

1
2
3 Promoter boundaries for the *luxCDABE* and *betIBA-proXWV* operons in *Vibrio harveyi* defined
4 by the method RAIL: Rapid Arbitrary PCR Insertion Libraries
5
6

7 Christine M. Hustmyer¹, Chelsea A. Simpson¹, Stephen G. Olney¹, Matthew L. Bochman², and
8 Julia C. van Kessel^{1*}
9

10 1. Department of Biology, Indiana University, Bloomington, IN 47405
11 2. Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
12 47405
13
14

15 * Corresponding author:

16 Email: jcvk@indiana.edu

17 Telephone: 812-856-2235

18 Fax: 812-856-5710

19

20 **Running title:** RAIL method for defining promoter boundaries

21

22 **Keywords:** reporter fusion, isothermal DNA assembly, arbitrary PCR, *Vibrio harveyi*,
23 bioluminescence

24

25 **Abstract**

26 Experimental studies of transcriptional regulation in bacteria require the ability to
27 precisely measure changes in gene expression, often accomplished through the use of reporter
28 genes. However, the boundaries of promoter sequences required for transcription are often
29 unknown, thus complicating construction of reporters and genetic analysis of transcriptional
30 regulation. Here, we analyze reporter libraries to define the promoter boundaries of the
31 *luxCDABE* bioluminescence operon and the *betIBA-proXWV* osmotic stress operon in *Vibrio*
32 *harveyi*. We describe a new method called RAIL (Rapid Arbitrary PCR Insertion Libraries) that
33 combines the power of arbitrary PCR and isothermal DNA assembly to rapidly clone promoter
34 fragments of various lengths upstream of reporter genes to generate large libraries. To
35 demonstrate the versatility and efficiency of RAIL, we analyzed the promoters driving
36 expression of the *luxCDABE* and *betIBA-proXWV* operons and created libraries of DNA
37 fragments from these loci fused to fluorescent reporters. Using flow cytometry sorting and deep
38 sequencing, we identified the DNA regions necessary and sufficient for maximum gene
39 expression for each promoter. These analyses uncovered previously unknown regulatory
40 sequences and validated known transcription factor binding sites. We applied this high-
41 throughput method to *gfp*, *mCherry*, and *lacZ* reporters and multiple promoters in *V. harveyi*. We
42 anticipate that the RAIL method will be easily applicable to other model systems for genetic,
43 molecular, and cell biological applications.

44

45 **Importance**

46 Gene reporter constructs have long been essential tools for studying gene regulation in
47 bacteria, particularly following the recent advent of fluorescent gene reporters. We developed a
48 new method that enables efficient construction of promoter fusions to reporter genes to study
49 gene regulation. We demonstrate the versatility of this technique in the model bacterium *Vibrio*
50 *harveyi* by constructing promoter libraries for three bacterial promoters using three reporter

51 genes. These libraries can be used to determine the DNA sequences required for gene
52 expression, revealing regulatory elements in promoters. This method is applicable to various
53 model systems and reporter genes for assaying gene expression.

54 **Introduction**

55 Central to the study of bacterial physiology and development is the ability to monitor and
56 quantify gene expression. Monitoring gene expression is greatly aided through the use of gene
57 reporter fusions. Transcriptional and translational fusion constructs facilitate single-cell and
58 population-wide gene expression investigations to study the influence of regulatory factors,
59 perform genetic screens, and visualize protein localization patterns. Typically, such reporters
60 are cloned downstream of regulatory promoters or genes of interest and introduced into a model
61 bacterial system, either on replicating plasmids or integrated into the genome. Numerous
62 reporter genes have traditionally been used to assay gene expression, such as *lux* (bacterial
63 luciferase), *lacZ* (β -galactosidase), *phoA* (alkaline phosphatase), *bla* (β -lactamase), and *cat*
64 (chloramphenicol acetyltransferase) (1, 2). However, the advent of more modern techniques has
65 allowed for the use of fluorescent proteins such as green fluorescent protein (GFP) for these
66 studies without the need for substrates or specialized media (1-4).

67 To adequately and efficiently study the expression pattern of a particular gene, the
68 defined regulatory region controlling promoter activity must be known. The region upstream of
69 the promoter driving *luxCDABE* transcription in *Vibrio harveyi* is an example of a locus with a
70 large and undefined regulatory region, which has limited studies of gene regulation. This
71 particular promoter is of interest because it drives expression of the bioluminescence genes with
72 >100-fold increase in transcription and >1000-fold increase in bioluminescence production
73 under activating conditions (i.e., quorum sensing) (5-10). It was previously suggested that the
74 *lux* promoter requires ~400 bp upstream of the translation start site and ~60 bp downstream of
75 the start codon for full activation of the *cat* reporter gene (9). The requirement for a large
76 promoter region is due in part to the presence of seven binding sites for the transcription factor
77 LuxR upstream of the primary transcription start site, each of which is necessary for maximal
78 activation of the promoter (5, 6, 9). The ~400-bp region of $P_{luxCDABE}$ is relatively large compared
79 to some bacterial regulatory promoters (e.g., the *lac* promoter), but comparable in size to other

80 promoters with evidence of cooperative binding between transcription factors and DNA looping
81 (e.g., the *araBAD* promoter) (5, 11-13). Indeed, full activation of the *luxCDABE* promoter
82 requires the transcription factor LuxR and nucleoid-associated protein Integration Host Factor
83 (IHF), and DNA looping by IHF is proposed to drive interaction between LuxR and RNA
84 polymerase for transcription activation (6).

85 Another *V. harveyi* operon that has an unknown promoter region is the *betIBA-proXWV*
86 operon in *V. harveyi*. The *betIBA-proXWV* osmoregulation genes encode proteins required for
87 the synthesis and transport of the osmoprotectant glycine betaine (14). These genes are auto-
88 regulated by the BetI repressor and activated 3- to 10-fold by LuxR (14). Two LuxR DNA binding
89 sites in the *betIBA-proXWV* promoter were identified by bioinformatics, and LuxR binding to
90 these sites has been confirmed *in vitro* by electrophoretic mobility shift assays (14). In addition,
91 ChIP-seq shows that LuxR binds with high affinity to two binding sites at this locus *in vivo* (5).
92 For both the *luxCDABE* and *betIBA-proXWV* operons, the boundaries of the promoters are not
93 defined, and thus, mechanistic studies of transcriptional regulation of these operons is limited.

94 Here, we describe a new method for rapidly generating reporter plasmids that we used
95 to define promoter regions. The RAIL method (Rapid Arbitrary PCR Insertion Libraries) exploits
96 the power of arbitrary PCR and isothermal DNA assembly (IDA) to insert semi-randomized
97 fragments of promoter DNA into reporter plasmids (15-17). Using RAIL, we generated libraries
98 containing fragments of various lengths of the region upstream of the *luxCDABE* operon
99 transcriptionally fused to *gfp*. We used flow cytometry sorting to screen the library of promoter
100 fragments for reporter expression and next-generation sequencing to map the 3' boundary of
101 the *luxCDABE* promoter required for full activation. We also applied this method to two
102 additional promoter regions in *V. harveyi* (*betIBA-proXWV* and *VIBHAR_06912*), and we
103 demonstrated the versatility of the system by using two additional reporters, mCherry and β-
104 galactosidase. This approach enabled us to identify the required regions for gene expression for
105 multiple promoters and simultaneously produce usable gene reporter constructs. Our method

106 should be widely applicable to any system for which gene reporters have been established and
107 represents a simple and efficient technique to construct reporter fusions for molecular, genetic,
108 and cell biology studies.

109

110 **Results**

111

112 *Measuring transcription activation from the V. harveyi luxCDABE promoter using fluorescent*
113 *reporter fusions*

114 To study the mechanism of LuxR regulation of the *luxCDABE* promoter, we constructed
115 four reporter plasmids containing various fragments of the *luxCDABE* locus transcriptionally
116 fused to *gfp* using traditional cloning methods (Fig. 1A). Each plasmid contains the same 5' end
117 (~400 bp upstream of the *luxC* ORF), and the 3' ends vary as follows: 1) 2 bp after the
118 transcription start site at -26 (pJV369), 2) at the LuxC translation start site (pJV367), 3) 36 bp
119 into the *luxC* ORF (pSO04), and 4) 407 bp into the *luxC* ORF (pJV365) (Fig. 1A). We first tested
120 LuxR activation of these reporter plasmids in *Escherichia coli* because expression of *luxR* in *E.*
121 *coli* is sufficient to drive high levels of transcription of the *luxCDABE* operon (5, 10, 18), and the
122 use of *E. coli* is more efficient for transformation. Transcription activation of the *luxCDABE*
123 promoter was assayed in *E. coli* strains containing a second plasmid either constitutively
124 expressing *luxR* (pKM699) or an empty vector (pLAFR2). As shown previously, a plasmid
125 containing the 3' boundary 36 bp into the *luxC* ORF was highly expressed (Fig. 1B) (5). The
126 strain containing pJV369 with the DNA fragment up to and including the transcription start site
127 also displayed high levels of GFP. Activation was appreciably decreased (~7-fold) for the
128 pJV367 strain containing the 5' untranslated region (5'-UTR) but ending at the LuxC translation
129 start site compared to the pSO04 strain (Fig. 1B). Also, the strain containing pJV365 with 407
130 bp of the *luxC* ORF was not activated above 2-fold (Fig. 1B). A similar trend was obtained when
131 these constructs were conjugated into *V. harveyi* strains and the GFP expression was

132 compared between wild-type and $\Delta luxR$ strains (Fig. S1B). From these data, we conclude that a
133 promoter fragment ending 2 bp past the transcription start site is sufficient for activation.

134

135 *The RAIL method*

136 Our observation that varying 3' ends of the *luxCDABE* promoter greatly affected gene
137 expression lead us to expand our analysis of the expression profile of promoter fusions across
138 the entire locus. Therefore, we needed to construct numerous promoter fragments
139 transcriptionally fused to a fluorescent reporter. Instead of constructing each of these plasmids
140 individually, we designed a cloning technique combining the power of arbitrary PCR and IDA
141 (a.k.a., Gibson assembly) (15-17). This method enabled us to simultaneously amplify fragments
142 of varying lengths and clone them into a vector backbone to create a library in four simple steps
143 (Fig. 2). First, arbitrary primers were used in a preliminary round of PCR in conjunction with a
144 primer that specifically anneals to the promoter (Fig. 2, primer 1F). Four arbitrary primers were
145 synthesized with eight sequential random nucleotides anchored at the 3' end with two specific
146 nucleotides: AA, TT, AT, or TA (Table S1). Each of these four primers also contains a linker at
147 the 5' end (Fig. 2, primer 1R). The first round of PCR produced a range of products that varied
148 in length from 100 to >3000 bp and that appeared as faint smears of products as expected for
149 random priming (Fig. 2). For some loci, no smear could be visualized by gel electrophoresis
150 after the first round of PCR, but this did not impact the success of the second round of
151 amplification.

152 In the second step, the products from round 1 were further amplified using a nested
153 primer (primer 2F), and a linker was added with homology to the plasmid backbone (Fig. 2). The
154 second round of PCR using these primers was performed with the products from round 1 as
155 templates. Primer 2R anneals to the linker on primer 1R. This second step served to increase
156 the amount of DNA product and to add a linker to the 5' end. Each reaction in round 2 produced
157 a smear of products that contained homology to the plasmid backbone at their 5' and 3' ends

158 (Fig. 2). The smear of products can also be gel extracted to the desired size. In the third step,
159 the plasmid backbone was PCR-amplified to form a linear product (Fig. 2). In the fourth and final
160 step, IDA was performed to clone the promoter fragments into the plasmid backbone, and the
161 mixture was transformed into *E. coli* to obtain isolated clones (Fig. 2).

162

163 *Defining the 3' boundary of the luxCDABE operon using RAIL*

164 We used the RAIL method to generate a large library of plasmids with promoter
165 fragments fused to *gfp*. This library had fixed 5'-ends and varying 3'-ends generated by
166 combining PCR products from four arbitrary primers, as shown in Figure 2, and inserts ranging
167 from ~50 to >1,000 bp. We screened for *gfp* activation using fluorescence-activated cell sorting
168 (FACS). The libraries were sorted by FACS into four groups: no GFP expression, low GFP
169 expression, medium GFP expression, and high GFP expression (Fig. 3A). Illumina sequencing
170 of the plasmid DNA from these pools enabled us to visualize the 3' terminal end of the region
171 cloned into the plasmid by graphing the location of the sequencing coverage (42 bp) and the 3'
172 terminal nucleotides (Fig. 3B, Fig. S2A). From these graphs, we pinpointed the boundary in the
173 *luxCDABE* promoter required for maximum expression and showed the expression profile for
174 promoter fragments across the entire locus (Fig. 3B, Fig. S2). The plasmids containing promoter
175 fragments that terminated at nucleotide +129 (relative to +1, the start of the *luxC* ORF) were
176 highly enriched in the 'high expression' pool, and plasmids in the 'no expression' pool were
177 specifically de-enriched in this same location (Fig. 3B, Fig. S2A). A DNA fragment that
178 terminates at +129 includes LuxR sites A, B, C, D, E, F, and G (6). The observation that LuxR
179 site H was not included in this region of 'high expression' is consistent with previous findings
180 that site H is non-essential for transcription activation at high cell density in *V. harveyi* (6). The
181 'high expression' pool had a clear 3' boundary at +129, which is 16 bp upstream of LuxR site H.
182 We conclude from these data that fragments with 3' ends longer than +129 were decreased in
183 reporter gene expression. There is also a clear edge where sequencing coverage drops off for

184 the 'high expression' pool at -55 (Fig. 3B). However, the exact minimum boundary cannot be
185 determined because we did not use every combination of anchor nucleotides in the arbitrary
186 primers. The 'medium expression' pool contained sequences that terminated at +199, which is
187 located 32 bp beyond LuxR site H (Fig. 3B). Plasmids with promoter fragments that extended
188 throughout the *luxC* ORF past +199 had low levels of expression, whereas plasmids without
189 GFP expression were limited to promoter regions upstream of -55 (Fig. 3B). We conclude that
190 long promoter fragments decrease GFP expression and are not suitable reporter plasmids. We
191 also conclude that plasmids containing promoter fragments shorter than -55 are not sufficient to
192 activate transcription. Collectively, these data located the DNA region that is necessary and
193 sufficient for maximal transcription activation (-393 to +129), validated previous findings that
194 LuxR sites A through G are required for activation of *luxCDABE* (6), and defined the expression
195 profile for the *luxCDABE* locus in the context of a transcriptional fusion to *gfp*.

196

197 *Defining the 3' boundary of the betIBA-proXWV operon using RAIL*

198 We next used the RAIL strategy to construct reporter clones for the *betIBA-proXWV*
199 operon using a different fluorescent reporter, *mCherry*. We screened the promoter clones
200 individually before using the high-throughput flow cytometry method to analyze the library.
201 Approximately 40 plasmids were screened by restriction digest for inserts of varying sizes, and
202 the inserts were sequenced to determine the size of the inserted region. We observed that
203 plasmids containing regions shorter than the predicted transcription start sites did not show any
204 activation compared to the empty vector control strain (Fig. 4B, pCH28 as an example).
205 However, plasmids with larger regions that extended into the *betI* ORF were activated by LuxR,
206 such as pCH50 and pCH72 (Fig. 4B). Plasmids containing the entire *betI* gene also did not
207 display activation (Fig. 4B, pCH75).

208 We synthesized a large library of *betIBA-proXWV* promoter fusions to *mCherry* using
209 RAIL. It is important to note that only one arbitrary primer was used to generate this library,

210 which limited the range of PCR products across the locus. This library of clones was sorted by
211 FACS for those that maximally expressed *mCherry* (Fig. 4C), and the Illumina sequencing
212 coverage and 3' terminal nucleotides of the DNA in the two pools was graphed (Fig. 4D, Fig.
213 S2B). Sequencing analyses revealed the minimum 3' boundary for the *betIBA-proXWV*
214 promoter to be at -13 (Fig. 4D, Fig. S2B; relative to +1, the start of the *betI* ORF), suggesting
215 that the -46 transcription start site is the primary site for this locus. The 'high expression' pool
216 contained plasmids with DNA fragments up through the first portion of the *betI* ORF at +25,
217 which then tapered off (Fig. 4D, Fig. S2B). Plasmids with fragments that extended more than
218 half-way through the *betI* gene displayed low or no expression. Collectively, these data showed
219 that similarly to the *luxCDABE* locus, transcription reporters were functional if they contained
220 DNA fragments past the 3' boundary near the transcription start site. However, longer fragments
221 extending into the ORF decreased reporter gene expression.

222

223 *Versatility of the RAIL method for cloning with other promoters and reporter genes*

224 We also successfully used the RAIL technique to generate a promoter library using the
225 *lacZ* reporter for another *V. harveyi* gene, *VIBHAR_06912*, which encodes a transcription factor.
226 *VIBHAR_06912* expression is repressed by LuxR (19), and this is likely indirect repression
227 because there are no detectable LuxR binding sites in this region (5). Using RAIL, multiple
228 clones with varying promoter lengths were generated as transcriptional fusions to *lacZ*, and
229 strains were assayed for β-galactosidase activity in *V. harveyi* (Fig. 5A). All of the plasmids with
230 long promoter lengths were repressed by LuxR in the wild-type strain compared to the Δ *luxR*
231 strain (Fig. 5B). Conversely, a plasmid with a short fragment (pJV342) showed the same level of
232 β-galactosidase activity in the wild-type strain as in the Δ *luxR* strain (Fig. 5B). Thus, we
233 conclude that we again generated functional promoter fusion plasmids for this promoter for
234 future studies of gene expression and regulation of *VIBHAR_06912*.

235

236 *Reporter gene affects measurement of gene expression*

237 We noted that for each of the three promoters we studied, plasmid constructs that
238 contained promoter regions that extended into the ORF of the first gene had variable levels of
239 expression. For example, the pJV365 plasmid that included 407 bp of the *luxC* gene only
240 expressed GFP ~2-fold more in the presence of LuxR than in its absence (Fig. 1B). This is in
241 contrast to plasmid pMGM115 from the Miyamoto *et al.* study that contains the full *luxC* ORF
242 and displays maximal activation of the *cat* gene (~50-fold more than truncated promoters) (9).
243 To examine these contradictory results further, we constructed plasmids containing the entire
244 *luxC* gene and its promoter region driving expression of *gfp*, *lacZ*, or *mCherry* (Fig. 1A, 6A).
245 These constructs contained the intragenic region between *luxC* and *luxD* (15 bp), and the
246 reporter gene was cloned in place of the *luxD* ORF (Fig. 6A). We observed that the *lacZ* and
247 *mCherry* plasmids were activated 16- to 20-fold, whereas the *gfp* construct was only activated
248 1.6-fold by LuxR in *E. coli* (Fig. 6B). The *gfp* (pSO05) and *mCherry* (pSO11) plasmids had
249 similar levels of activation when the plasmids were introduced into wild-type *V. harveyi*, though
250 neither were expressed maximally (Fig. S1A).

251 We hypothesized that the observed decrease in activation with longer fragments might
252 be due to instability of the transcript when the *luxC* ORF is present upstream of the *gfp* reporter.
253 Thus, we constructed *mCherry* reporter plasmids containing the same four *luxCDABE* promoter
254 fragments that were fused to *gfp* in Figure 1A and assayed these in *E. coli* (Fig. 6C, Fig. S1A).
255 We verified that the shortest region tested (2 bp past the primary transcription start site) was
256 sufficient for activation, and there were minimal differences in expression with constructs
257 containing the three shortest promoter fragments with all three being activated >50-fold (Fig.
258 S1C). However, as seen with GFP, plasmids with longer promoter fragments (e.g., pJV366 with
259 407 bp of the *luxC* ORF) yielded a lower level of *mCherry* expression (Fig. 6C, activated 17-
260 fold), which was similar to the construct containing the entire *luxC* ORF (Fig. 6B, pSO11,

261 activated 17-fold). The same trend was observed in *V. harveyi* for these mCherry plasmids (Fig.
262 S1B). Thus, we conclude that constructs containing long fragments of the *luxC* ORF indeed
263 decrease expression of downstream reporters, for some of which large decreases occur (i.e.,
264 *gfp*). This result is not observed with expression of the *luxCDABE* operon *in vivo*; the expression
265 levels of each of the five genes in the operon are similar and do not differ by more than 2-fold
266 from one another (19).

267 To examine these results, we measured transcript levels of *gfp* for several P_{luxC} reporter
268 plasmids in *E. coli*. The relative transcript levels of *gfp* from qRT-PCR measurements were high
269 for the three plasmids containing short regions of the *luxCDABE* promoter, but as seen with
270 GFP expression measurements, levels of *gfp* transcripts dropped ~25-fold from the pJV365
271 plasmid containing 407 bp into the *luxC* ORF compared to pJV369 (Fig. 6D). Thus, we conclude
272 that the decrease in GFP expression is due to a decrease in transcript levels, which may be
273 caused either by transcript instability or a decrease in transcription initiation or elongation in
274 plasmids with long promoter fragments (e.g., pJV365). We did not observe a decrease in *gfp*
275 transcript levels with pJV367 as observed with GFP expression (Fig. 1B), suggesting that the
276 decrease in GFP expression may be due to constraints at the post-transcriptional or
277 translational level. These results indicate that testing multiple promoter fusions is beneficial for
278 identifying a promoter-reporter fusion that functions *in vivo* to mimic expression from the native
279 locus.

280

281 **Discussion**

282 We have developed the RAIL method for rapid construction of promoter fusion plasmids
283 and demonstrated that this approach can be applied to multiple promoters and reporter genes.
284 The RAIL strategy can be used to quickly generate a few reporters or to create large libraries of
285 promoter fusions for high-throughput analysis of the regions that drive transcription activation.
286 The method requires simple cloning steps, and once the system is designed for a particular

287 plasmid backbone, only two locus-specific primers are needed. For our plasmid backbone, we
288 designed arbitrary primer sets for creating fusions to *gfp*, *mCherry*, and *lacZ* that can be used
289 with any gene locus (Table S1), and these primers can be easily modified for use in any plasmid
290 with a reporter gene.

291 Our library sets revealed several important findings with regard to the expression profiles
292 for the *luxCDABE* and *betBA-proXWV* promoters. First, we validated previous work describing
293 the requirement for LuxR binding sites in these promoters (5, 6, 9, 14). Second, we identified
294 the promoter region that is required for high levels of transcription activation for these two
295 promoters. We did not resolve the 3' boundary to a specific nucleotide locus in these
296 experiments because we did not use every combination of anchor nucleotides in the arbitrary
297 primers and restricted our analysis to combinations of A and T pairs. However, with this
298 resolution we clearly found a marked difference in plasmids containing various fragments of the
299 promoters such that we could identify the largest region necessary and sufficient for maximum
300 gene expression. Smaller fragments may be sufficient to drive the same level of gene
301 expression, which can be tested with the full series of anchor nucleotides in the arbitrary
302 primers. Further, future studies could use the same approach to map the 5' boundary of these
303 two promoters, which is a separate but intriguing question.

304 Third, our data conclusively demonstrate that there is no requirement for the region
305 downstream of the transcription start site for full activation of the *luxCDABE* promoter. This
306 finding is important because a previous study by Miyamoto *et al.* also tested promoter regions
307 for *luxCDABE* via a *cat* promoter (9). Among the various constructs tested in that study, the
308 pMGM127 plasmid contains a region truncated slightly upstream of the -26 transcription start
309 site (the specific 3' end is undefined in the article) and the pMGM116 plasmid includes a 3' end
310 at +61 relative to the *luxC* start codon (Fig. 1A). The shorter promoter in pMGM127 shows no
311 transcription activation, whereas the longer promoter in pMGM116 had full activation of the *cat*
312 reporter (9). These data and other observations have led to an anecdotal hypothesis in the field

313 that there is an element downstream of the transcription start site that is required for full
314 activation of the *luxCDABE* promoter. Our data refute this hypothesis because the pJV369
315 plasmid does not include the 5'-UTR and is maximally activated in both *E. coli* and *V. harveyi*.

316 Finally, our analysis of various promoter-reporter fusion plasmids demonstrated that not
317 all reporter fusions are created equal and suggests that testing various reporter constructs for
318 each gene of interest is beneficial to finding the optimal reporter for downstream assays. We
319 noted that plasmid constructs with long fragments of the *luxCDABE* and *betlBA-proXWV*
320 promoters that included sections of the first ORF in the operon were substantially decreased in
321 expression, and we showed that this is effective at the transcript level for *luxC-gfp* fusions (Fig.
322 6D). However, we also noted that the strains containing the pJV367 plasmid that had a
323 decrease in GFP fluorescence did not exhibit a decrease in *gfp* transcript levels (Fig. 6C). This
324 result implies that the 7-fold decrease in GFP fluorescence is due to post-transcriptional or
325 translational effects, such as mRNA secondary structure that may block translation initiation.

326 There are at least two possible reasons why plasmids containing long fragments of the
327 *luxCDABE* promoter have decreased transcript levels. One possibility is that transcripts
328 generated with fragments of the *luxCDABE* operon fused to the *gfp* gene may fold into unstable
329 secondary structure and be subject to degradation. However, we suspect that this explanation is
330 unlikely to be the cause of low expression for every plasmid with a fragment longer than +129,
331 as we would predict that at least some would be stable. A second possibility is that LuxR
332 binding to site H is acting as a roadblock to transcription elongation, which results in the abrupt
333 drop in GFP expression after site H. Previously, we showed that scrambling site H does not
334 decrease LuxR activation of β -galactosidase expression in a *luxC-lacZ* reporter plasmid under
335 conditions in which LuxR is maximally expressed at high cell densities in *V. harveyi* (6).
336 However, the results of our expression profiling experiment in *E. coli* with the *luxCDABE*
337 promoter library suggests that plasmids that contain LuxR site H have decreased levels of
338 transcription activation and are strictly in the 'low GFP expression' pool (Fig. 3B). LuxR has an

339 extremely high affinity for site H with a K_d of 0.6 nM, one of the tightest LuxR binding affinities in
340 the genome (5). Thus, it is curious why LuxR binds at this locus with no apparent activation
341 defect when tested at high cell density in *V. harveyi*.

342 Protein roadblocks have been described in bacteria and eukaryotes that hinder
343 transcription, and elongation factors aid in transcription elongation through these roadblocks by
344 various mechanisms (e.g., Mfd in *E. coli*) (20). In addition, when multiple RNAP molecules are
345 initiated from the same promoter, these trailing RNAP complexes can “push” a stalled RNAP
346 through a roadblock (21). Thus, it is possible that higher levels of transcription initiation of the
347 *luxCDABE* promoter in *V. harveyi* at high cell densities drive transcription elongation through
348 site H, whereas lower levels of LuxR at low cell densities in *V. harveyi* or in our synthetic *E. coli*
349 system are not sufficient to push through the LuxR site H roadblock. LuxR concentrations are
350 low in the cell at low cell densities, and thus, the relatively few LuxR molecules likely bind to the
351 highest affinity sites, such as site H in the *luxC* ORF. As cells grow to high cell densities, LuxR
352 levels accumulate (19, 22, 23) and enable LuxR binding to other sites, which drives high levels
353 of transcription initiation and may relieve binding of LuxR to site H to allow RNA polymerase
354 elongation. Alternatively, the roadblock might be relieved by restructuring of the DNA
355 architecture at the locus. Because we have already shown that IHF binds to multiple places at
356 the *luxCDABE* region and its binding is positively cooperative with LuxR, this DNA bending may
357 play a role in removing transcription roadblocks. We also observed a sharp difference between
358 the ‘medium expression’ pool and ‘low expression’ pool just downstream of the LuxR site H (Fig.
359 3B), suggesting that there may be yet another roadblock in this region. Future studies should
360 elucidate the role of LuxR binding sites within ORFs in *V. harveyi*, which are observed
361 throughout the genome (5).

362 In conclusion, the RAIL method offers a rapid and efficient method to obtain libraries of
363 reporter fusions that can be used for various studies of gene expression and regulation. Often in
364 bacterial genetics, researchers attempt to create promoter fusions by cloning a reporter gene in

365 place of the translation start site, and this would have yielded suboptimal reporters for the
366 *luxCDABE* promoter. Anecdotally, and as we experienced with the *betBA-proXWV* and
367 *luxCDABE* promoters, one often needs to construct multiple reporter fusions to identify a
368 promoter region that drives gene expression mimicking native locus gene expression. Thus, our
369 method is more efficient by generating numerous clones in a single cloning experiment. We
370 envision use of the RAIL method for numerous other purposes, such as creating functional GFP
371 protein fusions for studying protein localization, identifying *cis*-regulatory sequences in
372 promoters (e.g., protein binding sequences), inserting affinity tags for purification strategies, and
373 identifying highly expressed soluble constructs for protein purification. Finally, this method
374 should be applicable to any model organism for which genetic cloning techniques have been
375 established.

376

377 **Materials and Methods**

378

379 *Bacterial strains and media*

380 *E. coli* strains S17-1 λ pir, DH10B, and derivatives (Table S2) were used for cloning and
381 *in vivo* assays. *E. coli* strains were grown shaking at 275 RPM at 37°C in lysogeny broth (LB),
382 augmented with 10 μ g/mL chloramphenicol and 10 μ g/mL tetracycline when required. The *V.*
383 *harveyi* BB120 is strain ATCC BAA-1116, which was recently reassigned to *Vibrio campbellii*
384 (24). It is referred to as *V. harveyi* throughout this manuscript for consistency with previous
385 literature. BB120 and derivatives (Table S2) were grown at 30°C shaking at 275 RPM in LB
386 Marine (LM) medium supplemented with 10 μ g/mL chloramphenicol when required. LM is
387 prepared similarly to LB (10 g tryptone, 5 g yeast extract) but with 20 g NaCl instead of 10 g
388 used in LB.

389

390 *Molecular methods*

391 Oligonucleotides (Table S1) were purchased from Integrated DNA Technologies. All
392 PCR reactions were performed using Phusion HF polymerase (New England BioLabs) or iProof
393 polymerase (BioRad). Restriction enzymes, enzymes for isothermal DNA assembly (15), and
394 dNTPs were obtained from New England BioLabs. DNA samples were visualized on 1%
395 agarose gels. Standard cloning methods and primers for the single plasmid constructs listed in
396 Table S3 are available upon request. Standard sequencing of single plasmid constructs was
397 conducted by ACGT, Inc. and Eurofins Genomics. To measure the expression levels of
398 fluorophore reporter plasmids, *E. coli* and *V. harveyi* strains were grown overnight at 30°C
399 shaking at 275 RPM. Strains were diluted 100-fold in growth media and selective antibiotics in
400 96-well plates (black with clear bottom), covered with microporous sealing tape (USA Scientific),
401 and incubated shaking at 30°C at 275 RPM for 16-18 h. Fluorescence and OD₆₀₀ from strains
402 expressing *mCherry* and *gfp* were measured using either a BioTek Synergy H1 or Cytation plate
403 reader. Miller assays were conducted as previously described (6). RNA extraction and qRT-
404 PCR were performed and analyzed as described (14) with primers listed in Table S1 on a
405 StepOne Plus Real-Time PCR machine (Applied Biosystems). Transcript levels were
406 normalized to the level of expression of the internal standard *recA*, and the standard curve
407 method was used for data analysis. The error bars on graphs represent the standard deviations
408 of measurements for triplicate biological samples.

409

410 *RAIL: construction of promoter libraries by arbitrary PCR*

411 The arbitrary PCR method was adapted from Schmidt *et al.* (25) with several
412 modifications. The first round of PCR was conducted using two primers: a forward primer
413 specific to the promoter of interest and a reverse primer for random DNA amplification (Fig. 2,
414 primers 1F and 1R, respectively). The 1R primer includes a priming sequence, followed by eight
415 random nucleotides ('N'), and terminating in two defined nucleotide anchors, either AT, TA, TT,
416 or AA (Table S1). For PCR round 1, ~10-100 ng/μl of genomic DNA from *V. harveyi* BB120 or a

417 plasmid containing the region of interest was added as the template. The reaction included 200
418 μ M dNTPs, 250 μ M primers, 5% DMSO, 0.5 μ l Phusion polymerase, and 1X Phusion buffer.
419 Cycling parameters were as follows and as previously published (25): an initial denaturation at
420 95°C for 5 min, then 5 cycles of 95°C for 30 s, 25°C for 30 s, and 72°C for 2.5 min, followed by
421 30 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 2.5 min, and a final extension step of
422 72°C for 10 min. PCRs were purified using the GeneJet PCR Purification Kit (Thermo Scientific)
423 and eluted in 30-50 μ l of elution buffer. The second round of PCR used primers 2F and 2R (Fig.
424 2). The forward primer (2F) included 30 nt homology to the plasmid backbone for IDA and a
425 sequence specific to the promoter of interest that is nested downstream of the 1F primer. The
426 reverse primer (2R) included the priming sequence that is identical to that of primer 1R. To
427 perform PCR round 2, 5 μ l of the purified DNA from round 1 was used as the template. These
428 reactions also included 200 μ M dNTPs, 250 μ M primers, 5% DMSO, 0.5 μ l Phusion polymerase
429 and 1X Phusion buffer. Cycling parameters were as follows: an initial denaturation at 95°C for 5
430 min, then 35 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 2.5 min, and a final extension
431 step of 72°C for 10 min. PCR products were separated by agarose gel electrophoresis,
432 visualized by UV transillumination, and the products were gel extracted to desired target size
433 using a GeneJet Gel Extraction Kit (Thermo Scientific).

434 Cloning of arbitrary PCR inserts into the plasmid backbone was performed using IDA as
435 described (15). Library inserts were incubated in IDA reactions with 100 ng of plasmid
436 backbone, and these reactions were transformed into electrocompetent *E. coli* Electromax
437 DH10B cells (ThermoFisher) and plated on media with selective antibiotics. DNA from individual
438 colonies was first screened by restriction digest and sequenced to confirm that inserts of the
439 desired size were incorporated. For generation of libraries for sorting, >50,000 colonies were
440 collected from plates, mixed in LB selective media, and the culture stored at -80°C. DNA
441 extracted from this library was transformed into electrocompetent *E. coli* S17-1 λ pir cells

442 containing a plasmid expressing *luxR* (pKM699). After this second transformation step, >50,000
443 colonies were collected from plates, mixed in LB selective media, and the culture stored at -
444 80°C.

445

446 *Flow cytometry sorting*

447 A BD FACSaria II was used to sort *E. coli* cells based on expression of the fluorescent
448 reporter. In preparation for the sort, the library culture from the frozen stock was grown in 50 mL
449 of selective medium at 30°C shaking to OD₆₀₀ = 0.5. DNA was extracted from this culture as the
450 'input' DNA sample for sequencing. Control cultures were used to set the sorting gates. The
451 positive controls for maximal expression were strains containing pKM699 (expressing *luxR*) and
452 a plasmid construct that demonstrated high levels of expression for either P_{*luxC*} (pJV369, P_{*luxC*}-
453 *gfp* positive control plasmid) or P_{*betI*} (pCH50, P_{*betI*}-*mCherry* positive control plasmid). The
454 negative controls were strains containing pKM699 and pJS1194 (*gfp* negative control plasmid)
455 or pCH76 (*mCherry* negative control plasmid), which lack promoters in front of *gfp* or *mCherry*,
456 respectively. The library culture was sorted into bins with >10,000 cells per bin. For the P_{*luxC*}
457 sort, there were four bins: no GFP expression, low GFP expression, medium GFP expression,
458 or high GFP expression. For the P_{*betI*} sort, there were two bins: high mCherry expression or no
459 mCherry expression. The sorted cell cultures were incubated in 5 mL of selective medium
460 shaking at 30°C at 275 RPM and grown to stationary phase. Cultures were stored at -80°C, and
461 the DNA was extracted for sequencing using the GeneJet Miniprep kit (Thermo Scientific).

462

463 *Illumina library preparation and sequencing*

464 DNA extracted from all sorted samples and input controls was purified over a Performa
465 DTR gel filtration cartridge (Edge Biosystems). Next, the DNA was sheared using a Covaris
466 S220 in 6 x 16 mm microtubes to average sizes of 400 bp and analyzed on an Agilent 2200

467 TapeStation using D1000 ScreenTape. The sheared DNA samples (1 µg) were each treated
468 with terminal deoxynucleotidyl transferase (TdT) in a tailing reaction using TdT (Promega) and a
469 mixture of dCTP and ddCTP (475 µM and 25 µM final concentrations, respectively) to generate
470 a poly-C tail. The reactions were incubated at 37°C for 1 h, heat-inactivated at 75°C for 20 min,
471 and cleaned over a Performa DTR gel filtration cartridge. Next, two rounds of PCR were
472 performed to attach sequences for Illumina sequencing (Table S1). In round 1, a C-tail specific
473 primer olj376 and a gene-specific primer (CH060 for the *gfp* library, and CH063 for the *mCherry*
474 library) were used to amplify the promoter fragments that were cloned into the plasmid during
475 the RAIL method. This PCR reaction used Taq polymerase (NEB), with the following cycling
476 conditions: an initial denaturation at 95°C for 2 min, then 24 cycles of 95°C for 30 s, 58°C for 30
477 s, and 72°C for 2 min, and a final extension step of 72°C for 2 min. The round 2 PCR used a
478 nested gene specific primer (CH061 for the *gfp* library, and CH064 for the *mCherry* library) to
479 provide added specificity and also to append the linker sequence needed for Illumina
480 sequencing. The second primer in the reaction contained different barcodes for each sample to
481 enable the libraries to be pooled and sequenced simultaneously (Table S1; BC37-44). The
482 round 2 PCRs were performed using Taq polymerase, and cycling as follows: an initial
483 denaturation at 95°C for 2 min, then 12 cycles of 95°C for 30 s, 52°C for 30 s, and 72°C for 2
484 min, and a final extension step of 72°C for 2 min. These final PCR products were examined by
485 DNA gel electrophoresis, at which point a smear of products was visible on the gel.

486 Sequencing was performed on a NextSeq 500 using a NextSeq 75 reagent kit using
487 42bp x 42bp paired-end run parameters and gene specific primers (CH062 for the *gfp* library,
488 and CH065 for the *mCherry* library). Reads were checked with FastQC (v0.11.5; Available
489 online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>) to ensure that the quality of
490 the data was high and that there were no noteworthy artifacts associated with the reads. The R1
491 read from paired-end Illumina NextSeq reads were quality and adapter trimmed with

492 Trimmomatic (v0.33) (26) using the following parameters: ILLUMINACLIP:<adapters>:3:20:6
493 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:25. Reads were high quality with 80-
494 85% of the reads surviving trimming. Reads were mapped against the *Vibrio campbellii* ATCC
495 BAA-1116 genome (including molecules NC_009777, NC_009783, and NC_009784) using
496 bowtie 2.3.2 (27) and visualized using JBrowse (version 1.10.12) to analyze the alignment to the
497 *betl* and *luxC* gene regions. Analysis of the promoter-seq data hinged on contrasting high,
498 medium, low, and no expressing cells to the null distribution. The null distribution was
499 determined by sequencing cells collected without any sorting applied. The reads associated with
500 the null, high, medium, low, and no expression datasets for the *luxC* library (or null, high, and no
501 expression datasets for the *betl* library) were normalized by transforming the data into the
502 fraction of bases covered, which was defined as the depth of coverage at a particular base
503 divided by the total depth of coverage over the particular promoter region (*betl*: bases 1361141-
504 1362440 on NC_009784; *luxC*: bases 1424774-1426907 on NC_009784). Analysis was
505 performed by plotting the \log_2 ratio of the observed fraction of bases covered (for high, medium,
506 low or no expression cell collections) over the expected (null) distribution.

507

508 **Acknowledgments**

509 We thank Ankur Dalia for assistance with the design of the Illumina sequencing protocol
510 and helpful discussions. We also thank James Ford and Douglas Rusch from the Indiana
511 University Center for Genomics and Bioinformatics for Illumina sequencing experiments,
512 bioinformatics analysis, and assistance with graphing the results. We also wish to acknowledge
513 Christiane Hassel from the Indiana University Flow Cytometry Core Facility for assistance with
514 FACSaria II analysis and sorting. We appreciate the use of Jason Tennesen's BioTek Cytation
515 plate reader, and we thank Ryan Chaparian and Blake Petersen for assistance with
516 experiments. This work was supported by the National Institutes of Health (NIH) Grant
517 1R35GM124698-01 to JVK and start-up funds from Indiana University to JVK and MLB.

518

519 **References**

- 520 1. Rosochacki SJ, Matejczyk M. 2002. Green fluorescent protein as a molecular marker in
521 microbiology. *Acta Microbiol Pol* 51:205-16.
- 522 2. Jiang T, Xing B, Rao J. 2008. Recent developments of biological reporter technology for
523 detecting gene expression. *Biotechnol Genet Eng Rev* 25:41-75.
- 524 3. Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. 1998. New
525 unstable variants of green fluorescent protein for studies of transient gene expression in
526 bacteria. *Appl Environ Microbiol* 64:2240-6.
- 527 4. Arnone MI, Dmochowski IJ, Gache C. 2004. Using reporter genes to study cis-regulatory
528 elements. *Methods Cell Biol* 74:621-52.
- 529 5. van Kessel JC, Ulrich LE, Zhulin IB, Bassler BL. 2013. Analysis of activator and
530 repressor functions reveals the requirements for transcriptional control by LuxR, the
531 master regulator of quorum sensing in *Vibrio harveyi*. *MBio* 4.
- 532 6. Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. 2016.
533 Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing
534 genes in *Vibrio harveyi*. *Mol Microbiol* 101:823-40.
- 535 7. Chatterjee J, Miyamoto CM, Zouzoulas A, Lang BF, Skouris N, Meighen EA. 2002. MetR
536 and CRP bind to the *Vibrio harveyi lux* promoters and regulate luminescence. *Mol
537 Microbiol* 46:101-11.
- 538 8. Meighen EA. 1991. Molecular biology of bacterial bioluminescence. *Microbiol Rev*
539 55:123-42.
- 540 9. Miyamoto CM, Smith EE, Swartzman E, Cao JG, Graham AF, Meighen EA. 1994.
541 Proximal and distal sites bind LuxR independently and activate expression of the *Vibrio
542 harveyi lux* operon. *Mol Microbiol* 14:255-62.
- 543 10. Swartzman E, Silverman M, Meighen EA. 1992. The luxR gene product of *Vibrio harveyi*
544 is a transcriptional activator of the lux promoter. *J Bacteriol* 174:7490-3.
- 545 11. Reznikoff WS. 1992. The lactose operon-controlling elements: a complex paradigm. *Mol
546 Microbiol* 6:2419-22.
- 547 12. Dunn TM, Hahn S, Ogden S, Schleif RF. 1984. An operator at -280 base pairs that is
548 required for repression of araBAD operon promoter: addition of DNA helical turns
549 between the operator and promoter cyclically hinders repression. *Proc Natl Acad Sci U S
550 A* 81:5017-20.
- 551 13. Galagan J, Lyubetskaya A, Gomes A. 2013. ChIP-Seq and the complexity of bacterial
552 transcriptional regulation. *Curr Top Microbiol Immunol* 363:43-68.
- 553 14. van Kessel JC, Rutherford ST, Cong JP, Quinodoz S, Healy J, Bassler BL. 2015.
554 Quorum sensing regulates the osmotic stress response in *Vibrio harveyi*. *J Bacteriol*
555 197:73-80.
- 556 15. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009.
557 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods*
558 6:343-5.
- 559 16. Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers.
560 *Nucleic Acids Res* 18:7213-8.
- 561 17. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms
562 amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Res* 18:6531-
563 5.
- 564 18. Showalter RE, Martin MO, Silverman MR. 1990. Cloning and nucleotide sequence of
565 luxR, a regulatory gene controlling bioluminescence in *Vibrio harveyi*. *J Bacteriol*
566 172:2946-54.

567 19. van Kessel JC, Rutherford ST, Shao Y, Utria AF, Bassler BL. 2013. Individual and
568 Combined Roles of the Master Regulators AphA and LuxR in Control of the *Vibrio*
569 *harveyi* Quorum-Sensing Regulon. *J Bacteriol* 195:436-43.

570 20. Park JS, Marr MT, Roberts JW. 2002. *E. coli* Transcription repair coupling factor (Mfd
571 protein) rescues arrested complexes by promoting forward translocation. *Cell* 109:757-
572 67.

573 21. Epshtain V, Toulme F, Rahmouni AR, Borukhov S, Nudler E. 2003. Transcription
574 through the roadblocks: the role of RNA polymerase cooperation. *EMBO J* 22:4719-27.

575 22. Waters CM, Bassler BL. 2006. The *Vibrio harveyi* quorum-sensing system uses shared
576 regulatory components to discriminate between multiple autoinducers. *Genes Dev*
577 20:2754-67.

578 23. Teng SW, Wang Y, Tu KC, Long T, Mehta P, Wingreen NS, Bassler BL, Ong NP. 2010.
579 Measurement of the copy number of the master quorum-sensing regulator of a bacterial
580 cell. *Biophys J* 98:2024-31.

581 24. Lin B, Wang Z, Malanoski AP, O'Grady EA, Wimpee CF, Vuddhakul V, Alves Jr N,
582 Thompson FL, Gomez-Gil B, Vora GJ. 2010. Comparative genomic analyses identify the
583 *Vibrio harveyi* genome sequenced strains BAA-1116 and HY01 as *Vibrio campbellii*.
584 *Environ Microbiol Rep* 2:81-89.

585 25. Schmidt KH, Pennanenach V, Putnam CD, Kolodner RD. 2006. Analysis of gross-
586 chromosomal rearrangements in *Saccharomyces cerevisiae*. *Methods Enzymol*
587 409:462-76.

588 26. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
589 sequence data. *Bioinformatics* 30:2114-20.

590 27. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat
591 Methods* 9:357-9.

592

593

594 **Figure Legends**

595

596 **Figure 1. Promoter fusion plasmids for the *luxCDABE* genes.** (A) Diagram of the regions of
597 the *luxCDABE* promoter present in various plasmids listed, either from this study (black lines) or
598 previous studies (gray lines) (5, 9). LuxR binding sites (LuxR BS) are shown as gray boxes.
599 Transcription start sites are indicated by black arrows. The LuxC translation start site is shown
600 as +1. Lengths of constructs are shown relative to the LuxC translation start site. (B) Relative
601 GFP expression per OD₆₀₀ (GFP/OD₆₀₀) is shown for *E. coli* strains containing plasmids with
602 varying *luxCDABE* promoter fragments fused to *gfp* as indicated in (A). The strains also contain
603 either a plasmid constitutively expressing LuxR (pKM699) or an empty vector (pLAFR2).

604 Relative expression was calculated by dividing the values for the pKM699-containing strain by
605 the pLAFR2-containing strain.

606

607 **Figure 2. Schematic of the RAIL method for constructing libraries of promoter fusions.** In
608 PCR round 1, primers 1F and 1R were used to amplify a range of products specific to the *luxC*
609 promoter. The 1R primers have eight random ('N') nucleotides incorporated, are anchored by
610 two nucleotides (AA, AT, TA, or TT), and contain a linker (shown in blue). In PCR round 2, the
611 2F and 2R primers were used to further amplify and add a linker to the products. Primer 2F
612 anneals just downstream of 1F and contains a linker (shown in green). Primer 2R anneals to the
613 linker region of primer 1R. The linear plasmid backbone was prepared either by restriction
614 digest or PCR. The library of products was inserted into the linear plasmid backbone via IDA
615 using the homologous sequences present in the two linker regions (green and blue). The final
616 plasmids contain fragments of the *luxC* promoter fused to the reporter. Gel images shown are
617 examples of products from PCR rounds 1 and 2 for the *luxCDABE* locus using arbitrary R1
618 primers JCV1135-1138 and F1 primer SO71 in round 1 (Table S1). The products of the round 1
619 reactions were used in round 2 with primers SO72 and JCV1139 (Table S1).

620

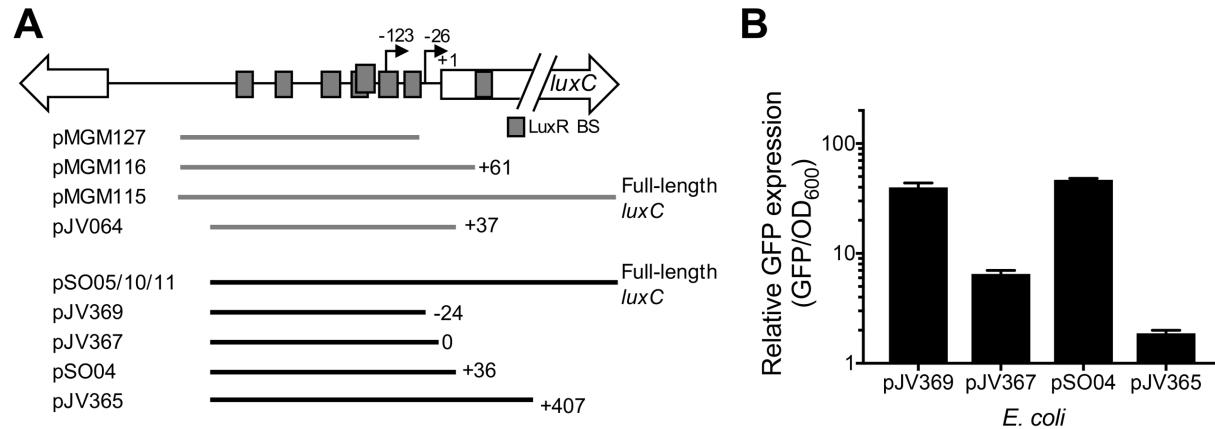
621 **Figure 3. Flow cytometry sorting and next-generation sequencing of the $P_{luxCDABE}$ -gfp**
622 **library.** (A) FACS GFP expression data from three *E. coli* cultures: 1) a negative control strain
623 containing an empty vector control (pJS1194) and a plasmid expressing LuxR (pKM699), 2) a
624 positive control strain containing a $P_{luxCDABE}$ -gfp reporter plasmid (pJV369) and pKM699, and 3)
625 the $P_{luxCDABE}$ library of plasmids in *E. coli* containing pKM699. Gates (boxes) indicate the cells
626 sorted (% of total population) into four bins: no GFP expression, low GFP expression, medium
627 GFP expression, and high GFP expression. Data were presented using FlowJo software. (B)
628 Genomic regions associated with differential expression of the *luxCDABE* locus. The nucleotide
629 coverage of the reads (42 bp) is shown for different populations of cells with distinct levels of

630 GFP reporter expression as indicated in the legend. Data are graphed as the nucleotide position
631 (x-axis) versus the \log_2 -ratio of observed coverage density divided by the expected coverage
632 density (as determined by the read counts observed in the total library; y-axis). Areas with
633 positive values in \log_2 observed/expected coverage densities indicate an enrichment of
634 sequence reads in that region, and areas with negative values indicate lower than expected
635 frequency reads. The thick black bar indicates the location of the *luxC* ORF. The locations of
636 LuxR binding sites are indicated by white boxes. The locus to which the 2F primer anneals is
637 indicated by an arrow.

638

639 **Figure 4. Expression data from the $P_{betlBA-proXWV}$ -mCherry library.** (A) Diagram of the regions
640 of the *betlBA-proXWV* promoter present in various plasmids. LuxR binding sites (LuxR BS) and
641 the Betl binding site (Betl BS) are shown as gray and white boxes, respectively. Putative
642 transcription start sites are indicated by black arrows. The Betl translation start site is shown as
643 +1. Lengths of constructs are shown relative to the Betl translation start site. (B) Relative
644 mCherry expression per OD_{600} (mCherry/ OD_{600}) is shown for *E. coli* strains as calculated by
645 dividing the values for the pKM699 strain by the pLAFR2 strain. The strains contained plasmids
646 with varying *betlBA-proXWV* promoter fragments fused to *mCherry* as indicated in (A). (C)
647 FACS data showing mCherry expression for three *E. coli* cultures: 1) a negative control strain
648 containing pCH76 and pKM699, 2) a positive control strain containing pCH50 and pKM699, and
649 3) the $P_{betlBA-proXWV}$ library in *E. coli* containing pKM699. Gates indicate the cells sorted (% of
650 total population) into two bins: no mCherry expression and high mCherry expression. (D)
651 Genomic regions associated with differential expression of the *betlBA-proXWV* locus. The
652 nucleotide coverage of the reads (42 bp) is shown for different populations of cells with distinct
653 levels of mCherry reporter expression as indicated in the legend. Data are graphed as the
654 nucleotide position (x-axis) versus the \log_2 -ratio of observed coverage density divided by the
655 expected coverage density (as determined by the read counts observed in the total library; y-

656 axis). Areas with positive values in \log_2 observed/expected coverage densities indicate an
657 enrichment of sequence reads in that region, and areas with negative values indicate lower than
658 expected frequency reads. The thick black bar indicates the location of the *luxC* ORF. The
659 locations of LuxR and Betl binding sites are indicated by white boxes. The locus to which the 2F
660 primer anneals is indicated by an arrow.


661

662 **Figure 5. Promoter-reporter fusion plasmids for the *VIBHAR_06912* promoter.** (A) Diagram
663 of the regions of the *VIBHAR_06912* promoter present in various plasmids. The putative
664 transcription start site is indicated by a black arrow. The *VIBHAR_06912* translation start site is
665 shown as +1. Lengths of constructs are shown relative to the *VIBHAR_06912* translation start
666 site. (B) Modified Miller units are shown for wild-type (BB120) and $\Delta luxR$ (KM669) strains
667 containing various plasmids as indicated in (A). Data shown are representative of four
668 independent biological experiments.

669

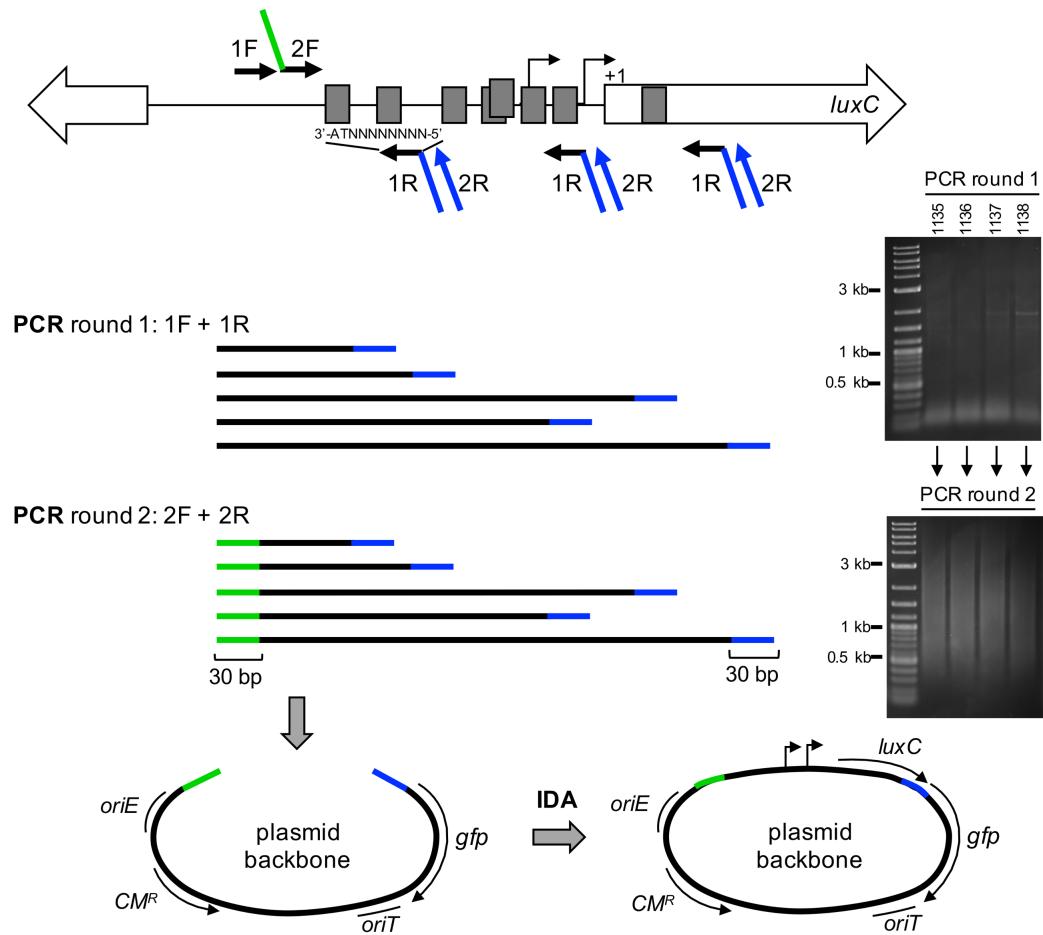

670 **Figure 6. Measuring transcription of plasmids with long promoter regions fused to**
671 **reporters.** (A) Diagram of plasmids containing *luxCDABE* promoters and the *luxC* ORF fused to
672 *gfp* (pSO05), *lacZ* (pSO10), or *mCherry* (pSO11). Each construct contains the 15-bp sequence
673 between *luxC* and *luxD* as shown. (B) Relative expression of reporters (GFP, mCherry, and
674 LacZ) is shown for *E. coli* strains containing either a plasmid constitutively expressing LuxR
675 (pKM699) or an empty vector (pLAFR2). Relative expression was calculated by dividing the
676 values for the pKM699-containing strain by the pLAFR2-containing strain. LacZ expression was
677 determined by modified Miller assays, and GFP and mCherry expression were assayed using a
678 plate reader. (C) Relative expression of mCherry (mCherry/OD₆₀₀) is shown for *E. coli* strains
679 containing either pKM699 or pLAFR2, calculated as described in (B). (D) Relative transcript
680 levels of *gfp* determined by qRT-PCR for *E. coli* strains containing either pKM699 or pLAFR2,
681 calculated as described in (B).

Figure 1.

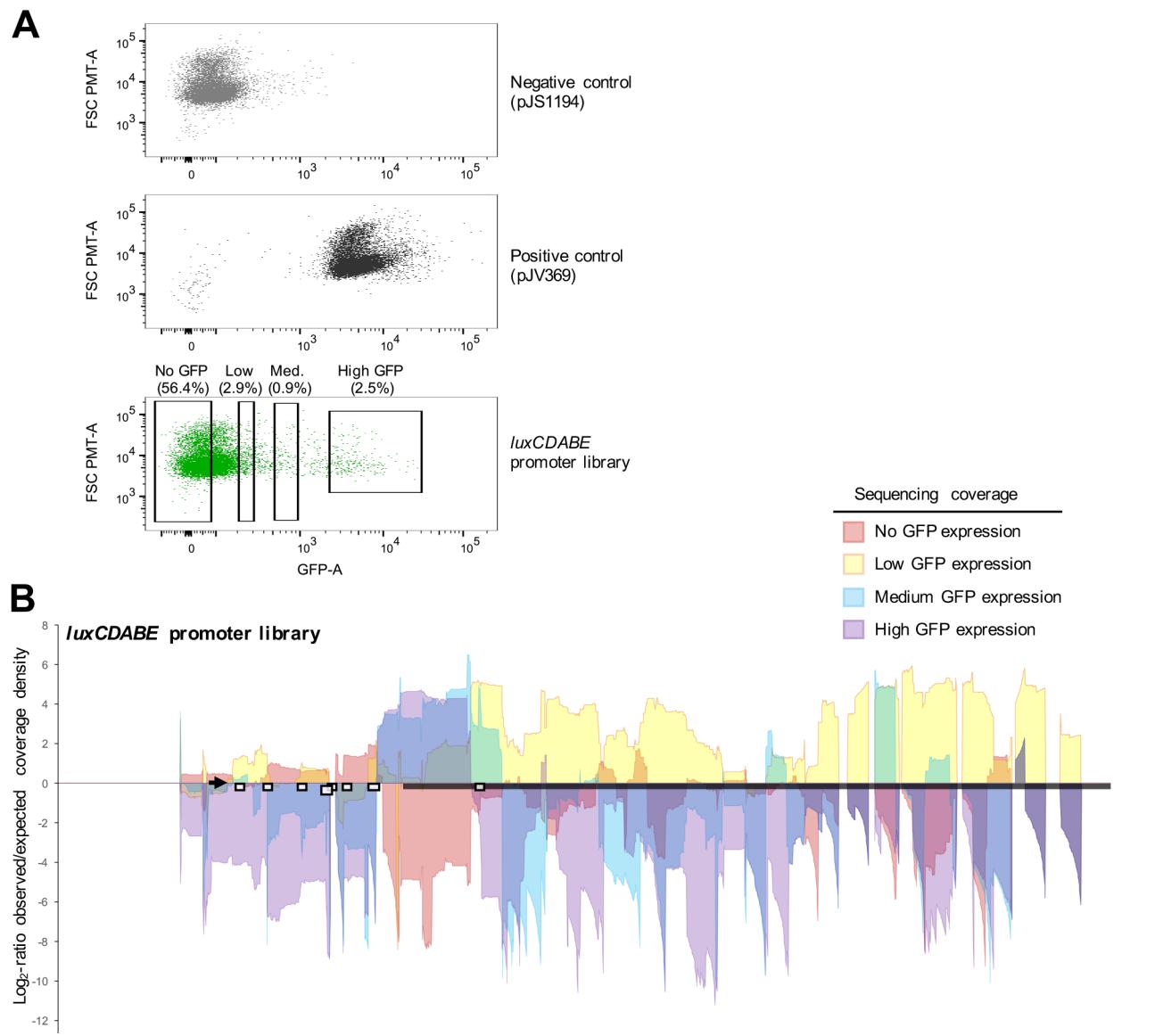

Figure 1. Promoter fusion plasmids for the *luxCDABE* genes. (A) Diagram of the regions of the *luxCDABE* promoter present in various plasmids listed, either from this study (black lines) or previous studies (gray lines) (5, 9). LuxR binding sites (LuxR BS) are shown as gray boxes. Transcription start sites are indicated by black arrows. The LuxC translation start site is shown as +1. Lengths of constructs are shown relative to the LuxC translation start site. (B) Relative GFP expression per OD₆₀₀ (GFP/OD₆₀₀) is shown for *E. coli* strains containing plasmids with varying *luxCDABE* promoter fragments fused to *gfp* as indicated in (A). The strains also contain either a plasmid constitutively expressing LuxR (pKM699) or an empty vector (pLAFR2). Relative expression was calculated by dividing the values for the pKM699-containing strain by the pLAFR2-containing strain.

Figure 2.

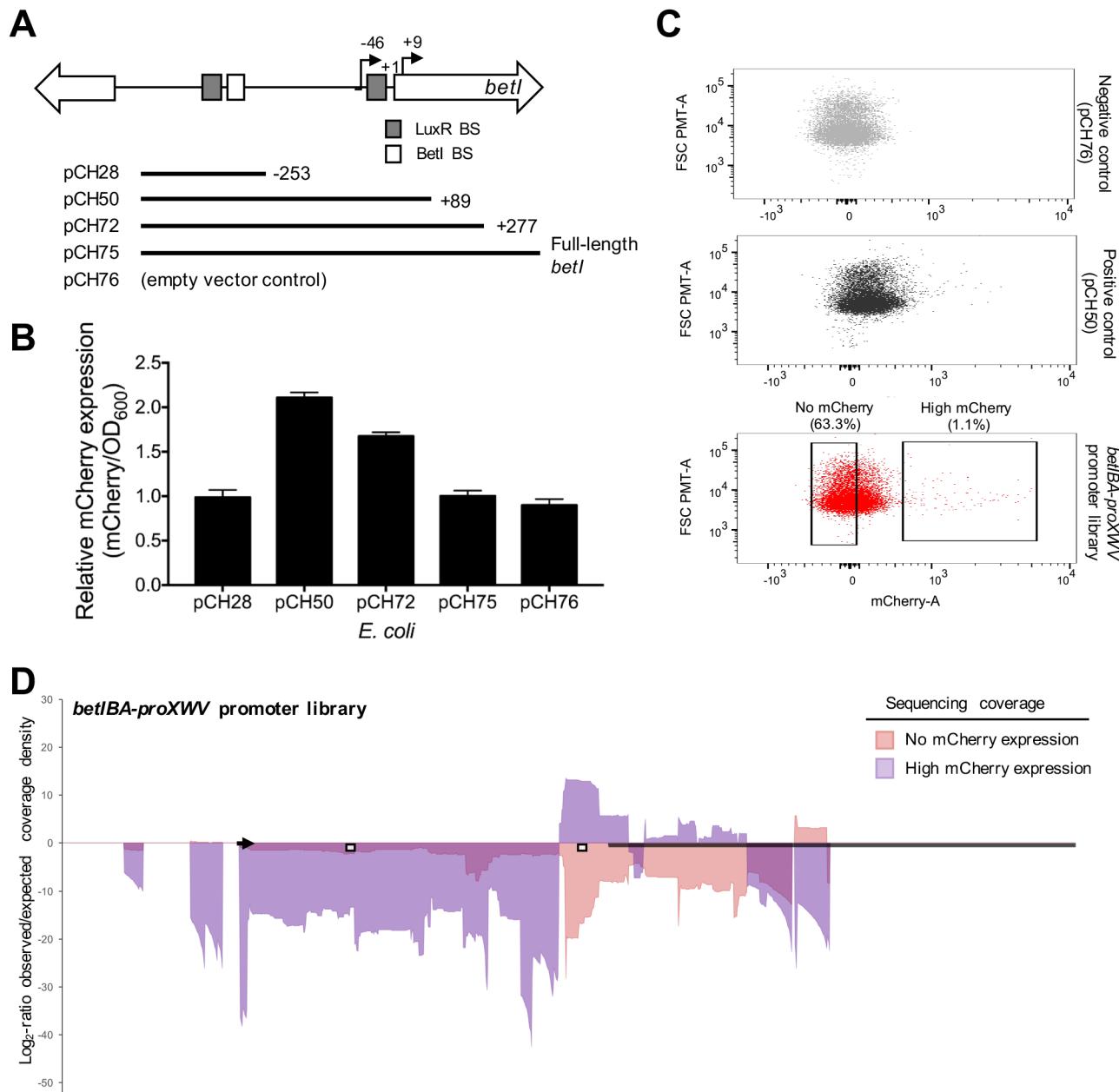

Figure 2. Schematic of the RAIL method for constructing libraries of promoter fusions. In PCR round 1, primers 1F and 1R were used to amplify a range of products specific to the *luxC* promoter. The 1R primers have eight random ('N') nucleotides incorporated, are anchored by two nucleotides (AA, AT, TA, or TT), and contain a linker (shown in blue). In PCR round 2, the 2F and 2R primers were used to further amplify and add a linker to the products. Primer 2F anneals just downstream of 1F and contains a linker (shown in green). Primer 2R anneals to the linker region of primer 1R. The linear plasmid backbone was prepared either by restriction digest or PCR. The library of products was inserted into the linear plasmid backbone via IDA using the homologous sequences present in the two linker regions (green and blue). The final plasmids contain fragments of the *luxC* promoter fused to the reporter. Gel images shown are examples of products from PCR rounds 1 and 2 for the *luxCDABE* locus using arbitrary R1 primers JCV1135-1138 and F1 primer SO71 in round 1 (Table S1). The products of the round 1 reactions were used in round 2 with primers SO72 and JCV1139 (Table S1).

Figure 3.

Figure 3. Flow cytometry sorting and next-generation sequencing of the $P_{luxCDABE}$ -gfp library. (A) FACS GFP expression data from three *E. coli* cultures: 1) a negative control strain containing an empty vector control (pJS1194) and a plasmid expressing LuxR (pKM699), 2) a positive control strain containing a $P_{luxCDABE}$ -gfp reporter plasmid (pJV369) and pKM699, and 3) the $P_{luxCDABE}$ library of plasmids in *E. coli* containing pKM699. Gates (boxes) indicate the cells sorted (% of total population) into four bins: no GFP expression, low GFP expression, medium GFP expression, and high GFP expression. Data were presented using FlowJo software. (B) Genomic regions associated with differential expression of the $P_{luxCDABE}$ locus. The nucleotide coverage of the reads (42 bp) is shown for different populations of cells with distinct levels of GFP reporter expression as indicated in the legend. Data are graphed as the nucleotide position (x-axis) versus the log₂-ratio of observed coverage density divided by the expected coverage density (as determined by the read counts observed in the total library; y-axis). Areas with positive values in log₂ observed/expected coverage densities indicate an enrichment of sequence reads in that region, and areas with negative values indicate lower than expected frequency reads. The thick black bar indicates the location of the *luxC* ORF. The locations of LuxR binding sites are indicated by white boxes. The locus to which the 2F primer anneals is indicated by an arrow.

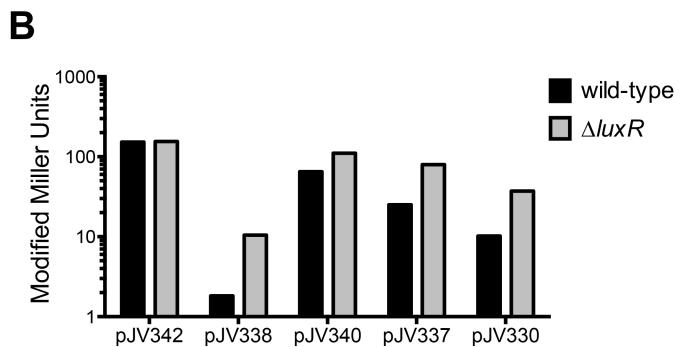
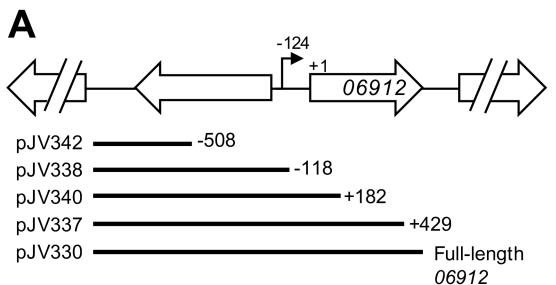


Figure 4.

Figure 4. Expression data from the $P_{betlBA\text{-}proXWV}$ -mCherry library. (A) Diagram of the regions of the $betlBA\text{-}proXWV$ promoter present in various plasmids. LuxR binding sites (LuxR BS) and the Betl binding site (Betz BS) are shown as gray and white boxes, respectively. Putative transcription start sites are indicated by black arrows. The Betl translation start site is shown as +1. Lengths of constructs are shown relative to the Betl translation start site. (B) Relative mCherry expression per OD_{600} (mCherry/ OD_{600}) is shown for *E. coli* strains as calculated by dividing the values for the pKM699 strain by the pLAFR2 strain. The strains contained plasmids with varying $betlBA\text{-}proXWV$ promoter fragments fused to mCherry as indicated in (A). (C) FACS data showing mCherry expression for three *E. coli* cultures: 1) a negative control strain containing pCH76 and pKM699, 2) a positive control strain containing pCH50 and pKM699, and 3) the $P_{betlBA\text{-}proXWV}$ library in *E. coli* containing pKM699. Gates indicate the cells sorted (% of total population) into two bins: no mCherry expression and high mCherry expression. (D) Genomic regions associated with differential expression of the $betlBA\text{-}proXWV$ locus. The nucleotide coverage of the reads (42 bp) is shown for different populations of cells with distinct levels of mCherry reporter expression as indicated in the legend. Data are graphed as the nucleotide position (x-axis) versus the \log_2 -ratio of observed coverage density divided by the expected coverage density (as determined by the read counts observed in the total library; y-axis). Areas with positive values in \log_2 observed/expected coverage densities indicate an enrichment of sequence reads in that region, and areas with negative values indicate lower than expected frequency reads. The thick black bar indicates the location of the *luxC* ORF. The

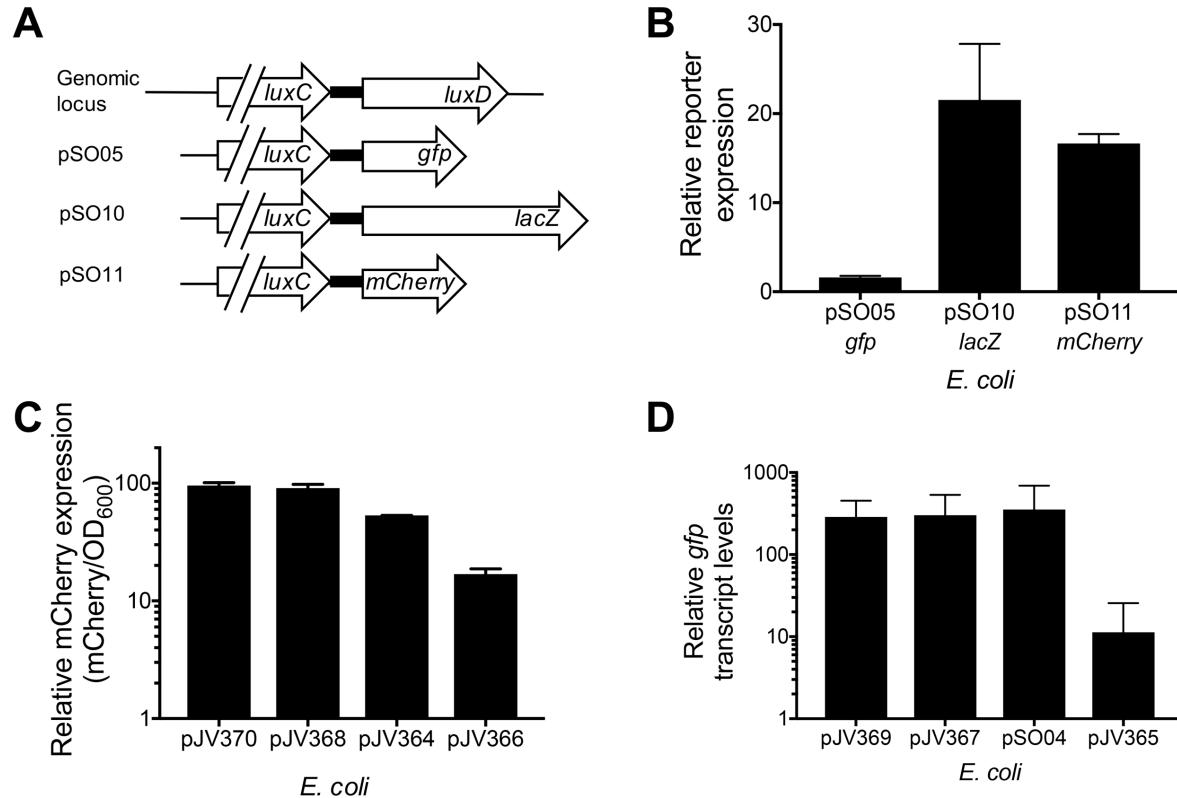

locations of LuxR and BetI binding sites are indicated by white boxes. The locus to which the 2F primer anneals is indicated by an arrow.

Figure 5.

Figure 5. Promoter-reporter fusion plasmids for the *VIBHAR_06912* promoter. (A) Diagram of the regions of the *VIBHAR_06912* promoter present in various plasmids. The putative transcription start site is indicated by a black arrow. The *VIBHAR_06912* translation start site is shown as +1. Lengths of constructs are shown relative to the *VIBHAR_06912* translation start site. (B) Modified Miller units are shown for wild-type (BB120) and $\Delta luxR$ (KM669) *V. harveyi* strains containing various plasmids as indicated in (A). Data shown are representative of four independent biological experiments.

Figure 6.

Figure 6. Measuring transcription of plasmids with long promoter regions fused to reporters. (A) Diagram of plasmids containing *luxCDABE* promoters and the *luxC* ORF fused to *gfp* (pSO05), *lacZ* (pSO10), or *mCherry* (pSO11). Each construct contains the 15-bp sequence between *luxC* and *luxD* as shown. (B) Relative expression of reporters (GFP, mCherry, and LacZ) is shown for *E. coli* strains containing either a plasmid constitutively expressing LuxR (pKM699) or an empty vector (pLAFR2). Relative expression was calculated by dividing the values for the pKM699-containing strain by the pLAFR2-containing strain. LacZ expression was determined by modified Miller assays, and GFP and mCherry expression were assayed using a plate reader. (C) Relative expression of mCherry (mCherry/OD₆₀₀) is shown for *E. coli* strains containing either pKM699 or pLAFR2, calculated as described in (B). (D) Relative transcript levels of *gfp* determined by qRT-PCR for *E. coli* strains containing either pKM699 or pLAFR2, calculated as described in (B).