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Abstract 

The transition from early adulthood to older is marked by pronounced functional 

and structural brain transformations that impact cognition and behaviour. Here, we 

use dynamic functional network connectivity method to examine resting state 

functional network changes over aging process. In general, the features of dynamic 

functional states are generally varying across ages, such as the frequency of 

expression and the amount of time spent in the certain state. Increasing age is 

associated with less variability of functional state across time at rest period. From age 

point of view, examining the age-related difference of topology index revealed 19-30 

age range has the significant largest global efficiency, largest local efficiency of 

default-mode network (DMN), cognitive control network (CCN) and salience network 

(SN). As for functional states, one state displayed the whole positive connectivity, in 

the meantime, it has the largest global efficiency and local efficiency of three 

subnetworks. Besides, the frequency of another state was negatively correlated to the 

box block (The Wechsler Adult Intelligence Scale subset, which is thought to 

evaluate fine motor skills, processing speed, and visuospatial ability), while positively 

correlated with age, and the box block was inversely correlated to age. The results 

suggested that cognitive aging may be characterized by the dynamic functional 

network connectivity. Taken together, these findings suggested the importance of a 

dynamic approach to understanding cognitive aging in lifespan. 

Key words: dynamic functional network connectivity; aging; graph theory; Wechsler 

Adult Intelligence Scale 
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Introduction 

With the increasing of age, our brain undergoes structural and functional changes 

(Betzel, et al., 2014). For brain structures, previous studies revealed that there was a 

tendency toward cortical ‘disconnection’, i.e., a rapid decline of within-network 

covariance in aging process (Betzel, et al., 2014; DuPre & Spreng, 2016). This 

structural ‘disconnection’ was also shown to be accompanied with the dynamic 

changes of resting-state functional connectivity. For example, the default mode or the 

execute control network, which is involved in attention, memory and executive 

control functions, has a decreased interregional neural correlations in the cognitive 

aging process. (Vidal-Piñeiro, et al., 2014; Chan, et al., 2014). Therefore, it is 

important to investigate their changes across lifespan based on integrating 

multi-networks, which provided a whole brain level understanding of aging process. 

(Zuo et al., 2017)  

  Functional connectivity (FC) describes how the neural activity of two brain regions 

interact with each other over time, which is usually measured by the Pearson 

correlation coefficient between their fMRI time series (Biswal et al., 1995). Many 

previous studies examined age-related differences using static functional connectivity 

analysis. Results showed that the changes of static connectivity are linked to cognitive 

ability and behavioural changes. For example, interactions between intrinsic 

connectivity networks (ICNs) alter over time across age (Fair et al., 2007; Power et al., 

2010; Thomason et al., 2008). Although static FC is widely used in previous literature 

(Greicius, 2008; Van den Heuvel and Hulshoff Pol, 2010), it may not be enough to 
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fully characterise the human brain. This depiction of development neglects the 

dynamic characteristic of the brain’s functional connectivity, with the potential 

assumption of FC remains constant throughout the resting period (Biswal et al., 1995; 

Fox et al., 2005). Recent research showed that aging not only affects static FC but 

also its spontaneous reconfiguration over time.   

Recently, a growing body of research has investigated the dynamic FC in healthy 

subjects and patients with neuropsychiatric diseases (Calhoun et al., 2014). For 

example, Allen and colleagues (Allen et al., 2014) examined resting-state FC 

dynamics in healthy young adults. In a follow-up study, the authors found dynamic 

resting-state FC alterations in schizophrenia (Damaraju et al., 2014). Besides resting 

state FC, researchers also examined task FC and confirmed that there was a direct link 

between cognitive performance and the dynamic reorganisation of the network 

structure of the brain (James, et al., 2016). Furthermore, researchers found that there 

was a link between dynamic connectivity in fMRI data and concurrently collected 

EEG data, which suggested that the stationarity of connectivity cannot be assumed 

(Allen et al., 2017). Another study evaluated replicability of dynamic connectivity 

patterns in 7500 resting fMRI datasets, and the results showed that distinct 

resting-state connectivity states are similar across groups (Abrol et al., 2017). These 

collective findings imply that dynamic FC is a promising avenue for clinical 

neuroimaging and can enrich our knowledge of the functional organisation of the 

human brain.  

  In this study, we examined age-related differences in dynamic FC. We investigated 
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the relationship between dynamic FC and aging. Based on the previous studies on 

dynamic connectivity (Allen et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; 

James, et al., 2016; Abrol et al., 2017), we compared the dynamic functional network 

connectivity (FNC) in different age cohorts. Briefly, group independent component 

analysis (ICA) was first used to extract resting state networks (RSNs), and dynamic 

FNC matrices were then created using sliding window correlation approach. 

Subsequently, K-means algorithm was employed to cluster these matrices into 

different dynamic states (these can be thought of as average patterns that subjects tend 

to return to during the course of the experiment), and state analysis (based on the 

patterns of connectivity within each state as well as high-level summaries such as the 

dwell time each individual subject spends in each state) was finally carried out to 

compare the dynamic FNC in different age cohorts. We described the states by 

calculating their network graphic properties including: local efficiency, global 

efficiency, as well as hub areas. Finally, we discussed some of the issues associated 

with dynamic FNC and intelligence. We focused on recently developed dynamic FNC 

and provided a special perspective to examine the correlation between dynamic FNC 

and aging. 

Materials and methods 

Subjects 

The large sample was drawn from an ongoing project exploring the associations 

among individual development in brain structure and function, cognitive ability and 

mental health (Qunlin, et al., 2016; Wei, et al., 2017). A total of 494 healthy 
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volunteers were recruited from  Southwest University (SWU) by means of the 

campus network, advertisements on bulletin boards and through face-to-face 

communications, but 60 participants were excluded due to large head motion (FD > 

0.2mm) (Laumann et al., 2016). Thus, the final sample was composed of 434 subjects 

(165 males; mean age = 44.44, SD = 17.28; age range = 19-80). All participants were 

required to be healthy and none had a history of psychiatric disorder or substance 

abuse (including illicit drugs and alcohol), and MRI contraindications. The project 

was approved by the SWU Brain Imaging Center Institutional Review Board, and 

written informed consent was obtained from each subject prior to the study. 

Participants received payment depending on time and tasks completed. 

Image acquisition 

All functional images were obtained from a 3-T Siemens Magnetom Trio scanner 

(Siemens Medical, Erlangen, Germany) at the Brain Imaging Research Central in 

Southwest University, Chongqing, China. The whole-brain resting-state functional 

images were acquired using T2-weighted gradient echo planar imaging (EPI) 

sequence: slices = 32, repetition time (TR)/echo time (TE) = 2000/30 ms, flip angle = 

90 degrees, field of view (FOV) = 220 mm × 220 mm, thickness = 3 mm, slice gap = 

1 mm, matrix = 64 × 64, resulting in a voxel with 3.4 × 3.4 × 4 mm3. During the 

functional images acquisition, participants were asked to close eyes, keep still and not 

to fall asleep (confirmed by all participants immediately after the experiment). The 

scan lasted for 484 s and acquired 242 volumes in total for each subject. Additionally, 

high-resolution T1-weighted anatomical images were acquired for each participant 
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(TR = 1900 ms; TE = 2.52 ms; inversion time = 900 ms; flip angle = 9 degrees; 

resolution matrix = 256 × 256; slices = 176; thickness = 1.0 mm; voxel size = 1 × 1 × 

1 mm3). 

Data preprocessing  

The sMRI (1×1×1mm3) data was processed by using SPM8 (Welcome Department 

of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk/spm) implemented in 

MATLAB 2012a (MathWorks Inc., Natick, MA, USA). Each sMRI was first 

displayed in SPM8 to check quality. Firstly, the reorientation of the images was 

manually set to the anterior commissure. Then, the images were segmented into gray 

matter, white matter, and cerebrospinal fluid by using the segmentation tool in SPM8.  

The resting-State fMRI data were preprocessed using Data Processing Assistant for 

Resting-State fMRI (DPARSF, http://resting-fmri.sourceforge.net/) implemented in 

the MATLAB 2012a (Math Works, Natick, MA, USA) platform. Resting-State fMRI 

preprocessing steps included the following: eliminate first 10 time points of each 

subject, slice timing correction, realignment, registration functional images (MNI 

pace), normalization (3×3×4 mm3), smoothing (FWHM = 6 mm), band pass filtering 

(0.023-0.18 Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015), 

nuisance regressors included white matter and cerebrospinal fluid signals in addition 

to 24 movement regressors derived by expansion, frames with frame wise 

displacement (FD) > 0.2mm were censored. The residual effects of motion was 

regressed out in group statistical analysis by including mean frame wise displacement 

(FD) derived with Jenkinson’s relative root mean square (RMS) algorithm as a 
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regressor of no interest. These preprocessing steps were followed by the standard 

protocol published (Yan et al., 2016). 

Head motion correction 

Recent studies have demonstrated that head motion has a substantial impact on 

dynamic FC (Laumann et al., 2016；Siegel et al., 2016). So we used the following 

steps to further minimize the effects of head motion. Artifacts were reduced using 

excluding subjects with high head-motion, nuisance regression (excluding censored 

frames), interpolation (Power et al., 2014), and band pass-filtering (0.023 < f < 0.18 

Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015). Nuisance 

regressors included the cerebrospinal fluid signals, white matter, and their derivatives, 

in addition to 24 movement regressors derived by expansion (Friston et al. 1996; Yan 

et al. 2013). Subjects with max head motion > 0.2mm and 2.0 degrees were censored 

(Laumann et al., 2016), 

Group independent component analysis 

Group ICA was performed using the GIFT toolbox 

(http://mialab.mrn.org/software/gift). Following the Allen et al. (2014), we used a 

relatively high model order (number of components, C= 100) to achieve a “functional 

parcellation” of refined cortical and subcortical components corresponding to known 

anatomical and functional segmentations. In group ICA, principal component analysis 

(PCA) was used to reduce the dimension of fMRI data at two levels. First, fMRI data 

of each subjects were decomposed into 150 principal components (PCs). Then the 

reduced data of all participants were concatenated and further decomposed into 100 
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PCs using the expectation-maximization algorithm (Roweis 1998). The Infomax 

algorithm was then used to find independent components. This algorithm was 

repeated 20 times in ICASSO (http://www.cis.hut. fi/projects/ica/icasso) and spatial 

maps (SMs) were estimated as the modes of the component clusters. Based on visual 

recognition and calculating spatial Pearson correlation coefficient, 41 components 

were discarded and a total of 59 components were identified as intrinsic connectivity 

networks (ICNs) for future analysis. Finally, following a previous study, we 

performed additional post processing steps on time courses of the 59 ICNs, including 

1) removing linear, quadratic, and cubic trends, 2) regressing out 6 realignment 

parameters and their temporal derivatives, 3) low-pass filtering (0.15 Hz), and 4) 

removing spikes to ensure that artifactual spikes do not negatively impact the signal 

analysis (Allen et al., 2014).  

Dynamic FNC computation 

Before dynamic FNC computation, the time courses of RSNs were temporally 

bandpass filtered (0.023–0.18 Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van 

De Ville, 2015) to reduce the effects of low-frequency drift and high-frequency 

physiological noise. The dynamic FNC was computed using a sliding-window 

correlation approach. Since there was currently no formal consensus regarding the 

window length, we selected the length (22TR) according to a former study with a 

Gaussian of σ = 3 TR (Allen et al., 2014). The window was shifted with a step of 1 

TR, resulting in 210 windows. In each window, the time courses of each pair of the 59 

RSNs were used to calculate FNC (Pearson’s correlation coefficient) and a 59 * 59 
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correlation matrix was obtained. A Fisher’s r-to-z transformation was then applied to 

all FNC matrices to improve the normality of the correlation distribution as r is the 

Pearson correlation coefficient and z is approximately normally distributed. 

K-means clustering 

For the dFNC patterns reoccur within subjects across time and across subjects, we 

applied the k-means algorithm to divide the dFNC windows into separate clusters. 

The clustering algorithm was applied to a subset of all windows that showed greater 

variance in FNC, and was repeated 150 times to increase the likelihood of escaping 

local minima, with random initial cluster centroid positions (Allen et al., 2014; Liu et 

al., 2016). Subsampling was chosen both to reduce redundancy between windows (the 

chosen time step of 1 TR induces high autocorrelation in FC time series) and to 

reduce computational costs. The optimal number of clusters was estimated as 5 using 

the elbow criterion (Ketchen & Shook, 1996), which is calculated as the maximum 

ratio of within-cluster distance and between-cluster distance across a set of candidate 

cluster numbers (2 to 10 in our study). Finally, the resulting centroids of subsample 

were used as starting points to cluster all data into 5 clusters. A k of 4 and 6 was used 

respectively to validate the robustness of our results (see SI.B).  

State analysis 

In addition, we performed an exploratory experiment in which we calculated and 

compared temporal metrics derived from each subject’s state vector (Allen et al., 

2014). Specifically, we computed four measures in each subject, including: (1) 

frequency of each state, measured as the number of consecutive windows in each state; 
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(2) dwelling time of state, measured as the frequency of unchanged between time 

window and time+1 window, while the current window and the next window have the 

same state, the dwell time of the state plus one; (3) total number of transitions, 

measured as the number of state transitions; and (4) state transition frequency, 

measured as the frequency of transitioning from one state to another state.  

Parametric tests (Pearson correlation) were utilized to evaluate the correlation 

between age and these measures，and head motion is regressed out as nuisance 

covariates. 

Three dimensions of age * time * state 

Before the analysis, each connection matrix of cluster centroids was converted to a 

z-value connection matrix by using Fisher’s r-to-z transform to improve the normality. 

Thresholding the RSFC matrices is critical to obtain a sparse adjacency matrix. Using 

absolute thresholding method may ultimately change the properties of the original 

global and local functional connectivity, which may bias the comparisons of 

graph-theoretic metrics between different groups of subjects (Song, et al., 2014). 

Therefore, we applied a proportional network threshold of 15% (Whitfield-Gabrieli, 

&Nieto-Castanon, 2012). We globally thresholded the RSFC matrix at a fixed 

threshold (K= 0.15), and then measured local and global efficiency based on weighted 

adjacency matrix by using Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/) (Whitfield-Gabrieli, &Nieto-Castanon, 2012).  

For each time window, we can get a matrix and its graph metrics (global and local 

efficiency). We averaged the graph metrics of all time windows in each subject, and 
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then treated their average value as the graph metrics of each subject. Then, we divided 

the subjects into 6 groups according to their ages. In this way, we can investigate the 

correlation between age and graph metrics. Previous literatures indicted that DMN 

(Damoiseaux et al., 2008; Biswal et al., 2010; Evers et al., 2012), CCN (Elizabeth 

DuPre & R. Nathan Spreng, 2016), and SN (Kamen Tsvetanov, et al., 2016) are more 

susceptible to the effects of aging. Therefore, we calculated the correlation between 

local efficiency of these subnetworks and age.  

Besides, we averaged the graph metrics of the every time window of the every age 

range, and then put the average value as the graph metrics of this time window of the 

this age range. Then we can observe the graph metrics varying curve of this age range 

in the time course. 

Topological properties of discrete functional connectivity states  

To characterize the state topological properties, we globally thresholded the state 

matrix at a fixed threshold (K= 0.15), calculated global efficiency, subnetwork local 

efficiency, and the degree of every node of every matrices, and then listed the hub 

nodes of matrices according to their degree (The Brain Connectivity Toolbox, 

http://www.brain-connectivity-toolbox.net/). With global efficiency, local efficiency 

and hub regions of each state, we can depict the characteristic of each state.  

The correlation between Wechsler Adult Intelligence Scale and state 

The Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed to measure 

intelligence and cognitive ability in adults and older adolescents (Kaufman & 

Lichtenberger, 2005). The WAIS-R, a revised form of the WAIS, and consisted of six 
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verbal and five performance subtests (Wechsler, 1981). Firstly, we investigated the 

relationship between age, state indexes (frequency of each state; dwell time of state; 

numbers of transitions), and total score of WAIS. Secondly, we chose one of verbal 

subsets, called similarity, which measures abstract verbal reasoning as well as 

semantic knowledge. In this section, participants are given two words or concepts and 

required to describe how they are similar. We examined the relationship between 

similarity (the subtest of the Wechsler Adult Intelligence Scale-Revised Chinese 

revision (WAIS-RC; Gong, 1992)), state indexes, and age. Lastly, we tested the 

relationship between block design test (the subtest of the Wechsler Adult Intelligence 

Scale-Revised Chinese revision (WAIS-RC; Gong, 1992), state indexes, and age. The 

block design test, which is thought to evaluate fine motor skills, processing speed, and 

visuospatial ability, is most affected by age (Hoogendam, et al., 2014). We 

hypothesized that age affects the brain, and then the brain affects the behavior. 

Results 

Static FNC  

Figure 1 displays the ICNs identified by the group ICA approach. Network 

components are shown in Figure 1.Based on their anatomical and presumed functional 

properties, ICs are grouped into sub-cortical (SC), auditory (AUD), somatomotor 

(SM), visual (VIS), cognitive control (CC), default-mode (DM), and salience (SN) 

networks by spatial correlation and visual recognition. The manually identified ICNs 

is very similar to a previous study (Allen et al., 2014). These ICNs are also similar to 

those observed in previous studies using a higher model order (Smith et al. 2009; 
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Allen et al. 2011) and cover the majority of subcortical and cortical grey matter 

regions. Figure 2 displayed the static FC between ICNs, computed over the entire 

scan length and averaged across subjects. 

INSERT Figure 1 in HERE 

INSERT Figure 2 in HERE 

The duration and transition of connectivity states as a function of age 

In addition to the static FNC, we can also examine the frequency of states as a 

function of time and the transitions between them. Figure 3 shows the state 

assignments as a function of time in 4 example subjects. As we would see, functional 

networks tend to sustain single state during a long period, while transition times are 

rarely less. We can characterize transition behavior by calculating the frequency of 

changing from one state to another.  

INSERT Figure 3 in HERE 

The total dwell time (the sum of dwell time of all states) of states was positively 

correlated with age (r = 0.20, p = 0.000, n=434), while the total transition of states 

was negatively correlated with age (r = -0.20, p = 0.000, n=434). The states indexes at 

rest were correlated with age (See Table 1), the distribution of each state in each age 

ranges is shown in Figure 4. 

Besides, recent studies have demonstrated that head motion has a substantial impact 

on dynamic FC (Laumann et al., 2016；Siegel et al., 2016). Therefore, we examined 

the correlation between head motion (mean framewise displacement) and state 

indexes. The results indicated head motion is negatively correlated with the frequency 
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of state 3 (r = -0.15, p = 0.002) and the times of transition of state 3-5 (r = -0.10, p = 

0.034). 

INSERT Table 1 in HERE 

INSERT Figure 4 in HERE 

Three dimensions of age * time * state 

To characterize the age effects on the global network topological properties, two 

key graph metrics were employed, global efficiency and local efficiency, which were 

all calculated based on weighted networks.  

Firstly, we found significant age-related differences in the network’s global and 

local efficiency (see in Table 2). Notably, the age-related difference is observed for 

global efficiency (global efficiency: r = -0.24, p =  0.000), 19-30 years old age range 

has significant greater global efficiency than 51-60, 61-70, and 71-80 years old age 

range. The correlation between subnetwork local efficiency and age (DMN Elocal: p 

= 0.055, r = -0.092; CC_Elocal: p =0.019, r = -0.11; SN_Elocal: p = 0.000, r = -0.19) 

behaved differently. Intriguingly, no matter which network, its local efficiency of 

19-30 age range is the highest.  

Secondly, we divided the subjects into 6 groups according to age, each age span of 

10 years (19-30; 31-40; 41-50; 51-60; 61-70; 71-80). The sample was not equally 

distributed amongst the age groups. Each age groups have 149, 32, 63, 103, 59, and 

28 samples respectively. We considered the distribution may impact the differences of 

global efficient and local efficient among age groups. So we randomly sampled 28 

subjects from each age groups and made them a new sample. Then we compared the 
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global efficiency and local efficiency among different age groups in the new sample. 

We ran the above-mentioned analysis 100 times and reported the ratio of significant 

result (p < 0.05) in Table 2. The results indicated that the age-related difference in 

global efficiency is reliable and stable, and that in local efficiency of different 

subnetwork is unstable.  

Besides, we have plotted the three dimensions of age * time * graphic indexes to 

observed varying curve of different age range in the time course (see Figure 5). 

INSERT Table 2 in HERE 

INSERT Figure 5 in HERE 

Characteristic of dynamic functional connectivity states  

We used sliding window approach to estimate dFNC network for each subject. For 

the dFNC patterns reoccur within subjects across time and across subjects, we then 

applied the k-means algorithm to divide the dFNC windows into separate clusters. 

Figure 6 shows the centroids of the 5 dFNC states. In state 1, the whole network 

displayed slight and moderate negative connectivity. State 2 showed the high positive 

correlation among AUD, SMN, and VIS, while the negative correlation between SCN 

and other networks. In state 3, there are negative connections between DMN and 

other networks as well as SCN and others. In state 4, the whole network displayed 

slight and moderate positive connectivity, and the high positive coupling among AUD, 

SMN, and VIS appeared again. In state 5, AUD, SMN, and SN were negatively 

correlated with DMN and it displayed a whole negative pattern. 

  To characterize the state topological properties, we applied a proportional network 
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threshold of 15% and calculated global efficiency, subnetwork local efficiency and 

degree based on thresholded weighted networks (See Table 3). It’s worth noting that 

state 4 has the largest global efficiency, DMN local efficiency, CC local efficiency and 

SN local efficiency. The hub nodes (the node of the top three degree) are located in 

visual and auditory cortex, DMN (posterior cingulate cortex) and CCN 

(supplementary motor area). 

INSERT Table 3 in HERE 

INSERT Figure 6 in HERE 

The correlation between WAIS and age 

Firstly, the total score of WAIS and similarity were both negatively correlated with 

age (total score: r = -0.51, p = 0.000, n = 82; similarity: r = -0.49, p = 0.000, n = 93), 

and similarity was negatively correlated with transition of state 3-1 (r = -0.22, p = 

0.031, n = 93). However, the box block design is inversely correlated to age (r = -0.53, 

p = 0.000, n = 82) and frequency of state 5 (r = -0.26, p = 0.019, n = 82), while the 

correlation between age and the frequency is not significant (r = 0.15, p = 0.18, n = 

82). However, we think age is positively correlated with the frequency of state 5, 

since the total samples (n = 434) suggested the two factors are positively correlated (r 

= 0.11, p = 0.022). The size and age range of the subsample (n = 82, age range: 23-65) 

may be the cause of that statistical significance failed to reach borderline in 

subsample. 

Robustness Analysis 
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Some literature (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015) 

recommend removing frequency components below 1/w (where w is the length of the 

window), so we used a band pass filtering of 0.023-0.18 Hz. However, others (Abrol, 

et al., 2016; Damaraju, et al., 2014) low-pass filtered time series with a high 

frequency cutoff of 0.15 Hz by Gift software (http://mialab.mrn.org/software/). To 

examine our main results, we use the second filtering parameter to re-analysis the 

correlation between aging and dynamic FC.  

  We examined the frequency of states as a function of time and the transitions 

between them. As our previous results, FC tends to sustain single state during a long 

period, while transition times are rarely less. The total dwell time (the sum of dwell 

time of all states) of states was positively correlated with age (r = 0.14, p = 0.003), 

while the total transition of states was negatively correlated with age (r = -0.14, p = 

0.003). The results verified the previous finding. As aging process occurring, the 

pattern of functional connectivity tended to keep stable in resting period. Some states 

indexes were correlated with age (See SI.D), and the distribution of each state in each 

age range was shown in SI.E. 

Then we compared the states of two analyzes (states identified in first analysis and 

robust analysis). Firstly, we calculated the Pearson correlation coefficient among 

states. Considering the correlation coefficient and visual pattern, we think state 

5_second is similarity with state 4_first (See SI.F). Secondly, we applied a 

proportional network threshold of 15% and calculated the global efficiency, 

subnetwork local efficiency, and degree of each state. The state 5_second, just like 
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state 4_first, had greatest global efficiency and subnetwork local efficiency (See SI.G). 

Lastly, SI.H showed the centroids of the intrinsic states.  

Discussion 

Brain’s dynamics functional network connectivity over aging   

The present study examined the effect of age on dynamic whole-brain FC. The 

analysis revealed 5 recurring FC states departed with substantial internetwork 

correlation variability. In resting state period, the non - random distribution of states 

in different age ranges suggested that dynamic changes of large-scale brain network 

may be a fundamental feature of aging process. 

  Firstly, the number of transitions occurring between multi-connectivity states and 

the rate of transition between states were all higher among younger than older 

participants. We can assume that the thinking is more active for young people than 

older people, or the speed of mind change is faster in resting period. 

Secondly, the frequency of occurrence state 1 and 5 increases over aging, while the 

same parameter for state 3 and 4 decrease over aging. This suggests that the patterns 

of state 1 and 5 become more active in the older life span, while the patterns of state 3 

and 4 become more active in the young life span. State1 and state 5 display a whole 

negative connectivity network, while state 3 and 4 have relative more positive 

connectivity. That is mean young participations may experience more network 

cooperation in the rest period.  

  Thirdly, a number of studies have proposed that head motion during a scan can 

substantially affect functional connectivity estimates (Power et al., 2012; Yan et al., 
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2013; Laumann et al., 2016；Siegel et al., 2016), therefore, we examined the 

correlation between head motion and state indexes. On the one hand, the relationship 

between head motion and state dwell time is not significant, which verified the 

dynamic FC over time is not artifacts. On the other hand, head motion is negatively 

correlated with the frequency of state 3 while positively correlated with age, 

meantime the frequency of state 3 is negatively correlated with age. Maybe the state 3 

reflects the psychological characteristics associated with head movement, such as 

control ability, which decreases in the aging process. That is to say, head motion also 

changes systematically with age, which may reflect true neurobiological effects of 

aging. (Geerligs, Tsvetanov., & Henson, 2017). 

Lastly, our resulted suggested that dwell time is positively correlated with age, 

while previous literature (Hutchison & Morton, 2015) reported the dwell time is 

negatively correlated with age. One possible reason is that previous sample mainly 

focused 9-32 age range; however, the age range of our subjects included 19-80. After 

32 years old, dwell time is still increasing, and 40 years old is a turning point, twists 

and turns down. To some extent, our work can enlarge and depth this issue. Another is 

the results are not necessarily comparable as we use a different number of states. 

Age-related dynamic changes in network topology 

  In this study, we examined the age-related difference of global efficiency, different 

network local efficiency. 19-30 age range has significant greater global efficiency and 

local efficiency of subnetworks than older age range. The random sampling results 

indicated that the age-related difference in global efficiency is reliable and stable, 
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however, the local efficiency of subnetwork didn’t show the stable difference. Young 

have greater global efficiency than older maybe because they have more amounts of 

state 4, which has largest global efficiency in all states. In state 4, the whole network 

displayed slight and moderate positive connectivity, and the high positive coupling 

among AUD, SMN, and VIS. The whole positive connectivity may reflect individual 

experiences more network cooperation in the rest period.  

Static FC research found that the absolute global efficiency of brain functional 

networks showed no significant relationship with age (Cao, et al., 2014), increasing 

age is accompanied by increasing global efficiency (Chan, et al., 2014; Sala-Llonch 

2014), or young have greater global efficiency than older (Achard & Bullmore, 2007). 

It is not necessarily to compare dynamic FC study and static FC results 

Characterize each state 

  Recently study also revealed discrete functional connectivity states appear to be 

quite a resemblance in different groups (Abrol et al., 2017), the same as, states 

identified here also repeat previous states to a certain degree (Allen et al., 2014; Abrol 

et al., 2017). In state 1, the whole network displayed slight and moderate negative 

connectivity. State 2 showed the high positive correlation among AUD, SMN, and 

VIS, while the negative correlation between SCN and other networks. In state 3, there 

are negative connections between DMN and other networks as well as SCN and 

others. In state 4, the whole network displayed slight and moderate positive 

connectivity, and the high positive coupling among AUD, SMN, and VIS appeared 

again. In state 5, it rendered whole brain negative correlation. 
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The previous study (Abrol, et al., 2017) and this results evidenced that the patterns 

of the certain states are recurrent during resting state period, and the occurrence 

doesn’t change with the research methods, sample source or data quality, and thus can 

as a measure of functional brain aging.  

The correlation of cognitive ability and state 

Firstly, the total score of WAIS and similarity were both negatively correlated with 

age, and similarity was negatively correlated with transition of state 3-1. Secondly, the 

box block design is inversely correlated to age and frequency of state 5, while the 

correlation between age and the frequency is not significant. However, we think age is 

positively correlated with the frequency of state 5, since the total samples (n = 434, 

age range: 19-80) suggested the two factors are positively correlated. The size and age 

range of the subsample (n = 82, age range: 23-65) may be the cause of that statistical 

significance failed to reach borderline in subsample. The block design test 

evaluates fine motor skills, processing speed, and visuospatial ability, which are 

decreasing accompanied by age increasing (Hoogendam,et al., 2014). In state 5, AUD, 

SMN, and SN were negatively correlated with DMN and it displayed a whole 

negative pattern. The pattern of state 5 in older may reflect a true decreasing in certain 

cognitive abilities. 

Conclusion 

  The findings motivate a reconceptualization of the link between aging and FC. The 

previous model assumed that FC remains static throughout the resting period, 

neglecting the dynamic feature of the brain’s functional connectivity. Our results 
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instead suggest that these networks are, like aging process themselves, transient and 

dynamic. There are also some limitations to note in our study. One potential problem 

is that although we provided robust analysis, the direct relationship between aging and 

brain state requires utilizing the independent sample (Zuo et al., 2014; Shafto et al., 

2014) to verify the reliability of the results, and this work is in prepared. Secondly, 

using fMRI data alone, it is not possible to determine whether network changed as 

aging increased structure connectivity between brain regions, or whether the 

topological changes were merely a necessary temporary state. Besides, using 

functional imaging across development are age-associated motion artifacts and 

physiological signals (Power et al., 2012; Lahmann et al., 2017; Geerligs, et al., 2017), 

however, the impact of these factors on dynamic FC can be minimized by larger 

sampling (Zuo & Xing, 2014; Zuo et al., 2014), rigorous head motion control 

(Laumann et al., 2016; Siegel et al., 2017) or simultaneous psychological recordings. 

Furthermore, Van Den Heuvel et al. (2017) found lower levels of overall FC in either 

the patient or control group will often lead to differences in network efficiency and 

clustering, therefore, examine the overall FC strength across age ranges seems 

essential. Finally, we plan to investigate the underlying significance of states in more 

detail using methods such as time-varying analysis. Future work would focus on 

depicting the cognitive symbolize of connectivity state. There is a lot of useful 

information that we can learn from characterizing the network properties of each state 

individually; however, we are left with properties across multiple states.  
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Tables & Figures 

Table 1. The state index expressed at rest was correlated with age 

State index r p 

Total dwell time 0.20 0.000 

Total transition 

time 

-0.20 0.000 

Frequency of state 

1 

0.32 0.000 

Frequency of state 

3 

-0.238 0.000 

Frequency of state 

4 

-0.19 0.000 
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Frequency of state 

5 

0.11 0.022 

Transition times of 

1-5 

0.19 0.000 

Transition times of 

2-3 

-0.15 0.002 

Transition times of 

3-2 

-0.12 0.015 

Transition times of 

3-4 

-0.20 0.000 

Transition times of 

3-5 

-0.17 0.000 

Transition times of 

4-3 

-0.21 0.000 

Transition times of 

5-1 

0.16 0.001 

Transition times of 

5-3 

-0.14 0.003 

Head motion 0.41 0.000 

 

Table 2. Global efficiency and local efficiency of each age group 

Age range N Global DMN Local CC Local SN Local 
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efficiency efficiency efficiency efficiency 

19-30 149 0.351 0.601 0.603 0.616 

31-40 32 0.347 0.598 0.580 0.599 

41-50 63 0.341 0.588 0.577 0.607 

51-60 103 0.334 0.576 0.575 0.571 

61-70 59 0.328 0.566 0.552 0.553 

71-80 28 0.325 0.578 0.562 0.534 

Numbers 

of 

Significant 

results (in 

100 times)  

 94 11 16 79 

 

Table 3. Graphic indexes of each state 

State Indexes State 1 State 2 State 3 State 4 State 5 

Global efficiency 0.1938 0.2069 0.2388 0.3049 0.2005 

DMN local 

efficiency 

0.3442 0.3025 0.3830 0.5334 0.4610 
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CCN local 

efficiency 

0.2932 0.2316 0.3929 0.4190 0.3625 

SN local efficiency 0.3847 0.4412 0.5327 0.6566 0.4454 

Hub node VIS(71,28), 

DMN(52) 

VIS(71,55, 

28,54) 

VIS(71,28), 

AUD(51,63) 

VIS(28,71, 

55) 

AUD(63), 

VIS(28), 

CCN(47) 

N  25879 10111 28300 10641 16209 

IC labels: 28, 47, 51, 52, 54, 55, 63, 71 

 

 

 

 

 

 

 

Figure 1 
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Figure 1. Composite maps of the 59 identified intrinsic connectivity networks (ICNs), 

sorted into seven sub-networks. Each color in the composite maps corresponds to a 

different ICN.  

 

 

 

 

 

 

 

 

Figure 2 
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Figure 2. Static functional network connectivity matrix of ICNs during rest computed over the 

entire scan length and averaged over subjects. 

 

 

 

 

 

 

 

 

Figure 3 
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Figure 3. The state assignments as a function of time for the 4 example subjects. Examples of FC 

dynamics for subject 34, subject 85, subject 185, subject 318.  

Figure 4 

 

Figure 4. The distribution of each state in each age range. 

Figure 5 
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Figure 5. The varying curve of different age range in the time course. The global efficiency of 

young age range was always higher than it of the older age range in whole time course. The DMN 

local efficiency of elderly reached its peak at the beginning, while it of young reached its peak in 

the intermediate process. The CCN local efficiency of elderly reached its peak at the beginning, 

while it of young reached its peak in the second half. The SN local efficiency of elderly 

maintained a relative low level, while it of young had been growing up. 

 

 

 

 

 

 

Figure 6. 
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Figure 6. The centroids of the 5 dFNC states. In state 1, the whole network displayed slight and 

moderate negative connectivity. State 2 showed the high positive correlation among AUD, SMN, 

and VIS, while the negative correlation between SCN and other networks. In state 3, there are 

negative connections between DMN and other networks as well as SCN and others. In state 4, the 

whole network displayed slight and moderate positive connectivity, and the high positive coupling 

among AUD, SMN, and VIS appeared again. In state 5, AUD, SMN, and SN were negatively 

correlated with DMN and it displayed a whole negative pattern. 
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