

1 Photocatalytic disinfection of Surfaces

2 with Copper Doped Ti0₂ Nanotube

3 Coatings Illuminated by Ceiling Mounted

4 Fluorescent Light

5

6 Tilen Koklic^{◊, #, °}, Štefan Pintarič^{+,#, °}, Irena Zdovc^{+,#}, Majda Golob⁺, Polona Umek^{◊, #}, Alma Mehle[◊],
7 Martin Dobeic^{+,#,*}, Janez Štrancar^{◊, #,*}

8

9 [◊]Jožef Stefan Institute, Ljubljana, Slovenia

10 [#] NAMASTE Center of Excellence, Ljubljana, Slovenia

11 ⁺ Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia

12

13

14

15

16 [°] contributed equally to this work

17 ^{*} to whom correspondence should be addressed

18

19 **Abstract**

20 High economic burden is associated with foodborne illnesses. Different disinfection
21 methods are therefore employed in food processing industry; such as use of ultraviolet
22 light or usage of surfaces with copper-containing alloys. However, all the disinfection
23 methods currently in use have some shortcomings. Here we show that copper doped TiO₂
24 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent
25 lights or additional low power light emitting diodes can be employed for an economical and
26 permanent disinfection of surfaces.

27 We deposited the nanotubes on various surfaces: polyethylene terephthalate, polystyrene,
28 and aluminum oxide, where they could withstand repeated washings with neutral, alkaline
29 or acidic medium. Here we show that the polymer surfaces coated with the nanotubes and
30 innoculated with 10⁷ bacteria, illuminated with ceiling mounted fluorescent lights retard the
31 growth of *Listeria Innocua* by up to 99% in seven hours of exposure to the fluorescent
32 lights, compared to a control surface. The disinfection properties of the surfaces depend
33 mainly on the temperature difference of the surface and the dew point, where for maximum
34 effectiveness of the photocatalytic effect the difference should be at least 2.5 degrees
35 celsius.

36 Usage of one dimensional nanomaterials, such as TiO₂ nanotubes, offers a promising low
37 cost alternative to current disinfection methods, since illumination of surfaces with common
38 fluorescent lights is sufficient to photo-excite the nanotubes, which sequentially produce
39 microbicidal hydroxyl radicals. Future use of such surfaces with antibacterial nano-coating
40 and resulting sterilizing effect holds promise for such materials to be used in different
41 environments or in better control of critical control points in food production as well as an
42 improved biosecurity during the food manufacturing process.

43

44 **Keywords:** copper doped TiO₂ nanotubes, *Listeria innocua*, surface disinfection,
45 photocatalysis, nanomaterials, meat processing plant

46

47

48 **Introduction**

49 Economic burden of \$30–80 billion was estimated by the Center for Disease Control and
50 Prevention (CDC) for the annual number of foodborne illnesses, affecting 48 million
51 Americans ^{1,2}. Over 320.000 cases of food-borne zoonotic diseases were evidenced in
52 humans each year, thus the measures in view of food safety have to be very strict
53 especially on food and food premises hygiene ³. Food can become contaminated at any
54 point during production and distribution, as well as in consumers' own kitchens. Therefore,
55 foodborne illness risk reduction and control interventions must be implemented at every
56 step throughout the food preparation process ⁴. Recent global developments are
57 increasingly challenging international health security according to the World Health
58 Organization (WHO). These developments include the growing industrialization and trade
59 of food production and the emergence of new or antibiotic-resistant pathogens. Micro-
60 organisms are known to survive on surfaces, for extended periods of time. Among the
61 foodborne pathogens, *Listeria monocytogenes* has the highest mortality rate in humans
62 and is one of the most environmentally resistant facultative anaerobic bacteria growing at
63 its optimal temperatures from -18 °C to 10 °C, in environments with or without oxygen with
64 propensity of forming a biofilm ⁵. Between 13 serotypes of *Listeria monocytogenes*, three
65 serotypes (1/2a, 1/2b and 4b) are the reason for the majority of human listeriosis ⁶. In our
66 previous research using pulsed-field gel electrophoresis typing of *L. monocytogenes*
67 isolates from poultry abattoir we identified the same serotype (classical 1/2a, molecular IIa)
68 with the exception of one isolate with a different serotype (4b, IVb), mainly found on the
69 surface, but some also in the air ⁷.

70 Many disinfectants were tested in the prevention of *Listeria monocytogenes* contamination,
71 however organic burdening and biofilm formation effectively inhibited disinfectants'
72 microbicidal activity ^{8,9}. Although biofilm formation is common for every environment where
73 microorganisms are close to the surface, its formation is even more problematic in the food
74 industry, where remains of foods in inaccessible places enable survival and the
75 multiplication of *Listeria*. It was speculated that specific properties of persistence of *L.*
76 *monocytogenes*, might be the reason for spreading of persistent strains of *L.*
77 *monocytogenes* across the surfaces of food-processing plants, but also by transferring
78 meat products between different plants ^{10,11}. In addition, some studies report about the
79 possibility of reduced *L. monocytogenes* susceptibility to some chemical disinfectants ¹².
80 Permanent maintenance of hygiene in food processing industry is therefore of utmost
81 importance for the continuous reduction in the number of bacteria. For this reason, regular
82 cleaning and disinfection is mandatory, but it is often performed poorly and irregularly
83 specially when parts of the meat processing equipment are inaccessible ¹³. Namely the
84 risk for food contamination arise mainly due to low hygiene of food premises and not from
85 previously contaminated animals as it was shown by Ojeniyi et al. ¹⁴, and by our own work,
86 where we were unable to confirm the transfer of *L monocytogenes* from broiler farm to the
87 abattoir, since we couldn't prove a positive case of *L monocytogenes* on broiler farms
88 among the investigated animals ⁷. One of the main reasons for spreading of the persistent
89 strains of *L. monocytogenes* might be its ability of enhanced adherence to surfaces in a
90 relatively short time ^{15,16}, therefore the continuous antibacterial function of food contact
91 surfaces should be implemented. One of such continuous disinfection methods, suitable
92 for disinfection of the air, liquids and surfaces is the use of ultraviolet light (UV), which is
93 being employed as one of the physical methods of decontamination in the food processing

94 industry ¹⁷. Short-wave ultraviolet light (UVC, 254 nm) was shown to be effective against
95 wide spectrum of bacteria, viruses, protozoa, fungi, yeasts and algae, by altering cell DNA
96 ¹⁷. However, UVC has limited applicability in food industry since it can cause sunburn, skin
97 cancer, and eye damage under direct exposure. UVC lights can also produce ozone,
98 which can be harmful to human health, and finally materials exposed to UVC light for
99 longer period age faster, especially plastics and rubber, which break down under UVC
100 exposure. On the other hand, long-wave ultraviolet light (UVA, >320 nm) as a part of a
101 sunlight, not absorbed by the atmosphere ozone layer, thus reaching the earth's ground,
102 and is not harmful to human health, can still cause some oxidative damage, however has
103 much weaker effect on microorganisms than UVC ¹⁷. Since UVA is normally present as a
104 small part of the fluorescent lighting spectrum, one could use ceiling mounted fluorescent
105 lights for permanent surface disinfection provided that the oxidative damage of UVA light
106 at a surface could be enhanced. This can be achieved by illuminating TiO₂ deposited on a
107 surface by UVA light. Namely, illuminated TiO₂ is known to produce reactive oxygen
108 species, such as hydroxyl or superoxide radicals, which can also be used for disinfection
109 of surfaces. As early as in 1977 it has been shown that TiO₂ can decompose cyanide in
110 water when illuminated with sunlight ¹⁸. If TiO₂ is irradiated with photons with energies
111 greater than material's band gap, electron-hole pairs are generated – for TiO₂ with E_g
112 around 3 eV wavelengths below approximately 415 nm are needed ¹⁹. Photo generated
113 holes are highly oxidizing whereas photo generated electrons are reducing enough to
114 produce superoxide from dioxygen ²⁰. After reacting with water, holes can produce
115 hydroxyl radicals (·OH). Photo excited electrons can become trapped and loose some of
116 their reducing power, but are still capable of reducing dioxygen to superoxide radical (·O₂⁻),
117 or to hydrogen peroxide H₂O₂. Hydroxyl radical, superoxide radical, hydrogen peroxide,
118 and molecular oxygen could all play important roles in preventing proliferation of bacteria.
119 Using TiO₂ surface coatings one should therefore be able to maintain clean surfaces with
120 the use of UV light close to visible spectrum.

121 We have shown previously that Cu²⁺-doped TiO₂ nanotubes (Cu-TiO₂NTs) coated polymer
122 surfaces reduce number of seeded bacteria by 99.94% ± 0.05% (i.e. Log₁₀ reduction = 3.5
123 ± 0.5, when innoculated with 2.4 10⁴ *Listeria innocua*) when illuminated with low power
124 UVA diodes for 24 hours at 4 °C ²¹, where the intensity of UVA light needed to observe the
125 antibacterial effect was only about 10 times more than it is usually present in common
126 fluorescent lighting. In this manuscript we present antibacterial effect observed on polymer
127 surfaces when illuminated with common fluorescent lights, which were already present on
128 a ceiling of a food processing plant. Coated surfaces innoculated with 10⁷ bacteria exhibit
129 similar antimicrobial effect as we observed previously on the TiO₂ nanotube coated petri
130 dishes, reducing the number of *Listeria innocua* up to 99 % in seven hours of exposure to
131 the fluorescent lights, compared to control surfaces.

132

133 **Materials and Methods**

134 **Materials**

135 The spin trap, 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) (Alexis,
136 Lausen) was used as purchased without further purification and stored at -80 °C. The spin-
137 trap stock solutions were always freshly prepared. Ethanol (EtOH) and methanol (MeOH)
138 from Merck AG (Darmstadt, Germany) were used in Lichrosolv® gradient grade quality.
139 Media and culture materials were obtained from Gibco – Invitrogen Corporation (Carlsbad,
140 California).

141 **Preparation of bacterial inoculum**

142 Antimicrobial properties were tested on non-pathogenic bacterium *Listeria innocua*, which
143 is closely related to pathogenic species *Listeria monocytogenes*. Suspension of *Listeria*
144 *innocua* strain, isolated during routine examination (RDK.), was supplied by the Institute of
145 Microbiology and Parasitology, Veterinary faculty, University of Ljubljana. Strain was
146 maintained frozen at -70 °C in sterile vials containing porous beads which serve as carriers
147 to support microorganisms (Microbank, pro-lab Diagnostics) and kept at -70 °C. The
148 inoculum was prepared in liquid medium and incubated aerobically for 24 h at 37 °C. After
149 incubation the culture contain approximately 10⁹ colony forming units (CFU) per milliliter.
150 Working suspensions with appropriate concentrations were achieved by several 10-fold
151 dilutions.

152 **Preparation and properties of Cu²⁺-doped TiO₂ nanotubes**

153 Cu²⁺-doped TiO₂ nanotubes (Cu-TiO₂NTs) were prepared in several steps: (i) first sodium
154 titanate nanotubes (NaTiNTs) were synthesized from anatase powder (325 mesh, ≥ 99.9%,
155 Aldrich) and 10 M NaOH (aq) (Aldrich) at T = 135 °C for 3 days under hydrothermal
156 conditions. Exact synthesis procedure is described previously ²², (ii) in the next step
157 NaTiNTs were rinsed with 0.1 M HCl(aq) yielding protonated titanate nanotubes (HTiNTs),
158 (iii) then 400 mg HTiNTs were dispersed in 100 mL of 0.5 mM solution of Cu²⁺(aq) (source
159 of the Cu²⁺ was CuSO₄·5H₂O (Riedel de Haen)) using an ultrasonic bath (30 minutes) and
160 stirred at room temperature for 3 hours. By centrifugation the solid material was separated
161 from the solution, and (iv) finally isolated material was heated in air at 375 °C for 10 hours.
162

163 The powder X-ray diffraction (XRD) pattern was obtained on a Bruker AXS D4 Endeavor
164 diffractometer using Cu K α radiation (1.5406 Å; in the 2 θ range from 10 to 65°).
165 Morphology of the particles in the sample was determined using transmission electron
166 microscope (TEM, Jeol 2100). The specimen for the TEM investigation was prepared by
167 dispersing the sample in MeOH with the help of an ultrasonic bath and depositing a droplet
168 of the dispersion on a lacey carbon-coated copper grid.

169 **Activity of TiO₂ nanotubes**

170 The photocatalytic activity of synthesized titanate and TiO₂ nanomaterials was determined
171 using electron paramagnetic resonance spectroscopy (EPR) with spin trapping, which was
172 optimized for measurement of primary radicals generated in the vicinity of the
173 nanomaterial surface. This was achieved by measuring primary hidroxyl radicals in the
174 presence of 30% ethanol with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide spin
175 trap (DEPMPO). EPR spin trapping was applied to measure the generation of reactive
176 oxygen species (ROS) production.

177 **Deposition of Cu-TiO₂NTs on PET surface and testing of the deposition stability**

178 The deposition of Cu-TiO₂NTs was made on different surfaces: 2.5 cm × 7.5 cm
179 polyethylene terephthalate (PET) slides, polystyrene petri dishes (8 cm diameter),
180 aluminum oxide slides with the same dimensions as PET slides. The surfaces were
181 washed before deposition. They were soaked in 20% NaOH solution, rinsed with distilled
182 water, and finally with ethanol vapor.

183 The suspension of the nanotubes with concentration of 1 mg/mL was processed with
184 ultrasonic liquid processor (Sonicator 4000, Misonix) prior to the deposition on the
185 surfaces. Sonication was performed using 419 Microtip™ probe, 15 min process time, 10 s
186 pulse-ON time, 10 s pulse-OFF time and maximum amplitude (resulting in 52 W of power).

187 The surfaces were treated with compressed air 3 times for 3 s. 150 µL of nanoparticle
188 suspension was applied on each surface, immediately after compressed air treatment, and
189 smeared evenly. The same number of surfaces with nanoparticle deposition and control
190 surfaces were prepared for each experiment. On control surfaces, only 150 µL of solution
191 was applied. After the deposition, the surfaces were left in the oven at 50 °C for 2 h. Then
192 they were rinsed with distilled water and put back in the oven at 50 °C for another 2 h.

193 The photocatalytic activity of the nanodeposit on the surfaces was tested using EPR
194 spectroscopy. Three measurements were performed on the surfaces, with or without the
195 nanodeposit. On each surface, small pool, proportionate to the size of the sample, was
196 made with silicon paste and was filled with 2 µL of 0,5 M DEPMPO and 18 µl of 30%
197 ethanol and irradiated with 290 nm diode for 5 min. The diode was 1–2 mm above the
198 surface of the sample. The solution with short-lived radicals being trapped in the form of
199 stable DEPMPO spin adducts was then drawn into the quartz capillary of 1 mm diameter,
200 which was put in the 5 mm wide quartz tube and transferred into EPR spectrometer. All
201 EPR measurements were performed on an X-band EPR spectrometer Bruker ELEXYS,
202 Type W3002180. All measurements were recorded at room temperature using 1 Gauss (10⁻⁴ T)
203 modulation amplitude, 100 kHz modulation frequency, 20 ms time constant, 15 x 20
204 seconds sweep time, 20 mW microwave power and 150 G sweep width with center field
205 positioned at 3320 G.

206 The amount of deposited material was estimated from EPR signal decrease when rinsing
207 the deposit of 150 µL of 1 mg/mL applied to a 2.5 × 7.5=18.8 cm² surface. With EPR signal
208 being decreased to about 1/3, we estimated that the amount of deposited nanomaterial
209 was about 2 µg/cm².

210 **Antimicrobial Activity of nanotube coated PET surface in a meat processing plant**

211 Four measurement points were selected in a poultry slaughterhouse with regards to
212 different air microclimate conditions (humidity, temperature, airflow) as well as intensity of
213 UV irradiation. PET slides were inoculated with 10⁷ bacteria in 10 µL droplet and placed
214 either vertically or horizontally at different altitudes (0.5 or 2 m) and exposed for 7 hours.
215 After exposure, the samples were washed in saline (NaCl 0.9%) and examined
216 bacteriologically to determine the number of bacteria. Survival of bacterial culture of
217 *Listeria innocua* has been measured for samples with and without germicidal Cu-TiO₂NTs
218 coating. Reduction ratio was expressed in percentage and logarithm (Log₁₀). % reduction
219 was calculated using the following equation:

220
$$\%R = (1 - N_{\text{final control}}/N_{\text{final Cu-TiO}_2\text{NTs}}) * 100,$$
 (Equation 1)

221 Where $N_{final\ control}$ is the number of bacteria after the exposure on a control surface, and $N_{final\ Cu-TiO_2NTs}$ is the number of bacteria after the exposure on a surface coated with Cu-TiO₂NTs nanotubes.

224 Log reduction was calculated using the following equation:

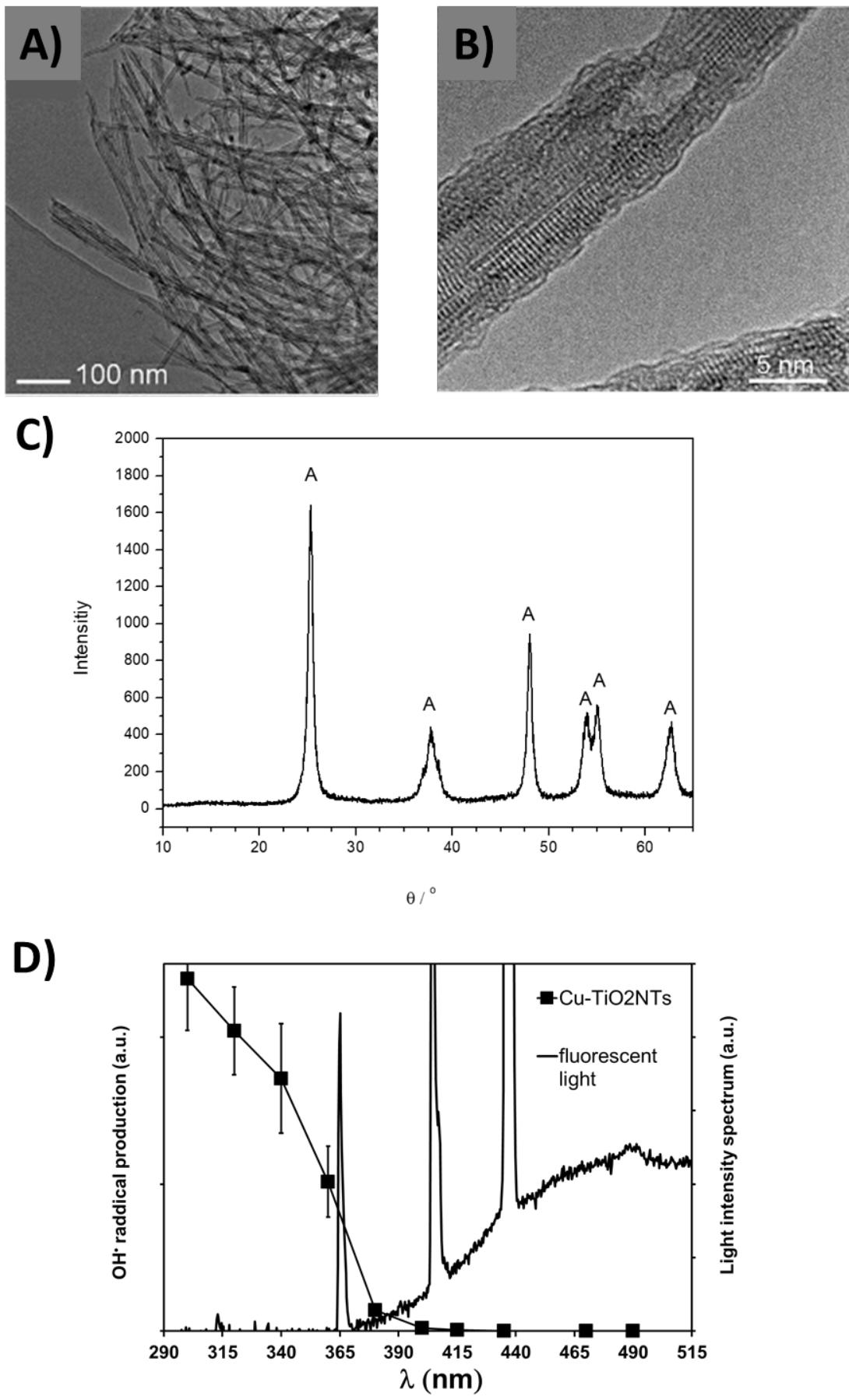
225 $LR = -\log_{10}(N_{final\ Cu-TiO_2NTs}/N_{final\ control}) = \log_{10}(N_{final\ control}) - \log_{10}(N_{final\ Cu-TiO_2NTs})$ (Equation 2)

226

227 **Antimicrobial activity in presence of repeated daily contamination and washing**

228 Effect of long term illumination was studied only on PET surfaces, by placing uncoated
229 (control) PET slides and PET slides covered by Cu-TiO₂NTs on cooled (4 °C) aluminum
230 plates in order to mimic cold and condensing conditions at the cooling walls commonly
231 present in food processing plants. Bacterial suspension (10 µl) of living microorganism
232 *Listeria innocua* in concentration of 1.5 to 5.0 x 10⁹ CFU/mL was applied daily on each
233 PET slide. The slides were then cooled to the dew point, which prevented the drying of
234 microorganism containing droplets on the slides. Slides were washed with 100 mL of
235 sterile saline solution (0.9 weight % NaCl) at different time intervals and the number of
236 surviving microorganisms was determined. The remaining PET slides were stored in the
237 dark at 4 °C until the next day when the above described process was repeated. The
238 whole experiment with daily washing and bacteria application lasted for 28 days.

239


240 **Results and Discussion**

241 **Structure and photochemical activity of copper doped TiO₂ nanotubes (Cu-TiO₂NTs)**

243 Transmission electron microscopy (TEM) images (*Figure 1 A* and *B*) show that nanotube
244 morphology is maintained after incorporation of copper ions, albeit images taken at higher
245 magnifications *Figure 1 B* reveal that nanotube walls are not as clearly defined as in
246 original sodium titanate nanotubes, described previously²³. More detailed characterization,
247 using also advanced high resolution transmission electron microscopy techniques, of the
248 copper doped TiO₂ nanotubes is reported in Koklic et al.²¹ (article submitted, please see
249 the Supporting Information for Review Only). X-ray diffractogram (XRD) of the Cu-TiO₂NTs
250 nanotubes is shown in *Figure 1 C*, where all peaks correspond to anatase TiO₂ (JCPDS
251 No. 89-4203). Elemental analysis (EDS) indicated (data not shown) that the copper
252 content is about 0.1 weight %.

253 We have previously shown that the Cu-TiO₂NTs deposited on polystyrene petri dishes
254 reduce up to $99.94\% \pm 0.05$ ($3.5 \pm 0.05 \log_{10}$ reduction, initial number of bacteria $2.5 \cdot 10^4$)
255 *Listeria innocua* in 24 hours in a refrigerator at 100% humidity, illuminated with UVA light
256 emitting diodes²¹. However, Usage of additional illumination results in additional costs
257 associated with application of such disinfection methods. On the other hand, ceiling
258 mounted fluorescent lights, which are already in use in many food processing plants,
259 contain a small portion of emitted light in UVA range. *Figure 1 D* shows the spectrum of
260 emitted light by a ceiling mounted fluorescent lamp. Three peaks in the spectrum are
261 clearly visible, with one spectral peak at 365 nm. It is this peak which is absorbed by the
262 Cu-TiO₂NTs, as it is evident from the absorption of light as a function wavelength (*Figure 1*
263 *D*, closed squares). The absorption of light versus wavelength of the light is consistent with
264 a bandgap of the TiO₂, a property of a semiconductor such as TiO₂. Matsunaga et al.
265 showed already in 1985 that *Escherichia coli* cells were completely sterilized when TiO₂
266 was irradiated with UV light.²⁴ Since then the antibacterial effect of photoexcited TiO₂ was
267 shown against a wide range of microorganisms.²⁵ Photocatalytic mechanism and related
268 photochemistry of TiO₂ is well researched^{26–29,29–33}, antibacterial action seems to depend
269 mainly on ·OH radicals, which are produced on the surface of TiO₂ when illuminated with
270 light consisting of wavelengths below TiO₂'s bandgap. Due to this semiconductor property
271 of the Cu-TiO₂NTs nanotubes the production of hydroxyl (OH·) radicals on the surface of
272 nanotubes increases with decreasing wavelength. We measured the amount of produced
273 radicals as a function of different wavelengths of light, by using a DEPMPO spin trap
274 (*Figure 1 D*, closed squares), which is commonly used for efficient trapping of the hydroxyl
275 radicals³⁴. Since the spectrum of the emitted light from a ceiling mounted common
276 fluorescent light (*Figure 1 D*, black line, the peak at 365 nm) overlaps with the spectrum of
277 the light needed for efficient photoexcitation of the nanotubes (the closed squares), we
278 expected that the nanotube coated surfaces could be excited by fluorescent lights, which
279 are already present on ceilings at food processing plants. Especially due to intense peak
280 at 365 nm, which is present in the emitted spectrum of the fluorescent light bulb and
281 represents about 1% of total light emitted by the lamp.

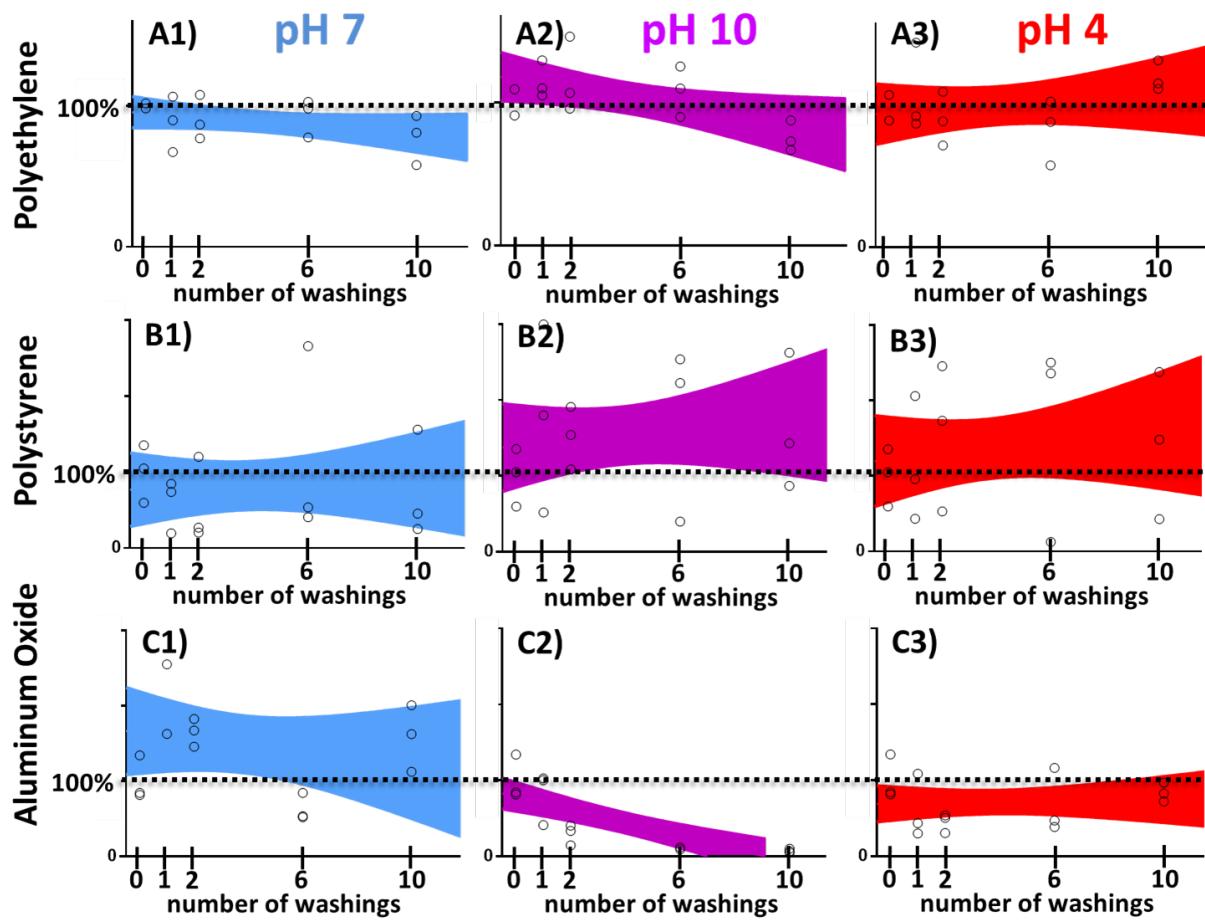
282

284 **Figure 1. Structure and photocatalytic activity of Cu²⁺-doped TiO₂ nanotubes (Cu-TiO₂NTs) excited at different wavelengths. A) and B) TEM images of the nanotubes**

285 taken at different magnifications; C) XRD of the nanotubes. Anatase peaks are marked

286 with A; D) Amount of hydroxyl radical production (closed squares) versus illumination of

287 Cu-TiO₂NTs at different wavelengths is shown against emitted light spectrum of a common


288 fluorescent light (black line).

290

291 **Deposition stability of copper doped TiO₂ nanotubes on different surfaces**

292 Next we tested the stability of the nanotubes deposited on different surfaces, which are
293 commonly used in food processing industry. The dispersion of Cu-TiO₂NTs was added to
294 the clean surface (see Materials and methods) and left to dry. No special chemical
295 modification of either nanotubes or surface was necessary. Unattached nanoparticles were
296 washed away under a stream of water and the production of hydroxyl radicals was
297 measured as described in Materials and Methods section. Since the amount of the
298 produced radicals is proportional to the amount of Cu-TiO₂NTs still remaining on the
299 surface after extensive washing, we used the measurement of the the quantity of radicals
300 produced by illuinated surfaces as a measure for the stability of the deposition. That is, if
301 the amount of produced radicals remains constant throughout the washing cycles, then the
302 Cu-TiO₂NTs nanoparticles should remain attached to the surface. We tested different
303 materials: polyethylene terephthalate (Figure 2, row A), polystirene (Figure 2, row B), and
304 Aluminum oxide (Figure 2, row C). All surfaces were repeatedly soaked at different pH
305 conditions neutral (pH7, Figure 2, first column, blue color), basic (pH10, Figure 2, second
306 column, violet color), and acidic (pH4, Figure 2, third column, red color) and extensively
307 washed under a stream of water after each soaking. The amount of material versus
308 washing step was fit with a linear curve using GraphPad Prism version 7.00 for Windows
309 (GraphPad Software, La Jolla California USA, www.graphpad.com). The area, which
310 contains a linear fit, which describes the data with 90% certainty is shown on each graph.
311 In all of the graphs, except for aluminum oxide washed at pH10, linear fit is contained
312 around 100% deposited material (horizontal dotted lines), thus indicating that Cu-TiO₂NTs
313 nanoparticles deposited to various surfaces should withstand daily washings with different
314 detergents commonly used in food processing industry. However the material will not
315 provide long term disinfection of aluminum oxide surfaces, when washed with basic
316 detergent (Figure 2, frame C2).

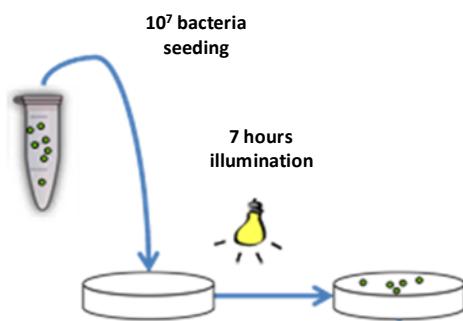
317

318

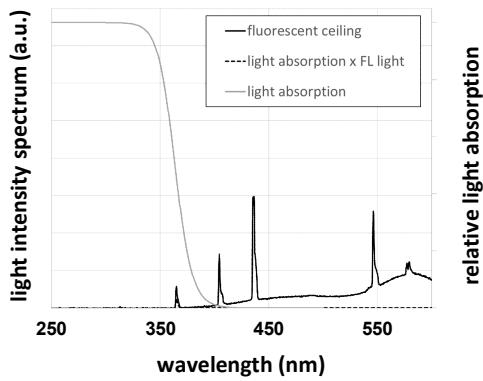
319

320 **Figure 2. Deposition stability of copper doped TiO_2 nanotube coatings on different**
321 **surfaces. Stability on the surface against washing at different pH conditions (neutral, pH7**
322 **- blue, acidic, pH4 – red, basic, pH10 – violet), without abrasion, but under extensive water**
323 **flow. Individual measurements are shown as open circles; colored areas represent 90%**
324 **confidence areas, which enclose the area that one can be 90% sure to contain the linear fit**
325 **curve.**

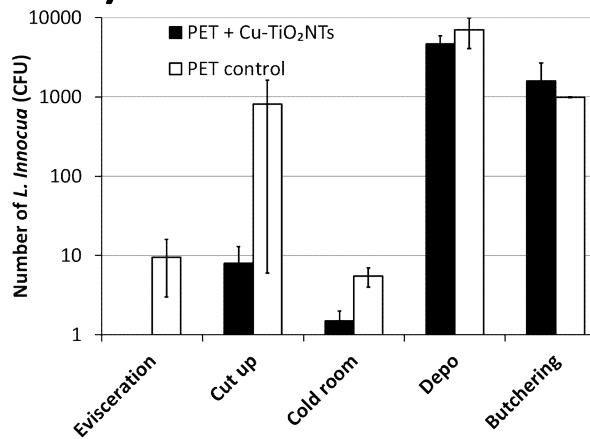
326

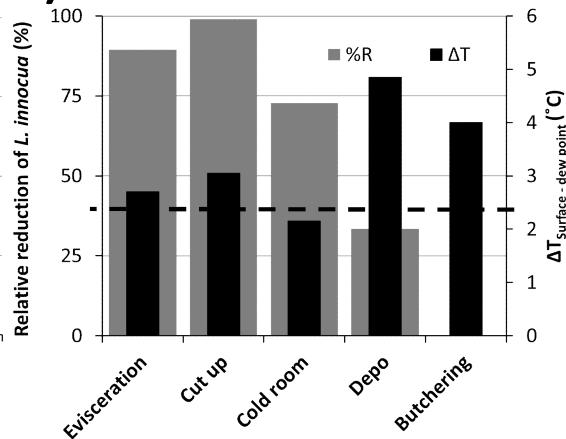

327 **Antimicrobial activity of TiO₂ nanotube coated surfaces placed in a food
328 processing plant**

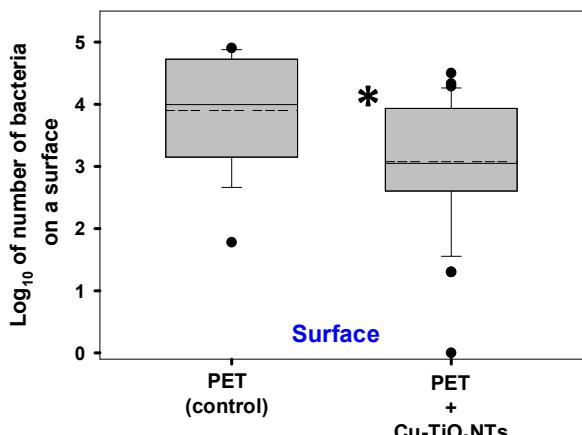
329 We exposed polyethylene terephthalate (PET) surfaces with or without Cu-TiO₂NTs
330 antibacterial coating at different locations in the food processing plant to test whether the
331 intensity of ceiling mounted fluorescent lights in a food processing plant is sufficient to
332 provide measurable antibacterial activity of surfaces coated with the nanotubes. We
333 applied 10 μ L of bacterial suspension of *Listeria innocua* on the PET surfaces (10^7
334 bacteria), as shown schematically in Figure 2 A, and placed the PET surfaces at different
335 places in the food processing plant with respect to performed tasks (evisceration, meat cut
336 up, cold room, Depo – meat storage, and butchering) for 7 hours. The air microclimate
337 conditions (UV light Intensity, humidity, and temperature) were followed and the number of
338 remaining bacteria was determined (Table in Figure 3 C). Microclimatic air conditions
339 measured at different places in the food processing plant were different with respect to
340 temperature, humidity, ambient light intensity emitted from ceiling mounted fluorescent
341 lights, and airflow (Figure S 1). We measured the highest disinfection activity in meat cut
342 up room, where the reduction of the number of *Listeria Innocua* was 99% in seven hours of
343 exposure to the fluorescent lights, compared to a control surface. The reduction of the
344 number of bacteria was high at three places: 1) Evisceration (90%), 2) Cut up (99%), and
345 3) Cold room (73%) (Figure 3 D, grey bars). The disinfection properties of the surfaces
346 depend mainly on the temperature difference of the surface and the dew point (Figure 3 D,
347 black bars), where for maximum effectiveness of the photocatalytic effect the difference
348 should be less than about 2.5 °C (Figure 3 D, black dashed line). This is not surprising,
349 since fogs of all types start forming when the air temperature and dewpoint of the air
350 become nearly identical. This occurs through cooling of the air near the cool surface to a
351 little beyond its dewpoint and the precipitation of water droplet from the air seldom forms
352 when the dewpoint spread is greater than 2.5 °C. Other microclimatic parameters (Figure
353 S 1) didn't follow the relative reduction of *L. innocua*. This results shows that photocatalytic
354 disinfection of surfaces can be made efficient in humid places of the food processing plant.
355 On the other hand, significant reduction of the number of bacteria was also found in the
356 number of remaining bacteria on nanotube coated surfaces versus uncoated control
357 surfaces (Figure 3 E) when we averaged reductions of bacteria across all the places in the
358 food processing plant. The average number of bacteria on the surfaces with the nanotube
359 coating was reduced more ($\text{Log}_{10} = 2.92$) than on the control surfaces ($\text{Log}_{10} = 3.90$),
360 which can be expressed as relative percent reduction of %R = 90%.

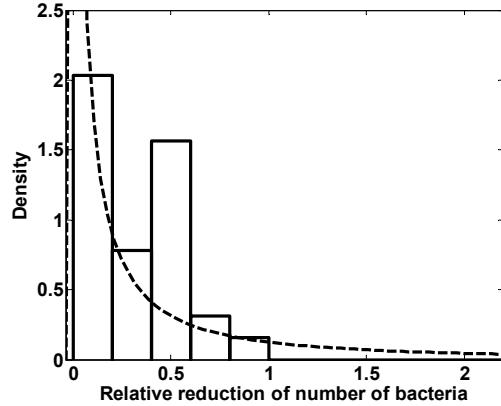

361 For further quantification of the results we calculated the ratios of bacteria from the coated
362 surfaces versus the control surfaces for all the measurements (Figure 3 D, white bars). In
363 such presentation of the results the antibacterial effect is reflected in the ratio to of less
364 than 1. The distributions of survival ratios (Figure 3 D, white bars) were clearly not normal.
365 Since biological mechanisms often induce lognormal distributions ³⁵, for example when
366 exponential growth is combined with further symmetrical variation such as initial
367 concentration of bacteria ³⁶⁻³⁹, we fit our data with a log normal distribution (Figure 3 D,
368 dashed line). The lognormal fits of the histograms fit best the survival ratios also when
369 compared to other distributions.

370


A)


B)


C)


D)

E)

F)

371

372

373 **Figure 3. Survival of *Listeria innocua* under exposure to ceiling mounted fluorescent
374 lights in a food processing plant.**

375 A) Schematic presentation of the experiment.

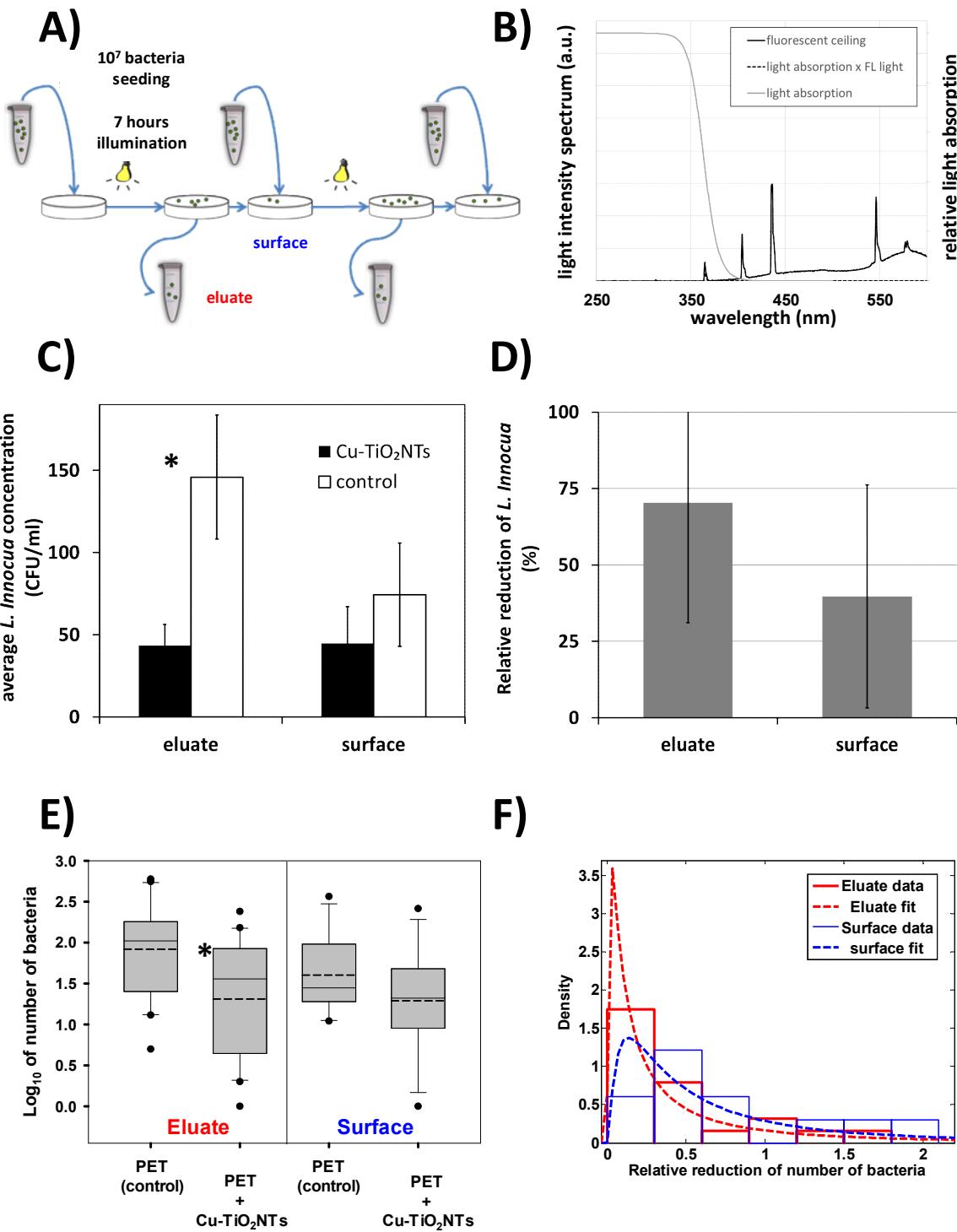
376 B) spectrum of emitted light from ceiling mounted fluorescent lights (black line); relative
377 light absorption by the Cu-TiO₂NTs (grey line); spectrum of absorbed light by the
378 nanotubes (dashed line).

379 C) Number of *Listeria innocua* shown on a logarithmic scale. On each surface 10⁷ bacteria
380 were placed and left at different places in the food processing plant for 7 hours. After this
381 time period remaining bacteria were transferred from the surfaces and colony forming units
382 (CFU) were counted. Number of CFU on control surfaces is shown with white bars (PET
383 control); Number of CFU on the nanoparticle coated surfaces is shown with black bars
384 (PET + Cu-TiO₂NTs);

385 D) Relative reduction (%R) of bacteria as a consequence of disinfecting action of
386 nanoparticle coated surface, illuminated with ceiling mounted fluorescent lights (grey bars),
387 calculated according to the equation 1 in Materials and Methods section; Black bars
388 represent the microclimatic parameter (difference between surface temperature and dew
389 point temperature – dew point spread) which correlates with the %R.

390 E) Boxplot presents log10 of number of bacteria on either control PET surface without
391 antibacterial nano coating (PET) or the number of bacteria on a PET surface coated with
392 copper doped TiO₂ nanotubes (PET+Cu-TiO₂NTs). Median value of each distribution is
393 shown with horizontal line within each box, while the dashed line marks the mean. The
394 boundary of the box closest to zero indicates 25th percentile, and the boundary farthest
395 from zero indicates the 75th percentile. Whiskers (error bars) above and below the box
396 indicate the 90th and 10th percentiles. The outliers are shown as dots. Note the LOG scale.
397 Since normality test (Shapiro-Wilk) failed ($P < 0.050$), Mann-Whitney rank sum test was
398 performed on the control group ($N=16$, median=4) and on the PET+Cu-TiO₂NTs group
399 ($N=32$, median=3.1). The difference in the median values between the two groups is
400 greater than would be expected by chance ($P = 0.003$)*.

401 F) Histogram of the distribution (probability density function - PDF) of survival ratios,
402 calculated as a ratio between the number of *Listeria innocua* from the surface with
403 antibacterial coating (PET+Cu-TiO₂NTs) and the number of *Listeria innocua* from a control
404 surface without the coating (PET). For inefficient antibacterial coating survival ratio of 1 is
405 expected. Dotted line is lognormal fit of the distribution with a maximum of the PDF below
406 0.1 for the reduction of the number of bacteria on the surface.


407

408 **Antimicrobial activity in presence of repeated daily contamination and washing**

409 Next we repeatedly inoculated and washed PET surfaces with *Listeria innocua* daily, in
410 order to mimic daily contamination in food processing industry or surfaces in a household,
411 as shown schematically in *Figure 4 A*. After application, we left the bacteria on the surface
412 for 7 hours while being exposed to low intensity light from fluorescent lamps on the ceiling
413 ($t=7$ h, $j=2.5$ W/m 2 , $A= 8$ J (total light), $A_{<380\text{nm}}= 80$ mJ). As it can be seen from the
414 measured light intensity spectrum of the fluorescent lamp (*Figure 4 B*), the intensity of light
415 with wavelengths below 380 nm (80 mJ) is only 1 percent of the total light intensity, the
416 corresponding energy of the illumination of the nanotubes, which can induce the
417 photocatalytic process of hydroxyl radical production, is therefore around 80 mJ in our
418 experimental setup.

419

420

421

422

423 **Figure 4. Survival of *Listeria innocua* under repeated daily contamination and**
424 **washing.** Reduction of number of bacteria *Listeria innocua* was measured on a
425 polyethylene terephthalate (PET) surface with antibacterial nano coating (PET+Cu-
426 TiO₂NTs) or without the coating (PET) tested in a laboratory mimicking conditions in a food
427 processing plant.

428 **A) Experimental setup scheme** - *Listeria innocua* culture was continuously applied on
429 surfaces as indicated by blue arrows pointing to a surface;

430 **B) spectrum of emitted light from ceiling mounted fluorescent lights (black line); relative**

431 light absorption by the Cu-TiO₂NTs (grey line); spectrum of absorbed light by the

432 nanotubes (dashed line).

433 **C) Number of *Listeria innocua* shown on a logarithmic scale.** On each surface 10⁷ bacteria
434 were placed on PET slides. After 7 hours of exposure to ceiling mounted fluorescent lights
435 remaining bacteria were transferred from the surfaces and colony forming units (CFU)
436 were counted. Number of CFU on control surfaces is shown with white bars (PET control);
437 Number of CFU on the nanoparticle coated surfaces is shown with black bars (PET + Cu-
438 TiO₂NTs);

439 **D) Relative reduction (%R) of bacteria as a consequence of disinfecting action of**
440 nanoparticle coated surface, illuminated with ceiling mounted fluorescent lights (grey bars),
441 calculated according to the equation 1 in Materials and Methods section.

442 **E) Number of *Listeria innocua* in eluate from either control surface without nano coating**

443 (PET) or from a surface coated with copper doped TiO₂ nanotubes (PET+Cu-TiO₂NTs)

444 presented in a boxplot, where the line in a box marks the median number of bacteria, while

445 the dashed line marks the mean. The boundary of the box closest to zero indicates 25th

446 percentile, and the boundary farthest from zero indicates the 75th percentile. Whiskers

447 (error bars) above and below the box indicate the 90th and 10th percentiles, respectively.

448 The outliers are shown as dots. Note the LOG scale. Reduction in number of bacteria in

449 eluate for 0.6 orders of magnitude was statistically significant* ($t = 3.018$, with 38 degrees

450 of freedom, two-tailed P-value = 0.00453, power of performed two-tailed test with alpha =

451 0.050 : 0.837). The reduction of bacteria on a surface was smaller than in eluate ($t = 1.338$,

452 with 20 degrees of freedom, two-tailed P-value = 0.196, power of performed two-tailed test

453 with alpha = 0.050 : 0.247).

454 **F) Histograms of the distribution (probability density function - PDF) of survival ratios in**
455 eluate (red) or on a surface (blue). Survival ratio was calculated as a ratio between the
456 number of *Listeria innocua* from the surface with antibacterial coating (PET+Cu-TiO₂NTs)
457 and the number of *Listeria innocua* from a control surface without the coating (PET). For
458 inefficient antibacterial coating survival ratio of 1 is expected. Dotted line is lognormal fit of
459 the distributions with a maximum of the PDF at 0.02 and 0.13 for the reduction of the
460 number of bacteria in eluate and on the surface, respectively.

461

462

463 Although the antimicrobial effect was not as pronounced as in the food processing plant,
464 average number of CFU eluate from the control surface was 83 ± 4 , which is significantly
465 higher than the number of CFU in the eluate from the TiO_2 nanotubes coated surface,
466 which decreased to 21 ± 1 (Figure 4 C, eluate) ($t = 3.018$, with 38 degrees of freedom,
467 two-tailed P-value = 0.00453, power of performed two-tailed test with alpha = 0.050 :
468 0.837). In the 28 days lasting experiment the average number of CFU remaining on the
469 control surface was 40 ± 3 , whereas the average number remaining on the nanotube
470 coated surface decreased to 19 ± 4 (Figure 4 C, surface). The relative reduction of the
471 number of *Listeria Innocua* in the eluate was $70\% \pm 39$ in seven hours of exposure to the
472 fluorescent lights, compared to a control surface (Figure 4 D, eluate). All the data, from
473 which averages were calculated, are shown in the supplement (Table S 1) and in the
474 Figure 4 E in a form of a box plot, from which can be easily seen that the distribution of
475 measurements is not normal (the mean and median are not overlapping). For more detailed
476 quantification of the results we therefore calculated also the ratios of bacteria from the
477 coated surfaces versus the control surfaces for all measurements (Figure 4 F). The effect
478 of the antibacterial coating on the survival of *Listeria innocua* is indicated by the ratio of
479 less than 1. The distributions of survival ratios were also not normal as for the data in
480 Figure 3 F. We again fit the histograms of the survival ratios in the eluate and on the
481 surface. The best fits of the data to the lognormal distribution indicate that the maximum of
482 the probability density function is around 0.1, thus confirming that antibacterial coating is
483 inhibiting the growth of *Listeria innocua* on TiO_2 nanotube coated surfaces.

484 To test whether a small addition of copper is solely responsible for the antibacterial
485 properties of the nanotube coated surface, the above experiments were also performed in
486 the dark (see the Supplement, Figure S 2). In the experiment in the dark the number of
487 colony forming units of *Listeria innocua* on nanotube coated as well as on control surface
488 was the same, indicating that the reduction of bacteria that we observed originates from
489 photocatalytic process of the TiO_2 nanotubes.

490

491 **Conclusion**

492 To implement advantages of germicidal disinfection with the use of ultraviolet light as well
493 as antibacterial properties of copper-containing surfaces, we used recently characterized
494 Cu²⁺-doped TiO₂ nanotubes and achieved a stable deposition on several materials,
495 including on the surface of polyethylene terephthalate (PET), as the one of the synthetic
496 polymers commonly used in food processing industry. More importantly, we showed that
497 such coating has disinfecting effect, with the number of remaining microorganisms
498 significantly decreased on the surface coated with Cu²⁺-doped TiO₂ nanotubes as well as
499 in eluate from the coated surface, when illuminated with common ceiling mounted
500 fluorescent lights. The disinfection properties of the nanotube coated surfaces depend on
501 the intensity of the light, which should include wavelengths at about 370 nm, as well as on
502 the temperature difference of the surface and the dew point, where for maximum
503 effectiveness of the photocatalytic effect the difference should be less than 2.5 °C.

504 Our results show that one dimensional nanomaterials, such as TiO₂ nanotubes, can be
505 employed for disinfection of polymer surfaces in the food industry, using cost effective
506 illumination with existing fluorescent lights or additional low power light emitting diodes.
507 Future use of such surfaces with antibacterial nano-coating and resulting sterilizing effect
508 holds promise for such materials to be used in different environments or in better control of
509 critical control points (HACCP) in food production as well as an improved biosecurity
510 during the food manufacturing process.

511

512 **Acknowledgements**

513 Special thanks to Maja Lepen for her excellent technical support in bacteriology laboratory.
514 Work was funded by Slovenian Research Agency grant >Experimental biophysics of
515 complex systems and imaging in biomedicine<, and by NAMASTE Centre of Excellence,
516 Institute for research and development of Advanced Materials and Technologies for the
517 Future.

518 **Contributions**

519 J.Š., T.K., M.D., Š.P., and I.Z. conceived the experiments. P.U., T.K., Š.P., M.D., and I.Z.
520 carried out the experiments. T.K., P.U., and Š.P. analyzed the data. J.Š., T.K., M.D., and
521 Š.P. interpreted the results. M.D. and T.K. wrote the manuscript.

522 **Competing interests**

523 The authors declare no competing financial interests.

524 **Corresponding authors**

525 Correspondence to prof. dr. Janez Štrancar and prof. dr. Martin Dobejc.

526

527 References

528 (1) Hoffmann, S.; Batz, M. B.; Morris, J. G. Annual Cost of Illness and Quality-Adjusted Life Year Losses in
529 the United States Due to 14 Foodborne Pathogens. *J. Food Prot.* **2012**, *75* (7), 1292–1302.

530 (2) Scharff, R. L. Economic Burden from Health Losses Due to Foodborne Illness in the United States. *J.*
531 *Food Prot.* **2012**, *75* (1), 9.

532 (3) Food-borne zoonotic diseases, European Food Safety Authority
533 <http://www.efsa.europa.eu/en/topics/topic/food-borne-zoonotic-diseases> (accessed Aug 1, 2017).

534 (4) Nyachuba, D. G. Foodborne Illness: Is It on the Rise? *Nutr. Rev.* **2010**, *68* (5), 257–269.

535 (5) Ramaswamy, V.; Cresence, V. M.; Rejitha, J. S.; Lekshmi, M. U.; Dharsana, K. S.; Prasad, S. P.; Vijila, H.
536 M. Listeria--Review of Epidemiology and Pathogenesis. *J. Microbiol. Immunol. Infect. Wei Mian Yu*
537 *Gan Ran Za Zhi* **2007**, *40* (1), 4–13.

538 (6) Thévenot, D.; Dernburg, A.; Vernozy-Rozand, C. An Updated Review of Listeria Monocytogenes in
539 the Pork Meat Industry and Its Products. *J. Appl. Microbiol.* **2006**, *101* (1), 7–17.

540 (7) Dobeic, M.; Golob, M.; Kušar, D.; Pate, M.; Pintarič, Š.; Zdovc, I. Tracking of Listeria Monocytogenes
541 in the Air and on Surfaces from the Broiler Farm to the Abattoir. *XVII Int. Congr. Anim. Hyg. 2015*
542 *Anim. Hyg. Welf. Livest. Prod. - First Step Food Hyg. Proc. June 7-11 2015 Košice Slovak.* **2015**, 99–
543 101.

544 (8) Best, M.; Kennedy, M. E.; Coates, F. Efficacy of a Variety of Disinfectants against Listeria Spp. *Appl.*
545 *Environ. Microbiol.* **1990**, *56* (2), 377–380.

546 (9) Kostaki, M.; Chorianopoulos, N.; Braxou, E.; Nychas, G.-J.; Giaouris, E. Differential Biofilm Formation
547 and Chemical Disinfection Resistance of Sessile Cells of Listeria Monocytogenes Strains under
548 Monospecies and Dual-Species (with *Salmonella Enterica*) Conditions. *Appl. Environ. Microbiol.* **2012**,
549 *78* (8), 2586–2595.

550 (10) Carpentier, B.; Cerf, O. Review--Persistence of Listeria Monocytogenes in Food Industry Equipment
551 and Premises. *Int. J. Food Microbiol.* **2011**, *145* (1), 1–8.

552 (11) Lundén, J. M.; Autio, T. J.; Korkeala, H. J. Transfer of Persistent Listeria Monocytogenes
553 Contamination between Food-Processing Plants Associated with a Dicing Machine. *J. Food Prot.*
554 **2002**, *65* (7), 1129–1133.

555 (12) Rakic-Martinez, M.; Drevets, D. A.; Dutta, V.; Katic, V.; Kathariou, S. Listeria Monocytogenes Strains
556 Selected on Ciprofloxacin or the Disinfectant Benzalkonium Chloride Exhibit Reduced Susceptibility
557 to Ciprofloxacin, Gentamicin, Benzalkonium Chloride, and Other Toxic Compounds. *Appl. Environ.*
558 *Microbiol.* **2011**, *77* (24), 8714–8721.

559 (13) Thévenot, D.; Delignette-Muller, M. L.; Christieans, S.; Vernozy-Rozand, C. Prevalence of Listeria
560 Monocytogenes in 13 Dried Sausage Processing Plants and Their Products. *Int. J. Food Microbiol.*
561 **2005**, *102* (1), 85–94.

562 (14) Ojeniyi, B.; Christensen, J.; Bisgaard, M. Comparative Investigations of Listeria Monocytogenes
563 Isolated from a Turkey Processing Plant, Turkey Products, and from Human Cases of Listeriosis in
564 Denmark. *Epidemiol. Infect.* **2000**, *125* (2), 303–308.

565 (15) Long, M.; Wang, J.; Zhuang, H.; Zhang, Y.; Wu, H.; Zhang, J. Performance and Mechanism of Standard
566 Nano-TiO₂ (P-25) in Photocatalytic Disinfection of Foodborne Microorganisms – *Salmonella*
567 *Typhimurium* and Listeria Monocytogenes. *Food Control* **2014**, *39*, 68–74.

568 (16) Lundén, J. M.; Miettinen, M. K.; Autio, T. J.; Korkeala, H. J. Persistent Listeria Monocytogenes Strains
569 Show Enhanced Adherence to Food Contact Surface after Short Contact Times. *J. Food Prot.* **2000**, *63*
570 (9), 1204–1207.

571 (17) Bintsis, T.; Litopoulou-Tzanetaki, E.; Robinson, R. K. Existing and Potential Applications of Ultraviolet
572 Light in the Food Industry – a Critical Review. *J. Sci. Food Agric.* **2000**, *80* (6), 637–645.

573 (18) Frank, S. N.; Bard, A. J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous
574 Solutions at Semiconductor Powders. *J. Phys. Chem.* **1977**, *81* (15), 1484–1488.

575 (19) Fujishima, A. Hydrogen Production under Sunlight with an Electrochemical Photocell. *J. Electrochem. Soc.* **1975**, 122 (11), 1487.

576 (20) Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium Dioxide Photocatalysis. *J. Photochem. Photobiol. C* **2000**, 1 (March), 1–21.

577 (21) Koklic, T.; Urbančič, I.; Zdovc, I.; Majda, G.; Umek, P.; Arsov, Z.; Šentjurc, M.; Drazic, G.; Dobeic, M.; Štrancar, J. Photocatalytic Disinfection by Highly Adsorptive TiO₂ Nanomaterial and Low Intensity UVA Excitation – How It Works. **submitted**, **submitted**.

578 (22) Umek, P.; Korošec, R. C.; Jančar, B.; Dominko, R.; Arčon, D. The Influence of the Reaction Temperature on the Morphology of Sodium Titanate 1D Nanostructures and Their Thermal Stability. *J. Nanosci. Nanotechnol.* **2007**, 7 (10), 3502–3508.

579 (23) Umek, P.; Cevc, P.; Jesih, A.; Gloter, A.; Ewels, C. P.; Arčon, D. Impact of Structure and Morphology on Gas Adsorption of Titanate-Based Nanotubes and Nanoribbons. *Chem. Mater.* **2005**, 17, 5945–5950.

580 (24) Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. *FEMS Microbiol. Lett.* **1985**, 29 (1–2), 211–214.

581 (25) Foster, H. A.; Ditta, I. B.; Varghese, S.; Steele, A. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. *Appl. Microbiol. Biotechnol.* **2011**, 90 (6), 1847–1868.

582 (26) Hashimoto, K.; Irie, H.; Fujishima, A. TiO₂ Photocatalysis: A Historical Overview and Future Prospects. *Jpn. J. Appl. Phys.* **2005**, 44 (12), 8269–8285.

583 (27) Emeline, A. V.; Ryabchuk, V. K.; Serpone, N. Dogmas and Misconceptions in Heterogeneous Photocatalysis. Some Enlightened Reflections. *J. Phys. Chem. B* **2005**, 109 (39), 18515–18521.

584 (28) Herrmann, J.-M. Fundamentals and Misconceptions in Photocatalysis. *J. Photochem. Photobiol. Chem.* **2010**, 216 (2–3), 85–93.

585 (29) Zhang, J.; Nosaka, Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO₂ of Different Crystalline Types. *J. Phys. Chem. C* **2014**, 118 (20), 10824–10832.

586 (30) Yi, J.; Bahrini, C.; Schoemaeker, C.; Fittschen, C.; Choi, W. Photocatalytic Decomposition of H₂O₂ on Different TiO₂ Surfaces Along with the Concurrent Generation of HO₂ Radicals Monitored Using Cavity Ring Down Spectroscopy. *J. Phys. Chem. C* **2012**, 116 (18), 10090–10097.

587 (31) Kakuma, Y.; Nosaka, A. Y.; Nosaka, Y. Difference in TiO₂ Photocatalytic Mechanism between Rutile and Anatase Studied by the Detection of Active Oxygen and Surface Species in Water. *Phys. Chem. Chem. Phys.* **2015**, 17 (28), 18691–18698.

588 (32) Buchalska, M.; Kobielsz, M.; Matuszek, A.; Pacia, M.; Wojtyła, S.; Macyk, W. On Oxygen Activation at Rutile- and Anatase-TiO₂. *ACS Catal.* **2015**, 5 (12), 7424–7431.

589 (33) Zhang, J.; Nosaka, Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO₂ Photocatalysts in Aqueous Suspension. *J. Phys. Chem. C* **2013**, 117 (3), 1383–1391.

590 (34) Janzen, E. G. Spin Trapping. *Acc Chem Res* **1971**, 4 (1), 31–40.

591 (35) Koch, A. L. The Logarithm in Biology 1. Mechanisms Generating the Log-Normal Distribution Exactly. *J. Theor. Biol.* **1966**, 12 (2), 276–290.

592 (36) Limpert, E.; Stahel, W. a.; Abbt, M. Log-Normal Distributions across the Sciences: Keys and Clues. *BioScience* **2001**, 51 (5), 341.

593 (37) Hirano, S.; Nordheim, E. Lognormal Distribution of Epiphytic Bacterial Populations on Leaf Surfaces. *Appl. Environ. Microbiol.* **1982**, 44 (3), 695–700.

594 (38) Doroghazi, J. R.; Buckley, D. H. Evidence from GC-TRFLP That Bacterial Communities in Soil Are Lognormally Distributed. *PLoS One* **2008**, 3 (8), e2910.

595 (39) Loper, J.; Suslow, T.; Schroth, M. Lognormal Distribution of Bacterial Populations in the Rhizosphere. *Phytopathology* **1984**, 74 (12), 1454.