

¹ Genome-wide discovery of somatic coding and regulatory variants in Diffuse Large B-cell Lymphoma

³ Sarah E. Arthur^{1,2,*}, Aixiang Jiang^{1,2,3,*}, Bruno M. Grande^{1,*}, Miguel Alcaide¹, Anja Mottok²,
⁴ Daisuke Ennishi², Christopher Rushton¹, Selin Jessa¹, Prince Kumar Lat¹, Prasath Pararajalingam¹,
⁵ Barbara Meissner², Merrill Boyle², Lauren Chong², Daniel Lai⁴, Pedro Farinha², Graham W.
⁶ Slack², Jordan Davidson¹, Kevin R. Bushell¹, Sohrab Shah⁴, Dipankar Sen¹, Steven J.M. Jones^{1,3},
⁷ Andrew J. Mungall³, Randy D. Gascoyne², Marco A. Marra³, Christian Steidl², Joseph M. Connors²,
⁸ David W. Scott², & Ryan D. Morin^{1,3}

⁹ *¹Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.*

¹¹ *²Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada.*

¹² *³Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.*

¹³ *⁴Molecular Oncology, BC Cancer Agency, Vancouver, BC, Canada.*

¹⁴ **These authors contributed equally*

15 **Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature**
16 **B-cells. Many known driver mutations are over-represented in one of its two molecular sub-**
17 **groups, knowledge of which has aided in the development of therapeutics that target these**
18 **features. The heterogeneity of DLBCL determined through prior genomic analysis suggests**
19 **an incomplete understanding of its molecular aetiology, with a limited diversity of genetic**
20 **events having thus far been attributed to the activated B-cell (ABC) subgroup. Through an**
21 **integrative genomic analysis we uncovered genes and non-coding loci that are commonly mu-**
22 **tated in DLBCL including putative regulatory sequences. We implicate recurrent mutations**
23 **in the 3'UTR of *NFKBIZ* as a novel mechanism of oncogene deregulation and found small**
24 **amplifications associated with over-expression of FC- γ receptor genes. These results inform**
25 **on mechanisms of NF- κ B pathway activation in ABC DLBCL and may reveal a high-risk**
26 **population of patients that might not benefit from standard therapeutics.**

27 **Introduction**

28 It has been established that DLBCL, although genetically heterogeneous, can be robustly divided at
29 the gene expression level into two subgroups based on markers of B-cell differentiation and NF- κ B
30 activity pathways, the latter being particularly active in ABC cases¹. *EZH2*², *SGK1*, *GNA13* and
31 *MEF2B*² exemplify genes with mutations restricted to GCB cases, whereas *MYD88*³, *CD79B*⁴ and
32 *CARD11*⁵ have been reported as more commonly mutated in ABC. Some DLBCL cases have few
33 (if any) genetic alterations strongly associated with either subgroup, suggesting the possibility of
34 additional genetic or epigenetic changes that shape the malignancy. Similarly, the over-expression

35 of proteins with potential therapeutic and clinical relevance cannot always be explained by known
36 genetic alterations⁶. Gaining a more complete understanding of the genetic features of DLBCL in
37 general and each subgroup in particular should lead to improved methods for this sub-classification
38 and further inform on the molecular and genetic underpinnings of the lymphoma found in indi-
39 vidual patients. Such enhancements have the potential to facilitate the development of targeted
40 therapies, such as small molecule inhibitors⁷, new monoclonal antibodies and immunotherapies
41 that target somatic mutations or cell surface proteins⁸.

42 Although there have now been more than 1000 tumours analysed using targeted strategies
43 such as array-based copy number analysis⁹ or whole exome sequencing (WES)¹⁰, a limited num-
44 ber of DLBCL genomes have been described to date¹¹⁻¹³, leaving the potential to uncover new
45 somatic structural variations (SVs), copy number alterations (CNAs) and other *cis*-acting regu-
46 latory mutations that may be cryptic to other assays. The search for driver mutations has been
47 further confounded by aberrant somatic hypermutation (aSHM) affecting a substantial number of
48 genes in DLBCL¹⁴. Specifically, in DLBCL and several other lymphoid cancers the AID enzyme
49 (encoded by *AICDA*), in cooperation with POL η , induces mutations in actively transcribed genes
50 with a concentration in the first 1.5-2 kb¹⁵. Though the repertoire of known aSHM targets in
51 lymphoma continues to grow, it has become apparent that this process can also impact non-genic
52 loci associated with super-enhancers and some aSHM-mediated mutations may have regulatory
53 functions^{16,17}.

54 Whole genome sequencing (WGS) offers the possibility of cataloguing the sites affected by

55 this process along with concomitant determination of genes with potential cis-regulatory effects.
56 We analysed WGS data from 153 DLBCL tumour/normal pairs alongside existing WES data from
57 191 additional cases to uncover novel driver genes affected by somatic single nucleotide variants
58 or indels, collectively referred to as simple somatic mutations (SSMs). These affected many of the
59 genes that have been ascribed to DLBCL along with 4,386 regions we identified as enriched for
60 somatic mutations, the majority impacting non-coding loci. Analysis of matched RNA-seq data
61 uncovered recurrent structural alterations and mutated loci with potential roles in mediating the
62 transcriptional or post-transcriptional regulation of numerous genes with relevance to DLBCL.

63 **Integrative analysis of Structural Variation, Copy Number Alterations and Gene Expression**

64 The landscape of somatic CNAs in DLBCL has been addressed by multiple groups^{9,18,19} but owing
65 to the technologies typically used, the breakpoints that underlie these events and putative copy-
66 neutral alterations and smaller focal gains and losses can be missed by array-based approaches¹¹.
67 The 153 genomes were analysed for SVs, revealing a total of 13,643 breakpoints (range: 0-390;
68 median 66). We determined the SVs likely to affect specific genes based on their proximity to in-
69 dividual genes (Table 1). As expected, the genes with proximal SVs in the highest number of cases
70 were oncogenes relevant to DLBCL including *BCL2*, *BCL6*, *FOXP1* and *MYC*. Tumour suppressor
71 genes (TSGs) typically exhibited focal deletions and commonly exhibited SV breakpoints within
72 the gene body, including *TP53*, *CDKN2A*, and *CD58* (Extended Data Figure 1).

73 By intersecting with regions affected by recurrent copy number losses, we searched for pu-

74 tative TSGs that might be disrupted by either deletion or SV breakpoints (Table 1). Some of these
75 were separately identified through subsequent analyses (below) revealing patterns of non-silent
76 exonic mutations and/or peaks of non-coding mutations whereas others rarely harboured simple
77 somatic mutations (SSMs) such as SNVs and indels. Many genes impacted by aSHM were also
78 enriched for somatic breakpoints. In contrast, *TOX* and *WWOX* harboured a substantial number of
79 distinct SV breakpoints and several examples of highly focal deletions but rarely harboured SSMs
80 (Figure 1 and Extended Data Figure 1). *TOX* and *WWOX* SVs were rare overall, indicating these
81 genes may act as tumour suppressor genes in some DLBCLs. *MEF2B*, a gene that has multiple
82 known mutation hot spots, particularly in GCB DLBCL, also contained several examples of focal
83 deletions or complex SVs. As the function of *MEF2B* mutation in DLBCL has not been fully
84 elucidated^{20,21}, this observation strengthens the evidence of its role as a tumour suppressor with its
85 recurrent mutations having a dominant negative effect, but this does not eliminate the possibility of
86 shortened isoforms with an enhanced or distinct activity. Further complicating the matter, *MEF2B*
87 SVs were predominantly found in the genomes of ABC DLBCLs whereas hot spot mutations are
88 a feature of GCB.

89 We next searched for concomitant signals of recurrent copy number gain and SVs proximal
90 to genes, restricting our analysis to regions identified as peaks for amplification by GISTIC in
91 a separate large DLBCL cohort (Ennishi *et al*, unpublished). We utilised RNA-seq-derived ex-
92 pression values from a subset of the cases to infer *cis* effects of these events on expression. This
93 uncovered several genes reported to act as oncogenes through focal amplification, with *IKBKE*,
94 *NFKBIZ*, *FCGR2A/FCGR2B* representing the strongest candidates due to significantly elevated

95 expression in cases having either a gain or proximal SV (Figure 1). This also revealed additional
96 known targets of aSHM (Extended Data Figure 2). Some breakpoints were within the gene body,
97 an observation seen in some known oncogenes such as *FOXPI*²². Such events can lead to novel
98 isoforms or fusion transcripts, such as those involving *TBLIXR1*²³.

99 The most striking collection of focal gains was those affecting the FC γ receptor locus, a com-
100 plex region of the genome comprising multiple paralogs that have arisen through a series of seg-
101 mental duplications²⁴ (Figure 2A-B). These focal gains and, less commonly, deletion events were
102 corroborated by read pairing information in many cases. This observation could be confounded by
103 the presence of germline copy number alterations in this region, thus many of the single copy gains
104 could represent germline events. Using a custom multiplex droplet digital PCR (ddPCR) assay, we
105 confirmed the CNAs and identified four additional examples of amplifications and several addi-
106 tional gains not detected by SNP arrays. Amplifications, but not gains, were significantly enriched
107 among GCB cases and had a striking correlation with elevated *FCGR2B* expression (Figure 2C).

108 Although the prevalence of this genetic alteration is low, we found a compelling trend towards in-
109 ferior outcome in GCB cases with *FCGR2B* amplification. Taking into account the apparent effect
110 of gains on *FCGR2B* over-expression and deletions on reduced *FCGR2C*, we hypothesised that
111 the tumours benefited from a relative increase in FC γ RIIB protein relative to FC γ RIIC and used
112 the log-ratio of the expression of these two genes to stratify GCB patients (Methods). This simple
113 classifier showed a strong separation of patients on disease-specific survival that was significant as
114 a continuous variable in a Cox model and showed a strong relationship in univariate Kaplan-Meier
115 analysis across a range of thresholds (Figure 2E-F and Extended Data Figure 3).

116 **Local Mutation Density and Somatic *Cis*-regulatory Variation**

117 We next sought genes with patterns of non-silent mutations, beginning with a meta-analysis of the
118 genomes and all available exome data for recurrently mutated genes. The genes significantly af-
119 fected by SSMs had mostly been identified in prior studies and a large exome study published while
120 this manuscript was being completed ¹⁰(Extended Data: Figure 4, Table 1). Among the genes that
121 have limited prior evidence for relevance in DLBCL, many have been implicated in other B-cell
122 lymphomas arising within the germinal centre. For example, *DDX3X*, *ARID1A* and *HVCNI* which
123 have been reported as recurrently mutated in Burkitt lymphoma (BL)²⁵ and follicular lymphoma
124 (FL)²⁶.

125 Within the 153 genomes, we identified between 1689 and 121,694 SSMs (median: 14,026).
126 We searched genome-wide for patterns of mutation that may imply regulatory function without
127 directly impacting protein sequence. To accomplish this, we implemented a new strategy to infer
128 regions of arbitrary span with mutation density elevated above the local background. The method
129 considers positions of pooled mutations from a cohort of cancer genomes excluding any variants
130 within the CDS of genes (Methods). This analysis detected 4,386 peaks enriched for mutations that
131 ranged from a single nucleotide to many kilobases (kb) in length (median length: 664 nucleotides).
132 Using the pooled mutation set from all genomes, a randomly selected region should have, on
133 average, 1.00 mutation per kb whereas these regions had a median mutation density of 10.3 per
134 kb. Some hypermutated loci were represented by multiple peaks. For example, the *BCL6* locus
135 and super-enhancer surrounding this region comprised 31 discrete peaks (Figure 3). Our analysis

136 also revealed examples of non-coding loci with mutation peaks, for example the two adjacent
137 long noncoding RNA (lncRNA) genes *NEAT1* and *MALAT1* and the miR-142 locus (Figure 3C).
138 Mutations at each of these loci have been previously noted in other DLBCL and FL and their
139 pattern is consistent with aSHM^{27,28}.

140 To determine the suitability of our approach to identify mutation clusters relevant to DL-
141 BCL, we extended our peak analysis to include all mutations including the coding region (CDS).
142 We found a similar number of peaks (4,405), which comprised the bulk of the original non-coding
143 peaks as well as peaks in genes with mutation hot spots such as *EZH2*, *FOXO1* and *MYD88* (Fig-
144 ure 3B). Aside from intergenic regions (2,244), the top three classes of annotation affected by
145 peaks were 5' flanking regions, 5'UTRs and introns. These are also the regions typically affected
146 by aSHM and, as expected, virtually all of the known targets of this process were represented
147 among these regions^{12,14}. We also noted multiple genes with mutation patterns consistent with
148 aSHM including the *AICDA* locus itself, *PRDM1*, *DNMT1*, and *ACTB* (Figure 3E and Extended
149 Data Figure 3). If the mutations in these peaks were largely due to a single mutational process that
150 preferentially acts in certain regions, we expected to find differences in the mutational signatures
151 relative to the full set of SNVs. Interestingly, although the signature attributed to AID and POL ν
152 activity was represented genome-wide and within the peaks, another signature that does not clearly
153 correspond to any of the previously described signatures was unique to the peaks (Extended Data
154 Figure 5).

155 To identify peaks with potential relevance in modulating transcription, we assessed the rela-

156 tionship between gene expression and the presence of mutations in nearby peaks. All genes with
157 one or more proximal peak were tested for significant differences in expression between mutated
158 and un-mutated cases (Extended Data Figure 6). Most of the protein-coding loci identified were
159 known (including *SERPINA9*, *CD44*, *PIM1*) or the novel targets of aSHM we had identified (in-
160 cluding *DNMT1* and *AICDA*). The correlation between expression and aSHM is typically attributed
161 to an elevated AID activity at highly expressed genes and thus may act as a permanent marker of
162 sustained expression of these genes rather than representing driver mutations. Regardless, the
163 unprecedented breadth of mutations affecting potential regulatory regions including enhancers
164 proximal to these genes suggests the possibility of a regulatory effect and this warrants further
165 investigation. To enrich for genes with patterns unlikely to result from aSHM, we identified loci
166 for which the most common variant annotation in each peak was not among the classes attributable
167 to aSHM. Multiple genes showed distinct distributions of mutations seemingly inconsistent with
168 aSHM. This could imply a different mutational process or the action of selective pressure to retain
169 or alter function. Some of these genes had short 5'UTRs and thus had mutations within their CDS
170 and even 3'UTRs (e.g. *MPEG1*, *HIST1H1C*). In longer genes, such as *NFKBIZ*, 3'UTR mutations
171 cannot be readily attributed to aSHM and appear to indicate strong selective pressure.

172 Recurrently Mutated Loci Associated With Cell-of-origin Subgroup

173 Our genome analysis uncovered a striking pattern of mutations in *NFKBIZ*, a gene that has been
174 reported to act as an oncogene in DLBCL cases with copy number amplification affecting this
175 locus²⁹ though other somatic mutations affecting this region appear to be lacking. *NFKBIZ* was

176 significantly more commonly mutated in ABC cases when the 3'UTR mutations are considered and
177 even more strongly enriched in ABC when amplifications affecting this region are also considered
178 ($P = 2.15 \times 10^{-5}$, Fisher's Exact Test). Combining the genome data and results from targeted
179 sequencing in a larger "validation" cohort, we confirmed our observation of a novel pattern of
180 SSMs in the 3'UTR of *NFKBIZ* as well as some large indels and somatic structural variants (SVs)
181 (Figure 5; Extended Data Figure 7). To demonstrate the improved resolution power of WGS to
182 detect such mutations, we contrast these results to the large cohort of available exome data, which
183 were uniformly re-analysed with the same methodology and show a much lower yield of these
184 variants. We also compared the prevalence of *NFKBIZ* 3'UTR mutations in other lymphoid cancers
185 with available WGS data including CLL, FL and BL. FL had the next highest prevalence with
186 these mutations appearing in less than 3% of cases (Table 2). The number of cases also provided
187 sufficient power to determine patterns of mutually exclusive genes within ABC and GCB. One of
188 the few pairs of genes showing mutual exclusivity for mutation in ABC was *MYD88* and *NFKBIZ*,
189 indicating a potentially redundant role of these two mutations in lymphomagenesis (Extended Data
190 Figure 8).

191 The 3'UTR of *NFKBIZ* is highly conserved and the mutated region has been previously
192 identified as a destabilising element that promotes rapid mRNA turnover³⁰. We predict these mu-
193 tations perturb this process thereby increasing mRNA longevity, which would in turn cause allelic
194 imbalance in mutant cases. We constructed a structural model for the highly conserved region
195 that contained the vast majority of SSMs (Extended Data Figure 9), which consists of one large
196 stem-loop with several internal bulges and a smaller stem-loop with pairing in the loops forming

197 a pseudoknot. Molecular dynamic simulations of selected mutations show that a subset appears to
198 significantly change the structure relative to wild-type sequence (Extended Data Figure 9).

199 Higher mRNA levels were observed among the cases with 3'UTR mutations supporting their
200 role in promoting mRNA abundance. To demonstrate the mutations promote elevated expression
201 in *cis*, we searched for evidence of allelic imbalance. Of the cases with sufficient RNA-seq depth
202 and at least one heterozygous SNP in *NFKBIZ*, we identified 25 cases with significant allelic im-
203 balance. Roughly half of these cases had mutations that could impact either transcriptional or
204 post-transcriptional regulation, with four containing a structural variation or indel affecting the
205 3'UTR and nine having one or more UTR SNV. This finding suggest that additional genetic or
206 epigenetic alterations may also lead to allelic imbalance in *NFKBIZ* expression. We identified
207 two DLBCL cell lines (DOHH-2 and SU-DHL-6) with *NFKBIZ* 3'UTR mutations and two lines
208 (OCI-Ly10 and HBL-1) having *NFKBIZ* amplification.

209 To confirm this allelic imbalance, we implemented a ddPCR assay that separately quanti-
210 fies mutant and wild-type *NFKBIZ* mRNAs. We tested mRNA extracted from eight DLBCL cell
211 lines and a subset of the patient RNA samples and found that samples with *NFKBIZ* mutations
212 or amplifications each had significantly higher mRNA levels. We confirmed in the two cell lines
213 with *NFKBIZ* 3'UTR deletions (DOHH-2 and SU-DHL-6) that the mRNA represented a greater
214 proportion of the mutant allele (Figure 5). When applying this assay to patient RNA samples, we
215 compared the variant allele fractions (VAFs) for the mutation from our ddPCR assay and RNA-seq
216 to the tumour DNA as determined by targeted capture sequencing (Extended Data Figure 10). The

217 RNA VAFs were higher than DNA in all *NFKBIZ* mutant patients, indicating increased expression
218 of the mutant allele. Patient DLC_198 did not have a significant difference between RNA and DNA
219 levels however, this can be attributed to a CNA of the *NFKBIZ* locus where an extra wild-type al-
220 lele was present in this patient. By immunoblot, we confirmed high levels of $I\kappa B\zeta$ protein in these
221 *NFKBIZ* mutant cell lines relative to lines lacking these events (Figure 5).

222 **Discussion**

223 In this study, we have confirmed the recurrence and determined the specificity of non-silent mu-
224 tations in a substantial number of genes to the molecular subgroups of *de novo* DLBCLs. Here,
225 we focus our attention on some of the more common mutational features of DLBCL that were
226 detectable only through the coverage of WGS data and integrative analysis with gene expression
227 data from matched samples. Several recurrent sites of non-coding mutations were uncovered by
228 a new algorithm. These include novel genes that are affected by aSHM and intergenic regions,
229 particularly near active superenhancers, that appear to be mutated by the same process. The most
230 striking finding within GCB DLBCL was the previously unappreciated recurrence of focal gains
231 and complex events affecting the FC- γ receptor locus. The interplay between FC- γ receptors and
232 cancer has general relevance because these proteins are directly involved in antibody-dependent
233 cell-mediated toxicity (ADCC), which is triggered by monoclonal antibody-based (mAb) thera-
234 pies including cetuximab, trastuzumab and rituximab³¹. Until recently, these have been studied in
235 the context of Fc- γ receptor expression on effector cells and their interaction with mAbs on tumour
236 cells in *trans*. In B-cell lymphomas, this situation is complicated by the presence of multiple Fc- γ

237 receptor proteins on the malignant cells. Recent data have implicated common polymorphisms and
238 gene expression differences in tumour tissue in variable response to rituximab but whether this was
239 due to their effect on *cis* or *trans* interactions remained unclear. In CLL, *cis* interactions of Fc- γ
240 receptor on malignant cells is associated with an elevated rate of internalisation of *FCGR2B* bound
241 to IgG relative to its other family members³². Nonetheless, to date, recurrent somatic alterations
242 promoting deregulated expression of FC- γ receptors have not been addressed.

243 We hypothesised that an imbalanced expression of FC- γ receptor proteins in malignant cells,
244 due in part to the complex focal amplifications we have identified herein, attenuates the normal im-
245 mune response to rituximab as has been seen with alternative isoforms and polymorphic variants
246 of this gene. This was strongly supported by the significantly inferior outcome of *FCGR2B*-high
247 GCB patients treated with R-CHOP (Figure 2) and is consistent with a smaller study that showed
248 a correlation between FC γ RIIB protein staining and outcome in FL³³. In light of this, alternative
249 immunotherapy approaches may be warranted for this high-risk sub-population. Type II mAbs
250 directed at CD20 or other proteins are not internalised by the same process and thus may be ben-
251 eficial in these patients. Another potential avenue of exploration is direct targeting of FC γ RIIB
252 alone or in combination³⁴. Beyond somatic copy number alterations and possibly some influence
253 from germline CNVs, we also identified an elevated level of SSMs in two introns of *FCGR2B* that
254 may promote intron retention and lead to a truncated isoform. Further exploration of the role of
255 genetic variation in producing *FCGR2B* over-expression or upsetting the balance of *FCGR2B* and
256 *FCGR2C* in DLBCL is warranted.

257 In conjunction with *NFKBIZ* amplifications, which promote its expression, our data indicate
258 an overall prevalence of 21.5% for mutations that may impact I κ B ζ protein abundance or function
259 with 35 cases (10%) having at least one 3'UTR mutation. These were more common than coding
260 changes or amplifications of this locus and strongly associate with the ABC subgroup whereas
261 missense mutations were observed in both subgroups. Multiple studies have already attributed
262 a 165 nt region in the UTR that harbours the bulk of the mutations we detected as destabilising
263 elements^{30,35}. The observation of allelic imbalance in many of the patient samples with 3'UTR
264 mutations strongly implicates them in perturbing mRNA turnover but the functional mechanism is
265 not clear. *NFKBIZ* is one of several genes subject to post-transcriptional regulation by the endo-
266 bonucleases Regnase-1 (Reg-1) and Roquin³⁵. This process involves mRNA turnover and/or se-
267 questration mediated by interactions between these proteins and specific stem-loops in the 3'UTRs
268 of their targets³⁶. *MYD88*, an adaptor protein that is commonly mutated in ABC DLBCLs, has
269 been shown to be important for protecting *NFKBIZ* mRNA from this process³⁷. Moreover, B-
270 cell receptor signalling, which is active in most ABC DLBCLs, can also promote stabilisation of
271 *NFKBIZ* mRNA via the UTR³⁰.

272 The role of individual putative structural components in the 3'UTR of *NFKBIZ* in these indi-
273 vidual processes has not been fully elucidated. The region we describe as containing a pseudoknot
274 and comprising the first two stem-loops does not resemble the loop size and nucleotide properties
275 that have been attributed to Roquin³⁸, implicating instead the two distal elements in this interaction
276 (SL3 and SL4). Reg-1 is encoded by *ZC3H12A*, one of the novel recurrently mutated genes iden-
277 tified through our meta-analysis (Extended Data Table 1). Confirming the mechanism whereby

278 3'UTR mutations impact the NF- κ B pathway in DLBCL is highly relevant given the growing list
279 of therapeutic strategies designed to inhibit this pathway directly or by perturbing upstream sig-
280 nalling events. Notwithstanding that mechanistic details remain unclear, we have demonstrated
281 that higher mRNA and protein levels result from these mutations. To the best of our knowledge,
282 recurrent 3'UTR mutations are the first example of a common somatic UTR alteration that can
283 directly increase the expression of an oncogene.

284 **References**

- 285 1. Wright, J., Johnson, P., Smith, P., Horsman, J. & Hancock, B. T-cell non-Hodgkin's lym-
286 phoma: treatment outcomes and survival in 3 large UK centres. *Acta Haematol* **118**, 123–125
287 (2007).
- 288 2. Morin, R. D. *et al.* Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
289 *Nature* **476**, 298–303 (2011).
- 290 3. Ngo, V. N. *et al.* Oncogenically active MYD88 mutations in human lymphoma. *Nature* **470**,
291 115–119 (2011).
- 292 4. Davis, R. E. *et al.* Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma.
293 *Nature* **463**, 88–92 (2010).
- 294 5. Lenz, G. *et al.* Oncogenic CARD11 mutations in human diffuse large B cell lymphoma.
295 *Science* **319**, 1676–1679 (2008).

- 297 6. Challa-Malladi, M. *et al.* Combined Genetic Inactivation of β -Microglobulin and CD58
298 Reveals Frequent Escape from Immune Recognition in Diffuse Large B Cell Lymphoma. *Cancer*
299 *Cell* 1–13 (2011).
- 300 7. Knutson, S. K. *et al.* Selective Inhibition of EZH2 by EPZ-6438 Leads to Potent Antitumor
301 Activity in EZH2 Mutant Non-Hodgkin Lymphoma. *Molecular cancer therapeutics* (2014).
- 302 8. Nielsen, J. S. *et al.* Toward Personalized Lymphoma Immunotherapy: Identification of Com-
303 mon Driver Mutations Recognized by Patient CD8+ T Cells. *Clin Cancer Res* (2015).
- 304 9. Monti, S. *et al.* Integrative Analysis Reveals an Outcome-Associated and Targetable Pattern
305 of p53 and Cell Cycle Deregulation in Diffuse Large B Cell Lymphoma. *Cancer Cell* 22,
306 359–372 (2012).
- 307 10. Reddy, A. *et al.* Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. *Cell*
308 171, 481–494.e15 (2017).
- 309 11. Morin, R. D. *et al.* Mutational and structural analysis of diffuse large B-cell lymphoma using
310 whole genome sequencing. *Blood* 122, 1256–1265 (2013).
- 311 12. Khodabakhshi, A. H. *et al.* Recurrent targets of aberrant somatic hypermutation in lymphoma.
312 *Oncotarget* 3, 1308–1319 (2012).
- 313 13. Mathelier, A. *et al.* Cis-regulatory somatic mutations and gene-expression alteration in B-cell
314 lymphomas. *Genome Biol* 16, 84.

- 315 14. Jiang, Y., Soong, T. D., Wang, L., Melnick, A. M. & Elemento, O. Genome-wide detection of
316 genes targeted by non-Ig somatic hypermutation in lymphoma. *PLoS one* **7**, e40332 (2012).
- 317 15. Puente, X. S. *et al.* Non-coding recurrent mutations in chronic lymphocytic leukaemia. *Nature*
318 (2015).
- 319 16. Meng, F.-L. *et al.* Convergent transcription at intragenic super-enhancers targets AID-initiated
320 genomic instability. *Cell* **159**, 1538–1548 (2014).
- 321 17. Saito, M. *et al.* BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell
322 lymphoma. *Cell* **106**, 11294–11299 (2009).
- 323 18. Green, M. R., Vicente-Dueñas, C., Alizadeh, A. A. & Sánchez-García, I. Hit-and-run lym-
324 phogenesis by the Bcl6 oncogene. *Cell cycle (Georgetown, Tex.)* **13**, 1831–1832 (2014).
- 325 19. Lenz, G. *et al.* Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic
326 pathways. *Proc Natl Acad Sci USA* **105**, 13520–13525 (2008).
- 327 20. Pon, J. R. *et al.* MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by
328 decreasing MEF2B target gene activation. *Nature communications* **6**, 7953 (2015).
- 329 21. Ying, C. Y. *et al.* MEF2B mutations lead to deregulated expression of the oncogene BCL6 in
330 diffuse large B cell lymphoma. *Nature immunology* **14**, 1084–1092 (2013).
- 331 22. Wlodarska, I. *et al.* FOXP1, a gene highly expressed in a subset of diffuse large B-cell lym-
332 phoma, is recurrently targeted by genomic aberrations. *Leukemia* **19**, 1299–1305 (2005).

- 333 23. Scott, D. W. *et al.* TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin
334 lymphoma. *Blood* **119**, 4949–4952 (2012).
- 335 24. Nguyen, H. t., Merriman, T. R. & Black, M. A. CNVrd, a Read-Depth Algorithm for Assigning
336 Copy-Number at the FCGR Locus: Population-Specific Tagging of Copy Number Variation at
337 FCGR3B. *PloS one* **8**, e63219–11 (2013).
- 338 25. Richter, J. *et al.* Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by inte-
339 grated genome, exome and transcriptome sequencing. *Nat Genet* **44**, 1316–1320.
- 340 26. Krysiak, K. *et al.* Recurrent somatic mutations affecting B-cell receptor signaling pathway
341 genes in follicular lymphoma. *Blood* **129**, 473–483 (2017).
- 342 27. Kato, L. *et al.* Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID)
343 share unique features with immunoglobulin genes. *Nature* **109**, 2479–2484 (2012).
- 344 28. Kwanhian, W. *et al.* MicroRNA-142 is mutated in about 20large B-cell lymphoma. *Cancer*
345 *Medicine* n/a–n/a (2012).
- 346 29. Nogai, H. *et al.* I B- controls the constitutive NF- B target gene network and survival of ABC
347 DLBCL. *Blood* **122**, 2242–2250 (2013).
- 348 30. Hanihara, F., Takahashi, Y., Okuma, A., Ohba, T. & Muta, T. Transcriptional and post-
349 transcriptional regulation of I?B-? upon engagement of the BCR, TLRs and Fc?R. *Inter-
350 national immunology* **25**, 531–544 (2013).

- 351 31. Mellor, J. D., Brown, M. P., Irving, H. R., Zalcberg, J. R. & Dobrovic, A. A critical review
352 of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in
353 cancer. *Journal of hematology & oncology* **6**, 1 (2013).
- 354 32. Vaughan, A. T. *et al.* Inhibitory Fc γ RIIb (CD32b) becomes activated by therapeutic mAb
355 in both cis and trans and drives internalization according to antibody specificity. *Blood* **123**,
356 669–677 (2014).
- 357 33. Lee, Chern Siang *et al.* Expression of the inhibitory Fc gamma receptor IIB (FCGR2B,
358 CD32B) on follicular lymphoma cells lowers the response rate to rituximab monotherapy
359 (SAKK 35/98). *Br J Haematol* **168**, 145–148 (2015).
- 360 34. Roghanian, Ali, Cragg, Mark S & Frendéus, Bjorn. Resistance is futile: Targeting the in-
361 hibitory Fc γ RIIB (CD32B) to maximize immunotherapy. *OncoImmunology* **5**, e1069939
362 (2016).
- 363 35. Mino, T. *et al.* Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs
364 by Spatiotemporally Distinct Mechanisms. *Cell* **161**, 1058–1073 (2015).
- 365 36. Yamazaki, Soh, Muta, Tatsushi, Matsuo, Susumu & Takeshige, Koichiro. Stimulus-specific
366 induction of a novel nuclear factor-kappaB regulator, IkappaB-zeta, via Toll/Interleukin-1 re-
367 ceptor is mediated by mRNA stabilization. *J Biol Chem* **280**, 1678–1687 (2005).
- 368 37. MaruYama, T., Sayama, A., Ishii, K. J. & Muta, T. Screening of posttranscriptional regulatory
369 molecules of IκB-ζ. *Biochemical and biophysical research communications* **469**,
370 711–715 (2016).

- 371 38. Leppek, K. *et al.* Roquin Promotes Constitutive mRNA Decay via a Conserved Class of Stem-
372 Loop Recognition Motifs. *Cell* **153**, 869–881 (2013).
- 373 39. Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. & López-Bigas, N. Onco-
374 driveFML: a general framework to identify coding and non-coding regions with cancer driver
375 mutations. *Genome Biol* **17**, 128 (2016).
- 376 40. Okamoto, K. *et al.* IkappaBzeta regulates T(H)17 development by cooperating with ROR
377 nuclear receptors. *Nature* **464**, 1381–1385 (2010).
- 378 41. Okuma, A. *et al.* Enhanced apoptosis by disruption of the STAT3-I κ B- ζ signaling pathway in
379 epithelial cells induces Sjögren's syndrome-like autoimmune disease. *Immunity* **38**, 450–460
380 (2013).
- 381 42. Kridel, R. *et al.* Histological Transformation and Progression in Follicular Lymphoma: A
382 Clonal Evolution Study. *PLoS Medicine* **13**, e1002197 (2016).

383 **Acknowledgements** The British Columbia Cancer Agency Centre for Lymphoid Cancer gratefully ac-
384 knowledges research funding support from the Terry Fox Research Institute, Genome Canada, Genome
385 British Columbia, the Canadian Institutes for Health Research and the British Columbia Cancer Founda-
386 tion. This work was supported by a Terry Fox New Investigator Award (1021) and an operating grant from
387 the Canadian Institutes for Health Research (CIHR) to RDM, who is supported by a New Investigator award
388 from CIHR and a Michael Smith Foundation for Health Research Scholar award. The genome sequence
389 data and RNA-seq was produced with support from a contract with Genome Canada and Genome British
390 Columbia led by JMC. MAM acknowledges the support of the Canada Research Chairs program and CIHR
391 Foundation grant FDN-143288. The results published here are in whole or part based upon data generated
392 by the TCGA Research Network: <http://cancergenome.nih.gov/>. We gratefully acknowledge TCGA and all
393 providers of samples and resources for generating this valuable resource. The TCGA exome data was ob-
394 tained through Database of Genotypes and Phenotypes (phs000178.v9.p8 and phs000450.v2.p1). We also
395 acknowledge the ICGC MALY-DE project for providing access to their unpublished data. Aligned reads
396 for those genomes were obtained through a DACO-approved project (to RDM) using a virtual instance on
397 the Cancer Genome Collaboratory. Some of these data were produced as part of the Slim Initiative for Ge-
398 nomic Medicine (SIGMA), a joint US-Mexico project funded by the Carlos Slim Health Institute. AM is
399 supported by fellowships from the Mildred-Scheel-Cancer-Foundation (German Cancer Aid), the MSFHR
400 and Lymphoma Canada. The authors gratefully acknowledge the patient donors of samples used herein. We
401 also thank Dr. Matthew Morin at Keyano College for the formal description of the rainstorm algorithm.

402 **Competing Interests** The authors declare that they have no competing financial interests.

403 **Correspondence** Correspondence and requests for materials should be addressed to RDM (email: rd-
404 morin@sfu.ca).

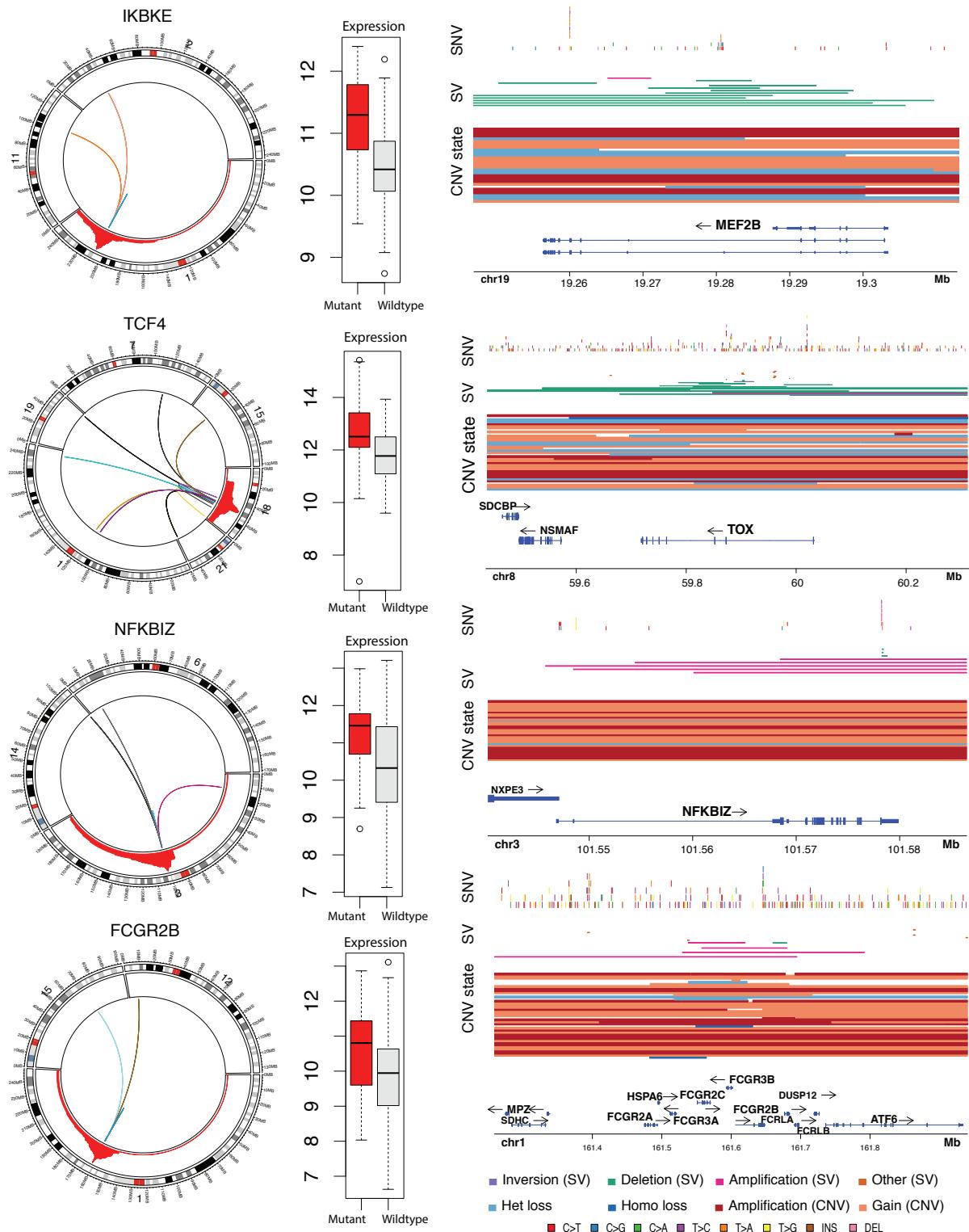


Figure 1

Figure 1: Structural and copy number alterations indicative of oncogenes in DLBCL genomes.

Gains and SV breakpoints affecting candidate oncogenes are summarised (left). Only chromosomes involved in at least one SV are displayed for each gene. The red region represents the cumulative number of gains/amplifications encompassing each locus across the cohort of genomes. The expression level of the gene with (red) or without (grey) proximal SV or CNV alterations is shown (centre). Some of the SVs affecting *NFKBIZ* and *TCF4* occur in the gene body and may partially disrupt or alter their normal function. Four examples are shown illustrating the varying patterns of mutation recurrence affecting known and putative DLBCL-related genes (right). *MEF2B* has two main mutation hotspots. This locus and *TOX* are both affected by multiple focal deletions across the cohort of genomes, whereas amplifications and gains of these loci are rare, strengthening their role as tumour suppressor genes. In contrast, *NFKBIZ* showed a striking number of small deletions affecting the 3'UTR. This region of the UTR is also enriched for SSMs. The locus containing *NFKBIZ* is commonly amplified in the genomes and a larger cohort of DLBCLs. The FC- γ receptor locus harbours five paralogs. Numerous examples of focal CNVs and a few translocations involving this region were observed. Copy number polymorphisms comprising different combinations of these genes are common in the human population but have been poorly characterised. Paired tumour/normal copy number analysis and SV detection indicates that focal somatic changes in copy number are also common in DLBCL. Despite a preponderance of amplifications, there also appears to be a preference towards focal deletions affecting FC- γ receptor genes other than *FCGR2B*.

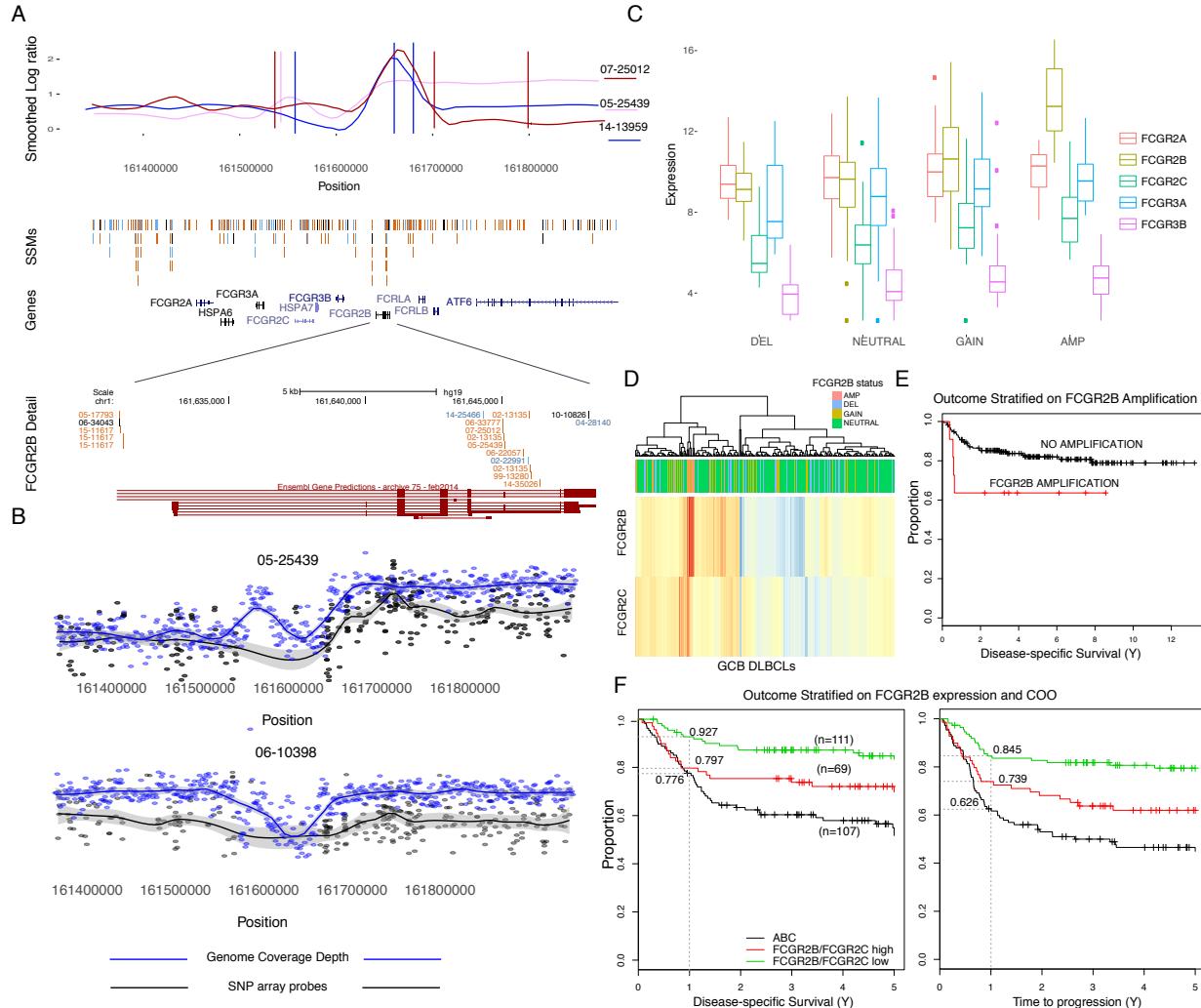


Figure 2

Figure 2: Focal somatic CNAs, SVs and SSMs affecting the $Fc\gamma$ receptor locus. (A) Three genomes with either a focal gain or complex combination of SVs are shown with the smoothed log-ratio of tumour to matched normal read depth confirming they are somatic. Corroborating mate pairs further supported these events, with up to three separate breakpoints detected in one case. The pattern of SSMs in two large introns is shown below, with some of these SSMs predicted to promote intron retention and a shorter CDS, which is annotated by Ensembl (red). (B) Though previous studies have noted some focal gains affecting this region⁹, we note that SNP arrays have poor coverage of this locus. The signal from copy-number probes on SNP6.0 arrays (black) is compared to binned read coverage (blue) for two cases. Due to a lack of constitutional DNA for the validation cohort, we are unable to determine the proportion of single-copy gains and losses that can be attributed to common germline CNVs. We can, however, identify cases with gains exceeding the complement possible through germline CNVs. (C) The local copy number was determined in the validation cohort using ddPCR and amplifications were carefully discriminated from single- or two-copy gains. The expression of each $FC\gamma$ receptor gene is shown with the cases separated by copy number state. Within GCB cases, those with amplifications or gains had significantly elevated $FCGR2B$ expression whereas deleted cases showed a trend towards reduced $FCGR2C$ expression. (D) Clustering on $FCGR2B$ and $FCGR2C$ groups amplified cases alongside tumours with gains or no alteration detected, indicating that $FCGR2B$ expression may be altered by other avenues. (E) Patients treated with R-CHOP showed an insignificant trend towards inferior outcome. (F) The log-ratio of expression of these two genes was significantly associated with outcome with the $FCGR2B/FCGR2C$ -high cases having a shorter DSS and TTP. When the first year is considered, the DSS of high- $FCGR2B$ GCB cases was similar to ABC cases.

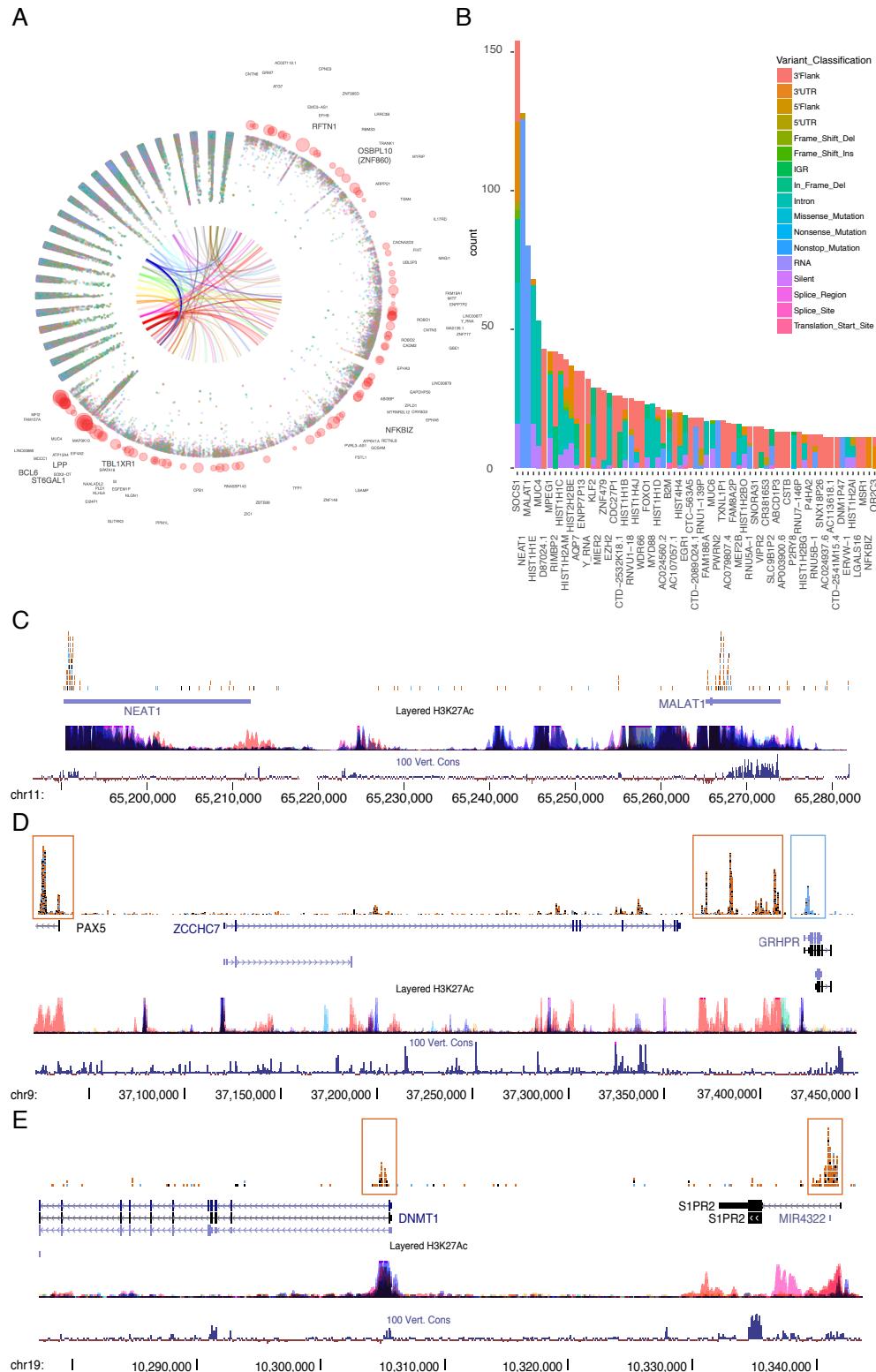


Figure 3

Figure 3: Annotation of novel recurrent mutations in non-coding and coding loci. (A) An overview of mutation peaks and the rainstorm representation of cohort-wide inter-mutation distance for chromosome 3. Red circles indicate mutation peaks identified by the wavelet approach. Internal arcs indicate SV breakpoints with distinct colours for each patient in the cohort. (B) Among the regions identified as enriched for SNVs through genome-wide analysis, the bulk of these affect intronic or intergenic regions or were near the transcription start site. Removing these may enrich for genes that are not merely affected by aSHM. Shown here are genes with one or more mutation peak and mutations in at least eight patients. The *NFKBIZ* locus had the strongest propensity for 3'UTR mutations among these remaining genes. This annotation-agnostic approach also detected sites in genes with mutation hot spots such as *EZH2*, *MYD88*, *B2M* and *FOXO1* and other genes known to act as drivers in DLBCL. (C) Multiple non-coding RNA genes are heavily mutated and show some focal enrichment, including the adjacent lincRNA genes *MALAT1* and *NEAT1*. (D) Similar to the *BCL6* super-enhancer, the locus containing *PAX5* and *ZCCHC7* harboured numerous mutation peaks. Peaks with mutations more common in GCB or ABC cases are boxed in orange and blue, respectively. (E) We found examples of mutation peaks proximal to genes that are commonly mutated in DLBCL such as *S1PR2*. In this example, *DNMT1* has a mutation pattern indicative of classical aSHM with most mutations directly downstream of the TSS.

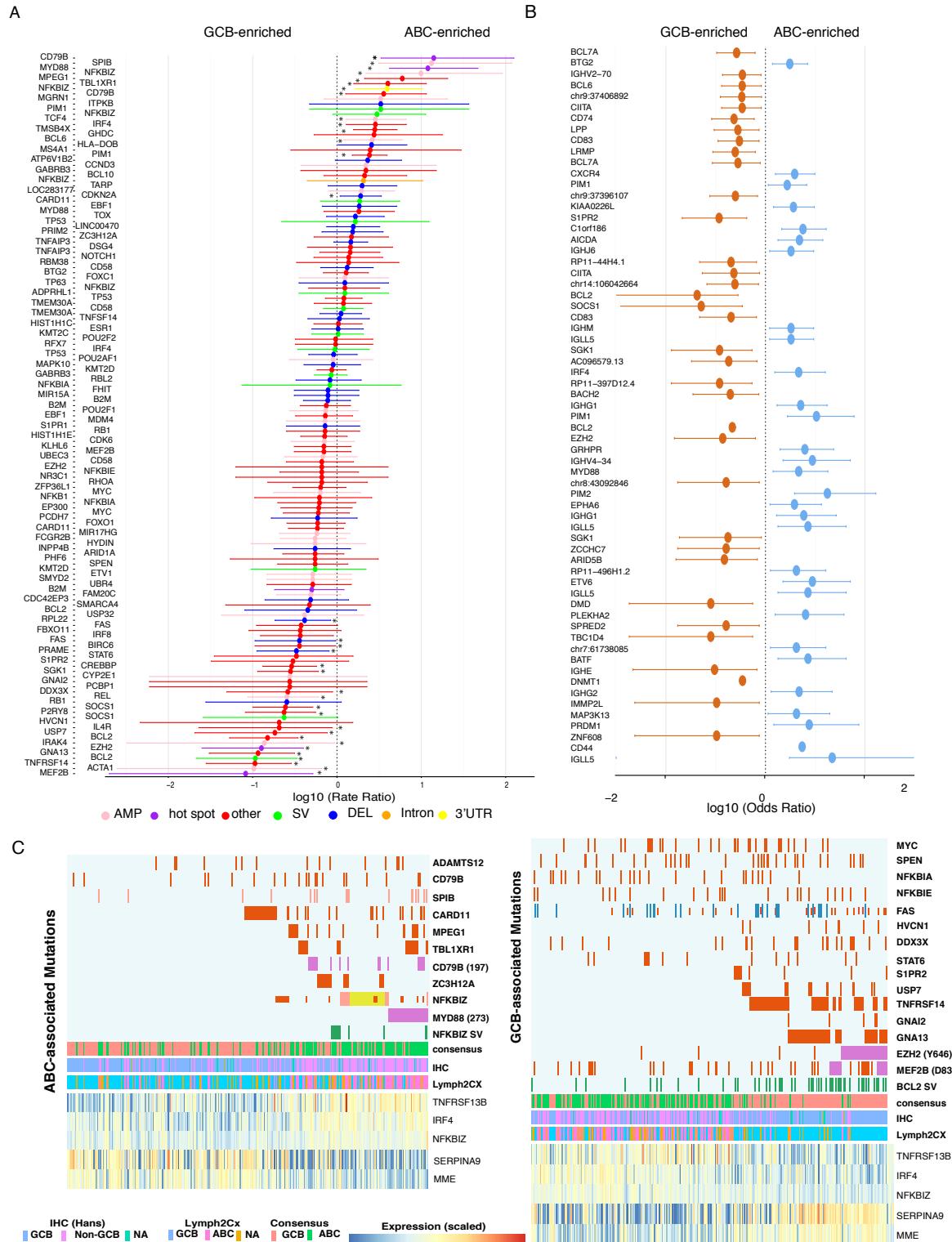


Figure 4

Figure 4: Differences in mutational representation between DLBCL molecular subgroups. (A) Non-silent mutations, recurrent CNAs and SVs that may be associated with either ABC or GCB COO are shown based on our validation cohort. An asterisk indicates significance at $P < 0.05$. For genes with mutation hot spots or affected by CNVs or SVs, we considered these mutations separately from other missense variants. (B) Some genome-wide non-coding mutation peaks also showed cell-of-origin differences. Many of these are within genes that encode the immunoglobulin heavy and light chains. Unsurprisingly, the remaining genes overlap considerably with COO-associated genes that are also affected by coding mutations, mainly those affected by aSHM. The differential presence of aSHM activity, likely owing to expression differences, may explain why some of these genes are uniquely mutated in their respective subgroup. The *BCL2* locus had multiple peaks that were commonly mutated among GCB cases including multiple intronic regions that appear, based on H3K27Ac patterns, to coincide with an enhancer. These mutations were not restricted to cases with *BCL2* translocations. The *AICDA* locus, a novel aSHM target, is mutated mainly in ABC cases. The *BCL6* and *PAX5* super-enhancer was preferentially mutated in GCB cases. A peak in *GRHPR* near *PAX5* was more commonly mutated in ABC cases (Figure 3D). The *DNMT1* locus is near *S1PR2* and both of these peaks were enriched for mutations in GCB, indicating the potential for co-regulation of these genes using a common set of regulatory regions. (C) Genes with mutations significantly associated with one subgroup are shown above a heat map of the expression of several genes with strong COO-associated expression to highlight the mutual exclusivity between some gene pairs. In ABC, *NFKBIZ* and *MYD88* mutations were mutually exclusive relative to other mutations involved in NF- κ B signalling. In GCB, *EZH2* and *MEF2B* hot spot mutations were common in *BCL2*-translocated cases and in those lacking mutations in *NFKBIA*, *MYC* and *SPEN*.

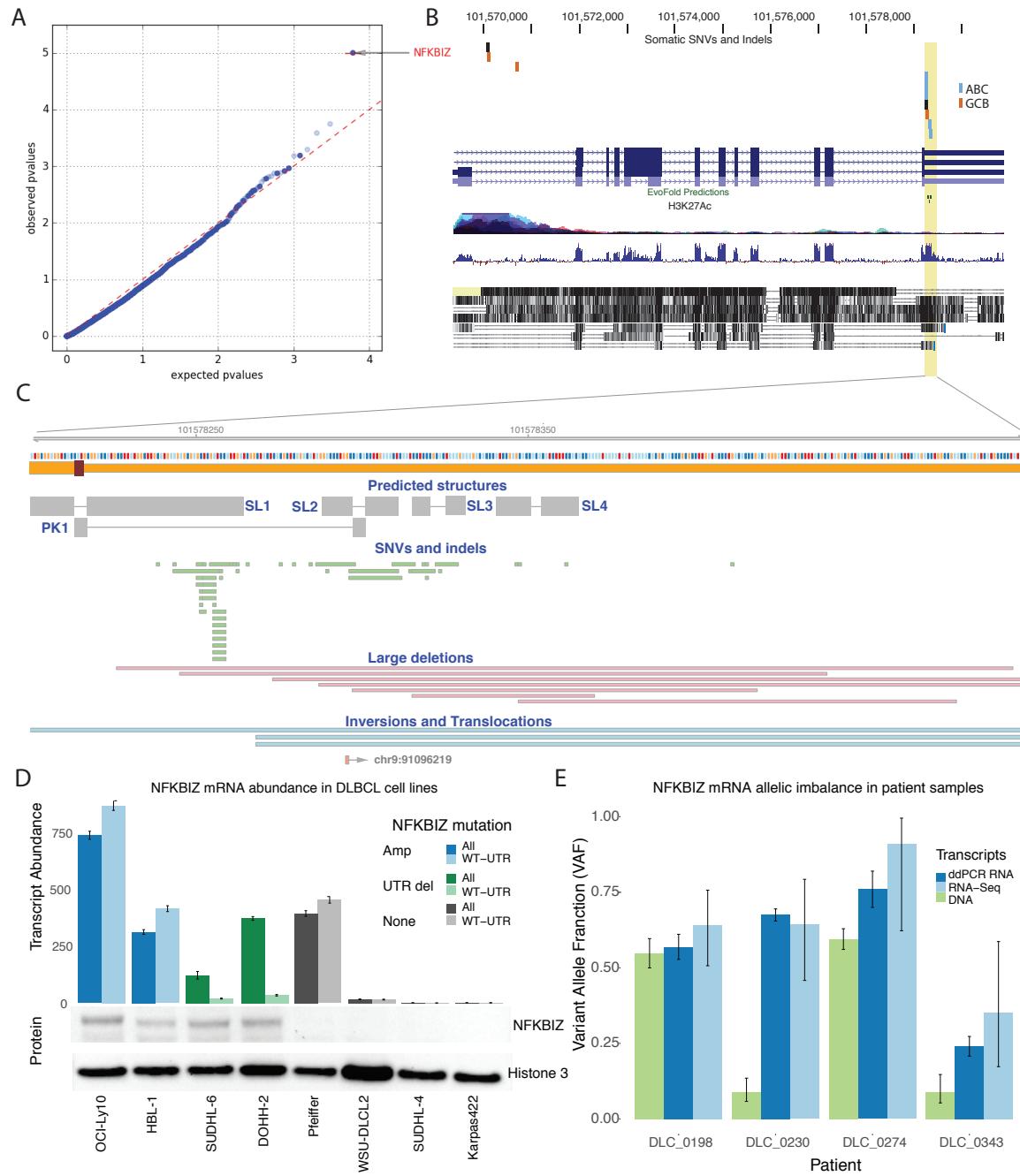


Figure 5

Figure 5: Mutations affecting the *NFKBIZ* locus and functional effects on mRNA and protein levels. (A) OncodriveFML³⁹ quantile-quantile (QQ) plot comparing the expected and observed distribution of functional mutation (FM) bias P values for UTR mutations. *NFKBIZ* was the only gene with an FM bias q-value below 0.1. (B) These mutations clustered in a highly conserved region of the *NFKBIZ* 3'UTR and were significantly enriched in ABC cases (blue) relative to GCB cases (orange). (C) The mutated region of the 3'UTR showing the location of predicted structural features (grey) including stem-loops (SL) and a pseudoknot (PK). Individual mutations detected in the genomes or validation cohort are shown below. (D) A droplet digital PCR (ddPCR) assay was applied to eight DLBCL cell lines to determine *NFKBIZ* mRNA expression levels. Dark colours indicate total transcript counts and light colours indicate wild-type 3'UTR transcript counts. Cell line *NFKBIZ* mutations include amplifications (blue), 3'UTR deletions (green) or none (grey). One line (Pfeiffer) lacking any detectable *NFKBIZ* mutation had elevated *NFKBIZ* mRNA levels relative to un-mutated lines. We suspect this is due to a *STAT3* mutation, as previous studies suggest that *STAT3* plays a role in *NFKBIZ* activation^{40,41}. Cell lines were also assessed by Western blot for I κ B ζ expression. Only mutant cell lines (green and blue) showed increased protein. (E) Comparison of variant allele fractions (VAFs) between DNA sequencing, RNA-Seq and ddPCR RNA assay for *NFKBIZ* mutant patients. RNA VAFs higher than the corresponding DNA VAFs indicate an allelic imbalance favouring the mutant allele.

	Structural Variation				Recurrent CNV			Summary			
	Del	Tra	Dup	Inv	Num (type)	Median	Minimum	Any	GCB	ABC	Peak
<i>FOXP1</i>	9	6	2	0	27 (A)	19034690	3207496	36	11	21	introns [†]
<i>NFKBIZ</i>	6	3	0	3	31 (A)	17720083	944075	37	11	23	3'UTR
<i>TCF4</i>	5	2	2	1	41 (A)	12986372	73803	44	16	22	no
<i>IKBKE</i>	1	0	1	0	28 (A)	15176955	1095013	29	17	7	no
<i>FCGR2B</i>	2	0	0	2	33 (A)	11049954	96085	34	18	10	introns [†]
<i>TOX</i>	11	8	2	1	10 (D)	35182055	192657	20	9	9	no
<i>CIITA</i>	12	8	1	3	7 (D)	6536287	1151750	16	8	6	intron
<i>TP53</i>	4	2	0	0	18 (D)	9410568	1145996	20	8	10	none
<i>CDKN2A</i>	22	20	0	1	22 (D)	16505508	400124	35	6	25	none
<i>CD58</i>	13	9	4	0	11 (D)	8488587	559852	22	9	11	introns [†]
<i>MEF2B</i>	10	9	0	1	8 (D)	7855612	1863130	15	2	12	none
<i>ETV6</i>	9	7	2	0	3 (D)	19441596	3190056	12	1	8	intron 1
<i>IRF8</i>	4	2	1	1	3 (D)	7701889	185094	6	3	2	intron 1
<i>BCL2L11</i>	5	5	1	0	2 (D)	7321203	339970	6	4	2	intron 1

Table 1: Overview of SVs and CNVs proximal to genes. SVs are separately counted by the type of event as determined by read pairing information. The total number of CNVs in the direction associated with the recurrent alteration (A or D) and the median and minimum of these is shown to highlight the focal nature of some of these events. Tra: translocation; Del: deletion; Dup: duplication; Inv: inversion; A: copy number amplification or gain; D: copy number deletion. [†]Gene has a visible enrichment of mutations in this region that was not detected by the wavelet approach.

Disease	Data source	Total cases	% <i>NFKBIZ</i> 3'UTR mutated
DLBCL	Genome and Validation cohort	449	9.13
DLBCL	Published exome cohorts	191	2.62
FL	Published ⁴² and Unpublished, ICGC	124	2.42
BL	Unpublished and ICGC	116	0.86
CLL	Published ¹⁵ and unpublished	144	0.69

Table 2: Prevalence of *NFKBIZ* 3'UTR mutations in DLBCL and other lymphoid cancers. Available WGS data from four lymphoid cancers was available from a combination of prior publications and unpublished *in house* data. Restricting to SSMs affecting the 3'UTR of *NFKBIZ*, the prevalence was substantially higher in DLBCL than FL and appreciably lower in the DLBCL WES cohort. The prevalence in CLL and BL was below 1%.