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Abstract

Many genomic analyses, such as genome-wide association studies (GWAS) or genome-wide screening
for Gene-Environment (GxE) interactions have been performed to elucidate the underlying
mechanisms of human traits and diseases. When the analyzed outcome is quantitative, the overall
contribution of identified genetic variants to the outcome is often expressed as the percentage of
phenotypic variance explained. In practice, this is commonly estimated using individual genotype
data. However, using individual-level data faces practical and ethical challenges when the GWAS
results are derived in large consortia through meta-analysis of results from multiple cohorts. In this
work, we present a R package, “VarExp”, that allows for the estimation of the percentage of
phenotypic variance explained by variants of interest using summary statistics only. Our package
allows for a range of models to be evaluated, including marginal genetic effects, GXE interaction
effects, and main genetic and interaction effects jointly. Its implementation integrates all recent

methodological developments on the topic and does not need external data to be uploaded by users.

The R source code, tutorial and associated example are available at https://gitlab.pasteur.fr/statistical-

genetics/VarExp.qgit.

1 Introduction

Many genome-wide association studies (GWAS) (Welter et al., 2014) or genome-wide screenings
incorporating gene-environment (GXE) interactions (Aschard et al., 2012; McAllister et al., 2017)
have been performed to better understand underlying mechanisms of human traits and diseases. When
the analyzed outcome is continuous, a commonly-used measure to judge the overall impact of the
significant associations is the percentage of phenotypic variance explained. A standard way of

estimating this percentage is to compare the coefficients of determination between the model including
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both covariates and the significantly associated variants and/or interactions and the model with the
covariates only. This estimation requires individual genotype and phenotype data which can be
challenging in meta-analyses performed in big consortia as pooling data from multiple cohorts raises
practical and ethical issues. However, an alternative is to use only GWAS or genome-wide GxE
summary statistics to estimate the percentage of variance explained by new discoveries. Recently,
several methods (Pare et al., 2016; Shi et al., 2016) have been developed to apply this strategy to
marginal genetic effects while taking into account linkage disequilibrium (LD) between variants, and
addressing statistical issues related to finite sample size and Single Nucleotide Polymorphisms (SNP)
correlation matrices. Yet, application can remain challenging in practice, as the derivation of variance
explained requires not only summary statistics but also external information on LD from a reference
panel. More importantly, these works only focused on marginal genetic effects, while genome-wide
GXE and joint effect GWAS are now commonly performed and face the same need. Here, we address
this gap, extending the methodology to GXE screening and implementing in R package VarExp to
rapidly and easily estimate the percentage explained by variants and/or interactions of interest using

only meta-analysis summary statistics from GWAS.

2 Implementation

2.1 Percentage of variance explained by genetic and/or interaction effects

Marginal model
Consider a set of K SNPs (Gy)x=1.x.coded additively as {0,1,2} and a quantitative outcome Y. The

marginal genetic effect a; ;, of SNP G, is estimated in the marginal model:
Y=+ ag G, + ¢

Shi et al. (Shi et al., 2016) proposed a first naive estimator to derive the variance explained by genetic

effects, f; using summary statistics:
fo = at S al Jvar(Y)

where a;;T = (@101 - A kOk - A x0Ok), O denotes the standard deviation of SNP Gy, X* is the
Moore-Penrose generalized inverse of the genotype correlation matrix X. However, finite sample size
implies statistical noise in both the effect sizes and the correlation matrix estimations which can
induce bias in the estimation of f;. Shi et al. (Shi et al., 2016) derived a general formula that addresses

this issue:

fa =[N x aE;TZ*aé; —q]/((N = @) X var(Y))

where N and g denote respectively the sample size and the rank of the correlation matrix.
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Model with GXE interaction
Now consider an exposure E (either binary or quantitative). The main effect a j of the SNP k and the

interaction effect a;yr, can be estimated using a single-SNP model with an interaction term:

Y = Qo + aG.ka + aEE + aINT.ka XE+¢

We show in Supplementary file that, when re-parameterizing the effect estimates of the above model
to obtain parameters from a fully standardized model, the percentage of variance explained by
interactions effects f; or jointly by genetic and interaction effects f;,; can also be derived using

summary statistics only:

1 Tex o1
fi=amr 2 aINT/ var(Y)

fe+1=fe + i

where ajyr' = (Qn7 1010 - ANt kOO - ANT KOKOE), O and o are respectively the standard
deviation of SNP k and E. Note that in this model, f; is computed using effect sizes from the
interaction model. However, for the reasons discussed above, we define our final estimators, f;* and

fc+1, by applying the same corrections as proposed for the f;; estimator by Shi et al (see f; equation).

2.2 Estimating the genotype correlation matrix

As shown in section 2.1, the derivation requires the genotype correlation matrix. When this is not
available from the data, this correlation matrix can be estimated using genotype data of founders in the
appropriate ancestry from a reference panel such as the 1000 Genomes (Abecasis et al., 2013). In our
R package, we implemented a transparent function that derives this correlation matrix from curated
1000 Genomes Phase 3 VCF files generated as part of another project
(http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_vba/) either through a web

access (for small number of SNPs) or from local data files (for larger number of SNPs, see
Supplementary File and Supplementary Figure 2). To avoid matrix inversion issues, we also

implemented an option to remove SNPs with perfect correlation of 1 with another SNP in the matrix.

2.3 Input files

The user needs to provide two mandatory input files. The first input file contains the meta-analysis
summary statistics with several mandatory columns: the chromosome and physical position (currently
NCBI Build 37) of the variants, the tested allele and its frequency, the estimated genetic, interaction or
both effect(s). The second file gives the sample size, the mean and variance for both the studied
outcome and the exposure in each cohort included in the meta-analyses (or a subset) when considering
interaction effects. If the outcome is binary, mean and variance can be replaced by counts of exposed

individuals and sample sizes per cohort.
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2.4 Application example

In practice, application is performed in 3 main steps: 1) after loading the two mandatory input files
described in section 2.3, users call the getGenoCorMatrix() function to estimate the SNP correlation
matrix as described in section 2.2. 2) parameters (mean and variance) of both the outcome and the
exposure in  the pooled sample are then computed using the  functions
calculateParamsFromindParams() or calculateParamsFromCounts(), respectively. 3) finally, the
calculateVarExp() function estimates the percentage of phenotypic variance explained by main genetic
effects and/or interaction effects. To illustrate the performances of our package, we performed a
simulation study (see Supplementary File for details of the framework) comparing the adjusted
coefficients of determination from regressions and the estimates obtained using VarExp across 1,000
replicates. Figure 1 and Supplementary Figure 1 demonstrate the high accuracy of our estimator with
an intraclass correlation coefficient between the coefficients of determination and their estimations
equal to 0.99, 0.98 and 0.99 for the marginal genetic effects, interaction effects and joint effects

respectively.

3 Concluding remarks

In this work, we provide a simple pipeline to estimate the percentage of phenotypic variance explained
by genetic effects, GXE interaction effects or their joint contribution using summary statistics only.
Our approach makes this estimation straightforward in large-scale consortia where pooling individual

genotype data can be extremely challenging. The approach is implemented in the R package VarExp.
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Figure 1. Summary statistics based estimations of the percentage of phenotypic variance
explained by (a) main genetic (b) interaction and (c) joint effects, against regression coefficients
of determination derived in individual-level data. The red line corresponds toy = x and ICC is

the intraclass correlation coefficient between the two series.
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