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Abstract

The transition from early adulthood to older is marked by pronounced functional
and structural brain transformations that impact cognition and behaviour. Here, we
use dynamic functional network connectivity method to examine resting state
functional network changes over aging process. In general, the features of dynamic
functional states are generally varying across ages, such as the frequency of
expression and the amount of time spent in the certain state. Increasing age is
associated with less variability of functional state across time at rest period. From age
point of view, examining the age-related difference of topology index revealed 19-30
age range has the significant largest global efficiency, largest local efficiency of
default-mode network (DMN), cognitive control network (CCN) and salience network
(SN). As for functional states, one state displayed the whole positive connectivity, in
the meantime, it has the largest global efficiency and local efficiency of three
subnetworks. Besides, the frequency of another state was negatively correlated to the
box block (The Wechsler Adult Intelligence Scale subset, which is thought to
evaluate fine motor skills, processing speed, and visuospatial ability), while positively
correlated with age, and the box block was inversely correlated to age. The results
suggested that cognitive aging may be characterized by the dynamic functional
network connectivity. Taken together, these findings suggested the importance of a
dynamic approach to understanding cognitive aging in lifespan.
Key words. dynamic functional network connectivity; aging; graph theory; Wechsler

Adult Intelligence Scale
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Introduction

With the increasing of age, our brain undergoes structural and functional changes
(Betzel, et al., 2014). For brain structures, previous studies revealed that there was a
tendency toward cortical ‘disconnection’, i.e., a rapid decline of within-network
covariance in aging process (Betzel, et al., 2014; DuPre & Spreng, 2016). This
structural ‘disconnection’ was also shown to be accompanied with the dynamic
changes of resting-state functional connectivity. For example, the default mode or the
execute control network, which is involved in attention, memory and executive
control functions, has a decreased interregional neural correlations in the cognitive
aging process. (Vidal-Pifieiro, et al., 2014; Chan, et al., 2014). Therefore, it is
important to investigate their changes across lifespan based on integrating
multi-networks, which provided a whole brain level understanding of aging process.
(Zuo et al., 2017)

Functional connectivity (FC) describes how the neural activity of two brain regions
interact with each other over time, which is usually measured by the Pearson
correlation coefficient between their fMRI time series (Biswal et al., 1995). Many
previous studies examined age-related differences using static functional connectivity
analysis. Results showed that the changes of static connectivity are linked to cognitive
ability and behavioural changes. For example, interactions between intrinsic
connectivity networks (ICNs) alter over time across age (Fair et al., 2007; Power et al.,
2010; Thomason et al., 2008). Although static FC is widely used in previous literature

(Greicius, 2008; Van den Heuvel and Hulshoff Pol, 2010), it may not be enough to
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fully characterise the human brain. This depiction of development neglects the
dynamic characteristic of the brain’s functional connectivity, with the potential
assumption of FC remains constant throughout the resting period (Biswal et al., 1995;
Fox et al., 2005). Recent research showed that aging not only affects static FC but
also its spontaneous reconfiguration over time.

Recently, a growing body of research has investigated the dynamic FC in healthy
subjects and patients with neuropsychiatric diseases (Calhoun et al., 2014). For
example, Allen and colleagues (Allen et al., 2014) examined resting-state FC
dynamics in healthy young adults. In a follow-up study, the authors found dynamic
resting-state FC alterations in schizophrenia (Damaraju et al., 2014). Besides resting
state FC, researchers also examined task FC and confirmed that there was a direct link
between cognitive performance and the dynamic reorganisation of the network
structure of the brain (James, et al., 2016). Furthermore, researchers found that there
was a link between dynamic connectivity in fMRI data and concurrently collected
EEG data, which suggested that the stationarity of connectivity cannot be assumed
(Allen et al., 2017). Another study evaluated replicability of dynamic connectivity
patterns in 7500 resting fMRI datasets, and the results showed that distinct
resting-state connectivity states are similar across groups (Abrol et al., 2017). These
collective findings imply that dynamic FC is a promising avenue for clinical
neuroimaging and can enrich our knowledge of the functional organisation of the
human brain.

In this study, we examined age-related differences in dynamic FC. We investigated
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the relationship between dynamic FC and aging. Based on the previous studies on
dynamic connectivity (Allen et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014;
James, et al., 2016; Abrol et al., 2017), we compared the dynamic functional network
connectivity (FNC) in different age cohorts. Briefly, group independent component
analysis (ICA) was first used to extract resting state networks (RSNs), and dynamic
FNC matrices were then created using sliding window correlation approach.
Subsequently, K-means algorithm was employed to cluster these matrices into
different dynamic states (these can be thought of as average patterns that subjects tend
to return to during the course of the experiment), and state analysis (based on the
patterns of connectivity within each state as well as high-level summaries such as the
dwell time each individual subject spends in each state) was finally carried out to
compare the dynamic FNC in different age cohorts. We described the states by
calculating their network graphic properties including: local efficiency, global
efficiency, as well as hub areas. Finally, we discussed some of the issues associated
with dynamic FNC and intelligence. We focused on recently developed dynamic FNC
and provided a special perspective to examine the correlation between dynamic FNC
and aging.
Materials and methods
Subjects

The large sample was drawn from an ongoing project exploring the associations
among individual development in brain structure and function, cognitive ability and

mental health (Qunlin, et al., 2016; Wei, et al., 2017). A total of 494 healthy
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volunteers were recruited from Southwest University (SWU) by means of the
campus network, advertisements on bulletin boards and through face-to-face
communications, but 60 participants were excluded due to large head motion (FD >
0.2mm) (Laumann et al., 2016). Thus, the final sample was composed of 434 subjects
(165 males; mean age = 44.44, SD = 17.28; age range = 19-80). All participants were
required to be healthy and none had a history of psychiatric disorder or substance
abuse (including illicit drugs and alcohol), and MRI contraindications. The project
was approved by the SWU Brain Imaging Center Institutional Review Board, and
written informed consent was obtained from each subject prior to the study.
Participants received payment depending on time and tasks completed.
Image acquisition

All functional images were obtained from a 3-T Siemens Magnetom Trio scanner
(Siemens Medical, Erlangen, Germany) at the Brain Imaging Research Central in
Southwest University, Chongging, China. The whole-brain resting-state functional
images were acquired using T2-weighted gradient echo planar imaging (EPI)
sequence: slices = 32, repetition time (TR)/echo time (TE) = 2000/30 ms, flip angle =
90 degrees, field of view (FOV) = 220 mm x 220 mm, thickness = 3 mm, slice gap =
1 mm, matrix = 64 x 64, resulting in a voxel with 3.4 x 3.4 x 4 mm®. During the
functional images acquisition, participants were asked to close eyes, keep still and not
to fall asleep (confirmed by all participants immediately after the experiment). The
scan lasted for 484 s and acquired 242 volumes in total for each subject. Additionally,

high-resolution T1-weighted anatomical images were acquired for each participant
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(TR = 1900 ms; TE = 2.52 ms; inversion time = 900 ms; flip angle = 9 degrees;
resolution matrix = 256 x 256; slices = 176; thickness = 1.0 mm; voxel size =1 x 1 x
1 mm?).
Data preprocessing

The sSMRI (1x1x1mm?®) data was processed by using SPM8 (Welcome Department

of Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk/spm) implemented in

MATLAB 2012a (MathWorks Inc., Natick, MA, USA). Each sMRI was first
displayed in SPM8 to check quality. Firstly, the reorientation of the images was
manually set to the anterior commissure. Then, the images were segmented into gray
matter, white matter, and cerebrospinal fluid by using the segmentation tool in SPM8.

The resting-State fMRI data were preprocessed using Data Processing Assistant for
Resting-State fMRI (DPARSF, http://resting-fmri.sourceforge.net/) implemented in
the MATLAB 2012a (Math Works, Natick, MA, USA) platform. Resting-State fMRI
preprocessing steps included the following: eliminate first 10 time points of each
subject, slice timing correction, realignment, registration functional images (MNI
pace), normalization (3x3x4 mm?®), smoothing (FWHM = 6 mm), band pass filtering
(0.023-0.18 Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015),
nuisance regressors included white matter and cerebrospinal fluid signals in addition
to 24 movement regressors derived by expansion, frames with frame wise
displacement (FD) > 0.2mm were censored. The residual effects of motion was
regressed out in group statistical analysis by including mean frame wise displacement

(FD) derived with Jenkinson’s relative root mean square (RMS) algorithm as a
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regressor of no interest. These preprocessing steps were followed by the standard
protocol published (Yan et al., 2016).
Head motion correction

Recent studies have demonstrated that head motion has a substantial impact on
dynamic FC (Laumann et al., 2016 ; Siegel et al., 2016). So we used the following
steps to further minimize the effects of head motion. Artifacts were reduced using
excluding subjects with high head-motion, nuisance regression (excluding censored
frames), interpolation (Power et al., 2014), and band pass-filtering (0.023 < f < 0.18
Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015). Nuisance
regressors included the cerebrospinal fluid signals, white matter, and their derivatives,
in addition to 24 movement regressors derived by expansion (Friston et al. 1996; Yan
et al. 2013). Subjects with max head motion > 0.2mm and 2.0 degrees were censored
(Laumann et al., 2016),
Group independent component analysis

Group ICA was performed using the GIFT toolbox

(http://mialab.mrn.org/software/qgift). Following the Allen et al. (2014), we used a

relatively high model order (number of components, C= 100) to achieve a “functional
parcellation” of refined cortical and subcortical components corresponding to known
anatomical and functional segmentations. In group ICA, principal component analysis
(PCA) was used to reduce the dimension of fMRI data at two levels. First, fMRI data
of each subjects were decomposed into 150 principal components (PCs). Then the

reduced data of all participants were concatenated and further decomposed into 100
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PCs using the expectation-maximization algorithm (Roweis 1998). The Infomax
algorithm was then used to find independent components. This algorithm was
repeated 20 times in ICASSO (http://www.cis.hut. fi/projects/ica/icasso) and spatial
maps (SMs) were estimated as the modes of the component clusters. Based on visual
recognition and calculating spatial Pearson correlation coefficient, 41 components
were discarded and a total of 59 components were identified as intrinsic connectivity
networks (ICNs) for future analysis. Finally, following a previous study, we
performed additional post processing steps on time courses of the 59 ICNs, including
1) removing linear, quadratic, and cubic trends, 2) regressing out 6 realignment
parameters and their temporal derivatives, 3) low-pass filtering (0.15 Hz), and 4)
removing spikes to ensure that artifactual spikes do not negatively impact the signal
analysis (Allen et al., 2014).
Dynamic FNC computation

Before dynamic FNC computation, the time courses of RSNs were temporally
bandpass filtered (0.023-0.18 Hz) (Gonzalez-Castillo, et al., 2015; Leonardi & Van
De Ville, 2015) to reduce the effects of low-frequency drift and high-frequency
physiological noise. The dynamic FNC was computed using a sliding-window
correlation approach. Since there was currently no formal consensus regarding the
window length, we selected the length (22TR) according to a former study with a
Gaussian of o = 3 TR (Allen et al., 2014). The window was shifted with a step of 1
TR, resulting in 210 windows. In each window, the time courses of each pair of the 59

RSNs were used to calculate FNC (Pearson’s correlation coefficient) and a 59 * 59
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correlation matrix was obtained. A Fisher’s r-to-z transformation was then applied to
all FNC matrices to improve the normality of the correlation distribution as r is the
Pearson correlation coefficient and z is approximately normally distributed.
K-means clustering

For the dFNC patterns reoccur within subjects across time and across subjects, we
applied the k-means algorithm to divide the dFNC windows into separate clusters.
The clustering algorithm was applied to a subset of all windows that showed greater
variance in FNC, and was repeated 150 times to increase the likelihood of escaping
local minima, with random initial cluster centroid positions (Allen et al., 2014; Liu et
al., 2016). Subsampling was chosen both to reduce redundancy between windows (the
chosen time step of 1 TR induces high autocorrelation in FC time series) and to
reduce computational costs. The optimal number of clusters was estimated as 5 using
the elbow criterion (Ketchen & Shook, 1996), which is calculated as the maximum
ratio of within-cluster distance and between-cluster distance across a set of candidate
cluster numbers (2 to 10 in our study). Finally, the resulting centroids of subsample
were used as starting points to cluster all data into 5 clusters. Ak of 4 and 6 was used
respectively to validate the robustness of our results (see SI.B).
State analysis

In addition, we performed an exploratory experiment in which we calculated and
compared temporal metrics derived from each subject’s state vector (Allen et al.,
2014). Specifically, we computed four measures in each subject, including: (1)

frequency of each state, measured as the number of consecutive windows in each state;
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(2) dwelling time of state, measured as the frequency of unchanged between time
window and time+1 window, while the current window and the next window have the
same state, the dwell time of the state plus one; (3) total number of transitions,
measured as the number of state transitions; and (4) state transition frequency,
measured as the frequency of transitioning from one state to another state.

Parametric tests (Pearson correlation) were utilized to evaluate the correlation
between age and these measures , and head motion is regressed out as nuisance
covariates.

Three dimensions of age - time - state

Before the analysis, each connection matrix of cluster centroids was converted to a
z-value connection matrix by using Fisher’s r-to-z transform to improve the normality.
Thresholding the RSFC matrices is critical to obtain a sparse adjacency matrix. Using
absolute thresholding method may ultimately change the properties of the original
global and local functional connectivity, which may bias the comparisons of
graph-theoretic metrics between different groups of subjects (Song, et al., 2014).
Therefore, we applied a proportional network threshold of 15% (Whitfield-Gabrieli,
&Nieto-Castanon, 2012). We globally thresholded the RSFC matrix at a fixed
threshold (K= 0.15), and then measured local and global efficiency based on weighted
adjacency matrix by using Brain Connectivity Toolbox

(https://sites.google.com/site/bcetnet/) (Whitfield-Gabrieli, &Nieto-Castanon, 2012).

For each time window, we can get a matrix and its graph metrics (global and local

efficiency). We averaged the graph metrics of all time windows in each subject, and
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then treated their average value as the graph metrics of each subject. Then, we divided
the subjects into 6 groups according to their ages. In this way, we can investigate the
correlation between age and graph metrics. Previous literatures indicted that DMN
(Damoiseaux et al., 2008; Biswal et al., 2010; Evers et al., 2012), CCN (Elizabeth
DuPre & R. Nathan Spreng, 2016), and SN (Kamen Tsvetanov, et al., 2016) are more
susceptible to the effects of aging. Therefore, we calculated the correlation between
local efficiency of these subnetworks and age.

Besides, we averaged the graph metrics of the every time window of the every age
range, and then put the average value as the graph metrics of this time window of the
this age range. Then we can observe the graph metrics varying curve of this age range
in the time course.

Topological properties of discrete functional connectivity states

To characterize the state topological properties, we globally thresholded the state
matrix at a fixed threshold (K= 0.15), calculated global efficiency, subnetwork local
efficiency, and the degree of every node of every matrices, and then listed the hub

nodes of matrices according to their degree (The Brain Connectivity Toolbox,

http://www.brain-connectivity-toolbox.net/). With global efficiency, local efficiency
and hub regions of each state, we can depict the characteristic of each state.
The correlation between Wechser Adult I ntelligence Scale and state

The Wechsler Adult Intelligence Scale (WAIS) is an 1Q test designed to measure
intelligence and cognitive ability in adults and older adolescents (Kaufman &

Lichtenberger, 2005). The WAIS-R, a revised form of the WAIS, and consisted of six
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verbal and five performance subtests (Wechsler, 1981). Firstly, we investigated the
relationship between age, state indexes (frequency of each state; dwell time of state;
numbers of transitions), and total score of WAIS. Secondly, we chose one of verbal
subsets, called similarity, which measures abstract verbal reasoning as well as
semantic knowledge. In this section, participants are given two words or concepts and
required to describe how they are similar. We examined the relationship between
similarity (the subtest of the Wechsler Adult Intelligence Scale-Revised Chinese
revision (WAIS-RC; Gong, 1992)), state indexes, and age. Lastly, we tested the
relationship between block design test (the subtest of the Wechsler Adult Intelligence
Scale-Revised Chinese revision (WAIS-RC; Gong, 1992), state indexes, and age. The
block design test, which is thought to evaluate fine motor skills, processing speed, and
visuospatial ability, is most affected by age (Hoogendam, et al., 2014). We
hypothesized that age affects the brain, and then the brain affects the behavior.
Results
Static FNC

Figure 1 displays the ICNs identified by the group ICA approach. Network
components are shown in Figure 1.Based on their anatomical and presumed functional
properties, I1Cs are grouped into sub-cortical (SC), auditory (AUD), somatomotor
(SM), visual (VIS), cognitive control (CC), default-mode (DM), and salience (SN)
networks by spatial correlation and visual recognition. The manually identified ICNs
is very similar to a previous study (Allen et al., 2014). These ICNs are also similar to

those observed in previous studies using a higher model order (Smith et al. 2009;
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Allen et al. 2011) and cover the majority of subcortical and cortical grey matter
regions. Figure 2 displayed the static FC between ICNs, computed over the entire
scan length and averaged across subjects.
INSERT Figure 1 in HERE
INSERT Figure 2 in HERE

Theduration and transition of connectivity states as a function of age

In addition to the static FNC, we can also examine the frequency of states as a
function of time and the transitions between them. Figure 3 shows the state
assignments as a function of time in 4 example subjects. As we would see, functional
networks tend to sustain single state during a long period, while transition times are
rarely less. We can characterize transition behavior by calculating the frequency of
changing from one state to another.

INSERT Figure 3 in HERE

The total dwell time (the sum of dwell time of all states) of states was positively
correlated with age (r = 0.20, p = 0.000, n=434), while the total transition of states
was negatively correlated with age (r = -0.20, p = 0.000, n=434). The states indexes at
rest were correlated with age (See Table 1), the distribution of each state in each age
ranges is shown in Figure 4.

Besides, recent studies have demonstrated that head motion has a substantial impact
on dynamic FC (Laumann et al., 2016 ; Siegel et al., 2016). Therefore, we examined
the correlation between head motion (mean framewise displacement) and state

indexes. The results indicated head motion is negatively correlated with the frequency
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of state 3 (r = -0.15, p = 0.002) and the times of transition of state 3-5 (r =-0.10, p =
0.034).

INSERT Table 1 in HERE

INSERT Figure 4 in HERE
Three dimensions of age - time - state

To characterize the age effects on the global network topological properties, two
key graph metrics were employed, global efficiency and local efficiency, which were
all calculated based on weighted networks.

Firstly, we found significant age-related differences in the network’s global and
local efficiency (see in Table 2). Notably, the age-related difference is observed for
global efficiency (global efficiency: r =-0.24, p= 0.000), 19-30 years old age range
has significant greater global efficiency than 51-60, 61-70, and 71-80 years old age
range. The correlation between subnetwork local efficiency and age (DMN Elocal: p
= 0.055, r =-0.092; CC_Elocal: p =0.019, r =-0.11; SN_Elocal: p = 0.000, r =-0.19)
behaved differently. Intriguingly, no matter which network, its local efficiency of
19-30 age range is the highest.

Secondly, we divided the subjects into 6 groups according to age, each age span of
10 years (19-30; 31-40; 41-50; 51-60; 61-70; 71-80). The sample was not equally
distributed amongst the age groups. Each age groups have 149, 32, 63, 103, 59, and
28 samples respectively. We considered the distribution may impact the differences of
global efficient and local efficient among age groups. So we randomly sampled 28

subjects from each age groups and made them a new sample. Then we compared the
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global efficiency and local efficiency among different age groups in the new sample.
We ran the above-mentioned analysis 100 times and reported the ratio of significant
result (p < 0.05) in Table 2. The results indicated that the age-related difference in
global efficiency is reliable and stable, and that in local efficiency of different
subnetwork is unstable.

Besides, we have plotted the three dimensions of age «time « graphic indexes to
observed varying curve of different age range in the time course (see Figure 5).

INSERT Table 2 in HERE
INSERT Figure 5 in HERE

Characteristic of dynamic functional connectivity states

We used sliding window approach to estimate dFNC network for each subject. For
the dFNC patterns reoccur within subjects across time and across subjects, we then
applied the k-means algorithm to divide the dFNC windows into separate clusters.
Figure 6 shows the centroids of the 5 dFNC states. In state 1, the whole network
displayed slight and moderate negative connectivity. State 2 showed the high positive
correlation among AUD, SMN, and VIS, while the negative correlation between SCN
and other networks. In state 3, there are negative connections between DMN and
other networks as well as SCN and others. In state 4, the whole network displayed
slight and moderate positive connectivity, and the high positive coupling among AUD,
SMN, and VIS appeared again. In state 5, AUD, SMN, and SN were negatively
correlated with DMN and it displayed a whole negative pattern.

To characterize the state topological properties, we applied a proportional network
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threshold of 15% and calculated global efficiency, subnetwork local efficiency and
degree based on thresholded weighted networks (See Table 3). It’s worth noting that
state 4 has the largest global efficiency, DMN local efficiency, CC local efficiency and
SN local efficiency. The hub nodes (the node of the top three degree) are located in
visual and auditory cortex, DMN (posterior cingulate cortex) and CCN
(supplementary motor area).
INSERT Table 3 in HERE
INSERT Figure 6 in HERE

The correlation between WAI S and age

Firstly, the total score of WAIS and similarity were both negatively correlated with
age (total score: r = -0.51, p = 0.000, n = 82; similarity: r = -0.49, p = 0.000, n = 93),
and similarity was negatively correlated with transition of state 3-1 (r = -0.22, p =
0.031, n = 93). However, the box block design is inversely correlated to age (r = -0.53,
p = 0.000, n = 82) and frequency of state 5 (r = -0.26, p = 0.019, n = 82), while the
correlation between age and the frequency is not significant (r = 0.15, p =0.18, n =
82). However, we think age is positively correlated with the frequency of state 5,
since the total samples (n = 434) suggested the two factors are positively correlated (r
=0.11, p=0.022). The size and age range of the subsample (n = 82, age range: 23-65)
may be the cause of that statistical significance failed to reach borderline in
subsample.

Robustness Analysis
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Some literature (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015)
recommend removing frequency components below 1/w (where w is the length of the
window), so we used a band pass filtering of 0.023-0.18 Hz. However, others (Abrol,
et al., 2016; Damaraju, et al., 2014) low-pass filtered time series with a high
frequency cutoff of 0.15 Hz by Gift software (http://mialab.mrn.org/software/). To
examine our main results, we use the second filtering parameter to re-analysis the
correlation between aging and dynamic FC.

We examined the frequency of states as a function of time and the transitions
between them. As our previous results, FC tends to sustain single state during a long
period, while transition times are rarely less. The total dwell time (the sum of dwell
time of all states) of states was positively correlated with age (r = 0.14, p = 0.003),
while the total transition of states was negatively correlated with age (r = -0.14, p =
0.003). The results verified the previous finding. As aging process occurring, the
pattern of functional connectivity tended to keep stable in resting period. Some states
indexes were correlated with age (See SI.D), and the distribution of each state in each
age range was shown in SLE.

Then we compared the states of two analyzes (states identified in first analysis and
robust analysis). Firstly, we calculated the Pearson correlation coefficient among
states. Considering the correlation coefficient and visual pattern, we think state
5 second is similarity with state 4 first (See SILF). Secondly, we applied a
proportional network threshold of 15% and calculated the global efficiency,

subnetwork local efficiency, and degree of each state. The state 5_second, just like
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state 4 _first, had greatest global efficiency and subnetwork local efficiency (See SI.G).
Lastly, SI.H showed the centroids of the intrinsic states.

Discussion

Brain’s dynamics functional network connectivity over aging

The present study examined the effect of age on dynamic whole-brain FC. The
analysis revealed 5 recurring FC states departed with substantial internetwork
correlation variability. In resting state period, the non - random distribution of states
in different age ranges suggested that dynamic changes of large-scale brain network
may be a fundamental feature of aging process.

Firstly, the number of transitions occurring between multi-connectivity states and
the rate of transition between states were all higher among younger than older
participants. We can assume that the thinking is more active for young people than
older people, or the speed of mind change is faster in resting period.

Secondly, the frequency of occurrence state 1 and 5 increases over aging, while the
same parameter for state 3 and 4 decrease over aging. This suggests that the patterns
of state 1 and 5 become more active in the older life span, while the patterns of state 3
and 4 become more active in the young life span. Statel and state 5 display a whole
negative connectivity network, while state 3 and 4 have relative more positive
connectivity. That is mean young participations may experience more network
cooperation in the rest period.

Thirdly, a number of studies have proposed that head motion during a scan can

substantially affect functional connectivity estimates (Power et al., 2012; Yan et al.,
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2013; Laumann et al., 2016 ; Siegel et al., 2016), therefore, we examined the
correlation between head motion and state indexes. On the one hand, the relationship
between head motion and state dwell time is not significant, which verified the
dynamic FC over time is not artifacts. On the other hand, head motion is negatively
correlated with the frequency of state 3 while positively correlated with age,
meantime the frequency of state 3 is negatively correlated with age. Maybe the state 3
reflects the psychological characteristics associated with head movement, such as
control ability, which decreases in the aging process. That is to say, head motion also
changes systematically with age, which may reflect true neurobiological effects of
aging. (Geerligs, Tsvetanov., & Henson, 2017).

Lastly, our resulted suggested that dwell time is positively correlated with age,
while previous literature (Hutchison & Morton, 2015) reported the dwell time is
negatively correlated with age. One possible reason is that previous sample mainly
focused 9-32 age range; however, the age range of our subjects included 19-80. After
32 years old, dwell time is still increasing, and 40 years old is a turning point, twists
and turns down. To some extent, our work can enlarge and depth this issue. Another is
the results are not necessarily comparable as we use a different number of states.
Age-related dynamic changes in networ k topology

In this study, we examined the age-related difference of global efficiency, different
network local efficiency. 19-30 age range has significant greater global efficiency and
local efficiency of subnetworks than older age range. The random sampling results

indicated that the age-related difference in global efficiency is reliable and stable,
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however, the local efficiency of subnetwork didn’t show the stable difference. Young
have greater global efficiency than older maybe because they have more amounts of
state 4, which has largest global efficiency in all states. In state 4, the whole network
displayed slight and moderate positive connectivity, and the high positive coupling
among AUD, SMN, and VIS. The whole positive connectivity may reflect individual
experiences more network cooperation in the rest period.

Static FC research found that the absolute global efficiency of brain functional
networks showed no significant relationship with age (Cao, et al., 2014), increasing
age is accompanied by increasing global efficiency (Chan, et al., 2014; Sala-Llonch
2014), or young have greater global efficiency than older (Achard & Bullmore, 2007).
It is not necessarily to compare dynamic FC study and static FC results
Characterize each state

Recently study also revealed discrete functional connectivity states appear to be
quite a resemblance in different groups (Abrol et al., 2017), the same as, states
identified here also repeat previous states to a certain degree (Allen et al., 2014; Abrol
et al., 2017). In state 1, the whole network displayed slight and moderate negative
connectivity. State 2 showed the high positive correlation among AUD, SMN, and
VIS, while the negative correlation between SCN and other networks. In state 3, there
are negative connections between DMN and other networks as well as SCN and
others. In state 4, the whole network displayed slight and moderate positive
connectivity, and the high positive coupling among AUD, SMN, and VIS appeared

again. In state 5, it rendered whole brain negative correlation.
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The previous study (Abrol, et al., 2017) and this results evidenced that the patterns
of the certain states are recurrent during resting state period, and the occurrence
doesn’t change with the research methods, sample source or data quality, and thus can
as a measure of functional brain aging.

Thecorrelation of cognitive ability and state

Firstly, the total score of WAIS and similarity were both negatively correlated with
age, and similarity was negatively correlated with transition of state 3-1. Secondly, the
box block design is inversely correlated to age and frequency of state 5, while the
correlation between age and the frequency is not significant. However, we think age is
positively correlated with the frequency of state 5, since the total samples (n = 434,
age range: 19-80) suggested the two factors are positively correlated. The size and age
range of the subsample (n = 82, age range: 23-65) may be the cause of that statistical
significance failed to reach borderline in subsample. The block design test
evaluates fine motor skills, processing speed, and visuospatial ability, which are
decreasing accompanied by age increasing (Hoogendam,et al., 2014). In state 5, AUD,
SMN, and SN were negatively correlated with DMN and it displayed a whole
negative pattern. The pattern of state 5 in older may reflect a true decreasing in certain
cognitive abilities.

Conclusion

The findings motivate a reconceptualization of the link between aging and FC. The

previous model assumed that FC remains static throughout the resting period,

neglecting the dynamic feature of the brain’s functional connectivity. Our results
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instead suggest that these networks are, like aging process themselves, transient and
dynamic. There are also some limitations to note in our study. One potential problem
is that although we provided robust analysis, the direct relationship between aging and
brain state requires utilizing the independent sample (Zuo et al., 2014; Shafto et al.,
2014) to verify the reliability of the results, and this work is in prepared. Secondly,
using fMRI data alone, it is not possible to determine whether network changed as
aging increased structure connectivity between brain regions, or whether the
topological changes were merely a necessary temporary state. Besides, using
functional imaging across development are age-associated motion artifacts and
physiological signals (Power et al., 2012; Lahmann et al., 2017; Geerligs, et al., 2017),
however, the impact of these factors on dynamic FC can be minimized by larger
sampling (Zuo & Xing, 2014; Zuo et al., 2014), rigorous head motion control
(Laumann et al., 2016; Siegel et al., 2017) or simultaneous psychological recordings.
Furthermore, Van Den Heuvel et al. (2017) found lower levels of overall FC in either
the patient or control group will often lead to differences in network efficiency and
clustering, therefore, examine the overall FC strength across age ranges seems
essential. Finally, we plan to investigate the underlying significance of states in more
detail using methods such as time-varying analysis. Future work would focus on
depicting the cognitive symbolize of connectivity state. There is a lot of useful
information that we can learn from characterizing the network properties of each state

individually; however, we are left with properties across multiple states.
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Tables & Figures

Table 1. The state index expressed at rest was correlated with age

State index r p
Total dwell time 0.20 0.000
Total transition -0.20 0.000
time

Frequency of state 0.32 0.000
1

Frequency of state -0.238 0.000
3

Frequency of state -0.19 0.000

4
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Frequency of state 0.11 0.022
5

Transition times of 0.19 0.000
1-5

Transition times of -0.15 0.002
2-3

Transition times of -0.12 0.015
3-2

Transition times of -0.20 0.000
3-4

Transition times of -0.17 0.000
3-5

Transition times of -0.21 0.000
4-3

Transition times of 0.16 0.001
5-1

Transition times of -0.14 0.003
5-3

Head motion 0.41 0.000

Table 2. Global efficiency and local efficiency of each age group

Agerange N Global DMN Local CC  Local SN Local
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efficiency efficiency efficiency efficiency
19-30 149 0.351 0.601 0.603 0.616
31-40 32 0.347 0.598 0.580 0.599
41-50 63 0.341 0.588 0.577 0.607
51-60 103 0.334 0.576 0.575 0.571
61-70 59 0.328 0.566 0.552 0.553
71-80 28 0.325 0.578 0.562 0.534
Numbers 94 11 16 79
of
Significant
results (in
100 times)

Table 3. Graphic indexes of each state

State Indexes State 1 State 2 State 3 State 4 State 5
Global efficiency 0.1938 0.2069 0.2388 0.3049 0.2005
DMN local 0.3442 0.3025 0.3830 0.5334 0.4610

efficiency
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CCN local 0.2932 0.2316 0.3929 0.4190 0.3625
efficiency
SN local efficiency  0.3847 0.4412 0.5327 0.6566 0.4454
Hub node VIS(71,28),  VIS(71,55, VIS(71,28), VIS(28,71, AUD(63),
DMN(52) 28,54) AUD(51,63) 55) VI1S(28),
CCN(47)
N 25879 10111 28300 10641 16209

IC labels: 28, 47, 51, 52, 54, 55, 63, 71

Figurel
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Figure 1. Composite maps of the 59 identified intrinsic connectivity networks (ICNs),
sorted into seven sub-networks. Each color in the composite maps corresponds to a

different ICN.

Figure2
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FUNCTIONAL CONNECTIVITY BETWEEN ICNs
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Figure 2. Static functional network connectivity matrix of ICNs during rest computed over the

entire scan length and averaged over subjects.

Figure3
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Figure 3. The state assignments as a function of time for the 4 example subjects. Examples of FC

dynamics for subject 34, subject 85, subject 185, subject 318.
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Figure 4. The distribution of each state in each age range.
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Dynamic Global Efficiency in Different Age Range
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Figure 5. The varying curve of different age range in the time course. The global efficiency of

young age range was always higher than it of the older age range in whole time course. The DMN

local efficiency of elderly reached its peak at the beginning, while it of young reached its peak in

the intermediate process. The CCN local efficiency of elderly reached its peak at the beginning,

while it of young reached its peak in the second half. The SN local efficiency of elderly

maintained a relative low level, while it of young had been growing up.

Figure6.
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Figure 6. The centroids of the 5 dFNC states. In state 1, the whole network displayed slight and
moderate negative connectivity. State 2 showed the high positive correlation among AUD, SMN,
and VIS, while the negative correlation between SCN and other networks. In state 3, there are
negative connections between DMN and other networks as well as SCN and others. In state 4, the
whole network displayed slight and moderate positive connectivity, and the high positive coupling
among AUD, SMN, and VIS appeared again. In state 5, AUD, SMN, and SN were negatively

correlated with DMN and it displayed a whole negative pattern.
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