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Key message 8 

Optimal cross selection increases long-term genetic gain of two-part programs with 9 

rapid recurrent genomic selection. It achieves this by optimising efficiency of 10 

converting genetic diversity into genetic gain through reducing the loss of genetic 11 

diversity and reducing the drop of genomic prediction accuracy with rapid cycling. 12 
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Abstract 14 

This study evaluates optimal cross selection for balancing selection and maintenance 15 

of genetic diversity in two-part plant breeding programs with rapid recurrent genomic 16 

selection. The two-part program reorganizes a conventional breeding program into 17 

population improvement component with recurrent genomic selection to increase the 18 

mean of germplasm and product development component with standard methods to 19 

develop new lines. Rapid recurrent genomic selection has a large potential, but is 20 

challenging due to genotyping costs or genetic drift. Here we simulate a wheat 21 

breeding program for 20 years and compare optimal cross selection against truncation 22 

selection in the population improvement with one to six cycles per year. With 23 

truncation selection we crossed a small or a large number of parents. With optimal 24 

cross selection we jointly optimised selection, maintenance of genetic diversity, and 25 

cross allocation with AlphaMate program. The results show that the two-part program 26 

with optimal cross selection delivered the largest genetic gain that increased with the 27 

increasing number of cycles. With four cycles per year optimal cross selection had 28 

78% (15%) higher long-term genetic gain than truncation selection with a small 29 

(large) number of parents. Higher genetic gain was achieved through higher 30 

efficiency of converting genetic diversity into genetic gain; optimal cross selection 31 

quadrupled (doubled) efficiency of truncation selection with a small (large) number of 32 

parents. Optimal cross selection also reduced the drop of genomic selection accuracy 33 

due to the drift between training and prediction populations. In conclusion, optimal 34 

cross-selection enables optimal management and exploitation of population 35 

improvement germplasm in two-part programs.  36 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 18, 2017. ; https://doi.org/10.1101/227215doi: bioRxiv preprint 

https://doi.org/10.1101/227215
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 

Introduction 37 

In this study we evaluate balancing selection and maintenance of genetic diversity 38 

with optimal cross selection in two-part plant breeding programs with rapid recurrent 39 

genomic selection. Plant breeding programs that produce inbred lines have two 40 

concurrent goals: (i) identifying new varieties or hybrid parents and (ii) identifying 41 

parents for subsequent breeding cycles. We recently proposed a two-part program that 42 

uses genomic selection to separately address these goals (Gaynor et al. 2017; Hickey 43 

et al. 2017a). The two-part program reorganizes conventional program into two 44 

distinct components: a product development component that develops and screens 45 

inbred lines with established breeding methods; and a population improvement 46 

component that increases the population mean with rapid cycles of recurrent genomic 47 

selection. Simulations showed that the two-part program has a potential to deliver 48 

about 2.5 times larger genetic gain compared to a conventional program for the same 49 

investment (Gaynor et al. 2017). 50 

The larger genetic gain from the two-part program is primarily driven by rapid 51 

recurrent genomic selection in the population improvement component. In a 52 

conventional program a cycle of “recurrent” selection may take four to five years to 53 

complete. The two-part program enables rapid recurrent selection with several cycles 54 

per year, because population improvement and product development components 55 

operate independently of each other. For example, Gaynor et al. (2017) simulated two 56 

cycles of population improvement per year, which reduced cycle time eight-fold 57 

compared to the conventional program. Cycle time can be decreased even further with 58 
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intensive use of greenhouses and speed breeding (Christopher et al. 2015; Hickey et 59 

al. 2017b; Watson et al. 2017). Factoring this potential into the breeder’s equation 60 

suggests that the large genetic gain in Gaynor et al. (2017) could be increased even 61 

more with more than two cycles per year. 62 

To ensure large genetic gain a population improvement manager must simultaneously 63 

consider several factors. Most notably, number of cycles, size of the population, 64 

number of parents, genomic prediction accuracy, maintenance of genetic diversity, 65 

and costs. Performing more cycles can increase genetic gain per year, but it also 66 

increases costs incurred by genotyping many selection candidates and other operating 67 

costs. To control costs the manager is likely to reduce population size with increasing 68 

number of cycles. In an unpublished analysis (reproduced in this study), we observed 69 

that increasing the number of cycles, above two used in Gaynor et al. (2017), 70 

expectedly increased genetic gain in first years, but eventually led to a lower long-71 

term genetic gain than with two cycles. Inspection of the results indicated that genetic 72 

diversity was depleted faster with increased number of cycles. 73 

We hypothesise that balancing selection and maintenance of genetic diversity is 74 

needed for large long-term genetic gain from the two-part program with rapid 75 

recurrent genomic selection. To test this end we simulated a two-part program that 76 

uses truncation selection or optimal cross selection to manage population 77 

improvement germplasm. The optimal cross selection is a combination of optimal 78 

contribution selection and cross allocation. The optimal contribution selection 79 

optimizes contributions of selection candidates to the next generation such that 80 

expected benefit and risks are balanced (Woolliams et al. 2015). A common way to 81 
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achieve this balance is to maximise genetic gain at a predefined rate of population 82 

inbreeding (coancestry) through penalizing selection of individuals that are too 83 

closely related (Wray and Goddard 1994; Meuwissen 1997). This penalization 84 

controls the rate at which genetic diversity is lost due to drift and selection. Well 85 

managed breeding programs balance this loss by maintaining sufficiently large 86 

effective population size so that standing genetic diversity and newly generated 87 

genetic diversity due to mutation (and possibly migration) sustain long-term genetic 88 

gains (Hill 2016). The optimal contribution selection assumes that contributions will 89 

be randomly paired, including selfing. An extension that delivers a practical crossing 90 

plan is to jointly optimise contributions and cross allocations (Kinghorn et al. 2009; 91 

Kinghorn 2011). These methods are established in animal breeding (for a review see 92 

Woolliams et al. (2015)) and are increasingly common in plant breeding (Cowling et 93 

al. 2016; Akdemir and Sánchez 2016; De Beukelaer et al. 2017; Lin et al. 2017). 94 

The aim of this study was to evaluate the potential of optimal cross selection to 95 

balance selection and maintenance of genetic diversity in a two-part program with 96 

rapid recurrent genomic selection. We evaluated the potential with a long-term 97 

simulation of conventional and two-part breeding programs. The two-part programs 98 

used different number of cycles, different selection methods, and different resources 99 

for genomic selection. The results show that optimal cross selection delivered the 100 

largest long-term genetic gain under all scenarios. This was achieved by optimising 101 

the efficiency of converting genetic diversity into genetic gain with the increasing 102 

number of recurrent selection cycles. With four cycles per year optimal cross 103 
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selection had 15-78% higher genetic gain and 2-4 times higher efficiency than 104 

truncation selection.  105 
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Materials and methods 106 

Breeding programs 107 

We used simulations of entire breeding programs to compare different selection 108 

methods under different scenarios. Detailed description of simulated breeding 109 

programs and scenarios is available in Supplementary Material 1. In summary, we 110 

have initiated a virtual wheat breeding program for a polygenic trait and ran it for 111 

20 years (burn-in) with a conventional program based on phenotypic selection. After 112 

the burn-in we evaluated different programs under equalized costs for another 20 113 

years. The evaluated programs were: i) conventional program with phenotypic 114 

selection (Conv), ii) conventional program with genomic selection at the preliminary 115 

trial stage (ConvP), iii) conventional program with genomic selection at the headrow 116 

stage (ConvH), and iv) two-part program with recurrent genomic selection (TwoPart). 117 

While the conventional program performs population improvement and product 118 

development concurrently, the two-part program splits these two activities into two 119 

separate, but connected, components (Fig. 1). The population improvement 120 

component is based on rapid recurrent genomic selection to increase population mean, 121 

while product development component is based on standard breeding methods 122 

(including field trials) to develop inbred lines. A by-product of field trials is a training 123 

set of genotyped and phenotyped individuals, which is used to retrain a genomic 124 

selection model. Because the two-part program uses rapid cycling, we use doubled-125 

haploid lines to speed up the conventional program and the product development 126 

component. 127 
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A challenge with the two-part program is balancing selection and maintenance of 128 

genetic diversity in the population improvement. This is particularly challenging with 129 

several cycles or recurrent genomic selection, because the breeder needs to handle 130 

increasing genotyping costs. Assume that the population improvement component is 131 

based on 64 crosses from 32 to 128 parents that give rise to 640 selection candidates. 132 

With a fixed genotyping budget, we can implement one cycle of this scheme or 133 

several cycles with proportionately reduced numbers, as shown in Table 1. Rapid 134 

cycling is appealing in terms of genetic gain, but challenging in terms of maintaining 135 

genetic diversity. We have evaluated how these two aspects are balanced with: i) 136 

truncation selection of a small numbers of parents (TwoPartTS), ii) truncation 137 

selection of a large number of parents (TwoPartTS+), or iii) optimal cross selection 138 

(TwoPartOCS). In the scenario with a small/large number of parents we selected a 139 

minimal/maximal possible number of parents for a given number of cycles per year 140 

(Min/Max in Table 1). These two-part programs were compared with one to six 141 

recurrent selection cycles per year and under constrained or unconstrained costs. With 142 

unconstrained costs, the number of crosses was 64 with 640 selection candidates per 143 

cycle irrespective of the number of cycles. The scenarios with unconstrained costs are 144 

likely unrealistic, but we have included them to demonstrate the potential genetic gain 145 

with higher investment and to demonstrate the potential of optimal cross and 146 

truncation selection under the different settings. 147 

We repeated entire simulation 10 times and report average and confidence intervals. 148 

For simulation of breeding programs and genomic selection we used the AlphaSimR 149 

R package (Gaynor et al.) available at www.alphagenes.roslin.ed.ac.uk/AlphaSimR. 150 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 18, 2017. ; https://doi.org/10.1101/227215doi: bioRxiv preprint 

https://doi.org/10.1101/227215
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

For optimal cross selection we used the AlphaMate Fortran program (Gorjanc and 151 

Hickey 2018) available at www.alphagenes.roslin.ed.ac.uk/AlphaMate. 152 

Genomic prediction 153 

The training dataset for genomic prediction was initiated with genotype and 154 

phenotype data collected in the last three years of the burn-in (3,120 lines). The 155 

dataset was further enlarged every year with new trial phenotype and genotype data 156 

(1,000 lines). We used the standard ridge regression model with heterogeneous error 157 

variance to account for different levels of replication in trials collected at different 158 

stages of a breeding program (Endelman 2011). 159 

Optimal cross selection 160 

Optimal cross selection delivers a crossing plan that maximises genetic gain in the 161 

next generation under constraints. Constraints could be: loss of genetic diversity 162 

(commonly measured with the rate of coancestry), number of parents, and 163 

minimum/maximum number of crosses per parent. For example, in our simulation a 164 

parent could contribute from 1 to 4 crosses and crosses had to be made between 165 

individuals in male and female pools. We implemented optimal cross selection in the 166 

program AlphaMate, which uses evolutionary optimisation algorithm (Storn and Price 167 

1997). Inputs for the program are: i) a list of selection candidates with breeding values 168 

𝑎  and gender pool information, ii) coancestry matrix 𝑪 , and iii) a specification file 169 

with constraints. For breeding values we used genomic predictions. To construct the 170 

coancestry matrix we estimated coancestry for each pair of individuals as the 171 
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proportion of marker alleles that are identical by state; 𝑪 = $
%
1 + (

)*
𝑿𝑿, , where 172 

𝑿 = 𝑴− 1 and 𝑴 is an 𝑛0×𝑛2 matrix of 𝑛2 marker genotypes (coded as 0, 1, or 2) 173 

of 𝑛0 individuals. Given the inputs and a proposed crossing plan by the evolutionary 174 

algorithm the program calculates expected genetic gain as 𝑎 = 𝒙,𝒂  and group 175 

coancestry (expected inbreeding of the next generation) as 𝑐 = 𝒙,𝑪𝒙 , where 𝒙 =176 

$
%67

𝒏, 𝒏 is a vector of integer contributions (0, 1, 2, 3, or 4), and 𝑛9 is the number of 177 

crosses. The contributions 𝒙  and their pairing (crossing plan) are unknown 178 

parameters and optimised with the evolutionary algorithm. Following Kinghorn 179 

(2011), we operationalize balance between genetic gain and coancestry via “penalty 180 

degrees” between the maximal genetic gain solution and the targeted solution under 181 

constraints. Specifically, the maximal genetic gain solution is obtained by setting 182 

penalty to 0°, while the minimal loss of genetic diversity is obtained by setting 183 

penalty to 90°. For each scenario we ran optimal cross selection with a range of 184 

penalty degrees (1°, 5°, 10°, …, 85°). 185 

Comparison 186 

Programs were compared in terms of genetic gain, genomic prediction accuracy, 187 

genetic diversity, and efficiency of converting genetic diversity into genetic gain. To 188 

enable comparison between conventional and two-part programs we report the 189 

metrics on doubled-haploid lines, prior to headrow selection (Fig. 1). In the two-part 190 

program there are two sets of doubled-haploid lines (Fig. 1), which we summarized 191 

jointly. We also report the metrics on selection candidates of the population 192 

improvement component in Supplementary material 2. 193 
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We measured genetic gain as average true genetic values that were standardized to 194 

mean zero and unit standard deviation in year 20. We measured accuracy of genomic 195 

prediction by correlation between predicted and true genetic values. 196 

We measured genetic diversity with genetic standard deviation, genic standard 197 

deviation, number of times population ran out of genetic diversity as measured by 198 

marker genotypes, and effective population size. We calculated genetic standard 199 

deviation as standard deviation of standardized true genetic values. We calculated 200 

genic standard deviation as 𝜎; = 2 𝑝0 1 − 𝑝0
6>
0?$ 𝛼0% (𝑛A is the number of causal 201 

loci and 𝑝0 and 𝛼0 are respectively allele frequency and allele substitution effect at the 202 

𝑖-th causal locus) and expressed it relative to the observed value in year 20. Genic 203 

standard deviation enables comparison of different stages across different programs. 204 

For example, doubled-haploid (inbred) lines in the product development component 205 

have larger genetic variance than outbred plants in the population improvement 206 

component, while their genic variances are comparable because they depend only on 207 

population allele frequencies. We calculated effective population size from the rate of 208 

coancestry, 𝑁D = 1 2∆𝐶 . Following the formula for change of genetic variance 209 

over time as a function of the rate of coancestry, 𝜎;GH(
% = 𝜎;G

% 1 − ∆𝐶  (Wright 1949), 210 

we estimated ∆𝐶  with log-link gamma regression of genic variance on year using 211 

function glm() in R (R Development Core Team 2017). Log-link gamma regression 212 

assumes that expected value at time t+1 is 𝐸 𝜎;%|𝑡 + 1 = 𝐸 𝜎;%|𝑡 𝑒𝑥𝑝 𝛽  213 

(McCullagh and Nelder 1989), which gives ∆𝐶 = 1 − 𝑒𝑥𝑝 𝛽 . Since we used genic 214 
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variance for the estimation of effective population size, the estimate refers to causal 215 

loci and not whole genome or neutral loci. 216 

We measured efficiency of converting genetic diversity into genetic gain by 217 

regressing achieved genetic gain 𝑦P = 𝜇RG − 𝜇RST 𝜎;ST  on lost genetic diversity 218 

𝑥P = 1 − 𝜎;G 𝜎;ST , i.e., 𝑦P = 𝑎 + 𝑏𝑥P + 𝑒P , where 𝑏  is efficiency. For example, 219 

with the starting point of 𝑦%V, 𝑥%V = 0,0  and a final point of 𝑦YV, 𝑥YV =220 

10,0.4 , a breeding program converted 0.4 standard deviation of genetic diversity 221 

into genetic gain of 10 standard deviations, an efficiency factor of 25 = 10 0.4. In 222 

some scenarios, particularly with truncation selection in the two-part program, we 223 

noticed large changes in the “gain-diversity plane” in the first and last generations. 224 

For this reason we estimated efficiency with robust regression using function rlm() in 225 

R (Venables and Ripley 2002). In addition to using robust regression we have 226 

removed repeated values of genetic gain and genetic diversity when a breeding 227 

program reached selection limit.  228 
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Results 229 

Overall the results show that the two-part program with optimal cross selection 230 

delivered the largest long-term genetic gain and that this gain increased with the 231 

increasing number of recurrent selection cycles per year. This was achieved by 232 

optimising efficiency of converting genetic diversity into genetic gain, which the two-233 

part program with truncation selection cannot achieve. The extra efficiency from the 234 

optimisation was due to the reduced loss of genetic diversity and the reduced drop of 235 

genomic prediction accuracy with the increasing number of recurrent selection cycles. 236 

With four cycles per year optimal cross selection had 15-78% higher genetic gain and 237 

2-4 times higher efficiency than truncation selection. 238 

In the following we structure the results in four parts. First, we present the effect of 239 

the number of cycles of recurrent selection on long-term genetic gain and efficiency 240 

of the two-part programs. Second, we present the 20 year trajectory of breeding 241 

programs through the plane of genetic mean and genic standard deviation. Third, we 242 

present the change of genomic prediction accuracy over time. Fourth, we present the 243 

relationship between realised effective population size and long-term genetic gain and 244 

efficiency. The two-part program results in the second, third, and fourth sections of 245 

the results are presented only for four cycles of recurrent selection per year. Unless 246 

specified explicitly, the results for the two-part program with optimal cross selection 247 

are given for penalty degrees that gave the highest long-term genetic gain. 248 
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Effect of the number of cycles on long-term genetic gain 249 

Optimal cross selection delivered the highest long-term genetic gains. The gain 250 

increased with the increased number of cycles of recurrent selection irrespective of 251 

cost constraints. This is shown in Fig. 2, which plots genetic mean after 20 years of 252 

selection against the number of cycles of recurrent selection per year in the two-part 253 

program. For comparison genetic gain of conventional programs are also shown. The 254 

conventional program with phenotypic selection had the smallest genetic gain (5.7), 255 

followed by the two conventional programs with genomic selection (8.2 and 10.5). 256 

The two-part programs had generally larger genetic gains than conventional 257 

programs, but they varied considerably and there were interactions between selection 258 

method, number of cycles of recurrent selection per year, and cost constraints. 259 

Under constrained costs optimal cross selection delivered the highest long-term 260 

genetic gain, which increased with the increasing number of cycles; 11.5 with one 261 

cycle, 14.5 with two cycles, 15.5. with four cycles, and 16.1 with six cycles. To 262 

achieve increased genetic gain with the increasing number of cycles, penalty degrees 263 

had to increase as well; on average 14° with one cycle, 24° with two cycles, 40° with 264 

four cycles, and, 49° with six cycles. Genetic gain with truncation selection of a large 265 

number of parents initially increased with increasing number of cycles (up to 14.1 266 

with three cycles per year), but then decreased. With six cycles per year it reached a 267 

level comparable to what it achieved with just one cycle per year, which was also a 268 

comparable level of genetic gain to that achieved by the conventional program with 269 

genomic selection in headrows. Genetic gain with truncation selection of a small 270 
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number of parents increased from one to two cycles per year (from 11.5 to 12.8) and 271 

decreased thereafter. With six cycles per year this method had almost as low genetic 272 

gain as the conventional program with phenotypic selection. 273 

Under unconstrained costs truncation selection of a large number of parents and 274 

optimal cross selection delivered the largest long-term genetic gains and this 275 

increased with increasing number of cycles; 11.5 with one cycle, 15.0 with two 276 

cycles, 18.2. with four cycles, and 19.6 with six cycles. To achieve these genetic gains 277 

penalty degrees had to increase, but less than under constrained costs. Truncation 278 

selection of a small number of parents again increased genetic gain only when number 279 

of cycles was increased from one to two and gradually decreased with additional 280 

cycles, but at slower rate than under constrained costs. 281 

Effect of the number of cycles on efficiency 282 

Optimal cross selection had the highest efficiency of converting genetic diversity into 283 

genetic gain amongst the two-part programs. This is shown in Fig. 3, which plots 284 

efficiency against the number of recurrent selection cycles per year in the two-part 285 

program. For comparison efficiency of conventional programs are also shown. These 286 

had an efficiency of 66.1 for the conventional program with phenotypic selection, 287 

46.8 for the conventional program with genomic selection in preliminary trials, and 288 

31.5 for the conventional program with genomic selection in headrows. Efficiency of 289 

the two-part programs interacted with the selection method, number of recurrent 290 

selection cycles per year, and cost constraints. 291 
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Under constrained costs optimal cross selection had the highest efficiency of two-part 292 

programs; 48.2 with one cycle and around 40.0 with more than one cycle. Truncation 293 

selection of a large number of parents had an efficiency of 39.0 with one cycle, which 294 

decreased down to 9.9 with six cycles. Truncation selection of a small number of 295 

parents had and efficiency of 26.6 with one cycle, which decreased to 10.0 already 296 

with three cycles.  297 

Under unconstrained costs optimal cross selection had the highest efficiency of the 298 

two-part programs. It also maintained comparable level of efficiency to the 299 

conventional program with genomic selection in preliminary trials irrespective of the 300 

number of cycles. Efficiency of the truncation selection of a large and small number 301 

of parents decreased with the increasing number of cycles, but less than with 302 

constrained costs. 303 

Gain-diversity trajectory 304 

The two-part program with optimal cross selection delivered the largest genetic gain 305 

of all breeding programs and conserved the most genetic diversity of the two-part 306 

programs. This is shown in Fig. 4, which plots the 20 year trajectory of evaluated 307 

breeding programs through the plane of genetic mean and genic standard deviation. 308 

The two-part programs were ran with four cycles of recurrent selection. Separate 309 

trends of genetic mean, genic standard deviation, and genetic standard deviation 310 

against year are available in Supplementary material 3 (Fig S2.1, Fig S2.2, and Fig 311 

S2.3). The slope of change in genetic mean on change in genic standard deviation 312 

quantifies the efficiency of converting genetic diversity into genetic gain. 313 
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The two-part program with optimal cross selection had the best balance between the 314 

genetic gain achieved and genetic diversity lost irrespective of cost constraints. With 315 

four cycles of recurrent selection per year it achieved a genetic gain of 15.5 for a loss 316 

of 0.38 units of genic standard deviation (an efficiency factor of 41) under constrained 317 

costs and a genetic gain of 18.2 for a loss of 0.37 units of genic standard deviation (an 318 

efficiency factor of 49) under unconstrained costs. This efficiency was comparable to 319 

efficiency of the conventional program with genomic selection in preliminary trials, 320 

but with about two times larger genetic gain. The conventional program with 321 

phenotypic selection had larger efficiency (66), but about 2.5 times lower genetic 322 

gain. The two-part programs with truncation selection had a worse balance between 323 

genetic gain achieved and genetic diversity lost in particular when a small number of 324 

parents was used. 325 

Accuracy of genomic prediction 326 

Optimal cross selection maintained accuracy of genomic prediction better than 327 

truncation selection. This is shown in Fig. 5, which plots accuracy of genomic 328 

prediction in doubled-haploid lines (top) and population improvement component 329 

(bottom) over 20 years. The two-part programs were ran with four cycles of recurrent 330 

selection. The conventional programs with genomic selection had slowly increasing 331 

accuracy over the years due to increasing genomic selection training set. The two-part 332 

programs had nominally higher accuracy than conventional programs due to breeding 333 

program structure, i.e., double-haploid lines originated from the population 334 

improvement component and the product development component. This structure 335 

caused a rapid initial increase in accuracies as the two-part programs started. 336 
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However, soon after the initial increase, accuracies started to decrease under 337 

constrained costs; in particular for the truncation selection of a small number of 338 

parents, while optimal cross selection and truncation selection of a large number of 339 

parents maintained accuracy. Under unconstrained costs, accuracies decreased only 340 

with truncation selection of a small number of parents, while optimal cross selection 341 

maintained nominally higher accuracy than truncation selection of a large number of 342 

parents. 343 

Accuracies were lower in the population improvement component due to absence of 344 

breeding program structure. They were also more dynamic due to several cycles of 345 

recurrent selection per year and only one retraining of genomic selection model per 346 

year with newly added training data from the product development component. 347 

Optimum cross selection maintained higher accuracy than truncation selection with 348 

much less variability than truncation selection, in particular under constrained costs. 349 

Relationship with effective population size 350 

The realized effective population size of different breeding programs was non-linearly 351 

related with genetic gain achieved in 20 years and linearly related with efficiency. 352 

This is shown in Fig. 6, which plots both genetic mean after 20 years of selection and 353 

efficiency against realized effective population size. The two-part programs were ran 354 

with four cycles of recurrent selection. Genetic mean increased sharply with 355 

increasing effective population size up to around 10 and decreased thereafter. 356 

Efficiency increased linearly with effective population size over all breeding 357 

programs as well as within programs. The conventional programs had on average 358 
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affective population size of 60.5 with phenotypic selection, 27.8 with genomic 359 

selection in preliminary trials, and 14.2 with genomic selection in headrows. The two-360 

part programs with truncation selection had small effective population sizes; 2.6 with 361 

a small number of parents under constrained costs and 3.5 under unconstrained costs 362 

and 3.6 with a large number of parents under constrained costs and 7.2 under 363 

unconstrained costs. The two-part program with optimal cross selection had a large 364 

range of effective population sizes as controlled by penalty degrees. Largest genetic 365 

gain with optimal cross selection under constrained (unconstrained) costs was 366 

achieved with 40° (25°), which resulted in effective population size of 10.8 (11.3).  367 
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Discussion 368 

The results show that the two-part program with optimal cross selection delivered the 369 

largest long-term genetic gain by optimising efficiency of converting genetic diversity 370 

into genetic gain. This highlights five topics for discussion, specifically: i) balancing 371 

selection and maintenance of genetic diversity, ii) maintenance of genomic prediction 372 

accuracy, iii) effective population size and long-term genetic gain, iv) practical 373 

implementation in self-pollinating crops, and v) open questions. 374 

Balancing selection and maintenance of genetic diversity 375 

This study is an extension of our previous study (Gaynor et al. 2017), where we 376 

proposed a two-part breeding program for implementation of recurrent genomic 377 

selection. The key component in the two-part program is population improvement, 378 

which uses one or more cycles of recurrent genomic selection per year to rapidly 379 

increase the population mean. This improved germplasm is in turn used as parents of 380 

crosses in the product development component from which new lines are developed. 381 

Our previous study (Gaynor et al. 2017) assumed two cycles of population 382 

improvement per year, which delivered about 2.5 times more genetic gain than the 383 

conventional program with phenotypic selection. The main driver of this genetic gain 384 

is shortening of the breeding cycle with genomic selection, and there is scope for even 385 

shorter breeding cycle time by more aggressive use of greenhouses and speed 386 

breeding in the population improvement part (Christopher et al. 2015; Hickey et al. 387 

2017b; Watson et al. 2017). 388 
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In the present study we show that a more aggressive implementation of the two-part 389 

program, achieved through even shorter breeding cycle times, must manage the 390 

exploitation of genetic diversity. Preliminary analyses following the Gaynor et al. 391 

(2017) study indicated that increasing the number of cycles above two delivered 392 

larger genetic gain in short-term, but not in long-term. This is due to the requirement 393 

to decrease the per generation population size to maintain equal operating cost, which 394 

results in faster depletion of genetic diversity. A simple method to avoid fast 395 

depletion of genetic diversity is to use a sufficiently large number of parents with 396 

equalized contributions (Wright 1949). The present study assessed this simple method 397 

by comparing truncation selection of a small and a large number of parents. 398 

Increasing the number of parents delivered competitive genetic gain, but only up to 399 

three recurrent selection cycles per year. 400 

The two-part program with optimal cross selection can deliver higher long-term 401 

genetic gain than with truncation selection by optimising the efficiency of turning 402 

genetic diversity into genetic gain. While truncation selection of a large number of 403 

parents was successful in delivering higher long-term genetic gain than truncation 404 

selection of a small number of parents, it still rapidly reduced genetic diversity, which 405 

limited long-term genetic gain. This was particularly evident under constrained costs, 406 

but would also have eventually happened under unconstrained costs. Optimal cross 407 

selection was able to overcome rapid loss of genetic diversity through penalizing the 408 

selection of parents that were too related, which in turn enabled larger long-term 409 

genetic gain. These two results combined show that optimal cross selection optimises 410 
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the efficiency of converting genetic diversity into genetic gain than truncation 411 

selection.  412 

It was interesting to observe that the two-part program with optimal cross selection in 413 

population improvement had comparable efficiency to the conventional program with 414 

genomic selection in preliminary trials, yet it had about double the genetic gain. A 415 

further interesting observation was that the conventional program with phenotypic 416 

selection had the highest efficiency of turning genetic diversity into genetic gain. Both 417 

of these observation are in line with the selection theory. Namely, long-term genetic 418 

gain is a function of how well the within-family component of a breeding value, i.e., 419 

the Mendelian sampling term, is estimated (see Woolliams et al. 2015 and references 420 

therein). The conventional program with phenotypic evaluation or genomic selection 421 

in preliminary trials provide high accuracy of the Mendelian sampling term. However, 422 

the high efficiency of these two conventional programs was not due to a large genetic 423 

gain, but instead due to a small loss of genetic diversity for the genetic gain that was 424 

achieved. The two-part program achieved higher genetic gain, because it had much 425 

shorter breeding cycle than the conventional programs despite lower accuracy of the 426 

Mendelian sampling term. 427 

Optimal cross selection provides further advantages than just balancing selection and 428 

maintenance of genetic diversity. Comparison of optimal cross selection against 429 

truncation selection is in a sense extreme, because breeders do not perform truncation 430 

selection blindly. In practice breeders balance selection of parents from several 431 

crosses to maintain genetic diversity. However, the systematic, yet practical, approach 432 
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of optimal cross selection formalizes breeding actions and indicates decisions that a 433 

breeder might not consider. 434 

Use of a tool like optimal cross selection is important in the two-part program, 435 

because managing outbred germplasm in the population improvement component is 436 

different to managing germplasm of inbred lines. In particular, differences between 437 

the outbred genotypes are less pronounced and there is very limited amount of 438 

phenotypic data, if any, that breeders would use for selection and crossing amongst 439 

them. An example that shows the flexibility of the optimal cross selection is the 440 

observed trend of cyclical deviations in genetic mean and genic standard deviation in 441 

the population improvement component (Fig S2.1 and Fig S2.2). Those deviations 442 

were due to using some parents from the product development component in an 443 

optimised crossing plan for the population improvement component. Although these 444 

parents had lower genetic merit than the best population improvement candidates, 445 

they had sufficiently high merit and low coancestry with them. Optimal cross 446 

selection automatically exploited this situation to balance selection and maintenance 447 

of genetic diversity. The pattern of deviations is cyclical because we designed the 448 

simulation such that product development lines were considered for use in the 449 

population improvement component only once a year. There is however no reason for 450 

this limitation, i.e., optimal cross selection can design crossing plans that utilize any 451 

set of individuals at any time. 452 

Balancing selection and maintenance of genetic diversity is challenging, but the 453 

presented method provides an intuitive and practical approach. Since breeding 454 

programs compete for market share they have to select intensively, sometimes also at 455 
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the expense of genetic diversity. While breeders can boost genetic diversity by 456 

integrating other germplasm, this can be challenging for various reasons including 457 

cost. Therefore, methods to optimise efficiency of converting genetic diversity into 458 

genetic gain are desired. The approach with penalty degrees used in this study, due to 459 

Kinghorn (2011), is intuitive and practical. Namely, setting penalty degrees to 45° 460 

weighs selection and maintenance of genetic diversity equally, while setting penalty 461 

degrees to 0 °  ignores maintenance of genetic diversity, which is equivalent to 462 

truncation selection. Clearly, breeding programs are interested in small penalty 463 

degrees. However, as the results show this depends on the factors such as population 464 

size. Under constrained costs the optimal degrees that maximised genetic gain over 20 465 

years of selection were about 15° with one cycle of 640 selection candidates, about 466 

25° with two cycles of 320 selection candidates per cycle, up to 45° with six cycles of 467 

107 selection candidates per cycle. 468 

Maintenance of genomic prediction accuracy 469 

The efficacy of two-part program depends crucially on the level of genomic 470 

prediction accuracy in the population improvement part. In this study the initial 471 

training set for genomic selection consisted of 3,120 genotypes with associated yield 472 

trial data collected in the product development component. This set was expanded 473 

every year by adding 1,000 new genotypes with trial data, which in general ensured a 474 

high level of genomic prediction accuracy both for the conventional and two-part 475 

programs. However, this training set was not sufficient to maintain accuracy over the 476 

20 years when truncation selection with a small number of parents was used, in 477 

particular under constrained costs. The failure to maintain accuracy in that case can be 478 
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attributed to the too rapidly increasing genetic distance (drift) between training and 479 

prediction sets, which is a well-known property of genomic selection (Pszczola et al. 480 

2012; Clark et al. 2012; Hickey et al. 2014; Scutari et al. 2016; Michel et al. 2016). 481 

Proper management of genetic diversity constrained drift between product 482 

development and population improvement components. Constraining drift in turn 483 

reduced drop of genomic prediction accuracy in cycles of population improvement 484 

that had not had genomic selection model retrained. This was partially achieved with 485 

truncation selection of a larger numbers of parents, but optimal cross selection 486 

reduced the drop of accuracy even further. Similarly, Eynard et al. (2017) also found 487 

that optimal contribution selection provided a good balance between maintaining 488 

genetic gain, genetic diversity, and accuracy in a breeding program with recurrent 489 

genomic selection. 490 

Effective population size and long-term genetic gain 491 

In this study we compared different breeding programs over a 20 year period and 492 

referred to these results as long-term. While 20 years is a long-term period from the 493 

practical perspective of a breeder, it is not long-term from population/quantitative 494 

genetics perspective. This is evident from observed strong non-linear relationship 495 

between effective population size and genetic gain after 20 years. Namely, the theory 496 

predicts a positive linear relationship between effective population size and long-term 497 

response to selection for a polygenic trait (Robertson 1960), even in the presence of 498 

epistasis (Paixão and Barton 2016). Therefore, the observed highest genetic gain with 499 

effective population size of about 10 suggests that the evaluated period is rather short- 500 
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to medium-term. The efficiency had on the other hand a positive linear relationship 501 

with effective population size, suggesting that this metric gives a better indication of 502 

the true long-term genetic gain. In fact, efficiency measures genetic gain (in units of 503 

initial genetic standard deviation) when all genetic diversity is depleted. The two-part 504 

programs with optimal cross selection can be setup such that it delivers either the 505 

highest genetic gain after 20 years of selection or the highest efficiency (true long-506 

term genetic gain), though the balance between selection and maintenance of genetic 507 

diversity has to be different for the two objectives. Given that breeding programs 508 

compete for market share, the hope is that tools like optimal cross selection help 509 

breeders to balance intensive selection and maintenance of genetic diversity, while 510 

mutation generates new genetic diversity to sustain long-term breeding. 511 

Practical implementation in self-pollinating crops 512 

This study assumed a breeding program that can perform several breeding cycles per 513 

year. Following our previous work (Gaynor et al. 2017), we simulated breeding 514 

program of a self-pollinating crop such as wheat. While speed breeding protocols are 515 

continually improved (e.g., Christopher et al. 2015; Hickey et al. 2017b; Watson et al. 516 

2017), the explored number of cycles per year (from one to six) should be put into a 517 

context of a particular crop. For example, speed breeding has achieved six cycles per 518 

year in spring wheat, but the number of cycles in winter wheat would be less due to 519 

the requirement for vernalisation. Logistical barriers relating to genotyping may 520 

further limit the number of achievable cycles per year. 521 
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An additional assumption was that the population improvement component can be 522 

easily implemented. Our previous study assumed the use of a hybridizing agent to 523 

induce male sterility and open-pollination with pollen from untreated plants (Gaynor 524 

et al. 2017). Optimal contribution selection without cross allocation (Meuwissen 525 

1997) might be applied in such a system by using pollen from different individuals 526 

that is proportional to their optimised contributions. Here we opted for a manual 527 

crossing system based on either truncation selection or optimal cross selection of 528 

parents to develop a method that can be used with both approaches. Whichever 529 

approach we use, recurrent genomic selection is constrained by the amount of seed 530 

per plant, because this imposes a limit on selection intensity. A way to bypass this 531 

limit is to increase the amount of seed with selfing. In the context of genomic 532 

selection this has been termed as the Cross-Self-Select method in comparison to the 533 

Cross-Select method used on F1 seed (Bernardo 2010). We have compared these two 534 

methods (see Supplementary material 3) and observed that exposing more genetic 535 

diversity with the Cross-Self-Select method enabled higher long-term genetic gain at 536 

comparable costs and time than with the Cross-Select method, while the genetic 537 

diversity trends were comparable. The difference in long-term genetic gain between 538 

the two methods was about 10% for optimal cross selection and truncation selection 539 

of a large number of parents and about 25% for truncation selection of a small number 540 

of parents. This is expected, because genetic diversity was limiting with the latter 541 

program and exposing more genetic diversity through selfing had a bigger effect. It is 542 

up to a breeder to choose between exploiting a larger number of cycles with the 543 

Cross-Select method or a larger variance with the Cross-Self-Select method. Costs 544 

can be challenging when genotyping a large number of candidates with the Cross-545 
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Self-Select method, though this can be mitigated by imputation and/or genotyping-by-546 

sequencing (Hickey et al. 2015; Jacobson et al. 2015; Gorjanc et al. 2017a, b). 547 

Open questions 548 

While the presented two-part program with optimal cross selection delivered larger 549 

long-term genetic gain and a more efficient breeding program, there is room for 550 

further improvement. We initially expected larger difference in long-term genetic gain 551 

between optimal cross selection and truncation selection. There are at least two 552 

reasons for small difference between the two selection methods. First, the simulation 553 

encompassed a whole breeding program with a sizeable initial genetic variance that 554 

did not limit selection for the first few years, which means that maintenance of 555 

genetic diversity was not important initially. Had we extended the simulation period, 556 

the difference would have been larger, but even further removed from today. That 557 

said, it is unknown where on the trajectory of exhausting genetic variance many 558 

breeding programs actually are. Perhaps they are as we simulated or perhaps they are 559 

less or further along the trajectory. Secondly, it is unclear how to optimally maintain 560 

genetic diversity, specifically which genetic diversity should be preserved and which 561 

discarded. In this study we operationally measured genetic diversity in the optimal 562 

cross selection with the identity-by-state based coancestry, which measure genome-563 

wide diversity, but are agnostic to traits under selection. Perhaps coancestry should 564 

include information about which alleles are more desired so that focus is on avoiding 565 

the loss of these alleles and not any alleles. This is a subject of our future research.  566 
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Conclusions 567 

We evaluated the use of optimal cross selection to balance selection and maintenance 568 

of genetic diversity in a two-part plant breeding program with rapid recurrent 569 

genomic selection. The optimal cross selection delivered higher long-term genetic 570 

gain than truncation selection. It achieved this by optimising efficiency of converting 571 

genetic diversity into genetic gain through reducing the loss of genetic diversity and 572 

reducing the drop of genomic prediction accuracy with rapid cycling. With four 573 

cycles per year optimal cross selection had 15-78% higher genetic gain and 2-4 times 574 

higher efficiency than truncation selection. Our results suggest that breeders should 575 

consider the use of optimal cross selection to assist in optimally managing the 576 

maintenance and exploitation of their germplasm. 577 
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Table 1: Per cycle characteristics of the population improvement component by 9 

number of recurrent selection cycles per year (number or crosses per cycle, 10 

number of selection candidates per cycle, and minimum or maximum number of 11 

parents used per cycle) 3 12 

Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the 13 

product development component that implicitly also performs population 14 

improvement, while the two-part strategy includes an explicit population 15 

improvement component with recurrent selection; the dashed line indicates 16 

initialization of the population improvement component; N1 and N2 correspond to 17 

the number of lines in Table 1) 4 18 

Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against 19 

the number of recurrent selection cycles per year in the two-part program by 20 

selection method and cost constraints (mean and 95% confidence interval). 21 

Conventional programs did not use recurrent selection, but are shown for 22 

comparison. Labels denote average penalty degree of optimum cross selection 23 

that delivered the highest long-term gain 5 24 
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 2 

Fig. 3: Efficiency against the number of recurrent selection cycles per year in the 25 

two-part program by selection method and cost constraints (mean and 95% 26 

confidence interval). Conventional programs did not use recurrent selection, but 27 

are shown for comparison. Labels denote average penalty degree of optimum 28 

cross selection that delivered the highest long-term gain 6 29 

Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid 30 

lines over 20 years of selection by breeding program and cost constraints. 31 

Individual replicates are shown by thin lines and a mean regression with a time-32 

trend arrow. The two-part programs used four recurrent selection cycles per year33 

 7 34 

Fig. 6: Genetic mean after 20 years of selection and efficiency against realized 35 

effective population size by breeding program and cost constraints. The two-part 36 

programs used four recurrent selection cycles per year. Results for the optimal 37 

cross selection are shown for all evaluated penalty degrees (1, 5, 10, …, 85). 9 38 

  39 
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 3 

Table 1: Per cycle characteristics of the population improvement component by number 40 

of recurrent selection cycles per year (number or crosses per cycle, number of selection 41 

candidates per cycle, and minimum or maximum number of parents used per cycle) 42 

   #Parents 

#Cycles #Crosses #Candidates Min Max 

  1 64 640 32 128 

  2 32 320 16   64 

  3 22 214 12   44 

  4 16 160   8   32 

  5 13 128   8   26 

  6 11 107   6   22 

43 
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 44 

Fig. 1: Scheme of breeding strategies (the conventional strategy is based on the product 45 

development component that implicitly also performs population improvement, while 46 

the two-part strategy includes an explicit population improvement component with 47 

recurrent selection; the dashed line indicates initialization of the population 48 

improvement component; N1 and N2 correspond to the number of lines in Table 1) 49 
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 51 

Fig. 2: Genetic mean of doubled-haploid lines after 20 years of selection against the 52 

number of recurrent selection cycles per year in the two-part program by selection 53 

method and cost constraints (mean and 95% confidence interval). Conventional 54 

programs did not use recurrent selection, but are shown for comparison. Labels denote 55 

average penalty degree of optimum cross selection that delivered the highest long-term 56 

gain 57 
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 59 

Fig. 3: Efficiency against the number of recurrent selection cycles per year in the two-60 

part program by selection method and cost constraints (mean and 95% confidence 61 

interval). Conventional programs did not use recurrent selection, but are shown for 62 

comparison. Labels denote average penalty degree of optimum cross selection that 63 

delivered the highest long-term gain 64 
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 66 

Fig. 4: Change of genetic mean and genic standard deviation of doubled-haploid lines 67 

over 20 years of selection by breeding program and cost constraints. Individual 68 

replicates are shown by thin lines and a mean regression with a time-trend arrow. The 69 

two-part programs used four recurrent selection cycles per year 70 
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 72 

 73 

Fig. 5: Accuracy of genomic prediction in doubled-haploid lines (top) and population 74 

improvement component (bottom) over 20 years of selection by breeding program 75 

and cost constraints (mean and 95% confidence interval). The two-part programs used 76 

four recurrent selection cycles per year  77 
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 78 

Fig. 6: Genetic mean after 20 years of selection and efficiency against realized effective 79 

population size by breeding program and cost constraints. The two-part programs used 80 

four recurrent selection cycles per year. Results for the optimal cross selection are 81 

shown for all evaluated penalty degrees (1, 5, 10, …, 85). 82 
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