added to a 96-well
463 plate and washed in a Biotek ELx405 washer. 60uL of plasma per sample was submitted for
464 processing. Samples were added to the plate containing the mixed antibody-linked beads and
465 incubated at room temperature for one hour followed by overnight incubation at 4°C with shaking.
466 Cold and room temperature incubation steps were performed on an orbital shaker at 500-600 rpm.
467 Following the overnight incubation, plates were washed as above and then a biotinylated detection
468 antibody was added for 75 minutes at room temperature with shaking. Plates were washed as above
469 and streptavidin-PE was added. After incubation for 30 minutes at room temperature a wash was
470 performed as above and reading buffer was added to the wells. Each sample was measured as
471 singletons. Plates were read using a Luminex 200 instrument with a lower bound of 50 beads per
472 sample per cytokine. Custom assay control beads by Radix Biosolutions were added to each well.

473 **Synchrony during rescheduling**

474 We staged the parasites from the blood smears collected from the infections used to assay cytokines
475 (above) to investigate their synchrony during rescheduling. The infections from mismatched donor
476 mice began 12 hours out of phase with the host SCN rhythms and the CoG for ring stage parasites
477 reveals they had become rescheduled by 6 hours on day 4 PI. We focus on the ring stage as a phase
478 marker – for the analysis of synchrony in these data and the divergence between LF and DF
479 parasites – because rings are the most morphologically distinct, and so, accurately quantified, stage.

480 **Blood glucose concentration**

481 In a third additional experiment, we entrained 10 eight-week-old male mice, strain MF1, to a standard
482 lighting schedule for 2 weeks before randomly allocating them to one of two feeding treatments. One
483 group (N=5) were allowed access to food between ZT 0 and ZT 12 (equivalent to the LF group in
484 the main experiment) and the other group (N=5) allowed access to food between ZT 12 and ZT 0
485 (equivalent to the DF group). After 10 days of food restriction we recorded blood glucose
486 concentration every 2 hours for 30 hours, using an Accu-Chek Performa glucometer.

487 **Data analysis**

488 We used CircWave (version 1.4, developed by R.A. Hut; available from <http://www.euclock.org/>) to
489 characterise host and parasite rhythms, and R v. 3.1.3 (The R Foundation for Statistical Computing,
490 Vienna, Austria) for analysis of summary metrics and non-circadian dynamics of infection.
491 Specifically, testing for rhythmicity, estimating CoG (a reference point to compare circadian rhythms)
492 for host (body temperature, locomotor activity, blood glucose concentration) and parasite rhythms,
493 and amplitude for parasite stage proportions, was carried out with CircWave for each individual
494 infection. However, the cytokine data display high variation between mice (due to a single sample
495 from each mouse) so we calculated a more robust estimate of phase than CoG by fitting a sine curve
496 with a 24h period (using CircWave) and finding the maxima. Linear regression models and
497 simultaneous inference of group means (using the multcomp R package) were run with R to compare
498 summary measures that characterise rhythms, parasite performance, glucose concentration and
499 disease severity. R was also used to construct and compared linear mixed effects models using
500 which included mouse ID as a random effect (to account for repeated measures from each infection)
501 to compare dynamics of parasite and RBC density throughout infections, and glucose concentration
502 throughout the day.

503 **Ethics Statement**

504 All procedures were carried out in accordance with the UK Home Office regulations (Animals
505 Scientific Procedures Act 1986; project licence number 70/8546) and approved by the University of
506 Edinburgh.

507 **Acknowledgements**

508 We thank Philip Birget, Nicole Mideo, Petra Schneider, Bert Maier, Phil Spence and Barbara Helm
509 for discussion, Christopher Hutton and Giles K.P. Barra for assistance, and three anonymous
510 reviewers for their helpful and insightful comments.

511 **References**

- 512 1. Hevia MA, Canessa P, Müller-Esparza H, Larrondo LF. A circadian oscillator in the fungus
513 *Botrytis cinerea* regulates virulence when infecting *Arabidopsis thaliana*. PNAS. 2015;112:
514 8744-8749.
- 515 2. N'Goran E, Brémond P, Sellin E, Sellin B, Théron A. Intraspecific diversity of *Schistosoma*
516 *haematobium* in West Africa: chronobiology of cercarial emergence. Acta Trop. 1997;66: 35-
517 44.
- 518 3. Dolnik OV, Metzger BJ, Loonen MJJE. Keeping the clock set under the midnight sun: diurnal
519 periodicity and synchrony of avian *Isospora* parasites cycle in the High Arctic. Parasitol.
520 2011;138: 1077-1081.
- 521 4. Hawking F. The 24-hour periodicity of microfilariae: biological mechanisms responsible for
522 its production and control. Proc Roy Soc B. 1967;169: 59-76.
- 523 5. Hawking F. Circadian rhythms of *Trypanosoma congolense* in laboratory rodents. Trans R
524 Soc Trop Med Hyg. 1978;72: 592-595.
- 525 6. Hawking F. The asexual and sexual circadian rhythms of *Plasmodium vinckeii*, of *P. berghei*
526 and of *P. gallinaceum*. Parasitol. 1972;65: 189-201.
- 527 7. Mideo N, Reece SE, Smith AL, Metcalf CJE. The Cinderella syndrome: why do malaria-

528 infected cells burst at midnight? *Trends Parasitol.* 2013;29: 10-16.

529 8. Rijo-Ferreira F, Pinto-Neves D, Barbosa-Morais NL, Takahashi JS, Figueiredo LM.

530 *Trypanosoma brucei* metabolism is under circadian control. *Nat Microbiol.* 2017;2: 17032.

531 9. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks.

532 *Neuron.* 2012;74:246-60.

533 10. Roenneberg T, Daan S, Merrow M. The art of entrainment. *J Biol Rhythms.* 2003;18: 183-

534 94.

535 11. Sharma VK. On the significance of circadian clocks for insects. *J Indian Inst Sci.* 2003;83: 3-

536 26.

537 12. van der Veen DR, Riede SJ, Heideman PD, Hau M, van der Vinne V, Hut RA. Flexible clock

538 systems: adjusting the temporal programme. *Philos Trans R Soc Lond B Biol Sci.* 2017;372(1734):

539 372(1734)

540 13. Hardin PE, Hall JC, Rosbash M. Feedback of the *Drosophila* period gene product on

541 circadian cycling of its messenger RNA levels. *Nature.* 1990;343: 536-540.

542 14. Bargiello TA, Jackson FR, Young MW. Restoration of circadian behavioural rhythms by gene

543 transfer in *Drosophila*. *Nature.* 1984;312: 752-754.

544 15. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. *Nat Rev*

545 *Immunol.* 2013;13: 190-198.

546 16. Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LAJ. Circadian clock proteins and immunity.

547 *Immunity.* 2014;40: 178-186.

548 17. Martinez-Bakker M, Helm B. The influence of biological rhythms on host-parasite interactions.

549 *TREE.* 2015; 30: 314-326.

550 18. O'Donnell AJ, Schneider P, McWatters HG, Reece SE. Fitness costs of disrupting circadian

551 rhythms in malaria parasites. *Proc R Soc B Biol Sci.* 2011;278: 2429-36.

552 19. O'Donnell AJ, Mideo N, Reece SE. Disrupting rhythms in *Plasmodium chabaudi*: costs
553 accrue quickly and independently of how infections are initiated. *Malar J*. 2013;12: 372.

554 20. Rouzine IM, McKenzie FE. Link between immune response and parasite synchronization in
555 malaria. *PNAS*. 2003;100: 3473-3478.

556 21. Kwiatkowski D, Greenwood BM. Why is malaria fever periodic? A hypothesis. *Parasitol
557 Today*. 1989;5: 264-266.

558 22. Reece SE, Prior KP, Mideo N. The life and times of parasites: rhythms in strategies for within-
559 host survival and between-host transmission. *J Biol Rhythms*. 2017;doi:
560 10.1177/0748730417718904.

561 23. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals.
562 *Annu Rev Neurosci*. 2012;35: 445-462.

563 24. Cuesta M, Cermakian N, Boivin DB. Glucocorticoids entrain molecular clock components in
564 human peripheral cells. *FASEB J*. 2014;29: 1360-1370

565 25. Stokkan K, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in
566 the liver by feeding. *Science*. 2001;291: 490-493.

567 26. Damiola F, Le Minli N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding
568 uncouples circadian oscillators in peripheral tissues from the central pacemaker in the
569 suprachiasmatic nucleus. *Genes Dev*. 2000;14: 2950-61.

570 27. Rajaratnam SMW, Howard ME, Grunstein RR. Sleep loss and circadian disruption in shift
571 work: health burden and management. *MJA*. 2013;199: S11-S15.

572 28. Brown EN, Czeisler CA. The statistical analysis of circadian phase and amplitude in constant-
573 routine core-temperature data. *J Biol Rhythms*. 1992;7: 177-202.

574 29. Benloucif S, Guico MJ, Reid KJ, Wolfe LF, L'hermite-Balériaux M, Zee PC. Stability of
575 melatonin and temperature as circadian phase markers and their relation to sleep times in
576 humans. *J Biol Rhythms*. 2005;20: 178-188.

577 30. van der Veen DR, Saaltink D-J, Gerkema MP. Behavioral responses to combinations of timed
578 light, food availability, and ultradian rhythms in the common vole (*Microtus arvalis*).
579 *Chronobiol Int.* 2011;28: 563-571.

580 31. Cambie G, Caillard V, Beaute-Lafitte A, Ginsburg H, Chabaud A, Landau I. Chronotherapy
581 of malaria: identification of drug-sensitive stage of parasite and timing of drug delivery for
582 improved therapy. *Ann Parasitol Hum Comp.* 1991;66: 14-21.

583 32. Brugat T, Cunningham D, Sodenkamp J, Coomes S, Wilson M, Spence PJ, et al.
584 Sequestration and histopathology in *Plasmodium chabaudi* malaria are influenced by the
585 immune response in an organ-specific manner. *Cell Microbiol.* 2014;16: 687-700.

586 33. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD. Parasite sequestration in
587 *Plasmodium falciparum* malaria: spleen and antibody modulation of cytoadherence of
588 infected erythrocytes. *Proc Natl Acad Sci U S A.* 1983;80: 5075-9.

589 34. Salgado-Delgado RC, Saderi N, Basualdo MDC, Guerrero-Vargas NN, Escobar C, Buijs RM.
590 Shift work or food intake during the rest phase promotes metabolic disruption and
591 desynchrony of liver genes in male rats. *PLoS One.* 2013;8: e60052.

592 35. Rajaratnam SMW, Howard ME, Grunstein RR. Sleep loss and circadian disruption in shift
593 work: health burden and management. *Med J Aust.* 2013;199: 11-5.

594 36. Cheon DJ, Orsulic S. Mouse models of cancer. *Annu Rev Pathol.* 2011;6: 95-119.

595 37. Glastras SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA, et al. Mouse models of
596 diabetes, obesity and related kidney disease. *PLoS One.* 2016;11: e0162131.

597 38. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. *Am
598 J Physiol Lung Cell Mol Physiol.* 2008;295: L1-L15.

599 39. Bell AS, de Roode JC, Sim D, Read AF. Within-host competition in genetically diverse
600 malaria infections: parasite virulence and competitive success. *Evolution.* 2006;60: 1358-
601 1371.

602 40. Laermans J, Broers C, Beckers K, Vancleef L, Steensels S, Thijs T, et al. Shifting the
603 circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune
604 alterations which are influenced by ghrelin and the core clock gene Bmal1. PLoS One.
605 2014;9: 1-12.

606 41. Luna-Moreno D, Aguilar-Roblero R, Díaz-Muñoz M. Restricted feeding entrains rhythms of
607 inflammation-related factors without promoting an acute-phase response. Chronobiol Int.
608 2009;26: 1409-29.

609 42. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates
610 diurnal oscillations of Ly6Chi inflammatory monocytes. Science. 2013;341: 1483-8.

611 43. Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, Skene DJ,
612 Johnston JD. Meal timing regulates the human circadian system. Curr Biol. 2017;27: 1768-
613 1775.

614 44. Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-
615 γ from human NK cells by live *Plasmodium falciparum*-infected erythrocytes. J Immunol.
616 2002;169: 2956-2963.

617 45. Orengo JM, Evans JE, Bettoli E, Leliwa-Sytek A, Day K, Rodriguez A. *Plasmodium*-induced
618 inflammation by uric acid. PLoS Pathog. 2008;4: e1000013.

619 46. Stevenson MM, Tam MF, Wolf SF, Sher A. IL-12-induced protection against blood-stage
620 *Plasmodium chabaudi* AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-
621 dependent mechanism. J Immunol. 1995;155: 2545-2556.

622 47. Kumaratilake LM, Ferrante A, Rzepczyk C. The role of T lymphocytes in immunity to
623 *Plasmodium falciparum*. Enhancement of neutrophil-mediated parasite killing by lymphotoxin
624 and IFN-gamma: comparisons with tumor necrosis factor effects. J Immunol. 1991;146: 762-
625 767.

626 48. Jacobs P, Radzioch D, Stevenson MM. In vivo regulation of nitric oxide production by tumor

627 necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage
628 malaria in mice. *Infect Immun.* 1996;64: 44-49.

629 49. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell
630 communication between malaria-infected red blood cells via exosome-like vesicles. *Cell.*
631 2013;153: 1120-33.

632 50. Goto M, Oshima I, Tomita T, Ebihara S. Melatonin content of the pineal gland in different
633 mouse strains. *J Pineal Res.* 1989;7: 195-204.

634 51. Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW. Melatonin in mice: rhythms, response to
635 light, adrenergic stimulation, and metabolism. *Am J Physiol Regulatory Integrative Comp*
636 *Physiol.* 2002;282: R358-65.

637 52. Hotta CT, Gazarini ML, Beraldo FH, Varotti FP, Lopes C, Markus RP, et al. Calcium
638 dependent modulation by melatonin of the circadian rhythm in malaria parasites. *Nat Cell*
639 *Biol.* 2000;2: 466-8.

640 53. Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, et al. Short-term
641 feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity
642 with hyperphagia, physical inactivity and metabolic disorders in mice. *Metabolism.* 2016;65:
643 714-27.

644 54. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC,
645 Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and
646 potential functions. *Cell Mol Life Sci.* 2014;71: 2997-3025.

647 55. Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber K V., et al.
648 Implications of temperature variation for malaria parasite development across Africa. *Sci*
649 *Rep.* 2013;3: 1-11.

650 56. Chao J, Ball G. The effect of low temperature on *Plasmodium relictum* in *Culex tarsalis*. *J*
651 *Parasitol.* 1962;48: 252-4.

652 57. Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G, Adamovich Y, et al. Rhythmic
653 oxygen levels reset circadian clocks through HIF1a. *Cell Metab.* 2016; 319-30.

654 58. Mancio-Silva L, Slavic K, Ruivo MTG, Grosso AR, Modrzynska KK, Vera IM, et al. Nutrient
655 sensing modulates malaria parasite virulence. *Nature.* 2017; 547: 213-216.

656 59. McGinnis GR, Young ME. Circadian regulation of metabolic homeostasis: causes and
657 consequences. *Nat Sci Sleep.* 2016;8: 163-80.

658 60. MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial
659 metabolism of sexual and asexual blood stages of the malaria parasite *Plasmodium*
660 *falciparum*. *BMC Biol.* 2013;11: 67.

661 61. Nasset ES, Heald FP, Calloway DH, Margen S, Schneeman P. Amino acids in human blood
662 plasma after single meals of meat, oil, sucrose and whiskey. *J Nutr.* 1979;109: 621-30.

663 62. Christopherson RJ, Webster AJ. Changes during eating in oxygen consumption, cardiac
664 function and body fluids of sheep. *J Physiol.* 1972;221: 441-57.

665 63. Matsukawa K, Ninomiya I. Changes in renal sympathetic nerve activity, heart rate and arterial
666 blood pressure associated with eating in cats. *J Physiol.* 1987;390: 229-242.

667 64. Boyd GH. Induced variations in the asexual cycle of *Plasmodium cathemerium*. *J Exp Zool.*
668 1929;9: 111-26.

669 65. Gautret P, Deharo E, Tahar R, Chabaud AG, Landau I. The adjustment of the schizogonic
670 cycle of *Plasmodium chabaudi chabaudi* in the blood to the circadian-rhythm of the host.
671 *Parasite-Journal La Soc Fr Parasitol.* 1995;2: 69-74.

672 66. Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U. Glucocorticoid hormones inhibit
673 food-induced phase-shifting of peripheral circadian oscillators. *EMBO J.* 2002;20: 7128-36.