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Abstract 

Prediction plays a crucial role in perception, as prominently suggested by predictive coding theories. 

However, the exact form and mechanism of predictive modulations of sensory processing remain unclear, 

with some studies reporting a downregulation of the sensory response for predictable input, while others 

observed an enhanced response. In a similar vein, downregulation of the sensory response for predictable 

input has been linked to either sharpening or dampening of the sensory representation, which are 

opposite in nature. In the present study we set out to investigate the neural consequences of perceptual 

expectation of object stimuli throughout the visual hierarchy, using fMRI in human volunteers. 

Participants (n=24) were exposed to pairs of sequentially presented object images in a statistical learning 

paradigm, in which the first object predicted the identity of the second object. Image transitions were not 

task relevant; thus all learning of statistical regularities was incidental. We found strong suppression of 

neural responses to expected compared to unexpected stimuli throughout the ventral visual stream, 

including primary visual cortex (V1), lateral occipital complex (LOC), and anterior ventral visual areas. 

Expectation suppression in LOC, but not V1, scaled positively with image preference, lending support to 

the dampening account of expectation suppression in object perception.  

 

Significance Statement 

Statistical regularities permeate our world and help us to perceive and understand our surroundings. It 

has been suggested that the brain fundamentally relies on predictions and constructs models of the world 

in order to make sense of sensory information. Previous research on the neural basis of prediction has 

documented expectation suppression, i.e. suppressed responses to expected compared to unexpected 

stimuli. In the present study we queried the presence and characteristics of expectation suppression 

throughout the ventral visual stream. We demonstrate robust expectation suppression in the entire 
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ventral visual pathway, and underlying this suppression a dampening of the sensory representation in 

object-selective visual cortex, but not in primary visual cortex. Taken together, our results provide novel 

evidence in support of theories conceptualizing perception as an active inference process, which 

selectively dampens cortical representations of predictable objects. This dampening may support our 

ability to automatically filter out irrelevant, predictable objects.  
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Introduction 

Our environment is structured by statistical regularities. Making use of such regularities by anticipating 

upcoming stimuli is of great evolutionary value, as it enables the agent to predict future states of the 

world and prepare adequate responses, which in turn can be executed faster or more accurately (Bertels 

et al., 2012; Hunt and Aslin, 2001; Kim et al., 2009). Our brains are exquisitely sensitive to these statistical 

regularities (Schapiro et al., 2012; Schapiro et al., 2014; Turk-Browne et al., 2009; Turk-Browne et al., 

2010). In fact, it has been suggested that a core operational principle of the brain is prediction (Bubic et 

al., 2010) and prediction error minimization (Friston, 2005). Statistical learning is an automatic learning 

process by which statistical regularities are extracted from the environment (Turk-Browne et al., 2010), 

without explicit awareness or effort by the observer (Brady and Oliva, 2008; Fiser and Aslin, 2002), even 

under concurrent cognitive load (Garrido et al., 2016). These statistical regularities can be used to form 

predictions about upcoming input, with effects of statistical learning being evident even 24 hours after 

exposure (Kim et al., 2009). 

The neural consequences of perceptual predictions have been investigated extensively, but 

conflicting results have emerged. For example, Turk-Browne et al. (2009) reported larger neural responses 

to predictable than random sequences of stimuli in human object-selective lateral occipital complex (LOC). 

However, contrary to this notion, neurons in monkey inferotemporal cortex (IT), the putative homologue 

of human LOC (Denys et al., 2004), showed reduced responses to expected compared to unexpected 

object stimuli (Meyer and Olson, 2011; Kaposvari et al., 2016). This is in line with findings in human 

primary visual cortex (V1), which revealed that visual gratings of an expected orientation elicit a 

suppressed neural response compared to gratings of an unexpected orientation (Kok et al., 2012a; St. 

John-Saaltink et al., 2015). Even though there is superficial agreement between these studies, the exact 

form of expectation suppression appeared to be opposite. Kok et al. (2012a) observed the strongest 

suppression in voxels that were tuned away from the expected stimulus, resulting in a sparse, sharpened 
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population code. Electrophysiological studies in macaques on the other hand have reported a positive 

scaling of expectation suppression with image preference (Meyer and Olson, 2011), suggesting that 

sensory representations are dampened for expected stimuli (Kumar et al., 2017).  

In sum, several discrepancies remain concerning the neural basis of perceptual expectation, which 

may be related to differences in species (macaque vs. human), cortical hierarchy (early vs. late) and 

measurement technique (spike rates vs. fMRI BOLD). In the current study, we set out to examine the 

existence and characteristics of expectation suppression throughout the visual hierarchy, using a 

paradigm that closely matches previous literature on object prediction in macaque monkeys (Meyer and 

Olson, 2011; Ramachandran et al., 2016). This allows us to better compare and generalize between 

species and methods, while measuring neural activity throughout the entire human brain. First we 

exposed participants to pairs of sequentially presented object images in a statistical learning paradigm. 

Next, we recorded neural responses, using whole-brain fMRI, to expected and unexpected object image 

pairs. By contrasting responses to expected and unexpected pairs we probed whether a suppression of 

expected object stimuli is evident throughout the ventral visual stream, and in particular in object-

selective cortex. Moreover, by investigating expectation suppression as a function of image preference 

we contrasted sharpening against dampening (scaling) accounts of expectation suppression. 

In brief, our results show that expectation suppression is ubiquitous throughout the human 

ventral visual stream, including object-selective LOC. Furthermore, we found that expectation suppression 

positively scales with object image preference within object-selective LOC, but not V1. This suggests that 

object predictions selectively dampen sensory representations in object-selective regions. 
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Materials and Methods 

Participants 

Twenty-four healthy, right-handed participants (17 female, aged 23.3 ± 2.4 years, mean ± SD) 

were recruited from the Radboud research participation system. The sample size was based on an a priori 

power calculation, computing the required sample size to achieve a power of 0.8 to detect an effect size 

of Cohen’s d = 0.6, at alpha = 0.05, for a two-tailed within subjects t-test. Participants were prescreened 

for MRI compatibility, had no history of epilepsy or cardiac problems, and normal or corrected-to-normal 

vision. Written informed consent was obtained before participation. The study followed institutional 

guidelines of the local ethics committee (CMO region Arnhem-Nijmegen, The Netherlands). Participants 

were compensated with 42 euro for study participation. Data from one subject was excluded due to 

excessive tiredness and poor fixation behavior. One additional subject was excluded from all ROI based 

analyses, since no reliable object-selective LOC mask could be established due to subpar fixation behavior 

during the functional localizer. 

 

Experimental Design and Statistical Analysis  

Stimuli and experimental paradigm 

Main task. Participants were exposed to two object images in quick succession. Each image was 

presented for 500 ms without interstimulus interval, and an intertrial interval of 1500-2500 ms during 

behavioral training and 4110-6300 ms during fMRI scanning (see Figure 1A for a single trial). A fixation 

bullseye (0.5° visual angle in size) was presented throughout the run. For each participant 16 object 

images were randomly selected from a pool of 80 stimuli (also see: Stimuli). Eight images were assigned 

as leading images, i.e. appearing first on trials, while the other eight images served as trailing images, 

occurring second. Image pairs and the transitional probabilities between them were determined by the 
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transitional probability matrix depicted in Figure 1B, based on the transition matrix used by 

Ramachandran et al. (2016). The expectation manipulation consisted of a repeated pairing of images in 

which the leading image predicted the identity of the trailing image, thus over time making the trailing 

image expected given the leading image. Importantly, the transitional probabilities governing the 

associations between images were task irrelevant, since participants were instructed to respond, by 

button press, to any upside-down versions of the images, the occurrence of which was not related to the 

transitional probability manipulation and could not be predicted. Upside-down images (target trials) 

occurred on ~9% of trials. Participants were not informed about the presence of any statistical regularities 

and instructed to maintain fixation on the central fixation bulls-eye. Trial order was fully randomized. 

During behavioral training only expected image pairs were presented on a total of 1792 trials, split 

into 8 blocks with short breaks in between blocks. Thus, during this session the occurrence of image L1 

was perfectly predictive of image T1 (i.e. P(T1|L1) = 1; see Figure 1B). Apart from these trials, which 

constituted the 1:1 conditional probability condition, there were also trials with a 2:1 and 1:2 image 

pairing. In the 2:1 conditional probability condition the leading image was perfectly predictive of the 

trailing image (e.g. P(T3|L3) = 1), but two different leading images predicted the same trailing image, 

thereby reducing the conditional probability of the leading image given a particular trailing image (i.e. 

P(L3|T3) = 0.5). Lastly, the 1:2 condition consisted of a reduced predictive probability of the trailing image 

given the leading image, as such image L7 for instance was equally predictive of images T5 and T7 (i.e. 

P(T5|L7) = 0.5 and P(T7|L7) = 0.5). 

 On the next day participants performed one additional behavioral training block, consisting of 224 

trials, and another 48 practice trials in the MRI during acquisition of the anatomical image. The task during 

the subsequent fMRI experiment was identical to the training session, except that also unexpected image 

pairs occurred. Nonetheless, the expected trailing image was still most likely to follow a given leading 

image, namely on 56.25% of trials compared to 6.25% for each unexpected trailing image (1:1 condition). 
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Since intertrial intervals were longer in the fMRI session, and responses to upside-down images therefore 

occurred at a lower rate, potentially reducing participants’ vigilance, the percentage of upside-down 

images was increased to ~11% of trials. As during the behavioral training session, in the main fMRI task 

participants were not informed about the presence of transitional probabilities, and there was no 

correlation between the image transitions and the occurrence of upside-down images. In total the MRI 

main task consisted of 512 trials, split into four equal runs, with an additional three resting blocks (each 

12 sec) per run. Feedback on behavioral performance (percent correct and mean response time) was 

provided after each run. To ensure adequate fixation on the fixation bullseye, an infrared eye tracker 

(SensoMotoric Instruments, Berlin, Germany) was used to record and monitor eye positions. 

 

 

Figure 1. Paradigm overview. (A) Depicts a single trial, with two example images and superimposed fixation bullseye. Leading 

images and trailing images were presented for 500 ms each, without interstimulus interval, followed by an intertrial interval of 

4110-6300 ms (fMRI session; 1500-2500 ms during behavioral training). Participants responded to upside-down images by button 

press; the image at either position (leading or trailing) could be upside-down. (B) Shows the utilized image transition matrix 

determining image pairs. Eight leading images (L1 – L8) and eight trailing images (T1- T8) were used for each participant. 

Conditional probability conditions are highlighted and their respective conditional probabilities during training are listed on the 

right; condition 1:1 (orange), 2:1 condition (green), 1:2 condition (blue). Cells with dots indicate expected image pairs, while 

empty cells denote unexpected pairs. 
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Functional localizer. The main task was followed by a functional localizer, which was used for a 

functional definition of object-selective LOC for each participant, and to determine image preference for 

each voxel within visual cortex in an expectation neutral context. Finally, localizer data served as 

independent training data for the multi-voxel pattern analysis (see: Data analysis, Multi-voxel pattern 

analysis). In a block design each object image was presented four times, each time flashing at 2 Hz (300 

ms on, 200 ms off) for 11 sec. Additionally, a globally phase-scrambled version of each image (Coggan et 

al., 2016) was shown twice, also flashing at 2 Hz for 11 sec. The order of objects images and scrambles 

was randomized. Participants were instructed to fixate the bullseye and respond by button press 

whenever the fixation bullseye dimmed in brightness. 

Questionnaire. Following the fMRI session, participants filled in a brief questionnaire probing 

their explicit knowledge of the image transitions. Knowledge of each of the eight image pairs was tested 

by presenting participants with one leading image at a time, instructing them to select the most likely 

trailing image. 

 Categorization task. During the categorization task participants were instructed to indicate, by 

button press, whether the trailing image would fit into a shoebox (yes/no decision); similar to Dobbins et 

al. (2004), and Horner and Henson (2008). This task was aimed at assessing any implicit reaction time or 

accuracy benefits due to incidental learning, since in principle the statistical regularities could be used to 

predict the correct response before the trailing image appeared. For each participant it was ensured that 

half of the trailing images in each conditional probability condition (1:1, 1:2, 2:1) fit into a shoebox, while 

the other half did not fit. A brief practice block was used to make sure that participants correctly classified 

the object images and understood the task. Participants were not informed about the intention behind 

this task, nor were they instructed to make use of the statistical regularities, in order to avoid influencing 

their behavior. A full debriefing took place after the categorization task. 
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 Stimuli. Object stimuli were taken from Brady et al. (2008), and consisted of a large collection of 

diverse full-color photographs of objects. Of this full set of images, a subset of 80 images was selected; 40 

objects fitting into a shoebox, and 40 objects not fitting into a shoebox. Images spanned approximately 5° 

x 5° visual angle and were presented in full-color on a mid-grey background. During training stimuli were 

displayed on a LCD screen and back-projected during MRI scanning (EIKI LC-XL100 projector; 1024 x 768 

pixel resolution, 60 Hz refresh rate), visible using an adjustable mirror. Since images were drawn at 

random per participant, each image could occur in any condition or position, thereby eliminating potential 

effects induced by individual image features. 

 

fMRI data acquisition 

Functional and anatomical images were collected on a 3T Skyra MRI system (Siemens, Erlangen, 

Germany), using a 32-channel headcoil. Functional images were acquired using a whole-brain T2*-

weighted multiband-8 sequence (time repetition [TR] / time echo [TE] = 730/37.8 ms, 64 slices, voxel size 

2.4 mm isotropic, 50° flip angle, A/P phase encoding direction). Anatomical images were acquired with a 

T1-weighted magnetization prepared rapid gradient echo sequence (MP-RAGE; GRAPPA acceleration 

factor = 2, TR/TE = 2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle). 

 

Data analysis 

 Behavioral data analysis. Behavioral data from the categorization task was analyzed in terms of 

reaction time (RT) and accuracy. All RTs exceeding 3 SD above mean and below 200 ms were excluded as 

outliers (2.0% of trials). Since unexpected trailing image trials during the categorization task may require 

a change in the response, any differences in RT and accuracy between the expected and unexpected 

conditions may reflect a combination of surprise and response adjustment, thereby inflating possible RT 

and accuracy differences. Therefore, only unexpected trials requiring the same response as the expected 
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image were analyzed, yielding an unbiased comparison of the effect of expectation. RTs for expected and 

unexpected trailing image trials were averaged separately per participant and subjected to a paired t-test. 

The error rate was also calculated separately for expected and unexpected trailing image trials per subject 

and analyzed with a paired t-test. Additionally, the effect size of both differences was calculated in terms 

of Cohen’s dz (Lakens, 2013). All standard errors of the mean presented here were calculated as the within-

subject normalized standard error (Cousineau, 2005) with Morey’s (2008) bias correction. 

 fMRI data preprocessing. fMRI data preprocessing was performed using FSL 5.0.9 (FMRIB 

Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; Smith et al., 2004). The preprocessing pipeline 

included brain extraction (BET), motion correction (MCFLIRT), temporal high-pass filtering (128 s), and 

spatial smoothing for univariate analyses (Gaussian kernel with full-width at half-maximum of 5 mm). No 

smoothing was applied for multivariate analyses, nor for the voxel-wise image preference analysis. 

Functional images were registered to the anatomical image using FLIRT (BBR) and to the MNI152 T1 2mm 

template brain (linear registration with 12 degrees of freedom). The first eight volumes of each run were 

discarded to allow for signal stabilization.  

 Univariate data analysis. To investigate expectation suppression across the ventral visual stream, 

voxel-wise general linear models (GLM) were fit to each subject’s run data in an event-related approach 

using FSL FEAT. Separate regressors for expected and unexpected image pairs were modeled within the 

GLM. All trials were modeled with one second duration (corresponding to the duration of the leading and 

trailing image combined) and convolved with a double gamma haemodynamic response function. 

Additional nuisance regressors were added, including one for target trials (upside-down images), 

instruction and performance summary screens, first-order temporal derivatives for all modeled event 

types, and 24 motion regressors (six motion parameters, the derivatives of these motion parameters, the 

squares of the motion parameters, and the squares of the derivatives; comprising FSL’s standard + 

extended set of motion parameters). The contrast of interest for the whole-brain analysis compared the 
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average BOLD activity during unexpected minus expected trials, i.e. expectation suppression. Data was 

combined across runs using FSL’s fixed effect analysis. For the across participants whole-brain analysis, 

FSL’s mixed effect model FLAME 1 was utilized. Multiple comparison correction was performed using 

Gaussian random-field based cluster thresholding, as implemented in FSL, using a cluster-forming 

threshold of z > 3.29 (i.e. p < 0.001, two-sided) and a cluster significance threshold of p < 0.05. An identical 

analysis was performed to assess the influence of the different conditional probability conditions (see: 

Main task), except that the expected and unexpected event regressors were split into their respective 

conditional probability conditions (1:1, 1:2, 2:1), thus resulting in a GLM with six regressors of interest.  

 Planned region of interest analyses. Within each ROI (V1 and LOC; see: Region of interest 

definition), the parameter estimates for the expected and unexpected image pairs were extracted 

separately from the whole-brain maps. Per subject the mean parameter estimate within the ROIs was 

calculated and divided by 100 to yield an approximation of mean percent signal change compared to 

baseline (Mumford, 2007). These mean parameter estimates were in turn subjected to a paired t-test and 

the effect size of the difference calculated (Cohen’s dz). For the conditional probability manipulation, a 

similar ROI analysis was performed, except that the resulting mean parameter estimates were subjected 

to a 3x2 repeated measures ANOVA with conditional probability condition (1:1, 2:1, 1:2) and expectation 

(expected, unexpected) as factors. 

 Multi-voxel pattern analysis. Multi-voxel pattern analysis (MVPA) was performed per subject on 

mean parameter estimate maps per trailing image. These maps were obtained by fitting voxel-wise GLMs 

per trial for each subject, following the ‘least squares separate’ approach outlined in Mumford et al. 

(2012). In brief, a GLM is fit for each trial, with only that trial as regressor of interest and the remaining 

trials as one regressor of no interest. This was done for the functional localizer and main task data. The 

resulting parameter estimate maps of the functional localizer were used as training data for a multi-class 

SVM (classes being the eight trailing images), as implemented in Scikit-learn (SVC; Pedregosa et al., 2011). 
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Decoding performance was tested per subject on the mean parameter estimate maps from the main task 

data for each trailing image, split into expected and unexpected image pairs. The choice to decode mean 

parameter estimate maps, instead of single trial estimates, was made after observing that image decoding 

performance when decoding individual trials was close to chance, indicating a lack of sensitivity to detect 

potential differences between expected and unexpected image pairs. This decision was based on an 

independent MVPA collapsed over expected and unexpected image pairs, without inspection of the 

contrast of interest. Expected image pair trials are by definition more frequent, which may in turn yield a 

more accurate mean parameter estimate. Thus, stratification by random sampling was used to balance 

the number of expected and unexpected image pairs per trailing image, thereby removing potential bias. 

In short, for each iteration (n = 1,000) a subset of expected trials was randomly sampled to match the 

number of unexpected occurrences of that trailing image. Finally, decoding performance was analyzed in 

terms of mean decoding accuracy. To this end, the class with the highest probability for each test item 

was chosen as the predicted class and the proportion of correct predictions calculated. Mean decoding 

performances for expected and unexpected image pairs were subjected to a two-sided, one sample t-test 

against chance decoding performance (chance level = 12.5%). If decoding was above chance for the 

expected and unexpected image pairs, decoding performances between expected and unexpected pairs 

were compared by means of a paired t-test and the effect size was calculated. 

 Image preference analysis. For the voxel-wise image preference analysis the single trial GLM 

parameter estimate maps, as outlined in the MVPA section above, were utilized. Within each participant 

the parameter estimate maps of the functional localizer were averaged for each trailing image, thus 

yielding an average activation map induced by each trailing image in an expectation free, neutral context. 

The same was done for the main task data, but for expected and unexpected occurrence of each trailing 

image separately. Then, for each voxel, trailing images were ranked according to the response they elicited 

during the functional localizer. These rankings were applied to the main task data, resulting in a vector 
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per voxel, consisting of the mean activation (parameter estimate) elicited by the trailing images during 

the main task, ranked from the least to most preferred image based on the context neutral, independent 

functional localizer data. This was done separately for expected and unexpected occurrence of each 

trailing image. Within each ROI the mean parameter estimates of expected and unexpected image pairs 

per preference rank was calculated. For each ROI linear regressions were fit to the ranked parameter 

estimates, one for expected and one for unexpected pairs. A positive regression slope would thus indicate 

that the ranking from the functional localizer generalized to the main task, which was considered a 

prerequisite for any further analysis. This was tested by subjecting the slope parameters across subjects 

to a one sample t-test, comparing the obtained slopes against zero. If this requirement was met for 

expected and unexpected slopes, the difference between slope parameters was compared by a paired t-

test. If the amount of expectation suppression (i.e. unexpected minus expected) indeed scales with image 

preference (i.e. dampening), then we should find the slope parameter for the unexpected condition 

regression line to be significantly larger than for the expected condition. The opposite prediction, a larger 

slope parameter for the expected condition, is made by the sharpening account. For this comparison the 

effect size was also calculated in terms of Cohen’s dz.  

Region of interest definition. The two a-priori regions of interest, object-selective LOC and V1, 

were defined per subject based on data that was independent from the main task. In order to obtain 

object-selective LOC, GLMs were fit to the functional localizer data of each subject, modelling object image 

and scrambled image events separately with a duration corresponding to their display duration. First-

order temporal derivatives, instruction and performance summary screens, as well as motion regressors 

were added as nuisance regressors. The contrast, object images minus scrambles, thresholded at z > 5 

(uncorrected; i.e. p < 1e-5), was utilized to select regions per subject selectively more activated by intact 

object images compared to scrambles (Kourtzi and Kanwisher, 2001; Haushofer et al., 2008). The 

threshold was lowered on a per subject basis, if the LOC mask contained less than 300 voxels in native 
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volume space. The individual functional masks were constrained to anatomical LOC using an anatomical 

LOC mask obtained from the Harvard-Oxford cortical atlas, as distributed with FSL. Finally, a decoding 

analysis of object images (also see: Multi-voxel pattern analysis) was performed using a searchlight 

approach (6 mm radius) on the functional localizer data, using a k-fold cross-validation scheme with four 

folds. This MVPA yielded a whole brain map of object image decoding performance, based on which the 

200 most informative LOC voxels (in native volume space) in terms of image identity information were 

selected from the previously established LOC masks. This was done to ensure that the final masks contain 

voxels which best discriminate between the different object images. Freesurfer 6.0 (‘recon-all’; Dale et al., 

1999) was utilized to extract V1 labels (left and right) per subject based on their anatomical image. 

Subsequently, the obtained labels were transformed back to native space using ‘mri_label2vol’ and 

combined into a bilateral V1 mask. The same searchlight approach mentioned above was used to 

constrain the anatomical V1 masks to the 200 most informative V1 voxels concerning object identity 

decoding. To verify that our results were not unique to the specific (but arbitrary) ROI size, we repeated 

all ROI analyses with ROI masks ranging from 50 to 300 voxels in steps of 50 voxels. 

 

Software 

FSL 5.0.9 (FMRIB Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl; Smith et al., 2004) was 

utilized for preprocessing and analysis of fMRI data. Additionally, custom Matlab (The MathWorks, Inc., 

Natick, Massachusetts, United States) and Python (Python Software Foundation) scripts were used for 

additional analyses, data extraction, statistical tests, and plotting of results. The following toolboxes were 

used: NumPy (van der Walt et al., 2011), SciPy (Jones et al., 2001), Matplotlib (Hunter, 2007) and Scikit-

learn (Pedregosa et al., 2011). Whole-brain results are displayed using Slice Display (Zandbelt, 2017) using 

a dual-coding data visualization approach (Allen et al., 2012), with color indicating the parameter 

estimates and opacity the associated z statistics. Additionally, MRIcroGL 
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(www.mccauslandcenter.sc.edu/mricrogl) was used to 3D render the whole-brain results. Stimulus 

presentation was done using Presentation® software (version 18.3, Neurobehavioral Systems, Inc., 

Berkeley, CA). 

 

 

Results 

Expectation suppression throughout the ventral visual stream 

We first examined expectation suppression within our a priori defined ROIs, V1 and object-

selective LOC. We observed a significantly larger BOLD response to unexpected compared to expected 

image pairs, both in V1 (t(21) = 3.20, p = 0.004, Cohen’s dz = 0.68, Figure 2C) and object-selective LOC 

(t(21) = 5.03, p = 5.6e-5, Cohen’s dz = 1.07, Figure 2C). To ensure that the results are not dependent on 

the (arbitrarily chosen) mask size of the ROIs, the analyses were repeated for ROIs of sizes between 50-

300 voxels (691-4147mm3); the direction and statistical significance of all effects was identical for all ROI 

sizes. 

A whole-brain analysis, investigating effects of perceptual expectation across the brain, revealed 

an extended statistically significant cluster (Figure 2A, black contours) of expectation suppression across 

the ventral visual stream. Cortical areas showing significant expectation suppression included large parts 

of superior and inferior bilateral object-selective LOC, bilateral temporal occipital fusiform cortex (TOFC), 

and right posterior parahippocampal gyrus (PHG). In fact, the observed expectation suppression effect in 

the left hemisphere consisted of one large statistically significant cluster, extending throughout most of 

the ventral visual stream, as can be seen in Figure 2B. The corresponding significant effect in the right 

hemisphere, occluded in Figure 2B, consists of two large clusters. 
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Figure 2. (A) Expectation suppression throughout the ventral visual stream. Displayed are parameter estimates for unexpected 

image pairs minus expected pairs overlaid on the MNI152 2mm template. Color represents the parameter estimates, with red-

yellow clusters indicating expectation suppression, and opacity depicting the associated z statistics. Black contours outline 

statistically significant clusters (GRF cluster corrected), which include significant expectation suppression in superior and inferior 

divisions of LOC, temporal occipital fusiform cortex, and posterior parahippocampal gyrus. (B) Expectation suppression (cluster 

corrected) displayed over the 3D rendered MNI152 template brain. Color indicates z statistics of the expectation suppression 

contrast. Visible in the left hemisphere is one contiguous cluster, showing significant expectation suppression, including superior 

and inferior divisions of LOC, TOFC, and posterior PHG. The corresponding cluster in the right hemisphere (also see panel A) is 

occluded here. (C) Expectation suppression within V1 and object-selective LOC. Displayed are parameter estimates ± within-

subject standard error for responses to expected and unexpected images pairs. In both ROIs, V1 (left bar plot) and LOC (right bar 

plot), BOLD responses to unexpected image pairs were significantly stronger than to expected image pairs. (D) Image preference 

analysis results in V1 and object-selective LOC. Parameter estimates ± within-subject standard error are displayed as a function 

of voxel-wise image preference, ranked from the least to the most preferred image rank based on the functional localizer. 

Superimposed is the mean regression line fit of the subject-wise regressions for expected and unexpected image pairs separately 

(see Methods). The left line plot shows responses to expected and unexpected image pairs within the V1 ROI. The fitted regression 

lines for expected and unexpected are parallel; i.e. no difference in slopes. The right plot displays image preference results for 

object-selective LOC, showing a steeper slope for the unexpected image pair regression line compared to the corresponding 

expected image pair regression line. * p < .05. ** p < .01, *** p < .001. 
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Next, we assessed the neural effect of the conditional probability conditions within V1 and LOC. 

While this analysis confirmed a weaker response for expected items in V1 (F(1,21) = 6.39, p = 0.020) and 

LOC (F(1,21) = 19.50, p = 2.4e-4), there was no significant modulation by conditional probability, nor an 

interaction between conditional probability and expectation in either V1 (conditional probability: F(2,42) 

= 2.02, p = 0.145; interaction: F(2,42) = 1.19, p = 0.315) or LOC (conditional probability: F(2,42) = 1.90, p = 

0.162; interaction: F(2,42) = 0.92, p = 0.407). We therefore collapse across the three different conditional 

probability conditions for all subsequent analyses.  

 

Perceptual expectations dampen sensory representation in LOC  

To examine whether sharpening or dampening of sensory representations underlies expectation 

suppression in V1 and LOC, an image preference analysis was conducted. In short, BOLD responses were 

regressed on image preference rank, with dampening predicting a steeper slope for unexpected 

compared expected images and sharpening predicting the opposite (see Methods for details). Results, 

depicted in Figure 2D, reveal positive slopes within V1 (expected: t(21) = 9.11, p = 9.6e-9; V1 unexpected: 

t(21) = 9.90, p = 2.3e-9), as well as in LOC (expected: t(21) = 3.39, p = 0.003; LOC unexpected: t(21) = 7.14, 

p = 4.8e-7), confirming that the image preference ranking from the functional localizer data generalized 

to the main task. This indicates a stable, reproducible sensory code and allows for an analysis of the 

difference in slopes between expected and unexpected image pairs. Crucially, image preference slopes 

were significantly steeper for unexpected than expected image pairs in LOC (t(21) = 2.18, p = 0.041, 

Cohen’s dz= 0.47), but not in V1 (t(21) = 1.20, p = 0.242). This means that the amount of expectation 

suppression (i.e. the difference in the two regression lines in Figure 2D) increased with the image 

preference rank in object-selective LOC, but not in V1. A control analysis confirmed that the results were 

independent of the number of voxels in the respective ROIs (mask sizes 50-300 voxels). 
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In a complementary analysis, we reasoned that if the reduced activity for expected items is 

associated with a reduction of noise (sharpening), it is expected to be associated with an increase in 

classification accuracy in a MVPA (Kok et al. 2012a). Conversely, a dampening of the representation is 

predicted to be associated with a decrease in classification accuracy for expected image pairs (Kumar et 

al., 2017). Generally, image identity could be classified well above chance (12.5%) in V1 (expected: 27.9%, 

t(21) = 10.89, p = 4.3e-10; unexpected: 30.2%, t(21) = 15.70, p = 4.5e-13), and LOC (expected: 18.5%, t(21) 

= 5.69, p = 1.2e-5; unexpected: 19.5%, t(21) = 6.76, p = 1.1e-6). While a trend towards better decoding 

performance for unexpected images was indeed visible in both ROIs, in line with dampening of the sensory 

response, this difference was not statistically significant (V1: t(21) = 1.93, p = 0.067; LOC: t(21) = 1.16, p = 

0.260).  

 

Expectation facilitates image categorization 

In order to assess whether concurrent to the described neural effects also behavioral benefits of 

expectation are evident, data from the categorization task was analyzed. Results demonstrate that 

participants categorized expected trailing images faster (M = 524.4 ms, SEM = 3.8 ms) than unexpected 

items (M = 537.4 ms, SEM = 3.8; t(21) = 2.40, p = 0.026, Cohen’s dz = 0.51; Figure 3A). A similar, albeit not 

statistically significant trend (t(21) = 1.19, p = 0.247) was visible in terms of error rates (Figure 3B). Analysis 

of the questionnaires showed that on average participants correctly identified 4.0 ± 2.3 (± SD) of the eight 

image pairs. 
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Figure 3. Behavioral data analysis from the categorization task 

indicates incidental learning of image transitions. Mean values ± 

within-subject standard error are shown. (A) Shows mean RT to 

expected and unexpected trailing images. RTs were significantly 

faster to expected trailing images compared to unexpected 

images. (B) Shows the corresponding mean error rates. * p < .05.   

 

Spatial extent of expectation suppression in V1 

In a post hoc analysis we investigated whether the expectation suppression effect in V1 was 

spatially unspecific, or constrained to regions activated by the object stimuli. The reasoning was that a 

spatially unspecific effect indicates that at least part of the observed expectation suppression may be due 

to arousal changes in response to unexpected compared to expected trailing images, while a constrained 

effect may point towards a spatially specific top-down modulation. To investigate this, the amount of 

expectation suppression was compared between voxels significantly activated by object stimuli and those 

that were not. The split into activated and not activated voxels was performed using data from the 

functional localizer, with activated voxels being defined as all voxels within anatomically defined V1 which 

exhibited a significant activation by object images (z > 1.96; i.e. p < 0.05, two-sided), while non-activated 

voxels were defined as voxels displaying no significant activation, nor deactivation (-1.96 < z < 1.96). Both 

activated and non-activated voxels showed evidence of expectation suppression (activated voxels: t(21) 

= 3.01, p = 0.007, Cohen’s dz = 0.64; non-activated voxels: t(21) = 2.17, p = 0.041, Cohen’s dz = 0.46). While 

expectation suppression was numerically stronger in voxels that were activated by the stimuli than in non-

activated voxels, this difference was not statistically significant (t(21) = 1.09, p = 0.286).  
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Discussion 

We set out to investigate the neural effects of perceptual expectation and demonstrated that, 

after incidental learning of transitional probabilities of object images, expectation suppression is evident 

throughout the human ventral visual stream. Importantly, the amount of expectation suppression scaled 

positively with image preference in LOC, suggesting that dampened sensory representations underlie 

expectation suppression in object-selective areas, in line with results from monkey IT (Meyer and Olson, 

2011; Kumar et al., 2017). In contrast, results in V1 did not exhibit scaling or sharpening of representations, 

but rather stimulus unspecific expectation suppression. 

 

Dampening of sensory representation in object-selective cortex 

 The suppression of expected stimuli, evident throughout the ventral visual stream in the present 

study, extends and supports previous research showing expectation suppression in early visual areas (Kok 

et al., 2012a; St. John-Saaltink et al., 2015) and monkey IT (Meyer and Olson, 2011; Kaposvari et al., 2016). 

The observed suppression may constitute an efficient and adaptive processing strategy, which filters out 

predictable, irrelevant objects from the environment. Conversely, the stronger response to unexpected 

objects may serve to render unexpected stimuli more salient. This surprise response to unexpected stimuli 

may draw attention towards these stimuli, as also reasoned by Meyer and Olson (2011). Such capture of 

attention is adaptive since unexpected events may provide particularly relevant information. It is 

important to note that the utilized paradigm did not manipulate attention towards expected or 

unexpected stimuli in a top-down fashion. In fact, unexpected and expected stimuli were only 

distinguishable by the context in which they occurred. Therefore, if unexpected stimuli do indeed 

automatically capture attention (Brockmole and Boot, 2009; Howard and Holcombe, 2010), then any 

attentional modulation must follow the expectation effect, and not vice versa. 
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 Furthermore, we showed that the amount of expectation suppression scales with image 

preference in object-selective LOC, as also demonstrated in monkey IT (Meyer and Olson, 2011). Scaling 

indicates that expectation suppression in object-selective areas does not merely signal an unspecific 

surprise response, but rather that sensory representations are dampened by expectations, since the 

neural population most responsive to the expected stimulus is also most suppressed. A dampening of 

sensory representations is in line with an adaptive mechanism, which filters out behaviorally irrelevant, 

predictable objects from the environment. Unlike in LOC, expectation suppression in V1 was stimulus 

unspecific; i.e. neither scaling, nor sharpening was observed. These results cannot be explained by the 

absence of image preference in V1 for the utilized stimuli, as the preference ranking itself was reliable. 

Since a stimulus unspecific suppression was evident in V1, it is possible that object specific expectations 

were resolved at a higher level in the cortical hierarchy and only the results of the prediction (expected 

or unexpected) was relayed to V1 as feedback. Given that expectation suppression was present in stimulus 

driven voxels, but to a lesser degree also in non-stimulus driven voxels, it seems plausible that expectation 

suppression in V1 arose as a combination of spatially unspecific arousal changes across V1 and stimulus 

unspecific, but spatially specific top-down modulations from higher visual area, such as LOC. 

If expectation suppression, and the underlying representational dampening, does in fact 

represent an adaptive neural strategy one may expect behavioral benefits to correlate with the neural 

effects. Although we observed behavioral benefits for expected stimuli during the categorization task, the 

present study cannot answer whether expectation suppression is associated with behavioral benefits, 

since during the fMRI task, and central to the interpretation above, expectations were task irrelevant. 

Task relevant predictions, necessary in order to investigate this question, may in turn change the 

underlying neural dynamics. In fact, it has been suggested that, at least in early visual areas, attention can 

reverse the suppressive effect of expectation (Kok et al., 2012b).  
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Finally, the present results appear to be at odds with a previous study that observed a sharpening 

of the sensory population response in V1 by expectation (Kok et al., 2012a). While there is a multitude of 

differences between the two studies, making it impossible to isolate one factor as definitive source of the 

discrepancy, we briefly discuss two aspects that may be particularly relevant to consider. Firstly, the two 

studies employed different stimuli (object vs. grating stimuli), tailored to investigate the population 

response in different areas of the visual hierarchy (LOC vs. V1). Given that we did not find a sharpening, 

nor dampening, of representations in V1 the opposite results cannot be explained by a general difference 

between the sensory areas, but rather an interaction between stimulus type and sensory area. Secondly, 

there are profound differences between the studies in task demands. In the current study, we examined 

neural activity elicited by expected and unexpected non-target stimuli, i.e. stimuli that did not require a 

response by the observer. On the other hand, all stimuli in Kok et al. (2012a) were target stimuli, requiring 

a discrimination judgment by the observers. Given that attentional selection is known to sharpen stimulus 

representations (Serences et al., 2009), this difference in task setup could be a relevant factor in explaining 

the opposite results between the studies.  

 

Prediction errors and predictive coding  

Within a hierarchical predictive coding framework, prior expectations about an upcoming 

stimulus act as top-down signals predicting the bottom-up input based on generative models of the agent 

(Friston, 2005). These predictions are then compared to the actual bottom-up input resulting in a 

mismatch signal, the prediction error (PE). Expectation suppression, as evident in the present data, and 

previously suggested by others (e.g. Blank and Davis, 2016; den Ouden et al., 2012; Kok et al., 2012a), 

matches the properties of a PE signal. That is, the ensuing PE is smaller for expected compared to 

unexpected trailing images, since the mismatch between prediction and input is smaller, thus resulting in 

expectation suppression. We found such suppression throughout the ventral visual stream, within the 
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same paradigm, corroborating the notion that perceptual PEs are a common mechanism throughout 

sensory cortex (den Ouden et al., 2012). Crucially, the exact properties of PEs have been suggested to 

depend on the functional role of the cortical areas in which they arise (den Ouden et al., 2012), which the 

present data support by providing evidence for scaling in LOC and an unspecific suppression in V1. 

Furthermore, a dampening of object representations in LOC, and the associated trend towards superior 

decoding performances of unexpected images, can be explained within predictive coding as a result of 

the stronger and prolonged resolution of prediction errors elicited by unexpected images. Moreover, the 

observed scaling effect naturally follows from expectation suppression conceptualized as PE, since a PE 

signal would be expected to scale with the strength of the prediction of a stimulus in the underlying neural 

population - i.e. the stronger a prediction within a neural population, the stronger the ensuing mismatch 

when the prediction is violated. 

 

No systematic modulation of expectation suppression by conditional probability 

The present results do not provide evidence for a systematic modulation of expectation 

suppression by conditional probabilities. This is somewhat surprising given that a modulation has been 

demonstrated in monkey TE (Ramachandran et al., 2016). Furthermore, it is only by virtue of the 

difference in conditional probability that a trailing image can be considered expected or unexpected. Thus, 

by its nature expectation suppression should be sensitivity to conditional probability. We believe that this 

null result arises due to a lack of sensitivity of the associated analysis. The complexity of the transition 

matrix and the relatively small difference in conditional probability between the conditions, as well as the 

split of the available data into the three conditions may have all led to a reduction in sensitivity. Thus, to 

further elucidate the nature of expectation suppression future research in humans is required, possibly 

utilizing simplified paradigms or extended exposure to the image transitions. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2017. ; https://doi.org/10.1101/228890doi: bioRxiv preprint 

https://doi.org/10.1101/228890
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Conclusion 

Taken together, our results demonstrate that expectation suppression is a wide-spread neural 

mechanism of perceptual expectation, which scales with image preference in object-selective LOC, but 

not V1. Perceptual expectations thus lead to a selective dampening of sensory representations in object-

selective cortex.  
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