

1

2

3

4

5

6

On the Impact of Interhemispheric White Matter:

7 Age, Executive Functioning, and Dedifferentiation in the Frontal Lobes

8

9

10 Abigail B. Waters (Corresponding Author), awaters2@su.suffolk.edu, 703-975-3449 ^a

11 Kayle S. Sawyer, kslays@bu.edu, 617-875-5967 ^{b, c, d, e}

12 David A. Gansler, dgansler@suffolk.edu, 617-305-6397 ^a

13

14 a. Department of Psychology, Suffolk University, Boston, MA, USA

15 b. Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston,

16 MA, USA

17 c. VA Boston Healthcare System, Boston, MA, USA

18 d. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,

19 Harvard University, Charlestown, MA, USA

20 e. Sawyer Scientific, LLC, Boston, MA, USA

21

22 **Submission date:** 11/28/2017

23 **Counts:** abstract (248); text (3500); references (55); tables (4); figures (2); pages (13)

24

1

Acknowledgements

2 The authors would like to acknowledge the following people and organizations for their
3 contributions:

4 The NKI-Rockland Sample Initiative for providing the data used in these analyses (data
5 collection funded through NIMH BRAINS R01MH094639-01).
6 The Suffolk University Psychology Department for their support of doctoral students and David
7 Gansler's Lab, and the contributions of graduate student Mrs. Sarah Levy.

8

Conflicts of Interest

9 The authors declare that they have no conflicting interests. This research did not receive any
10 specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

11

1

Abstract

2 **Introduction:** In middle age, declines in executive functioning (EF) are associated with
3 decrements in the quality and/or quantity of white and grey matter. Recruitment of homologous
4 regions has been identified as a compensatory mechanism for cognitive decline in later middle
5 age, however research into neural substrates of EF has yet to be guided by dedifferentiation
6 models. We hypothesized that frontal-parietal grey matter volume, interhemispheric white matter
7 and intrahemispheric white matter fractional anisotropy (FA) will be predictive of EF. Further,
8 we hypothesized that the comparative association between interhemispheric white matter and EF
9 will increase with age, because of compensatory recruitment. **Methods:** Neurocognitive test data,
10 DTI, and T1 MPRAGE scans ($n = 444$) were obtained from the NKI-Rockland Sample.
11 Structural equation modeling was used to examine the relationship between age, EF,
12 interhemispheric white matter (forceps minor; FM), intrahemispheric white matter (superior
13 longitudinal fasciculus; SLF), and a frontal-parietal grey matter network. EF and grey matter
14 were modelled as latent variables, with EF examined as the criterion. Additionally, a subsample
15 of participants aged 55-85 ($n = 168$) was analyzed to examine the influence of age related
16 compensatory mechanisms. **Results:** There was a significant relationship between FM, grey
17 matter, and EF, which was fully mediated by age. There was a significant relationship between
18 SLF and EF, which was not mediated by age. For older adults, only the age-mediated pathway
19 from FM to EF was significant. **Discussion:** Using structural imaging data, support was found
20 for age-related interhemispheric mechanisms of compensation, but not intrahemispheric
21 mechanisms.
22 Keywords: executive functions, dedifferentiation, compensatory recruitment, CNS white matter

1 Key points: (1) Neural substrates of executive functioning are not static across the lifespan. (2) In
2 older adults, white matter becomes more salient as a structural correlate of executive functioning,
3 as recruitment needs increase. (3) While the importance of interhemispheric white matter is
4 mediated by age, intrahemispheric recruitment remains consistent across the lifespan, and is not
5 the primary mechanism of age-based compensation in community dwelling older adults.

6

1

Introduction

2 Age-related decline in executive functioning (EF) starts earlier and at increased rates
3 compared to other domains of cognitive functioning, like verbal ability (Deary et al., 2009;
4 Strauss, Sherman, & Spreen, 2006) and memory (Grober, et al., 2008). These changes emerge
5 around age 40 and are particularly important, because there are systematic relationships between
6 EF, practical skills in daily living, and disability in elders (Cahn-Weiner, Boyle, & Malloy, 2002;
7 Gansler, Suvak, Arean, & Alexopoulos, 2015; Johnson, Lui, & Yaffe, 2007; Mirelman et al.,
8 2012; Yogeve-Seligmann, Hausdorff, & Giladi, 2008). As the proportion of US adults aged 65
9 and older is expected to increase from 14.5% in 2014 to 21.7% by 2040 (U.S. Administration on
10 Aging, 2016), determining behavioral and biological mechanisms and predictors for EF decline
11 is an important tool for early detection and intervention for general cognitive and adaptive
12 functional decline. More detailed knowledge of brain systems underlying age-related cognitive
13 decline may inform our understanding of disability and pathological processes in aging.

14 In this study, we examined the underlying common cognitive factor of EF. EF is a broad
15 term that refers to a group of cognitive processes needed for coordination and regulation of
16 behavior and cognitive functions (Diamond, 2013). Models of EF generally fall into one of two
17 categories: those based on an underlying common factor or those based on an array of specific
18 factors. Often there are common task demands among any given neuropsychological tests of EF
19 (i.e. goal maintenance, working memory), where that task is saturated by a common factor
20 (Engle, Tuholski, Laughlin, & Conway, 1999; McCabe, Roediger, McDaniel, Balota, &
21 Hambrick, 2010) with neural substrates in parietal and lateral prefrontal cortices (Collette et al.,
22 2005). While specific aspects of dysfunction in EF processes account for differentiated but
23 related observed behavioral effects in daily living, there are limits to predictive power with a

1 divisional approach (Burgess, Alderman, Evans, Emslie, & Wilson, 1998). While there is
2 evidence to support the argument that specific components of EF account for a diversity of
3 behavioral effects in adaptive functioning, general EF factors may have the most predictive
4 power (Barbey et al., 2012) and were therefore the focus of this investigation.

5 Declines in EF in the aging brain have been linked to age-related degradations in
6 neuroanatomical structures. White matter (WM) and grey matter (GM) tissue deterioration
7 related to aging is primarily seen in the prefrontal, temporal, and parietal lobes (Raz & Rodriguez,
8 2006). These areas are a critical basis of the neural representations of the EF domains of task
9 coordination, planning, goal maintenance, working memory, and task switching (Daniels, Toth,
10 & Jacoby, 2006). Specifically, degradation of anterior cingulate cortex (Botvinick, Cohen, &
11 Carter, 2004; Van Veen, Cohen, Botvinick, Stenger, & Carter, 2001), the dorsolateral prefrontal
12 cortex (Kane & Engle, 2002; MacPherson, Phillips, & Sala, 2002), and WM of the genu of the
13 corpus callosum (Kochunov, et al., 2012) have all been predictive of age-related changes in EF.
14 However, there is limited research on the comparative contribution of white and GM in
15 executive networks in large samples of community dwelling older adults.

16 Some studies also suggest that the root of these age-related changes in EF is a function of
17 either, under recruitment, or, nonselective recruitment of related brain regions (Logan, Sanders,
18 Snyder, Morris, & Buckner, 2002). These findings suggest that because EF often involves the
19 coordination of several brain regions, individual differences in WM may increase in influence as
20 age increases due to the need for broader recruitment. One of the most well studied neural
21 compensatory mechanisms observed in older adults involves increased homologous recruitment
22 and dedifferentiation of brain regions, which seem to mitigate the effect of age-related
23 deterioration in cortical areas and its effects on EF. In this context, dedifferentiation refers to the

1 shift from focal to more diffuse recruitment of brain networks. Previous research has established
2 that this process emerges around age 55 (Rypma & D'Esposito, 2000), while evidence suggests
3 EF decline begins earlier. For younger adults (age 18-25), activation is found primarily in the left
4 hemisphere for verbal working memory tasks, and in the right hemisphere for spatial working
5 memory. However, older adults (age 65-75) show patterns of anterior bilateral activation for both
6 verbal and spatial working memory, recruiting homologous brain regions in the opposite
7 hemisphere to do the same tasks (Reuter-Lorenz et al., 2000).

8 These patterns of dedifferentiation are often found in areas associated with working
9 memory in the dorsolateral prefrontal cortex, an important component of EF (Reuter-Lorenz et
10 al., 2000). Younger adults only showed high activation in dorsolateral areas when switching
11 between tasks, whereas older adults showed activation in these regions during both isolated tasks
12 and when switching (DiGirolamo et al., 2001). Expanded distributions of activity may be the
13 result of greater demands for executive control as EF becomes less automated with age. For high
14 performing, community dwelling older adults, there may be a hierarchy of compensatory
15 activation, where homologous regions are recruited before heterologous regions (Cabeza et al,
16 2002).

17 Although the associations between prefrontal cortex volume and EF do remain consistent
18 throughout the lifespan (Yuan & Raz, 2014), the ability to increase recruitment in older adults is
19 largely dependent on the integrity of WM pathways (Just, Cherkassky, Keller, & Minshew,
20 2004; Nordahl, et al., 2006). For older adults, the ability to activate areas bilaterally results in
21 better performance on letter matching tasks in visual laterality studies (Reuter-Lorenz, Stanczak,
22 & Miller, 1999). For older adults, there are associations between individual differences in
23 integrity of these interhemispheric pathways and the degree of observed compensatory activation

1 (Perrson et al., 2006). Because of this mechanism, interhemispheric WM (e.g., forceps major)
2 connectivity may play a more important role in older adults compared to both GM and
3 intrahemispheric WM (e.g., superior longitudinal fasciculus).

4 To examine the interaction between age and the neuroanatomical predictors of EF, we
5 hypothesized that:

6 *Hypothesis 1.* Higher WM integrity (FA) in the forceps minor (FM) and superior longitudinal
7 fasciculus (SLF) would predict better EF performance.

8 *Hypothesis 2.* Larger GM volumes in a frontal-parietal system would predict better EF
9 performance.

10 *Hypothesis 3.* The influence of the FM would be more robust as participant age increases, while
11 the predictive value of GM and SLF would be constant across ages.

12 Methods

13 **Participants.** More detailed methodology is available in Supplementary Materials. A total of
14 444 adult participants (Table 1) with complete neurocognitive and scan data were included in
15 these analyses. The data were selected from de-identified phenotypic and neuroimaging data for
16 645 participants, which was made available via the enhanced Nathan Kline Institute – Rockland
17 Sample (NKI-RS), an open-access, cross sectional, community sample (Nooner, et al., 2012).
18 Rockland County's economic and ethnic demographics are representative of the United States
19 census (U.S. Census Bureau, 2009), making the NKI-RS generalizable to the U.S. population.
20 Data use agreement was accepted by NKI-RS and data handling procedures were approved by
21 the Institutional Review Board at Suffolk University.

22 [Table 1]

1 Participants were excluded for major psychiatric or neurological conditions, or problems
2 with MRI scans (see Supplementary Material 1. Participant Exclusion). The NKI-RS was
3 selected for this study due to its unique properties. With minimal exclusion criteria, the NKI-RS
4 represented the distribution of psychiatric disorders among the U.S. population. Consistent with
5 epidemiological research showing lifetime prevalence of 46.4% (Kessler, Chiu, Demler, &
6 Walters, 2005), 45.7% of this sample had at least one *relatively less severe* DSM-IV Diagnosis
7 (current or past), as determined by a semi-structured clinical interview. In addition to imaging
8 data and demographic data, the NKI-RS included a battery of neurocognitive tasks that was used
9 to assess brain-behavior relationships.

10 **Measures.**

11 **EF.** In order to examine the unity aspect of EF, it was conceptualized as a latent variable
12 created from five indicators. As an assessment of broad EF, participants completed the Delis-
13 Kaplan Executive Function System Test (D-KEFS; Delis, Kaplan, & Kramer, 2001) and the
14 Penn Computerized Neurocognitive Battery (PennCNB; Gur et al., 2001). Because age was a
15 predictor variable of interest, raw scores were used rather than age-scaled scores. All measures
16 were standardized and timed tasks were reverse coded, so that all positive scores reflected better
17 performance. See Supplementary Table 1 and 2 for descriptive statistics of EF measures, and
18 Supplementary Material for detailed descriptions of neuropsychological assessment.

19 **D-KEFS.** Measures of EF were extracted from the following subtests: Trails (TMT),
20 Design Fluency (DF), Color Word Interference (CWIT), Tower, and Verbal Fluency (VF). For
21 each measure the raw scores, selected from the array of subtest scores, were selected based on
22 the literature and included in analyses (Gunning-Dixon & Raz, 2000; Kaplan, et al., 2001).

1 **PennCNB N-Back Task (N-Back).** This measure assesses working memory (Gur et al.,
2 2001) and has been validated with functional neuroimaging meta-analysis showing activation in
3 front-parietal networks (Owen, McMillan, Laird, & Bullmore, 2005).

4 **Imaging.** Diffusion weighted images (voxel size = 2×2×2 mm, 137 directions) and
5 structural T1 MPRAGE (voxel size = 1x1x1 mm) were acquired using a 3.0 T Siemens Trio
6 scanner (see Supplementary Material 3. Imaging). Unless otherwise stated, data were obtained
7 from NKI-RS in their raw form and processing was completed as part of this investigation.

8 **GM Image Processing.** T1 MPRAGE images were automatically reconstructed in
9 Freesurfer 5.3 (<http://surfer.nmr.mgh.harvard.edu>; see Supplementary Material 3.1 GM Image
10 Processing). Cortical volumes from the Desikan-Killiany atlas (Desikan et al., 2006) were
11 calculated as a ratio of estimated total intracranial volume (Buckner et al., 2004), and averaged
12 across hemispheres. Volumes from frontal and parietal regions were chosen to reflect a unitary
13 biological construct associated with EF (Collette et al., 2005; Neindam et al., 2012; Spreng,
14 Sepulcre, Turner, Stevens, & Schacter, 2013), and constructed using measurement models for
15 latent variables.

16 **WM Image Processing.** DTI was processed using TRACULA, included in Freesurfer 5.3
17 (Yendiki et al., 2011; see Supplementary Material 3.2 WM Image Processing). Fractional
18 anisotropy (FA) from two WM pathways relevant to the EF and the GM latent variable was
19 extracted (Schmahmann, & Pandya, 2009): the FM and parietal branch of the SLF. The FM,
20 which courses through the anterior corpus callosum, is the largest anterior inter-hemispheric
21 tract. The SLF, a major intrahemispheric deep WM tract connects frontal and parietal regions
22 indicated in many EF tasks. The SLF FA values were averaged across hemispheres.

23 **Statistical Analysis Plan.**

1 This study took a structural equation modeling approach (Bentler & Weeks, 1980) to
2 assess both *direct* and age-mediated *indirect* relationships between brain structures (Figure 1,
3 Figure 2, and Figure S1), and EF (the criterion). This approach was chosen to (1) examine the
4 underlying common factor of EF and (2) assess the relative GM and WM contributions. EF and
5 GM were assessed as latent variables given the available array of appropriate variable
6 constituents. FM, SLF, and age were assessed as indicators.

7 In order to examine the specific effect of compensatory recruitment in older adults, the
8 sample was split at age 55, based on the previously reported age-marker of compensatory
9 dedifferentiation (Rypma & D'Esposito, 2000). We assessed model fit on two nested samples,
10 older adults (age 55-85; $n = 168$) and younger adults (age 20-54; $n = 276$), and compared them to
11 the full sample.

12 **Structural Equation Modeling.** Development of the latent variables and the
13 measurement model occurred in two phases: exploratory and confirmatory (see Supplementary
14 Material 4. Structural Equation Modeling). The EF and GM latent variables were created, and a
15 structural model evaluated the influences of the age, GM, FM, and SLF on EF, as indicated by
16 the standardized regression weights of corresponding pathways at or below statistical threshold
17 ($p \leq 0.05$). Specifically, the mediating effect of age between different neural substrates and EF
18 was compared. In addition to the model fit indices described for the measurement model,
19 changes in the Akaike information criterion ($\Delta AIC > 2$) was used for model comparison. The use
20 of ΔAIC was appropriate as all variables were included in all models, and could therefore be
21 considered nested.

22 Bootstrapping was completed to create 95% confidence intervals and significance values
23 for both direct and indirect paths, with 5000 bootstrapped samples extracted (Preacher & Hayes,

1 2008). The standardized regression weights for total, direct, and indirect effects were used to
2 compare associations at or below statistical threshold ($p \leq 0.05$)

3 **Results**

4 **Pre-analysis.** Correlations between all indicator variables can be found in Table 2. The final
5 factor fit for the latent constructs of EF ($\chi^2 = 22.65, p = 0.007$) and GM ($\chi^2 = 239.53, p < 0.001$)
6 was good (see Supplementary 5. Pre-analysis). The final EF and GM latent variables were
7 derived from the indicators found in Table 3.

8 [Table 2]

9 **Measurement Model.** To understand the association between the constituents, both latent
10 variables and stand-alone indicators, a measurement model was created in which EF and GM
11 were set as related to one another (Supplementary Figure 1). To set the metric of latent variables,
12 the first factor loading of each latent variable was set to 1. Model fit was good ($\chi^2 = 353.89, df$
13 =228, Cmin/df = 1.55, CFI = 0.98, RMSEA = 0.03). All indicators were significantly associated
14 to their latent variable ($ps < 0.01$; factor loadings of above 0.40). There was no significant change
15 in model fit after setting the bidirectional path between the two latent variables. However, the EF
16 and GM latent variables were significantly associated ($r = 0.11, p = 0.016$).

17 [Table 3]

18 **Structural Model.** Age, FM, and SLF were added into the model as indicators. Model fit
19 remained adequate ($\chi^2 = 878.95, df = 366, Cmin/df = 2.40, CFI = 0.93, RMSEA = 0.04$).
20 Directional paths from age, GM, FM, and SLF to EF were specified to assess the influence of
21 each variable on EF, while controlling for the level of the other variables. Additionally, the effect
22 of age as a mediator was considered by specifying directional paths from each structure to age.
23 Variables were entered into the model together, so the effect of each variable was examined

1 while holding the other variables constant. Four different models were compared in the full
2 sample (Figure 1). Provided that all other model fit indices were comparable, the best model was
3 chosen based on Δ AIC. The fit of the best model was then examined in the split age sample to
4 assess the direct and indirect pathways indicated by the dedifferentiation hypothesis.

5 [Figure 1]

6 **Full Sample.** For the full sample (age 20-85, $n = 444$), the best model by Δ AIC had good
7 fit ($\chi^2 = 643.50$, $df = 345$, $p < 0.001$, $C_{min}/df = 1.87$, $CFI = 0.96$, $RMSEA = 0.03$). The effect of
8 GM ($\beta = 0.13$, $p = 0.003$) and FM ($\beta = 0.17$, $p = 0.008$) on EF was mediated by age (Figure 2).
9 The slopes from the model indicated a 690 mm^3 increase in GM volume was associated with a
10 $0.09 SD$ increase in EF performance, and a 0.06 increase in FM FA, was associated with a 0.08
11 SD increase in EF performance. For FM and GM, there was full mediation (Baron & Kenny,
12 1986), with the indirect, age-mediated pathway accounting for 67.3% and 74.8% respectively of
13 the brain structure-EF relationship. CIs and p-values generated from bootstrapped samples
14 (Table 4) for the standardized regression weights of the indirect effect supported this
15 interpretation, for both GM ($\beta = 0.10$, $p < 0.001$) and FM ($\beta = 0.11$, $p < 0.001$).

16 The direct path from SLF ($\beta = 0.14$, $p = 0.023$) to EF was significant, while the age-
17 mediated indirect path accounted for only 21.2% of the brain structure-EF relationship (Figure 2)
18 and was not significant ($\beta = -.02$, $p > 0.05$). The model slope indicated a 0.05 increase in SLF FA
19 was associated with a $0.07 SD$ increase in EF performance. This suggests that age played an
20 insubstantial role in mediating the relationship between EF and SLF.

21 [Figure 2]

22 **Older Subsample.** Group statistics for indicator variables can be found in Supplementary
23 Table 3. Model fit in the older adults ($n = 168$) was comparable to that of the full sample ($\chi^2 =$

1 159.66, $df = 115$, $p = 0.004$, $C_{min}/df = 1.39$, $CFI = 0.96$, $RMSEA = 0.05$). However, the
2 RMSEA CI was wider in the older group (range = 0.04) compared to the full sample (range =
3 0.01), which suggested lower precision and less certainty of model fit (Kenny, Kaniskan, &
4 McCoach, 2015). However, the CI was still sufficiently narrow to infer accurate estimation of
5 relationships (Byrne, 2013). This was also reflected in the CIs and p-values for the standardized
6 total, direct, and indirect relationships between EF GM and SLF (Table 4).

7 The age-mediated pathway from FM to age to EF was significant for older adults only (β
8 = 0.06, $p = 0.016$) with the indirect path accounting for 47.4% of the relationship (Table 4).
9 Comparatively, the age-mediated pathway for GM accounted for only 6.3% of the relationship.
10 Although the direct pathway from SLF to EF appeared strongest ($\beta = 0.19$, $p = 0.055$), the
11 corresponding CI included zero (-.01. 0.36) and it was not significant. This could be an artifact of
12 the lowered precision of the model (and thus wider confidence intervals). The direct and indirect
13 paths from GM and SLF to EF were not significant in the older adults.

14 **Younger Subsample.** For younger adults, the model fit indices ranged from good to
15 acceptable ($\chi^2 = 216.77$, $df = 115$, $p < 0.001$, $C_{min}/df = 1.89$, $CFI = 0.95$, $RMSEA = 0.06$). The
16 relationships between EF and neuroanatomical structures were not significant (Table 4). Possibly
17 due to restricted variance in EF among younger adults (0.57) compared to older adults (1.01),
18 age was no longer associated with EF (Beta = -.09, $p = 0.253$) and all age-mediated pathways
19 became non-significant.

20 [Table 4]

21 Discussion

22 The principal findings of our study were that: (1) while higher FA in both the FM and the
23 SLF was associated with better EF performance, only FM was fully mediated through age (2) the

1 effect of GM on EF was similarly mediated through age, and (3) the influence of FM is more
2 salient for older adults compared to SLF and frontal-parietal GM as evidenced by significance of
3 that pathway only among older adults.

4 Compared to frontal GM and the intrahemispheric WM pathway (SLF), the
5 interhemispheric WM pathway (FM) explained the most variance in EF for older adults,
6 consistent with the dedifferentiation hypothesis of compensatory homologous recruitment
7 (Cabeza et al, 2002). The consistency of this relationship after the age-split suggests that the FM
8 is a particularly relevant substrate for high performing, community dwelling older adults.

9 The relationship between intrahemispheric WM and EF was not mediated by age, but
10 instead had a direct effect on EF in the full age range. This suggests that intrahemispheric
11 structures necessary for recruitment in the parietal region are relevant across the lifespan, not as
12 an age-related compensatory mechanism. Although many neuropsychological tests are designed
13 as “frontal batteries”, tasks of EF often require recruitment in multiple regions across a frontal-
14 parietal network (Collette et al., 2005). The direct effect of intrahemispheric WM on EF suggests
15 that the recruitment of intrahemispheric regions may stay relatively constant across the lifespan,
16 reflecting the centrality of frontal-parietal recruitment is central to these tasks. The increased
17 variability between intrahemispheric WM and EF in the older adults also supports the conclusion
18 that intrahemispheric recruitment is not the primary mechanism of age-based compensation in
19 community dwelling older adults.

20 The influence of GM on EF was mediated by age, which is not consistent with literature
21 showing the static association between single EF measures and brain regions (Yuan & Raz,
22 2014). Our findings may be a consequence of reduced variance in younger adults (age 20-54)
23 compared to older adults (age 55-85). The reduced variance seems to be the result of ceiling

1 effects in the timed tasks used in the latent variable. Notably though, the relationship between
2 GM and EF was also significantly reduced in older adults, as compared to the full sample. This
3 may be because the network is of paramount importance, not its constituent parts. It is also
4 possible that influence of decreasing volume in GM regions may be more salient in middle aged
5 adults, which were not captured as an age group due to limits in sample size.

6 Future research should investigate specific thresholds for age-mediated pathways between
7 brain structures and EF, specifically the changing effects of GM in the transition period of
8 middle age. We would also expect that these relationships would change in the presence of
9 neuropathology. While the NKI-RS offers unique advantages as a highly representative sample,
10 these results may not generalize to certain clinical populations characterized by pathological and
11 age-related structural changes. In clinical samples there may be additional recruitment needs
12 both inter- and intrahemispherically, for which identification is critical in dementia progression
13 prevention.

14 These results suggest that the neural substrates of EF are not static across the lifespan, but
15 change in later life, as paralleled in early lifespan work (Horowitz-Kraus, Holland, & Freund,
16 2016). The impact of these findings, in terms of variance accounted for, was moderately small,
17 but does have theoretical and clinical ramifications. As detection and prevention programs for
18 cognitive decline identify neural targets of interest, WM substrates may be more relevant for
19 geriatric populations. Consistent with previous work in dedifferentiation, the efficiency of
20 activation mediated through WM may be more important than any one GM region (i.e. salience
21 of network over node).

22

23

24

References

2 Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An
3 integrative architecture for general intelligence and executive function revealed by lesion
4 mapping. *Brain*, 135(4), 1154-1164.

5 Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social
6 psychological research: Conceptual, strategic, and statistical considerations. *Journal of*
7 *personality and social psychology*, 51(6), 1173.

8 Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007).
9 Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?
10 *Neuroimage*, 34(1), 144-155.

11 Behrens, T. E. J., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S.,
12 0... & Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion-
13 weighted MR imaging. *Magnetic Resonance in Medicine*, 50(5), 1077-1088.

14 Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables.
15 *Psychometrika*, 45(3), 289-308.

16 Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior
17 cingulate cortex: an update. *Trends in Cognitive Sciences*, 8(12), 539-546.

18 Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z.
19 (2004). A unified approach for morphometric and functional data analysis in young, old,
20 and demented adults using automated atlas-based head size normalization: reliability and
21 validation against manual measurement of total intracranial volume. *Neuroimage*, 23(2),
22 724-738.

1 Burgess, P. W., Alderman, N., Evans, J., Emslie, H., & Wilson, B. A. (1998). The ecological
2 validity of tests of executive function. *Journal of the International Neuropsychological Society*, 4(6), 547-558.

4 Byrne, B. M. (2013). *Structural equation modeling with Mplus: Basic concepts, applications, and programming*. Routledge.

6 Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully:
7 compensatory brain activity in high-performing older adults. *Neuroimage*, 17(3), 1394-
8 1402.

9 Cahn-Weiner, D. A., Boyle, P. A., & Malloy, P. F. (2002). Tests of executive function predict
10 instrumental activities of daily living in community-dwelling older individuals. *Applied
11 Neuropsychology*, 9(3), 187-191.

12 Collette, F., Van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., Luxen, A., & Salmon,
13 E. (2005). Exploring the unity and diversity of the neural substrates of executive
14 functioning. *Human brain mapping*, 25(4), 409-423.

15 Daniels, K., Toth, J., & Jacoby, L. (2006). The aging of executive functions. *Lifespan Cognition:
16 Mechanisms of Change*, 96-111.

17 Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E., . 0... & Starr, J.
18 M. (2009). Age-associated cognitive decline. *British Medical Bulletin*, 92(1), 135-152.

19 Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). *Delis-Kaplan executive function system (D-
20 KEFS)*. Psychological Corporation.

21 Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006).
22 An automated labeling system for subdividing the human cerebral cortex on MRI scans
23 into gyral based regions of interest. *Neuroimage* 3, 968–980.

- 1 Diamond, A. (2013). Executive functions. *Annual Review of Psychology*, 64, 135-168.
- 2 DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., .
- 3 0... & Belopolsky, A. V. (2001). General and task-specific frontal lobe recruitment in
- 4 older adults during executive processes: a fMRI investigation of task-switching.
- 5 *Neuroreport*, 12(9), 2065-2071.
- 6 Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory,
- 7 short-term memory, and general fluid intelligence: a latent-variable approach. *Journal of*
- 8 *Experimental Psychology: General*, 128(3), 309.
- 9 Horowitz-Kraus, T., Holland, S. K., & Freund, L. S. (2016). Imaging executive functions in
- 10 typically and atypically developed children.
- 11 Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
- 12 Conventional criteria versus new alternatives. *Structural equation modeling: a*
- 13 *multidisciplinary journal*, 6(1), 1-55.
- 14 Gansler, D. A., Suvak, M., Arean, P., & Alexopoulos, G. S. (2015). Role of executive
- 15 dysfunction and dysexecutive behavior in late-life depression and disability. *The*
- 16 *American Journal of Geriatric Psychiatry*, 23(10), 1038-1045.
- 17 Grober, E., Hall, C. B., Lipton, R. B., Zonderman, A. B., Resnick, S. M., & Kawas, C. (2008).
- 18 Memory impairment, executive dysfunction, and intellectual decline in preclinical
- 19 Alzheimer's disease. *Journal of the International Neuropsychological Society*, 14(2),
- 20 266-278.
- 21 Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities
- 22 in normal aging: a quantitative review. *Neuropsychology*, 14(2), 224.

1 Gur, R. C., Ragland, J. D., Moberg, P. J., Turner, T. H., Bilker, W. B., Kohler, C., ... & Gur, R.
2 E. (2001). Computerized neurocognitive scanning: I. Methodology and validation in
3 healthy people. *Neuropsychopharmacology*, 25(5), 766-776.

4 Jehenson P., & Syrota A. (1989). Correction of Distortions due to the Pulsed Magnetic Field
5 Gradient-Induced Shift in Bo Field by Postprocessing. *Magnetic Resonance in Medicine*,
6 12, 253–256.

7 Jezzard P., Barnett A.S., & Pierpaoli C. (1989). Characterization of and Correction for Eddy
8 Current Artifacts in Echo Planar Diffusion Imaging. *Magnetic Resonance in Medicine*,
9 39, 801–812.

10 Johnson, J. K., Lui, L. Y., & Yaffe, K. (2007). Executive function, more than global cognition,
11 predicts functional decline and mortality in elderly women. *The Journals of Gerontology*
12 Series A: *Biological Sciences and Medical Sciences*, 62(10), 1134-1141.

13 Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and
14 synchronization during sentence comprehension in high-functioning autism: evidence of
15 underconnectivity. *Brain*, 127(8), 1811-1821.

16 Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity,
17 executive attention, and general fluid intelligence: An individual-differences perspective.
18 *Psychonomic Bulletin & Review*, 9(4), 637-671.

19 Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models
20 with small degrees of freedom. *Sociological Methods & Research*, 44(3), 486-507.

21 Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and
22 comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey
23 Replication. *Archives of general psychiatry*, 62(6), 617-627.

1 Kochunov, P., Williamson, D. E., Lancaster, J., Fox, P., Cornell, J., Blangero, J., & Glahn, D. C.

2 (2012). Fractional anisotropy of water diffusion in cerebral white matter across the

3 lifespan. *Neurobiology of Aging*, 33(1), 9-20.

4 Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-

5 recruitment and nonselective recruitment: dissociable neural mechanisms associated with

6 aging. *Neuron*, 33(5), 827-840.

7 MacPherson, S. E., Phillips, L. H., & Della Sala, S. (2002). Age, executive function and social

8 decision making: a dorsolateral prefrontal theory of cognitive aging. *Psychology and*

9 *Aging*, 17(4), 598.

10 McCabe, D. P., Roediger III, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010).

11 The relationship between working memory capacity and executive functioning: evidence

12 for a common executive attention construct. *Neuropsychology*, 24(2), 222.

13 Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., . 0... &

14 Hausdorff, J. M. (2012). Executive function and falls in older adults: new findings from a

15 five-year prospective study link fall risk to cognition. *PloS One*, 7(6), e40297.

16 Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012).

17 Meta-analytic evidence for a superordinate cognitive control network subserving diverse

18 executive functions. *Cognitive, Affective, & Behavioral Neuroscience*, 12(2), 241-268.

19 Noonan, K. B., Colcombe, S., Tobe, R., Mennes, M., Benedict, M., Moreno, A., . 0... & Sikka, S.

20 (2012). The NCI-Rockland sample: a model for accelerating the pace of discovery

21 science in psychiatry. *Frontiers in Neuroscience*, 6, 152.

1 Nordahl, C. W., Ranganath, C., Yonelinas, A. P., DeCarli, C., Fletcher, E., & Jagust, W. J.

2 (2006). White matter changes compromise prefrontal cortex function in healthy elderly

3 individuals. *Journal of Cognitive Neuroscience*, 18(3), 418-429

4 Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory

5 paradigm: A meta-analysis of normative functional neuroimaging studies. *Human*

6 *brain mapping*, 25(1), 46-59.

7 Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and

8 comparing indirect effects in multiple mediator models. *Behavior research methods*,

9 40(3), 879-891.

10 Raz, N., & Rodriguez, K. M. (2006). Differential aging of the brain: patterns, cognitive correlates

11 and modifiers. *Neuroscience & Biobehavioral Reviews*, 30(6), 730-748.

12 Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe,

13 R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working

14 memory revealed by PET. *Journal of Cognitive Neuroscience*, 12(1), 174-187.

15 Reuter-Lorenz, P. A., Stanczak, L., & Miller, A. C. (1999). Neural recruitment and cognitive

16 aging: Two hemispheres are better than one, especially as you age. *Psychological*

17 *Science*, 10(6), 494-500.

18 Rypma, B., & D'Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in

19 human working memory. *Nature neuroscience*, 3(5), 509-515.

20 Schmahmann, J., & Pandya, D. (2009). *Fiber pathways of the brain*. OUP USA.

21 Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic

22 architecture underlying the relations among the default, dorsal attention, and

1 frontoparietal control networks of the human brain. *Journal of cognitive neuroscience*,
2 25(1), 74-86.

3 Strauss, E., Sherman, E. M., & Spreen, O. (2006). *A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary*. American Chemical Society.

4 U.S. Administration on Aging. (2016). Census Data. *US Department of Health and Human Services*, Washington, D.C.

5 U.S. Census Bureau. (2009). Census Data. *US Department of Health and Human Services*,
6 Washington, D.C.

7 Van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior
8 cingulate cortex, conflict monitoring, and levels of processing. *Neuroimage*, 14(6), 1302-
9 1308.

10 Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., . 0... & Jbabdi,
11 S. (2011). Automated probabilistic reconstruction of white-matter pathways in health and
12 disease using an atlas of the underlying anatomy. *Frontiers in Neuroinformatics.*, 5, 12-
13 23.

14 Yogeved-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2008). The role of executive function and
15 attention in gait. *Movement Disorders*, 23(3), 329-342.

16 Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-
17 analysis of structural neuroimaging studies. *Neuroscience & Biobehavioral Reviews*, 42,
18 180-192.

19

20

21

1

Tables

2 Table 1. Demographics for full sample (n = 444)

	<i>M(SD)</i>
Age	48.45(17.33)
Education	15.67(2.24)
%	
Sex	
Male	34.9
Female	65.1
Race	
Native	
American	0.7
Asian	4.3
Black	16.4
White	75.7
Other	3
Ethnicity	
Hispanic	10.4
Non-Hispanic	89.6

3

4

1 *Table 2.* Correlations between all indicator variables.

	Age	SLF	FM	POP	PT	POR	MOFC	SF	CMF	RMF	RACC	PCUN	IP	TMT	Tower	CWIT	Tower	CWIT	N-Back
Age	---																		
SLF	-.06	---																	
FM	-.32**	.40*	---																
POP	-.22**	-.03	-.08	---															
PT	-.27**	0.01	-.03	.67**	---														
POR	-.20**	-.08	-.08	.53**	.59**	---													
MOFC	-.17**	-.10*	-.11*	.59**	.55**	.63**	---												
SF	-.29**	-.02	-.04	.69**	.68**	.66**	.70**	---											
CMF	-.26**	-.06	-.04	.57**	.52**	.52**	.55**	.67**	---										
RMF	-.26**	-.06	-.09	.57**	.62**	.68**	.69**	.79**	.65**	---									
RACC	-.14**	-.09	-.09	.48**	.51**	.53**	.56**	.62**	.54**	.63**	---								
PCUN	-.23**	-.01	-.07	.62**	.64**	.65**	.70**	.79**	.63**	.74**	.60**	---							
IP	-.26**	-.04	-.08	.62**	.62**	.62**	.64**	.73**	.56**	.70**	.59**	.74**	---						
TMT	-.27**	.15**	.16**	0.09	0.06	0.02	0.08	.11*	0.09	.10*	0.08	.10*	0.08	0.06	0.08	---			
Tower	-.12*	0.01	0.05	0.07	0.05	0.01	1.0*	0.08	0.05	.10*	0.05	.10*	0.05	0.04	.39**	---			
CWIT	-.22**	.15**	.15**	.01	0.03	-.02	0.04	0.08	0.00	0.05	0.01	0.01	0.01	.53**	.28**	---			
N-Back	-.07	.11*	0.03	0.00	-.03	0.02	0.01	0.04	0.01	0.04	-.01	0.00	-.01	.40**	.31**	.29**	---		
DF	-.17**	.10*	.12*	0.07	0.02	-.02	0.03	0.07	0.05	0.03	0.07	0.05	0.03	0.00	0.04	.40**	.22**	.34**	.19**

2

3 *Note.* * $p < .05$ ** $p < .01$ *** $p < .001$. Pearson's r . Abbreviations are as follows: rostral anterior
4 cingulate (RACC), superior frontal (SF), rostral middle frontal (RMF), caudal middle frontal
5 (CMF), pars opercularis (POP), pars triangularis (PT), pars orbitalis (POR), precuneus (PCUN)
6 and inferior parietal (IP) regional volumes.

1
2

Table 3. Confirmatory factor loadings of indicators on latent variables.

	EF	GM
	Factor Loading (95% CI)	
DF	.57(.48-.64)	---
N-Back	.49(.34-.63)	---
CWIT	.65(.54-.74)	---
TMT	.80(.71-.87)	---
Tower	.50(.39-.59)	---
IP	---	.82(.78-.85)
PCUN	---	.87(.84-.89)
RACC	---	.70(.65-.75)
RMF	---	.86(.83-.89)
CMF	---	.73(.68-.78)
SF	---	.91(.89-.93)
POR	---	.74(.66-.79)
PT	---	.76(.71-.79)
POP	---	.74(.69-.78)

3
4

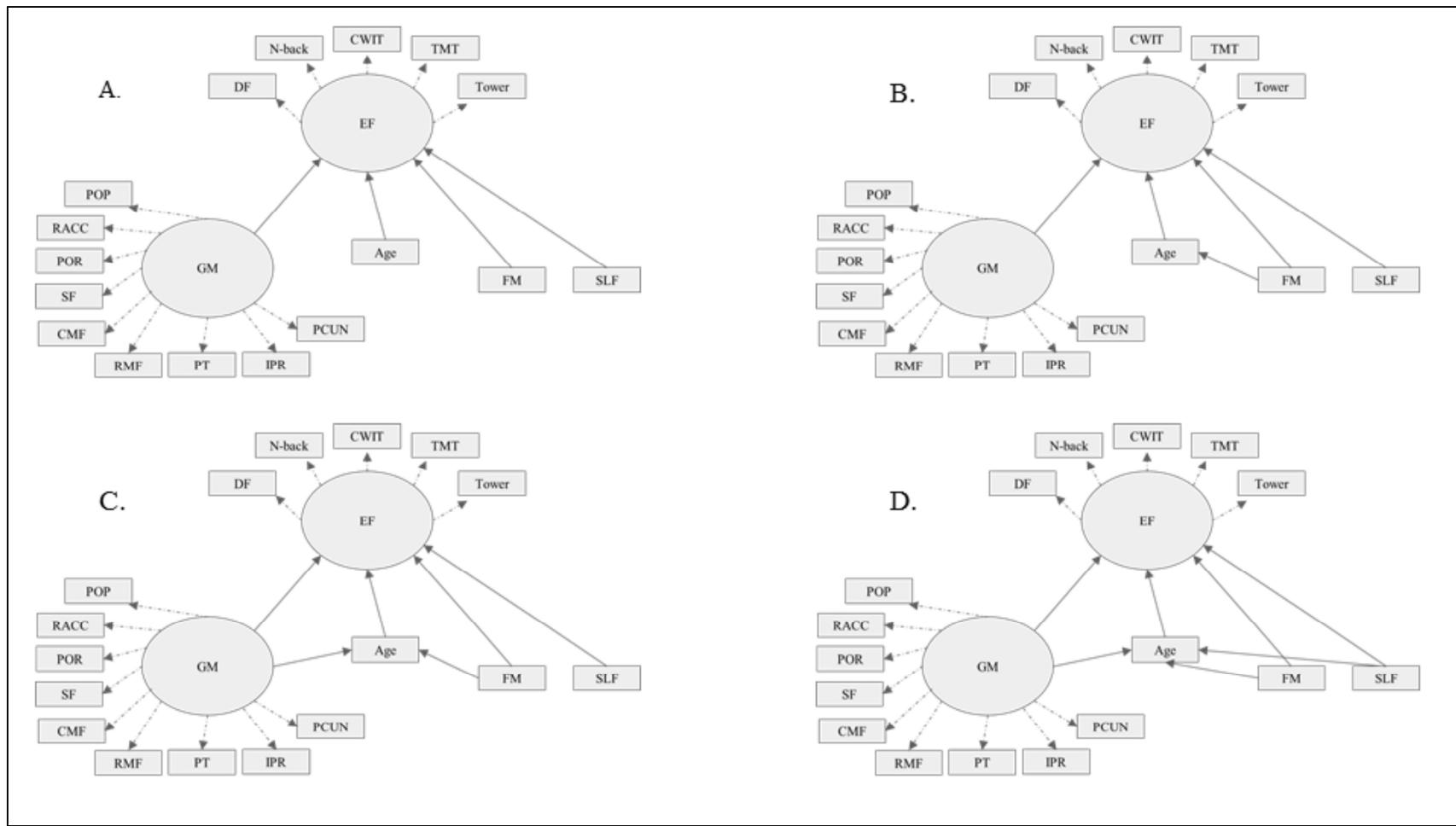
1 *Table 4.* Standardized total, direct, and indirect effects (β) of brain structures on executive
2 functioning.

3
4

	Full (Age 20-85)			Younger (Age 20-54)			Older (Age 55-85)		
	GM	FM	SLF	GM	FM	SLF	GM	FM	SLF
Total	.13**	.17**	.12	.05	.09	.14	.11	.14	.15
Direct	.03	.05	.14*	.02	.06	.14	.10	.07	.19
Indirect	.10***	.11***	-.02	.02	.03	.00	.01	.06*	-.04

5 *Note.* * $p < .05$ ** $p < .01$ *** $p < .001$

6


7

8

9

10

11

Figure 1. Four structural models that were compared. Model D represents the model with the best fit. Dashed lines indicate factor loadings to latent variables. Abbreviations are as follows: rostral anterior cingulate (RACC), superior frontal (SF), rostral middle frontal (RMF), caudal middle frontal (CMF), pars opercularis (POP), pars triangularis (PT), pars orbitalis (POR), precuneus (PCUN) and inferior parietal (IP) regional volumes. Model fit indices for the four models were as follows: (A) $\chi^2 = 797.14$, df = 354, $p < .001$, Cmin/df = 2.26, CFI = 0.94, RMSEA = 0.04, AIC = 1109.14; (B) $\chi^2 = 788.67$, df = 351, $p < 0.001$, Cmin/df = 2.25, CFI = 0.94, RMSEA = 0.04, AIC = 1106.87; (C) $\chi^2 = 732.55$, df = 348, $p < .001$, Cmin/df = 2.10 CFI = 0.94, RMSEA = 0.04, AIC = 1056.25; (D) $\chi^2 = 643.50$, df = 345, $p < 0.001$, Cmin/df = 1.87, CFI = 0.96, RMSEA = 0.03, AIC = 973.50

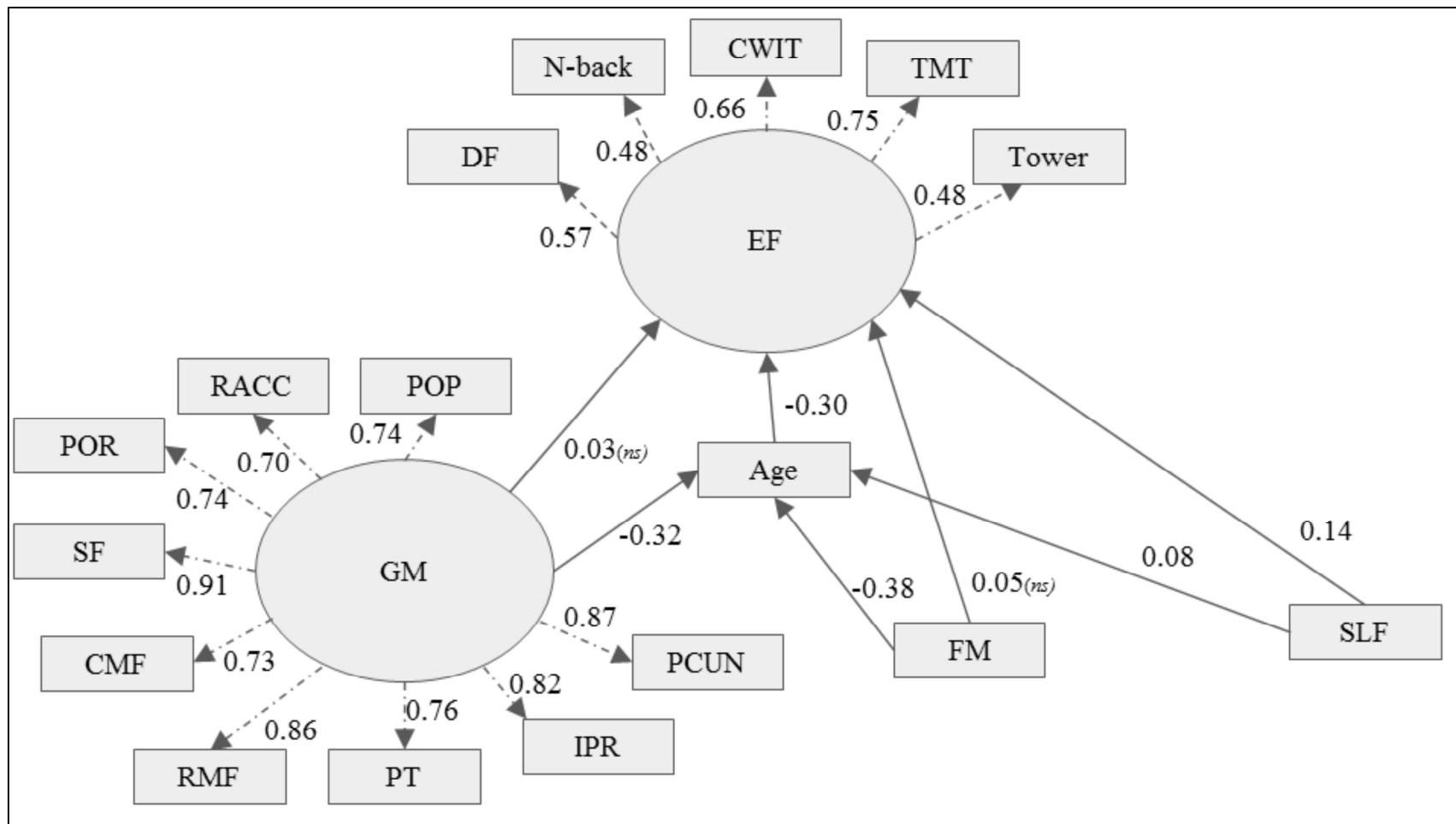


Figure 2. Final model for the full sample ($n = 444$). Dashed lines indicate factor loadings to latent variables. Abbreviations are as follows: rostral anterior cingulate (RACC), superior frontal (SF), rostral middle frontal (RMF), caudal middle frontal (CMF), pars opercularis (POP), pars triangularis (PT), pars orbitalis (POR), precuneus (PCUN) and inferior parietal (IP) regional volumes. Unless otherwise indicated as not significant (ns), all pathways are significant.