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Catalytic potential and disturbance rejection of
glycolytic kinases in the human red blood cell

James T. Yurkovich’?T, Miguel A. Alcantar’!, Zachary B. Haiman', Bernhard O. Palsson':2:3*

Abstract— The allosteric regulation of metabolic enzymes
plays a key role in controlling the flux through metabolic
pathways. The activity of such enzymes is traditionally de-
scribed by allosteric rate laws in complex kinetic models of
metabolic network function. As an alternative, we describe the
fraction of the regulated enzyme that is in an active form by
developing a detailed reaction network of all known ligand
binding events to the enzyme. This fraction is the fundamental
result of metabolic regulation as it represents the ‘“tug of war”
among the various regulators and substrates that determine
the utilization of the enzyme. The active fraction corresponds
to the utilization of the catalytic potential of the enzyme. Using
well developed Kinetic models of human red blood cell (RBC)
glycolysis, we characterize the catalytic potential of its three key
kinases: hexokinase (HEX), phosphofructokinase (PFK), and
pyruvate kinase (PYK). We then compute their time-dependent
interacting catalytic potentials. We show how detailed kinetic
models of the management of the catalytic potential of the
three kinases elucidates disturbance rejection capabilities of
glycolysis. Further, we examine the sensitivity of the catalytic
potential through an examination of existing personalized RBC
models, providing a physiologically-meaningful sampling of the
feasible parameter space. The graphical representation of the
dynamic interactions of the individual kinase catalytic potential
adjustment provides an easy way to understand how a robust
homeostatic state is maintained through interacting allosteric
regulatory mechanisms.

INTRODUCTION

The human red blood cell (RBC) has historically been the
target of complex kinetic model building of its metabolism
due to its relative simplicity and the vast amounts of data
and information available on its biochemistry and physiology.
RBCs lack cellular compartments (e.g., nuclei, mitochon-
dria) [1] and therefore certain cellular functions, such as
transcriptional and translational regulation and the ability to
use oxidative phosphorylation to produce energy [2]. As a
result, glycolysis is the primary source of energy generation
for the RBC, a pathway that undergoes allosteric regulation
at major control points. Glycolytic ATP production is thus
largely directly dependent upon the rate of ATP utilization.

Mathematical models have been used to study the dynamics
of RBC metabolism since the 1970s [3]. Constraint-based
modeling methods have been used to explore the mechanisms
underlying cellular metabolism [4], [5], and specialized

I Department of Bioengineering, University of California, San Diego, La
Jolla, CA

?Bioinformatics and Systems Biology Program, University of California,
San Diego, La Jolla, CA

3Department of Pediatrics, University of California, San Diego, La Jolla,
CA

TEqual contribution

*palsson@ucsd.edu

methods have been developed that allow for the study
of system dynamics [6]-[8]. Kinetic models represent an
approach that has the potential to truly capture the temporal
dynamics at small time scales [9]. The first whole-cell kinetic
model of RBC metabolism was published in the late 1980s
[10]-[13], with other such models produced since then [14],
[15]. More recently, enzyme modules have been introduced
and used to explicitly model detailed binding events of
ligands involved in allosteric regulation as an alternative to the
traditional use of allosteric rate laws [16]. Such a fine-grained
view of the activity and state of a regulated enzyme opens
up many new possibilities in understanding the metabolic
regulation that results from complex interactions of regulatory
signals, as well as a way to explicitly represent biological
data types.

Historically, the primary way to visualize the output from
a kinetic model is to plot the time profiles of individual
metabolite concentrations and enzymatic reaction rates. With
the formulation of enzyme module models, we need to explore
different ways of visualizing network dynamics because
a different point of view brings about new insights, like
Bode plots [17] or root loci [18] did in the early days
of classical control theory. Enzyme modules allow for the
explicit computation of the fraction of the regulatory enzyme
in an active state that generates the reaction flux. Similar to
how a controlled valve regulates water flow, the collective
action of all the ligands binding to the enzyme—through the
computation of the active enzyme fraction—fundamentally
represent its regulation.

In this study, we use enzyme modules to model hexokinase
(HEX), phosphofructokinase (PFK), and pyruvate kinase
(PYK), the three major regulation points in RBC glycolytic
energy generation. We compute the catalytic potential of
these kinases as a measure of an enzyme’s capacity to
influence the rest of the network, using the enzyme modules
individually. We analyze the response of each enzyme module
to perturbations in ATP utilization, simulating the impact of
various physiological stresses on the RBC [19]-[21]. We then
integrate all three enzyme modules into a single model of
glycolysis and show that increasing the amount of regulation
improves the disturbance rejection capabilities of the system
to such perturbations. Finally, we elucidate how a graphical
representation of the three kinase catalytic potentials leads to
an insightful way to visualize the state of RBC glycolysis.
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Fig. 1. Overview of PFK mechanism and simulation results for PFK module in glycolysis only. (A) The structure of one of two PFK homomers along

with the catalytic mechanism. The predicted allosteric binding sites for AMP/ATP are highlighted. (B) Concentration and reaction rate profiles for PFK
regulatory module in glycolysis. The concentration profiles shown are for a 50 % increase in ATP utilization. (C) Phase portrait showing the catalytic
potential of PFK. Two perturbations are shown: (1) a 50 % increase in ATP utilization, and (2) a 15 % decrease in ATP utilization. Roman numerals
indicate comparisons with the steady-state: (I) more enzyme in active form and higher energy charge; (II) more enzyme in active form and lower energy;

(III) more enzyme in inactive form and lower energy charge; and (IV) more enzyme in inactive form and higher energy charge.

RESULTS

Phosphofructokinase

PFK, often called the “pacemaker” of glycolysis [22], plays
a major role in determining glycolytic flux. PFK converts
fructose 6-phosphate (F6P) into fructose 1,6-bisphosphate
(FDP). Here, we use a simple mechanism (Fig |I|A): PFK
must first bind to ATP, forming a complex that then binds

F6P and converts it to FDP, producing ADP in the process.

The four binding sites operate independently, i.e. they do
not “cooperate.” The catalytic activity of PFK is controlled
through allosteric regulation by AMP and ATP (Fig [I). AMP
and ATP bind to an allosteric site, distal to the catalytic site,
inducing a conformational change that modulates the activity
of PFK.

For an enzyme allosterically regulated through effector
molecules, we can define a quantity that relates the amount

of enzyme in the active form to the total amount of enzyme.

This catalytically active fraction (fa) is given by

S oRi+ Ria+ Rias
Etotal

fa= (1)
where n is the number of enzymatic binding sites, R; is
the unbound enzyme in the active state (i.e., not bound to
inhibitors), I?; o is the enzyme bound to the cofactor, R; as
is the enzyme bound to the substrate and cofactor, and E' a1
is the total amount of enzyme. The subscript ¢ represents the
amount of activators bound to allosteric sites; for tetrameric
structures like PFK and PYK, 7 ranges between 0 and 4 [23],
[24].

In order to characterize the system response to perturba-
tions, we modulated the ATP utilization by adjusting the
rate of reaction for ATP. We modeled two perturbations that
have been previously observed to fall within a physiologically
feasible response: a 50% increase and a 15% decrease in
ATP utilization [19]-[21]. We modeled these perturbations
by modulating the rate of reaction for the hydrolysis of ATP
(see Methods for full details). Increasing this rate decreases
the amount of available ATP and ADP, resulting in a decrease
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Fig. 2. Classical representation of PFK simulation results for full kinase regulatory model. (A) Concentration time profiles shown for a 50% increase in

ATP utilization. (B) Reaction rate time profiles for the reaction rate of PFK.

in the rate of PFK (Fig[IB). Conversely, lowering this value
increases the rate of the PFK reaction. For both perturbations,
the final rate value eventually returns to the same as the
unperturbed system. We were interested in characterizing
the enzymatic response to these energetic perturbations. The
energetic state of a cell can be measured using the energy
charge [25], which relates the amount high energy bonds
available in the adenosine phosphate pool. The energy charge
is given by:

[ATP] + L[ADP]
[ATP] + [ADP] 4 [AMP]

where [AMP], [ADP], and [ATP] represent the concentra-
tions of those respective metabolites. To evaluate how the
regulatory state of an enzyme is related to the energetic
state of the system, we define the ratio of active to total
enzyme as a function of the energy charge. We term this ratio
the “catalytic potential” of an enzyme because it provides a
representation of an enzyme’s affect on the rest of the system
and its ability to maintain the homeostatic state.

We characterized our model of glycolysis with an enzyme
module detailing the regulation of PFK, observing that PFK
corrects for deviations in the energy charge by altering the
amount of enzyme in the relaxed state (Fig [T|C). We observed
an inverse relationship between the energy charge and the
catalytically active (relaxed) enzyme fraction which shows
that an increase in ATP would inhibit PFK activity by shifting
more enzyme into the catalytically inactive (tense) state.

energy charge =

2

Hexokinase and pyruvate kinase

Having used an enzyme module to explicitly model the
regulation of PFK, our goal was to expand our model
to include the other glycolytic kinases (HEX and PYR).
We constructed enzyme modules for both enzymes using
mechanisms that allowed the substrate to bind cofactors in any
order; hemoglobin was added to the model for HEX because it
is necessary to model regulatory effects (see Methods for full
details). We validated each module individually by performing
the same ATP utilization perturbation (i.e., 50% increase

and 15% decrease). The catalytic potential observed for the
HEX module was in agreement with previously observed
experimental evidence [26]. The PYK module exhibited a
direct relationship between f and energy charge, conflicting
with the inverse relationship previously observed in vitro
[26]. There are several factors that could account for this
discrepancy that focus on the scale and environmental factors
of our model in comparison to the literature. The networks
used in previous studies were on a much smaller scale than
our network, negating the influence of other enzymes on PYK
activity. Additionally, these assays did not contain FDP, which
is a known activator of PYK. In our model, increasing the
energy charge led to an initial increase in FDP concentration,
which corresponded to an increase in the amount of PYK in
the catalytically active form.

Full kinase regulatory model (FKRM)

Once we had validated each kinase module individually,
we built an expanded model of glycolysis that included all
three enzyme modules and hemoglobin; we will refer to this
model as the “full kinase regulatory model” (FKRM). We
first calculated the concentration profiles for PFK (Fig [2A),
observing higher FDP levels than with just the PFK module
(Fig [IB). This effect is likely due to the inclusion of the
PYK module, in which FDP is an allosteric activator. We
also examined the rate profile of PFK (Fig Q]B), which was
inverted compared to that of the PFK model only (Fig [IB).
This inversion arose from the addition of the HEX module,
demonstrating the interplay among the various enzymes within
a network.

In order to better capture this interplay among enzymes,
we constructed phase portraits for the fraction of catalytically
active enzyme (f) for each combination of enzyme modules
in the FKRM (Fig [3]A). These phase portraits show that as a
greater fraction of PFK entered a more catalytically active
state, a greater fraction of HEX become catalytically inactive;
a similar behavior was observed for the PFK-PYK pair. We
observed that HEX and PYK moved in tandem, with both
enzymes moving into catalytically active or inactive states
together. This behavior is likely due to the fact that these
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Fig. 3.

Characterization of full kinase regulatory model. (A) Phase portraits displaying pairwise relationships of the catalytic potentials of two kinases. (B)

Catalytic potential plots for each of the enzyme modules in the full kinase regulatory model. Roman numerals indicate comparisons with the steady-state: (I)
more enzyme in active form and higher energy charge; (II) more enzyme in active form and lower energy; (III) more enzyme in inactive form and lower
energy charge; and (IV) more enzyme in inactive form and higher energy charge.

enzymes represent the boundaries of the system and therefore
are linked in order to maintain system stability. Finally,
we constructed catalytic potential plots for each enzyme
module in the FKRM (Fig BB). We observed that HEX
and PYK exhibited primarily direct relationships between
energy charge and the fraction of catalytically active enzyme,
while we observed an inverse relationship between these two
quantities for PFK. This inverse relationship observed for PFK
recapitulated the previously reported relationship between
catalytically active enzyme fraction and energy charge [27].

Disturbance rejection capabilities

The inclusion of feedback and regulation mechanisms im-
proves the disturbance rejection capabilities of a system [28].
For biological systems, these regulatory effects help organisms
maintain the homeostatic state. Having characterized our
individual enzyme modules and the FKRM, our next goal
was to investigate (1) the capacity for each of these models
to maintain the homeostatic state and (2) how examining
the catalytic potential helped elucidate these behaviors. We
modeled a 50% increase in ATP utilization and calculated the
total ATP flux in the network (i.e., total flux through ATP-
producing reactions minus total flux through ATP-consuming

reactions) for each of the models we constructed (Fig [).
All systems were able to retain to a stable homeostatic state
following the perturbation (Fig [4JA). We calculated the sum
of squared error (SSE) for each model in order to quantify
the disturbance rejection capabilities of each model (Fig
EIA). As expected, the models with little or no regulation
performed the worst, while increased regulation generally
lowered the SSE. The base glycolytic model with the PYK
module performed the worst, while the model containing the
PFK and HEX modules with hemoglobin performed the best.
The final steady-state values for the energy charge differed
with the inclusion of hemoglobin in the model, although the
magnitude of these differences was small (Fig @B).

Rather than perform a sensitivity analysis by randomly
perturbing parameters in the kinetic equations, we instead
chose to examine the disturbance rejection capabilities of
personalized models constructed from measurements obtained
from multiple individuals; these models represent a more
realistic sampling of physiologically-feasible model param-
eters. We constructed an individual model using glycolytic
metabolite concentrations and equilibrium constants for nine
individuals from Bordbar et al. [15]. We performed our
sensitivity analysis using the model that includes a PFK
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module and hemoglobin due to simplicity for numerical
simulation. The general qualitative trend for the catalytic
potential plot was similar to the one using literature values
(Fig [IIC and Fig [3B), but initial f5 values were significantly
lower in the personalized models (Fig[5A,B). In particular, the
amount of active PFK for each individual reached a saturation
point that was higher than the initial steady-state value in
order to compensate for the increase in ATP utilization before
returning to a final steady-state value. While we observe
that there is little difference among the rate profiles (Fig
BIC), we observe much greater differences in the catalytic
potential plots (Fig [5]A,C) and energy charge profiles (Fig
Ep). Notably, the model for Individual #1 exhibited a much
different response than the other eight personalized models
(Fig E]A,B,D). Upon further examination, we determined that
this difference stemmed from the fact that the rate constants
for the binding of ATP and F6P to PFK were outliers with
over 99% confidence according to the Dixon’s @) test (see
Methods for full details); these were the only rate constants
that were deemed to be outliers out of all enzymatic reactions.

DISCUSSION

The ability to mechanistically model cellular metabolism
allows for the construction of predictive physiological models.
However, the mechanistic results obtained from time-course
plots can complicate the interpretation and analysis of
systems-wide responses to relevant perturbations. To help
provide a better method of elucidating this behavior, we
built modularized glycolytic models with enzymes serving as
regulators. These models were then validated against existing
empirical data to understand the relationship between the
catalytically active enzyme fraction and energy charge—the
catalytic potential of an enzyme. Visualizing the catalytic
potential allowed for the analysis of important systems
behaviors. The results presented here have several primary
implications.

First, we have studied glycolysis from a perspective in
which enzymes are regulators. Individual kinases serve as

range.

tuning dials for the system. Adjusting these dials changes
the response of the system, as demonstrated by examining
individual parameterization of personalized models (Fig [3).
Through an examination of the catalytic potential of PFK,
we were able to gain insight into how the regulator within a
model is tuned in different individuals in order to maintain
homeostasis (Fig EIA,B,D), a behavior that was not discernible
through more typical metrics like rates of reaction (Fig [5C).
While the present results are limited by the scope of the model
(i.e., only glycolysis), expanding this framework to larger-
scale models of RBC metabolism could provide similarly
interesting results.

Second, the disturbance rejection capabilities of the models
improved with the incorporation of additional regulatory
mechanisms (Fig f]A). We simulated physiologically-relevant
perturbations, observing that systems with regulation are
improved over those with less regulation (i.e., fewer modules)
as shown by quantifying the total deviation of the model
output from the setpoint (i.e., the SSE). It is notable that
models with hemoglobin and either HEX or PFK performed
well despite not accounting for all regulatory mechanisms,
indicating that kinetic models that do not account for the
regulation in these important steps in glycolysis fail to capture
important behaviors that affect the rest of the network. It
is likely that the vast improvement of those two models
over the model with PYK and hemoglobin is due to the
fact that PYK is one of the last steps in glycolysis and
therefore has a smaller impact on the rest of the system.
We further investigated the disturbance rejection capabilities
of the PFK and hemoglobin model through a sensitivity
analysis that used physiologically-relevant parameterizations
instead of randomly-distributed parameter sets. This analysis
helped elucidate subtle differences among individuals that
were accessible only by studying the systems-level effects of
regulation.

Finally, we have shown that the catalytic potential is
a metric that can provide additional insight into how
metabolic networks maintain a homeostatic state following
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Fig. 5. Disturbance rejection capabilities of personalized glycolytic models with a PFK module and hemoglobin. (A) Superimposed catalytic potential plots

for all personalized models. (B) Catalytic potential plots for each individual; the intersection of the gray lines denotes the initial steady-state value at time
zero and helps show the differences among the population. (C) The net rate of ATP usage (i.e., total flux through ATP-producing reactions minus total flux
through ATP-consuming reactions) is shown as a function of time; the inset zooms in on the 0 to 20 hour time range. The number in parentheses represents
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physiologically-relevant perturbations. Using a small-scale
model that explicitly accounted for the regulatory mechanisms
of the three glycolytic kinases, we investigated the interplay
between these three enzymes. When we applied this metric
to examine the response of personalized models to ATP
utilization perturbations, we observed differences that were
not apparent simply from the rate profile. Upon further
investigation, we were able to hypothesize that the catalytic
potential for that individual was different than the others due
to differences in the binding of ATP and F6P to PFK. Thus,

the catalytic potential helped provide insight into how subtle
differences among individuals can lead to differing systemic
responses to perturbations that push the system away from
the homeostatic state.

Red blood cells are networks consisting of well-studied
metabolic pathways and their associated metabolites. However,
it is often difficult to examine individual enzymes in vivo
without using small scale assays [26], [27], [29], [30]. These
assays are not comprehensive and, as a result, may not provide
an accurate depiction of the interplay between multiple
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regulatory enzymes in a network like glycolysis. New methods
of visualizing this behavior—such as the catalytic potential
plot introduced here—can lead to new insights and discoveries.
Viewing enzymes as regulators through which we can tune
the system response opens the door for us to investigate what
the optimal state might be and how that state helps maintain
homeostasis.

METHODS

All calculations were performed in Mathematica 11.1 [31].
Simulations were conducted using the Mass Action Stoichio-
metric Simulation (MASS) Toolbox kinetic modeling package
(https://github.com/opencobra/MASS-Toolbox). Details for
formulating a MASS model are found in Jamshidi et. al. [32].
All models used are available upon request.

Glycolysis and the Rapoport-Luebering shunt

The base glycolysis network included all 10 glycolytic
enzymes and lactate dehydrogenase. Reaction rates were
defined using mass action kinetics, representing enzyme
catalysis as a single step. These simplified reactions were
systematically replaced with enzyme modules following the
procedure outlined by Du et al. [16]. Additionally, a phosphate
exchange reaction was incorporated into the glycolytic net-
work utilizing parameters obtained from Prankerd et al. [33].
Similarly, the Rapoport-Luebering shunt was included in some
models to account for the presence of hemoglobin, whose
binding to oxygen is regulated by 2,3-diphosphoglycerate
(2,3-DPG). Incorporation of this shunt was accompanied by
parameter changes as previously described [34].

Enzyme module construction

Regulation was manually incorporated into the enzyme re-
actions. Initial conditions from the glycolysis and hemoglobin
MASS toolbox example data were used in conjunction with
equilibrium constants which were obtained from from [35],
[36]. These values were subsequently utilized to solve for
new kinetic parameters. This procedure (outlined in [34])
adheres to the formula:

dz

dt
where dZ'/dt is the concentration rate of change with respect
to time for metabolites, S is the stoichiometric matrix, and ¥
is a vector containing reaction fluxes.

We constructed a total of ten different models with varying
amounts of regulation, spanning from the base glycolytic
model with no enzyme modules (and therefore no regulation)
to the FKRM with three enzyme modules and the Rapaport-
Luebering shunt. The remaining models represented each
combination of the three kinase modules. Enzyme module
incorporation was accompanied by the deletion of the original
single-step reaction in order to avoid redundant reactions.
Stability for all systems was verified by simulating the
network and ensuring that a steady-state point was found
for all metabolites.

=S.7=0 3)

Hexokinase (HEX): HEX (EC 2.7.1.1) was modeled as a
monomer to account for the fact that it contains only one
active catalytic site. The previously specified mechanism
was chosen to match that used by [16] because all kinetic
parameters were obtained from this source. A hemoglobin
module is necessary to include when the HEX module is
included because it affects the level of 2,3 DPG, which serves
as a regulatory molecule for HEX. The HEX module consisted
of the following chemical reactions:

HEX + ATP = HEX-ATP

HEX + GLC = HEX-GLC

HEX + G6P = HEX-G6P

HEX + ADP = HEX-ADP
HEX-ATP + GLC = HEX-ATP-GLC
HEX-GLC 4+ ATP = HEX-ATP-GLC

HEX-GLC + 23DPG = HEX-GLC-23DPG
HEX-ATP-GLC = HEX + ATP + GLC

where the bold text represents the enzyme and dashes show
bound species.

Phosphofructokinase (PFK): PFK (EC 2.7.1.11) was
modeled as a homotetramer to account for its four catalytic
and allosteric binding sites [37]. The previously specified
mechanism was chosen to match that used by [16] because
all kinetic parameters were obtained from this source. The
PFK module consisted of the following chemical reactions:

PFK + ATP = PFK-ATP
PFK-ATP + F6P = PFK-ATP-F6P
PFK-ATP-F6P — PFK + ADP + FDP + H

where the bold text represents the enzyme and dashes show
bound species. Additional reactions were included to account
for the conversion between the tight and relaxed state, as
well as the effector molecule binding.

Pyruvate kinase (PYK): PYK (EC 2.7.1.40) was modeled
to include allosteric regulation. Additional reactions were also
included to account for the equilibration of both enzymes
between the relaxed (R) and tense (T) state [24]. Additionally,
PYK was modeled as a tetramer to account for the four
catalytic and allosteric sites on each enzyme. Dissociation
constants were obtained from [12] and rate constants were
solved using equation 3. The PYK module consisted of the
following chemical reactions:

PYK + PEP = PYK-PEP
PYK + ADP = PYK-ADP
PYK-ADP + PEP = PYK-ADP-PEP
PYK-PEP + ADP = PYK-ADP-PEP
PYK-ADP-PEP — PYK + ADP + PEP + H

where the bold text represents the enzyme and dashes show
bound species.
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Personalized models

Personalized models were constructed by replacing all
intracellular glycolytic metabolite concentrations and equilib-
rium constants with values reported by Bordbar et al. [15].
New pseudo-elementary rate constant (PERC) values were
calculated using the personalized concentration data. The
Rapoport-Luebering shunt was added to the RBC network
and PFK enzyme modules were created for all individuals
using the resulting concentration values after the addition of
the Rapoport-Luebering pathway. Due to numerical issues
when attempting to simulate, we only used 9/24 of the models
available in [15]. Individuals #1-9 in our study correspond
to individuals 2, 4, 5, 6, 7, 8, 10, 16, and 18, respectively,
from [15].

To identify outliers within the reaction PERCs compared
with the other personalized models, we performed a Dixon’s
Q test [38]:

gap
range

Q=

4)

where the gap is the absolute difference between the point
in question and the nearest value, and the range is the range
of all values. For a set with nine samples, we can be 99%
confident that a point is an outlier if the @) value is greater
than 0.598; the @ values for the ATP and F6P binding steps
had @ values of 0.84257 and 0.73164, respectively.

System analysis

Rate pools for enzymes were defined as the rate of at
which enzyme produced product. This was accomplished by
defining a pool from the product’s ODE consisting solely of
the terms contributing to product formation. In other words:

rateenzyme = E Vformation (5

where Vgormation represents the forward rate of the enzyme
reaction and possesses units of mmol/L -s. Defining the
rate pools in this manner neglected effects of reversible
reactions contributing to the formation of product. Thus, this
pool quantified the actual catalytic activity of the enzyme of
interest.

Simulating ATP utilization perturbations

In order to mimic a physiologically-relevant perturbation
away from the homeostatic state, we simulated a 50% increase
in ATP utilization and a 15% decrease in ATP utilization [19]—
[21]. Changes in ATP utilization were applied by changing
the rate (karp) associated with ATP hydrolysis:

ATP

ATP + H,0 22" ADP + P, ©)

We calculated the sum of squared error (SSE) for each model
in order to quantify the total deviation of the output from its
setpoint, which is zero. The resulting quantity (i.e., the SSE)
is compared between models, with a smaller value indicating
better disturbance rejection capabilities.
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