

Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection

3 Gregor Gorjanc*, R. Chris Gaynor, John M. Hickey

4 G. Gorjanc, R.C. Gaynor, and J.M. Hickey The Roslin Institute and Royal (Dick)

5 School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre,

6 Midlothian EH25 9RG, UK

7 *Corresponding author (gregor.gorjanc@roslin.ed.ac.uk)

8 Key message

9 Optimal cross selection increases long-term genetic gain of two-part programs with
10 rapid recurrent genomic selection. It achieves this by optimising efficiency of
11 converting genetic diversity into genetic gain through reducing the loss of genetic
12 diversity and reducing the drop of genomic prediction accuracy with rapid cycling.

13

14 Abstract

15 This study evaluates optimal cross selection for balancing selection and maintenance
16 of genetic diversity in two-part plant breeding programs with rapid recurrent genomic
17 selection. The two-part program reorganizes a conventional breeding program into
18 population improvement component with recurrent genomic selection to increase the
19 mean of germplasm and product development component with standard methods to
20 develop new lines. Rapid recurrent genomic selection has a large potential, but is
21 challenging due to genotyping costs or genetic drift. Here we simulate a wheat
22 breeding program for 20 years and compare optimal cross selection against truncation
23 selection in the population improvement with one to six cycles per year. With
24 truncation selection we crossed a small or a large number of parents. With optimal
25 cross selection we jointly optimised selection, maintenance of genetic diversity, and
26 cross allocation with AlphaMate program. The results show that the two-part program
27 with optimal cross selection delivered the largest genetic gain that increased with the
28 increasing number of cycles. With four cycles per year optimal cross selection had
29 78% (15%) higher long-term genetic gain than truncation selection with a small
30 (large) number of parents. Higher genetic gain was achieved through higher
31 efficiency of converting genetic diversity into genetic gain; optimal cross selection
32 quadrupled (doubled) efficiency of truncation selection with a small (large) number of
33 parents. Optimal cross selection also reduced the drop of genomic selection accuracy
34 due to the drift between training and prediction populations. In conclusion, optimal
35 cross-selection enables optimal management and exploitation of population
36 improvement germplasm in two-part programs.

37 **Introduction**

38 In this study we evaluate balancing selection and maintenance of genetic diversity
39 with optimal cross selection in two-part plant breeding programs with rapid recurrent
40 genomic selection. Plant breeding programs that produce inbred lines have two
41 concurrent goals: (i) identifying new varieties or hybrid parents and (ii) identifying
42 parents for subsequent breeding cycles. We recently proposed a two-part program that
43 uses genomic selection to separately address these goals (Gaynor et al. 2017; Hickey
44 et al. 2017a). The two-part program reorganizes conventional program into two
45 distinct components: a product development component that develops and screens
46 inbred lines with established breeding methods; and a population improvement
47 component that increases the population mean with rapid cycles of recurrent genomic
48 selection. Simulations showed that the two-part program has a potential to deliver
49 about 2.5 times larger genetic gain compared to a conventional program for the same
50 investment (Gaynor et al. 2017).

51 The larger genetic gain from the two-part program is primarily driven by rapid
52 recurrent genomic selection in the population improvement component. In a
53 conventional program a cycle of “recurrent” selection may take four to five years to
54 complete. The two-part program enables rapid recurrent selection with several cycles
55 per year, because population improvement and product development components
56 operate independently of each other. For example, Gaynor et al. (2017) simulated two
57 cycles of population improvement per year, which reduced cycle time eight-fold
58 compared to the conventional program. Cycle time can be decreased even further with

59 intensive use of greenhouses and speed breeding (Christopher et al. 2015; Hickey et
60 al. 2017b; Watson et al. 2017). Factoring this potential into the breeder's equation
61 suggests that the large genetic gain in Gaynor et al. (2017) could be increased even
62 more with more than two cycles per year.

63 To ensure large genetic gain a population improvement manager must simultaneously
64 consider several factors. Most notably, number of cycles, size of the population,
65 number of parents, genomic prediction accuracy, maintenance of genetic diversity,
66 and costs. Performing more cycles can increase genetic gain per year, but it also
67 increases costs incurred by genotyping many selection candidates and other operating
68 costs. To control costs the manager is likely to reduce population size with increasing
69 number of cycles. In an unpublished analysis (reproduced in this study), we observed
70 that increasing the number of cycles, above two used in Gaynor et al. (2017),
71 expectedly increased genetic gain in first years, but eventually led to a lower long-
72 term genetic gain than with two cycles. Inspection of the results indicated that genetic
73 diversity was depleted faster with increased number of cycles.

74 We hypothesise that balancing selection and maintenance of genetic diversity is
75 needed for large long-term genetic gain from the two-part program with rapid
76 recurrent genomic selection. To test this end we simulated a two-part program that
77 uses truncation selection or optimal cross selection to manage population
78 improvement germplasm. The optimal cross selection is a combination of optimal
79 contribution selection and cross allocation. The optimal contribution selection
80 optimizes contributions of selection candidates to the next generation such that
81 expected benefit and risks are balanced (Woolliams et al. 2015). A common way to

82 achieve this balance is to maximise genetic gain at a predefined rate of population
83 inbreeding (coancestry) through penalizing selection of individuals that are too
84 closely related (Wray and Goddard 1994; Meuwissen 1997). This penalization
85 controls the rate at which genetic diversity is lost due to drift and selection. Well
86 managed breeding programs balance this loss by maintaining sufficiently large
87 effective population size so that standing genetic diversity and newly generated
88 genetic diversity due to mutation (and possibly migration) sustain long-term genetic
89 gains (Hill 2016). The optimal contribution selection assumes that contributions will
90 be randomly paired, including selfing. An extension that delivers a practical crossing
91 plan is to jointly optimise contributions and cross allocations (Kinghorn et al. 2009;
92 Kinghorn 2011). These methods are established in animal breeding (for a review see
93 Woolliams et al. (2015)) and are increasingly common in plant breeding (Cowling et
94 al. 2016; Akdemir and Sánchez 2016; De Beukelaer et al. 2017; Lin et al. 2017).

95 The aim of this study was to evaluate the potential of optimal cross selection to
96 balance selection and maintenance of genetic diversity in a two-part program with
97 rapid recurrent genomic selection. We evaluated the potential with a long-term
98 simulation of conventional and two-part breeding programs. The two-part programs
99 used different number of cycles, different selection methods, and different resources
100 for genomic selection. The results show that optimal cross selection delivered the
101 largest long-term genetic gain under all scenarios. This was achieved by optimising
102 the efficiency of converting genetic diversity into genetic gain with the increasing
103 number of recurrent selection cycles. With four cycles per year optimal cross

104 selection had 15-78% higher genetic gain and 2-4 times higher efficiency than
105 truncation selection.

106 **Materials and methods**

107 **Breeding programs**

108 We used simulations of entire breeding programs to compare different selection
109 methods under different scenarios. Detailed description of simulated breeding
110 programs and scenarios is available in Supplementary Material 1. In summary, we
111 have initiated a virtual wheat breeding program for a polygenic trait and ran it for
112 20 years (burn-in) with a conventional program based on phenotypic selection. After
113 the burn-in we evaluated different programs under equalized costs for another 20
114 years. The evaluated programs were: i) conventional program with phenotypic
115 selection (Conv), ii) conventional program with genomic selection at the preliminary
116 trial stage (ConvP), iii) conventional program with genomic selection at the headrow
117 stage (ConvH), and iv) two-part program with recurrent genomic selection (TwoPart).
118 While the conventional program performs population improvement and product
119 development concurrently, the two-part program splits these two activities into two
120 separate, but connected, components (Fig. 1). The population improvement
121 component is based on rapid recurrent genomic selection to increase population mean,
122 while product development component is based on standard breeding methods
123 (including field trials) to develop inbred lines. A by-product of field trials is a training
124 set of genotyped and phenotyped individuals, which is used to retrain a genomic
125 selection model. Because the two-part program uses rapid cycling, we use doubled-
126 haploid lines to speed up the conventional program and the product development
127 component.

128 A challenge with the two-part program is balancing selection and maintenance of
129 genetic diversity in the population improvement. This is particularly challenging with
130 several cycles or recurrent genomic selection, because the breeder needs to handle
131 increasing genotyping costs. Assume that the population improvement component is
132 based on 64 crosses from 32 to 128 parents that give rise to 640 selection candidates.
133 With a fixed genotyping budget, we can implement one cycle of this scheme or
134 several cycles with proportionately reduced numbers, as shown in Table 1. Rapid
135 cycling is appealing in terms of genetic gain, but challenging in terms of maintaining
136 genetic diversity. We have evaluated how these two aspects are balanced with: i)
137 truncation selection of a small numbers of parents (TwoPartTS), ii) truncation
138 selection of a large number of parents (TwoPartTS+), or iii) optimal cross selection
139 (TwoPartOCS). In the scenario with a small/large number of parents we selected a
140 minimal/maximal possible number of parents for a given number of cycles per year
141 (Min/Max in Table 1). These two-part programs were compared with one to six
142 recurrent selection cycles per year and under constrained or unconstrained costs. With
143 unconstrained costs, the number of crosses was 64 with 640 selection candidates per
144 cycle irrespective of the number of cycles. The scenarios with unconstrained costs are
145 likely unrealistic, but we have included them to demonstrate the potential genetic gain
146 with higher investment and to demonstrate the potential of optimal cross and
147 truncation selection under the different settings.

148 We repeated entire simulation 10 times and report average and confidence intervals.
149 For simulation of breeding programs and genomic selection we used the AlphaSimR
150 R package (Gaynor et al.) available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR.

151 For optimal cross selection we used the AlphaMate Fortran program (Gorjanc and
152 Hickey 2018) available at www.alphagenes.roslin.ed.ac.uk/AlphaMate.

153 **Genomic prediction**

154 The training dataset for genomic prediction was initiated with genotype and
155 phenotype data collected in the last three years of the burn-in (3,120 lines). The
156 dataset was further enlarged every year with new trial phenotype and genotype data
157 (1,000 lines). We used the standard ridge regression model with heterogeneous error
158 variance to account for different levels of replication in trials collected at different
159 stages of a breeding program (Endelman 2011).

160 **Optimal cross selection**

161 Optimal cross selection delivers a crossing plan that maximises genetic gain in the
162 next generation under constraints. Constraints could be: loss of genetic diversity
163 (commonly measured with the rate of coancestry), number of parents, and
164 minimum/maximum number of crosses per parent. For example, in our simulation a
165 parent could contribute from 1 to 4 crosses and crosses had to be made between
166 individuals in male and female pools. We implemented optimal cross selection in the
167 program AlphaMate, which uses evolutionary optimisation algorithm (Storn and Price
168 1997). Inputs for the program are: i) a list of selection candidates with breeding values
169 (a) and gender pool information, ii) coancestry matrix (C), and iii) a specification file
170 with constraints. For breeding values we used genomic predictions. To construct the
171 coancestry matrix we estimated coancestry for each pair of individuals as the

172 proportion of marker alleles that are identical by state; $\mathbf{C} = \frac{1}{2} \left(1 + \frac{1}{n_m} \mathbf{X} \mathbf{X}^T \right)$, where
173 $\mathbf{X} = \mathbf{M} - 1$ and \mathbf{M} is an $n_i \times n_m$ matrix of n_m marker genotypes (coded as 0, 1, or 2)
174 of n_i individuals. Given the inputs and a proposed crossing plan by the evolutionary
175 algorithm the program calculates expected genetic gain as $\bar{a} = \mathbf{x}^T \mathbf{a}$ and group
176 coancestry (expected inbreeding of the next generation) as $\bar{c} = \mathbf{x}^T \mathbf{C} \mathbf{x}$, where $\mathbf{x} =$
177 $\frac{1}{2n_c} \mathbf{n}$, \mathbf{n} is a vector of integer contributions (0, 1, 2, 3, or 4), and n_c is the number of
178 crosses. The contributions (\mathbf{x}) and their pairing (crossing plan) are unknown
179 parameters and optimised with the evolutionary algorithm. Following Kinghorn
180 (2011), we operationalize balance between genetic gain and coancestry via “penalty
181 degrees” between the maximal genetic gain solution and the targeted solution under
182 constraints. Specifically, the maximal genetic gain solution is obtained by setting
183 penalty to 0° , while the minimal loss of genetic diversity is obtained by setting
184 penalty to 90° . For each scenario we ran optimal cross selection with a range of
185 penalty degrees ($1^\circ, 5^\circ, 10^\circ, \dots, 85^\circ$).

186 **Comparison**

187 Programs were compared in terms of genetic gain, genomic prediction accuracy,
188 genetic diversity, and efficiency of converting genetic diversity into genetic gain. To
189 enable comparison between conventional and two-part programs we report the
190 metrics on doubled-haploid lines, prior to headrow selection (Fig. 1). In the two-part
191 program there are two sets of doubled-haploid lines (Fig. 1), which we summarized
192 jointly. We also report the metrics on selection candidates of the population
193 improvement component in Supplementary material 2.

194 We measured genetic gain as average true genetic values that were standardized to
195 mean zero and unit standard deviation in year 20. We measured accuracy of genomic
196 prediction by correlation between predicted and true genetic values.

197 We measured genetic diversity with genetic standard deviation, genic standard
198 deviation, number of times population ran out of genetic diversity as measured by
199 marker genotypes, and effective population size. We calculated genetic standard
200 deviation as standard deviation of standardized true genetic values. We calculated
201 genic standard deviation as $\sigma_\alpha = \sqrt{2 \sum_{i=1}^{n_q} p_i(1 - p_i) \alpha_i^2}$ (n_q is the number of causal
202 loci and p_i and α_i are respectively allele frequency and allele substitution effect at the
203 i -th causal locus) and expressed it relative to the observed value in year 20. Genic
204 standard deviation enables comparison of different stages across different programs.
205 For example, doubled-haploid (inbred) lines in the product development component
206 have larger genetic variance than outbred plants in the population improvement
207 component, while their genic variances are comparable because they depend only on
208 population allele frequencies. We calculated effective population size from the rate of
209 coancestry, $N_e = 1/(2\Delta C)$. Following the formula for change of genetic variance
210 over time as a function of the rate of coancestry, $\sigma_{\alpha_{t+1}}^2 = \sigma_{\alpha_t}^2(1 - \Delta C)$ (Wright 1949),
211 we estimated ΔC with log-link gamma regression of genic variance on year using
212 function `glm()` in R (R Development Core Team 2017). Log-link gamma regression
213 assumes that expected value at time $t+1$ is $E(\sigma_\alpha^2|t+1) = E(\sigma_\alpha^2|t)\exp(\beta)$
214 (McCullagh and Nelder 1989), which gives $\Delta C = 1 - \exp(\beta)$. Since we used genic

215 variance for the estimation of effective population size, the estimate refers to causal
216 loci and not whole genome or neutral loci.

217 We measured efficiency of converting genetic diversity into genetic gain by
218 regressing achieved genetic gain ($y_t = (\mu_{a_t} - \mu_{a_{20}})/\sigma_{a_{20}}$) on lost genetic diversity
219 ($x_t = 1 - \sigma_{a_t}/\sigma_{a_{20}}$), i.e., $y_t = a + bx_t + e_t$, where b is efficiency. For example,
220 with the starting point of $(y_{20}, x_{20}) = (0,0)$ and a final point of $(y_{40}, x_{40}) =$
221 $(10,0.4)$, a breeding program converted 0.4 standard deviation of genetic diversity
222 into genetic gain of 10 standard deviations, an efficiency factor of $25 = 10/0.4$. In
223 some scenarios, particularly with truncation selection in the two-part program, we
224 noticed large changes in the “gain-diversity plane” in the first and last generations.
225 For this reason we estimated efficiency with robust regression using function rlm() in
226 R (Venables and Ripley 2002). In addition to using robust regression we have
227 removed repeated values of genetic gain and genetic diversity when a breeding
228 program reached selection limit.

229 **Results**

230 Overall the results show that the two-part program with optimal cross selection
231 delivered the largest long-term genetic gain and that this gain increased with the
232 increasing number of recurrent selection cycles per year. This was achieved by
233 optimising efficiency of converting genetic diversity into genetic gain, which the two-
234 part program with truncation selection cannot achieve. The extra efficiency from the
235 optimisation was due to the reduced loss of genetic diversity and the reduced drop of
236 genomic prediction accuracy with the increasing number of recurrent selection cycles.
237 With four cycles per year optimal cross selection had 15-78% higher genetic gain and
238 2-4 times higher efficiency than truncation selection.

239 In the following we structure the results in four parts. First, we present the effect of
240 the number of cycles of recurrent selection on long-term genetic gain and efficiency
241 of the two-part programs. Second, we present the 20 year trajectory of breeding
242 programs through the plane of genetic mean and genic standard deviation. Third, we
243 present the change of genomic prediction accuracy over time. Fourth, we present the
244 relationship between realised effective population size and long-term genetic gain and
245 efficiency. The two-part program results in the second, third, and fourth sections of
246 the results are presented only for four cycles of recurrent selection per year. Unless
247 specified explicitly, the results for the two-part program with optimal cross selection
248 are given for penalty degrees that gave the highest long-term genetic gain.

249 **Effect of the number of cycles on long-term genetic gain**

250 Optimal cross selection delivered the highest long-term genetic gains. The gain
251 increased with the increased number of cycles of recurrent selection irrespective of
252 cost constraints. This is shown in Fig. 2, which plots genetic mean after 20 years of
253 selection against the number of cycles of recurrent selection per year in the two-part
254 program. For comparison genetic gain of conventional programs are also shown. The
255 conventional program with phenotypic selection had the smallest genetic gain (5.7),
256 followed by the two conventional programs with genomic selection (8.2 and 10.5).
257 The two-part programs had generally larger genetic gains than conventional
258 programs, but they varied considerably and there were interactions between selection
259 method, number of cycles of recurrent selection per year, and cost constraints.

260 Under constrained costs optimal cross selection delivered the highest long-term
261 genetic gain, which increased with the increasing number of cycles; 11.5 with one
262 cycle, 14.5 with two cycles, 15.5. with four cycles, and 16.1 with six cycles. To
263 achieve increased genetic gain with the increasing number of cycles, penalty degrees
264 had to increase as well; on average 14° with one cycle, 24° with two cycles, 40° with
265 four cycles, and, 49° with six cycles. Genetic gain with truncation selection of a large
266 number of parents initially increased with increasing number of cycles (up to 14.1
267 with three cycles per year), but then decreased. With six cycles per year it reached a
268 level comparable to what it achieved with just one cycle per year, which was also a
269 comparable level of genetic gain to that achieved by the conventional program with
270 genomic selection in headrows. Genetic gain with truncation selection of a small

271 number of parents increased from one to two cycles per year (from 11.5 to 12.8) and
272 decreased thereafter. With six cycles per year this method had almost as low genetic
273 gain as the conventional program with phenotypic selection.

274 Under unconstrained costs truncation selection of a large number of parents and
275 optimal cross selection delivered the largest long-term genetic gains and this
276 increased with increasing number of cycles; 11.5 with one cycle, 15.0 with two
277 cycles, 18.2. with four cycles, and 19.6 with six cycles. To achieve these genetic gains
278 penalty degrees had to increase, but less than under constrained costs. Truncation
279 selection of a small number of parents again increased genetic gain only when number
280 of cycles was increased from one to two and gradually decreased with additional
281 cycles, but at slower rate than under constrained costs.

282 **Effect of the number of cycles on efficiency**

283 Optimal cross selection had the highest efficiency of converting genetic diversity into
284 genetic gain amongst the two-part programs. This is shown in Fig. 3, which plots
285 efficiency against the number of recurrent selection cycles per year in the two-part
286 program. For comparison efficiency of conventional programs are also shown. These
287 had an efficiency of 66.1 for the conventional program with phenotypic selection,
288 46.8 for the conventional program with genomic selection in preliminary trials, and
289 31.5 for the conventional program with genomic selection in headrows. Efficiency of
290 the two-part programs interacted with the selection method, number of recurrent
291 selection cycles per year, and cost constraints.

292 Under constrained costs optimal cross selection had the highest efficiency of two-part
293 programs; 48.2 with one cycle and around 40.0 with more than one cycle. Truncation
294 selection of a large number of parents had an efficiency of 39.0 with one cycle, which
295 decreased down to 9.9 with six cycles. Truncation selection of a small number of
296 parents had an efficiency of 26.6 with one cycle, which decreased to 10.0 already
297 with three cycles.

298 Under unconstrained costs optimal cross selection had the highest efficiency of the
299 two-part programs. It also maintained comparable level of efficiency to the
300 conventional program with genomic selection in preliminary trials irrespective of the
301 number of cycles. Efficiency of the truncation selection of a large and small number
302 of parents decreased with the increasing number of cycles, but less than with
303 constrained costs.

304 **Gain-diversity trajectory**

305 The two-part program with optimal cross selection delivered the largest genetic gain
306 of all breeding programs and conserved the most genetic diversity of the two-part
307 programs. This is shown in Fig. 4, which plots the 20 year trajectory of evaluated
308 breeding programs through the plane of genetic mean and genic standard deviation.
309 The two-part programs were ran with four cycles of recurrent selection. Separate
310 trends of genetic mean, genic standard deviation, and genetic standard deviation
311 against year are available in Supplementary material 3 (Fig S2.1, Fig S2.2, and Fig
312 S2.3). The slope of change in genetic mean on change in genic standard deviation
313 quantifies the efficiency of converting genetic diversity into genetic gain.

314 The two-part program with optimal cross selection had the best balance between the
315 genetic gain achieved and genetic diversity lost irrespective of cost constraints. With
316 four cycles of recurrent selection per year it achieved a genetic gain of 15.5 for a loss
317 of 0.38 units of genic standard deviation (an efficiency factor of 41) under constrained
318 costs and a genetic gain of 18.2 for a loss of 0.37 units of genic standard deviation (an
319 efficiency factor of 49) under unconstrained costs. This efficiency was comparable to
320 efficiency of the conventional program with genomic selection in preliminary trials,
321 but with about two times larger genetic gain. The conventional program with
322 phenotypic selection had larger efficiency (66), but about 2.5 times lower genetic
323 gain. The two-part programs with truncation selection had a worse balance between
324 genetic gain achieved and genetic diversity lost in particular when a small number of
325 parents was used.

326 **Accuracy of genomic prediction**

327 Optimal cross selection maintained accuracy of genomic prediction better than
328 truncation selection. This is shown in Fig. 5, which plots accuracy of genomic
329 prediction in doubled-haploid lines (top) and population improvement component
330 (bottom) over 20 years. The two-part programs were ran with four cycles of recurrent
331 selection. The conventional programs with genomic selection had slowly increasing
332 accuracy over the years due to increasing genomic selection training set. The two-part
333 programs had nominally higher accuracy than conventional programs due to breeding
334 program structure, i.e., double-haploid lines originated from the population
335 improvement component and the product development component. This structure
336 caused a rapid initial increase in accuracies as the two-part programs started.

337 However, soon after the initial increase, accuracies started to decrease under
338 constrained costs; in particular for the truncation selection of a small number of
339 parents, while optimal cross selection and truncation selection of a large number of
340 parents maintained accuracy. Under unconstrained costs, accuracies decreased only
341 with truncation selection of a small number of parents, while optimal cross selection
342 maintained nominally higher accuracy than truncation selection of a large number of
343 parents.

344 Accuracies were lower in the population improvement component due to absence of
345 breeding program structure. They were also more dynamic due to several cycles of
346 recurrent selection per year and only one retraining of genomic selection model per
347 year with newly added training data from the product development component.
348 Optimum cross selection maintained higher accuracy than truncation selection with
349 much less variability than truncation selection, in particular under constrained costs.

350 **Relationship with effective population size**

351 The realized effective population size of different breeding programs was non-linearly
352 related with genetic gain achieved in 20 years and linearly related with efficiency.
353 This is shown in Fig. 6, which plots both genetic mean after 20 years of selection and
354 efficiency against realized effective population size. The two-part programs were ran
355 with four cycles of recurrent selection. Genetic mean increased sharply with
356 increasing effective population size up to around 10 and decreased thereafter.
357 Efficiency increased linearly with effective population size over all breeding
358 programs as well as within programs. The conventional programs had on average

359 affective population size of 60.5 with phenotypic selection, 27.8 with genomic
360 selection in preliminary trials, and 14.2 with genomic selection in headrows. The two-
361 part programs with truncation selection had small effective population sizes; 2.6 with
362 a small number of parents under constrained costs and 3.5 under unconstrained costs
363 and 3.6 with a large number of parents under constrained costs and 7.2 under
364 unconstrained costs. The two-part program with optimal cross selection had a large
365 range of effective population sizes as controlled by penalty degrees. Largest genetic
366 gain with optimal cross selection under constrained (unconstrained) costs was
367 achieved with 40° (25°), which resulted in effective population size of 10.8 (11.3).

368 **Discussion**

369 The results show that the two-part program with optimal cross selection delivered the
370 largest long-term genetic gain by optimising efficiency of converting genetic diversity
371 into genetic gain. This highlights five topics for discussion, specifically: i) balancing
372 selection and maintenance of genetic diversity, ii) maintenance of genomic prediction
373 accuracy, iii) effective population size and long-term genetic gain, iv) practical
374 implementation in self-pollinating crops, and v) open questions.

375 **Balancing selection and maintenance of genetic diversity**

376 This study is an extension of our previous study (Gaynor et al. 2017), where we
377 proposed a two-part breeding program for implementation of recurrent genomic
378 selection. The key component in the two-part program is population improvement,
379 which uses one or more cycles of recurrent genomic selection per year to rapidly
380 increase the population mean. This improved germplasm is in turn used as parents of
381 crosses in the product development component from which new lines are developed.
382 Our previous study (Gaynor et al. 2017) assumed two cycles of population
383 improvement per year, which delivered about 2.5 times more genetic gain than the
384 conventional program with phenotypic selection. The main driver of this genetic gain
385 is shortening of the breeding cycle with genomic selection, and there is scope for even
386 shorter breeding cycle time by more aggressive use of greenhouses and speed
387 breeding in the population improvement part (Christopher et al. 2015; Hickey et al.
388 2017b; Watson et al. 2017).

389 In the present study we show that a more aggressive implementation of the two-part
390 program, achieved through even shorter breeding cycle times, must manage the
391 exploitation of genetic diversity. Preliminary analyses following the Gaynor et al.
392 (2017) study indicated that increasing the number of cycles above two delivered
393 larger genetic gain in short-term, but not in long-term. This is due to the requirement
394 to decrease the per generation population size to maintain equal operating cost, which
395 results in faster depletion of genetic diversity. A simple method to avoid fast
396 depletion of genetic diversity is to use a sufficiently large number of parents with
397 equalized contributions (Wright 1949). The present study assessed this simple method
398 by comparing truncation selection of a small and a large number of parents.
399 Increasing the number of parents delivered competitive genetic gain, but only up to
400 three recurrent selection cycles per year.

401 The two-part program with optimal cross selection can deliver higher long-term
402 genetic gain than with truncation selection by optimising the efficiency of turning
403 genetic diversity into genetic gain. While truncation selection of a large number of
404 parents was successful in delivering higher long-term genetic gain than truncation
405 selection of a small number of parents, it still rapidly reduced genetic diversity, which
406 limited long-term genetic gain. This was particularly evident under constrained costs,
407 but would also have eventually happened under unconstrained costs. Optimal cross
408 selection was able to overcome rapid loss of genetic diversity through penalizing the
409 selection of parents that were too related, which in turn enabled larger long-term
410 genetic gain. These two results combined show that optimal cross selection optimises

411 the efficiency of converting genetic diversity into genetic gain than truncation
412 selection.

413 It was interesting to observe that the two-part program with optimal cross selection in
414 population improvement had comparable efficiency to the conventional program with
415 genomic selection in preliminary trials, yet it had about double the genetic gain. A
416 further interesting observation was that the conventional program with phenotypic
417 selection had the highest efficiency of turning genetic diversity into genetic gain. Both
418 of these observation are in line with the selection theory. Namely, long-term genetic
419 gain is a function of how well the within-family component of a breeding value, i.e.,
420 the Mendelian sampling term, is estimated (see Woolliams et al. 2015 and references
421 therein). The conventional program with phenotypic evaluation or genomic selection
422 in preliminary trials provide high accuracy of the Mendelian sampling term. However,
423 the high efficiency of these two conventional programs was not due to a large genetic
424 gain, but instead due to a small loss of genetic diversity for the genetic gain that was
425 achieved. The two-part program achieved higher genetic gain, because it had much
426 shorter breeding cycle than the conventional programs despite lower accuracy of the
427 Mendelian sampling term.

428 Optimal cross selection provides further advantages than just balancing selection and
429 maintenance of genetic diversity. Comparison of optimal cross selection against
430 truncation selection is in a sense extreme, because breeders do not perform truncation
431 selection blindly. In practice breeders balance selection of parents from several
432 crosses to maintain genetic diversity. However, the systematic, yet practical, approach

433 of optimal cross selection formalizes breeding actions and indicates decisions that a
434 breeder might not consider.

435 Use of a tool like optimal cross selection is important in the two-part program,
436 because managing outbred germplasm in the population improvement component is
437 different to managing germplasm of inbred lines. In particular, differences between
438 the outbred genotypes are less pronounced and there is very limited amount of
439 phenotypic data, if any, that breeders would use for selection and crossing amongst
440 them. An example that shows the flexibility of the optimal cross selection is the
441 observed trend of cyclical deviations in genetic mean and genic standard deviation in
442 the population improvement component (Fig S2.1 and Fig S2.2). Those deviations
443 were due to using some parents from the product development component in an
444 optimised crossing plan for the population improvement component. Although these
445 parents had lower genetic merit than the best population improvement candidates,
446 they had sufficiently high merit and low coancestry with them. Optimal cross
447 selection automatically exploited this situation to balance selection and maintenance
448 of genetic diversity. The pattern of deviations is cyclical because we designed the
449 simulation such that product development lines were considered for use in the
450 population improvement component only once a year. There is however no reason for
451 this limitation, i.e., optimal cross selection can design crossing plans that utilize any
452 set of individuals at any time.

453 Balancing selection and maintenance of genetic diversity is challenging, but the
454 presented method provides an intuitive and practical approach. Since breeding
455 programs compete for market share they have to select intensively, sometimes also at

456 the expense of genetic diversity. While breeders can boost genetic diversity by
457 integrating other germplasm, this can be challenging for various reasons including
458 cost. Therefore, methods to optimise efficiency of converting genetic diversity into
459 genetic gain are desired. The approach with penalty degrees used in this study, due to
460 Kinghorn (2011), is intuitive and practical. Namely, setting penalty degrees to 45°
461 weighs selection and maintenance of genetic diversity equally, while setting penalty
462 degrees to 0° ignores maintenance of genetic diversity, which is equivalent to
463 truncation selection. Clearly, breeding programs are interested in small penalty
464 degrees. However, as the results show this depends on the factors such as population
465 size. Under constrained costs the optimal degrees that maximised genetic gain over 20
466 years of selection were about 15° with one cycle of 640 selection candidates, about
467 25° with two cycles of 320 selection candidates per cycle, up to 45° with six cycles of
468 107 selection candidates per cycle.

469 **Maintenance of genomic prediction accuracy**

470 The efficacy of two-part program depends crucially on the level of genomic
471 prediction accuracy in the population improvement part. In this study the initial
472 training set for genomic selection consisted of 3,120 genotypes with associated yield
473 trial data collected in the product development component. This set was expanded
474 every year by adding 1,000 new genotypes with trial data, which in general ensured a
475 high level of genomic prediction accuracy both for the conventional and two-part
476 programs. However, this training set was not sufficient to maintain accuracy over the
477 20 years when truncation selection with a small number of parents was used, in
478 particular under constrained costs. The failure to maintain accuracy in that case can be

479 attributed to the too rapidly increasing genetic distance (drift) between training and
480 prediction sets, which is a well-known property of genomic selection (Pszczola et al.
481 2012; Clark et al. 2012; Hickey et al. 2014; Scutari et al. 2016; Michel et al. 2016).

482 Proper management of genetic diversity constrained drift between product
483 development and population improvement components. Constraining drift in turn
484 reduced drop of genomic prediction accuracy in cycles of population improvement
485 that had not had genomic selection model retrained. This was partially achieved with
486 truncation selection of a larger numbers of parents, but optimal cross selection
487 reduced the drop of accuracy even further. Similarly, Eynard et al. (2017) also found
488 that optimal contribution selection provided a good balance between maintaining
489 genetic gain, genetic diversity, and accuracy in a breeding program with recurrent
490 genomic selection.

491 **Effective population size and long-term genetic gain**

492 In this study we compared different breeding programs over a 20 year period and
493 referred to these results as long-term. While 20 years is a long-term period from the
494 practical perspective of a breeder, it is not long-term from population/quantitative
495 genetics perspective. This is evident from observed strong non-linear relationship
496 between effective population size and genetic gain after 20 years. Namely, the theory
497 predicts a positive linear relationship between effective population size and long-term
498 response to selection for a polygenic trait (Robertson 1960), even in the presence of
499 epistasis (Paixão and Barton 2016). Therefore, the observed highest genetic gain with
500 effective population size of about 10 suggests that the evaluated period is rather short-

501 to medium-term. The efficiency had on the other hand a positive linear relationship
502 with effective population size, suggesting that this metric gives a better indication of
503 the true long-term genetic gain. In fact, efficiency measures genetic gain (in units of
504 initial genetic standard deviation) when all genetic diversity is depleted. The two-part
505 programs with optimal cross selection can be setup such that it delivers either the
506 highest genetic gain after 20 years of selection or the highest efficiency (true long-
507 term genetic gain), though the balance between selection and maintenance of genetic
508 diversity has to be different for the two objectives. Given that breeding programs
509 compete for market share, the hope is that tools like optimal cross selection help
510 breeders to balance intensive selection and maintenance of genetic diversity, while
511 mutation generates new genetic diversity to sustain long-term breeding.

512 **Practical implementation in self-pollinating crops**

513 This study assumed a breeding program that can perform several breeding cycles per
514 year. Following our previous work (Gaynor et al. 2017), we simulated breeding
515 program of a self-pollinating crop such as wheat. While speed breeding protocols are
516 continually improved (e.g., Christopher et al. 2015; Hickey et al. 2017b; Watson et al.
517 2017), the explored number of cycles per year (from one to six) should be put into a
518 context of a particular crop. For example, speed breeding has achieved six cycles per
519 year in spring wheat, but the number of cycles in winter wheat would be less due to
520 the requirement for vernalisation. Logistical barriers relating to genotyping may
521 further limit the number of achievable cycles per year.

522 An additional assumption was that the population improvement component can be
523 easily implemented. Our previous study assumed the use of a hybridizing agent to
524 induce male sterility and open-pollination with pollen from untreated plants (Gaynor
525 et al. 2017). Optimal contribution selection without cross allocation (Meuwissen
526 1997) might be applied in such a system by using pollen from different individuals
527 that is proportional to their optimised contributions. Here we opted for a manual
528 crossing system based on either truncation selection or optimal cross selection of
529 parents to develop a method that can be used with both approaches. Whichever
530 approach we use, recurrent genomic selection is constrained by the amount of seed
531 per plant, because this imposes a limit on selection intensity. A way to bypass this
532 limit is to increase the amount of seed with selfing. In the context of genomic
533 selection this has been termed as the Cross-Self-Select method in comparison to the
534 Cross-Select method used on F_1 seed (Bernardo 2010). We have compared these two
535 methods (see Supplementary material 3) and observed that exposing more genetic
536 diversity with the Cross-Self-Select method enabled higher long-term genetic gain at
537 comparable costs and time than with the Cross-Select method, while the genetic
538 diversity trends were comparable. The difference in long-term genetic gain between
539 the two methods was about 10% for optimal cross selection and truncation selection
540 of a large number of parents and about 25% for truncation selection of a small number
541 of parents. This is expected, because genetic diversity was limiting with the latter
542 program and exposing more genetic diversity through selfing had a bigger effect. It is
543 up to a breeder to choose between exploiting a larger number of cycles with the
544 Cross-Select method or a larger variance with the Cross-Self-Select method. Costs
545 can be challenging when genotyping a large number of candidates with the Cross-

546 Self-Select method, though this can be mitigated by imputation and/or genotyping-by-
547 sequencing (Hickey et al. 2015; Jacobson et al. 2015; Gorjanc et al. 2017a, b).

548 **Open questions**

549 While the presented two-part program with optimal cross selection delivered larger
550 long-term genetic gain and a more efficient breeding program, there is room for
551 further improvement. We initially expected larger difference in long-term genetic gain
552 between optimal cross selection and truncation selection. There are at least two
553 reasons for small difference between the two selection methods. First, the simulation
554 encompassed a whole breeding program with a sizeable initial genetic variance that
555 did not limit selection for the first few years, which means that maintenance of
556 genetic diversity was not important initially. Had we extended the simulation period,
557 the difference would have been larger, but even further removed from today. That
558 said, it is unknown where on the trajectory of exhausting genetic variance many
559 breeding programs actually are. Perhaps they are as we simulated or perhaps they are
560 less or further along the trajectory. Secondly, it is unclear how to optimally maintain
561 genetic diversity, specifically which genetic diversity should be preserved and which
562 discarded. In this study we operationally measured genetic diversity in the optimal
563 cross selection with the identity-by-state based coancestry, which measure genome-
564 wide diversity, but are agnostic to traits under selection. Perhaps coancestry should
565 include information about which alleles are more desired so that focus is on avoiding
566 the loss of these alleles and not any alleles. This is a subject of our future research.

567 **Conclusions**

568 We evaluated the use of optimal cross selection to balance selection and maintenance
569 of genetic diversity in a two-part plant breeding program with rapid recurrent
570 genomic selection. The optimal cross selection delivered higher long-term genetic
571 gain than truncation selection. It achieved this by optimising efficiency of converting
572 genetic diversity into genetic gain through reducing the loss of genetic diversity and
573 reducing the drop of genomic prediction accuracy with rapid cycling. With four
574 cycles per year optimal cross selection had 15-78% higher genetic gain and 2-4 times
575 higher efficiency than truncation selection. Our results suggest that breeders should
576 consider the use of optimal cross selection to assist in optimally managing the
577 maintenance and exploitation of their germplasm.

578 **Author contributions statement**

579 GG and JH conceived the study. RCG developed the initial plant breeding program
580 simulation. GG extended the simulation and implemented optimal cross selection. GG
581 wrote the manuscript. All authors read and approved the final manuscript.

582 **Acknowledgments**

583 The authors acknowledge the financial support from the BBSRC ISPG to The Roslin
584 Institute BBS/E/D/30002275, from Grant Nos. BB/N015339/1, BB/L020467/1,
585 BB/M009254/1. This work has made use of the resources provided by the Edinburgh
586 Compute and Data Facility (ECDF) (<http://www.ecdf.ed.ac.uk>).

587 **References**

588 Akdemir D, Sánchez JI (2016) Efficient Breeding by Genomic Mating. *Front Genet* 7:
589 . doi: 10.3389/fgene.2016.00210

590 Bernardo R (2010) Genomewide Selection with Minimal Crossing in Self-Pollinated
591 Crops. *Crop Sci* 50:624–627 . doi: 10.2135/cropsci2009.05.0250

592 Christopher J, Richard C, Chenu K, et al (2015) Integrating Rapid Phenotyping and
593 Speed Breeding to Improve Stay-Green and Root Adaptation of Wheat in
594 Changing, Water-Limited, Australian Environments. *Procedia Environ Sci*
595 29:175–176 . doi: 10.1016/j.proenv.2015.07.246

596 Clark SA, Hickey JM, Daetwyler HD, Werf JH van der (2012) The importance of
597 information on relatives for the prediction of genomic breeding values and the
598 implications for the makeup of reference data sets in livestock breeding
599 schemes. *Genet Sel Evol* 44:4 . doi: 10.1186/1297-9686-44-4

600 Cowling WA, Li L, Siddique KHM, et al (2016) Evolving gene banks: improving
601 diverse populations of crop and exotic germplasm with optimal contribution
602 selection. *J Exp Bot* erw406 . doi: 10.1093/jxb/erw406

603 De Beukelaer H, Badke Y, Fack V, De Meyer G (2017) Moving Beyond Managing
604 Realized Genomic Relationship in Long-Term Genomic Selection. *Genetics*
605 genetics.116.194449 . doi: 10.1534/genetics.116.194449

606 Endelman JB (2011) Ridge Regression and Other Kernels for Genomic Selection with
607 R Package rrBLUP. Plant Genome 4:250–255 . doi:
608 10.3835/plantgenome2011.08.0024

609 Eynard SE, Croiseau P, Laloë D, et al (2017) Which Individuals To Choose To
610 Update the Reference Population? Minimizing the Loss of Genetic Diversity
611 in Animal Genomic Selection Programs. G3 Bethesda Md. doi:
612 10.1534/g3.117.1117

613 Gaynor RC, Gorjanc G, Bentley AR, et al (2017) A Two-Part Strategy for Using
614 Genomic Selection to Develop Inbred Lines. Crop Sci 57:2372–2386 . doi:
615 10.2135/cropsci2016.09.0742

616 Gaynor RC, Gorjanc G, Wilson DL, et al AlphaSimR: An R Package for Breeding
617 Program Simulations. Manuscr Prep

618 Gorjanc G, Battagin M, Dumasy J-F, et al (2017a) Prospects for Cost-Effective
619 Genomic Selection via Accurate Within-Family Imputation. Crop Sci 57:216 .
620 doi: 10.2135/cropsci2016.06.0526

621 Gorjanc G, Dumasy J-F, Gonen S, et al (2017b) Potential of Low-Coverage
622 Genotyping-by-Sequencing and Imputation for Cost-Effective Genomic
623 Selection in Biparental Segregating Populations. Crop Sci 57:1404–1420 . doi:
624 10.2135/cropsci2016.08.0675

625 Gorjanc G, Hickey JM (2018) AlphaMate: Software for balancing selection and
626 maintenance of diversity

627 Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant Breeding with
628 Genomic Selection: Gain per Unit Time and Cost. *Crop Sci* 50:1681 . doi:
629 10.2135/cropsci2009.11.0662

630 Hickey JM, Chiurugwi T, Mackay I, et al (2017a) Genomic prediction unifies animal
631 and plant breeding programs to form platforms for biological discovery. *Nat
632 Genet* 49:1297 . doi: 10.1038/ng.3920

633 Hickey JM, Dreisigacker S, Crossa J, et al (2014) Evaluation of genomic selection
634 training population designs and genotyping strategies in plant breeding
635 programs using simulation. *Crop Sci* 54:1476–1488 . doi:
636 10.2135/cropsci2013.03.0195

637 Hickey JM, Gorjanc G, Varshney RK, Nettelblad C (2015) Imputation of Single
638 Nucleotide Polymorphism Genotypes in Biparental, Backcross, and Topcross
639 Populations with a Hidden Markov Model. *Crop Sci* 55:1934–1946 . doi:
640 10.2135/cropsci2014.09.0648

641 Hickey LT, Germán SE, Pereyra SA, et al (2017b) Speed breeding for multiple
642 disease resistance in barley. *Euphytica* 213:64 . doi: 10.1007/s10681-016-
643 1803-2

644 Hill WG (2016) Is Continued Genetic Improvement of Livestock Sustainable?
645 Genetics 202:877–881 . doi: 10.1534/genetics.115.186650

646 Jacobson A, Lian L, Zhong S, Bernardo R (2015) Marker imputation before
647 genomewide selection in biparental maize populations. *Plant Genome* 8:9 .
648 doi: doi:10.3835/plantgenome2014.10.0078

649 Kinghorn BP (2011) An algorithm for efficient constrained mate selection. *Genet Sel
650 Evol* 43:4 . doi: 10.1186/1297-9686-43-4

651 Kinghorn BP, Banks R, Gondro C, et al (2009) Strategies to Exploit Genetic
652 Variation While Maintaining Diversity. In: Werf J van der, Graser H-U,
653 Frankham R, Gondro C (eds) *Adaptation and Fitness in Animal Populations*.
654 Springer Netherlands, pp 191–200

655 Lin Z, Shi F, Hayes BJ, Daetwyler HD (2017) Mitigation of inbreeding while
656 preserving genetic gain in genomic breeding programs for outbred plants.
657 *Theor Appl Genet* 130:969–980 . doi: 10.1007/s00122-017-2863-y

658 McCullagh P, Nelder JA (1989) *Generalized Linear Models*, Second Edition, Second
659 edition. CRC Press, Boca Raton

660 Meuwissen THE (1997) Maximizing the response of selection with a predefined rate
661 of inbreeding. *J Anim Sci* 75:934–940 . doi: doi:/1997.754934x

662 Michel S, Ametz C, Gungor H, et al (2016) Genomic selection across multiple
663 breeding cycles in applied bread wheat breeding. *Theor Appl Genet*
664 129:1179–1189 . doi: 10.1007/s00122-016-2694-2

665 Paixão T, Barton NH (2016) The effect of gene interactions on the long-term response
666 to selection. *Proc Natl Acad Sci U S A* 113:4422–4427 . doi:
667 [10.1073/pnas.1518830113](https://doi.org/10.1073/pnas.1518830113)

668 Pszczola M, Strabel T, Mulder HA, Calus MPL (2012) Reliability of direct genomic
669 values for animals with different relationships within and to the reference
670 population. *J Dairy Sci* 95:389–400 . doi: [10.3168/jds.2011-4338](https://doi.org/10.3168/jds.2011-4338)

671 R Development Core Team (2017) R: A language and environment for statistical
672 computing. R Foundation for Statistical Computing, Vienna, Austria

673 Robertson A (1960) A theory of limits in artificial selection. *Proc R Soc Lond B*
674 153:234–249 . doi: [10.1098/rspb.1960.0099](https://doi.org/10.1098/rspb.1960.0099)

675 Scutari M, Mackay I, Balding D (2016) Using Genetic Distance to Infer the Accuracy
676 of Genomic Prediction. *PLOS Genet* 12:e1006288 . doi:
677 [10.1371/journal.pgen.1006288](https://doi.org/10.1371/journal.pgen.1006288)

678 Storn R, Price K (1997) Differential Evolution – A Simple and Efficient Heuristic for
679 global Optimization over Continuous Spaces. *J Glob Optim* 11:341–359 . doi:
680 [10.1023/A:1008202821328](https://doi.org/10.1023/A:1008202821328)

681 Venables WN, Ripley BD (2002) Modern Applied Statistics with S, Fourth Edition.
682 Springer, New York

683 Watson A, Ghosh S, Williams M, et al (2017) Speed breeding: a powerful tool to
684 accelerate crop research and breeding. *bioRxiv* 161182 . doi: [10.1101/161182](https://doi.org/10.1101/161182)

685 Woolliams JA, Berg P, Dagnachew BS, Meuwissen THE (2015) Genetic
686 contributions and their optimization. *J Anim Breed Genet* 132:89–99 . doi:
687 10.1111/jbg.12148

688 Wray NR, Goddard ME (1994) Increasing long-term response to selection. *Genet Sel
689 Evol* 26:431 . doi: 10.1186/1297-9686-26-5-431

690 Wright S (1949) The Genetical Structure of Populations. *Ann Eugen* 15:323–354 .
691 doi: 10.1111/j.1469-1809.1949.tb02451.x

692

Optimal cross selection for long-term genetic gain in a two-part genomic selection strategy

3 Tables and Figures

4 Gregor Gorjanc*, R. Chris Gaynor, John M. Hickey

5 G. Gorjanc, R.C. Gaynor, and J.M. Hickey The Roslin Institute and Royal (Dick)
6 School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre,
7 Midlothian EH25 9RG, UK

8 *Corresponding author (gregor.gorjanc@roslin.ed.ac.uk)

9 **Table 1: Per cycle characteristics of the population improvement component by**
10 **number of recurrent selection cycles per year (number or crosses per cycle,**
11 **number of selection candidates per cycle, and minimum or maximum number of**
12 **parents used per cycle)**

3

13 Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the
14 product development component that implicitly also performs population
15 improvement, while the two-part strategy includes an explicit population
16 improvement component with recurrent selection; the dashed line indicates
17 initialization of the population improvement component; N_1 and N_2 correspond to
18 the number of lines in Table 1)

4

19 **Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against**
20 **the number of recurrent selection cycles per year in the two-part program by**
21 **selection method and cost constraints (mean and 95% confidence interval).**
22 **Conventional programs did not use recurrent selection, but are shown for**
23 **comparison. Labels denote average penalty degree of optimum cross selection**
24 **that delivered the highest long-term gain**

5

25 **Fig. 3: Efficiency against the number of recurrent selection cycles per year in the**
26 **two-part program by selection method and cost constraints (mean and 95%**
27 **confidence interval). Conventional programs did not use recurrent selection, but**
28 **are shown for comparison. Labels denote average penalty degree of optimum**
29 **cross selection that delivered the highest long-term gain**

6

30 **Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid**
31 **lines over 20 years of selection by breeding program and cost constraints.**
32 **Individual replicates are shown by thin lines and a mean regression with a time-**
33 **trend arrow. The two-part programs used four recurrent selection cycles per year**

7

35 **Fig. 6: Genetic mean after 20 years of selection and efficiency against realized**
36 **effective population size by breeding program and cost constraints. The two-part**
37 **programs used four recurrent selection cycles per year. Results for the optimal**
38 **cross selection are shown for all evaluated penalty degrees (1°, 5°, 10°, ..., 85°).**

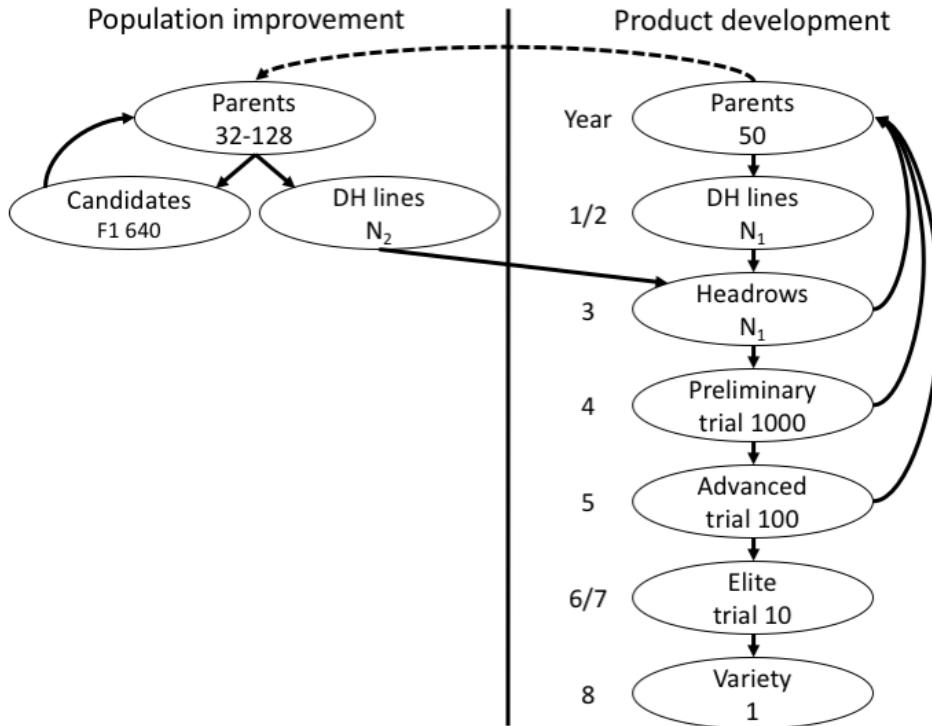
9

39

40 Table 1: Per cycle characteristics of the population improvement component by number
41 of recurrent selection cycles per year (number of crosses per cycle, number of selection
42 candidates per cycle, and minimum or maximum number of parents used per cycle)

#Cycles	#Crosses	#Candidates	#Parents	
			Min	Max
1	64	640	32	128
2	32	320	16	64
3	22	214	12	44
4	16	160	8	32
5	13	128	8	26
6	11	107	6	22

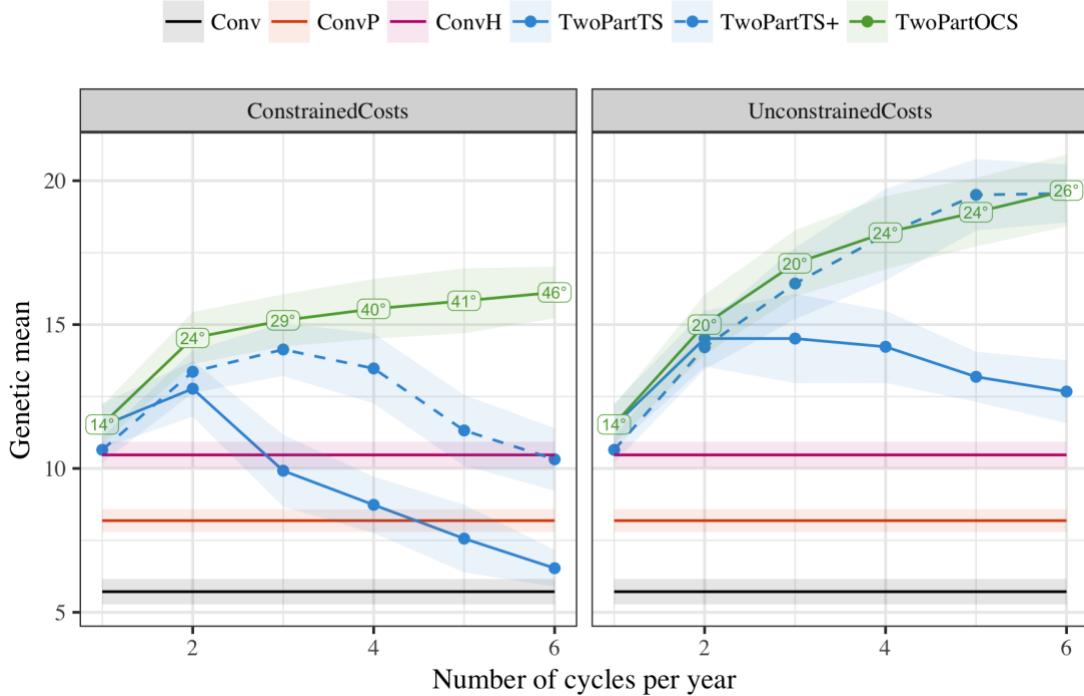
43



44

45 Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the product
46 development component that implicitly also performs population improvement, while
47 the two-part strategy includes an explicit population improvement component with
48 recurrent selection; the dashed line indicates initialization of the population
49 improvement component; N₁ and N₂ correspond to the number of lines in Table 1)

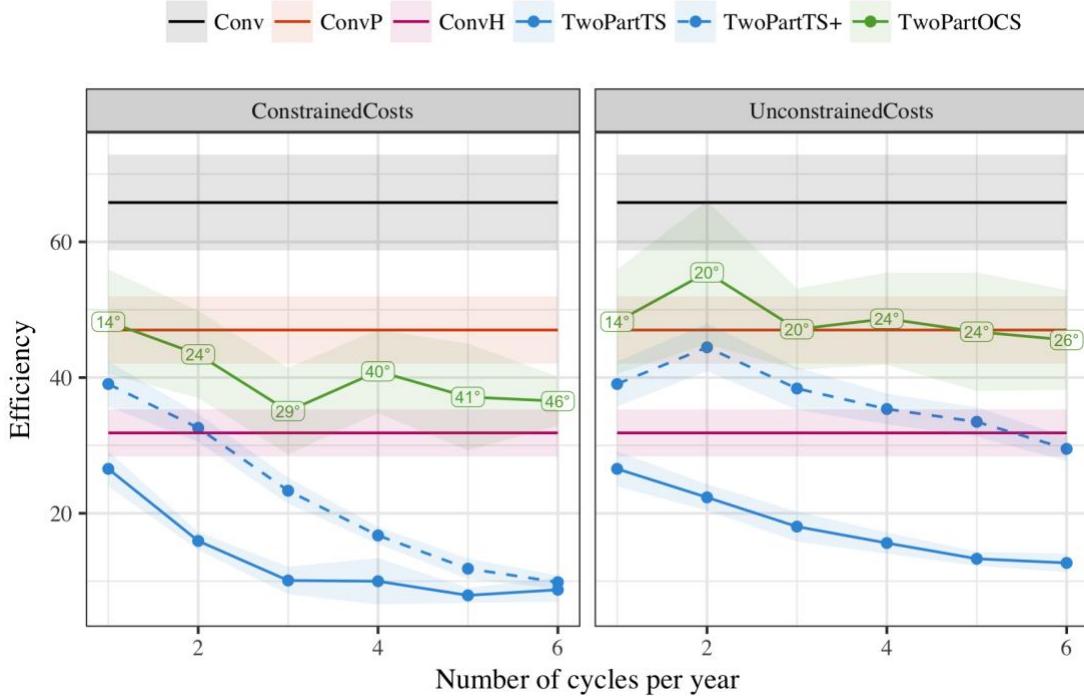
50



51

52 Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against the
53 number of recurrent selection cycles per year in the two-part program by selection
54 method and cost constraints (mean and 95% confidence interval). Conventional
55 programs did not use recurrent selection, but are shown for comparison. Labels denote
56 average penalty degree of optimum cross selection that delivered the highest long-term
57 gain

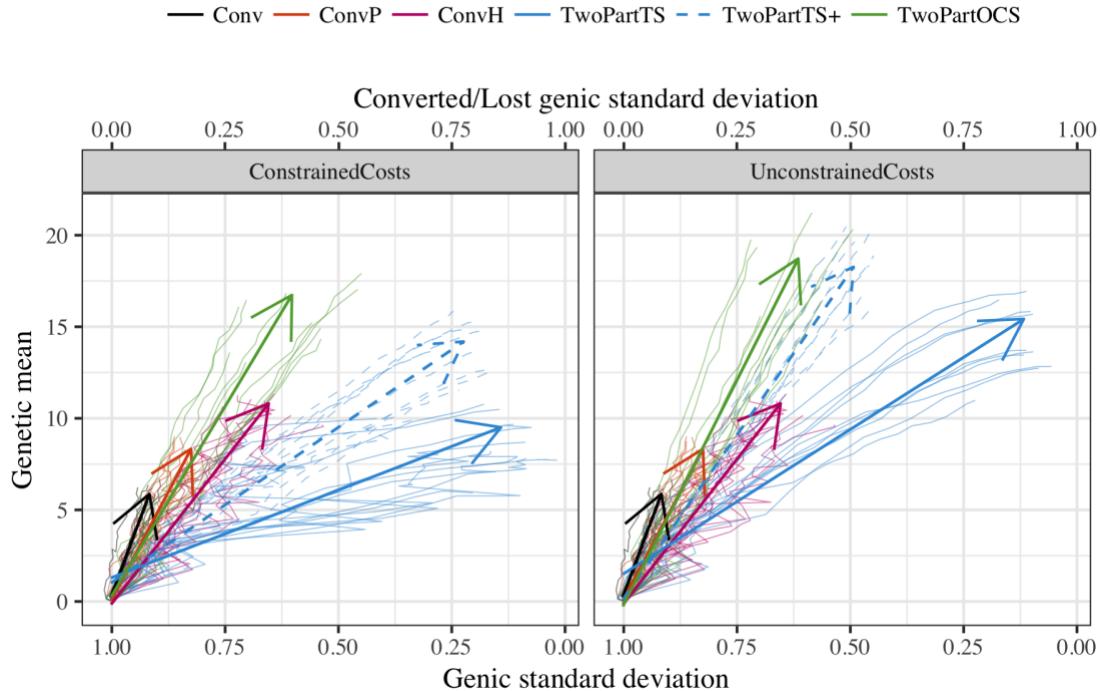
58



59

60 Fig. 3: Efficiency against the number of recurrent selection cycles per year in the two-
61 part program by selection method and cost constraints (mean and 95% confidence
62 interval). Conventional programs did not use recurrent selection, but are shown for
63 comparison. Labels denote average penalty degree of optimum cross selection that
64 delivered the highest long-term gain

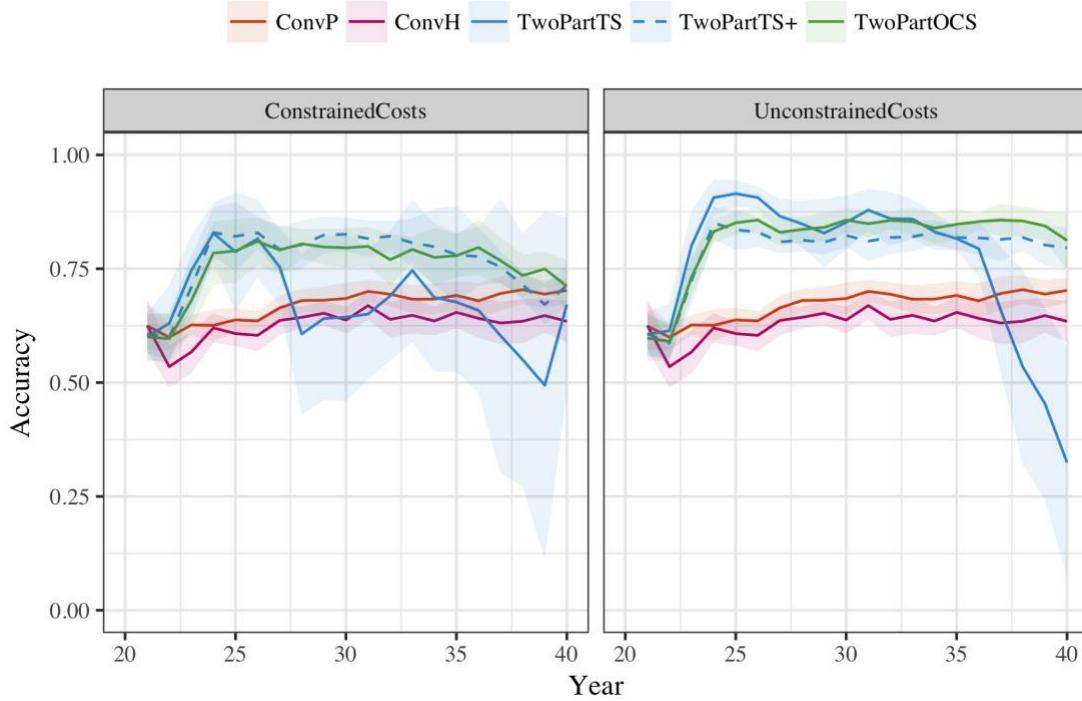
65



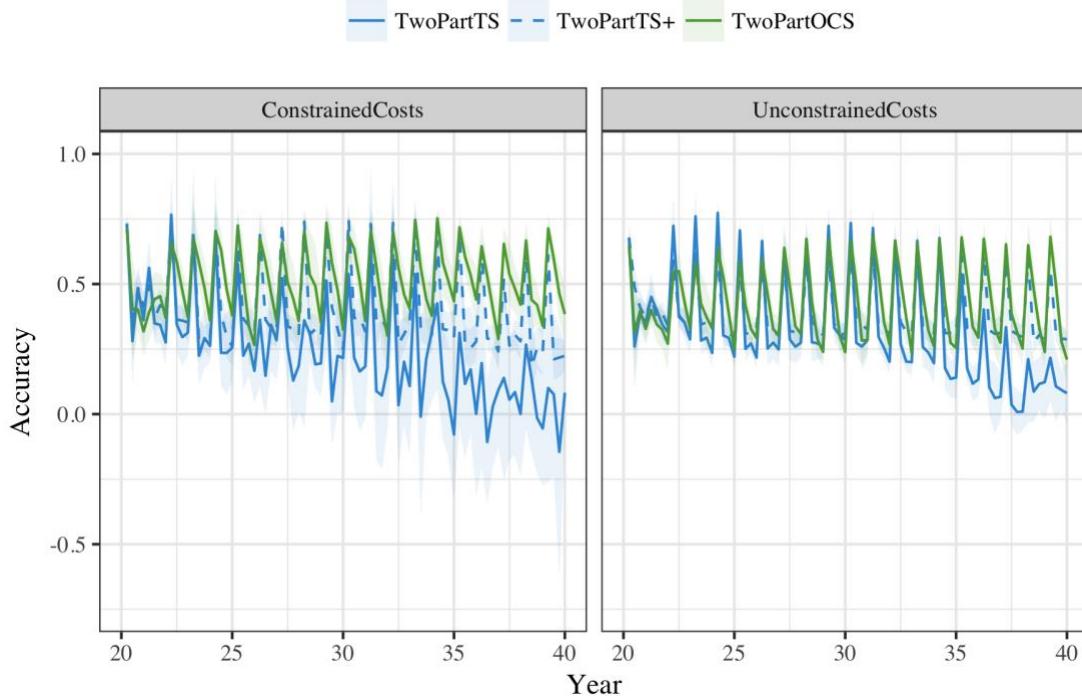
66

67 Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid lines
68 over 20 years of selection by breeding program and cost constraints. Individual
69 replicates are shown by thin lines and a mean regression with a time-trend arrow. The
70 two-part programs used four recurrent selection cycles per year

71

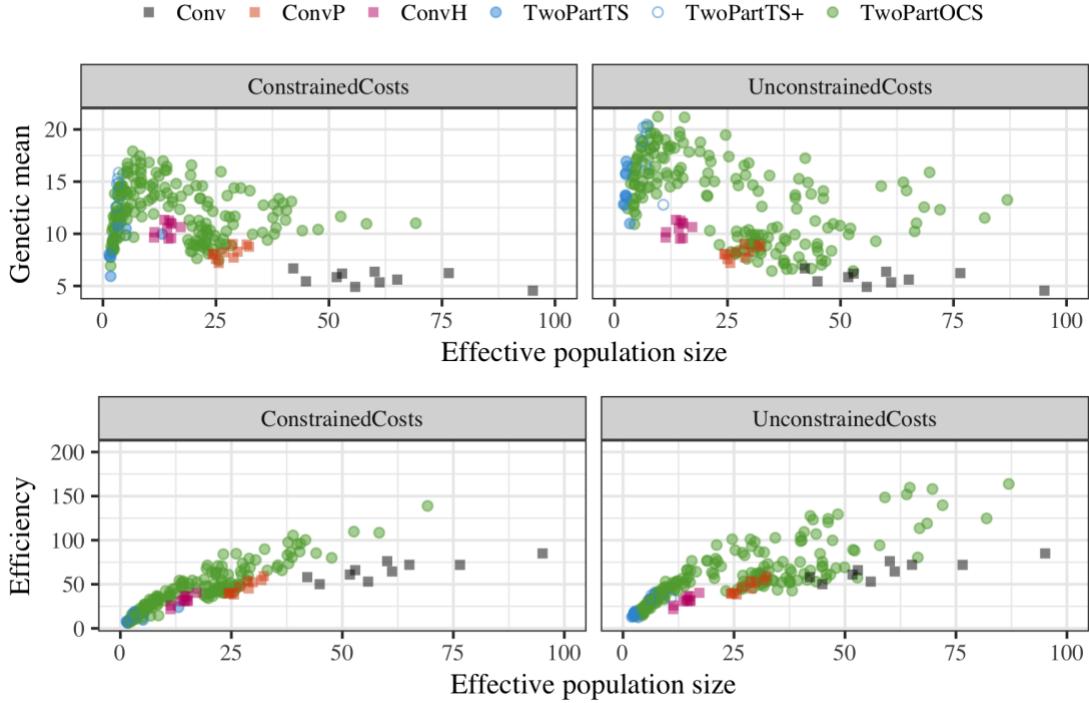


72



73

74 Fig. 5: Accuracy of genomic prediction in doubled-haploid lines (top) and population
75 improvement component (bottom) over 20 years of selection by breeding program
76 and cost constraints (mean and 95% confidence interval). The two-part programs used
77 four recurrent selection cycles per year



78

79 Fig. 6: Genetic mean after 20 years of selection and efficiency against realized effective
80 population size by breeding program and cost constraints. The two-part programs used
81 four recurrent selection cycles per year. Results for the optimal cross selection are
82 shown for all evaluated penalty degrees ($1^\circ, 5^\circ, 10^\circ, \dots, 85^\circ$).