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The Cancer Genome Atlas (TCGA) has greatly advanced cancer research by generating, cu-
rating, and publicly releasing deeply measured molecular data from thousands of tumor sam-
ples. In particular, gene expression measures, both within and across cancer types, have been
used to determine the genes and proteins that are active in tumor cells. To more thoroughly
investigate the behavior of gene expression in TCGA tumor samples, we introduce a statisti-
cal framework for partitioning the variation in gene expression due to a variety of molecular
variables including somatic mutations, transcription factors (TFs), microRNAs, copy num-

ber alternations, methylation, and germ-line genetic variation. As proof-of-principle, we


pauer@uwm.edu
https://doi.org/10.1101/227926
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/227926; this version posted May 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

identify and validate specific TFs that influence the expression of PTPN14 in breast cancer
cells. We provide a freely available, user-friendly, browseable interactive web-based applica-
tion for exploring the results of our transcriptome-wide analyses across 17 different cancers

in TCGA at http://Is-shiny-prod.uwm.edu/edge_in_tcga.

Introduction

Large-scale genomics projects, such as The Cancer Genome Atlas (TCGA), have greatly advanced
biomedical research by generating, curating, and publicly releasing multiple omics datasets col-
lected from thousands of samples*322% Beyond facilitating specific, hypothesis driven research,
data from TCGA offer the unprecedented opportunity to conduct genome-wide integrative analyses

that may offer insights not available from more directed ’look-ups” of the data.

In this spirit, Jiang et al. (2015)"# integrated transcription factor (TF) profiles collected from
the ENCODE project with tumor data from 6,576 TCGA samples in 17 different cancer types.
They found that tumor-specific gene expression is highly influenced by TF regulatory potential
after controlling for local genomic factors such as promotor methylation and nearby copy-number
alterations (CNAs). In addition to the clear importance of TF expression in regulating gene ex-
pression in cancer cells, there is compelling evidence that germ-line genetic variation may exert
large effects on gene expression and splicing’®, in addition to the role of promoter methylation?,

2

microRNA expression®, copy number alterations, and somatic changes® in tumor cells.

In this work, we consider an orthogonal approach to that of Jiang ef al. (2015) to analyze
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gene expression in TCGA data. Rather than focusing on how different molecular states (e.g.,
methylation, CNA) influence genome-wide gene expression within a subject, we instead explore
the molecular drivers of per-gene expression variation across subjects in several cancer types. Our
goal is thus to leverage the richness of matched multi-omic TCGA tumor data on genetic variation,
methylation, microRNA expression, TF expression, copy number alterations, and somatic muta-

tions to simultaneously estimate the relative contribution of each component on gene expression.

Structurally, our approach is similar to that of Hoffman et al. (2016)™Y, who analyzed the
GEUVADIS data® to identify different factors (e.g., sex, lab, ancestry) that influence gene expres-
sion across hundreds of subjects. We extended this approach to partition gene expression variance
in the TCGA data with the goal of identifying the relative importance of molecular drivers of gene
expression within cancer types. To do so, for each of 17 cancer types we considered every sample
in TCGA that was assayed for gene expression, methylation, copy number alterations, somatic
mutations, microRNA expression, and germ-line genetic variation. Using a linear mixed model,
we partitioned the variance in gene expression (for each gene) due to these different sources. Our
analyses thus provide a way to compare the relative effects of these genetic and epigenetic drivers

of gene expression for each gene and cancer type.

In order to facilitate rapid exploration of the drivers of gene expression in TCGA, we have
developed and deployed a free, publicly available web-based R/Shiny application called Exploring
Drivers of Gene Expression (EDGE) in TCGA for visualizing the results of our analyses. Though

the intent of our work is to provide an exploratory tool for prioritizing the drivers of gene expression
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within a given cancer type, we provide strong proof-of-principle of our results by validation of

suggested findings from EDGE in TCGA with a promoter reporter assay in breast cancer cell lines.

Methods

TCGA data acquisition

Processed TCGA Level 3 data on gene expression methylation, copy number alterations, somatic
mutations, and microRNA abundance from a total of 3,288 samples of self-reported European
ancestry and 17 cancers were downloaded from the Broad Institute Genome Data Analysis Center
(GDAC) Firehose on March 18, 2017 using the TCGA2STAT R package??. Raw genotyping image
files (.CEL files from the Affymetrix 6.0 platform) taken from matched normal tissue (i.e., non-
cancer tissue) were downloaded for each of the 3,288 samples from the National Cancer Institute’s
Genomic Data Commons. For all analyses, we only considered tumor samples for which data
on gene expression, methylation, copy-number alterations, microRNAs, somatic mutations, and

germ-line genetic variation were available (Table 1).

Gene expression Gene expression was measured via RNA-Sequencing on the Illumina Hi-Seq
platform and processed using the second TCGA analysis pipeline (RNASeqV?2). In this pipeline,
per-gene normalized abundance estimates were calculated with the RSEM method’®. RNA-Seq
normalized counts were then log-transformed after adding a constant of 1. In order to correct

for any unmeasured confounders or batch effects, we conducted a principal component analysis
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(PCA) across all genes for each cancer separately as recommended in Leek et al. (2010)">. For
each gene, we regressed the log-transformed RSEM values against the first 5 principal components,
and considered the residuals for all subsequent analyses. To ensure that subsequent analyses across

genes were comparable, we standardized the residuals to have a variance of 1.

Methylation Methylation was measured on the Illumina Infinium Human Methylation450 Bead-
Chip from tumor samples. For each gene, we considered only probes located within 1,500 base
pairs of the transcription start site (T'SS). The probe with the maximum variance across samples
was chosen as the representative measure of promoter methylation for each gene. Probe beta mea-
sures, corresponding to the ratio of intensities between methylated and unmethylated alleles, took
values between 0 (unmethylated) and 1 (fully methylated) and were transformed to the logit scale

prior to our analysis.

Somatic mutations TCGA Level 3 data for somatic mutations are provided as Mutation Anno-
tation Format (MAF) files, which list mutations identified for each patient. To aggregate this
information for each individual, TCGA2 STAT automatically classifies samples as carriers or non-
carriers of a nonsynonymous somatic mutation for each gene. We retained this binary coding for
all analyses. Unsurprisingly, for most cancers the majority of genes did not have a single carrier of
a nonsynonymous somatic mutation. For genes with a single carrier of a nonsynonymous somatic
mutation, the somatic mutation component was not included in the model, as this would result in

an unstable estimate of its variance component.
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Copy number alterations Somatic copy number alterations (CNAs) were called by comparing
the Affymetrix 6.0 probe intensities from normal (i.e., non-cancer tissue) compared to probe inten-
sities for cancer tissue. After filtering segments from the Y chromosome, level-3 genome segments
provided by TCGA were aggregated to gene-level by TCGA2STAT using the CNTools Biocon-
ductor package. CNA measures correspond to the log-ratio of copy numbers in the tumor compared
to normal samples, where copy number gains and losses correspond to positive and negative values,

respectively.

Genetic variation Germ-line genetic variation was available via controlled data access through
the Genomic Data Commons (GDC). We downloaded all Affymetrix 6.0 image files (.CEL) files
from the GDC derived from normal tissue. For each cancer, we performed genotype calling with
the cr1mm package in R. After genotype calling, we performed standard quality control steps
including (1) set to missing any genotype called with a quality score less than 0.8; (2) remove
samples with a subsequent missing rate greater than 3%; (3) remove markers with a missing rate
greater than 3%; (4) remove markers with an minor allele frequency (MAF) less than 1%; and (5)
remove any markers with a P-value for testing Hardy-Weinberg Equilibrium less than 5 x 1075,
For each gene, we considered genetic variants within 1 mega-base of the transcription start site of

the gene.

microRNA abundance Data on miRNA abundance were generated on either the Illumina HiSeq
2000 or Illumina Genome Analyzer sequencing machines. Level-3 processed data corresponded

to Reads per million microRNA mapped (RPMMM) values. Normalized abundance values were
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log-transformed after adding a constant of 1 prior to the analysis.

Transcription factors Transcription factors (TFs) play an essential role in regulating gene expres-
sion. However, TCGA did not generate data directly measuring transcription factor abundance. In
order to integrate TFs into our analyses, we used the expression of the gene (described above) that
encodes the TF as a proxy for TF abundance. By crossing the combined lists of TFs provided by In-
genuity Pathway Analysis (IPA; QIAGEN Inc., https://www.giagenbioinformatics.com/products/ingenuity-
pathway-analysis) and the TRRUST database” with the genes for which RNA-Seq expression data

were available, we thus characterized the expression of 877 different TFs.

Linear mixed model analysis and variance partitioning

The goal of our analyses was to partition the variance in gene expression (for each gene) due to
promoter methylation, somatic mutations, copy number alterations, microRNA abundance, tran-
scription factor expression, and germ-line genetic variability. To do so, we considered each gene

125

within each cancer type independently, modeling gene expression in a linear mixed model“> frame-

work with

y=XpB+g-+e¢€ and (1)

Var(y) = Ao, + 107,

where y represents the expression of a fixed gene, X is a matrix of fixed effects, g is a vector

of the total genetic effects across samples, and g ~ N(0, Aag) where A is obtained from the
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germ-line genetic data to represent a genetic relationship matrix between individuals, as in Yang
et al. (2011)*. The columns of X correspond to the non-genetic factors contributing to variation

in expression, i.e., somatic mutations, CNAs, methylation, miRNAs, and transcription factors.

This linear mixed model represents a powerful and flexible statistical framework that is based
on well-characterized theoretical properties and facilitates both the joint quantification of multiple

sources of variation as well as a comparison of their relative contributions.

Variable selection for TFs and miRNAs TFs and miRNAs can each potentially target multiple
genes, and a substantial body of work has emerged to develop methods and databases to predict
these TF-target and miRNA-target pairs, for example using text-mining"" or bioinformatics-driven
approaches®?. However, as these regulatory interactions are complex and knowledge of the bio-
logical processes driving them is far from complete, identifying a definitive mapping of TFs and

miRNAs to genes from the large lists of available predicted targets is not straightforward.

For both TFs and miRNAs, several hundred expression measures were available, meaning
that the inclusion of all measured TFs and miRNAs in each of our gene-level models was not
possible. As such, rather than making use of databases of predicted TF- and miRNA-target pairs
to reduce the dimensionality of our data, we adopted an alternative approach. Specifically, we
implemented a sparse principal component analysis (SPCA)*%%> of TF and miRNA expression
using the mixOmics packge in R. This analysis serves two purposes: (1) dimension reduction
to preserve degrees of freedom for the estimation of the linear mixed model; and (2) enhanced

interpretability of our results by identifying the top TFs and miRNAs that contributed to overall
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variation in gene expression. The number of nonzero loadings for each sPC was set to 10. Because
sPCs may be correlated (in contrast to standard PCs which are always orthogonal), we selected
the top 5 sPCs for TF and miRNA expression that were uncorrelated with one another (absolute
Pearson correlation < 0.3). The TFs and miRNAs with non-zero loadings in at least one of the
sPCs thus correspond to those that contribute the most to variation in overall TF and microRNA

expression, respectively, for each cancer site.

We followed this approach for selecting sPCs for every cancer, with the exception of brain
lower grade glioma (LGG). We noticed that the top TF sPCs for LGG were effectively proxies for
the concurrent hemizygous deletions of the 1p and 19q regions, common to specific sub-types of
LGG?. For this special case, we re-selected the top TF sPCs that were uncorrelated with the CNA

data and that specifically captured the hemizygous deletions.

Model fitting In order to fit the linear mixed model, we implemented a restricted maximum likeli-
hood (REML) procedure as follows. We obtained standardized residuals after regressing gene-level
RSEM values against the first 5 transcriptome-wide PCs (as described above). These standardized
residuals were then regressed against the following fixed effects: (1) promoter methylation levels;
(2) somatic mutation carrier status; (3) CNA values; (4) the top 5 uncorrelated sPCs representing
variation in miRNA levels; and (5) the top 5 uncorrelated sPCs representing variation in TF lev-
els. For every gene, the residuals from this model were then input to the GCTA (version 1.26.0)
software™® along with all germ-line genetic polymorphisms measured within 1 mega-base of the

TSS for each gene, similar to the approach in Gusev et al. (2016)?, to estimate the component of
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variance due to cis-acting genetic variation (03). Variance components for the fixed effects were es-
timated as Var(XB )%, and variance components for the random genetic effect were estimated with
REML as implemented in GCTA. In order to avoid confounding by potential population structure,

we restricted our analyses to the largest population, individuals of self-reported European ancestry.

Promoter reporter assay for PTPN14

A 1232bp segment of the human PTPN14 promoter (-640bp to +589bp from the transcriptional
start site) was cloned into the pEZX-PG02.1 GLuc-ON™ promoter reporter construct (cat# LF061,
GeneCopia, Rockville, MD). MDA-MB-231 cells were transfected with 0.5 pug of DNA com-
posed of 0.25 pg of the PTPN14 promoter-reporter construct and 0.25 pg of mammalian ex-
pression vectors encoding the human FOXOA1, GATA3, or empty vector control. At 24 hours
post-transfection, media was collected and luciferase activity was measured following the manu-

facturer’s protocol (Luciferase assay; GeneCopoeia).

Results

EDGE in TCGA Shiny App In order to facilitate rapid exploration of the results from our par-
titioning of variance in transcriptome-wide gene expression across 17 different cancers, we de-
veloped an interactive R Shiny App called EDGE in TCGA for visualization, browsing of genes
and cancers, and identification of important TFs and miRNAs. Variance components from every

gene were organized into sortable tables for easy within cancer gene-based lookups? and inter-

10
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Figure 1: Variance component estimates for CNAs, germ-line genetic polymorphims, promoter
methylation, miRNA abundance, and TF expression for genes in the p53-DNA repair pathway

(BRCA1, BRCA2, ATM, MDM2, MDM4, TP53).
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Figure 2: Lollipop plots of transcription factors associated with BRCA2 gene expression in LGG
(A) and SKCM (B) . Non-zero loadings from the first five uncorrelated sparse principal com-
ponents, weighted by their respective coefficients from the linear mixed model in Equation (1)
in LGG and SKCM. Weighted loadings are plotted from most strongly negative (blue) to most

strongly positive (red).
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active plots, including heatmaps”® and lollipop plots“!, for pan-cancer gene-based explorations.
For the TF and microRNA sPCs, we summarized the contribution of TFs (and microRNAs) by
multiplying the corresponding estimated coefficients B from the linear mixed model with the load-
ings from the sPC decomposition. The EDGE in TCGA tool is freely available at http://ls-shiny-

prod.uwm.edu/edge_in_tcga.

Pan-cancer trends in gene expression drivers We used the EDGE in TCGA tool to explore pan-
cancer trends in the drivers of gene expression. Across the transcriptome and for all cancers that
we analyzed, CNAs represented the most consistent driver of gene expression, with somatic muta-
tions and germ-line genetic polymorphisms influencing much smaller numbers of genes (Table 2),
consistent with previous reports of the relative importance of aneuploidy versus somatic mutations
or germ-line polymorphisms®”. The number of genes with notable (i.e., > 10% estimated vari-
ance component) genetic effects appear to be similar across cancers with the exception of PRAD
and KIRP, which have the highest number of genes with germ-line genetic drivers expression. The
effects of miRNAs also appear to be similar across cancers, with LUAD and LIHC as clear out-
liers with a large number of genes affected by miRNA variation. However, the relative influence
of methylation, CNAs, and TFs varied considerably across cancers; when comparing the variance
due to each of these effects across cancers, we observed distinct clustering of cancers for some

genes.

As one example, Figure [I] illustrates the relative molecular variance components for genes

encoding components of the p53-DNA repair pathway, a major oncogenic pathway responsible for
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maintaining the fidelity of DNA replication and cell division. Although germ-line genetic muta-
tions and promoter methylation have relatively weak roles in driving the expression of genes in
this pathway, CNAs tend to have much larger effects in this pathway across cancer types. Interest-
ingly, two genes in this pathway (BRCA1, BRCA?2) have large variance components related to TF
expression in a subset of four cancers (LGG, SARC, LUAD, SKCM). By weighting the non-zero
sPC loadings with their respective coefficients in the linear mixed model in Equation (I)), we can
evaluate the relative importance of specific TFs to the expression of the target gene in these cancers.
Figure [2] shows the TF contribution” tab in the EDGE in TCGA tool for LGG and SKCM where
we observe several similarities among the set of TFs acting as moderate drivers of the expression of
BRCAZ2; for instance, FOXM1, RADS51, and MYLBL2 are among the largest positively associated
TFs in both cancers. However, the TFs corresponding to the largest positive association with the
expression of BRCA2 in LGG and SKCM are E2F1 and UHRF1, respectively. This suggests that
although BRCA?2 expression in these two cancers appear to be regulated by similar TF programs,

there are also unique differences between the two cancer types.

It may also be of interest to examine the pan-cancer trends in genetic and epigenetic drivers
of expression in specific genes. For example, MYC is a known oncogene that encodes a protein
involved in many cellular functions, including cell cycle progression and DNA replication. So-
called C-class tumors® dominated by multiple recurrent chromosomal gains and losses were found
to be characterized in part by MYC-driven proliferation. Across cancer sites, the dominant drivers
of MYC expression varied widely among cancers (Figure [3). Cancer sites largely grouped into

one with a large miRNA component (LUAD), those with large CNA drivers (BLCA, PAAD),
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Figure 3: (A) Variance component estimates for MYC expression for each molecular source of
variation in each of the 17 cancers. (B) Heatmap of the variance component estimates for MYC
expression in each of the 17 cancers, with the estimated heritability, mean logit-transformed methy-
lation 3 values across samples, percent samples with somatic mutations, mean normalized CNA
values across samples, and mean log-normalized RNA-seq expression across samples for each

cancer.
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those with large TF drivers (PCPG, LGG, THCA), and those with both CNA and TF drivers of
expression variation (LIHC, ESCA, STAD). For a large set of cancer sites (PRAD, KIRP, SARC,

KIRC, SKCM, HNSC, BRCA, CESC), the residual variance component was predominant.

PTPN14 promoter reporter assay Beyond an exploratory pan-cancer analysis of global patterns,
the estimated variance components can also be used to investigate candidates within specific can-
cer types. For instance, PTPN14 is a protein phosphatase that has been implicated in breast cancer

risk®* and acts as a tumor suppressor in breast cancer! and other malignancies?"®

, yet the mech-
anisms that regulate PTPN14 expression are largely unknown. Using the EDGE in TCGA tool,
we explored the mechanisms regulating PTPN14 expression in breast cancer (BRCA). In BRCA,
a large amount of variance in PTPN14 expression was explained by CNA and TF, suggesting
that multiple drivers may underlie the dysregulation of PTPN14 expression in breast cancer. To
explore how TFs potentially regulate PTPN14 expression, we examined the existing ENCODE
database to identify transcriptional regulators that bind to the PTPN14 promoter in T47D breast
cancer cells, which revealed binding sites for GATA3 and FOXA1 (Figure 4A). Likewise, the ”TF
contribution” tab in the EDGE in TCGA tool revealed that GATA3 and FOXA1 expression were
strongly correlated with PTPN14 expression in BRCA and suggested an inverse relationship (Fig-
ure 4B). The ability of GATA3 and FOXALI to repress the PTPN14 promoter was tested using a
PTPN14 promoter-luciferase reporter assay. Compared with the empty vector control group, the
PTPN14 promoter activity was significantly downregulated by co-expression of GATA3 (~5-fold,

P < 0.001) and FOXAT1 (~3-fold, P < 0.001) (Figure 4C), suggesting that GATA3 and FOXA1

indeed repress the PTPN14 promoter. Collectively, these data demonstrate the utility of the EDGE
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Figure 4: (A) Transcription factor tracks from the UCSC genome browser of FOXA1 and GATA3
binding at the promoter of PTNP14 in ENCODE breast cancer cell line T47D. (B) TF zoom plot
of the relative importance of different transcription factors on the expression of PTPN14 in breast
cancer tumor samples. The vertical axis shows the sparse PCA loadings scaled by the effects of
each sPC. Transcription factors are ranked from most strongly down-regulating gene expression
(bottom left) to most strongly up-regulating gene expression(top right). (C) Relative expression of

PTNP14 with FOXA1 and GATA3 introduced, versus controls.
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in TCGA tool to identify mechanisms that are biologically relevant and can be tested at the molec-

ular level.

Discussion

Data from the TCGA project have been used in a multitude of contexts to explore the molecular
basis of cancer. The genome-wide results from our agnostic, integrative analysis of the molecular
drivers of gene expression in TCGA tumor samples provide a new way of exploring the TCGA
data. Browseable results in the EDGE in TCGA Shiny App can be used to generate hypotheses and

offer unanticipated insights into the molecular basis of a number of different cancers.

As an example, we prioritized the transcription factors that are likely to govern the expres-
sion of PTPNI4 in breast cancer cells. Subsequent experiments with promoter reporter assays
confirmed that FOXA1 and GATA3 (implicated as important TFs in our analysis) regulate the ex-
pression of PTPN14 in a breast cancer cell-line. In addition to the identification of important TFs,
our EDGE in TCGA Shiny App can be used similarly to identify important miRNAs, methylation
sites, somatic mutations, and copy-number alterations that regulate gene expression in 17 different

cancers.

Though the EDGE in TCGA Shiny App provides a powerful tool for exploring the drivers
of gene expression in the TCGA data, it comes with certain caveats that should be carefully con-
sidered when interpreting the results. First, we explicitly did not undertake statistical hypothesis

testing and do not provide P-values for any of our estimated effects. This was done for two rea-
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sons: (a) a well-known drawback of linear mixed models is the instability of P-values for testing
the significance of random effects®”; and (b) rather than making inferences about gene expres-
sion generally, our results are best thought of as a useful summary of the TCGA data to be used
for future, hypothesis-driven exploration. Second, we provide a tool for comparing the relative
importance of fixed effects (MUT, CNA, METH, miRNA, TF) and random effects (GEN) on the
expression of a specific gene. We do not provide any measures of absolute importance and the
results should not be interpreted in this way. For example, the effects shown on the TF zoom plots
(Figure 2) do not represent effect sizes that estimate an absolute quantity; a value of -3 on this plot
means that the associated TF down-regulates expression of the gene 3 times more than a TF with

a value of -1.

As more large-scale omics data continue to be generated (for example, through the National
Heart, Lung, and Blood’s (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program),
there will be renewed interest in “’integrative” analyses that bring together data on germ-line ge-
netics, gene expression, methylation, proteomics, and metabolomics. We introduce a statistical
framework for partitioning the variation in gene expression due to a variety of molecular traits.
This partitioning of variation in gene expression has been performed extensively in the context

of germ-line genetic variation°"

. We have extended this framework to include other important
drivers of gene expression in tumor samples, such as somatic mutations, TFs, miRNAs, CNAs,
and methylation. Though our results are specific to the 17 cancers that were included here, the

analytic structure is applicable to any phenotype for which multiple matched omics data may be

generated.
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Table 1: Sample sizes (V) and numbers of non-zero values for TCGA data used to partition variation in gene ex-
pression. Cancer sites are abbreviated as: BLCA (bladder urothelial cancer), BRCA (breast invasive carcinoma),
CESC (cervical squamous cell Carcinoma), ESCA (esophageal carcinoma), HNSC (head and neck squamous cell car-
cinoma), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), LGG (brain lower
grade glioma), LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), PAAD (pancreatic adenocarci-
noma), PCPG (pheochromocytoma and paraganglioma), SARC (sarcoma), SKCM (skin cutaneous melanoma), STAD
(stomach adenocarcinoma), THCA (thyroid carcinoma), PRAD (prostate adenocarcinoma). RNA-Seq: number of
genes with at least one nonzero expression measure; SOM: number of genes with more than one carrier of a somatic
mutation; CNA: number of genes with nonzero variability in copy number alterations across patients; METH: number
of genes with at least one methylation probe overlapping the TSS £ 1500bp; miRNA: number of microRNAs with at

least one nonzero expression measure.

Cancer N RNA-Seq SOM CNA METH miRNA
BLCA 109 20,063 5,764 17,315 15,233 843
BRCA 506 20,179 7,319 17,436 15,212 878
CESC 136 20,016 4,685 17,310 15,157 852
ESCA 113 20,223 6,269 17,450 15,242 833
HNSC 245 20,134 7,360 17,377 15,235 876
KIRC 228 20,150 2,463 17,401 15,264 789
KIRP 95 20,008 1,147 17,287 15,208 794
LGG 262 20,085 1,043 17,357 15,167 833
LIHC 110 19,964 2,244 17,224 15,141 817
LUAD 144 19,971 6,965 17,240 15,150 832
PAAD 131 19,932 3,135 17,220 15,059 792
PCPG 144 19,951 246 17,249 15,160 805
PRAD 132 19,983 770 17,279 15,194 780
SARC 210 20,176 2,343 17,402 15,150 830
SKCM 320 20,172 14,2227 17,406 15,225 887
STAD 138 20,223 9,071 17,450 15,261 826

THCA 265 20,037 415 17,325 15,202 851
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Table 2: The number of genes with over 10% of the variance in their expression due to the effect of: MUT (somatic
mutations), CNA (copy number alterations), METH (methylation), miRNA (microRNA), TF (transcription factors),

and GEN (cis-genetic polymorphisms).

Cancer MUT CNA METH miRNA TF GEN
BLCA 29 8020 1346 3193 2119 857
BRCA 3 7838 946 352 846 161
CESC 33 7866 1455 1537 3398 700
ESCA 18 8434 1582 1436 2606 790
HNSC 6 7858 936 298 1258 264
KIRC 5 5545 614 1244 639 475
KIRP 21 7318 1379 1703 4983 1109
LGG 3 5652 467 687 5458 438
LIHC 12 7094 1356 3097 4801 911
LUAD 21 7868 1239 4075 3935 608
PAAD 7 7403 855 1569 2312 874
PCPG 2 6721 424 980 3289 779
PRAD 4 5412 1122 977 2246 1022
SARC 4 8185 927 334 1875 377
SKCM 6 7539 1358 947 1896 135
STAD 25 7609 1450 1482 2837 672
THCA 2 2261 391 2457 2623 617
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