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Abstract

Observational epidemiological studies are prone to confounding, measurement error,
and reverse causation, undermining their ability to generate reliable causal estimates of the
effect of risk factors to inform cancer prevention and trestment strategies. Mendelian
randomization (MR) is an analytical approach that uses genetic variants to proxy potentially
modifiable exposures (e.g. environmental factors, biological traits, and druggable pathways)
to permit robust causal inference of the effects of these exposures on diseases and their
outcomes. MR has seen widespread adoption within population health research in cardio-
metabolic disease, but also holds much promise for identifying possible interventions (e.g.,
dietary, behavioural, or pharmacological) for cancer prevention and treatment. However,
some methodological and conceptual challenges in the implementation of MR are particularly
pertinent when applying this method to cancer aetiology and prognosis, including reverse
causation arising from disease latency and selection bias in studies of cancer progression.
These issues must be carefully considered to ensure appropriate design, anaysis, and
interpretation of such studies.

In this review, we provide an overview of the key principles and assumptions of MR
focusing on applications of this method to the study of cancer aetiology and prognosis. We
summarize recent studies in the cancer literature that have adopted a MR framework to
highlight strengths of this approach compared to conventional epidemiological studies.
Lastly, limitations of MR and recent methodological developments to address them are
discussed, along with the translational opportunities they present to inform public health and

clinical interventionsin cancer.
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I ntroduction

Obtaining reliable evidence of causal relationships from observational
epidemiological studies remains a pervasive challenge %, While observational studies have
made fundamental contributions to understanding the primary environmental causes of
various cancers (e.g., smoking and lung cancer, hepatitis B and liver cancer, asbestos and
mesothelioma) “®, recent decades have seen numerous instances of apparently robust
observational associations being subsequently contradicted by large chemoprevention trials ®
18 Notable translational failures include the i neffectiveness of beta-carotene supplementation
to prevent lung cancer among smokersin the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention Study and vitamin E supplementation to prevent prostate cancer in the Selenium
and Vitamin E Cancer Prevention Trial. Contrary to expectations from observational data,
findings from both trials suggested that supplementation may increase rather than reduce the
incidence of cancer %%,

Part of the difficulty in translating observational findings into effective cancer
prevention and treatment strategies lies in the susceptibility of conventional observational
designsto various biases, such as residua confounding (due to unmeasured or imprecisely
measured confounders) and reverse causation *#*°. These biases frequently persist despite
energetic statistical and methodological efforts to address them ?>%%, making it difficult for
observational studiesto reliably conclude that arisk factor is causal, and thus a potentially
effective intervention target. Thisissue is likely further compounded by the modern
epidemiological pursuit of risk factors that confer increasingly modest effects on disease risk,
which can contribute to a ubiquity of spurious findingsin the literature 2.

Despite these challenges, observational studies remain crucial for informing cancer
prevention and treatment policy given issues in translating basic science to human

populations and because intervention trials are expensive, time-consuming, and often
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unfeasible in a primary prevention setting. The development of novel analytical tools that can
help address some of the limitations of conventional observational studies therefore remains
an important field of research. One such approach known as Mendelian randomization (MR)
which uses genetic variants to proxy potentially modifiable exposures has seen increased
adoption within population health research and offers much promise to generate amore

reliable evidence-base for cancer prevention and treatment.

What is M endelian randomization?

MR uses germline genetic variants as instruments (i.e., proxies) for exposures (e.g.,
environmental factors, biological traits, or druggable pathways) to examine the causal effects of
these exposures on health outcomes (e.g., disease incidence or progression) *. The use of
genetic variants as proxies exploits their random allocation at conception (Mendel’s first law
of inheritance) and the independent assortment of parental variants at meiosis (Mendel’s
second law of inheritance). These natural randomization processes mean that, at a population
level, genetic variants that are associated with levels of a specific modifiable exposure will
generally be independent of other traits and behavioural or lifestyle factors, although severa
caveats exist (see Table 1). Analyses using genetic variants as instruments to examine
associations with outcomes have a number of advantages: i) effect estimates should be less
prone to the confounding that typically distorts conventional observational associations ¥, ii)
because germline genetic variants are fixed at conception, they cannot be modified by
subsequent factors, thus overcoming possible issues of reverse causation, and iii)
measurement error in genetic studies is often low as modern genotyping technol ogies provide
relatively precise measurement of genetic variants, unlike the substantial (and at times

differential) exposure measurement error which can accompany observational studies (e.g.,

due to self-report).
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Comparison of Mendelian randomization to Randomized Controlled Trials

Due to the random allocation of alleles at conception it can be useful to compare the
structure of a MR analysis to the design of arandomized trial, where individuals are
randomly allocated at baseline to an intervention or control group (Figure 1). Groups defined
by genotype should be comparablein all respects (e.g., approximately equal distribution of
potential confounding factors) except for the exposure of interest. It follows that any
observed differences in outcomes between these genotypic groups can be attributed to
differencesin long-term exposure to the trait of interest. This latter point is an important
distinction when interpreting results from aMR analysis as compared to a randomized
controlled trial: MR will generally estimate the effect of life-long “allocation” to an exposure
on an outcome, unless an exposure typically occurs only from a certain age - e.g., alcohol
consumption and smoking - and the genetic proxy affects metabolism of that exposure *. If
the effect of this exposure on an outcome is cumulative over time, aMR analysis may
generate alarger effect estimate than that which would be obtained from a randomized trial
examining an intervention over alimited duration of time. Additionally, if the effect of an
exposure on an outcome operates primarily or exclusively over acritical or sensitive period
of thelife course (e.g., early childhood), aMR analysis should be able to “ capture” a causal
effect of this exposure but will not be able to distinguish such period effects. In contrast, a
randomized trial will have the flexibility to test certain interventions over restricted periods of
follow-up and in individuals who may be within narrow age ranges. These distinctions are
discussed in more detail in “ Cancer Latency and Reverse Causation — benefits of MR”.

More formally, MR is aform of instrumental variable (V) analysis that relies on
three key assumptions: the IV (here, one or more genetic variants) should (i) be reliably

associated with the exposure of interest; (ii) not be associated with any confounding factor(s)
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that would otherwise distort the association between the exposure and outcome; and (iii)
should not be independently associated with the outcome, except through the exposure of
interest (known as the “exclusion restriction criterion”) (Figure 2a). If all assumptions are
met, MR can provide an unbiased causal estimate of the effect of an exposure on disease or a
health-related outcome. Violation of one or more of these assumptions means that
instruments are invalid and, consequently, that findings from such an analysis may yield a

biased effect estimate.

Previous success of Mendelian randomization approaches and potential for cancer
research

Over the past decade, MR has been increasingly adopted as an analytical approach within
population health research, particularly the fields of metabolic and cardiovascular disease (CVD),
where there are several notable examples of important causal inferences. For example, MR has
suggested a likely causal role of statins on type 2 diabetes (T2D) risk *%; likely non-causal roles
of circulating levels of high-density lipoprotein cholesterol (HDL-C) in CVD ¥ and C-reactive
protein (CRP) in T2D *; pointed to the efficacy of proprotein convertase subtilisin/kexin type 2
(PCSK9) inhibitors for CHD prevention prior to the publication of confirmatory long-term trial
results *%°; and prioritized further examination of apolipoprotein B “**, lipoprotein(a) “* and
interleukin-6 ** and de-prioritized fibrinogen ** and secretory phospholipase A(2)-I1A * as
intervention targets for CVD. Although this approach has scope to test the causal effects of an
increasing number of exposures relevant to cancer through the continued growth in large-
scale GWAS output (Box 1), to date there remains a noticeable gap in the MR literature with
regard to cancer compared to other outcomes (Box 2).

Here, we provide an overview of some recent studies that have applied MR to cancer

outcomes, highlighting both the potential strengths compared to conventional


https://doi.org/10.1101/223966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/223966; this version posted November 28, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

epidemiological studies and the unique challenges of performing MR studies in cancer.
Recent methodological extensions to the original MR paradigm are presented, with emphasis
on the translational opportunities that they may offer to inform drug target validation and

public health strategies to reduce the burden of cancer.

Box 1: Instrumentable exposur es

Types of cancer-relevant exposures with robust genetic associations, which therefore could be
instrumented in aMR context include: i) behavioural and lifestyle exposures (e.g., acohol
consumption, nutrient biomarkers, milk and caffeine consumption, lifecourse sun exposure); ii)
endogenous biomarkers (e.g., fatty acids, glycaemic traits, insulin, interleukin-6, insulin-like
growth factor, CRP, sex-steroid hormones, vitamin D, adiponectin); iii) drug targets (e.g., 3-
hydroxy-3-methylglytaryl-CoA reductase (HM GCR), prostaglandin endoperoxidase synthase 2
(PTGS2), proprotein convertase subtilisin/kexin type 9 (PCSK9)); iv) site-specific DNA
methylation markers; v) small metabolites (e.g., amino acids, lipids, lipoproteins, steroids); and vi)

early life factors (e.g., birthweight, childhood obesity, and age at puberty onset).
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Box 2: Existing publications applying M endelian randomization within a cancer context

The number of MR studies published annually has increased rapidly since the early 2000s,
reaching approximately 226 publications in 2016 aone. However, the proportion of these studies
examining the causal effects of one or more traits on cancer incidence or progression has remained

modest (see Figure below).
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Using results from PubMed, the figure above represents the proportion of all published MR
studies per year that assessed cancer incidence or progression as an outcome. Blue bars represent
the number of all MR cancer studies (all MR studies=blue bars + orange bars) published from
2003-2016. PubMed search drategy for all MR studies: (mendelian randomization analysigMeSH
Terms]) OR "mendelian randomization” OR "mendelian randomisation™; PubMed search strategy
for MR cancer studies: (((cancer) OR neoplasms/MeSH Terms])) AND (((mendelian
randomization analysigMeSH Terms]) OR "mendelian randomization") OR "mendelian

randomisation™)

Considerationsfor MR in cancer

Both the principal strengths of MR and important limitations of this method have

26-32,46-50

been discussed in detail previously . The latter are presented in Table 1 with some

methodological and statistical approaches that have been developed to address them outlined
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in Box 3 and Box 4. Some considerations which are specific to investigating causality in the

setting of cancer are outlined below.

Cancer Latency and Reverse Causation — benefits of MR

Given long latency periods for many cancers, spurious findings resulting from reverse
causation (when the direction of cause-and-effect relationship is contrary to the presumed
direction) are an important concern in cancer epidemiology. Reverse causation has been

>33 or paradoxical findings >* in the cancer

suspected in several instances of ambiguous
literature. For example, early studies documenting an association between higher circulating
cholesterol and lower cancer incidence were variably interpreted as plausible evidence of a
protective effect of raised cholesterol on cancer risk or as latent cancer leading to a reduction
in cholesterol levels *>’. With the introduction and widespread usage of LDL-C lowering
medi cations for the prevention and treatment of CVD, concern arose that such measures
could thus be increasing cancer rates **°.

In an early proposal of the use of genetics as atool to circumvent issues of reverse
causation in observational data, Katan et al. ®° suggested examining the association of genetic
variantsin the APOE locus, determinants of circulating cholesterol levels, with cancer risk.
As germline genotype at APOE was fixed at conception, it was argued that it would not be
influenced by subsequent cancer development and could therefore be used to establish
whether cholesterol had a causal effect on cancer incidence (Figure 3a). Subsequent MR
analyses testing the effect of lifelong elevated cholesterol through genetic variation in APOE,
NPC1L1, PCSK9, and ABCG8 have reported null associations with overall cancer risk ®.
These findings alongside secondary analyses of statin trials showing no effect on cancer rates

% suggest that — a potential explanatory role of confounding aside - early observational

findings supporting a protective effect of cholesterol on cancer risk likely reflected
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undiagnosed cancer or early carcinogenic processes causing areduction in cholesterol levels

in pre-diagnostic samples.

L ong-term exposure— benefits of MR

The advantages of exploiting the fixed nature of germline genotype extends beyond
addressing reverse causation in observational studies. Large cancer prevention trials are often
constrained to examining interventions over alimited duration in time and over a particular
period in the life-course (e.g., middle and/or |ate adulthood) ®. Given the length of time
required for solid tumor development %, randomized trials will often not allow sufficient
follow-up for the effect of an intervention to be detected. In turn, long-term chemoprevention
trials that are conducted may suffer from issues of non-compliance in the intervention arm,
contamination in the control arm, and attrition during follow-up.

Further, the optimal timing of an exposure to prevent cancer may be early in the life-
course and therefore may not be adequately addressed in randomized trials . For example, it
has been proposed that certain carcinogenic agents or processes may confer an effect, or a
particularly pronounced effect, only over ‘critical periods’ of early life or adolescence (e.g.,
the influence of inadequate childhood nutrient intake on adult cancer risk or the pubertal
period as awindow of breast cancer susceptibility) °® 2. Interrogating the long-term effect on
cancer of agiven intervention in aprevention trial among children or adolescents would be
unfeasible.

Examining the effect of genetic variants allocated at conception can therefore offer an
important first step in identifying risk factors that may be sensitive to duration or timing of an
exposure over the life course. Inferences made from promising MR findings to plausible
intervention effects in a subsequent randomized trial would then need to carefully consider

the possibility that effect estimates obtained in aMR analysis could be sensitive to critical

10


https://doi.org/10.1101/223966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/223966; this version posted November 28, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

period effects (in which case intervening on an exposure outside of this period may not alter
disease risk) or represent the cumulative effect of lifelong exposure to a biomarker (in which
case arelatively short-term trial may generate a smaller effect estimate than that obtained
from MR). Adopting a “triangulation” framework where evidence from different
epidemiological approaches with non-overlapping sources of bias are integrated can then be
used to further examine durations of intervention necessary to confer an effect or ‘pinpoint’
possible critical or sensitive windows of susceptibility to carcinogenic agents . For example,
multivariable regression analyses examining the association of an exposure, with some
evidence of causality from MR studies, over different lengths of follow-up may help to
identify the duration of exposure required to confer an effect. In contrast, a negative control
study with repeat measures of an exposure both within and outside of hypothesized critical or
sengitive periods (e.g., dietary fat intake before, during, and after pubertal development), in
relation to subsequent disease risk (e.g., breast cancer)™ can help refine periods of increased

vulnerability to cancer-causing exposures.

Cancer Latency and Reverse Causation —limitations of MR

Genetic variants known to directly affect an exposure will in some cases be well-
characterized (e.g., variants in the APOE locus), and it will be established whether or not the
variant-exposure associations are influenced by the outcome of interest. The biological
understanding of other variants associated with risk factors that are identified in GWAS,
however, is often more limited. In some situations in which genetic variants are associated
with both a proposed exposure and outcome of interest, the association between genetic
variant and outcome might be viathe exposure (i.e., avalid IV analysis) but it is also possible

that, under certain circumstances, there may be a primary effect of the genetic variant on the
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outcome which in turn causes a change in the exposure. This can potentially bias MR
estimates in both one-sample and two-sampl e analyses.

This situation has been illustrated previously in the context of body massindex (BMI)
and C-reactive protein (CRP) where an erroneous causal effect can be generated if a genetic
variant that primarily influences BMI, which in turn influences CRP levels because BMI has
acausal effect on CRP, is mistaken as being a variant with a primary influence on CRP
(Figure 3b). % Use of such avariant as an instrument for CRP in aMR analysis of the effect
of CRP on BMI would then lead to biased resullts.

This introduction of reverse causation into aMR analysis may be problematic for
common cancers with long latency periods between tumour initiation and diagnosis (e.g.,
breast and prostate) . Reverse causation in this context could be mitigated by obtaining
gene-exposure estimates in a healthy population where the prevalence of undiagnosed, latent
cancer is likely to be low. These estimates could then be used to generate |V estimatesin a
two-sample MR framework. Additionally, steps could be taken to construct a GRS solely
consisting of instruments that plausibly act directly on atrait. For example, in constructing an
instrument for CRP levels, this could include solely using variants within the CRP gene itself
as these variants are more likely to be exclusively associated with CRP levels than variantsin
other genes . However, it should be noted that a trade-off of using few, biologically-
informed SNPs as an instrument is that sensitivity analyses examining horizontal pleiotropy
(e.g., MR-Egger, median-based methods, mode-based methods) — when feasible to perform
(i.e., a minimum, the availability of three or more SNPs) —will have limited statistical power

to detect a causal effect.

12
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Selection bias in cancer progression analyses

A particular concern in cancer epidemiology is that exposures that influence cancer
incidence may not influence cancer progression or survival. For example, although smoking
isarobust risk factor for breast cancer incidence, smoking cessation upon development of
breast cancer seems to have little effect on subsequent survival ”’. There has been some
suggestion that folate may play adual role in prostate and colorectal carcinogenesis:
protective against DNA damage prior to the development of neoplasia, but promoting tumour
progression via enhanced tumour proliferation and tissue invasion once cancer has devel oped
78,79.

Some MR studies have begun to examine the effect of risk factors on both cancer
incidence and progression ®. In arecent analysis examining the effect of alcohol
consumption on prostate cancer risk in 46,919 men in the PRACTICAL consortium, alcohol
consumption (instrumented by 68 SNPs in alcohol-metabolizing genes) was reported not to
be associated with overall prostate cancer risk but to confer an increased risk of prostate
cancer mortality among men with low-grade disease ®. Such MR studies exploit the fact that
GWAS are being increasingly used to identify genetic variants associated with cancer
progression or survival ¥, While these studies have to date generally uncovered few
genome-wide significant loci, GWAS association estimates can still be useful for identifying
causal risk factors for progression (particularly with use of atwo-sample MR framework).

However, there are important methodological considerations in investigating factors
causing cancer progression. This is because prognostic studies can suffer from selection bias
due to the fact that any factors that cause disease incidence (or diagnosis) will tend to be
correlated with each other in a sample of only cases, even when they are not correlated in the
source population. Thus if at least one factor causes both incidence and disease survival

(hypothetically, insulin resistance in Figur e 4), all the other factors which cause disease
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incidence (hypothetically, smoking in Figure 4) will appear to be associated with survival,
unless the true prognostic factor is conditioned upon. Thus, the estimated effect on
progression for any factor that is associated with incidence is likely to be biased. However,
any factor that is not associated with incidence will not suffer from selection bias by studying
only casesin aMR analysis. For example, given evidence for a causal effect of BMI on
breast cancer incidence ®, in their MR analysis of BM| on breast cancer survival Guo et al.
had to consider the possibility that evidence of an effect of BMI on breast cancer survival
could reflect confounding with one or more other causes of breast cancer incidence that
became conditionally associated with BM | upon restricting analyses to breast cancer cases ®.
When conducting prognostic studies, care should be taken to examine and (where
possible) overcome the selection bias due to studying only cases ®. First, the observed data
could also be used to help identify plausible directed acyclic graphs (DAGSs) including both
disease incidence and progression. For example, if a genetic score for a phenotype, and an
environmental variable, are correlated in cases, but not in the source population this would
suggest that both factors influence disease incidence, diagnosis, or self-selection into the
study. However, lack of evidence for such correlations does not imply that thereis no
selection bias, and expert or external knowledge should be used in constructing the DAG, as
isusual practice. The DAG can then be used to help inform sensitivity analyses. Additional
data on factors that predict incidence could be combined with observed datain cases, to
minimise selection bias, either by conditioning or by inverse probability weighting (IPW). If
more than one DAG are considered plausible a priori, then they can be used to conduct
sengitivity analyses, by examining how robust the conclusions are to the causal assumptions
made. The DAG can also be used to identify which assumptions are being made that are
untestable given the observed data, and then sensitivity analyses can be conducted by

examining plausible values for those relationships.
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[lustrative examples
To illugtrate the use of MR in analyses examining cancer outcomes, we have outlined
three studies that have employed this approach to understand the causal role of various exposures

on cancer incidence.

Selenium and incidence of prostate cancer

Prospective studies reporting inverse associations of dietary, blood, and toenail
selenium with risk of prostate cancer %, along with findings from in vitro studies %%, led
to development of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) .
SELECT was a2 x 2 factorial trial of 35,533 healthy middle-aged men that examined the
effect of daily supplementation with selenium, vitamin E, or both agents combined, as an
intervention for prostate cancer prevention. The trial was stopped after 5.5 of a planned 12
years follow-up due to alack of efficacy compounded by possible carcinogenic (increased
rates of high-grade prostate cancer) and adverse metabolic (weak increased rates of T2D)
effectsin the selenium supplementation group **°. It is plausible that residual confounding
may have accounted for conflicting results between prospective studies and SELECT %

To test whether a MR approach could have predicted the results of SELECT, atwo-
sample MR analysis (Box 3) was performed using summary data on 72,729 individuals of
European descent from the PRACTICAL consortium *%. Eleven SNPs robustly associated
with blood selenium in a meta-analysis of previously published GWAS *®1% (P < 5x 10®)
were combined into a GRS (Box 4) to proxy circulating levels of selenium (Figure 1). To
alow for direct comparison of effect estimates with SELECT, the authors investigated the

causal odds ratio (OR) per 114 ug/L genetically-elevated circulating selenium, scaled to

15


https://doi.org/10.1101/223966
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/223966; this version posted November 28, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

match the measured differences in blood selenium between supplementation and control arms
in SELECT.

Consistent with results from SELECT, a 114 ug/L life-long increase in blood
selenium in MR analyses was not associated with overall prostate cancer risk (OR: 1.01, 95%
Cl 0.89-1.13; P =0.93; SELECT: Hazard Ratio (HR): 1.04, 95% CI 0.91-1.19). MR analysis
of selenium on advanced prostate cancer (defined as Gleason >8, prostate-specific antigen
>100 ng/mL, metastatic disease (M1), or death from prostate cancer) (OR: 1.21, 95% CI
0.98-1.49; P = 0.07) was concordant with the observed weak evidence for an increased risk of
high-grade prostate cancer (Gleason >7) in the selenium supplementation arm of SELECT
(HR: 1.21, 95% CI 0.97-1.52; P = 0.20). Likewise, the effect of selenium on T2D (OR: 1.18,
95% CI 0.97-1.43; P = 0.11) was concordant with weak evidence for an increased risk of
T2D in the selenium arm of SELECT (HR: 1.07, 95% CI 0.97-1.18; P = 0.16).

Thus, the overall similaritiesin findings between this MR analysis and that of
SELECT, as compared to results from conventional observational studies, provides some
support for the utility of an MR approach in approximating experimental results using
observational data. Further, these results suggest that performing a MR analysis may be an
important time-efficient and inexpensive step in predicting both efficacy and possible adverse
effects of an intervention before an RCT is performed. This information, along with careful
consideration of the possibility that an MR result could be driven by critical period effects
(e.g., limiting benefit of intervention in middle-aged adults) or represent the cumulative effect
of long-term exposure to a biomarker (i.e., limiting benefit of atrial with limited duration),

could be used to help prioritize which interventions should be taken forward to atrial.

Alcohol and incidence of oesophageal cancer
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Regular alcohol consumption is associated with a substantial increased risk of
oesophageal squamous cell carcinomain observational studies, with an approximate two-fold
increased risk for moderate drinkers and a five-fold increased risk for heavy drinkers when
compared to occasional/non-drinkers %2, However, alcohol consumption is often associated
with other lifestyle and behavioural factors (e.g., smoking and dietary intake), which may
themselves predispose toward oesophageal cancer %%, Further, most studies that examined
this hypothesis have used case-control designs, which may introduce reporting bias if cases
recall alcohol consumption differently from controls. For example, cases may be more likely
to reflect on and more carefully report their history of alcohol consumption, to account for
their cancer diagnosis, than controls who do not have the same motivation for more careful
recall of alcohol exposure %2, Given the high global prevalence of alcohol consumption,
considerable population-level reductions in the incidence of oesophageal cancer could be
achieved by intervening on alcohol consumption levelsif the causal nature of the link
between the two was confirmed %,

The ability to metabolize acetaldehyde, the principal metabolite of alcohol and a
carcinogen %, is encoded by ALDH2, which is polymorphic in some East Asian populations.
Specifically, the ALDH2 *2 alele produces an inactive protein subunit that is unable to
metabolize acetaldehyde, resulting in markedly higher peak blood alcohol levelsin *2*2
homozygotes compared to *1*1 homozygotes *’. Individuals with the *2*2 genotype
experience a flushing reaction to alcohol, along with dysphoria, nausea, and tachycardia, and
therefore have very low levels of alcohol consumption *%. Consequently, genetic variation in
ALDH2 can be utilized as an instrument for examining both regular alcohol consumption and
blood acetaldehyde levels among alcohol consumers *®.

In ameta-analysis of seven studies with atotal of 905 oesophageal cancer cases of

East Asian descent, individuals with the ALDH2 *2*2 genotype were found to have an
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approximately 3-fold reduced risk of oesophageal cancer, as compared to the ALDH2 *1*1
genotype (OR: 0.36, 95% CI 0.16-0.80), suggesting a protective effect of reduced alcohol
consumption on oesophageal cancer risk *°. However, when comparing individuals with a
heterozygous *1*2 genotype to *1*1 individuals, the former were shown to have a
(seemingly paradoxical) overall increased oesophageal cancer risk (OR: 3.19, 95% CI 1.86-
5.47). A naive interpretation of this finding, without consideration of the effect of the ALDH2
*2 allele on blood acetal dehyde, would suggest that individuals with moderate alcohol intake
had the highest risk of oesophageal cancer.

When this association was stratified by self-reported alcohol intake, the effect of *1*2
genotype on oesophageal cancer was shown to differ markedly by alcohol intake. Among
non-drinkers, there was no strong evidence for an increase in risk among heterozygotes (OR:
1.31, 95% CI 0.70-2.47) relative to *1*1 individuals. However, among heavy drinkers there
was a 7-fold increase in risk (OR: 7.07, 95% CI 3.67-13.6). Similarly, meta-regression
analysis showed evidence that level of alcohol intake influenced the effect of the *1*2
genotype on oesophageal cancer risk (P = 0.008) (i.e., the larger the amount of alcohol intake,
the greater the OR of *1*2 versus *1* 1 genotypes). As the possession of an ALDH2 *2 allele
only appeared to increase risk of oesophageal cancer among heterozygotes who reported
alcohol intake, this suggested that the substantially elevated acetaldehyde levels in these
heterozygotes may mediate the effect of alcohol intake on oesophageal cancer. Subsequent
MR analysis examining the effect of alcohol intake on risk of head and neck cancer similarly
reported both protection of ALDH2 *2*2 genotype against head and neck cancer as compared
to *1*1 homozygotes and an interaction of the effect of ALDH2 1*2 genotype on cancer risk
by alcohol behaviour (elevated risks among moderate and heavy drinkers compared to *1*1

individuals, but no elevated risk among non-drinkers) ™.
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More generally, this exampleillustrates how interpretation of MR findings can be
challenging when there is limited biological understanding of the genetic variant used as a
proxy for a given exposure. MR results that appear to be strongly discordant with underlying
biology should be followed-up alongside available functional understanding of genetic
variants employed as instruments to help resolve ambiguous or paradoxical results and avoid

naive interpretation of findings.

Body mass index and incidence of lung cancer

In contrast to the relationship of adiposity with risk of most cancers, BMI has shown
consistent inverse associations with incidence of lung cancer, particularly among current and
former smokers %3, As smoking is a robust risk factor for lung cancer and has been shown

to have an inverse effect on BM| 14

, Some have argued that residual confounding by smoking
could account for this apparent protective association . Reverse causation (i.e.,
undiagnosed lung cancer or disease processes leading up to lung cancer prior to study entry
influencing subsequent weight loss), especially in cohorts with insufficient follow-up time,
has also been proposed as an explanation for this observational finding *°.

Attempts to address these possible sources of bias have failed to provide clarity. For
example, studies that reported finely stratifying associations across various dimensions and
classifications of smoking behaviour (e.g., number of cigarettes smoked per day, “cigarette-
years’ smoked, and time since quitting smoking) have found little evidence to support
residual confounding by smoking influencing this association *>*3, Further, studies
removing individuals with inadequate follow-up have reported little effect on overall findings
112,113,117,118

, interpreted as suggesting that reverse causation is unlikely to be a major

contributor to this association. For this reason, some have argued that the inverse association
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of BMI with lung cancer may not be artefactual but may reflect areal biological phenomenon
113_

Given that germline genetic variants associated with BMI cannot be influenced by
prevalent disease and should not be associated with potential confounding factors, aMR
approach could be used to assess whether increased BMI is protective against lung cancer
8119 For example, Carreras-Torres et al. performed aMR analysis using GWAS results on
16,572 lung cancer cases and 21,480 controls of European descent *2°. 97 SNPs previously
associated with BMI ina GWAS of 339,224 individuals from the Genetic Investigation of
Anthropometric Traits consortium were compiled into a GRS to proxy for anthropometrically
measured BMI. Thisrisk score was associated with measured BMI but not with available
measures of tobacco exposure, including pack-years, cigarettes smoked per day, or cotinine
levels, providing some evidence against confounding through measured smoking variables
14 In two-sample MR analyses, a 1-SD increase in BM I was weakly associated with an
increased risk of lung cancer (OR: 1.13, 95% CI 0.98-1.30; P =0.10), with strong
heterogeneity across histological sub-types (Pheterogeneity < 3 X 10°°). Notably, BM1 was
positively associated with risk of both squamous cell (OR: 1.45, 95% CI 1.16-1.62; P = 1.2 X
10) and small cell carcinoma (OR: 1.81, 95% CI 1.14-2.88; P = 0.01) but showed weak
evidence for a protective effect for adenocarcinoma (OR: 0.82, 95% CI 0.66-1.01; P = 0.06).
These findings were robust to sensitivity analyses (MR-Egger regression and WME) 1%
performed to identify potential directional pleiotropic effects of the GRS (see Box 4). These
findings thus help to clarify alikely positive risk relationship of genetically-elevated BMI
with two major histosubtypes of lung cancer. Alongside some genetic evidence to suggest
that elevated BMI may influence subsequent smoking uptake 3, which itself reduces BMI
while increasing lung cancer risk **#, these findings collectively suggest a possible

mechanism that could help to reconcile seemingly conflicting MR and observational findings.
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Further interrogation of a possible mediating role of smoking on the causal pathway between
BMI and lung cancer risk using “two-step MR” (discussed in "MR for mediation") may be
able to help shed further light on the possible intricate relationship between smoking and

BMI in the aetiology of lung cancer.
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Box 3: Summarized data and two-sample MR
Two-sample MR

Historically, both gene-exposure and gene-outcome estimates in MR analyses had to be obtained from a
single sample which relied upon the availability of information on genotype, exposure, and outcome among all
participants in that dataset. In practice, this not only posed a challenge in that large-scale measurement of a given
exposure of interest (e.g., many molecular traits) may not only be prohibitively expensive but also that
measurement of certain exposures may not be possible (e.g., if adequate blood sample collection or preservation
has not taken place) 2. An extension to the original MR paradigm that has allowed MR analyses to overcome
some of these challenges is the integration of gene-exposure and gene-outcome estimates from two independent
(non-overlapping) datasets into asingle analysis, an approach called “two-sample MR” analysis 4%,

Two-sample MR with summarized genetic association data

It is possible and increasingly common practice to perform MR analyses exclusively using summarized
data on gene-exposure and gene-outcome estimates >'%, A strength of two-sample MR with summary data is
that the scope of possible MR analysis can be expanded significantly by exploiting the growing amount of
publicly-available summary data from large genome-wide association study (GWAS) consortia ¥ and is aided
by the development of a harmonised MR platform that has collated these datasets (MR-Base) 2. Utilizing data
from separate exposure and outcome samples can help to bolster statistical power in MR analyses by increasing
the overall sasmple size of an analysis, particularly when testing effects on binary disease outcomes like cancer,
and also reduces the likelihood of “winner’s curse” bias (see Table 1) %, This increased power also means that
sensitivity analyses to test pleiotropy assumptions (see Box 4) which are often statistically inefficient are better-
powered to detect violations of these assumptions. Furthermore, whereas in a one-sample MR setting weak
ingruments can bias effect estimates towards the observational effect, resulting in potential false positive
associations, in a two-sample setting weak instrument bias distorts findings towards the null. Thus, conducting
both analysesis aform of sengtivity analysis that provides boundsto a possible causal effect.

To test whether height has a causal effect on risk of colorectal, lung, and prostate cancer, Khankari et
al. used a two-sample MR approach. This employed: i) summarized gene-exposure estimates from a panel of
423 single-nucleotide polymorphisms (SNPs) previously found to be associated with height in a large GWAS
meta-analysis (GIANT consortium; N=253,288) and collectively explaining approximately 16% of variance in
height; and ii) summarized gene-outcome estimates from a total of 47,800 cancer cases (across the three
outcomes ascertained) and 81,533 controls from the Genetic Associations and Mechanisms in Oncology
(GAME-ON) consortium 2, This approach allowed robust causal inference with adequate statistical power.
While Khankari et al. did not examine the effects of height across stage/grade or histological sub-type of the
three cancers examined, two-sample approaches enable statistically efficient examination of risk factors across
such stratified groups which may have limited sample sizes.

Limitations of two-sample MR

While two-sample MR offers some clear advantages over a conventional one-sample approach, it also
introduces additional assumptions. One important assumption is that the separate datasets from which gene-
exposure and gene-outcome associations are obtained are representative of the same underlying population, for
example with regard to sex, age, ethnicity, or genetic profile. While most GWAS that have examined sex-
specific associations of traits have often reported at most modest evidence of sexual dimorphism %3, given the
sex-specific nature of certain cancers, care should be taken to ensure that instruments are obtained from sex-
stratified GWAS for analyses of these cancers when available. For example, in examining the effect of waist-
hip-ratio (WHR) on endometrial or ovarian cancer this could involve using the 34 SNPs associated with WHR in
women exclusively as a primary instrument, then comparing results with those obtained using the 47 SNPs
associated with WHR across both sexes as a sensitivity analysis . Concordance of findings between both
approaches may suggest that directionally-consistent SNPs associated with WHR at genome-significance in
women, but not men, ssimply reflected reduced datistical power in sex-sratified GWAS analyses and not
genuine heterogeneity in SNP-effects between sexes. A second challenge when performing two-sample MR
using summary data is the difficulty in examining the IV assumption that an instrument used is independent of
exposure-outcome confounders. While restriction of analyses to ethnically homogenous gene-exposure and
gene-outcome datasets will reduce the possibility of confounding through population stratification, in lieu of data
on measured potential confounders, this assumption cannot be directly tested. While one way of approximately
testing this assumption is performing look-up of associations of SNPs with suspected potential confounders in
curated GWAS databases, this would not preclude chance confounding relationships arising in the dataset(s)
from which summary data were obtained. Third, with the use of summary data from large GWAS consortia, it is
possible that there may be some participant overlap in the datasets from which gene-exposure and gene-outcome
associations are obtained. If overlap is small, this should not substantially bias effect estimates, however
substantial overlap will bias MR toward the observational effect ***. 22
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Box 4: Geneticrisk scores and pleiotropy

Using multiple genetic variantsas an instrument

While GWAS over the past decade have been successful at identifying robust associations between
common genetic variants (usually SNPs) and thousands of phenotypes, the effects of individual variants on traits
are often modest **. Consequently, statistical power for MR analyses using single variants as instruments can be
limited. A common approach of overcoming limited statistical power isto combine multiple variants into a
genetic risk score (GRS), which increases the variance explained for atrait of interest, improving instrument
strength ****". A GRS can consist of an unweighted summation of risk-factor increasing alleles across variants
but, more commonly, a weighted approach is used (e.g., weighted by the inverse of the sandard error of the
gene-outcome association — called the “inverse-variance weighted (IVW) method”). In atwo-sample setting (see
Box 3), a GRS will typically be constructed by combining SNPs that are independent (i.e., not in LD with each
other) into a weighted score. However, it is aso possible to combine correlated SNPsin low to moderate LD into
a GRS, using weighted generalized linear regression for example . This requires the creation of a weighting
matrix which takes into account correlations between SNPs, often with use of a reference panel like the Hapmap
or the 1,000 Genomes Project *3**°, which is then used to correctly inflate standard error estimates. The |atter
method may be preferable to overcome weak instrument issues when few independent SNPs are available.

Vertical vs horizontal pleiotropy

While construction of a GRS can help to enhance dtatistical power in MR analyses, increasing the
number of variantsincluded in a score is accompanied by an increased probability that any of these variants
could be pleiotropic (i.e., one variant having effects on two or more traits). In a genetic epidemiological context,
an important distinction is made between vertical and horizontal pleiotropy, each having different effects on the
interpretation of MR findings. Vertica pleiotropy occurs when one variant has an effect on two or more traits
that both influence an outcome through the same biological pathway. For example, variantsin FTO that not only
associate with BMI, but also with fasting insulin and glucose concentrations would be consistent with a causal
effect of BMI on these downstream traits *°. In this case, a MR analysis examining the effect of BM| on T2D
risk using these FTO variants would be consistent with an instrument (genetic variants associated with BMI)
influencing an outcome (T2D) exclusively through the exposure of interest (BMI). This form of pleiotropy
would be expected in complex biological systems and does not pose athreat to the validity of aMR analysis .
In contrast, horizontal pleiotropy occurs when one variant has an effect on two or more traits that influence an
outcome through independent biological pathways. For example, genetic variants associated with triglyceride
levels also show substantial overlap with variants associated with LDL-C and HDL-C *, As a putative effect of
triglyceride-increasing variants on CHD risk may not only operate through elevation of triglycerides but through
alternate cholesterol pathways, a naive MR analysis using all triglyceride-increasing variants without addressing
pleiotropy in thisinstance could invalidate the “exclusion restriction criterion” 1V assumption. The presence of
horizontal pleiotropy thus poses a direct threet to the validity of MR findings.

Assessment of horizontal pleiotropy

When using either a single or a small number of genetic variants as Vs, the presence of horizontal
pleiotropy for any individual variant can be assessed through SNP look-ups in curated GWAS databases with
complete summary data (e.g., MR-Base ', PhenoScanner **3, dbGap ***) to examine whether associations for a
given SNP have been reported for traits other than the exposure of interest. Sendtivity analyses can then be
performed by dropping variants that are suspected to be horizontally pleiotropic and then carefully interpreting
pooled causal estimates with and without suspected horizontally pleiotropic SNPs. When an instrument consists
of multiple genetic variants, an important first step in examining the presence of horizontal pleiotropy in
analyses isto assess heterogeneity in causal estimates across individual 1Vs (including visually examining
heterogeneity using a funnel plot). While substantial heterogeneity in causal estimates may be indicative of the
presence of horizontal pleiotropy, if there is overall symmetry in the funnel plot, pleiotropic effectswill be
balanced (termed “balanced pleiotropy”) and the overall causal estimate generate will be unbiased. In contrast, if
there is considerable asymmetry in a funnel plot, thiswill suggest that horizontal pleiotropic effects of individual
Vs are not balanced and that overall causal estimates will be biased (termed “directional pleiotropy”). MR-
Egger regression and the weighted median estimator (WME) are two widely implemented approaches for
detecting and accounting for directiona pleiotropy, and are applicable to analyses utilizing individual-level and
summary-level data ***%, An additional approach called the mode-based estimate (MBE) has also recently been
proposed as amethod to examine horizontal pleiotropy in MR analyses *°. All of these methods can help to
detect |V violations while making different assumptions about the nature of horizontal pleiotropy and thus, when
feasible, using all approaches as sensitivity analysesin agiven MR analysis can serve as an important
mechanism to assess the robustness of findings to pleiotropic bias.
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Sensitivity analyses to examine horizontal pleiotropy when using multiple genetic variants

M R-Egger regression provides a consistent causal effect estimate even when all genetic variants are
invalid 1Vs because they violate the exclusion restriction criterion. This approach performs a weighted linear
regression of the gene-outcome coefficients on the gene-exposure coefficients with an unconstrained intercept
term. If the IV assumption that the association of each variant with the outcome is mediated exclusively
through the exposure of interest is met, thisintercept term should be zero. An intercept term that differsfrom
zero would suggest the presence of unbalanced pleiotropy, thus providing a test for directional pleiotropy. In
turn, the slope coefficient in MR-Egger regression will provide an estimate of a causal effect adjusted for
directional pleiotropy. An important consideration when using MR-Egger isthat it works under the InSIDE
(instrument strength independent of direct effect) assumption. In essence, InSIDE assumes that no association
exists between the strength of gene-exposure associations and the strength of bias due to horizontal pleiotropy.
Intuitively, if multiple genetic variantsin an MR analysis have horizontally pleiotropic effects through
unrelated intermediate variables, it would be expected that this assumption should hold ’. However, this
assumptionisunlikely to be satisfied in situations where all pleiotropic effects are due to the presence of a
single confounder. As such, in lieu of an established method of formally testing the InSIDE assumption,
interpretation of intercept terms and slope coefficients generated through MR-Egger should be made with this
assumptionin mind. A complementary sensitivity analysis to MR-Egger is the weighted median estimator.
This approach provides an estimate of the weighted median of adistribution in which individual 1V causal
estimates in arisk score are ordered and weighted by the inverse of their variance. Unlike MR-Egger which can
provide an unbiased causal effect even when all 1Vs areinvalid, WME requires that at least 50% of the
information in arisk scoreis coming from IVsthat are valid in order to provide a consi stent estimate of a
causal effect inaMR analysis. However, an advantage of WME is that it provides improved precision as
compared to MR-Egger and does not rely on the InSIDE assumption. The mode based estimator generates a
causal effect using the mode of a smoothed empirical density function of individual |V causal estimatesin a
risk score. This approach operates under the assumption that the most common effect estimate of individual
IVsinarisk score arises from valid instruments (called the Zero Modal Pleiotropy Assumption, or ZEMPA). If
this assumption holds, the mode can provide a consistent causal estimate even if most of the (non-modal) I1Vs
areinvalid. Both simple and weighted mode approaches (weighted by the inverse variance of the SNP-outcome
association) can be utilized. Mode-based approaches have less power to detect a causal effect than the weighted
median estimator but greater power than M R-Egger regression under the condition of no invalid instruments.
Similar to the weighted median estimator, mode-based approaches are also (by default) less susceptible to bias
from outlying variantsin arisk score.
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Recent methodological extensions and futur e applications

In recent years, the development of various methodological extensions to the original
MR paradigm have helped to enhance the scope of MR analyses, several of which are

discussed below with reference to possible applicationsin cancer epidemiology.

MR for mediation

Over the past decade, high through-put “omics’ technologies have begun to permit
exhaustive profiling of the epigenome, metabolome, and proteome (as examples), allowing
the collection of high-dimensional molecular data on increasingly large number of
individuals *. Such omics measures may serve as important mediators on causal pathways
linking macro-level risk factors with cancer incidence or progression. Identification of these
omics mediators could help to increase scope for pharmacological intervention aimed at
cancer prevention or progression (e.g., when upstream risk factors are difficult or not feasible
to intervene on). While conventional mediation analyses exist to examine possible exposure-
medi ator-outcome relationships, the validity of these approaches relies upon strong
assumptions which are unlikely to be met in practice, such as no measurement error and no
unmeasured confounding #.

With the performance of GWAS on large collections of metabolites and other omic

measures 148149

, thiswill create opportunity to develop genetic instrumentsfor these traits. To
establish whether a particular molecular intermediate is on the causal pathway between an
exposure and cancer, genetic variants can be used as instruments for both exposures and

putative mediators that influence a disease outcome in atwo-step MR framework (Figure 5)

150
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For example, amethod of testing the mediating role of methylation changes on cancer
outcomes would be to exploit the fact that genetic variants (e.g., methylation quantitative trait
loci, mQTLs) are robustly associated with methylation at CpG sites across the epigenome,
providing possible instruments for MR analyses **!. Two-step MR could then used to
examine the potential mediating role of DNA methylation sites associated with exposures

such as tobacco smoke 2

which have aso been found to be strongly associated with lung
cancer risk °3. To test whether methylation is causally mediating (some, or all of) the effect
of tobacco exposure on lung cancer risk, in the first step, a SNP could be used to proxy
smoking behaviour in order to investigate its effect on the intermediate phenotype (DNA
methylation). In the second step, an independent SNP (not related to the exposure) could then
be used to proxy the intermediate phenotype (DNA methylation) which could then be

examined in relation to the disease outcome (lung cancer) *.

EXE interaction

Akin to afactorial RCT, factorial MR is a method of testing the independent and
additive effects of two or more exposures (EXE) on disease outcomes (Figure 6). This
approach was adopted by Ference et al. who performed a 2x2 factorial MR analysis to
examine the effect of the LDL cholesterol-lowering drug ezetimibe on risk of CHD, as
compared to the effect of statins alone or when combined with statins *>*. Ference et al.
examined the effect of natural random allocation to lower LDL-C on the risk of CHD through
SNPsin NPC1L1 (atarget of ezetimibe) alone, HMGCR (a target of statins) alone, or variants
in both gene regions combined. The authors reported that natural randomization to lower
LDL-C through SNPsin NPC1L1 and HMGCR aone showed similar decreasesin LDL-C
and CHD and that randomization to lower LDL-C in both groups combined had a linearly

additive effect on LDL-C lowering and alog-linearly additive effect on CHD risk. These
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results were corroborated by the ‘ Improved Reduction of Outcomes: Vytorin Efficacy
International Trial,” which allocated 18,144 participants to ezetimibe, statins, both, or placebo
155.

Factorial MR could be used to evaluate the proposed interactions between smoking
and alcohol consumption on risk of head and neck cancer **°, smoking and BMI on risk of
oesophageal cancer 2, or vitamin D and calcium on risk of colorectal cancer ™', as
examples. An important caveat of this approach is that it relies on access to individual-level
data and requires very large sample sizes to have adequate statistical power to reliably detect
differencesin effect across groups.

It may also be useful (particularly for exposures that cannot be instrumented) to
embed MR analyses into randomized trials as another method of simulating a factorial
randomized trial. For example, data from the Add-Aspirin trial, which is examining whether
regular aspirin use after curative treatment for early stage solid tumours can prevent disease
recurrence and survival, could present an opportune setting to examine possible additive
effects of aspirin and other therapies (proxied by genetic instruments) on cancer outcomes *,
Such an embedded MR-in-RCT design would necessitate large sample sizes and would

require access to individual-level trial data.

GXxE interaction

Studies of gene-environment interactions (GXE) offer the potential to discover both
novel genetic risk loci and environmental factors for cancer, in addition to gaining insight
into biological mechanisms that may underlie associ ations between risk factors and cancer
9 In turn, these findings can be used to inform risk prediction and the identification of high-
risk populations for targeted prevention strategies **°. Asin conventional observational

studies, the “E” component of GXE studies will still be subject to the same methodological
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limitations that undermine robust causal inference. The use of genetic variants to instrument
the “E” component in these studies can therefore help to circumvent confounding and biasin
conventional observational analyses ', Limited statistical power is an important
consideration in conventional GxE studies and the reduced power that would accompany the
use of genetically-instrumented exposures should also be considered.

GXE interaction can also be used to test violations of pleiotropy assumptionsin
certain MR analyses. Specifically, as MR models assume that a genetic instrument is not
associated with an outcome except through modulation of the exposure of interest, this
assumption can be tested by stratifying analyses on a supposed interacting variable. For
example, in aMR analysis of the effect of heaviness of smoking on lung cancer risk, an

instrument proxying for heaviness of smoking (variants in CHRNA5-A3-B4) 1%

should only
be associated with lung cancer among self-reported smokers and not in never or former
smokersin an analysis stratified by smoking status ¥. Likewise, in a MR analysis of the
effect of alcohol on oesophageal or head and neck cancer, an instrument proxying for regular
alcohol consumptions (variants in ALDH?2) should only be associated with these cancers
among those who report regularly consuming acohol and not among those who refrain from
consuming alcohol 1% Here, the interaction reflects the lack of any pathway through
which the genotype can operate if the exposure is not present (i.e. alack horizontal of
pleiotropy) and allows for the exclusion restriction criterion to be tested. When using GXE to

test pleiotropy assumptions in this manner, however, it isimportant to consider the possibility

of introducing selection bias (see “ Selection bias in cancer progression analyses”).

Hypothesis-free MR
A novel extension to a conventional “hypothesis-driven” MR analysisis a phenome-

wide, “hypothesis-free” MR analysis (termed “MR-PhEWAS") **. This approach makes use
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of genotyped datasets with high-dimensional phenotypic data or summary GWAS association
statistics to perform hundreds or thousands of statistical tests simultaneously in an agnostic
manner. For example, the approach can be used to examine the causal effect of asingle
exposure across multiple outcomes or multiple exposures across a single outcome. In contrast
to hypothesis-driven analyses, hypothesis-free approaches allow for testing hypotheses that
may not have been considered or tested previously, thusidentifying novel risk relationships,
and can help to address issues of publication bias as all analyses are openly specified and all
results are presented) **.

For example, using atwo-sample MR framework with summary data, Haycock et al.
performed a MR-PheWAS examining the causal effect of telomere length on risk of 35
cancers and 48 non-cancer diseases in 420,081 cases and 1,093,105 controls *%°. After
correction for multiple-testing, they found that telomere length increased cancer risk across
most sites and histological sub-types but reduced CVD risk. An important consideration
when performing hypothesis-free MR analyses using summary datais the need to follow-up
any putative findings in subsequent independent datasets. This can be a challenge when using
summary GWAS data to perform such analyses if alarge proportion of the available GWAS
literature was used to provide causal estimates in the original “discovery phase” of an

analysis.

MR for identifying causality of mutational signatures

Large-scale analysis of the genomes of thousands of cancer patients has helped to
reveal somatic “mutational signatures’ (distinctive somatic mutational patterns left by unique
carcinogenic agents) involved in the development of their tumours ****’. To date, mutational
signatures have been identified across more than 30 different cancer types, with anywhere

from two to six distinction mutational processes for each cancer type. Knowledge of the
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causes of somatic mutations within tumour tissue can improve understanding of the
mechanisms by which endogenous and exogenous exposures promote the development of a
cancer. Of the mutational signatures identified across cancer types, a putative cause has been
proposed for approximately half *°°; MR may offer particular promise in helping to identify
the aetiology of other mutational signatures identified *®.

Robles-Espinoza et al. examined the effect of germline MC1R status, associated with
red hair, freckling, and sun sensitivity, on somatic mutation burden in melanoma. Such an
analysis can be viewed as aMR appraisal of the effect of this sensitivity phenotype on
somatic mutation burden in melanoma *®°. For all six mutational types assessed, there was
evidence of an increased burden of somatic single nucleotide variants in individuals carrying
one or two MC1R R alleles (disruptive variants). For one of the six mutational signatures
characterized by an abundance of somatic C>T single nucleotide variants, each additional R
allele at MC1R was associated with a 42% (95% Cl 15-76%) increase in the C>T single
nucleoctide variant count. This approach therefore highlights the possibility of testing the
causal effect of suspected carcinogenic agents on mutational burden for various mutational

signatures across cancer tissues and sub-types.

Drug repurposing and adver se dr ug effects

Drug repurposing, applying known drugs to novel indications, can provide arapid,
cost-effective mechanism for drug discovery and may hold promise for the development of
pharmacological interventions for cancer prevention ***™. In turn, for well-tolerated drugs
that are considered candidates for repurposing, MR may offer an attractive approach for
testing their potential chemopreventive efficacy. For example, it is currently possible to
reliably instrument drugs for which there is a broad understanding of the biological

mechanism of action: examples that currently exist within cardiovascular disease include
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proxies for HMG Co-A reductase inhibitors, PCSK9 inhibitors, CETP inhibitors, and sPLA2

inhibitors 17

. For the primary or tertiary prevention of certain cancers, aspirin, metformin,
and bisphosphonates have all been proposed as possible candidate pharmaceutical agents for
repurposing 1**"™. Using MR as afirst step to test drug efficacy for novel cancer indications
could help to prioritize or deprioritize further investigation of certain drugs (e.g., helping to

guide which drugs should be taken forward to testing in RCTs for re-purposing).

MR may also provide a useful approach for predicting adverse effects of

pharmaceuticals >

. Pre-approval trials are often not able to adequately capture development
of adverse effects due to the comparatively small number of individuals typically exposed to
adrug in such trials (unless drug effects are very common or very large), the limited duration
of most trials, the possibility that recorded data may not include necessary information to
identify unanticipated drug effects or those unrelated to the drugs’ indication, and unknown
generalizability of trial participants to the broader population that they are meant to represent.
While many of these issues can be addressed post-approval of a drug through spontaneous
reporting systems, these introduce their own limitations including confounding, for example
by indication, environmental factors, or lifestyle traits. MR studies should be able to
overcome these limitations and have been employed in some instances to test or anticipate
adverse effects of interventions in ongoing intervention trials ***””. For example, MR studies

examining genetic variantsin HMGCR as an instrument for statin exposure have corroborated

findings from large phase 111 trials that statins modestly increase risk of type 2 diabetes

36,178,179

While knowledge of biological pathways can help to anticipate some adverse drug
effects pre-approval of adrug, it may not be possible to correctly predict all such effects *®.

One possible approach to resolve this would be to use MR-PhEWAS to perform a phenotypic
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scan of a genetically-instrumented drug exposure across hundreds or thousands of potential
outcomes, as outlined previously. The identification of possible adverse effects of adrug
through this approach could then be used to pre-specify and adequately power secondary
outcome measures or, aternately, to de-prioritize further investigation of a therapeutic target.
For drugs currently on the market, MR can be used to test for potential adverse effects that
were not picked up during thetrial, in addition to appraising causality of effects that have

been reported through conventional reporting systems.

Conclusion

Observational epidemiological studies are prone to various intractable biases which
can undermine robust causal inference. M endelian randomization offers a promising
approach to generate a more reliable evidence-base for cancer prevention and treatment. The
advent of MR methods using summarized data means that such analyses can now be
performed more efficiently, rapidly, and with greater statistical power than previously
possible. Further, the range of methodological extensions to the original MR paradigm now
available have greatly expanded the scope of this approach, enabling increasingly
sophisticated causal questions to be interrogated *#*. Given optimism surrounding use of the
method in helping to strengthen evidence for public health and pharmacological interventions
182 it is likely that there will be a continued proliferation of MR analysesin the literaturein
the near future. Careful design, analysis, and interpretation of such studieswith consideration

of the limitations of the method will provide the greatest opportunity for such studiesto

inform cancer prevention and treatment strategies.
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Table 1. Limitations of Mendelian randomization and techniques available to address them

Limitation

Description

Techniquesto Address Limitation

Limitationstorobust causal inference

overal and visceral adiposity) but GWAS have only
examined associations with a subset of these
dimensions (e.g., solely BMI). This may produce
misleading inferences if the aim of an analysisisto
ascertain the causal effect of a particular dimension
of atrait.

Horizontal A genetic variant affecting an outcome viaa Assessment of heterogeneity across
pleiotropy biological pathway independent of the exposure individual SNP estimates
under investigation, violating the “exclusion MR-Egger regression and intercept test
restriction criterion” Median-based approaches
Mode-based approaches
Sensitivity analysis removing potentially
pleiotropic SNPs
Restrict risk scoreto SNPsin well-
characterized genes
Stratification by exposure status (e.g.,
ALDH2 and sdlf-reported alcohol intake)
Linkage Linkage disequilibrium (LD) is the non-random LD pruning of SNPs prior to MR analysis
disequilibrium association of alleles a different loci that are close Weighted generalized linear regression
in proximity on achromosome. If acertain SNPis Perform studies in populations with
being used as an instrument for an exposurein aMR | different LD structures
analysis, and this SNP isin LD with another SNP
that affects the outcome via an independent
pathway, then the assumptions for MR will be
violated
Population Allele frequencies vary among populations of Restricting analysesto individuals of a
stratification different genetic ancestry, and smilarly, disease risk | homogenous genetic ancestry
often varies among populations of different genetic Genomic inflation factor calculation
ancestry, which could introduce genetic confounding | Adjusting MR analysis by genetic
into aMR analysis, potentialy resulting in spurious | ancestry or ancestry-informative principal
causal estimates components
Trait For agiven trait (eg., adiposity), SNPs may Better understanding of complex
heterogeneity influence various dimensions of thistrait (e.g., both | phenotypes

Multivariable MR

Limitationsthat complicate interpretation

Canalization

Developmental compensation against the effect of a
genetic variant being used as an instrument that
could attenuate the magnitude of an observed MR
association towards the null

Knowledge of the period of life when the
influence of a genetic variant(s) on an
exposure may emerge can help guide
whether developmental compensatory
processes are plausible. For example,
behavioural exposures that typically occur
after fetal development (e.g., acohol,
smoking) will be unlikely to be influenced
by canalization whereas in utero exposure
may. There are currently no gpproaches
for evaluating suspected canalization in
MR analyses.

Complexity of
association

Misinterpretation of MR results can arise from
limited biological understanding of genetic variants
utilised as |Vs. Examples include interpretation of
the effect of the heterozygous ALDH2 genotype on
oesophageal cancer risk (discussed in “Illustrative
examples’) and previous MR analyses tha have
examined the effects of interleukin-6 ** and
extracellular superoxide dismutase *® on CHD risk
(discussed in more detail elsewhere *°).

Improved biological understanding of
genetic variants with functional
annotation, pathway analysis, and gene set
enrichment
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Dynastic effects | In certain circumstances, it is possible that parental Between-sibling MR design
genotype can confound an association of offspring Within-family MR design
genotype with offspring disease risk. For example,
genetic variants influencing parental height will not
only influence offspring height genotype but could
also influence offspring disease risk viaan
independent effect of maternal height-raising alleles
on the in utero environment of the offspring *#**%°.
Critical period If abiomarker primarily influences disease risk over | Negative exposure control design
effects acritical or sensitive period of the life course, aMR
estimate should capture the causal effect of this
biomarker but may not be able to distinguish period

effects
Weak If 1V is not robustly associated with the exposure, Increase sample size
instrument bias | estimates will be biased towards the observational Genetic risk scores

estimate in aone-sample setting and towards the null | Two-sample MR analysis
in atwo-sample setting
“Winner's Chance correlation between genetic variants and Two-sample MR analysis
Curse’ confounders can introduces an overestimation of the | Split-sample MR analysis
effect of a“lead” genetic variant on an exposure of
interest in the discovery stage of a GWAS. The
effect of this phenomenon will depend on the degree
of overlap of participantsin the GWAS discovery
dataset and subsequent MR analyses. Inaone-
sample MR setting with abinary outcome, winner’s
curse should not lead to bias if control participants
were used in the discovery GWAS. If both cases and
controls were used in the discovery dataset, this will
lead to weak instrument bias. If theinstrument is
identified in a sample independent to the one in
which MR analysis is performed, this will lead to an
underestimate of the causal effect.

Low gatistical Genetic variants typically explain asmall amount of | Large GWAS and GWAS consortia
power variance for a given exposure, thus MR requires Genetic risk scores

large sample sizes to test hypotheses with adequate | Two-sample MR analysis

power. Furthermore, in finite samples, confounders
may not be perfectly balanced between genotypic
groups
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Figure 1. Schematic comparison of the structure of arandomized controlled trial (SELECT)

and a Mendelian randomization analysis (PRACTICAL)

Mendelian Randomization
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Confounders equal ! Confounders equal
between groups i between groups

Prostate cancer risk:
OR 1.01 (95% CI 0.89 —1.13)

Prostate cancer risk:
HR 1.04 (95% CI10.91 —1.19)

In SELECT (left), individuals were randomly allocated to the intervention (200 pg daily
selenium supplementation, which lead to a 114ug/L increase in blood selenium) or control
group (placebo). In PRACTICAL (right), the additive effects of selenium-raising alleles at
eleven SNPs, randomly allocated at conception, were scaled to mirror a 114ug/L increasein
blood selenium. If an RCT trial is adequately sized, randomization should ensure that
intervention and control groups are comparable in all respects (e.g., distribution of potential
confounding factors) except for the intervention being tested. In an intention-to-treat analysis,
any observed differences in outcomes between intervention and control groups can then be
attributed to the trial arm to which they were allocated. Likewise, inaMR analysis, groups
defined by genotype should be comparable in all respects (e.g., distribution of both genetic
and environmental confounding factors) except for their exposure to atrait of interest. Any
observed differences in outcomes between groups defined by genotype can then be attributed

to differencesin life-long exposure to the trait of interest under study.
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Figure 2. lllustration of MR methodology

(A)
u
/ \
G E— E O
(B)
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/ \
CHRNA5-A3-B4 | — | Smoking |— | Lung cancer

(A) A genetic variant (G) is used as aproxy for a modifiable exposure (E) to assess the
association between E and an outcome of interest (O) without the issues of reverse causation,
and confounding (U). MR methodology relies on three main assumptions, in that G must (i)
be reliably associated with E; (ii) not be associated with U; and (iii) not be independently
associated with O, except through E. This method is exemplified in the context of assessing
the association of smoking and lung cancer (B), using the CHRNA5S-A3-B4 SNP as a genetic

instrument for heaviness of smoking.
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Figure 3. Reverse causation within Mendelian randomization studies

A)
APQE ——-mn  Cholesterol »
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B)
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FTO CRP 2 BMI

A) SNPs within APOE are used as instruments for cholesterol to assess the causal effect of
cholesterol on cancer risk in a MR framework. APOE is adeterminant of differential plasma
cholesterol levels and is fixed at conception; therefore, will not be influenced by cancer (red
arrow). B) A SNP which primarily influences BMI (e.g. FTO) will also influence CRP due to
the causal effect of BMI on CRP. However, if this SNP is mistakenly used as an instrument

for CRP then this will lead to erroneous results (red arrow).
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Figure 4. Directed acyclic graph for selection bias in prognostic studies
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In this example, the square bracket indicates that we are conditioning on pancregtic cancer
incidence in asurvival study by only studying pancreatic cancer cases, thus inducing an
association between smoking (a factor that is otherwise independent of pancreatic cancer
survival) and pancreatic cancer survival. This link is broken when conditioning on the factor
that influences both cancer incidence and survival (e.g., insulin resistance), which can
otherwise be seen as a confounder of the association between smoking and cancer survival. If
afactor appears to influence pancreatic cancer survival that is not associated with pancreatic
cancer incidence (e.g., treatment for pancreatic cancer), selection bias in such an MR analysis

would not be expected.
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Figure 5. Two-step Mendelian randomization analysis examining the mediating effect of

methylation on the association between smoke exposure and lung cancer

CHRNA5-A3-B4

Smoke exposure DNA methylation Lung cancer
Cis-SNP
Smoke exposure —  — DNA methylation »  Lung cancer

In thefirst step, a SNP within CHRNA5S-A3-B4 is used as an instrument for smoke exposure
to assess the causal association between smoking and DNA methylation. In the second step,
an independent cis-SNP is used as an instrument for DNA methylation to assess the causal
association of DNA methylation with lung cancer risk. The two-step method allows
interrogation of the mediation effect of DNA methylation in the association between smoking

and lung cancer risk.
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Figure 6. Factorial Mendelian randomization applied to the effects of calcium and vitamin D

on colorectal cancer risk
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This hypothetical example of afactorial MR trial uses genetic proxies for cacium (e.g.,
variantsin CASR) and vitamin D (e.g., variants in CYP2R1) to examine the possible

independent and additive effects of these exposures on colorectal cancer risk.
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