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Abstract

Most of the evolutionary history reconstruction approaches are
based on the infinite site assumption, which is underlying the Perfect
Phylogeny model and whose main consequence is that acquired muta-
tion can never lost. This results in the clonal model used to explain
cancer evolution. Some recent results gives a strong evidence that re-
current and back mutations are present in the evolutionary history of
tumors [5,21], thus showing that more general models then the Perfect
Phylogeny are required. We propose a new approach that incorporates
the possibility of losing a previously acquired mutation, extending the
Persistent Phylogeny model [1].

We exploit our model to provide an ILP formulation of the prob-
lem of reconstructing trees on mixed populations, where the input data
consists of the fraction of cells in a set of samples that have a certain
mutation. This is a fundamental problem in cancer genomics, where
the goal is to study the evolutionary history of a tumor. An exper-
imental analysis shows the usefulness of allowing mutation losses, by
studying some real and simulated datasets where our ILP approach
provides a better interpretation than the one obtained under perfect
phylogeny assumption. Finally, we show how to incorporate multiple
back mutations and recurrent mutations in our model.

1 Introduction

Character-based phylogeny reconstruction is one of the fundamental prob-
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lems in Bioinformatics, with a large literature [12, 15, 28, 30] focusing on a
simple assumption: the input data consists of a set of species (or individuals)
for which we know the set of characters that it possesses. In this case, the
goal is to compute a phylogeny that explains the set of input species and
characters, where each edge of the phylogeny allows characters gains and
losses. Character-based phylogenies play a crucial role in modeling the evo-
lution in cancer genomics. Cancer is an uncontrolled evolutionary process
of somatic mutations of tumor cells from a single founder cell [13] creat-
ing a diverse set of subpopulations [8, 22, 31], each originated from a single
clone: each clone (and each subpopulation) has a distinctive set of muta-
tions. From this point of view, a tumor progression is a phylogeny where
clones and mutations have the same role as species and mutations in the
classical phylogeny reconstruction setting as characters.

To fall within the classical framework we would need to obtain data
directly from a cell. Unfortunately, single cell sequencing is not cheap [24]
and is prone to errors, therefore we have to study samples comprising lots
of cells belonging to an unknown set of subpopulations. This adds a new
complication, since for each sample we know the (approximate) fraction of
cells that have a given somatic mutation. More precisely, each read extracted
from the sample is mapped against the reference genome, therefore we obtain
the mutations of each read. Errors in read, repeated regions of the genome,
and the fact that the coverage of the reads is not uniform throughout the
genome or the cells of the sample, means that the fraction of reads that have
a mutation is only an approximation of the fraction of cells of the sample
that have that mutation. In other words, the observed frequencies are an
estimate of the true frequencies of the cells that have a mutation.

The above reasoning leads to a computational problem called variant
allele frequency factorization problem (VAFFP) [9, 10, 18], where the input
is the observed frequencies of the mutations in each sample and the desired
output is a phylogeny representing the tumoral evolution, as well as the
composition of each sample in terms of the subpopulations or clones. The
literature has mainly focused on the infinite site assumption [9], that is
also known as perfect phylogeny [15], where samples contain mixtures of
two-state characters, i.e. (1) each character/locus is either mutated or not,
and (2) each mutation can be gained only once and never lost in the entire
history of the tumor.

A possible generalization (that we do not explore in this paper) is the
multi-state perfect phylogeny that has been recently proposed in order to
take into account the effect of copy number aberrations on alleles [10]. In
this new model — known as the infinite allele assumption — the characters
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can assume different states (i.e., the number of copies of a site) but, as in the
binary case, a change to a given state can occur only once. This restriction
allows to obtain efficient algorithms, but most recent studies refutes it [21]
and state that more complex models are needed to describe the tumor evo-
lution. More precisely, deletion of entire genome regions are quite common
in tumors, therefore a mutation is acquired only once, but can be then lost,
even more than once. In this paper we describe an ILP-based approach that
overcomes this limitation and allows to reconstruct phylogenies capturing a
likely evolutionary history of the tumor studied.

We will focus on three main character-based models that generalize the
Perfect Phylogeny: the Persistent Phylogeny [1] (where each character can
be gained once and lost at most once), the Camin-Sokal [6] (where each char-
acter can be gained several times, but never lost), and the Dollo [11] (where
each character can be gained at most once, but lost several times). We
denote by Camin-Sokal(k) the restriction of the Camin-Sokal model where
each character can be gained at most k times in the entire tree. Moreover,
we denote by Dollo(k) the restriction of the Dollo model where each char-
acter can be lost at most k times in the entire tree. Clearly, the Persistent
Phylogeny [1] corresponds to the Dollo(1) model which has been recently
investigated in several works aiming to develop efficient solutions for the
model [3, 4, 16] since its use is motivated also in other contexts [2, 26]. In
particular, in [1] it is proved that the Persistent Phylogeny Problem over a
binary matrix M can be formulated as finding a special completion of an
extended matrix Me that is a Perfect Phylogeny. Based on this characteri-
zation, an ILP formulation for the Persistent Phylogeny has been developed
in [16].

In [9] the approach used to solve the VAFFP problem is a combination
of an integer linear programming (ILP) formulation and a clever approach
to compute the set of relevant phylogenies, based on the notion of ancestry
graph. Since the last component is tightly coupled with the fact that perfect
phylogenies have as many species as characters, it is not immediate to extend
the approach of [9] to more general models. Another approach to solve the
problem is based on quadratic integer programming [23], but this technique
is unlikely to scale to larger datasets: for this reason the authors also provide
a heuristic.

We combine some of the main ideas of the ILP formulations of [9,16] with
the characterization in [1], to design a novel approach to the VAFFP prob-
lem that is entirely based on ILP and allows to take into account the three
evolutionary models presented above. We have analyzed experimentally our
ILP approach on both simulated and real data to test if our approach is
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applicable in practice as well as whether allowing the models to violate the
infinite site assumption leads to better predictions. Indeed, our experiments
show that the Persistent phylogeny that we compute usually provides a
better interpretation of the input data than the Perfect Phylogeny, by com-
puting a phylogeny with smaller overall error. while requiring a number of
clones that is smaller than the number of mutations. Finally, the inferred
tree from real data on a Leukemia tumor CLL077 reveals the losses of a mu-
tation, though being the tree mostly consistent with the one reconstructed
by other known methods [20].

2 Preliminaries

2.1 The Variant Allele Frequency Factorization Problem

The input of our main problem is a p×m frequency matrix F which contains
the frequencies of the mutation in a set of samples. Namely, each entry F [t, j]
indicates the proportion of cells in sample t having the mutation j. A p×n
usage matrix U , contains the mixture of cells in each sample. More precisely,
each entry U [t, i] is the proportion of the cells in the sample t belonging to
the subpopulation i. Finally, the n ×m (clonal) matrix M contains which
subpopulation has a given mutation. An evolution model M consists of a
set of constraints that a phylogeny T realizing the clonal matrix M must
obey. For example, when the evolution model is the persistent phylogeny,
then the phylogeny T cannot have two edges corresponding to two gains or
two losses of the same character. The P-VAFF problem can be formally
defined as follows.

Definition 1. Given a p×m frequency matrix F , a number of clones n, and
an evolution model P, the P-VAFFP (short for P-Variant Allele Frequency
Factorization Problem) asks for an p×n usage matrix U and an n×m clonal
matrix M such that (1) F = 1

2UM , and (2) M admits a phylogeny under
the model P.

The 1/2 factor in the definition is a technical consequence of the fact
that the healthy (wild type) cell subpopulation exists, but is not one of the
clones of M , that human beings are diploid, that is they have two copies
of each chromosome, and that mutations are acquired rarely, so only one of
the two copies is affected.

The P-VAFFP problem, when P is a perfect phylogeny was first in-
troduced in [9]. This formulation is heavily based in the infinite sites as-
sumption which implies that no two mutations can happen at the same site.
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︸ ︷︷ ︸

M

Figure 1: Example of the phylogenetic clonal reconstruction problem. On
the left, the unknown clonal sub-populations of clones (top) and the the
resulting VAF matrix (bottom). On the right, a solution for the Dollo(1)-
VAFFP expressed as the product of matrices U and M (bottom) and a
possible evolutionary history for the clones (top). Each colored dot repre-
sents a mutation.
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Consequently, the evolutionary history consists of a mutation gains that
can be represented as an ancestry relation between mutations. Then the
VAFFP problem can be reduced to a restricted version of the spanning tree
problem. Furthermore, we stress the fact that in this setting the number of
clones must equal the number of mutations of the frequency matrix. This
fact does necessarily hold more general evolution models are used, since the
infinite site assumption can be (and usually is) violated and there is no
1-to-1 mapping between edges of the tree and mutations.

The matrix factorization problem is simple when the clonal matrix M is
known. In fact, once we have computed a clonal matrix M , the problem of
finding a composition of samples, i.e. a usage matrix U , compatible with M
consists simply of finding a matrix U such that

∑n
i=1 U(t, i)M(i, j) = F (t, j)

and
∑n

i=1 U(t, i) ≤ 1 ∀t, j.
Therefore, we decouple the P-VAFFP into two sub-problems: (1) the

construction of the clonal matrix compatible with a phylogenetic model P,
and (2) the search of the usage matrix which specifies the proportions of the
proposed clones in the different samples.

The first of these problems is the main purpose of Section 3 in which we
provide a ILP formulation for deciding if a clonal matrix admits a tree rep-
resentation respecting a given phylogenetic model P. The second problem
and the integration of both sub-problems is treated in Section 4.

2.2 The Incomplete Directed Perfect Philogeny Problem

The character-based phylogeny reconstruction problems we study in this
paper are constrained versions of the general Incomplete Directed Perfect
Phylogeny (IDP) [25]. In [25], the IDP problem asks for completing missing
data in a binary matrix, where missing data are represented by the symbol ?,
in such a way that the completed matrix is explained by a perfect phylogeny.
More precisely, the input data is an n × m matrix M?, where M?(i, j) ∈
{0, 1, ?} represents the absence, presence or uncertainty of a character j in
the species i respectively. If a solution exists, then it consists of changing
each ? into 0 or 1 obtaining a new binary matrix Ms that has a directed
perfect phylogeny.

A well known characterization of perfect phylogenies states that a bi-
nary matrix Ms has a directed perfect phylogeny if and only if it has no
conflicting pair of columns, which are two columns containing all the three
configurations (0, 1), (1, 0), (1, 1) — inducing the so called forbidden matrix.
The problem of determining if a binary matrix has a perfect phylogeny,
and to compute such perfect phylogeny if possible, has a linear-time algo-
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rithm [14,15]. Interestingly, the IDP problem has an efficient solution given
by an O(mn log2(m+n))-time algorithm [25] when the phylogeny is directed,
that is the root is known (it is the all 0s vector), otherwise, the problem of
deciding whether there exists an unrooted solution of the incomplete input
matrix is NP-complete [29]. There exists an ILP formulation for variants
of the IDP problem, where the main question is to complete missing data
in an input matrix on {0, 1, ?} with the goal of minimizing the conflicting
pairs [17]. Since finding a perfect phylogeny is easy, the main difficulty in
solving the IDP problem consists of replacing each ? with a 0 or a 1 to
minimize the number of conflicting pairs of columns.

2.3 ILP formulation for the IDP

In this section we revisit the ILP formulation proposed by Gusfield [17] for
the IDP problem. The input of the problem is an incomplete n×m matrix
M? . The goal is to decide if there exists a completion of the unknown entries
of M? resulting in a (complete) matrix admitting a Perfect Phylogeny. The
main strategy of this approach is the minimization of the conflicts between
pairs of characters. More precisely, in virtue of the Perfect Phylogeny The-
orem, the IDP problem will have a solution if and only if the value of the
problem is zero.

2.3.1 Variables

We define a binary variable Y (i, j) for each unknown position of M?. With
abuse of notation, Y (i, j) will be a constant for every known position of the
matrix of value M?(i, j). Since the objective is to determine if two columns
are in conflict, for every pair of columns p, q we define a binary variable
C(p, q) that indicates the existence of a conflict between these two columns.
To establish if two columns are in conflict, binary variables B(p, q, a, b) are
defined for each pair of columns (p, q) and for each possible pair of values
(a, b) ∈ {0, 1}2. The variable B(p, q, a, b) indicates if for the (ordered) pair
of columns (p, q) there exists a row i where Y (i, p) = a and Y (i, q) = b.
Just as for the variable Y (i, j), if there exists a row of the matrix such that
Y (i, p) = a and Y (j, q) = b, then B(p, q, a, b) = 1.
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2.3.2 Inequalities

For every pair of columns (p, q), every binary pair (a, b) ∈ {(1, 0), (0, 1), (1, 1)}
and for every species i, the following set of inequalities

B(p, q, a, b) ≥ 1− [a + (−1)aY (i, p)]− [b + (−1)bY (i, q)] (1)

force the variable B(p, q, a, b) to be 1 if and only if the columns p, q exhibit
the pair (a, b) in some row i. On the other hand, the following set of in-
equalities forces variables C(p, q) to be 1 when characters p and q are in
conflict.

C(p, q) ≥ B(p, q, 0, 1) + B(p, q, 1, 0) + B(p, q, 1, 1)− 2 (2)

Since we are mainly interested in feasible solutions with no conflicts, we
will consider the following alternative form of the previous constraint:

B(p, q, 0, 1) + B(p, q, 1, 0) + B(p, q, 1, 1) ≤ 2. (3)

2.3.3 Objective Function

Since we aim to minimize the number of conflicts, the objective function is
defined as min

∑
(p,q)C(p, q).

By the previous discussion it is possible to state the problem of finding a
completion with the minimal number of conflicts by considering the solution
of the following minimization problem [17]: min

∑
(p,q)C(p, q) s.t. (1), (2).

We stress the fact that decision problem of determine if an incomplete matrix
admits a Perfect Phylogeny can be seen as checking if the former problem
has zero value or equivalently a feasible solution for restrictions (1) and
(3). The total number of variables and constraints in the formulation are in
O(nm + m2) and O(nm2) respectively.

2.4 The Persistent Perfect Phylogeny and the IDP

Our strategy is based on the approach discussed by Gusfield [16] for the
Persistent Phylogeny Problem, that is to decide if a binary matrix has a
phylogeny representation for the Persistent model. The formulation pro-
posed in [16] is based on two main properties:

1. Any instance M of the Persistent Phylogeny Problem can be reduced
to an instance of an equivalent Incomplete Directed Perfect Phylogeny
Problem on a matrix Me, called extended matrix, with some additional
constraints [1], that is M has a Persistent Phylogeny if and only if Me

has a perfect phylogeny.
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2. The Incomplete Directed Phylogeny problem can be stated as an ILP
problem by minimizing the number of conflicts between characters [17]
according to the formulation presented in Section 2.3.

In the next section we extend this approach by generalizing the result
presented in [1] in two different ways: First we extends the construction of
the extended matrix to Dollo(k) and Camin-Sokal(k) models. Additionally,
we generalize the construction to include the case in which the input matrix
is incomplete in order to solve a more general problem: the Incomplete
Directed Phylogeny Problem for the aforementioned phylogenetic models.

In the following we detail the construction proposed in [1] to reduce the
Persistent Phylogeny Problem to an equivalent IDP instance. Given a (com-
plete) binary matrix M , they propose an IDP problem on an (incomplete)
extended matrix Me where each entry M(i, j) is replaced by two entries
Me(i, j

+) and Me(i, j
−) as follows: if M(i, j) = 1 then Me(i, j

+) = 1 and
Me(i, j

−) = 0; if M(i, j) = 0 then Me(i, j
+) = Me(i, j

−) =?. Given the
input matrix Me, then a solution of Persistent Perfect Phylogeny is a binary
matrix Ms obtained by completing the entries of Me under the constraint
that, for each pair (Me(i, j

+),Me(i, j
−)) of ? entries, the corresponding en-

tries in the matrix Ms must be the same, that is Me(i, j
+) = Me(i, j

−).
Intuitively, the matrix Me corresponds to duplicate each column j corre-
sponding to a character c into two columns j+, j− corresponding to char-
acters c+, c−, being c+ the gain of character c during evolution and c− the
loss of character c, in case c is a persistent character. Clearly, an entry
M(i, j) = 1 means that the character c cannot be persistent. Thus the row i
of Ms is such that c+ is 1 and c− is 0. Differently, an entry M(i, j) = 0 can
be explained into two ways, either with the persistency of c, that is row i
posses both characters c+ and c− (both of them have values 1 in row i) or c
does not occur in species row i, meaning that row i does not have characters
c+ and c− (both of them have values 0 in row i). Therefore:

Definition 2 ([16]). Given an incomplete binary matrix Me and a set
R = {Ri(Me) ≤ 0}i∈[1,r] of r constraints on the entries of Me, the Mod-
ified Incomplete Directed Perfect Phylogeny Problem for the set R, denoted
by MIDPP(Me,R), asks to find, if it exists, a completion of matrix Me

which admits a Perfect Phylogeny and satisfies all constraints in R

The fact that the obtained IDP includes some additional constraints
makes more difficult to adapt the algorithm proposed in [25]. Therefore,
we rather follow the approach proposed by Gusfield in [16] in which the
restricted IDP is formulated as an ILP. Is easy to see that if every constraint
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in R can be expressed as a linear constraint in terms of the matrix entries,
then the problem MIDPP(M,R) admits a ILP formulation. The formulation
can be obtained by simply adding the set of linear constraints R to the
former ILP formulation presented in Section 2.3.

3 The P Incomplete Directed Phylogeny Problem

In this section we develop an ILP formulation for the following problem:

Definition 3 (P Incomplete Directed Phylogeny Problem). Given a character-
based phylogeny model P and a incomplete binary matrix M , the P Incom-
plete Directed Phylogeny Problem, denoted by P-IDP, asks for a completion
Mc of M , such that Mc admits a phylogeny T under the model P, if such a
completion exists.

Notice that if all entries of the input matrix M are known, then the
problem corresponds to decide if M admits a phylogeny under the model
P. In this paper we focus on Dollo(k) and Camin-Sokal(k). As we have
already mentioned, we proceed by reducing the P-IDP on an instance M
to an equivalent MIDPP(Me,RM ) instance where Me is a related extended
matrix and RM is a set of linear restrictions. The later problem can thus
be restated as an ILP.

3.1 The Dollo(k)-IDP

3.1.1 Extended Matrix and Constraints for Dollo(k)

Let M be a binary (incomplete) matrix with n rows (species) and m char-
acters. The extended matrix MD(k) for the Dollo(k) model is defined as
follows:

• MD(k) has n rows and m × (k + 1) columns, where each character
j of matrix M is associated to k + 1 columns in MD(k) denoted by

j+, j−1 , . . . , j
−
k .

• If M(i, j) = 1 then MD(k)(i, j
+) = 1 and MD(k)(i, j

−
l ) = 0, l ∈ [1, k].

• If M(i, j) = 0 or M(i, j) =? then MD(k)(i, j
+) =? and MD(k)(i, j

−
l ) =?

for each l ∈ [0, k].

For a character j, the column j+ represents the acquisition of character j
while each of the k j−l columns represents a possible loss of the gained char-
acter. In the case when M(i, j) = 1 then it is not possible for species i to
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lose the character j and the only possible configuration is MD(k)(i, j
+) = 1

and MD(k)(i, j
−
l ) = 0, l ∈ [1, k]. Otherwise if M(i, j) = 0 then the char-

acter has either (1) never been acquired, or (2) been acquired, then lost
along the path from the root to the species i of any solution. Therefore∑

1≤l≤k MD(k)(i, j
−
l ) = MD(k)(i, j

+).

Finally, if M(i, j) =?, that is the entry of M is missing, we must al-
low both the constraints for the case M(i, j) = 0 as well as M(i, j) = 1.
consider both of the aforementioned relations, that is (MD(k)(i, j

+) = 1 ∧∑
1≤l≤k MD(k)(i, j

−
l ) = 0)∨ (

∑
1≤l≤k MD(k)(i, j

−
l ) = MD(k)(i, j

+)). We cap-
ture both cases with with following relation between the entries of the ex-
tended matrix: 0 ≤ MD(k)(i, j

+) −
∑

1≤l≤k MD(k)(i, j
−
l ) ≤ 1. Our previous

discussion leads to the following set of constraints for the matrix MD(k):

RD(k)(M) =

 ∑
1≤l≤k

MD(k)(i, j
−
l ) = MD(k)(i, j

+)


(i,j):M(i,j)=0

∪

0 ≤
∑

1≤l≤k

MD(k)(i, j
−
l )−MD(k)(i, j

+) ≤ 1


(i,j):M(i,j)=?

(4)

By an abuse of the notation it is possible to describe all restriction for
the problem as:

MD(k)(i, j
+)−

∑
1≤l≤k

MD(k)(i, j
−
l ) = M(i, j), (5)

where the case M(i, j) =? is interpreted as MD(k)(i, j
+)−

∑
1≤l≤k MD(k)(i, j

−
l ) ∈

{0, 1}.
When the context is clear, we will denote this set of restrictions asRD(k).

Figure 2 shows an example of the input matrix and its corresponding ex-
tended matrix.

Theorem 4. Let M be an incomplete binary matrix, and let MIDPP
(
MD(k),RD(k)(M)

)
be the corresponding incomplete instance in the extended matrix MD(k).
Then there exist a completion Mc of M satisfying the Dollo(k) model if
and only if MIDPP

(
MD(k),RD(k)(M)

)
admits a solution.

Moreover, from any Dollo(k) completions Mc it is possible to obtain a
solution of MIDPP

(
MD(k),RD(k)(M)

)
and vice versa.

Proof. (⇒) Let Mc be an completion for M that admits a Dollo(k) phylogeny
Tc. For each character j we relabel Tc as follows: edges labeled j− are
relabeled from the set {j−1 , . . . , j

−
k } in such a way that no two edges receive
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the same label. Since Tc is Dollo(k) phylogeny for Mc, such a relabeling
exists. Let T ∗ be the tree obtained from Tc after relabeling. We denote
by M∗ the clonal matrix corresponding to T ∗. Notice that T ∗ is a perfect
phylogeny for M∗. Without loss of generality, we assume that M∗ is a
n × (k + 1) matrix: if a character is not present in T ∗ then we assign it a
columns of zeroes in M∗.

By our construction of T ∗ and M∗, if Mc[i, j] = 1 then M∗[i, j+] = 1 and
M∗[i, j−l ] = 0 for all l, hence M∗[i, j+] −

∑
l M
∗[i, j−l ] = 1. If Mc[i, j] = 0

then either (1) M∗[i, j+] = 1 and exactly one of the entries M∗[i, j−l ] with
1 ≤ l ≤ k is equal to one, or (2) M∗[i, j+] = 0 and M∗[i, j−l ] = 0 for all l.
In both cases, M∗[i, j+]−

∑
l M
∗[i, j−l ] = 0.

Since Mc[i, j] = 1 ⇒ M∗[i, j] ∈ {1, ?} and Mc[i, j] = 0 ⇒ M∗[i, j] ∈
{0, ?}, the above argument implies that the variables corresponding to en-
tries of M∗ satisfy the constraints in RD(k).

(⇐) Conversely, let M be an incomplete binary matrix and let M∗ be a
solution of MIDPP

(
MD(k),RD(k)

)
. We will proof that M has a completion

Mc with a Dollo(k) phylogeny Tc.
Let T ∗ be the perfect phylogeny tree of Mc. We construct the phylogeny

tree Tc from T ∗ by replacing each label j−l with j− respectively. Since the
matrix M∗ satisfies restrictions in (5) then

∑
l M
∗[i, j−l ] ≤ M∗[i, j+], thus

column j+ is bigger (component-wise) than all columns j−l . Hence, in the
tree Tc the edge j+ is in the path to the root from any edge labeled with
j−. We conclude that the tree Tc is a Dollo(k) phylogeny and we denote by
Mc its corresponding binary matrix.

By our construction of Tc, Mc[i, j] = M [i, j+] −
∑

l M [i, j−l ] for each
known entry of a species i and character j. Hence Mc is a completion of
M .

3.2 The Camin-Sokal(k) IDP

3.2.1 Extended Matrix and constraints for Camin-Sokal(k)

Let M be a incomplete binary matrix with n species and m characters. The
extended matrix MCS(k) for the Camin-Sokal(k) model is defined as follows:

• MCS(k) has n rows and m× k columns; each character j of matrix M

is associated to k columns in MCS(k) denoted by j+1 , . . . , j
+
k .

• If M(i, j) = 0 then MCS(k)(i, j
+
l ) = 0, ∀l.

• If M(i, j) = 1 or M(i, j) =? then MCS(k)(i, j
+
l ) =?, l ∈ [1, k].
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1 ? 0 0
2 0 1 0
3 0 0 1
4 1 1 ?
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6 1 0 1
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5 0 1 1
6 1 0 1
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100110100

101110100

a2 = ā
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a0 a1 a2 b0 b1 b2 c0 c1 c2
1 ? ? ? ? ? ? ? ? ?
2 ? ? ? 1 0 0 ? ? ?
3 ? ? ? ? ? ? 1 0 0
4 1 0 0 1 0 0 ? ? ?
5 ? ? ? ? ? ? 1 0 0
6 1 0 0 ? ? ? 1 0 0

a0 a1 a2 b0 b1 b2 c0 c1 c2
1 1 0 0 0 0 0 0 0 0
2 1 1 0 1 0 0 1 1 0
3 1 0 1 1 1 0 1 0 0
4 1 0 0 1 0 0 0 0 0
5 1 1 0 1 0 0 1 0 0
6 1 0 0 1 1 0 1 0 0

Figure 2: Input matrix M (top left), a Dollo(2) completion Mc (center left)
and its corresponding phylogeny tree T (top right). The MD(2) extended
matrix (bottom left) and a completion for the MIDPP(MD(2),RD(2)) accord-
ing to Theorem 4. In the tree, boldfaced character corresponds to changes
between each node and its parent.

Every group of columns j+1 , . . . , j
+
k represent the possible gain of character

j in the resulting phylogenetic tree. In every feasible solution, a character
can be gained at most once on any path from the root to a leaf, therefore we
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3 0 0 0 0 0 1
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5 0 0 0 1 1 0
6 0 1 0 0 0 1

Figure 3: A Camin-Sokal(2) phylogeny (top) for the input matrix M and its
completion of Figure 2. In the bottom left we represent the extended matrix,
while in the bottom right we represent the corresponding completion for the
MIDPP(MCS(2),RCS(2)) according to Theorem 5. In the tree, boldfaced
character corresponds to changes between each node and its parent.

define the set following set of constrains for the extended matrix MCS(k):

RCS(k)(M) =

 ∑
1≤l≤k

MCS(k)(i, j
+
l ) = 1


(i,j):M(i,j)=1

∪

 ∑
1≤l≤k

MCS(k)(i, j
+
l ) ≤ 1


(i,j):M(i,j)=?

(6)

Similarly to the Dollo(k) case, we can express the restriction set as:∑
1≤l≤k

MCS(k)(i, j
+
l ) = M(i, j), (7)

for the case M(i, j) =? the equation is interpreted as
∑

1≤l≤k MCS(k)(i, j
+
l ) ∈

{0, 1}.

Theorem 5. Let M be an incomplete binary matrix, and let MIDPP
(
MCS(k),RCS(k)(M)

)
be the corresponding incomplete instance in the extended matrix MCS(k).
Then there exist a completion Mc of M satisfying the Camin-Sokal(k) model
if and only if MIDPP

(
MCS(k),RCS(k)(M)

)
admits a solution.
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Moreover, from any Camin(k) completions Mc it is possible to obtain a
solution of MIDPP

(
MCS(k),RCS(k)(M)

)
and vice versa.

Proof. (⇒) Let Mc be a completion of M admitting a Camin-Sokal(k) phy-
logeny T . We relabel the edges of T assigning to each edge labeled as j+

a different label in the set {j+1 , . . . , j
+
k }. Let T ∗ be the tree obtained from

T after relabeling, it is easy to see that T ∗ represent a perfect phylogeny
for the new species set. We denote by M∗ the clonal matrix corresponding
to T ∗. Morever, we assume that M∗ has all colums associated to the char-
acters in the set {j+l : j ∈ [1,m], l ∈ [1, k]}. Otherwise, in the case that a
character is not present in the tree then we fill its corresponding columns
on M∗ with zeros. Since in the phylogeny T a species i never gains a char-
acter j that it does not possess, then M∗(i, j+l ) = 0 for l ∈ [1, k]. Thus,
matrix M∗ is a completion of the extended matrix MD(k). Let verify that
M∗ entries satisfies the restrictions in RCS(k). Since T ∗ is perfect phylogeny

tree, then it holds that
∑

1≤l≤k M
∗(i, j+l ) ∈ {0, 1} for all species i and char-

acter j. Additionally, for each species i containing a character j, the path
from i to the root contains only one edge labeled with j+ meaning that∑

1≤l≤k M
∗(i, j+l ) = 1.

(⇐) Let M∗ be a solution of MIDPP
(
MD(k),RD(k)

)
for an input matrix

M . Let T ∗ be the perfect phylogeny tree of M∗. We construct the tree
T from T ∗ by relabeling all edges with label j+l , l ∈ [1, k] with j+. Since
T ∗ represents a perfect phylogeny, then in each path from the root to an
species no label is duplicated. Therefore the tree T represents a phylogeny
respecting the Camin-Sokal(k) model. We denote by Mc the clonal matrix
corresponding to T . Since M∗ satisfies (7) we conclude that the matrix Mc

is a completion of M .

An instance of the previous construction is shown in Figure 3 of the
Camin-Sokal(2) Phylogeny for the input matrix in Figure 2. Finally, we
can state the Camin-Sokal(k) Phylogeny Reconstruction Problem as the
minimization problem min

∑
(p,q)C(p, q) s.t. (1), (2) and (6) , or a feasible

solution of the restriction set (1), (3) and (6).

4 The Clonal Reconstruction Problem

While Section 3 focuses on the Incomplete Phylogeny Problems where the
instance is an incomplete binary matrix, this section is dedicated to tumoral
multisample instances. More precisely, in this section we present an ILP
formulation for the P-VAFFP. Let us recall that a P-VAFFP instance is a
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p ×m frequency matrix F , and a number of clones n. The goal is to find
two matrices U and M , respectively the p × n usage matrix, representing
the composition of the samples in terms of clones, and the n × m clonal
matrix, representing the desired tree. Moreover, M represents a phylogeny
satisfying the rule P, and the expression F = 1

2UM , which guarantees that
the frequency of the leaves of the tree are actually equal to those in the
input matrix F .

In our approach, the most fundamental variables are those corresponding
to usage, clonal and extended matrices, which we denote by U , M and Me

respectively. The extended matrix is constructed according to Section 2
and following the phylogeny model P. More precisely, we will have entries
U(t, i), M(i, j), Me(i, jl), for each sample t ∈ [1, p], clone i ∈ [1, n] and
mutation j ∈ [i,m].

First, we guarantee that each row of the usage matrix U is actually the
composition of the sample, where the entry U [t, i] is the fraction of cells in
the sample t that belong to the clone i, by imposing

n∑
i=1

U(t, i) ≤ 1 ∀1 ≤ t ≤ p. (8)

Then the constraints on the matrices M and Me are those of Section 2.3
and guarantee that M encodes a phylogeny T whose characters are the input
mutations and T is consistent with the model P.

On the other hand, we must guarantee that the clonal matrix M admits
a phylogeny under the P model. As it was discussed in Section 3, it is
possible to state the P phylogeny reconstruction problem as a solution for
an IDP problem on the corresponding extended matrix (Theorem 4 and
Theorem 5).

The relation between the matrices F , U , and M , as stated in the equation
F = 1

2UM , is enforced by the set of constraints

1

2

n∑
i=1

U(t, i)M(i, j) = F (t, j) ∀1 ≤ t ≤ p, 1 ≤ j ≤ m. (9)

Unfortunately, Equation 9 gives a set of quadratic constraints that can-
not be solved directly via ILP. Therefore, we need to replace those con-
straints with the following linear constraints that need the set of auxiliary
binary variables X(t, i, j) where, as usual, 1 ≤ t ≤ p, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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More precisely, each variable X(t, i, j) is equal to the product U(t, i)M(i, j).

n∑
i=1

X(t, i, j) = F (t, j) ∀t, j,

X(t, i, j) ≥ 0 ∀t, i, j,
X(t, i, j) ≤M(i, j) ∀t, i, j,
X(t, i, j) ≤ U(t, i) ∀t, i, j,

X(t, i, j) ≥ U(t, i) + M(i, j)− 1 ∀t, i, j.

(10)

Thus, the P-VAFFP corresponds to finding a feasible solution with the
linear constraints (1), (3), (8), (10), (5) for the Dollo(k) model, and (1), (3),
(8), (10), (7) for the Camin-Sokal(k) model.

Finally, since the matrix Me has at most km columns, our complete
formulations has O(nkm + k2m2 + mpn) variables and O(k2m2 + npm)
constraints.

4.1 Clonal Reconstruction admitting errors

Since the frequency matrix F is obtained experimentally, via mapping reads
to the reference genome, the measured frequency is only an approximation
of the actual frequency. For this reason, we extend our formulations to
incorporate frequency errors and we pick the minimization of the overall
errors as our objective function.

More precisely, we introduce the set of variables E(t, j) that repre-
sent the error in the measure of the input frequency F (t, j). Notice that∑n

i=1X(t, i, j) is (implicitly) our estimated frequency, therefore the follow-
ing constraints determine the value of the variables E(t, j) as the difference
between the input frequency and the estimated frequency.

−E(t, j) ≤
n∑

i=1

X(t, i, j)− F (t, j) ≤ E(t, j)

Since now our goal is to minimize the overall error introduced in the
reconstruction, the objective function is:

min
∑

(t,j)∈[1,p]×[1,m]

E(t, j)
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4.2 gppf

We implemented our approach with a Python program called gppf that
receives a frequency matrix F and the evolution model (Persistent, Dollo(k),
Camin-Sokal(k)). The program computes the corresponding ILP which is
fed to Gurobi 6.5.2. Moreover, our program receives the solution computed
by Gurobi and returns a tree, provided that Gurobi has been able to find a
feasible solution. The program gppf is available at https://github.com/

AlgoLab/gppf.
The parameters of the implementation are the maximum number of

clones that a solution can use (expressed as the percentage of the num-
ber of mutations), the maximum time permitted for each execution, and the
parameter k associated to the model Dollo(k) and the Camin-Sokal(k) in
the formulation. Moreover, we have introduced a timeout on the running
time, since the generated ILP problem is often large and its resolution could
require a considerable amount of time. We exploit the fact that Gurobi can
be halted at any time and it returns the best feasible solution computed so
far. Hence, imposing a timeout allows the ILP solver to compute a solution
with a small total error.

5 Experimental Results

All experiments have been performed on an Ubuntu 14.04 server with four
8-core Intel Xeon E5-4610v2 2.30GHz CPUs (hyperthreading was enabled
for a total of 16 threads per processor).

The goals of the experimental analysis have been two: to test the hypoth-
esis that evolution models that do not satisfy the infinite site assumption can
actually provide better predictions, and to assess the computational feasibil-
ity of our approach. More precisely, besides the Perfect Phylogeny model, we
have tested the Persistent Phylogeny, the Dollo(k), and the Camin-Sokal(k)
models on both simulated and real data. The size of the instances are typical
for real data applications such as liquid cancer and in particular Leukemia.

We have simulated some datasets — more precisely, frequency matrices
F — according to the following steps:

1. we have generated a clonal n×m matrix M with the simulation tool
ms [19], obtaining a Perfect Phylogeny on n clones and m mutations.

2. We have flipped at most 30% of the 0s of M into 1s, uniformly at
random. This allows us to have phylogenies that are not necessarily
perfect.
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3. We have generated a p × n usage matrix U assigning to each clone
a proportion in each sample. The frequencies are chosen randomly
following a Dirichlet distribution.

4. We have multiplied U and M to generate a p ×m frequency matrix
F .

Each generated matrix is given as input to gppf with different evolution
models. We remark that we do not compare the predicted clonal matrix M
with the original, since different models can generate diverse clonal evolution
trees.

We evaluate the computed solutions according to the following measure
which is a ratio where smaller values correspond to better predictions:

ErrorF (F ) =
‖F − F‖
‖F‖

Where F is the input frequency matrix, F is the frequency matrix inferred
by the solution, and ‖A‖= [

∑
ij |aij |2]1/2 is the Frobenius norm. This metric

give us the ratio between the total error and the optimal value, therefore it
is not too dependent on the actual values.

Previous works focused on Perfect Phylogeny as the evolutionary model,
thereby restricting the attention to a number of clones equal to the number
of mutations. More general evolutionary models do not have this constraint,
that is the number of clones might be different. We have investigated the
effect of choosing different values of the maximum number of clones. More
precisely, we have considered the number of clones to be at most 100%, 80%,
60% and 40% of the number of clones in the instance. Notice that the actual
number of clones in the actual solution might be smaller.

5.1 Simulated Data

For the simulated data, we have generated two different datasets:

Exp. 1 contains 100 frequency matrices composed of 6 samples and 10
mutations. Matrices are generated from a 20 × 20 clonal matrix M .
The phylogenetic models tested in this set are: Perfect, Persistent,
Dollo(2) and Camin-Sokal(2).

Exp. 2 contains 30 frequency matrices with 12 samples and 25 mutations,
generated by a 25 × 50 clonal matrix M , The models tested in this
set are: Perfect, Persistent, Dollo(2) and Dollo(4). Given the results
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Figure 4: Average error of the solutions computed for Experiment 1 as a
function of the running time. The error is on a logarithmic scale. The
running time is in seconds.

Figure 5: Mean error of the solution computed for Experiment 2 as a func-
tion of the running time. The error is on a logarithmic scale. The running
time is in seconds.

of the previous experiment we decided to abandon the Camin-Sokal
model and to evaluate different parameters for the Dollo model.

Figures 4 and 5 show how the error of each solution varies as a function
of the running time for both experiments. We notice that the executions on
the Perfect Phylogeny model quickly reaches a plateau, while the same is
not true for the Persistent Phylogeny and the Dollo or Camin-Sokal models,
where a longer time is needed. Moreover, the plots for the Dollo and Camin-
Sokal models hint that the plateau is not actually reached. In fact, those
models are more general than the Persistent Phylogeny, hence the optimum
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Figure 6: Comparing the error of the solutions for different evolution models:
Experiment 1. The figure represents the distribution of the error for different
values of the ratio between the clone limit (the maximum number of clones
allowed) and the number of mutations. The Persistent Phylogeny and the
Dollo(2) models consistently give the better results.

Figure 7: Comparing the error of the solutions for different evolution models:
Experiment 2. The figure represents the distribution of the error for different
values of the ratio between the clone limit (the maximum number of clones
allowed) and the number of mutations.

in those case should have an error that is at least as good as the one found
for the Persistent Phylogeny model.

Finally, the analysis of Figures 4 and 5 leads us to set a time limit
for the running time equal to 5 minutes for Experiment 1 and 6 hours for
Experiment 2, since allowing a large time limit results in only marginal
improvements of the quality of the solutions computed.

Figures 6, 7 compare the total error of the solutions obtained under
different phylogenetic models and different upper bounds on the number of
clones for the Experiments 1 and 2. We recall that we have set a timeout
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Ratio
# clones /
# mutations

Ratio total er-
ror / total error
on perfect phy-
logeny

Persistent Dollo(2) Dollo(4)

≤ 100% 100/100 94/100 47/100
≤ 90% 99/100 92/100 18/100

1 ≤ 80% 97/100 86/100 10/100
≤ 50% 74/100 66/100 0/100

≤ 100% 100/100 97/100 53/100
≤ 90% 99/100 91/100 11/100

0.8 ≤ 80% 89/100 84/100 4/100
≤ 50% 44/100 39/100 0/100

≤ 100% 98/100 92/100 51/100
≤ 90% 91/100 83/100 2/100

0.6 ≤ 80% 74/100 62/100 1/100
≤ 50% 13/100 17/100 0/100

≤ 100% 90/100 93/100 79/100
≤ 90% 70/100 74/100 0/100

0.4 ≤ 80% 43/100 43/100 0/100
≤ 50% 0/100 0/100 0/100

Table 1: Comparison between evolution models on Exp. 1. Each entry
contains the number of instances (out of the 100 instances with same ra-
tio between the maximum number of clones and the number of mutations)
where the formulations based on the Persistent Phylogeny, Dollo(2), Camin-
Sokal(2) models obtain a total error that is smaller than a certain fraction
of the one obtained with the Perfect Phylogeny model.
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Ratio
# clones /
# mutations

Ratio total er-
ror / total error
on perfect phy-
logeny

Persistent Dollo(2) Dollo(4)

≤ 100% 19/30 09/30 07/30
≤ 90% 18/30 08/30 05/30

1 ≤ 80% 14/30 07/30 04/30
≤ 50% 11/30 05/30 02/30

≤ 100% 12/30 13/30 02/30
≤ 90% 11/30 13/30 02/30

0.8 ≤ 80% 11/30 13/30 02/30
≤ 50% 09/30 07/30 02/30

≤ 100% 16/30 19/30 05/30
≤ 90% 15/30 18/30 05/30

0.6 ≤ 80% 15/30 16/30 05/30
≤ 50% 08/30 11/30 01/30

≤ 100% 18/30 13/30 06/30
≤ 90% 18/30 11/30 04/30

0.4 ≤ 80% 16/30 11/30 03/30
≤ 50% 12/30 07/30 02/30

Table 2: Comparison between evolution models on Exp. 2. Each entry
contains the number of instances (out of the 30 instances with same ra-
tio between the maximum number of clones and the number of mutations)
where the formulations based on the Persistent Phylogeny, Dollo(4), Camin-
Sokal(4) models obtain a total error that is smaller than a certaun fraction
if the error obtained with the Perfect Phylogeny model.
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of 5 minutes and 6 hours respectively for Experiment 1 and 2. Additionally,
Tables 1 and 2 report the number of input instances where considering more
general phylogeny models allows to compute solutions that are better than
those conforming to the Perfect Phylogeny model.

W.r.t. the number of allowed clones, the more general models result in
better predictions, as expected. There is a similar trend when comparing
different evolution models, that is the Perfect Phylogeny model is usually
outperformed by the Persistent Phylogeny and the Dollo(2) models. In this
case, the much larger search space of more general models does not allow
the ILP solver to find a near-optimal solution. Still, Tables 1, 2 show that,
in almost all instances, a general phylogeny model outperform the results of
the Perfect Phylogeny solution.

Notice that Camin-Sokal (Figure 6) and Dollo(4) (Figure 7) are not able
to match the quality of the predictions under the Perfect Phylogeny model.
Nevertheless, we note that Persistent and Dollo(2) model obtain better re-
sults than the Perfect Phylogeny, especially when the allowed number of
clones is small. The Persistent model obtains better results in more than
half the simulations even with all, or almost all, the clones. Experiments 1
required 420 CPU hours, while Experiment 2 required 2880 CPU hours.

5.2 Real data: Chronic Lymphocytic Leukemia

To test the accuracy gppf on real cancer data, we run the ILP formulation
on the dataset provided in [27]. We expect our tool to confirm the main
findings of that paper. Whole-Genome Sequencing (WGS) was used to track
subclonal heterogeneity in 3 chronic lymphocytic leukemia (CLL) patients
subjected to repeated cycles of therapy. Between 14 and 22 mutations per
sample were predicted to alter protein-coding sequencing. WGS analysis
confirmed the presence of copy number aberrations (CNAs) in all patients.
We point out that our method is unable to fully consider copy number
aberrations, since our model only consider the presence of absence of a
mutation. Consequently, these datasets are among the most difficult to
manage with our approach. Still, we want to compare our predictions with
those in the literature: we will show that we are able to confirm almost all
the findings in the relevant studies.

The choice of the Chronic Lymphocytic Leukemia datasets was due
mostly to the reduced number of somatic mutations in liquid tumors, that
allowed us to calculate an optimal solution in a reasonable amount of time.
Since the Persistent model seemed the most promising from the experimen-
tal results we decided to use this particular model to infer the mutational
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Figure 8: Solution computed by gppf for patient CLL077. Nodes with red
background represent backmutations (i.e., mutation losses). Therefore we
have one clonal expansion where mutation OCA2 has been lost. The driver
mutations of this tree are those of [27].
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Figure 9: Solution computed by by AncesTree on CLL077.

evolutionary history of the CLL dataset.
The inferred mutation lineage for CLL patient 077, which consists of

5 samples and 16 somatic mutations, is shown in Figure 8; the Persistent
Phylogeny model was computed in approximately 3 days. The inferred tree
is consistent with the clonal expansion proposed in the original study [27].
The driver mutation SAMHD1 is successfully inferred by gppf as well as
the fact that there are 4 major lineages. Our prediction contains five leaves
instead of the expected four leaves. The reason is that one of leaves in our
tree is the result of the mutation loss of OCA2. We argue that such loss
corresponds to the (only) CNA described in the original study.

We cannot directly compare the persistent tree we inferred with Ances-
Tree [9] (Figure 9), because the latter infers only seven of the 16 mutations
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Figure 10: Solution computed by PhyloSub on CLL077.

present in the sample. In order to perform such comparison we had to re-
strict the instance to contain only the mutations that are also in the solution
computed by AncesTree. The output is presented in Figure 11 and shares
several structural similarities with the AncesTree solution. Moreover, we
would also like to point out that our solution for the restricted instance has
no errors (and is therefore optimal).

We have compared our predictions with those of PhyloSub [20] (Fig-
ure 10) as well. PhyloSub clusters together some mutations in the same
clone, while we infer a tree in which each mutation correspond to a vertex,
except for mutations where, given their inferred mutation profile (i.e., the
presence of each mutation in the clone), gppf is unable to predict their an-
cestry relationship. The cluster detected by PhyloSub containg mutations
OCA2, PLA2G16, DAZAP1, EXOC6B, HMCN1 and GHDC is preserved
in the solution predicted by gppf that instead of clustering the mutations
defines a lineage between them, with the exception of HMCN1 that is in-
stead child of the germline. The same applies for the cluster that includes
NAMPTL, BCL2L13, GRP158, SLC12A1 and SAMHD1, but the latter is
identified as a driver by gppf for which the two previous cluster are children.
The main difference is mutation LRRC16A that for PhyloSub and gppf is
descendant of two different clusters. The last cluster identified by PhyloSub
containing mutations COL24A1, MAP2K1, NOD1, HMCN1 and KlHDC2
is being separated by gppf which predicts that the first three mutations
are indeed derived from the driver SAMHD1, while the last two mutated
directly from the germline.

Patient CLL006 presented a total of 10 somatic mutations in 5 samples.
It is important to notice that patient CLL006 has been reported to have
trisomy 12; this particular disease has been shown [7] to be associated with
chromosome 14q deletions and therefore it is expected to report a large
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Figure 11: Solution computed by gppf under the Persistent Phylogeny
model for the restricted instance solved in [9] with AncesTree. The solu-
tion computed by AncesTree on the same instance is in Figure 9.

amount of back-mutations. Indeed, as shown in Figure 12, gppf identify a
total of 7 mutations that have been lost in the cancer progression. Moreover
the tumor progresses as a chain of mutations in its early stage as reported in
the original study and our model correctly infer MED12 as a driver mutation.

The last patient in the study was CLL003 in which a total of 20 somatic
mutations were found among 5 samples. While gppf(Figure 13) and the
original study do not infer the same driver mutations, the overall cancer
progression is very similar; both in fact report three main lineages and a
significant loss of mutation in the last lineage. A total of 3 CNAs was
reported in the study while gppf identifies 2 losses: CHRNB2 and NRG3.
Still, a CNA can be a duplication, not necessarily a mutation loss.

6 Conclusions and Future Work

In this paper we have proposed a ILP formulation of the problem of recon-
structing the evolutionary history of tumors, where the evolutionary tree is
character-based and can violate the infinite site assumption of the Perfect
Phylogeny model.

First, we have proposed an ILP framework for the Dollo(k) and Camin-
Sokal(k) models — k is a bound on the number of losses and gains of each
mutation. Then we have shown how to extend it for solving the Variant
Allele Frequency Factorization Problem under those evolution models.

We have performed an experimental analysis on simulated and real data
which shows that the Dollo(1) (i.e., the Persistent Phylogeny) and the
Dollo(2) models can outperform the Perfect Phylogeny model, by measuring
how close our predicted frequencies are to the measured (input) frequencies.
Our ILP formulation has not been optimized for efficiency. Still, we are able
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Figure 12: Solution computed by gppf for patient CLL006. Nodes with
red background represent backmutations (i.e., mutation losses). Given the
presence of trisomy 12 in this patient a large amount of backmutations are
expected in the progression of the tumor. In this case it is unknown the
relative order of the mutations acquired in the same node of the tree. We
confirm the driver mutation MED12 of [27].

to manage datasets with 20 mutations, which is common for liquid tumors.
On the other hand, we need to further investigate how to extend our ap-
proach to larger instances (more samples and mutations): this will require
to improve the computational efficiency of the ILP formulation or adopting
some combinatorial strategies to govern the introduction of a small number
of mutation losses and gains in the solution.

Finally, our comparison between our predictions and the phylogenies in
the literature shows that we are abe to confirm the driver mutations or at
least most of the main lineages of the trees.
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