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Abstract 

Many genomic analyses, such as genome-wide association studies (GWAS) or genome-wide screening 

for Gene-Environment (GxE) interactions have been performed to elucidate the underlying 

mechanisms of human traits and diseases. When the analyzed outcome is quantitative, the overall 

contribution of identified genetic variants to the outcome is often expressed as the percentage of 

phenotypic variance explained. In practice, this is commonly estimated using individual genotype 

data. However, using individual-level data faces practical and ethical challenges when the GWAS 

results are derived in large consortia through meta-analysis of results from multiple cohorts. In this 

work, we present a R package, “VarExp”, that allows for the estimation of the percentage of 

phenotypic variance explained by variants of interest using summary statistics only. Our package 

allows for a range of models to be evaluated, including marginal genetic effects, GxE interaction 

effects, and main genetic and interaction effects jointly. Its implementation integrates all recent 

methodological developments on the topic and does not need external data to be uploaded by users. 

The R source code, tutorial and associated example are available at https://gitlab.pasteur.fr/statistical-

genetics/VarExp.git. 

1 Introduction 

Many genome-wide association studies (GWAS) (Welter et al., 2014) or genome-wide screenings 

incorporating gene-environment (GxE) interactions (Aschard et al., 2012; McAllister et al., 2017) 

have been performed to better understand underlying mechanisms of human traits and diseases. When 

the analyzed outcome is continuous, a commonly-used measure to judge the overall impact of the 

significant associations is the percentage of phenotypic variance explained. A standard way of 

estimating this percentage is to compare the coefficients of determination between the model including 
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both covariates and the significantly associated variants and/or interactions and the model with the 

covariates only. This estimation requires individual genotype and phenotype data which can be 

challenging in meta-analyses performed in big consortia as pooling data from multiple cohorts raises 

practical and ethical issues. However, an alternative is to use only GWAS or genome-wide GxE 

summary statistics to estimate the percentage of variance explained by new discoveries. Recently, 

several methods (Pare et al., 2016; Shi et al., 2016) have been developed to apply this strategy to 

marginal genetic effects while taking into account linkage disequilibrium (LD) between variants, and 

addressing statistical issues related to finite sample size and Single Nucleotide Polymorphisms (SNP) 

correlation matrices. Yet, application can remain challenging in practice, as the derivation of variance 

explained requires not only summary statistics but also external information on LD from a reference 

panel. More importantly, these works only focused on marginal genetic effects, while genome-wide 

GxE and joint effect GWAS are now commonly performed and face the same need. Here, we address 

this gap, extending the methodology to GxE screening and implementing in R package VarExp to 

rapidly and easily estimate the percentage explained by variants and/or interactions of interest using 

only meta-analysis summary statistics from GWAS. 

2 Implementation 

2.1 Percentage of variance explained by genetic and/or interaction effects 

Marginal model 

Consider a set of   SNPs (  )     ,coded additively as {0,1,2} and a quantitative outcome Y. The 

marginal genetic effect      of SNP    is estimated in the marginal model: 

              

Shi et al. (Shi et al., 2016)  proposed a first naïve estimator to derive the variance explained by genetic 

effects,    using  summary statistics: 

     
  

    
    ( )⁄  

where   
  

 (                     ),    denotes the standard deviation of SNP   ,    is the 

Moore-Penrose generalized inverse of the genotype correlation matrix  . However, finite sample size 

implies statistical noise in both the effect sizes and the correlation matrix estimations which can 

induce bias in the estimation of   . Shi et al. (Shi et al., 2016) derived a general formula that addresses 

this issue: 

  
  [    

  
    

   ] ((   )     ( ))⁄  

where   and   denote respectively the sample size and the rank of the correlation matrix.  
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Model with GxE interaction 

Now consider an exposure E (either binary or quantitative). The main effect      of the SNP k and the 

interaction effect        can be estimated using a single-SNP model with an interaction term: 

                             

 

We show in Supplementary file that, when re-parameterizing the effect estimates of the above model 

to obtain parameters from a fully standardized model, the percentage of variance explained by 

interactions effects     or jointly by genetic and interaction effects      can also be derived using 

summary statistics only: 

       
  

      
    ( )⁄  

           

where     
  

 (                                 ),    and    are respectively the standard 

deviation of SNP k and E. Note that in this model,    is computed using effect sizes from the 

interaction model. However, for the reasons discussed above, we define our final estimators,   
  and 

    
 , by applying the same corrections as proposed for the    estimator by Shi et al (see   

  equation). 

2.2 Estimating the genotype correlation matrix 

As shown in section 2.1, the derivation requires the genotype correlation matrix. When this is not 

available from the data, this correlation matrix can be estimated using genotype data of founders in the 

appropriate ancestry from a reference panel such as the 1000 Genomes (Abecasis et al., 2013). In our 

R package, we implemented a transparent function that derives this correlation matrix from curated 

1000 Genomes Phase 3 VCF files generated as part of another project 

(http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/) either through a web 

access (for small number of SNPs) or from local data files (for larger number of SNPs, see 

Supplementary File and Supplementary Figure 2). To avoid matrix inversion issues, we also 

implemented an option to remove SNPs with perfect correlation of 1 with another SNP in the matrix. 

2.3 Input files 

The user needs to provide two mandatory input files. The first input file contains the meta-analysis 

summary statistics with several mandatory columns: the chromosome and physical position (currently 

NCBI Build 37) of the variants, the tested allele and its frequency, the estimated genetic, interaction or 

both effect(s). The second file gives the sample size, the mean and variance for both the studied 

outcome and the exposure in each cohort included in the meta-analyses (or a subset) when considering 

interaction effects. If the outcome is binary, mean and variance can be replaced by counts of exposed 

individuals and sample sizes per cohort. 
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2.4 Application example 

In practice, application is performed in 3 main steps: 1) after loading the two mandatory input files 

described in section 2.3, users call the getGenoCorMatrix() function to estimate the SNP correlation 

matrix as described in section 2.2. 2) parameters (mean and variance) of both the outcome and the 

exposure in the pooled sample are then computed using the functions 

calculateParamsFromIndParams() or calculateParamsFromCounts(), respectively. 3) finally, the 

calculateVarExp() function estimates the percentage of phenotypic variance explained by main genetic 

effects and/or interaction effects. To illustrate the performances of our package, we performed a 

simulation study (see Supplementary File for details of the framework) comparing the adjusted 

coefficients of determination from regressions and the estimates obtained using VarExp across 1,000 

replicates. Figure 1 and Supplementary Figure 1 demonstrate the high accuracy of our estimator with 

an intraclass correlation coefficient between the coefficients of determination and their estimations 

equal to 0.99, 0.98 and 0.99 for the marginal genetic effects, interaction effects and joint effects 

respectively. 

3 Concluding remarks 

In this work, we provide a simple pipeline to estimate the percentage of phenotypic variance explained 

by genetic effects, GxE interaction effects or their joint contribution using summary statistics only. 

Our approach makes this estimation straightforward in large-scale consortia where pooling individual 

genotype data can be extremely challenging. The approach is implemented in the R package VarExp. 
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Figures 
 

 

Figure 1. Summary statistics based estimations of the percentage of phenotypic variance 

explained by (a) main genetic (b) interaction and (c) joint effects, against regression coefficients 

of determination derived in individual-level data. The red line corresponds to y = x and ICC is 

the intraclass correlation coefficient between the two series. 
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