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18  Abstract

19 Lower frequency, feedback, activity in the alpha and beta range is thought to predominantly
20  originate from infragranular cortical layers, whereas feedforward signals in the gamma range stem
21 largely from supragranular layers. Distinct anatomical and spectral channels may therefore play
22 specialized roles in communication within hierarchical cortical networks; however, empirical
23 evidence for this organization in humans is limited. We leverage high precision MEG to test this
24 proposal, directly and non-invasively, in human participants during visually guided actions. Visual
25  alpha activity mapped onto deep cortical laminae, whereas visual gamma activity predominantly
26  arose from superficial laminae. This laminar-specificity was echoed in sensorimotor beta and gamma
27  activity. Visual gamma activity scaled with task demands in a way compatible with feedforward
28  signaling. For sensorimotor activity, we observed a more complex relationship with feedback and
29 feedforward processes. Distinct frequency channels thus operate in a laminar-specific manner, but
30  with dissociable functional roles across sensory and motor cortices.
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Introduction

The cerebral cortex is hierarchically organized via feedback and feedforward connections that
originate predominantly from deep and superficial layers, respectively (Barone et al., 2000; Felleman
and Van Essen, 1991; Markov et al., 2013, 2014a, 2014b). Evidence from non-human animal models
suggests that information along those pathways is carried via distinct frequency channels: lower
frequency (<30Hz) signals predominantly arise from deeper, infragranular layers, whereas higher
frequency (>30Hz) signals stem largely from more superficial, supragranular layers (Bollimunta et al.,
2008, 2011; Buffalo et al., 2011; Haegens et al., 2015; van Kerkoerle et al., 2014; Maier et al., 2010;
Roopun et al., 2006, 2010; Smith et al., 2013; Sotero et al., 2015; Spaak et al., 2012; Sun and Dan,
2009; Xing et al., 2012). These data have inspired general theories of cortical functional organization
which ascribe specific computational roles to these pathways (Adams et al., 2013; Arnal and Giraud,
2012; Bastos et al., 2012; Donner and Siegel, 2011; Fries, 2005, 2015; Friston and Kiebel, 2009;
Jensen and Mazaheri, 2010; Jensen et al., 2015; Stephan et al.,, 2017; Wang, 2010). In these
proposals, lower frequency activity subserves feedback, top-down communication, and originates in
infragranular layers, whereas high-frequency activity is predominantly carried via projections from
supragranular layers and conveys feedforward, bottom-up information.

However, evidence for these proposals in humans is largely indirect and focused on visual and
auditory areas (Fontolan et al., 2014; Kok et al., 2016; Koopmans et al., 2010; Michalareas et al.,
2016; Olman et al., 2012; Scheeringa and Fries, 2017). Whether it is indeed possible to attribute low
and high frequency activity in humans to laminar-specific sources, throughout the cortical hierarchy,
remains unclear. Here we leverage recent advances in high precision magnetoencephalography
(MEG; Meyer et al., 2017a; Troebinger et al., 2014a) to address this issue directly and non-invasively
across human visual and sensorimotor cortices.

MEG is a direct measure of neural activity (Baillet, 2017; Hamalainen et al., 1993), with millisecond
temporal precision that allows for delineation of brain activity across distinct frequency bands.
Recently developed 3D printed headcast technology gives us more stability in head positioning as
well as highly precise models of the underlying cortical anatomy. Together, this allows us to record
higher signal-to-noise ratio (SNR) MEG data than previously achievable (Meyer et al., 20173;
Troebinger et al.,, 2014a). Theoretical and simulation work shows that these gains allow for
distinguishing the MEG signal originating from either deep or superficial laminae (Troebinger et al.,
2014b), in a time-resolved and spatially localized manner (Bonaiuto et al.,, 2017). We therefore
employed this approach to directly test for the proposed laminar-specificity of distinct frequency
channels in human cortex. Such a demonstration would provide important clarification for the
proposed mechanism of inter-regional communication in hierarchical cortical networks.

Results

Behavioral responses vary with perceptual evidence and cue congruence

We investigated the laminar and spectral specificity of feedforward and feedback signals in visual
and sensorimotor cortex with a visually guided action selection task. The task was designed to
induce well-studied patterns of low- and high-frequency activity in visual (Busch et al., 2004; Fries et
al.,, 2001; Hari and Salmelin, 1997; Hoogenboom et al., 2006; Mazaheri et al., 2014; Miiller et al.,
1996; Muthukumaraswamy and Singh, 2013; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005)
and sensorimotor cortices (Cheyne et al., 2008; Crone et al., 1998; Donner et al., 2009; Gaetz et al.,
2011; Haegens et al., 2011; Huo et al., 2010; de Lange et al., 2013; Pfurtscheller and Neuper, 1997;
Pfurtscheller et al., 1996; Tan et al., 2016, 2014; Torrecillos et al., 2015) . Participants first viewed a
random dot kinetogram (RDK) with coherent motion to the left or the right, which in most trials was
congruent to the direction of the following instruction cue indicating the required motor response
(an arrow pointing left equated to an instruction to press the left button, and vice versa; Figure 1A).
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85 Participants could therefore accumulate the sensory evidence from the RDK during the 2s it was
86 presented for in order to prepare their response in advance of the instruction cue. However, in
87 incongruent trials the instruction cue was an arrow pointing in the opposite direction from the
88 direction of coherent motion of the RDK, and so the opposite response from the expected one was
89 required. The strength of the motion coherence was varied, modulating the strength of instructed
90 response predictability, and thus we assume, feedforward and feedback activity (Figure 1B; Donner
91 et al., 2009; de Lange et al., 2013).
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94 Figure 1. Task structure and participant behavior. A) Each trial consisted of a fixation baseline (1-2s), random dot
95 kinetogram (RDK; 2s), delay (0.5s), and instruction cue intervals, followed by a motor response (left/right button press) in

96 response to the instruction cue (an arrow pointing in the direction of required button press). During congruent trials the
97 coherent motion of the RDK was in the same direction that the arrow pointed in the instruction cue, while in incongruent
98 trials the instruction cue pointed in the opposite direction. B) The task involved a factorial design, with three levels of
99 motion coherence in the RDK and congruent or incongruent instruction cues. Most of the trials (70%) were congruent. C)
100 Mean accuracy over participants during each condition. Error bars denote the standard error. Accuracy increased with
101 increasing coherence in congruent trials, and worsened with increasing coherence in incongruent trials. D) The mean
102 response time (RT) decreased with increasing coherence in congruent trials (* p<0.05).
103

104  As expected, particpants responded more accurately and more quickly with increasing RDK motion
105 coherence during congruent trials, while behavioral performance worsened with increasing
106  coherence during incongruent trials (Figure 1C, D). This was demonstrated by a significant
107 interaction between congruence and coherence for accuracy (F(2,35)=8.201, p=0.004), and RT
108 (F(2,35)=7.392, p=0.006). Pairwise comparisons (Bonferroni corrected) showed that RTs were faster
109  during congruent trials than incongruent trials at medium (t(7)=-3.235, p=0.0429) and high
110 coherence levels (t(7)=-3.365, p=0.036). Participants were thus faster and more accurate when the
111  cued action matched the action they had prepared (congruent trials), and slower and less accurate
112  when these actions were incongruent.
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113

114  High SNR MEG recordings using individualized headcasts

115 Subject-specific headcasts minimize both within-session movement and co-registration error (Meyer
116 et al., 2017a; Troebinger et al., 2014a). This ensures that when MEG data are recorded over separate
117 days, the brain remains in the same location with respect to the MEG sensors. In all participants,
118 within-session movement was <0.2mm in the x and y dimensions and <1.5mm in the z dimension,
119  while co-registration error was <1.5mm in any dimension (estimated by calculating the within-
120  participant standard deviation of the absolute coil locations across recording blocks; Figure S1). To
121  assess the between-session homogeneity of our data, we examined topographic maps, event-related
122  fields (ERFs), and time-frequency decompositions. In each, the data were analyzed in three ways:
123 aligned to the onset of the RDK (Figure 2A), instruction cue (Figure 2B), or button response (Figure
124  2C). The data were acquired during four separate recording sessions, spaced at least a week apart.
125  This analysis revealed that topographic maps and event-related fields from individual MEG sensors
126  and time-frequency spectra from sensor clusters are highly reproducible across different days of
127  recording within an individual participant. Because the headcast approach ensured that participants
128  were in an identical position on repeated days of recording, we were able to obtain very high signal-
129  to-noise (SNR) datasets.
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131 Figure 2: Cross-session reproducibility. Topographic maps (left column), event-related fields (ERFs, middle column), and

132 time-frequency decompositions (right column) aligned to: A) onset of the random dot kinetogram (RDK), B) onset of the
133 instruction cue, or C) the participant’s response (button press). Data shown are for a single representative participant for
134 four sessions on different days (each including three, 15 minute blocks, 180 trials per block). The white circles on the
135 topographic maps denote the sensor from which the ERFs in the middle are recorded. Each blue line in the ERF plots
136 represents a single session (average of 540 trials), with shading representing the standard error (within-session variability)
137 and the red lines showing the time point that the topographic maps are plotted for (150ms for the RDK and instruction cue,
138 35ms for the response). The insets show a magnified view of the data plotted within the black square. The time-frequency

139 decompositions are baseline corrected (RDK-aligned: [-500, Oms]; instruction cue-aligned: [-3s, -2.5s]; response-aligned: [-
140 500ms, Oms relative to the RDK]) and averaged over the sensors shown in the insets.

141

142

143  Low and high frequency activity localize to different cortical laminae

144  To address our main question about the laminar specificity of different frequency channels in human
145  cortex, we extracted task-related low- and high-frequency activity from visual and sensorimotor
146 cortices. Attention to visual stimuli is associated with decreases in alpha (Hari and Salmelin, 1997;
147 Mazaheri et al., 2014; Sauseng et al., 2005; Thut, 2006; Yamagishi et al., 2005) and increases in
148 gamma activity in visual cortex (Busch et al., 2004; Fries et al., 2001; Hoogenboom et al., 2006;
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149 Midller et al., 1996; Muthukumaraswamy and Singh, 2013). We therefore examined the decrease in
150 alpha (7-13Hz) power following the onset of the RDK, as well as the increase in gamma (60-90Hz)
151  activity following the onset of the RDK and the instruction cue.

152 Motor responses are associated with a stereotypical pattern of spectral activity in contralateral
153  sensorimotor cortex involving a decrease in beta power during response preparation, followed by a
154  rebound in beta activity. Moreover, a burst of gamma activity typically occurs in contralateral
155 sensorimotor cortex aligned to the movement (Cheyne et al., 2008; Crone et al., 1998; Gaetz et al.,
156 2011; Huo et al., 2010; Pfurtscheller and Neuper, 1997; Pfurtscheller et al., 1996). These two signals
157  are relevant for testing the proposed feedback and feedforward role of low and high frequency
158 activity, respectively, for the following reasons. First, the beta power decrease prior to movement is
159  thought to reflect the removal of inhibition that prevents movement (Engel and Fries, 2010).
160 Moreover, gamma bursts at movement onset arise from motor cortex, are effector-specific, and are
161 thought to reflect the feedback control of discrete movements (Cheyne et al., 2008;
162 Muthukumaraswamy, 2010), and prediction error processing for the purpose of updating motor
163 predictions (Mehrkanoon et al., 2014). The akinetic role of pre-movement beta and the proposed
164 role of movement-related gamma would be difficult to reconcile with the proposed role of these
165 frequency channels in feedback and feedforward control in sensory cortices. This suggests that in
166 sensorimotor cortex, these activity channels may not be organized in the same laminar-specific
167  manner. Alternatively, the same laminar-specific organization may have functional roles that are
168  distinct from the proposed feedback and feedforward communication in sensory cortex. We
169  therefore analyzed the decrease in sensorimotor beta (15-30Hz) power during the RDK and its
170  subsequent rebound following the participant’s response, as well as the response-aligned gamma
171  (60-90Hz) burst.

172 Localization of activity measured by MEG sensors requires accurate generative forward models
173 which map from cortical source activity to measured sensor data (Baillet, 2017; Hillebrand and
174 Barnes, 2002, 2003; Larson et al., 2014). We constructed a generative model for each participant
175 based on a surface mesh including both their white matter and pial surfaces, representing both deep
176  and superficial cortical laminae, respectively (Figure 3, left column). We were thus able to compare
177  the estimated source activity for measured visual and sensorimotor activity on the white matter and
178  pial surface, and infer its laminar origin as deep if the activity is strongest on the white matter
179  surface or superficial if it is strongest on the pial surface. For the purposes of comparison with
180 invasive neural recordings, deep laminae correspond to infragranular cortical layers, and superficial
181 laminae correspond to supragranular layers.

182  The veracity of laminar inferences using this analysis is highly dependent on the accuracy of the
183 white matter and pial surface segmentations. Imprecise surface reconstructions from standard 1mm
184  isotropic T1-weighted volumes result in coarse-grained meshes, which do not accurately capture the
185  separation between the two surfaces, and thus do not allow distinctions to be made between deep
186  and superficial laminae (Figure S2). We therefore extracted each surface from high-resolution
187  (800um isotropic) MRI multi-parameter maps (Carey et al.,, 2017), allowing fine-grained
188 segmentation of the white matter and pial surfaces.

189 For each low- and high-frequency visual and sensorimotor signal, the laminar analysis first calculated
190 the absolute change in power from a baseline time window on the vertices of each surface, and then
191 compared the power change between surfaces using paired t-tests. The resulting t-statistic was
192 positive when the change in power was greater on the pial surface (superficial), and negative when
193 the change was greater on the white matter surface (deep; Figure 3). To get a global measure of
194 laminar specificity, we averaged the change in power over the whole brain (all vertices) within each
195 surface. In order to make spatially localized laminar inferences, we then identified regions of interest
196 (ROIs) in each subject based on the mean frequency-specific change in power from a baseline time
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197  window on vertices from either surface (Bonaiuto et al., 2017; Figure 3). We further compared two
198 metrics for defining the ROIs: functionally defined (centered on the vertex with the peak mean
199 difference in power), and anatomically-constrained (centered on the vertex with the peak mean
200 power difference within the visual cortex bilaterally, or in the contralateral motor cortex).

201
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203 Figure 3: Laminar analysis. Pial and white matter surfaces are extracted from quantitative maps of proton density and T1

204 times obtained from a multi-parameter mapping MRI protocol (A, top). The model constitutes a generative model
205 combining both surfaces (A, bottom) which is used to perform source inversion using the measured sensor data, resulting in
206 an estimate of the activity at every vertex on each surface (B, top left). The ROI analysis defined a region of interest by
207 comparing the change in power in a particular frequency band during a time window of interest from a baseline time period
208 (B, top right). The ROI includes all vertices in either surface in the 80th percentile as well as corresponding vertices in the
209 other surface. The absolute change in power on each surface was then compared within the ROI (B, bottom; C, top).
210 Pairwise t-tests were performed between corresponding vertices on each surface within the ROl to examine the distribution

211 of t-statistics (C, bottom), as well as on the mean absolute change in power within the ROl on each surface to obtain a
212 single t-statistic which was negative if the greatest change in power occurred on the white matter surface, and positive if it
213 occurred on the pial surface (C, middle).

214

215 Visual alpha and gamma have distinct laminar specific profiles

216 Based on in vivo laminar recordings in non-human primates (Bollimunta et al., 2008, 2011; Buffalo et
217 al., 2011; Haegens et al., 2015; van Kerkoerle et al., 2014; Maier et al., 2010; Spaak et al., 2012; Sun
218 and Dan, 2009; Xing et al.,, 2012), we reasoned that changes in alpha activity following the RDK
219  should predominate in infragranular cortical layers. By contrast, changes in gamma activity following
220 the RDK and instruction cue should be strongest in supragranular layers. Source reconstructions of
221  the change in visual alpha activity following the onset of the RDK on the white matter and pial
222 surfaces approximating the proposed laminar origins are shown for an example participant over the
223 whole brain and within the functionally defined ROl in Figure 4A. Activity on both surfaces localized
224  to visual cortex bilaterally. When performing paired t-tests comparing corresponding vertices on the
225 pial and white matter surfaces over all trials, the distribution of alpha activity was skewed toward
226  the white matter surface, in line with an infragranular origin. This bias was also observed within the
227  functionally defined ROI. When averaging the change in power either over the whole brain, within a
228  functionally-defined, or an anatomically constrained ROI, the visual alpha activity of most
229 participants was classified as originating from the white matter surface (global: 8/8 participants,
230  functional ROI: 7/8 participants, anatomical ROI: 5/8 participants; Figure 4A, right).

231  Conversely, the increase in visual gamma following the onset of the RDK and instruction cue was
232  strongest on the pial surface (Figure 4B, C) as expected. Example source reconstructions on the pial
233  and the white matter surface show activity in the same bilateral areas over visual cortex as visual
234  alpha (Figure 4B, C). For visual gamma, the distributions of t-statistics for pairwise vertex


https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/226274; this version posted November 30, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8

235  comparisons were skewed toward the pial surface, a finding that is compatible with a supragranular
236 origin of high-frequency gamma activity. This was confirmed in subsequent global, functional, and
237 anatomical ROl metrics (RDK gamma, global: 7/8 participants; RDK gamma, functional ROI: 7/8
238 participants; RDK gamma, anatomical ROl: 7/8 participants; instruction cue gamma, global: 7/8
239 participants; instruction cue gamma, functional ROI: 7/8 participants; instruction cue gamma,
240  anatomical ROI: 5/8 participants).

241  We then conducted three control analyses to ascertain the robustness of our findings: shuffling of
242  the position of the sensors, simulation of increased co-registration error, and decreasing effective
243 SNR by using only a random subset of the trials for each participant (see Supplemental Information).
244 Shuffling the position of the sensors destroys any correspondence between the anatomy and the
245 sensor data. Added co-registration error simulates the effect of between-session spatial uncertainty
246 arising from head movement and inaccuracies of the forward model typically experienced without
247 headcasts (Hillebrand and Barnes, 2003, 2011; Medvedovsky et al., 2007; Meyer et al., 2017b;
248 Troebinger et al., 2014b; Uutela et al., 2001). For both control analyses, visual alpha and gamma
249 activity now localized to the pial surface (Figure S3, S4), suggesting that the laminar discrimination
250  between visual alpha and gamma in our main analyses would not have been possible were it not for
251  the high-SNR data coupled with the high-precision anatomical models.

252  The magnitude of the ROI t-statistics for all participants increased with the number of trials used in
253  the analysis, with more trials required for visual gamma signals to reach significance (Figure S5).
254  Therefore, the laminar bias exhibited by visual alpha and gamma was unlikely to be driven by a small
255  subset of the trials. One concern was that the effects could be driven by signal power (i.e. higher
256  power signals always localize deeper). Importantly however, regardless of the SNR the shuffled
257  sensor models did not show this behavior within the functionally defined and anatomically
258  constrained ROIs (Figure S5).

259
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261 Figure 4: Laminar specificity of visual alpha and gamma. A) Estimated changes in alpha power (7-13Hz) from baseline on
262 the white matter and pial surface following the onset of the random dot kinetogram (RDK), over the whole brain (global)
263 and within a functionally defined region of interest (ROI). Histograms show the distribution of t-statistics comparing the
264 absolute change in power between corresponding pial and white matter surface vertices over the whole brain, or within the
265 ROI. Negative t-statistics indicate a bias toward the white matter surface, and positive t-statistics indicate a pial bias. The
266 bar plots show the t-statistics comparing the absolute change in power between the pial and white matter surfaces
267 averaged within the ROIs, over all participants. T-statistics for the whole brain (black bars), functionally defined (grey bars),
268 and anatomically constrained (white bars) ROIs are shown (red = biased toward the white matter surface, blue = biased
269 pial). Dashed lines indicate the threshold for single subject statistical significance. B) As in A, for gamma (60-90Hz) power
270 following the RDK. C) As in A and B, for gamma (60-90Hz) power following the instruction cue.

271
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272  Sensorimotor beta and gamma originate from distinct cortical laminae

273  The above results provide novel support for distinct anatomical pathways through which different
274 frequency channels contribute to intra-areal communication within visual cortex. We next addressed
275 whether this laminar specificity of different frequency channels was common to other portions of
276  cortex, specifically sensorimotor cortex.

277 Cortical regions vary in terms of thickness (Fischl and Dale, 2000; Jones et al., 2000; Kabani et al.,
278 2001; Lerch and Evans, 2005; MacDonald et al., 2000), as a result of inter-regional variation in
279  cortical folding and laminar morphology (Barbas and Pandya, 1989; Hilgetag and Barbas, 2006;
280 Matelli et al., 1991; Rajkowska and Goldman-Rakic, 1995). Moreover, the distinction between
281 feedback and feedforward cortical processing channels may be less clear for motor cortex, which is
282 agranular (missing layer IV) and projects directly to the spinal cord. Supporting this argument, motor
283 gamma bursts are closely tied to movement onset, and thought to reflect the execution, or feedback
284 control, of movement (Cheyne and Ferrari, 2013; Cheyne et al., 2008).

285  While frequency-specific activity thus occurs throughout cortex, the laminar distribution of different
286  frequency channels may differ across different levels in the cortical hierarchy. Because MEG is only
287  sensitive to the synchronous activity of large populations of pyramidal cells, it is likely that different
288  laminar microcircuits could give rise to the same measurable MEG signals (Cohen, 2017).
289  Alternatively, if the layer specificity of low and high frequency activity is a general organizing
290 principle of cortex, one would expect the pre-movement beta decrease and post-movement
291 rebound to originate from infragranular cortical layers, and the movement-related gamma increase
292  to be strongest in supragranular layers. Moreover, the ability of MEG to accurately segregate deep
293  from superficial laminar source activity may vary throughout cortex, a possibility we have previously
294  explored in simulation (Bonaiuto et al., 2017).

295  To explore this possibility empirically, we analyzed two task-related modulations of sensorimotor
296  beta activity: the decrease in beta power following the onset of the RDK, just prior to the motor
297 response, and the post-movement beta rebound (Cassim et al., 2001; Jurkiewicz et al., 2006; Parkes
298 et al.,, 2006; Pfurtscheller et al., 1996; Salmelin et al., 1995). Both signals localized to the left
299  sensorimotor cortex (contralateral to the hand used to indicate the response; Figure 5A, B), and
300 both signals were strongest on the white matter surface, as evidenced by the white matter skews in
301 the global and functional ROI t-statistics (Figure 5). This laminar pattern with both the beta decrease
302 and rebound classified as originating from the white matter surface held for all but one participant.
303 This general finding is of relevance as it addresses concerns that the high SNR of beta activity trivially
304 leads to its attribution to the deeper cortical surface. Here, the two epochs of beta activity were
305 characterized by power decreases and increases, respectively, meaning that SNR alone cannot
306  explain the laminar localization of beta activity.

307  The burst of gamma aligned with the onset of the movement localized to the same patch of left
308 sensorimotor cortex (Figure 5C), and in the example participant shown in Figure 5 and for most
309 participants, was strongest on the pial surface (global: 7/8 participants; function ROl: 6/8
310 participants; anatomical ROI: 6/8 participants).

311


https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/226274; this version posted November 30, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

11
Global Functional ROI
A white matter pial white matter pial 4 &
2 20
‘2 = Global
(0] R == Functional ROI
[72] % oD D qp 1 Anatomical ROI
© ! z L
[ e _
—
5] ‘ : )]
8 1Al AR
e b L O, S 2
-~ ¥ ¥ <
o § ! I g ! =
o §: = | §* : i
® = I hl I i © -20 s "
R ) 10 20 R p— 0 10 %7' 0. 1 2 3 4 o 5 6 7 8
Pial-White t statistic Pial-White t statistic F’arUCIpant
B white matter pial white matter pial - o
i *5 20
L =
/ / £ ©
2 e v, 3 ® g
g A\ ¥ =
P
Qo ! O
[0} : % 4 / - X
o < J & )
(] 3; P 3 . E
8 ! | }
O 2, ' | ? H
3 I vl 3
2 | L4 -
® } | 2 .
0% - 0 ‘ l
-20 =10 10 20 - -10 10 20
Pial-White t statistic Pial-White t statistic
C white matter pial white matter pial
g ©
2
k2]
=
©
»
] : |
o ot L9
v =
E N ~ | o]
g ‘ I+ o
(D 25 i 25 S . %
g, = 5. s
3 \ g AL
2 = © ' : i ; L i
2 4l | E 9
3 i [ 1 2 3 4 5 6 71 8
-20 -10 10 20 -20 -10 o 10 20 e
3 1 2 Pi;I-Whue t statistic Pial-White t statistic Parth|pant
313 Figure 5: Laminar specificity of sensorimotor beta and gamma. As in figure 4, for A) the beta (15-30Hz) decrease prior to

314 the response, B) beta (15-30Hz) rebound following the response, and C) gamma (60-90Hz) power change from baseline
315 during the response. In the histograms and bar plots, positive and negative values indicate a bias towards the superficial

316 and deeper cortical layers, respectively. The dashed lines indicate single subject level significance thresholds. The black,
317 grey, and white bars indicate statistics based on regions of interest comprising the whole brain, functional and

318 anatomically-constrained ROIs, respectively.

319

320 Next we repeated our control analysis on the sensorimotor data, which mirrored those of visual
321 alpha and gamma. Sensor shuffling, as well as the addition of co-registration error, resulted in
322 sensorimotor beta and gamma localizing to the pial surface (Figure S3, S4), and the ROI t-statistics
323 increased in magnitude with the number of trials used in the analysis, with more trials required for
324  sensorimotor gamma signals to pass the significance threshold (Figure S5). Again, importantly, the
325 gamma superficial bias within the functionally defined and anatomically constrained ROIls did not
326  increase with SNR for the shuffled sensor data, meaning that the superficial localization of gamma
327  was not driven by low SNR (Figure S5).

328

329  Superficial visual gamma scales with cue congruence

330 Next, we asked whether the observed low and high-frequency laminar-specific activity in visual and
331  sensorimotor cortex dynamically varied with task demands in line with proposals about their role in
332 feedback and feedforward message passing (Adams et al., 2013; Arnal and Giraud, 2012; Bastos et
333 al., 2012; Donner and Siegel, 2011; Fries, 2005, 2015; Friston and Kiebel, 2009; Jensen and Mazaheri,
334 2010; Jensen et al., 2015; Stephan et al., 2017; Wang, 2010). This would provide additional indirect
335 support for the idea that communication in hierarchical cortical networks is organized through
336 distinct frequency channels along distinct anatomical pathways, to orchestrate top-down and
337  bottom-up control.
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338 In our task, the direction of the instruction cue was congruent with the motion coherence direction
339 in the RDK during most trials (70%). As such, if the direction of motion coherence is to the left, the
340 instruction cue will most likely be a leftward arrow. Gamma activity increases in sensory areas during
341 presentation of unexpected stimuli (Arnal et al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011),
342 and therefore we expected visual gamma activity in supragranular layers to be greater following
343 incongruent instruction cues than after congruent cues. Indeed, the increase in visual gamma on the
344  pial surface following the onset of the instruction cue was greater in incongruent compared to
345 congruent trials (W(8)=0, p=0.008; 8/8 participants; incongruent-congruent M=1.64%, SD=2.34%;
346  Figure 6).

347
348
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350 Figure 6: Visual gamma activity modulation by task condition. Visual gamma activity following the onset of the instruction
351 stimulus within the functionally defined ROI of an example participant (left), and averaged within the time window
352 represented by the shaded yellow rectangle for all participants (right). Each dashed line on the right shows the change in

353 normalized values for the different conditions for each participant. The bar height represents the mean normalized change
354 in gamma power, and the error bars denote the standard error. Visual gamma activity is stronger following the onset of the
355 instruction cue when it is incongruent to the direction of the coherent motion in the random dot kinetogram (RDK).

356

357

358 Deep sensorimotor beta scales with RDK motion coherence and cue congruence

359 Changes in sensorimotor beta power during response preparation predict forthcoming motor
360 responses (Donner et al., 2009; Haegens et al., 2011; de Lange et al., 2013), whereas the magnitude
361 of sensorimotor beta rebound is attenuated by movement errors (Tan et al., 2014, 2016; Torrecillos
362 et al., 2015). We therefore predicted that, in infragranular layers, the decrease in sensorimotor beta
363 would scale with the motion coherence of the RDK, and the magnitude of the beta rebound would
364 be decreased during incongruent trials when the prepared movement has to be changed in order to
365 make a correct response.

366  The behavioral results presented thus far suggest that participants accumulated perceptual evidence
367 from the RDK in order to prepare their response prior to the onset of the instruction cue. This
368  preparation was accompanied by a reduction in beta power in the sensorimotor cortex contralateral
369 to the hand used to indicate the response (Figure 5A). This beta decrease began from the onset of
370 the RDK and was more pronounced with increasing coherence, demonstrating a significant effect of
371  coherence on the white matter surface (Figure 7A; X%(2)=9.75, p=0.008), with beta during high
372  coherence trials significantly lower than during low coherence trials (8/8 participants; t(7)=-3.496,
373  p=0.033; low-high M=2.42%, SD=1.96%). Following the response, there was an increase in beta in
374  contralateral sensorimotor cortex (beta rebound) which was greater in congruent, compared to
375 incongruent trials on the white matter surface (Figure 7B; W(8)=34, p=0.023; 7/8 participants,


https://doi.org/10.1101/226274
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/226274; this version posted November 30, 2017. The copyright holder for this preprint (which

376
377
378

379
380

381
382
383
384
385

386
387

388
389
390
391
392
393
394
395
396
397

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

13

congruent-incongruent M=5.13%, SD=5.19%). In other words, the beta rebound was greatest when
the cued response matched the prepared response.

>

10; —
. 5-0.7
ore ()
= low El
o med (@©
210 | === high ~ £70.8
,q_) Whtitte I ’6
_ matter I 5
D?z 20 | a.J—Og
[
-30; ¥ g
[ o -1
-40 ! : : : ' . .
0 500 1000 1500 2000 low medium high
Time (ms)
B250—
= 1 dzs-=---86
200} D ENRYRS
> | N \ N &S E
S> 1501 | white © <
S], I matter e -
& 100; ' = congruent O 0:9 \\
= ' === incongruent = \
Dcf 50¢ ' L \
| \
Of % 0.8 \
| o o}
_.50 L | L L L L s \ i
-200 0 200 400 600 800 1000 congruent incongruent

Time (ms)
Figure 7: Sensorimotor beta activity modulated by task condition. A) Beta decrease following the onset of the random dot
kinetogram (RDK) within the functionally defined ROI of an example participant over the duration of the RDK (left), and
averaged over this duration for all participants (right). The bar height represents the mean normalized change in gamma
power, and the error bars denote the standard error. The beta decease becomes more pronounced with increasing
coherence. B) As in A, for beta rebound following the response and averaged within the time window shown by the shaded
yellow rectangle. Beta rebound is stronger following responses in congruent trials.

Discussion

We have demonstrated that low and high frequency channels localize predominantly to deep and
superficial laminae, respectively, in human visual and sensorimotor cortex. These channels play
distinct roles in feedback and feedforward processing during visually guided action selection, with
high frequency visual activity enhanced by a mismatch between feedforward and feedback signals,
and low frequency sensorimotor activity modulated by a combination of feedforward and feedback
influences during different task epochs. Through the use of novel MEG headcast technology (Meyer
et al.,, 2017a; Troebinger et al., 2014a) and spatially and temporally resolved laminar analyses
(Bonaiuto et al., 2017; Troebinger et al.,, 2014b), we provide novel evidence for the layer- and
frequency-specific accounts of hierarchical cortical organization in humans.
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398 Low and high frequency channels localize to deep and superficial cortical laminae across visual and
399 sensorimotor cortex

400 We found that low frequency activity (alpha, 7-13Hz; and beta, 15-30Hz) predominately originated
401  from deep cortical laminae, and high frequency activity (gamma, 60-90Hz) from superficial laminae
402 in both visual and sensorimotor cortex. Our analysis included two built-in controls. Firstly, visually
403 induced gamma after both the RDK and the instruction cue localized superficially, reinforcing the
404  proposal that visual gamma generally predominates from superficial laminae. Secondly, both a
405  decrease and increase in sensorimotor beta power localized to deep laminae, meaning that the
406 laminar analysis was not simply biased toward deep sources for high power signals. Moreover, this
407  laminar specificity was abolished by shuffling the sensors (Figure S3) or introducing co-registration
408  error (Figure S4), underlining the need for spatially precise anatomical data and MEG recordings.
409 Finally, the laminar bias of both low and high frequency signals increased monotonically as the
410  number of trials included in the analysis increased, but not when the sensors were shuffled (Figure
411  S5).

412  The localization of alpha activity to predominately deep laminae of visual cortex is in line with
413 evidence from depth electrode recordings in visual areas of the non-human primate brain (Buffalo et
414 al., 2011; van Kerkoerle et al., 2014; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et
415 al., 2012). Several studies who have found alpha generators in both infra- and supragranular layers
416  in primary sensory areas (Bollimunta et al.,, 2008, 2011; Haegens et al., 2015), and it has been
417  suggested that this discrepancy is due to a contamination of infragranular layer LFP signals by
418  volume conduction from strong alpha generators in supragranular layers (Haegens et al., 2015;
419 Halgren et al., 2017). This is unlikely to apply to the results presented here as this type of laminar
420 MEG analysis is biased toward superficial laminae when SNR is low (Figure S3, S4; Bonaiuto et al.,
421 2017). However, this analysis can only determine the laminar origin of the strongest activity when it
422  occurs simultaneously at multiple depths (Bonaiuto et al., 2017), which is consistent with the fact
423  that infragranular cortical layers contain the primary local pacemaking alpha generators (Bollimunta
424  etal., 2008, 2011).

425  We found that gamma activity was strongest in superficial cortical laminae, which was expected
426  given that gamma activity has been found to predominantly occur in supragranular layers in visual
427 cortex (Buffalo et al., 2011; van Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et
428  al., 2012), but see (Nandy et al., 2017). The mechanisms underlying the generation of gamma activity
429  are diverse across the cortex (Buzsaki and Wang, 2012), but commonly involve reciprocal
430 connections between pyramidal cells and interneurons, or between interneurons (Tiesinga and
431 Sejnowski, 2009; Whittington et al., 2011). The local recurrent connections necessary for such
432 reciprocal interactions are most numerous in supragranular layers (Buzsaki and Wang, 2012), as are
433 fast-spiking interneurons which play a critical role in generating gamma activity (Cardin et al., 2009;
434 Carlén et al., 2012; Sohal et al., 2009).

435 It is widely hypothesized that the laminar segregation of frequency specific channels is a common
436 organizing principle across the cortical hierarchy (Arnal and Giraud, 2012; Bastos et al., 2012; Fries,
437 2015; Wang, 2010). However, most evidence for this claim comes from depth electrode recordings
438 in primary sensory areas, with the vast majority in visual cortical regions (Buffalo et al., 2011; van
439 Kerkoerle et al., 2014; Smith et al., 2013; Spaak et al., 2012; Xing et al., 2012). While in vivo laminar
440  data from primate sensorimotor cortex are lacking, in vitro recordings from somatosensory and
441 motor cortices demonstrate that beta activity is generated in neural circuits dominated by
442 infragranular layer V pyramidal cells (Roopun et al., 2006, 2010; Yamawaki et al., 2008). By contrast,
443 gamma activity is thought to arise from supragranular layers 1l/1ll of mouse somatosensory cortex
444 (Cardin et al., 2009; Carlén et al., 2012). The results presented here support generalized theories of
445 laminar organization across cortex, and are the first to non-invasively provide evidence for the
446 laminar origin of movement-related sensorimotor activity.
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447
448 High frequency activity in visual cortex is enhanced by mismatches in feedforward and feedback
449 signals

450 We found that visual gamma was enhanced following the presentation of the instruction cue in
451 incongruent compared to congruent trials. This was in agreement with our predictions, based on the
452  fact that supragranular layer gamma activity is implicated in feedforward processing (van Kerkoerle
453 et al., 2014). In our task, the direction of coherent motion in the RDK was congruent with the
454  direction of the following instruction cue in most trials. Participants could therefore form a sensory
455  expectation of the direction of the forthcoming instruction cue, which was violated in incongruent
456 trials. The enhancement of visual gamma following incongruent cues is therefore consistent with the
457  gamma activity increase observed in sensory areas during perceptual expectation violations (Arnal et
458 al., 2011; Gurtubay et al., 2001; Todorovic et al., 2011) as well as layer-specific synaptic currents in
459  supragranular cortical layers during performance error processing (Sajad et al., 2017).

460

461 Low frequency activity in sensorimotor cortex reflects a combination of feedforward and feedback
462 processes

463  There are numerous theories for the computational role of beta activity in motor systems. Decreases
464 in beta power prior to the onset of a movement predict the selected action (Donner et al., 2009;
465 Haegens et al., 2011; de Lange et al., 2013), whereas the beta rebound following a movement is
466 attenuated by error monitoring processes (Tan et al., 2014, 2016; Torrecillos et al., 2015). Our results
467 unify both of these accounts, showing that the level of beta decrease prior to a movement is
468 modulated by the accumulation of sensory evidence predicting the cued movement, while the beta
469 rebound is diminished when the prepared action must be suppressed in order to correctly perform
470  the cued action. This suggests that in the sensorimotor system, low frequency activity can reflect
471 both bottom-up and top-down processes depending on the task epoch. This may occur via bottom-
472 up, feedforward projections from intraparietal regions to motor regions (Hanks et al., 2006; Kayser
473 et al., 2010; Platt and Glimcher, 1999; Tosoni et al., 2008) or top-down, feedback projections from
474 the dorsolateral prefrontal cortex (Curtis and Lee, 2010; Georgiev et al., 2016; Heekeren et al., 2006,
475 2004; Hussar and Pasternak, 2013). The dissociation between bottom-up and top-down influences
476  during different task epochs could indicate that the decrease in beta and the following rebound are
477  the result of functionally distinct processes.

478

479 Future directions

480  Our ROI-based comparison of deep and superficial laminae can only determine the origin of the
481 strongest source of activity, which does not imply that activity within a frequency band is exclusively
482  confined to either deep or superficial sources within the same patch of cortex (Bollimunta et al.,
483 2011; Haegens et al., 2015; Maier et al., 2010; Smith et al., 2013; Spaak et al., 2012; Xing et al.,
484 2012). We should also note that in all of our control studies, in which we discard spatial information,
485 a bias towards the superficial (pial) cortical surface was present. However, this bias does not
486  increase with SNR for high frequency activity with poor anatomical models, mirroring the results of
487  simulations showing that this type of laminar analysis is biased superficially at low SNR levels, but
488 that the metrics are not statistically significant at these levels (Bonaiuto et al., 2017). Moreover, we
489  used white matter and pial surface meshes to represent deep and superficial cortical laminae,
490 respectively, and therefore our analysis is insensitive to granular sources. Recent studies have shown
491  that beta, and perhaps gamma, activity is generated by stereotyped patterns of proximal and distal
492 inputs to infragranular and supragranular pyramidal cells (Jones, 2016; Lee and Jones, 2013;
493 Sherman et al., 2016). Future extensions to our laminar analysis could use a sliding time window in
494  order determine the time course of laminar activity. MEG is a global measure of neural activity, and
495 therefore uniquely situated to test large scale computational models of laminar and frequency-
496 specific interactions (Lee et al., 2013; Mejias et al., 2016; Pinotsis et al., 2017; Wang et al., 2013), as
497  well as the possibility that other cortical areas are organized along different principles; for example,
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498 in inferior temporal cortex the primary local pacemaking alpha generators are in supragranular
499 layers (Bollimunta et al., 2008). Finally, in the task used here, participants were told that the
500 direction of coherent motion in the RDK predicts the forthcoming instruction cue. Further research
501 will determine how predictive cues are learned implicitly, and how this process shapes beta and
502 gamma activity in visual and sensorimotor areas.

503

504  Experimental Procedures

505 Behavioral Task

506 Eight neurologically healthy volunteers participated in the experiment (6 male, aged 28.5+8.52
507  vyears). The study protocol was in full accordance with the Declaration of Helsinki, and all participants
508 gave written informed consent after being fully informed about the purpose of the study. The study
509  protocol, participant information, and form of consent, were approved by the local ethics committee
510 (reference number 5833/001). Participants completed a visually guided action decision making task
511 in which they responded to visual stimuli projected on a screen by pressing one of two buttons on a
512 button box using the index and middle finger of their right hand. On each trial, participants were
513 required to fixate on a small white cross in the center of a screen. After a baseline period randomly
514  varied between 1s and 2s, a random dot kinetogram (RDK) was displayed for 2s with coherent
515 motion either to the left or to the right (Figure 1A). Following a 500ms delay, an instruction cue
516 appeared, consisting of an arrow pointing either to the left or the right, and participants were
517 instructed to press the corresponding button (left or right) as quickly and as accurately as possible.
518 Trials ended once a response had been made or after a maximum of 1s if no response was made.

519  The task had a factorial design with congruence (whether or not the direction of the instruction cue
520 matched that of the coherent motion in the RDK) and coherence (the percentage of coherently
521 moving dots in the RDK) as factors (Figure 1B). Participants were instructed that in most of the trials
522 (70%), the direction of coherent motion in the RDK was congruent to the direction of the instruction
523  cue. Participants could therefore reduce their mean response time (RT) by preparing to press the
524  button corresponding to the direction of the coherent motion. The RDK consisted of a 10°x10°
525  square aperture centered on the fixation point with 100, 0.3° diameter dots, each moving at 4°/s.
526  The levels were individually set for each participant by using an adaptive staircase procedure
527 (QUEST; Watson and Pelli, 1983) to determine the motion coherence at which they achieved 82%
528  accuracy in a block of 40 trials at the beginning of each session, in which they had to simply respond
529  with the left or right button to leftwards or rightwards motion coherence. The resulting level of
530  coherence was then used as medium, and 50% and 150% of it as low and high, respectively.

531 Each block contained 126 congruent trials, and 54 incongruent trials, and 60 trials for each
532  coherence level with half containing coherent leftward motion, and half rightward (180 trials total).
533 All trials were randomly ordered. Participants completed 3 blocks per session, and 1-5 sessions on
534  different days, resulting in 540-2700 trials per participant (M=1822.5, SD=813.21). The behavioral
535 task was implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the Cogent 2000 toolbox
536  (http://www.vislab.ucl.ac.uk/cogent.php).

537

538 MRI Acquisition

539 Prior to MEG sessions, participants underwent two of MRI scanning protocols during the same visit:
540  one for the scan required to generate the scalp image for the headcast, and a second for MEG
541  source localization. Structural MRI data were acquired using a 3T Magnetom TIM Trio MRI scanner
542 (Siemens Healthcare, Erlangen, Germany). During the scan, the participant lay in the supine position
543  with their head inside a 12-channel coil. Acquisition time was 3 min 42 s, plus a 45 s localizer
544 sequence.

545  The first protocol was used to generate an accurate image of the scalp for headcast construction
546  (Meyer et al., 2017a). This used a T1-weighted 3D spoiled fast low angle shot (FLASH) sequence with
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547  the following acquisition parameters: 1mm isotropic image resolution, field-of view set to 256, 256,
548 and 192 mm along the phase (anterior-posterior, A—P), read (head-foot, H—F), and partition (right-
549 left, R-L) directions, respectively. The repetition time was 7.96ms and the excitation flip angle was
550 12°. After each excitation, a single echo was acquired to yield a single anatomical image. A high
551 readout bandwidth (425Hz/pixel) was used to preserve brain morphology and no significant
552  geometric distortions were observed in the images. Acquisition time was 3 min 42s, a sufficiently
553  short time to minimize sensitivity to head motion and any resultant distortion. Care was also taken
554  to prevent distortions in the image due to skin displacement on the face, head, or neck, as any such
555  errors could compromise the fit of the headcast. Accordingly, a more spacious 12 channel head coil
556  was used for signal reception without using either padding or headphones.

557  The second protocol was a quantitative multiple parameter mapping (MPM) protocol, consisting of 3
558 differentially-weighted, RF and gradient spoiled, multi-echo 3D FLASH acquisitions acquired with
559  whole-brain coverage at 800um isotropic resolution. Additional calibration data were also acquired
560 as part of this protocol to correct for inhomogeneities in the RF transmit field (Callaghan et al., 2015;
561 Lutti et al., 2010, 2012). For this protocol, data were acquired with a 32-channel head coil to
562 increase SNR.

563  The FLASH acquisitions had predominantly proton density (PD), T1 or magnetization transfer (MT)
564  weighting. The flip angle was 6° for the PD- and MT-weighted volumes and 21° for the T1 weighted
565  acquisition. MT-weighting was achieved through the application of a Gaussian RF pulse 2 kHz off
566  resonance with 4 ms duration and a nominal flip angle of 220° prior to each excitation. The field of
567 view was set to 224, 256, and 179 mm along the phase (A-P), read (H-F), and partition (R-L)
568  directions, respectively. Gradient echoes were acquired with alternating readout gradient polarity at
569  eight equidistant echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a readout
570  bandwidth of 488 Hz/pixel. Only six echoes were acquired for the MT-weighted acquisition in order
571  to maintain a repetition time (TR) of 25 ms for all FLASH volumes. To accelerate the data acquisition
572 and maintain a feasible scan time, partially parallel imaging using the GRAPPA algorithm (Griswold et
573  al., 2002) was employed with a speed-up factor of 2 and forty integrated reference lines in each
574  phase-encoded direction (A-P and R-L).

575  To maximize the accuracy of the measurements, inhomogeneity in the transmit field was mapped by
576  acquiring spin echoes and stimulated echoes across a range of nominal flip angles following the
577  approach described in Lutti et al. (2010), including correcting for geometric distortions of the EPI
578  data due to BO field inhomogeneity. Total acquisition time for all MRI scans was less than 30 min.

579  Quantitative maps of proton density (PD), longitudinal relaxation rate (R1 = 1/T1), magnetization
580 transfer saturation (MT) and effective transverse relaxation rate (R2* = 1/T2*) were subsequently
581 calculated according to the procedure described in Weiskopf et al. (2013). Each quantitative map
582  was co-registered to the scan used to design the headcast, using the T1 weighted map. The resulting
583 maps were used to extract cortical surface meshes using FreeSurfer (see below).

584

585 Headcast Construction

586 From an MRI-extracted image of the skull, a headcast that fit between the participant’s scalp and the
587 MEG dewar was constructed (Meyer et al., 2017a; Troebinger et al., 2014a). Scalp surfaces were first
588 extracted from the T1-weighted MRI scans acquired in the first MRI protocol using standard SPM12
589 procedures (http://www.fil.ion.ucl.ac.uk/spm/). Next, this tessellated surface was converted into the
590 standard template library (STL) format, commonly used for 3D printing. Importantly, this conversion
591 imposed only a rigid body transformation, meaning that it was easily reverse-transformable at any
592 point in space back into native MRI space. Accordingly, when the fiducial locations were optimized
593 and specified in STL space as coil-shaped protrusions on the scalp, their exact locations could be
594 retrieved and employed for co-registration. Next, the headcast design was optimized by accounting
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595 for factors such as headcast coverage in front of the ears, or angle of the bridge of the nose. To
596 specify the shape of the fiducial coils, a single coil was 3D scanned and three virtual copies of it were
597 placed at the approximate nasion, left peri-auricular (LPA), and right peri-auricular (RPA) sites, with
598 the constraint that coil placements had to have the coil-body and wire flush against the scalp, in
599 order to prevent movement of the coil when the headcast was worn. The virtual 3D model was
600 placed inside a virtual version of the scanner dewar such that the distance to the sensors was
601 minimized (by placing the head as far up within the dewar as possible) while ensuring that vision was
602 not obstructed. Next, the head-model (plus spacing elements and coil protrusions) was printed using
603  a Zcorp 3D printer (Zprinter 510) with 600 x 540 dots per inch resolution. The 3D printed head model
604  was then placed inside the manufacturer-provided replica of the dewar and liquid resin was poured
605 in between the surfaces to fill the negative space, resulting in the subject-specific headcast. The
606  fiducial coil protrusions in the 3D model now become indentations in the resulting headcast, in
607  which the fiducial coils can sit during scanning. The anatomical landmarks used for determining the
608  spatial relationship between the brain and MEG sensors are thus in the same location for repeated
609  scans, allowing data from multiple sessions to be combined (Meyer et al., 2017a).

610

611 FreeSurfer Surface Extraction

612 FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces from the multi-parameter
613 maps. Use of multi-parameter maps as input to FreeSurfer can lead to localized tissue segmentation
614  failures due to boundaries between the pial surface, dura matter and CSF showing different contrast
615 compared to that assumed within FreeSurfer algorithms (Lutti et al., 2014). Therefore, an in-house
616 FreeSurfer surface reconstruction procedure was used to overcome these issues, using the PD and
617  T1 maps as inputs. Detailed methods for cortical surface reconstruction can be found in Carey et al.
618 (Carey et al., 2017). This process yields surface extractions for the pial surface (the most superficial
619 layer of the cortex adjacent to the cerebro-spinal fluid, CSF), and the white/grey matter boundary
620  (the deepest cortical layer). Each of these surfaces is downsampled by a factor of 10, resulting in two
621 meshes comprising about 30,000 vertices each (M=30,094.75, SD=2,665.45 over participants). For
622  the purpose of this paper, we will use these two surfaces to represent deep (white/grey interface)
623  and superficial (grey-CSF interface) cortical models.

624

625 MEG Acquisition

626 MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG system with
627  superconducting quantum interference device (SQUID)-based axial gradiometers (VSM MedTech,
628  Vancouver, Canada) in a magnetically shielded room. The data collected were digitized continuously
629 at a sampling rate of 1200 Hz. A projector displayed the visual stimuli on a screen (~8m from the
630  participant), and participants made responses with a button box.

631

632 Behavioral Analyses

633 Participant responses were classified as correct when the button pressed matched the direction of
634  the instruction cue, and incorrect otherwise. The response time (RT) was measured as the time of
635 button press relative to the onset of the instruction cue. Both measures were analyzed using
636 repeated measures ANOVAs with congruence (congruent or incongruent) and coherence (low,
637 medium, and high) as factors. Pairwise follow-up tests were performed between congruence levels
638 at each coherence level, Bonferroni corrected.

639

640 MEG Preprocessing

641 All MEG  data preprocessing and  analyses were performed using SPM12
642  (http://www. fil.ion.ucl.ac.uk/spm/)  using Matlab R2014a and are available at
643  http://github.com/jbonaiuto/meg-laminar. The data were filtered (5th order Butterworth bandpass
644  filter: 2-100 Hz) and downsampled to 250 Hz. Eye-blink artifacts were removed using multiple source
645 eye correction (Berg and Scherg, 1994). Trials were then epoched from 1s before RDK onset to 1.5s
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646 after instruction cue onset, and from 2s before the participant’s response to 2s after. Blocks within
647 each session were merged, and trials whose variance exceeded 2.5 standard deviations from the
648  mean were excluded from analysis.

649

650  Source reconstruction

651  Source inversion was performed using the empirical Bayesian beamformer (EBB; Belardinelli et al.,
652 2012; Lopez et al., 2014) within SPM. The sensor data were first reduced into 180 orthogonal spatial
653 (lead field) modes and 16 temporal modes. The empirical Bayes optimization rests upon estimating
654  hyper-parameters which express the relative contribution of source and sensor level covariance
655 priors to the data (Lopez et al., 2014). We assumed the sensor level covariance to be an identity
656  matrix, with a single source level prior estimated from the data. The source level prior was based on
657  the beamformer power estimate across a two-layer manifold comprised of pial and white cortical
658  surfaces with source orientations defined as normal to the cortical surface. There were therefore
659  only two hyper-parameters to estimate — defining the relative contribution of the source and sensor
660 level covariance components to the data. We used the Nolte single shell head model as
661 implemented in SPM (Nolte, 2003).

662

663 Analyses for Laminar Discrimination

664  The laminar analysis reconstructed the data onto a mesh combining the pial and white matter
665  surfaces, thus providing an estimate of source activity on both surfaces (Figure 3). We analyzed six
666 different visual and sensorimotor signals at different frequencies and time windows of interest
667 (WOIs): RDK-aligned visual alpha (7-13Hz; WOI=[0s, 2s]; baseline WOI=[-1s, -.5s]), RDK-aligned visual
668 gamma (60-90Hz; WOI=[250ms, 500ms]; baseline WOI=[-500ms, -250ms]), instruction cue-aligned
669  visual gamma (60-90Hz; WOI=[100ms, 500ms]; baseline WOI=[-500ms, -100ms]), RDK-aligned
670 sensorimotor beta (15-30Hz; WOI=[0s, 2s]; baseline WOI=[-500ms, Oms]), response-aligned
671 sensorimotor beta (15-30Hz; WOI=[500ms, 1s]; baseline WOI=[-250ms 250ms]), response-aligned
672 sensorimotor gamma (60-90Hz; WOI=[-100ms, 200ms]; baseline WOI=[-1.5s, -1s]). For each signal,
673  we defined an ROI by comparing power in the associated frequency band during the WOI with a
674  prior baseline WOI at each vertex and averaging over trials. Vertices in either surface with a mean
675  value in the 80™ percentile over all vertices in that surface, as well as the corresponding vertices in
676 the other surface, were included in the ROI. This ensured that the contrast used to define the ROI
677  was orthogonal to the subsequent pial versus white matter surface contrast. For each trial, ROI
678  values for the pial and white matter surfaces were computed by averaging the absolute value of the
679  change in power compared to baseline in that surface within the ROI. Finally, a paired t-test was
680 used to compare the ROl values from the pial surface with those from the white matter surface over
681 trials (Figure 3). This resulted in positive t-statistics when the change in power was greatest on the
682 pial surface, and negative values when the change was greatest on the white matter surface. All t-
683  tests were performed with corrected noise variance estimates in order to attenuate artifactually
684  high significance values (Ridgway et al., 2012).

685  The control analyses utilized the same procedure, but each introduced some perturbation to the
686  data. The shuffled analysis permuted the lead fields of the forward model prior to source
687 reconstruction in order to destroy any correspondence between the cortical surface geometry and
688  the sensor data. This was repeated 10 times per session, with a different random lead field
689 permutation each time. Each permutation was then used in the laminar analysis for every low and
690 high frequency signal. The co-registration error analysis introduced a rotation (M=10°, SD=2.5°) and
691 translation (M=10mm, SD=2.5mm) in a random direction of the fiducial coil locations prior to source
692 inversion, simulating between-session co-registration error. This was done 10 times per session, with
693 a different random rotation and translation each time. Again, each perturbation was used in the
694  laminar analysis for every low and high frequency signal. The SNR analysis used a random subset of
695  the available trials from each subject, gradually increasing the number of trials used from 10 to the
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number of trials available. This was repeated 10 times, using a different random subset of trials each
time, and the resulting t-statistics were averaged.

Condition Comparison

For each visual and sensorimotor frequency band/task epoch combination, induced activity was
compared between task conditions on the surface and within the anatomically constrained ROI
identified from the corresponding laminar analysis. Seven-cycle Morlet wavelets were used to
compute power within the frequency band and this was baseline-corrected in a frequency-specific
manner using robust averaging. For each participant, the mean percent change in power over the
WOI was averaged over all trials within every condition. Wilcoxon tests for comparing two repeated
measures were used to compare the change in power for instruction cue-aligned visual gamma and
sensorimotor beta rebound between congruent and incongruent trials. A Friedman test for
comparing multiple levels of a single factor with repeated measures was used to compare the
sensorimotor beta decrease between low, medium, and high RDK coherence trials. This was
followed up by Tukey-Kramer corrected pairwise comparisons. Only trials in which a correct
response was made were analyzed.
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