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Key message

Optimal cross selection increases long-term genetic gain of two-part programs with
rapid recurrent genomic selection. It achieves this by optimising efficiency of
converting genetic diversity into genetic gain through reducing the loss of genetic

diversity and reducing the drop of genomic prediction accuracy with rapid cycling.
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14  Abstract

15  This study evaluates optimal cross selection for balancing selection and maintenance
16  of genetic diversity in two-part plant breeding programs with rapid recurrent genomic
17  selection. The two-part program reorganizes a conventional breeding program into
18  population improvement component with recurrent genomic selection to increase the
19  mean of germplasm and product development component with standard methods to
20  develop new lines. Rapid recurrent genomic selection has a large potential, but is
21  challenging due to genotyping costs or genetic drift. Here we simulate a wheat
22 breeding program for 20 years and compare optimal cross selection against truncation
23 selection in the population improvement with one to six cycles per year. With
24 truncation selection we crossed a small or a large number of parents. With optimal
25  cross selection we jointly optimised selection, maintenance of genetic diversity, and
26  cross allocation with AlphaMate program. The results show that the two-part program
27  with optimal cross selection delivered the largest genetic gain that increased with the
28  increasing number of cycles. With four cycles per year optimal cross selection had
29  78% (15%) higher long-term genetic gain than truncation selection with a small
30 (large) number of parents. Higher genetic gain was achieved through higher
31 efficiency of converting genetic diversity into genetic gain; optimal cross selection
32 quadrupled (doubled) efficiency of truncation selection with a small (large) number of
33 parents. Optimal cross selection also reduced the drop of genomic selection accuracy
34 due to the drift between training and prediction populations. In conclusion, optimal
35  cross-selection enables optimal management and exploitation of population

36  improvement germplasm in two-part programs.
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37 Introduction

38 In this study we evaluate balancing selection and maintenance of genetic diversity
39  with optimal cross selection in two-part plant breeding programs with rapid recurrent
40  genomic selection. Plant breeding programs that produce inbred lines have two
41  concurrent goals: (i) identifying new varieties or hybrid parents and (ii) identifying
42  parents for subsequent breeding cycles. We recently proposed a two-part program that
43  uses genomic selection to separately address these goals (Gaynor et al. 2017; Hickey
44 et al. 2017a). The two-part program reorganizes conventional program into two
45  distinct components: a product development component that develops and screens
46  inbred lines with established breeding methods; and a population improvement
47  component that increases the population mean with rapid cycles of recurrent genomic
48  selection. Simulations showed that the two-part program has a potential to deliver
49  about 2.5 times larger genetic gain compared to a conventional program for the same

50 investment (Gaynor et al. 2017).

51  The larger genetic gain from the two-part program is primarily driven by rapid
52 recurrent genomic selection in the population improvement component. In a
53  conventional program a cycle of “recurrent” selection may take four to five years to
54  complete. The two-part program enables rapid recurrent selection with several cycles
55  per year, because population improvement and product development components
56  operate independently of each other. For example, Gaynor et al. (2017) simulated two
57  cycles of population improvement per year, which reduced cycle time eight-fold

58  compared to the conventional program. Cycle time can be decreased even further with
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59 intensive use of greenhouses and speed breeding (Christopher et al. 2015; Hickey et
60 al. 2017b; Watson et al. 2017). Factoring this potential into the breeder’s equation
61  suggests that the large genetic gain in Gaynor et al. (2017) could be increased even

62  more with more than two cycles per year.

63  To ensure large genetic gain a population improvement manager must simultaneously
64  consider several factors. Most notably, number of cycles, size of the population,
65 number of parents, genomic prediction accuracy, maintenance of genetic diversity,
66 and costs. Performing more cycles can increase genetic gain per year, but it also
67  increases costs incurred by genotyping many selection candidates and other operating
68  costs. To control costs the manager is likely to reduce population size with increasing
69  number of cycles. In an unpublished analysis (reproduced in this study), we observed
70  that increasing the number of cycles, above two used in Gaynor et al. (2017),
71  expectedly increased genetic gain in first years, but eventually led to a lower long-
72  term genetic gain than with two cycles. Inspection of the results indicated that genetic

73  diversity was depleted faster with increased number of cycles.

74  We hypothesise that balancing selection and maintenance of genetic diversity is
75 needed for large long-term genetic gain from the two-part program with rapid
76  recurrent genomic selection. To test this end we simulated a two-part program that
77  uses truncation selection or optimal cross selection to manage population
78  improvement germplasm. The optimal cross selection is a combination of optimal
79  contribution selection and cross allocation. The optimal contribution selection
80  optimizes contributions of selection candidates to the next generation such that

81  expected benefit and risks are balanced (Woolliams et al. 2015). A common way to
4
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82  achieve this balance is to maximise genetic gain at a predefined rate of population
83  inbreeding (coancestry) through penalizing selection of individuals that are too
84  closely related (Wray and Goddard 1994; Meuwissen 1997). This penalization
85  controls the rate at which genetic diversity is lost due to drift and selection. Well
86  managed breeding programs balance this loss by maintaining sufficiently large
87  effective population size so that standing genetic diversity and newly generated
88  genetic diversity due to mutation (and possibly migration) sustain long-term genetic
89  gains (Hill 2016). The optimal contribution selection assumes that contributions will
90  be randomly paired, including selfing. An extension that delivers a practical crossing
91  plan is to jointly optimise contributions and cross allocations (Kinghorn et al. 2009;
92 Kinghorn 2011). These methods are established in animal breeding (for a review see
93  Woolliams et al. (2015)) and are increasingly common in plant breeding (Cowling et

94 al. 2016; Akdemir and Sanchez 2016; De Beukelaer et al. 2017; Lin et al. 2017).

95  The aim of this study was to evaluate the potential of optimal cross selection to
96  balance selection and maintenance of genetic diversity in a two-part program with
97  rapid recurrent genomic selection. We evaluated the potential with a long-term
98  simulation of conventional and two-part breeding programs. The two-part programs
99  used different number of cycles, different selection methods, and different resources
100  for genomic selection. The results show that optimal cross selection delivered the
101  largest long-term genetic gain under all scenarios. This was achieved by optimising
102 the efficiency of converting genetic diversity into genetic gain with the increasing

103  number of recurrent selection cycles. With four cycles per year optimal cross
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104  selection had 15-78% higher genetic gain and 2-4 times higher efficiency than

105 truncation selection.
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106 Materials and methods

107  Breeding programs

108  We used simulations of entire breeding programs to compare different selection
109  methods under different scenarios. Detailed description of simulated breeding
110  programs and scenarios is available in Supplementary Material 1. In summary, we
111  have initiated a virtual wheat breeding program for a polygenic trait and ran it for
112 20 years (burn-in) with a conventional program based on phenotypic selection. After
113 the burn-in we evaluated different programs under equalized costs for another 20
114  years. The evaluated programs were: i) conventional program with phenotypic
115  selection (Conv), ii) conventional program with genomic selection at the preliminary
116 trial stage (ConvP), iii) conventional program with genomic selection at the headrow
117  stage (ConvH), and iv) two-part program with recurrent genomic selection (TwoPart).
118  While the conventional program performs population improvement and product
119  development concurrently, the two-part program splits these two activities into two
120  separate, but connected, components (Fig.1). The population improvement
121  component is based on rapid recurrent genomic selection to increase population mean,
122 while product development component is based on standard breeding methods
123 (including field trials) to develop inbred lines. A by-product of field trials is a training
124 set of genotyped and phenotyped individuals, which is used to retrain a genomic
125  selection model. Because the two-part program uses rapid cycling, we use doubled-
126  haploid lines to speed up the conventional program and the product development

127  component.
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128 A challenge with the two-part program is balancing selection and maintenance of
129  genetic diversity in the population improvement. This is particularly challenging with
130  several cycles or recurrent genomic selection, because the breeder needs to handle
131  increasing genotyping costs. Assume that the population improvement component is
132 based on 64 crosses from 32 to 128 parents that give rise to 640 selection candidates.
133 With a fixed genotyping budget, we can implement one cycle of this scheme or
134 several cycles with proportionately reduced numbers, as shown in Table 1. Rapid
135  cycling is appealing in terms of genetic gain, but challenging in terms of maintaining
136  genetic diversity. We have evaluated how these two aspects are balanced with: 1)
137  truncation selection of a small numbers of parents (TwoPartTS), ii) truncation
138  selection of a large number of parents (TwoPartTS+), or iii) optimal cross selection
139  (TwoPartOCS). In the scenario with a small/large number of parents we selected a
140  minimal/maximal possible number of parents for a given number of cycles per year
141  (Min/Max in Table 1). These two-part programs were compared with one to six
142 recurrent selection cycles per year and under constrained or unconstrained costs. With
143 unconstrained costs, the number of crosses was 64 with 640 selection candidates per
144 cycle irrespective of the number of cycles. The scenarios with unconstrained costs are
145  likely unrealistic, but we have included them to demonstrate the potential genetic gain
146  with higher investment and to demonstrate the potential of optimal cross and

147  truncation selection under the different settings.

148  We repeated entire simulation 10 times and report average and confidence intervals.
149  For simulation of breeding programs and genomic selection we used the AlphaSimR

150 R package (Gaynor et al.) available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR.
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151  For optimal cross selection we used the AlphaMate Fortran program (Gorjanc and

152 Hickey 2018) available at www.alphagenes.roslin.ed.ac.uk/AlphaMate.

153  Genomic prediction

154  The training dataset for genomic prediction was initiated with genotype and
155  phenotype data collected in the last three years of the burn-in (3,120 lines). The
156  dataset was further enlarged every year with new trial phenotype and genotype data
157 (1,000 lines). We used the standard ridge regression model with heterogeneous error
158  wvariance to account for different levels of replication in trials collected at different

159  stages of a breeding program (Endelman 2011).

160  Optimal cross selection

161  Optimal cross selection delivers a crossing plan that maximises genetic gain in the
162  next generation under constraints. Constraints could be: loss of genetic diversity
163  (commonly measured with the rate of coancestry), number of parents, and
164  minimum/maximum number of crosses per parent. For example, in our simulation a
165  parent could contribute from 1 to 4 crosses and crosses had to be made between
166  individuals in male and female pools. We implemented optimal cross selection in the
167  program AlphaMate, which uses evolutionary optimisation algorithm (Storn and Price
168 1997). Inputs for the program are: i) a list of selection candidates with breeding values
169  (a) and gender pool information, ii) coancestry matrix (C), and iii) a specification file
170  with constraints. For breeding values we used genomic predictions. To construct the

171  coancestry matrix we estimated coancestry for each pair of individuals as the
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172 proportion of marker alleles that are identical by state; C = %(1 + %XXT), where

173 X =M — 1 and M is an n;Xn,, matrix of n,, marker genotypes (coded as 0, 1, or 2)
174  of n; individuals. Given the inputs and a proposed crossing plan by the evolutionary
175  algorithm the program calculates expected genetic gain as @ = x'a and group

176  coancestry (expected inbreeding of the next generation) as ¢ = xT Cx, where x =

177 %n, n is a vector of integer contributions (0, 1, 2, 3, or 4), and n. is the number of
Cc

178  crosses. The contributions (x) and their pairing (crossing plan) are unknown
179  parameters and optimised with the evolutionary algorithm. Following Kinghorn
180  (2011), we operationalize balance between genetic gain and coancestry via “penalty
181  degrees” between the maximal genetic gain solution and the targeted solution under
182  constraints. Specifically, the maximal genetic gain solution is obtained by setting
183  penalty to 0°, while the minimal loss of genetic diversity is obtained by setting

184  penalty to 90°. For each scenario we ran optimal cross selection with a range of

185  penalty degrees (1°, 5°, 10°, ..., 85°).
186  Comparison

187  Programs were compared in terms of genetic gain, genomic prediction accuracy,
188  genetic diversity, and efficiency of converting genetic diversity into genetic gain. To
189  enable comparison between conventional and two-part programs we report the
190  metrics on doubled-haploid lines, prior to headrow selection (Fig. 1). In the two-part
191  program there are two sets of doubled-haploid lines (Fig. 1), which we summarized
192 jointly. We also report the metrics on selection candidates of the population

193  improvement component in Supplementary material 2.
10
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194  We measured genetic gain as average true genetic values that were standardized to
195  mean zero and unit standard deviation in year 20. We measured accuracy of genomic

196  prediction by correlation between predicted and true genetic values.

197 We measured genetic diversity with genetic standard deviation, genic standard
198  deviation, number of times population ran out of genetic diversity as measured by
199  marker genotypes, and effective population size. We calculated genetic standard

200  deviation as standard deviation of standardized true genetic values. We calculated

201  genic standard deviation as g, = \/ 2 Z?jl pi(1 —py) a? (n, is the number of causal

202  loci and p; and a; are respectively allele frequency and allele substitution effect at the
203  i-th causal locus) and expressed it relative to the observed value in year 20. Genic
204  standard deviation enables comparison of different stages across different programs.
205  For example, doubled-haploid (inbred) lines in the product development component
206  have larger genetic variance than outbred plants in the population improvement
207  component, while their genic variances are comparable because they depend only on
208  population allele frequencies. We calculated effective population size from the rate of
209  coancestry, N, = 1/(2AC). Following the formula for change of genetic variance
210  over time as a function of the rate of coancestry, a,ft o= aﬁt(l — AC) (Wright 1949),
211 we estimated AC with log-link gamma regression of genic variance on year using
212 function glm() in R (R Development Core Team 2017). Log-link gamma regression
213  assumes that expected value at time t+1 is E(cZ|t + 1) = E(cZ|t)exp(B)

214  (McCullagh and Nelder 1989), which gives AC = 1 — exp(f). Since we used genic

11
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215  variance for the estimation of effective population size, the estimate refers to causal

216  loci and not whole genome or neutral loci.

217 We measured efficiency of converting genetic diversity into genetic gain by
218  regressing achieved genetic gain (yt = (,uat — Ua, 0) / O, 0) on lost genetic diversity
219 (2, =1-0,4,/04,,), i€, yr = a+bx, +e,, where b is efficiency. For example,
220  with the starting point of (y5q,%20) = (0,0) and a final point of (Y,q,X40) =
221  (10,0.4), a breeding program converted 0.4 standard deviation of genetic diversity
222 into genetic gain of 10 standard deviations, an efficiency factor of 25 = 10/0.4. In
223  some scenarios, particularly with truncation selection in the two-part program, we
224  noticed large changes in the “gain-diversity plane” in the first and last generations.
225  For this reason we estimated efficiency with robust regression using function rlm() in
226 R (Venables and Ripley 2002). In addition to using robust regression we have
227  removed repeated values of genetic gain and genetic diversity when a breeding

228  program reached selection limit.

12
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229  Results

230  Overall the results show that the two-part program with optimal cross selection
231  delivered the largest long-term genetic gain and that this gain increased with the
232 increasing number of recurrent selection cycles per year. This was achieved by
233 optimising efficiency of converting genetic diversity into genetic gain, which the two-
234  part program with truncation selection cannot achieve. The extra efficiency from the
235  optimisation was due to the reduced loss of genetic diversity and the reduced drop of
236  genomic prediction accuracy with the increasing number of recurrent selection cycles.
237  With four cycles per year optimal cross selection had 15-78% higher genetic gain and

238  2-4 times higher efficiency than truncation selection.

239  In the following we structure the results in four parts. First, we present the effect of
240  the number of cycles of recurrent selection on long-term genetic gain and efficiency
241  of the two-part programs. Second, we present the 20 year trajectory of breeding
242  programs through the plane of genetic mean and genic standard deviation. Third, we
243 present the change of genomic prediction accuracy over time. Fourth, we present the
244  relationship between realised effective population size and long-term genetic gain and
245  efficiency. The two-part program results in the second, third, and fourth sections of
246  the results are presented only for four cycles of recurrent selection per year. Unless
247  specified explicitly, the results for the two-part program with optimal cross selection

248  are given for penalty degrees that gave the highest long-term genetic gain.

13
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249  Effect of the number of cycles on long-term genetic gain

250  Optimal cross selection delivered the highest long-term genetic gains. The gain
251  increased with the increased number of cycles of recurrent selection irrespective of
252 cost constraints. This is shown in Fig. 2, which plots genetic mean after 20 years of
253  selection against the number of cycles of recurrent selection per year in the two-part
254  program. For comparison genetic gain of conventional programs are also shown. The
255  conventional program with phenotypic selection had the smallest genetic gain (5.7),
256  followed by the two conventional programs with genomic selection (8.2 and 10.5).
257  The two-part programs had generally larger genetic gains than conventional
258  programs, but they varied considerably and there were interactions between selection

259  method, number of cycles of recurrent selection per year, and cost constraints.

260  Under constrained costs optimal cross selection delivered the highest long-term
261  genetic gain, which increased with the increasing number of cycles; 11.5 with one
262 cycle, 14.5 with two cycles, 15.5. with four cycles, and 16.1 with six cycles. To
263  achieve increased genetic gain with the increasing number of cycles, penalty degrees
264  had to increase as well; on average 14° with one cycle, 24° with two cycles, 40° with
265  four cycles, and, 49° with six cycles. Genetic gain with truncation selection of a large
266  number of parents initially increased with increasing number of cycles (up to 14.1
267  with three cycles per year), but then decreased. With six cycles per year it reached a
268  level comparable to what it achieved with just one cycle per year, which was also a
269  comparable level of genetic gain to that achieved by the conventional program with

270  genomic selection in headrows. Genetic gain with truncation selection of a small

14
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271  number of parents increased from one to two cycles per year (from 11.5 to 12.8) and
272  decreased thereafter. With six cycles per year this method had almost as low genetic

273  gain as the conventional program with phenotypic selection.

274  Under unconstrained costs truncation selection of a large number of parents and
275 optimal cross selection delivered the largest long-term genetic gains and this
276  increased with increasing number of cycles; 11.5 with one cycle, 15.0 with two
277  cycles, 18.2. with four cycles, and 19.6 with six cycles. To achieve these genetic gains
278  penalty degrees had to increase, but less than under constrained costs. Truncation
279  selection of a small number of parents again increased genetic gain only when number
280  of cycles was increased from one to two and gradually decreased with additional

281  cycles, but at slower rate than under constrained costs.

282  Effect of the number of cycles on efficiency

283  Optimal cross selection had the highest efficiency of converting genetic diversity into
284  genetic gain amongst the two-part programs. This is shown in Fig. 3, which plots
285  efficiency against the number of recurrent selection cycles per year in the two-part
286  program. For comparison efficiency of conventional programs are also shown. These
287  had an efficiency of 66.1 for the conventional program with phenotypic selection,
288  46.8 for the conventional program with genomic selection in preliminary trials, and
289  31.5 for the conventional program with genomic selection in headrows. Efficiency of
290  the two-part programs interacted with the selection method, number of recurrent

291  selection cycles per year, and cost constraints.

15
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292 Under constrained costs optimal cross selection had the highest efficiency of two-part
293  programs; 48.2 with one cycle and around 40.0 with more than one cycle. Truncation
294  selection of a large number of parents had an efficiency of 39.0 with one cycle, which
295  decreased down to 9.9 with six cycles. Truncation selection of a small number of
296  parents had and efficiency of 26.6 with one cycle, which decreased to 10.0 already

297  with three cycles.

298  Under unconstrained costs optimal cross selection had the highest efficiency of the
299  two-part programs. It also maintained comparable level of efficiency to the
300  conventional program with genomic selection in preliminary trials irrespective of the
301  number of cycles. Efficiency of the truncation selection of a large and small number
302  of parents decreased with the increasing number of cycles, but less than with

303  constrained costs.

304  Gain-diversity trajectory

305  The two-part program with optimal cross selection delivered the largest genetic gain
306 of all breeding programs and conserved the most genetic diversity of the two-part
307  programs. This is shown in Fig. 4, which plots the 20 year trajectory of evaluated
308  breeding programs through the plane of genetic mean and genic standard deviation.
309  The two-part programs were ran with four cycles of recurrent selection. Separate
310 trends of genetic mean, genic standard deviation, and genetic standard deviation
311  against year are available in Supplementary material 3 (Fig S2.1, Fig S2.2, and Fig
312 S2.3). The slope of change in genetic mean on change in genic standard deviation

313 quantifies the efficiency of converting genetic diversity into genetic gain.

16
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314 The two-part program with optimal cross selection had the best balance between the
315  genetic gain achieved and genetic diversity lost irrespective of cost constraints. With
316  four cycles of recurrent selection per year it achieved a genetic gain of 15.5 for a loss
317  of 0.38 units of genic standard deviation (an efficiency factor of 41) under constrained
318  costs and a genetic gain of 18.2 for a loss of 0.37 units of genic standard deviation (an
319 efficiency factor of 49) under unconstrained costs. This efficiency was comparable to
320 efficiency of the conventional program with genomic selection in preliminary trials,
321  but with about two times larger genetic gain. The conventional program with
322 phenotypic selection had larger efficiency (66), but about 2.5 times lower genetic
323 gain. The two-part programs with truncation selection had a worse balance between
324  genetic gain achieved and genetic diversity lost in particular when a small number of

325  parents was used.

326  Accuracy of genomic prediction

327  Optimal cross selection maintained accuracy of genomic prediction better than
328  truncation selection. This is shown in Fig. 5, which plots accuracy of genomic
329  prediction in doubled-haploid lines (top) and population improvement component
330  (bottom) over 20 years. The two-part programs were ran with four cycles of recurrent
331  selection. The conventional programs with genomic selection had slowly increasing
332 accuracy over the years due to increasing genomic selection training set. The two-part
333  programs had nominally higher accuracy than conventional programs due to breeding
334  program structure, i.e., double-haploid lines originated from the population
335 improvement component and the product development component. This structure

336  caused a rapid initial increase in accuracies as the two-part programs started.
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337 However, soon after the initial increase, accuracies started to decrease under
338  constrained costs; in particular for the truncation selection of a small number of
339  parents, while optimal cross selection and truncation selection of a large number of
340  parents maintained accuracy. Under unconstrained costs, accuracies decreased only
341  with truncation selection of a small number of parents, while optimal cross selection
342  maintained nominally higher accuracy than truncation selection of a large number of

343 parents.

344  Accuracies were lower in the population improvement component due to absence of
345  breeding program structure. They were also more dynamic due to several cycles of
346  recurrent selection per year and only one retraining of genomic selection model per
347  year with newly added training data from the product development component.
348  Optimum cross selection maintained higher accuracy than truncation selection with

349  much less variability than truncation selection, in particular under constrained costs.

350 Relationship with effective population size

351  The realized effective population size of different breeding programs was non-linearly
352  related with genetic gain achieved in 20 years and linearly related with efficiency.
353  This is shown in Fig. 6, which plots both genetic mean after 20 years of selection and
354  efficiency against realized effective population size. The two-part programs were ran
355 with four cycles of recurrent selection. Genetic mean increased sharply with
356 increasing effective population size up to around 10 and decreased thereafter.
357 Efficiency increased linearly with effective population size over all breeding

358 programs as well as within programs. The conventional programs had on average
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359  affective population size of 60.5 with phenotypic selection, 27.8 with genomic
360  selection in preliminary trials, and 14.2 with genomic selection in headrows. The two-
361  part programs with truncation selection had small effective population sizes; 2.6 with
362  a small number of parents under constrained costs and 3.5 under unconstrained costs
363 and 3.6 with a large number of parents under constrained costs and 7.2 under
364  unconstrained costs. The two-part program with optimal cross selection had a large
365 range of effective population sizes as controlled by penalty degrees. Largest genetic
366  gain with optimal cross selection under constrained (unconstrained) costs was

367  achieved with 40° (25°), which resulted in effective population size of 10.8 (11.3).
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368 Discussion

369  The results show that the two-part program with optimal cross selection delivered the
370 largest long-term genetic gain by optimising efficiency of converting genetic diversity
371  into genetic gain. This highlights five topics for discussion, specifically: i) balancing
372  selection and maintenance of genetic diversity, i) maintenance of genomic prediction
373  accuracy, iii) effective population size and long-term genetic gain, iv) practical

374  implementation in self-pollinating crops, and v) open questions.

375  Balancing selection and maintenance of genetic diversity

376  This study is an extension of our previous study (Gaynor et al. 2017), where we
377 proposed a two-part breeding program for implementation of recurrent genomic
378  selection. The key component in the two-part program is population improvement,
379  which uses one or more cycles of recurrent genomic selection per year to rapidly
380 increase the population mean. This improved germplasm is in turn used as parents of
381  crosses in the product development component from which new lines are developed.
382  Our previous study (Gaynor et al. 2017) assumed two cycles of population
383  improvement per year, which delivered about 2.5 times more genetic gain than the
384  conventional program with phenotypic selection. The main driver of this genetic gain
385  is shortening of the breeding cycle with genomic selection, and there is scope for even
386  shorter breeding cycle time by more aggressive use of greenhouses and speed
387  breeding in the population improvement part (Christopher et al. 2015; Hickey et al.

388  2017b; Watson et al. 2017).
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389  In the present study we show that a more aggressive implementation of the two-part
390 program, achieved through even shorter breeding cycle times, must manage the
391  exploitation of genetic diversity. Preliminary analyses following the Gaynor et al.
392  (2017) study indicated that increasing the number of cycles above two delivered
393  larger genetic gain in short-term, but not in long-term. This is due to the requirement
394  to decrease the per generation population size to maintain equal operating cost, which
395 results in faster depletion of genetic diversity. A simple method to avoid fast
396  depletion of genetic diversity is to use a sufficiently large number of parents with
397  equalized contributions (Wright 1949). The present study assessed this simple method
398 by comparing truncation selection of a small and a large number of parents.
399  Increasing the number of parents delivered competitive genetic gain, but only up to

400 three recurrent selection cycles per year.

401  The two-part program with optimal cross selection can deliver higher long-term
402  genetic gain than with truncation selection by optimising the efficiency of turning
403  genetic diversity into genetic gain. While truncation selection of a large number of
404  parents was successful in delivering higher long-term genetic gain than truncation
405  selection of a small number of parents, it still rapidly reduced genetic diversity, which
406  limited long-term genetic gain. This was particularly evident under constrained costs,
407  but would also have eventually happened under unconstrained costs. Optimal cross
408  selection was able to overcome rapid loss of genetic diversity through penalizing the
409  selection of parents that were too related, which in turn enabled larger long-term

410  genetic gain. These two results combined show that optimal cross selection optimises
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411  the efficiency of converting genetic diversity into genetic gain than truncation

412  selection.

413 It was interesting to observe that the two-part program with optimal cross selection in
414  population improvement had comparable efficiency to the conventional program with
415  genomic selection in preliminary trials, yet it had about double the genetic gain. A
416  further interesting observation was that the conventional program with phenotypic
417  selection had the highest efficiency of turning genetic diversity into genetic gain. Both
418  of these observation are in line with the selection theory. Namely, long-term genetic
419  gain is a function of how well the within-family component of a breeding value, i.e.,
420  the Mendelian sampling term, is estimated (see Woolliams et al. 2015 and references
421  therein). The conventional program with phenotypic evaluation or genomic selection
422 in preliminary trials provide high accuracy of the Mendelian sampling term. However,
423  the high efficiency of these two conventional programs was not due to a large genetic
424  gain, but instead due to a small loss of genetic diversity for the genetic gain that was
425  achieved. The two-part program achieved higher genetic gain, because it had much
426  shorter breeding cycle than the conventional programs despite lower accuracy of the

427  Mendelian sampling term.

428  Optimal cross selection provides further advantages than just balancing selection and
429  maintenance of genetic diversity. Comparison of optimal cross selection against
430  truncation selection is in a sense extreme, because breeders do not perform truncation
431  selection blindly. In practice breeders balance selection of parents from several

432 crosses to maintain genetic diversity. However, the systematic, yet practical, approach
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433  of optimal cross selection formalizes breeding actions and indicates decisions that a

434  breeder might not consider.

435  Use of a tool like optimal cross selection is important in the two-part program,
436  because managing outbred germplasm in the population improvement component is
437  different to managing germplasm of inbred lines. In particular, differences between
438  the outbred genotypes are less pronounced and there is very limited amount of
439  phenotypic data, if any, that breeders would use for selection and crossing amongst
440  them. An example that shows the flexibility of the optimal cross selection is the
441  observed trend of cyclical deviations in genetic mean and genic standard deviation in
442  the population improvement component (Fig S2.1 and Fig S2.2). Those deviations
443  were due to using some parents from the product development component in an
444  optimised crossing plan for the population improvement component. Although these
445  parents had lower genetic merit than the best population improvement candidates,
446  they had sufficiently high merit and low coancestry with them. Optimal cross
447  selection automatically exploited this situation to balance selection and maintenance
448  of genetic diversity. The pattern of deviations is cyclical because we designed the
449  simulation such that product development lines were considered for use in the
450  population improvement component only once a year. There is however no reason for
451  this limitation, i.e., optimal cross selection can design crossing plans that utilize any

452  set of individuals at any time.

453  Balancing selection and maintenance of genetic diversity is challenging, but the
454  presented method provides an intuitive and practical approach. Since breeding

455  programs compete for market share they have to select intensively, sometimes also at
23
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456  the expense of genetic diversity. While breeders can boost genetic diversity by
457  integrating other germplasm, this can be challenging for various reasons including
458  cost. Therefore, methods to optimise efficiency of converting genetic diversity into
459  genetic gain are desired. The approach with penalty degrees used in this study, due to
460  Kinghorn (2011), is intuitive and practical. Namely, setting penalty degrees to 45°
461  weighs selection and maintenance of genetic diversity equally, while setting penalty
462  degrees to 0° ignores maintenance of genetic diversity, which is equivalent to
463  truncation selection. Clearly, breeding programs are interested in small penalty
464  degrees. However, as the results show this depends on the factors such as population
465  size. Under constrained costs the optimal degrees that maximised genetic gain over 20
466  years of selection were about 15° with one cycle of 640 selection candidates, about
467  25° with two cycles of 320 selection candidates per cycle, up to 45° with six cycles of

468 107 selection candidates per cycle.

469  Maintenance of genomic prediction accuracy

470  The efficacy of two-part program depends crucially on the level of genomic
471  prediction accuracy in the population improvement part. In this study the initial
472  training set for genomic selection consisted of 3,120 genotypes with associated yield
473  trial data collected in the product development component. This set was expanded
474  every year by adding 1,000 new genotypes with trial data, which in general ensured a
475  high level of genomic prediction accuracy both for the conventional and two-part
476  programs. However, this training set was not sufficient to maintain accuracy over the
477 20 years when truncation selection with a small number of parents was used, in

478  particular under constrained costs. The failure to maintain accuracy in that case can be
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479  attributed to the too rapidly increasing genetic distance (drift) between training and
480  prediction sets, which is a well-known property of genomic selection (Pszczola et al.

481  2012; Clark et al. 2012; Hickey et al. 2014; Scutari et al. 2016; Michel et al. 2016).

482  Proper management of genetic diversity constrained drift between product
483  development and population improvement components. Constraining drift in turn
484  reduced drop of genomic prediction accuracy in cycles of population improvement
485  that had not had genomic selection model retrained. This was partially achieved with
486  truncation selection of a larger numbers of parents, but optimal cross selection
487  reduced the drop of accuracy even further. Similarly, Eynard et al. (2017) also found
488  that optimal contribution selection provided a good balance between maintaining
489  genetic gain, genetic diversity, and accuracy in a breeding program with recurrent

490  genomic selection.

491  Effective population size and long-term genetic gain

492  In this study we compared different breeding programs over a 20 year period and
493  referred to these results as long-term. While 20 years is a long-term period from the
494  practical perspective of a breeder, it is not long-term from population/quantitative
495  genetics perspective. This is evident from observed strong non-linear relationship
496  between effective population size and genetic gain after 20 years. Namely, the theory
497  predicts a positive linear relationship between effective population size and long-term
498  response to selection for a polygenic trait (Robertson 1960), even in the presence of
499  epistasis (Paixdo and Barton 2016). Therefore, the observed highest genetic gain with

500 effective population size of about 10 suggests that the evaluated period is rather short-
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501  to medium-term. The efficiency had on the other hand a positive linear relationship
502  with effective population size, suggesting that this metric gives a better indication of
503  the true long-term genetic gain. In fact, efficiency measures genetic gain (in units of
504 initial genetic standard deviation) when all genetic diversity is depleted. The two-part
505 programs with optimal cross selection can be setup such that it delivers either the
506  highest genetic gain after 20 years of selection or the highest efficiency (true long-
507  term genetic gain), though the balance between selection and maintenance of genetic
508  diversity has to be different for the two objectives. Given that breeding programs
509 compete for market share, the hope is that tools like optimal cross selection help
510  breeders to balance intensive selection and maintenance of genetic diversity, while

511  mutation generates new genetic diversity to sustain long-term breeding.

512 Practical implementation in self-pollinating crops

513  This study assumed a breeding program that can perform several breeding cycles per
514  year. Following our previous work (Gaynor et al. 2017), we simulated breeding
515  program of a self-pollinating crop such as wheat. While speed breeding protocols are
516  continually improved (e.g., Christopher et al. 2015; Hickey et al. 2017b; Watson et al.
517  2017), the explored number of cycles per year (from one to six) should be put into a
518  context of a particular crop. For example, speed breeding has achieved six cycles per
519  year in spring wheat, but the number of cycles in winter wheat would be less due to
520  the requirement for vernalisation. Logistical barriers relating to genotyping may

521  further limit the number of achievable cycles per year.
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522 An additional assumption was that the population improvement component can be
523  easily implemented. Our previous study assumed the use of a hybridizing agent to
524 induce male sterility and open-pollination with pollen from untreated plants (Gaynor
525 et al. 2017). Optimal contribution selection without cross allocation (Meuwissen
526 1997) might be applied in such a system by using pollen from different individuals
527  that is proportional to their optimised contributions. Here we opted for a manual
528  crossing system based on either truncation selection or optimal cross selection of
529  parents to develop a method that can be used with both approaches. Whichever
530  approach we use, recurrent genomic selection is constrained by the amount of seed
531  per plant, because this imposes a limit on selection intensity. A way to bypass this
532 limit is to increase the amount of seed with selfing. In the context of genomic
533  selection this has been termed as the Cross-Self-Select method in comparison to the
534  Cross-Select method used on F; seed (Bernardo 2010). We have compared these two
535 methods (see Supplementary material 3) and observed that exposing more genetic
536  diversity with the Cross-Self-Select method enabled higher long-term genetic gain at
537  comparable costs and time than with the Cross-Select method, while the genetic
538  diversity trends were comparable. The difference in long-term genetic gain between
539  the two methods was about 10% for optimal cross selection and truncation selection
540  of a large number of parents and about 25% for truncation selection of a small number
541  of parents. This is expected, because genetic diversity was limiting with the latter
542  program and exposing more genetic diversity through selfing had a bigger effect. It is
543  up to a breeder to choose between exploiting a larger number of cycles with the
544  Cross-Select method or a larger variance with the Cross-Self-Select method. Costs

545  can be challenging when genotyping a large number of candidates with the Cross-
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546  Self-Select method, though this can be mitigated by imputation and/or genotyping-by-

547  sequencing (Hickey et al. 2015; Jacobson et al. 2015; Gorjanc et al. 2017a, b).

548  Open questions

549  While the presented two-part program with optimal cross selection delivered larger
550  long-term genetic gain and a more efficient breeding program, there is room for
551  further improvement. We initially expected larger difference in long-term genetic gain
552  between optimal cross selection and truncation selection. There are at least two
553  reasons for small difference between the two selection methods. First, the simulation
554  encompassed a whole breeding program with a sizeable initial genetic variance that
555 did not limit selection for the first few years, which means that maintenance of
556  genetic diversity was not important initially. Had we extended the simulation period,
557  the difference would have been larger, but even further removed from today. That
558  said, it is unknown where on the trajectory of exhausting genetic variance many
559  breeding programs actually are. Perhaps they are as we simulated or perhaps they are
560 less or further along the trajectory. Secondly, it is unclear how to optimally maintain
561  genetic diversity, specifically which genetic diversity should be preserved and which
562  discarded. In this study we operationally measured genetic diversity in the optimal
563  cross selection with the identity-by-state based coancestry, which measure genome-
564  wide diversity, but are agnostic to traits under selection. Perhaps coancestry should
565 include information about which alleles are more desired so that focus is on avoiding

566 the loss of these alleles and not any alleles. This is a subject of our future research.
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567 Conclusions

568  We evaluated the use of optimal cross selection to balance selection and maintenance
569  of genetic diversity in a two-part plant breeding program with rapid recurrent
570  genomic selection. The optimal cross selection delivered higher long-term genetic
571  gain than truncation selection. It achieved this by optimising efficiency of converting
572  genetic diversity into genetic gain through reducing the loss of genetic diversity and
573  reducing the drop of genomic prediction accuracy with rapid cycling. With four
574  cycles per year optimal cross selection had 15-78% higher genetic gain and 2-4 times
575  higher efficiency than truncation selection. Our results suggest that breeders should
576  consider the use of optimal cross selection to assist in optimally managing the

577  maintenance and exploitation of their germplasm.
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Table 1: Per cycle characteristics of the population improvement component by
number of recurrent selection cycles per year (number or crosses per cycle,
number of selection candidates per cycle, and minimum or maximum number of

parents used per cycle) 3

Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the
product development component that implicitly also performs population
improvement, while the two-part strategy includes an explicit population
improvement component with recurrent selection; the dashed line indicates
initialization of the population improvement component; N; and N correspond to

the number of lines in Table 1) 4

Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against
the number of recurrent selection cycles per year in the two-part program by
selection method and cost constraints (mean and 95% confidence interval).
Conventional programs did not use recurrent selection, but are shown for
comparison. Labels denote average penalty degree of optimum cross selection

that delivered the highest long-term gain 5
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Fig. 3: Efficiency against the number of recurrent selection cycles per year in the
two-part program by selection method and cost constraints (mean and 95%
confidence interval). Conventional programs did not use recurrent selection, but
are shown for comparison. Labels denote average penalty degree of optimum

cross selection that delivered the highest long-term gain 6

Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid
lines over 20 years of selection by breeding program and cost constraints.
Individual replicates are shown by thin lines and a mean regression with a time-
trend arrow. The two-part programs used four recurrent selection cycles per year

7

Fig. 6: Genetic mean after 20 years of selection and efficiency against realized
effective population size by breeding program and cost constraints. The two-part
programs used four recurrent selection cycles per year. Results for the optimal

cross selection are shown for all evaluated penalty degrees (1°, 5°,10°, ..., 85°). 9
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40  Table 1: Per cycle characteristics of the population improvement component by number
41  of recurrent selection cycles per year (number or crosses per cycle, number of selection

42  candidates per cycle, and minimum or maximum number of parents used per cycle)

#Parents
#Cycles #Crosses #Candidates Min Max
1 64 640 32 128
2 32 320 16 64
3 22 214 12 44
4 16 160 8 32
5 13 128 8 26
6 11 107 6 22
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44

45  Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the product
46  development component that implicitly also performs population improvement, while
47  the two-part strategy includes an explicit population improvement component with
48  recurrent selection; the dashed line indicates initialization of the population

49  improvement component; N1 and N2 correspond to the number of lines in Table 1)
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52 Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against the
53  number of recurrent selection cycles per year in the two-part program by selection
54 method and cost constraints (mean and 95% confidence interval). Conventional
55  programs did not use recurrent selection, but are shown for comparison. Labels denote
56  average penalty degree of optimum cross selection that delivered the highest long-term

57 gain
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60 Fig. 3: Efficiency against the number of recurrent selection cycles per year in the two-
61  part program by selection method and cost constraints (mean and 95% confidence
62 interval). Conventional programs did not use recurrent selection, but are shown for
63  comparison. Labels denote average penalty degree of optimum cross selection that
64  delivered the highest long-term gain
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Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid lines
over 20 years of selection by breeding program and cost constraints. Individual
replicates are shown by thin lines and a mean regression with a time-trend arrow. The
two-part programs used four recurrent selection cycles per year
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74 Fig. 5: Accuracy of genomic prediction in doubled-haploid lines (top) and population
75  improvement component (bottom) over 20 years of selection by breeding program
76  and cost constraints (mean and 95% confidence interval). The two-part programs used

77  four recurrent selection cycles per year
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Fig. 6: Genetic mean after 20 years of selection and efficiency against realized effective
population size by breeding program and cost constraints. The two-part programs used
four recurrent selection cycles per year. Results for the optimal cross selection are

shown for all evaluated penalty degrees (1°, 5°, 10°, ..., 85°).
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