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Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature15

B-cells. Many known driver mutations are over-represented in one of its two molecular sub-16

groups, knowledge of which has aided in the development of therapeutics that target these17

features. The heterogeneity of DLBCL determined through prior genomic analysis suggests18

an incomplete understanding of its molecular aetiology, with a limited diversity of genetic19

events having thus far been attributed to the activated B-cell (ABC) subgroup. Through an20

integrative genomic analysis we uncovered genes and non-coding loci that are commonly mu-21

tated in DLBCL including putative regulatory sequences. We implicate recurrent mutations22

in the 3′UTR of NFKBIZ as a novel mechanism of oncogene deregulation and found small23

amplifications associated with over-expression of FC-γ receptor genes. These results inform24

on mechanisms of NF-κB pathway activation in ABC DLBCL and may reveal a high-risk25

population of patients that might not benefit from standard therapeutics.26

Introduction27

It has been established that DLBCL, although genetically heterogeneous, can be robustly divided at28

the gene expression level into two subgroups based on markers of B-cell differentiation and NF-κB29

activity pathways, the latter being particularly active in ABC cases1. EZH22, SGK1, GNA13 and30

MEF2B2 exemplify genes with mutations restricted to GCB cases, whereas MYD883, CD79B4 and31

CARD115 have been reported as more commonly mutated in ABC. Some DLBCL cases have few32

(if any) genetic alterations strongly associated with either subgroup, suggesting the possibility of33

additional genetic or epigenetic changes that shape the malignancy. Similarly, the over-expression34
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of proteins with potential therapeutic and clinical relevance cannot always be explained by known35

genetic alterations6. Gaining a more complete understanding of the genetic features of DLBCL in36

general and each subgroup in particular should lead to improved methods for this sub-classification37

and further inform on the molecular and genetic underpinnings of the lymphoma found in indi-38

vidual patients. Such enhancements have the potential to facilitate the development of targeted39

therapies, such as small molecule inhibitors7, new monoclonal antibodies and immunotherapies40

that target somatic mutations or cell surface proteins8.41

Although there have now been more than 1000 tumours analysed using targeted strategies42

such as array-based copy number analysis9 or whole exome sequencing (WES)10, a limited num-43

ber of DLBCL genomes have been described to date11–13, leaving the potential to uncover new44

somatic structural variations (SVs), copy number alterations (CNAs) and other cis-acting regu-45

latory mutations that may be cryptic to other assays. The search for driver mutations has been46

further confounded by aberrant somatic hypermutation (aSHM) affecting a substantial number of47

genes in DLBCL14. Specifically, in DLBCL and several other lymphoid cancers the AID enzyme48

(encoded by AICDA), in cooperation with POLη, induces mutations in actively transcribed genes49

with a concentration in the first 1.5-2 kb15. Though the repertoire of known aSHM targets in50

lymphoma continues to grow, it has become apparent that this process can also impact non-genic51

loci associated with super-enhancers and some aSHM-mediated mutations may have regulatory52

functions16, 17.53

Whole genome sequencing (WGS) offers the possibility of cataloguing the sites affected by54
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this process along with concomitant determination of genes with potential cis-regulatory effects.55

We analysed WGS data from 153 DLBCL tumour/normal pairs alongside existing WES data from56

191 additional cases to uncover novel driver genes affected by somatic single nucleotide variants57

or indels, collectively referred to as simple somatic mutations (SSMs). These affected many of the58

genes that have been ascribed to DLBCL along with 4,386 regions we identified as enriched for59

somatic mutations, the majority impacting non-coding loci. Analysis of matched RNA-seq data60

uncovered recurrent structural alterations and mutated loci with potential roles in mediating the61

transcriptional or post-transcriptional regulation of numerous genes with relevance to DLBCL.62

Integrative analysis of Structural Variation, Copy Number Alterations and Gene Expression63

The landscape of somatic CNAs in DLBCL has been addressed by multiple groups9, 18, 19 but owing64

to the technologies typically used, the breakpoints that underlie these events and putative copy-65

neutral alterations and smaller focal gains and losses can be missed by array-based approaches11.66

The 153 genomes were analysed for SVs, revealing a total of 13,643 breakpoints (range: 0-390;67

median 66). We determined the SVs likely to affect specific genes based on their proximity to in-68

dividual genes (Table 1). As expected, the genes with proximal SVs in the highest number of cases69

were oncogenes relevant to DLBCL including BCL2, BCL6, FOXP1 and MYC. Tumour suppressor70

genes (TSGs) typically exhibited focal deletions and commonly exhibited SV breakpoints within71

the gene body, including TP53, CDKN2A, and CD58 (Extended Data Figure 1).72

By intersecting with regions affected by recurrent copy number losses, we searched for pu-73
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tative TSGs that might be disrupted by either deletion or SV breakpoints (Table 1). Some of these74

were separately identified through subsequent analyses (below) revealing patterns of non-silent75

exonic mutations and/or peaks of non-coding mutations whereas others rarely harboured simple76

somatic mutations (SSMs) such as SNVs and indels. Many genes impacted by aSHM were also77

enriched for somatic breakpoints. In contrast, TOX and WWOX harboured a substantial number of78

distinct SV breakpoints and several examples of highly focal deletions but rarely harboured SSMs79

(Figure 1 and Extended Data Figure 1). TOX and WWOX SVs were rare overall, indicating these80

genes may act as tumour suppressor genes in some DLBCLs. MEF2B, a gene that has multiple81

known mutation hot spots, particularly in GCB DLBCL, also contained several examples of focal82

deletions or complex SVs. As the function of MEF2B mutation in DLBCL has not been fully83

elucidated20, 21, this observation strengthens the evidence of its role as a tumour suppressor with its84

recurrent mutations having a dominant negative effect, but this does not eliminate the possibility of85

shortened isoforms with an enhanced or distinct activity. Further complicating the matter, MEF2B86

SVs were predominantly found in the genomes of ABC DLBCLs whereas hot spot mutations are87

a feature of GCB.88

We next searched for concomitant signals of recurrent copy number gain and SVs proximal89

to genes, restricting our analysis to regions identified as peaks for amplification by GISTIC in90

a separate large DLBCL cohort (Ennishi et al, unpublished). We utilised RNA-seq-derived ex-91

pression values from a subset of the cases to infer cis effects of these events on expression. This92

uncovered several genes reported to act as oncogenes through focal amplification, with IKBKE,93

NFKBIZ, FCGR2A/FCGR2B representing the strongest candidates due to significantly elevated94
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expression in cases having either a gain or proximal SV (Figure 1). This also revealed additional95

known targets of aSHM (Extended Data Figure 2). Some breakpoints were within the gene body,96

an observation seen in some known oncogenes such as FOXP122. Such events can lead to novel97

isoforms or fusion transcripts, such as those involving TBL1XR123.98

The most striking collection of focal gains was those affecting the FCγ receptor locus, a com-99

plex region of the genome comprising multiple paralogs that have arisen through a series of seg-100

mental duplications24(Figure 2A-B). These focal gains and, less commonly, deletion events were101

corroborated by read pairing information in many cases. This observation could be confounded by102

the presence of germline copy number alterations in this region, thus many of the single copy gains103

could represent germline events. Using a custom multiplex droplet digital PCR (ddPCR) assay, we104

confirmed the CNAs and identified four additional examples of amplifications and several addi-105

tional gains not detected by SNP arrays. Amplifications, but not gains, were significantly enriched106

among GCB cases and had a striking correlation with elevated FCGR2B expression (Figure 2C).107

Although the prevalence of this genetic alteration is low, we found a compelling trend towards in-108

ferior outcome in GCB cases with FCGR2B amplification. Taking into account the apparent effect109

of gains on FCGR2B over-expression and deletions on reduced FCGR2C, we hypothesised that110

the tumours benefited from a relative increase in FCγRIIB protein relative to FCγRIIC and used111

the log-ratio of the expression of these two genes to stratify GCB patients (Methods). This simple112

classifier showed a strong separation of patients on disease-specific survival that was significant as113

a continuous variable in a Cox model and showed a strong relationship in univariate Kaplan-Meier114

analysis across a range of thresholds (Figure 2E-F and Extended Data Figure 3).115
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Local Mutation Density and Somatic Cis-regulatory Variation116

We next sought genes with patterns of non-silent mutations, beginning with a meta-analysis of the117

genomes and all available exome data for recurrently mutated genes. The genes significantly af-118

fected by SSMs had mostly been identified in prior studies and a large exome study published while119

this manuscript was being completed 10(Extended Data: Figure 4, Table 1). Among the genes that120

have limited prior evidence for relevance in DLBCL, many have been implicated in other B-cell121

lymphomas arising within the germinal centre. For example, DDX3X, ARID1A and HVCN1 which122

have been reported as recurrently mutated in Burkitt lymphoma (BL)25 and follicular lymphoma123

(FL)26.124

Within the 153 genomes, we identified between 1689 and 121,694 SSMs (median: 14,026).125

We searched genome-wide for patterns of mutation that may imply regulatory function without126

directly impacting protein sequence. To accomplish this, we implemented a new strategy to infer127

regions of arbitrary span with mutation density elevated above the local background. The method128

considers positions of pooled mutations from a cohort of cancer genomes excluding any variants129

within the CDS of genes (Methods). This analysis detected 4,386 peaks enriched for mutations that130

ranged from a single nucleotide to many kilobases (kb) in length (median length: 664 nucleotides).131

Using the pooled mutation set from all genomes, a randomly selected region should have, on132

average, 1.00 mutation per kb whereas these regions had a median mutation density of 10.3 per133

kb. Some hypermutated loci were represented by multiple peaks. For example, the BCL6 locus134

and super-enhancer surrounding this region comprised 31 discrete peaks (Figure 3). Our analysis135
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also revealed examples of non-coding loci with mutation peaks, for example the two adjacent136

long noncoding RNA (lncRNA) genes NEAT1 and MALAT1 and the miR-142 locus (Figure 3C).137

Mutations at each of these loci have been previously noted in other DLBCL and FL and their138

pattern is consistent with aSHM27, 28.139

To determine the suitability of our approach to identify mutation clusters relevant to DL-140

BCL, we extended our peak analysis to include all mutations including the coding region (CDS).141

We found a similar number of peaks (4,405), which comprised the bulk of the original non-coding142

peaks as well as peaks in genes with mutation hot spots such as EZH2, FOXO1 and MYD88 (Fig-143

ure 3B). Aside from intergenic regions (2,244), the top three classes of annotation affected by144

peaks were 5′ flanking regions, 5′UTRs and introns. These are also the regions typically affected145

by aSHM and, as expected, virtually all of the known targets of this process were represented146

among these regions12, 14. We also noted multiple genes with mutation patterns consistent with147

aSHM including the AICDA locus itself, PRDM1, DNMT1, and ACTB (Figure 3E and Extended148

Data Figure 3). If the mutations in these peaks were largely due to a single mutational process that149

preferentially acts in certain regions, we expected to find differences in the mutational signatures150

relative to the full set of SNVs. Interestingly, although the signature attributed to AID and POLν151

activity was represented genome-wide and within the peaks, another signature that does not clearly152

correspond to any of the previously described signatures was unique to the peaks (Extended Data153

Figure 5).154

To identify peaks with potential relevance in modulating transcription, we assessed the rela-155
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tionship between gene expression and the presence of mutations in nearby peaks. All genes with156

one or more proximal peak were tested for significant differences in expression between mutated157

and un-mutated cases (Extended Data Figure 6). Most of the protein-coding loci identified were158

known (including SERPINA9, CD44, PIM1) or the novel targets of aSHM we had identified (in-159

cluding DNMT1 and AICDA). The correlation between expression and aSHM is typically attributed160

to an elevated AID activity at highly expressed genes and thus may act as a permanent marker of161

sustained expression of these genes rather than representing driver mutations. Regardless, the162

unprecedented breadth of mutations affecting potential regulatory regions including enhancers163

proximal to these genes suggests the possibility of a regulatory effect and this warrants further164

investigation. To enrich for genes with patterns unlikely to result from aSHM, we identified loci165

for which the most common variant annotation in each peak was not among the classes attributable166

to aSHM. Multiple genes showed distinct distributions of mutations seemingly inconsistent with167

aSHM. This could imply a different mutational process or the action of selective pressure to retain168

or alter function. Some of these genes had short 5′UTRs and thus had mutations within their CDS169

and even 3′UTRs (e.g. MPEG1, HIST1H1C). In longer genes, such as NFKBIZ, 3′UTR mutations170

cannot be readily attributed to aSHM and appear to indicate strong selective pressure.171

Recurrently Mutated Loci Associated With Cell-of-origin Subgroup172

Our genome analysis uncovered a striking pattern of mutations in NFKBIZ, a gene that has been173

reported to act as an oncogene in DLBCL cases with copy number amplification affecting this174

locus29 though other somatic mutations affecting this region appear to be lacking. NFKBIZ was175
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significantly more commonly mutated in ABC cases when the 3′UTR mutations are considered and176

even more strongly enriched in ABC when amplifications affecting this region are also considered177

(P = 2.15 × 10−5, Fisher’s Exact Test) . Combining the genome data and results from targeted178

sequencing in a larger “validation” cohort, we confirmed our observation of a novel pattern of179

SSMs in the 3′UTR of NFKBIZ as well as some large indels and somatic structural variants (SVs)180

(Figure 5; Extended Data Figure 7). To demonstrate the improved resolution power of WGS to181

detect such mutations, we contrast these results to the large cohort of available exome data, which182

were uniformly re-analysed with the same methodology and show a much lower yield of these183

variants. We also compared the prevalence of NFKBIZ 3′UTR mutations in other lymphoid cancers184

with available WGS data including CLL, FL and BL. FL had the next highest prevalence with185

these mutations appearing in less than 3% of cases (Table 2). The number of cases also provided186

sufficient power to determine patterns of mutually exclusive genes within ABC and GCB. One of187

the few pairs of genes showing mutual exclusivity for mutation in ABC was MYD88 and NFKBIZ,188

indicating a potentially redundant role of these two mutations in lymphomagenesis (Extended Data189

Figure 8).190

The 3′UTR of NFKBIZ is highly conserved and the mutated region has been previously191

identified as a destabilising element that promotes rapid mRNA turnover30. We predict these mu-192

tations perturb this process thereby increasing mRNA longevity, which would in turn cause allelic193

imbalance in mutant cases. We constructed a structural model for the highly conserved region194

that contained the vast majority of SSMs (Extended Data Figure 9), which consists of one large195

stem-loop with several internal bulges and a smaller stem-loop with pairing in the loops forming196
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a pseudoknot. Molecular dynamic simulations of selected mutations show that a subset appears to197

significantly change the structure relative to wild-type sequence (Extended Data Figure 9).198

Higher mRNA levels were observed among the cases with 3′UTR mutations supporting their199

role in promoting mRNA abundance. To demonstrate the mutations promote elevated expression200

in cis, we searched for evidence of allelic imbalance. Of the cases with sufficient RNA-seq depth201

and at least one heterozygous SNP in NFKBIZ, we identified 25 cases with significant allelic im-202

balance. Roughly half of these cases had mutations that could impact either transcriptional or203

post-transcriptional regulation, with four containing a structural variation or indel affecting the204

3′UTR and nine having one or more UTR SNV. This finding suggest that additional genetic or205

epigenetic alterations may also lead to allelic imbalance in NFKBIZ expression. We identified206

two DLBCL cell lines (DOHH-2 and SU-DHL-6) with NFKBIZ 3′UTR mutations and two lines207

(OCI-Ly10 and HBL-1) having NFKBIZ amplification.208

To confirm this allelic imbalance, we implemented a ddPCR assay that separately quanti-209

fies mutant and wild-type NFKBIZ mRNAs. We tested mRNA extracted from eight DLBCL cell210

lines and a subset of the patient RNA samples and found that samples with NFKBIZ mutations211

or amplifications each had significantly higher mRNA levels. We confirmed in the two cell lines212

with NFKBIZ 3′UTR deletions (DOHH-2 and SU-DHL-6) that the mRNA represented a greater213

proportion of the mutant allele (Figure 5). When applying this assay to patient RNA samples, we214

compared the variant allele fractions (VAFs) for the mutation from our ddPCR assay and RNA-seq215

to the tumour DNA as determined by targeted capture sequencing (Extended Data Figure 10). The216
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RNA VAFs were higher than DNA in all NFKBIZ mutant patients, indicating increased expression217

of the mutant allele. Patient DLC 198 did not have a significant difference between RNA and DNA218

levels however, this can be attributed to a CNA of the NFKBIZ locus where an extra wild-type al-219

lele was present in this patient. By immunoblot, we confirmed high levels of IκBζ protein in these220

NFKBIZ mutant cell lines relative to lines lacking these events (Figure 5).221

Discussion222

In this study, we have confirmed the recurrence and determined the specificity of non-silent mu-223

tations in a substantial number of genes to the molecular subgroups of de novo DLBCLs. Here,224

we focus our attention on some of the more common mutational features of DLBCL that were225

detectable only through the coverage of WGS data and integrative analysis with gene expression226

data from matched samples. Several recurrent sites of non-coding mutations were uncovered by227

a new algorithm. These include novel genes that are affected by aSHM and intergenic regions,228

particularly near active superenhancers, that appear to be mutated by the same process. The most229

striking finding within GCB DLBCL was the previously unappreciated recurrence of focal gains230

and complex events affecting the FC-γ receptor locus. The interplay between FC-γ receptors and231

cancer has general relevance because these proteins are directly involved in antibody-dependent232

cell-mediated toxicity (ADCC), which is triggered by monoclonal antibody-based (mAb) thera-233

pies including cetuximab, trastuzumab and rituximab31. Until recently, these have been studied in234

the context of Fc-γ receptor expression on effector cells and their interaction with mAbs on tumour235

cells in trans. In B-cell lymphomas, this situation is complicated by the presence of multiple Fc-γ236
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receptor proteins on the malignant cells. Recent data have implicated common polymorphisms and237

gene expression differences in tumour tissue in variable response to rituximab but whether this was238

due to their effect on cis or trans interactions remained unclear. In CLL, cis interactions of Fc-γ239

receptor on malignant cells is associated with an elevated rate of internalisation of FCGR2B bound240

to IgG relative to its other family members32. Nonetheless, to date, recurrent somatic alterations241

promoting deregulated expression of FC-γ receptors have not been addressed.242

We hypothesised that an imbalanced expression of FC-γ receptor proteins in malignant cells,243

due in part to the complex focal amplifications we have identified herein, attenuates the normal im-244

mune response to rituximab as has been seen with alternative isoforms and polymorphic variants245

of this gene. This was strongly supported by the significantly inferior outcome of FCGR2B-high246

GCB patients treated with R-CHOP (Figure 2) and is consistent with a smaller study that showed247

a correlation between FCγRIIB protein staining and outcome in FL33. In light of this, alternative248

immunotherapy approaches may be warranted for this high-risk sub-population. Type II mAbs249

directed at CD20 or other proteins are not internalised by the same process and thus may be ben-250

eficial in these patients. Another potential avenue of exploration is direct targeting of FCγRIIB251

alone or in combination34. Beyond somatic copy number alterations and possibly some influence252

from germline CNVs, we also identified an elevated level of SSMs in two introns of FCGR2B that253

may promote intron retention and lead to a truncated isoform. Further exploration of the role of254

genetic variation in producing FCGR2B over-expression or upsetting the balance of FCGR2B and255

FCGR2C in DLBCL is warranted.256
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In conjunction with NFKBIZ amplifications, which promote its expression, our data indicate257

an overall prevalence of 21.5% for mutations that may impact IκBζ protein abundance or function258

with 35 cases (10%) having at least one 3′UTR mutation. These were more common than coding259

changes or amplifications of this locus and strongly associate with the ABC subgroup whereas260

missense mutations were observed in both subgroups. Multiple studies have already attributed261

a 165 nt region in the UTR that harbours the bulk of the mutations we detected as destabilising262

elements30, 35. The observation of allelic imbalance in many of the patient samples with 3′UTR263

mutations strongly implicates them in perturbing mRNA turnover but the functional mechanism is264

not clear. NFKBIZ is one of several genes subject to post-transcriptional regulation by the endori-265

bonucleases Regnase-1 (Reg-1) and Roquin35. This process involves mRNA turnover and/or se-266

questration mediated by interactions between these proteins and specific stem-loops in the 3′UTRs267

of their targets36. MYD88, an adaptor protein that is commonly mutated in ABC DLBCLs, has268

been shown to be important for protecting NFKBIZ mRNA from this process37. Moreover, B-269

cell receptor signalling, which is active in most ABC DLBCLs, can also promote stabilisation of270

NFKBIZ mRNA via the UTR30.271

The role of individual putative structural components in the 3′UTR of NFKBIZ in these indi-272

vidual processes has not been fully elucidated. The region we describe as containing a pseudoknot273

and comprising the first two stem-loops does not resemble the loop size and nucleotide properties274

that have been attributed to Roquin38, implicating instead the two distal elements in this interaction275

(SL3 and SL4). Reg-1 is encoded by ZC3H12A, one of the novel recurrently mutated genes iden-276

tified through our meta-analysis (Extended Data Table 1). Confirming the mechanism whereby277
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3′UTR mutations impact the NF-κB pathway in DLBCL is highly relevant given the growing list278

of therapeutic strategies designed to inhibit this pathway directly or by perturbing upstream sig-279

nalling events. Notwithstanding that mechanistic details remain unclear, we have demonstrated280

that higher mRNA and protein levels result from these mutations. To the best of our knowledge,281

recurrent 3′UTR mutations are the first example of a common somatic UTR alteration that can282

directly increase the expression of an oncogene.283
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Figure 1: Structural and copy number alterations indicative of oncogenes in DLBCL genomes.

Gains and SV breakpoints affecting candidate oncogenes are summarised (left). Only chromo-

somes involved in at least one SV are displayed for each gene. The red region represents the cu-

mulative number of gains/amplifications encompassing each locus across the cohort of genomes.

The expression level of the gene with (red) or without (grey) proximal SV or CNV alterations is

shown (centre). Some of the SVs affecting NFKBIZ and TCF4 occur in the gene body and may

partially disrupt or alter their normal function. Four examples are shown illustrating the vary-

ing patterns of mutation recurrence affecting known and putative DLBCL-related genes (right).

MEF2B has two main mutation hotspots. This locus and TOX are both affected by multiple focal

deletions across the cohort of genomes, whereas amplifications and gains of these loci are rare,

strengthening their role as tumour suppressor genes. In contrast, NFKBIZ showed a striking num-

ber of small deletions affecting the 3′UTR. This region of the UTR is also enriched for SSMs.

The locus containing NFKBIZ is commonly amplified in the genomes and a larger cohort of DL-

BCLs. The FC-γ receptor locus harbours five paralogs. Numerous examples of focal CNVs and a

few translocations involving this region were observed. Copy number polymorphisms comprising

different combinations of these genes are common in the human population but have been poorly

characterised. Paired tumour/normal copy number analysis and SV detection indicates that focal

somatic changes in copy number are also common in DLBCL. Despite a preponderance of am-

plifications, there also appears to be a preference towards focal deletions affecting FC-γ receptor

genes other than FCGR2B.
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Figure 2: Focal somatic CNAs, SVs and SSMs affecting the Fcγ receptor locus. (A) Three

genomes with either a focal gain or complex combination of SVs are shown with the smoothed

log-ratio of tumour to matched normal read depth confirming they are somatic. Corroborating

mate pairs further supported these events, with up to three separate breakpoints detected in one

case. The pattern of SSMs in two large introns is shown below, with some of these SSMs pre-

dicted to promote intron retention and a shorter CDS, which is annotated by Ensembl (red). (B)

Though previous studies have noted some focal gains affecting this region9, we note that SNP

arrays have poor coverage of this locus. The signal from copy-number probes on SNP6.0 arrays

(black) is compared to binned read coverage (blue) for two cases. Due to a lack of constitutional

DNA for the validation cohort, we are unable to determine the proportion of single-copy gains and

losses that can be attributed to common germline CNVs. We can, however, identify cases with

gains exceeding the complement possible through germline CNVs. (C) The local copy number

was determined in the validation cohort using ddPCR and amplifications were carefully discrimi-

nated from single- or two-copy gains. The expression of each FCγ receptor gene is shown with the

cases separated by copy number state. Within GCB cases, those with amplifications or gains had

significantly elevated FCGR2B expression whereas deleted cases showed a trend towards reduced

FCGR2C expression. (D) Clustering on FCGR2B and FCGR2C groups amplified cases alongside

tumours with gains or no alteration detected, indicating that FCGR2B expression may be altered

by other avenues. (E) Patients treated with R-CHOP showed an insignificant trend towards inferior

outcome. (F) The log-ratio of expression of these two genes was significantly associated with out-

come with the FCGR2B/FCGR2C-high cases having a shorter DSS and TTP. When the first year

is considered, the DSS of high-FCGR2B GCB cases was similar to ABC cases.
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Figure 3: Annotation of novel recurrent mutations in non-coding and coding loci. (A) An overview

of mutation peaks and the rainstorm representation of cohort-wide inter-mutation distance for chro-

mosome 3. Red circles indicate mutation peaks identified by the wavelet approach. Internal arcs

indicate SV breakpoints with distinct colours for each patient in the cohort. (B) Among the regions

identified as enriched for SNVs through genome-wide analysis, the bulk of these affect intronic or

intergenic regions or were near the transcription start site. Removing these may enrich for genes

that are not merely affected by aSHM. Shown here are genes with one or more mutation peak and

mutations in at least eight patients. The NFKBIZ locus had the strongest propensity for 3′UTR

mutations among these remaining genes. This annotation-agnostic approach also detected sites in

genes with mutation hot spots such as EZH2, MYD88, B2M and FOXO1 and other genes known

to act as drivers in DLBCL. (C) Multiple non-coding RNA genes are heavily mutated and show

some focal enrichment, including the adjacent lincRNA genes MALAT1 and NEAT1. (D) Similar

to the BCL6 super-enhancer, the locus containing PAX5 and ZCCHC7 harboured numerous muta-

tion peaks. Peaks with mutations more common in GCB or ABC cases are boxed in orange and

blue, respectively. (E) We found examples of mutation peaks proximal to genes that are commonly

mutated in DLBCL such as S1PR2. In this example, DNMT1 has a mutation pattern indicative of

classical aSHM with most mutations directly downstream of the TSS.
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Figure 4: Differences in mutational representation between DLBCL molecular subgroups. (A)

Non-silent mutations, recurrent CNAs and SVs that may be associated with either ABC or GCB

COO are shown based on our validation cohort. An asterisk indicates significance at P<0.05.

For genes with mutation hot spots or affected by CNVs or SVs, we considered these mutations

separately from other missense variants. (B) Some genome-wide non-coding mutation peaks also

showed cell-of-origin differences. Many of these are within genes that encode the immunoglobulin

heavy and light chains. Unsurprisingly, the remaining genes overlap considerably with COO-

associated genes that are also affected by coding mutations, mainly those affected by aSHM. The

differential presence of aSHM activity, likely owing to expression differences, may explain why

some of these genes are uniquely mutated in their respective subgroup. The BCL2 locus had

multiple peaks that were commonly mutated among GCB cases including multiple intronic regions

that appear, based on H3K27Ac patterns, to coincide with an enhancer. These mutations were not

restricted to cases with BCL2 translocations. The AICDA locus, a novel aSHM target, is mutated

mainly in ABC cases. The BCL6 and PAX5 super-enhancer was preferentially mutated in GCB

cases. A peak in GRHPR near PAX5 was more commonly mutated in ABC cases (Figure 3D).

The DNMT1 locus is near S1PR2 and both of these peaks were enriched for mutations in GCB,

indicating the potential for co-regulation of these genes using a common set of regulatory regions.

(C) Genes with mutations significantly associated with one subgroup are shown above a heat map

of the expression of several genes with strong COO-associated expression to highlight the mutual

exclusivity between some gene pairs. In ABC, NFKBIZ and MYD88 mutations were mutually

exclusive relative to other mutations involved in NF-κB signalling. In GCB, EZH2 and MEF2B

hot spot mutations were common in BCL2-translocated cases and in those lacking mutations in

NFKBIA, MYC and SPEN.
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Figure 5: Mutations affecting the NFKBIZ locus and functional effects on mRNA and protein

levels. (A) OncodriveFML39 quantile-quantile (QQ) plot comparing the expected and observed

distribution of functional mutation (FM) bias P values for UTR mutations. NFKBIZ was the only

gene with an FM bias q-value below 0.1. (B) These mutations clustered in a highly conserved

region of the NFKBIZ 3′UTR and were significantly enriched in ABC cases (blue) relative to

GCB cases (orange). (C) The mutated region of the 3′UTR showing the location of predicted

structural features (grey) including stem-loops (SL) and a pseudoknot (PK). Individual mutations

detected in the genomes or validation cohort are shown below. (D) A droplet digital PCR (ddPCR)

assay was applied to eight DLBCL cell lines to determine NFKBIZ mRNA expression levels.

Dark colours indicate total transcript counts and light colours indicate wild-type 3′UTR transcript

counts. Cell line NFKBIZ mutations include amplifications (blue), 3′UTR deletions (green) or

none (grey). One line (Pfeiffer) lacking any detectable NFKBIZ mutation had elevated NFKBIZ

mRNA levels relative to un-mutated lines. We suspect this is due to a STAT3 mutation, as previous

studies suggest that STAT3 plays a role in NFKBIZ activation40, 41. Cell lines were also assessed

by Western blot for IκBζ expression. Only mutant cell lines (green and blue) showed increased

protein. (E) Comparison of variant allele fractions (VAFs) between DNA sequencing, RNA-Seq

and ddPCR RNA assay for NFKBIZ mutant patients. RNA VAFs higher than the corresponding

DNA VAFs indicate an allelic imbalance favouring the mutant allele.
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Structural Variation Recurrent CNV Summary

Del Tra Dup Inv Num (type) Median Minimum Any GCB ABC Peak

FOXP1 9 6 2 0 27 (A) 19034690 3207496 36 11 21 introns†

NFKBIZ 6 3 0 3 31 (A) 17720083 944075 37 11 23 3′UTR

TCF4 5 2 2 1 41 (A) 12986372 73803 44 16 22 no

IKBKE 1 0 1 0 28 (A) 15176955 1095013 29 17 7 no

FCGR2B 2 0 0 2 33 (A) 11049954 96085 34 18 10 introns†

TOX 11 8 2 1 10 (D) 35182055 192657 20 9 9 no

CIITA 12 8 1 3 7 (D) 6536287 1151750 16 8 6 intron

TP53 4 2 0 0 18 (D) 9410568 1145996 20 8 10 none

CDKN2A 22 20 0 1 22 (D) 16505508 400124 35 6 25 none

CD58 13 9 4 0 11 (D) 8488587 559852 22 9 11 introns†

MEF2B 10 9 0 1 8 (D) 7855612 1863130 15 2 12 none

ETV6 9 7 2 0 3 (D) 19441596 3190056 12 1 8 intron 1

IRF8 4 2 1 1 3 (D) 7701889 185094 6 3 2 intron 1

BCL2L11 5 5 1 0 2 (D) 7321203 339970 6 4 2 intron 1

Table 1: Overview of SVs and CNVs proximal to genes. SVs are separately counted by the type

of event as determined by read pairing information. The total number of CNVs in the direction

associated with the recurrent alteration (A or D) and the median and minimum of these is shown

to highlight the focal nature of some of these events. Tra: translocation; Del: deletion; Dup:

duplication; Inv: inversion; A: copy number amplification or gain; D: copy number deletion. †Gene

has a visible enrichment of mutations in this region that was not detected by the wavelet approach.
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Disease Data source Total cases % NFKBIZ 3′UTR mutated

DLBCL Genome and Validation cohort 449 9.13

DLBCL Published exome cohorts 191 2.62

FL Published42 and Unpublished, ICGC 124 2.42

BL Unpublished and ICGC 116 0.86

CLL Published15 and unpublished 144 0.69

Table 2: Prevalence of NFKBIZ 3′UTR mutations in DLBCL and other lymphoid cancers. Avail-

able WGS data from four lymphoid cancers was available from a combination of prior publications

and unpublished in house data. Restricting to SSMs affecting the 3′UTR of NFKBIZ, the preva-

lence was substantially higher in DLBCL than FL and appreciably lower in the DLBCL WES

cohort. The prevalence in CLL and BL was below 1%.
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