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Abstract 

Observational epidemiological studies are prone to confounding, measurement error, 

and reverse causation, undermining their ability to generate reliable causal estimates of the 

effect of risk factors to inform cancer prevention and treatment strategies. Mendelian 

randomization (MR) is an analytical approach that uses genetic variants to proxy potentially 

modifiable exposures (e.g. environmental factors, biological traits, and druggable pathways) 

to permit robust causal inference of the effects of these exposures on diseases and their 

outcomes. MR has seen widespread adoption within population health research in cardio-

metabolic disease, but also holds much promise for identifying possible interventions (e.g., 

dietary, behavioural, or pharmacological) for cancer prevention and treatment. However, 

some methodological and conceptual challenges in the implementation of MR are particularly 

pertinent when applying this method to cancer aetiology and prognosis, including reverse 

causation arising from disease latency and selection bias in studies of cancer progression. 

These issues must be carefully considered to ensure appropriate design, analysis, and 

interpretation of such studies.  

In this review, we provide an overview of the key principles and assumptions of MR 

focusing on applications of this method to the study of cancer aetiology and prognosis. We 

summarize recent studies in the cancer literature that have adopted a MR framework to 

highlight strengths of this approach compared to conventional epidemiological studies. 

Lastly, limitations of MR and recent methodological developments to address them are 

discussed, along with the translational opportunities they present to inform public health and 

clinical interventions in cancer.  
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Introduction 

Obtaining reliable evidence of causal relationships from observational 

epidemiological studies remains a pervasive challenge 1-3. While observational studies have 

made fundamental contributions to understanding the primary environmental causes of 

various cancers (e.g., smoking and lung cancer, hepatitis B and liver cancer, asbestos and 

mesothelioma) 4-6, recent decades have seen numerous instances of apparently robust 

observational associations being subsequently contradicted by large chemoprevention trials 8-

16. Notable translational failures include the ineffectiveness of beta-carotene supplementation 

to prevent lung cancer among smokers in the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention Study and vitamin E supplementation to prevent prostate cancer in the Selenium 

and Vitamin E Cancer Prevention Trial. Contrary to expectations from observational data, 

findings from both trials suggested that supplementation may increase rather than reduce the 

incidence of cancer 9,17.  

Part of the difficulty in translating observational findings into effective cancer 

prevention and treatment strategies lies in the susceptibility of conventional observational 

designs to various biases, such as residual confounding (due to unmeasured or imprecisely 

measured confounders) and reverse causation 18,19. These biases frequently persist despite 

energetic statistical and methodological efforts to address them 20-22, making it difficult for 

observational studies to reliably conclude that a risk factor is causal, and thus a potentially 

effective intervention target. This issue is likely further compounded by the modern 

epidemiological pursuit of risk factors that confer increasingly modest effects on disease risk, 

which can contribute to a ubiquity of spurious findings in the literature 23-25. 

Despite these challenges, observational studies remain crucial for informing cancer 

prevention and treatment policy given issues in translating basic science to human 

populations and because intervention trials are expensive, time-consuming, and often 
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unfeasible in a primary prevention setting. The development of novel analytical tools that can 

help address some of the limitations of conventional observational studies therefore remains 

an important field of research. One such approach known as Mendelian randomization (MR) 

which uses genetic variants to proxy potentially modifiable exposures has seen increased 

adoption within population health research and offers much promise to generate a more 

reliable evidence-base for cancer prevention and treatment. 

 

What is Mendelian randomization? 

MR uses germline genetic variants as instruments (i.e., proxies) for exposures (e.g., 

environmental factors, biological traits, or druggable pathways) to examine the causal effects of 

these exposures on health outcomes (e.g., disease incidence or progression) 26-32. The use of 

genetic variants as proxies exploits their random allocation at conception (Mendel’s first law 

of inheritance) and the independent assortment of parental variants at meiosis (Mendel’s 

second law of inheritance). These natural randomization processes mean that, at a population 

level, genetic variants that are associated with levels of a specific modifiable exposure will 

generally be independent of other traits and behavioural or lifestyle factors, although several 

caveats exist (see Table 1). Analyses using genetic variants as instruments to examine 

associations with outcomes have a number of advantages: i) effect estimates should be less 

prone to the confounding that typically distorts conventional observational associations 33, ii) 

because germline genetic variants are fixed at conception, they cannot be modified by 

subsequent factors, thus overcoming possible issues of reverse causation, and iii) 

measurement error in genetic studies is often low as modern genotyping technologies provide 

relatively precise measurement of genetic variants, unlike the substantial (and at times 

differential) exposure measurement error which can accompany observational studies (e.g., 

due to self-report).   
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Comparison of Mendelian randomization to Randomized Controlled Trials 

Due to the random allocation of alleles at conception it can be useful to compare the 

structure of a MR analysis to the design of a randomized trial, where individuals are 

randomly allocated at baseline to an intervention or control group (Figure 1). Groups defined 

by genotype should be comparable in all respects (e.g., approximately equal distribution of 

potential confounding factors) except for the exposure of interest. It follows that any 

observed differences in outcomes between these genotypic groups can be attributed to 

differences in long-term exposure to the trait of interest. This latter point is an important 

distinction when interpreting results from a MR analysis as compared to a randomized 

controlled trial: MR will generally estimate the effect of life-long “allocation” to an exposure 

on an outcome, unless an exposure typically occurs only from a certain age - e.g., alcohol 

consumption and smoking - and the genetic proxy affects metabolism of that exposure 34. If 

the effect of this exposure on an outcome is cumulative over time, a MR analysis may 

generate a larger effect estimate than that which would be obtained from a randomized trial 

examining an intervention over a limited duration of time. Additionally, if the effect of an 

exposure on an outcome operates primarily or exclusively over a critical or sensitive period 

of the life course (e.g., early childhood), a MR analysis should be able to “capture” a causal 

effect of this exposure but will not be able to distinguish such period effects. In contrast, a 

randomized trial will have the flexibility to test certain interventions over restricted periods of 

follow-up and in individuals who may be within narrow age ranges. These distinctions are 

discussed in more detail in “Cancer Latency and Reverse Causation – benefits of MR”. 

More formally, MR is a form of instrumental variable (IV) analysis that relies on 

three key assumptions: the IV (here, one or more genetic variants) should (i) be reliably 

associated with the exposure of interest; (ii) not be associated with any confounding factor(s) 
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that would otherwise distort the association between the exposure and outcome; and (iii) 

should not be independently associated with the outcome, except through the exposure of 

interest (known as the “exclusion restriction criterion”) (Figure 2a). If all assumptions are 

met, MR can provide an unbiased causal estimate of the effect of an exposure on disease or a 

health-related outcome. Violation of one or more of these assumptions means that 

instruments are invalid and, consequently, that findings from such an analysis may yield a 

biased effect estimate.  

 

Previous success of Mendelian randomization approaches and potential for cancer 

research 

Over the past decade, MR has been increasingly adopted as an analytical approach within 

population health research, particularly the fields of metabolic and cardiovascular disease (CVD), 

where there are several notable examples of important causal inferences. For example, MR has 

suggested a likely causal role of statins on type 2 diabetes (T2D) risk 35,36; likely non-causal roles 

of circulating levels of high-density lipoprotein cholesterol (HDL-C) in CVD 37 and C-reactive 

protein (CRP) in T2D 38; pointed to the efficacy of proprotein convertase subtilisin/kexin type 2 

(PCSK9) inhibitors for CHD prevention prior to the publication of confirmatory long-term trial 

results 35,39; and prioritized further examination of apolipoprotein B 40,41, lipoprotein(a) 42 and 

interleukin-6 43 and de-prioritized fibrinogen 44 and secretory phospholipase A(2)-IIA 45 as 

intervention targets for CVD. Although this approach has scope to test the causal effects of an 

increasing number of exposures relevant to cancer through the continued growth in large-

scale GWAS output (Box 1), to date there remains a noticeable gap in the MR literature with 

regard to cancer compared to other outcomes (Box 2).  

Here, we provide an overview of some recent studies that have applied MR to cancer 

outcomes, highlighting both the potential strengths compared to conventional 
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epidemiological studies and the unique challenges of performing MR studies in cancer. 

Recent methodological extensions to the original MR paradigm are presented, with emphasis 

on the translational opportunities that they may offer to inform drug target validation and 

public health strategies to reduce the burden of cancer.  

 

 

 

Box 1: Instrumentable exposures  

Types of cancer-relevant exposures with robust genetic associations, which therefore could be 

instrumented in a MR context include: i) behavioural and lifestyle exposures (e.g., alcohol 

consumption, nutrient biomarkers, milk and caffeine consumption, lifecourse sun exposure); ii) 

endogenous biomarkers (e.g., fatty acids, glycaemic traits, insulin, interleukin-6, insulin-like 

growth factor, CRP, sex-steroid hormones, vitamin D, adiponectin); iii) drug targets (e.g., 3-

hydroxy-3-methylglytaryl-CoA reductase (HMGCR), prostaglandin endoperoxidase synthase 2 

(PTGS2), proprotein convertase subtilisin/kexin type 9 (PCSK9)); iv) site-specific DNA 

methylation markers; v) small metabolites (e.g., amino acids, lipids, lipoproteins, steroids); and vi) 

early life factors (e.g., birthweight, childhood obesity, and age at puberty onset). 
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Considerations for MR in cancer 

Both the principal strengths of MR and important limitations of this method have 

been discussed in detail previously 26-32,46-50. The latter are presented in Table 1 with some 

methodological and statistical approaches that have been developed to address them outlined 

Box 2: Existing publications applying Mendelian randomization within a cancer context 

The number of MR studies published annually has increased rapidly since the early 2000s, 

reaching approximately 226 publications in 2016 alone. However, the proportion of these studies 

examining the causal effects of one or more traits on cancer incidence or progression has remained 

modest (see Figure below).  

 

Using results from PubMed, the figure above represents the proportion of all published MR 

studies per year that assessed cancer incidence or progression as an outcome. Blue bars represent 

the number of all MR cancer studies (all MR studies=blue bars + orange bars) published from 

2003-2016. PubMed search strategy for all MR studies: (mendelian randomization analysis[MeSH 

Terms]) OR "mendelian randomization" OR "mendelian randomisation"; PubMed search strategy 

for MR cancer studies: (((cancer) OR neoplasms[MeSH Terms])) AND (((mendelian 

randomization analysis[MeSH Terms]) OR "mendelian randomization") OR "mendelian 

randomisation") 
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in Box 3 and Box 4. Some considerations which are specific to investigating causality in the 

setting of cancer are outlined below.  

 

Cancer Latency and Reverse Causation – benefits of MR 

Given long latency periods for many cancers, spurious findings resulting from reverse 

causation (when the direction of cause-and-effect relationship is contrary to the presumed 

direction) are an important concern in cancer epidemiology. Reverse causation has been 

suspected in several instances of ambiguous 51-53 or paradoxical findings 54 in the cancer 

literature. For example, early studies documenting an association between higher circulating 

cholesterol and lower cancer incidence were variably interpreted as plausible evidence of a 

protective effect of raised cholesterol on cancer risk or as latent cancer leading to a reduction 

in cholesterol levels 55-57. With the introduction and widespread usage of LDL-C lowering 

medications for the prevention and treatment of CVD, concern arose that such measures 

could thus be increasing cancer rates 58,59.  

In an early proposal of the use of genetics as a tool to circumvent issues of reverse 

causation in observational data, Katan et al. 60 suggested examining the association of genetic 

variants in the APOE locus, determinants of circulating cholesterol levels, with cancer risk. 

As germline genotype at APOE was fixed at conception, it was argued that it would not be 

influenced by subsequent cancer development and could therefore be used to establish 

whether cholesterol had a causal effect on cancer incidence (Figure 3a). Subsequent MR 

analyses testing the effect of lifelong elevated cholesterol through genetic variation in APOE, 

NPC1L1, PCSK9, and ABCG8 have reported null associations with overall cancer risk 61-63. 

These findings alongside secondary analyses of statin trials showing no effect on cancer rates 

64 suggest that – a potential explanatory role of confounding aside - early observational 

findings supporting a protective effect of cholesterol on cancer risk likely reflected 
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undiagnosed cancer or early carcinogenic processes causing a reduction in cholesterol levels 

in pre-diagnostic samples. 

 

Long-term exposure – benefits of MR 

The advantages of exploiting the fixed nature of germline genotype extends beyond 

addressing reverse causation in observational studies. Large cancer prevention trials are often 

constrained to examining interventions over a limited duration in time and over a particular 

period in the life-course (e.g., middle and/or late adulthood) 65. Given the length of time 

required for solid tumor development 66, randomized trials will often not allow sufficient 

follow-up for the effect of an intervention to be detected. In turn, long-term chemoprevention 

trials that are conducted may suffer from issues of non-compliance in the intervention arm, 

contamination in the control arm, and attrition during follow-up.  

Further, the optimal timing of an exposure to prevent cancer may be early in the life-

course and therefore may not be adequately addressed in randomized trials 67. For example, it 

has been proposed that certain carcinogenic agents or processes may confer an effect, or a 

particularly pronounced effect, only over ‘critical periods’ of early life or adolescence (e.g., 

the influence of inadequate childhood nutrient intake on adult cancer risk or the pubertal 

period as a window of breast cancer susceptibility) 68-72. Interrogating the long-term effect on 

cancer of a given intervention in a prevention trial among children or adolescents would be 

unfeasible.  

Examining the effect of genetic variants allocated at conception can therefore offer an 

important first step in identifying risk factors that may be sensitive to duration or timing of an 

exposure over the life course. Inferences made from promising MR findings to plausible 

intervention effects in a subsequent randomized trial would then need to carefully consider 

the possibility that effect estimates obtained in a MR analysis could be sensitive to critical 
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period effects (in which case intervening on an exposure outside of this period may not alter 

disease risk) or represent the cumulative effect of lifelong exposure to a biomarker (in which 

case a relatively short-term trial may generate a smaller effect estimate than that obtained 

from MR). Adopting a “triangulation” framework where evidence from different 

epidemiological approaches with non-overlapping sources of bias are integrated can then be 

used to further examine durations of intervention necessary to confer an effect or ‘pinpoint’ 

possible critical or sensitive windows of susceptibility to carcinogenic agents 73. For example, 

multivariable regression analyses examining the association of an exposure, with some 

evidence of causality from MR studies, over different lengths of follow-up may help to 

identify the duration of exposure required to confer an effect. In contrast, a negative control 

study with repeat measures of an exposure both within and outside of hypothesized critical or 

sensitive periods (e.g., dietary fat intake before, during, and after pubertal development), in 

relation to subsequent disease risk (e.g., breast cancer)74 can help refine periods of increased 

vulnerability to cancer-causing exposures.   

 

Cancer Latency and Reverse Causation – limitations of MR 

Genetic variants known to directly affect an exposure will in some cases be well-

characterized (e.g., variants in the APOE locus), and it will be established whether or not the 

variant-exposure associations are influenced by the outcome of interest. The biological 

understanding of other variants associated with risk factors that are identified in GWAS, 

however, is often more limited. In some situations in which genetic variants are associated 

with both a proposed exposure and outcome of interest, the association between genetic 

variant and outcome might be via the exposure (i.e., a valid IV analysis) but it is also possible 

that, under certain circumstances, there may be a primary effect of the genetic variant on the 
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outcome which in turn causes a change in the exposure. This can potentially bias MR 

estimates in both one-sample and two-sample analyses.  

This situation has been illustrated previously in the context of body mass index (BMI) 

and C-reactive protein (CRP) where an erroneous causal effect can be generated if a genetic 

variant that primarily influences BMI, which in turn influences CRP levels because BMI has 

a causal effect on CRP, is mistaken as being a variant with a primary influence on CRP 

(Figure 3b). 26 Use of such a variant as an instrument for CRP in a MR analysis of the effect 

of CRP on BMI would then lead to biased results.  

This introduction of reverse causation into a MR analysis may be problematic for 

common cancers with long latency periods between tumour initiation and diagnosis (e.g., 

breast and prostate) 75. Reverse causation in this context could be mitigated by obtaining 

gene-exposure estimates in a healthy population where the prevalence of undiagnosed, latent 

cancer is likely to be low. These estimates could then be used to generate IV estimates in a 

two-sample MR framework. Additionally, steps could be taken to construct a GRS solely 

consisting of instruments that plausibly act directly on a trait. For example, in constructing an 

instrument for CRP levels, this could include solely using variants within the CRP gene itself 

as these variants are more likely to be exclusively associated with CRP levels than variants in 

other genes 76. However, it should be noted that a trade-off of using few, biologically-

informed SNPs as an instrument is that sensitivity analyses examining horizontal pleiotropy 

(e.g., MR-Egger, median-based methods, mode-based methods) – when feasible to perform 

(i.e., at minimum, the availability of three or more SNPs) – will have limited statistical power 

to detect a causal effect.  
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Selection bias in cancer progression analyses  

A particular concern in cancer epidemiology is that exposures that influence cancer 

incidence may not influence cancer progression or survival. For example, although smoking 

is a robust risk factor for breast cancer incidence, smoking cessation upon development of 

breast cancer seems to have little effect on subsequent survival 77. There has been some 

suggestion that folate may play a dual role in prostate and colorectal carcinogenesis: 

protective against DNA damage prior to the development of neoplasia, but promoting tumour 

progression via enhanced tumour proliferation and tissue invasion once cancer has developed 

78,79.  

Some MR studies have begun to examine the effect of risk factors on both cancer 

incidence and progression 80. In a recent analysis examining the effect of alcohol 

consumption on prostate cancer risk in 46,919 men in the PRACTICAL consortium, alcohol 

consumption (instrumented by 68 SNPs in alcohol-metabolizing genes) was reported not to 

be associated with overall prostate cancer risk but to confer an increased risk of prostate 

cancer mortality among men with low-grade disease 81. Such MR studies exploit the fact that 

GWAS are being increasingly used to identify genetic variants associated with cancer 

progression or survival 82,83. While these studies have to date generally uncovered few 

genome-wide significant loci, GWAS association estimates can still be useful for identifying 

causal risk factors for progression (particularly with use of a two-sample MR framework).  

However, there are important methodological considerations in investigating factors 

causing cancer progression. This is because prognostic studies can suffer from selection bias 

due to the fact that any factors that cause disease incidence (or diagnosis) will tend to be 

correlated with each other in a sample of only cases, even when they are not correlated in the 

source population. Thus if at least one factor causes both incidence and disease survival 

(hypothetically, insulin resistance in Figure 4), all the other factors which cause disease 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2017. ; https://doi.org/10.1101/223966doi: bioRxiv preprint 

https://doi.org/10.1101/223966
http://creativecommons.org/licenses/by/4.0/


14 

 

incidence (hypothetically, smoking in Figure 4) will appear to be associated with survival, 

unless the true prognostic factor is conditioned upon. Thus, the estimated effect on 

progression for any factor that is associated with incidence is likely to be biased. However, 

any factor that is not associated with incidence will not suffer from selection bias by studying 

only cases in a MR analysis. For example, given evidence for a causal effect of BMI on 

breast cancer incidence 84, in their MR analysis of BMI on breast cancer survival Guo et al. 

had to consider the possibility that evidence of an effect of BMI on breast cancer survival 

could reflect confounding with one or more other causes of breast cancer incidence that 

became conditionally associated with BMI upon restricting analyses to breast cancer cases 85. 

When conducting prognostic studies, care should be taken to examine and (where 

possible) overcome the selection bias due to studying only cases 80. First, the observed data 

could also be used to help identify plausible directed acyclic graphs (DAGs) including both 

disease incidence and progression. For example, if a genetic score for a phenotype, and an 

environmental variable, are correlated in cases, but not in the source population this would 

suggest that both factors influence disease incidence, diagnosis, or self-selection into the 

study.  However, lack of evidence for such correlations does not imply that there is no 

selection bias, and expert or external knowledge should be used in constructing the DAG, as 

is usual practice. The DAG can then be used to help inform sensitivity analyses. Additional 

data on factors that predict incidence could be combined with observed data in cases, to 

minimise selection bias, either by conditioning or by inverse probability weighting (IPW). If 

more than one DAG are considered plausible a priori, then they can be used to conduct 

sensitivity analyses, by examining how robust the conclusions are to the causal assumptions 

made. The DAG can also be used to identify which assumptions are being made that are 

untestable given the observed data, and then sensitivity analyses can be conducted by 

examining plausible values for those relationships. 
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Illustrative examples 

To illustrate the use of MR in analyses examining cancer outcomes, we have outlined 

three studies that have employed this approach to understand the causal role of various exposures 

on cancer incidence.  

 

Selenium and incidence of prostate cancer 

Prospective studies reporting inverse associations of dietary, blood, and toenail 

selenium with risk of prostate cancer 86-92, along with findings from in vitro studies 93,94, led 

to development of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) 95. 

SELECT was a 2 x 2 factorial trial of 35,533 healthy middle-aged men that examined the 

effect of daily supplementation with selenium, vitamin E, or both agents combined, as an 

intervention for prostate cancer prevention. The trial was stopped after 5.5 of a planned 12 

years follow-up due to a lack of efficacy compounded by possible carcinogenic (increased 

rates of high-grade prostate cancer) and adverse metabolic (weak increased rates of T2D) 

effects in the selenium supplementation group 9,10. It is plausible that residual confounding 

may have accounted for conflicting results between prospective studies and SELECT 96,97.  

To test whether a MR approach could have predicted the results of SELECT, a two-

sample MR analysis (Box 3) was performed using summary data on 72,729 individuals of 

European descent from the PRACTICAL consortium 98,99. Eleven SNPs robustly associated 

with blood selenium in a meta-analysis of previously published GWAS 100,101 (P < 5 x 10-8) 

were combined into a GRS (Box 4) to proxy circulating levels of selenium (Figure 1). To 

allow for direct comparison of effect estimates with SELECT, the authors investigated the 

causal odds ratio (OR) per 114 μg/L genetically-elevated circulating selenium, scaled to 
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match the measured differences in blood selenium between supplementation and control arms 

in SELECT.  

Consistent with results from SELECT, a 114 μg/L life-long increase in blood 

selenium in MR analyses was not associated with overall prostate cancer risk (OR: 1.01, 95% 

CI 0.89-1.13; P = 0.93; SELECT: Hazard Ratio (HR): 1.04, 95% CI 0.91-1.19). MR analysis 

of selenium on advanced prostate cancer (defined as Gleason ≥8, prostate-specific antigen 

>100 ng/mL, metastatic disease (M1), or death from prostate cancer) (OR: 1.21, 95% CI 

0.98-1.49; P = 0.07) was concordant with the observed weak evidence for an increased risk of 

high-grade prostate cancer (Gleason ≥7) in the selenium supplementation arm of SELECT 

(HR: 1.21, 95% CI 0.97-1.52; P = 0.20). Likewise, the effect of selenium on T2D (OR: 1.18, 

95% CI 0.97-1.43; P = 0.11) was concordant with weak evidence for an increased risk of 

T2D in the selenium arm of SELECT (HR: 1.07, 95% CI 0.97-1.18; P = 0.16).  

Thus, the overall similarities in findings between this MR analysis and that of 

SELECT, as compared to results from conventional observational studies, provides some 

support for the utility of an MR approach in approximating experimental results using 

observational data. Further, these results suggest that performing a MR analysis may be an 

important time-efficient and inexpensive step in predicting both efficacy and possible adverse 

effects of an intervention before an RCT is performed. This information, along with careful 

consideration of the possibility that an MR result could be driven by critical period effects 

(e.g., limiting benefit of intervention in middle-aged adults) or represent the cumulative effect 

of long-term exposure to a biomarker (i.e., limiting benefit of a trial with limited duration), 

could be used to help prioritize which interventions should be taken forward to a trial.  

 

Alcohol and incidence of oesophageal cancer 
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Regular alcohol consumption is associated with a substantial increased risk of 

oesophageal squamous cell carcinoma in observational studies, with an approximate two-fold 

increased risk for moderate drinkers and a five-fold increased risk for heavy drinkers when 

compared to occasional/non-drinkers 102. However, alcohol consumption is often associated 

with other lifestyle and behavioural factors (e.g., smoking and dietary intake), which may 

themselves predispose toward oesophageal cancer 103,104. Further, most studies that examined 

this hypothesis have used case-control designs, which may introduce reporting bias if cases 

recall alcohol consumption differently from controls. For example, cases may be more likely 

to reflect on and more carefully report their history of alcohol consumption, to account for 

their cancer diagnosis, than controls who do not have the same motivation for more careful 

recall of alcohol exposure 102. Given the high global prevalence of alcohol consumption, 

considerable population-level reductions in the incidence of oesophageal cancer could be 

achieved by intervening on alcohol consumption levels if the causal nature of the link 

between the two was confirmed 105.  

The ability to metabolize acetaldehyde, the principal metabolite of alcohol and a 

carcinogen 106, is encoded by ALDH2, which is polymorphic in some East Asian populations. 

Specifically, the ALDH2 *2 allele produces an inactive protein subunit that is unable to 

metabolize acetaldehyde, resulting in markedly higher peak blood alcohol levels in *2*2 

homozygotes compared to *1*1 homozygotes 107. Individuals with the *2*2 genotype 

experience a flushing reaction to alcohol, along with dysphoria, nausea, and tachycardia, and 

therefore have very low levels of alcohol consumption 108. Consequently, genetic variation in 

ALDH2 can be utilized as an instrument for examining both regular alcohol consumption and 

blood acetaldehyde levels among alcohol consumers 109.  

In a meta-analysis of seven studies with a total of 905 oesophageal cancer cases of 

East Asian descent, individuals with the ALDH2 *2*2 genotype were found to have an 
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approximately 3-fold reduced risk of oesophageal cancer, as compared to the ALDH2 *1*1 

genotype (OR: 0.36, 95% CI 0.16-0.80), suggesting a protective effect of reduced alcohol 

consumption on oesophageal cancer risk 110. However, when comparing individuals with a 

heterozygous *1*2 genotype to *1*1 individuals, the former were shown to have a 

(seemingly paradoxical) overall increased oesophageal cancer risk (OR: 3.19, 95% CI 1.86-

5.47). A naïve interpretation of this finding, without consideration of the effect of the ALDH2 

*2 allele on blood acetaldehyde, would suggest that individuals with moderate alcohol intake 

had the highest risk of oesophageal cancer. 

When this association was stratified by self-reported alcohol intake, the effect of *1*2 

genotype on oesophageal cancer was shown to differ markedly by alcohol intake. Among 

non-drinkers, there was no strong evidence for an increase in risk among heterozygotes (OR: 

1.31, 95% CI 0.70-2.47) relative to *1*1 individuals. However, among heavy drinkers there 

was a 7-fold increase in risk (OR: 7.07, 95% CI 3.67-13.6). Similarly, meta-regression 

analysis showed evidence that level of alcohol intake influenced the effect of the *1*2 

genotype on oesophageal cancer risk (P = 0.008) (i.e., the larger the amount of alcohol intake, 

the greater the OR of *1*2 versus *1*1 genotypes). As the possession of an ALDH2 *2 allele 

only appeared to increase risk of oesophageal cancer among heterozygotes who reported 

alcohol intake, this suggested that the substantially elevated acetaldehyde levels in these 

heterozygotes may mediate the effect of alcohol intake on oesophageal cancer. Subsequent 

MR analysis examining the effect of alcohol intake on risk of head and neck cancer similarly 

reported both protection of ALDH2 *2*2 genotype against head and neck cancer as compared 

to *1*1 homozygotes and an interaction of the effect of ALDH2 1*2 genotype on cancer risk 

by alcohol behaviour (elevated risks among moderate and heavy drinkers compared to *1*1 

individuals, but no elevated risk among non-drinkers) 111. 
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More generally, this example illustrates how interpretation of MR findings can be 

challenging when there is limited biological understanding of the genetic variant used as a 

proxy for a given exposure. MR results that appear to be strongly discordant with underlying 

biology should be followed-up alongside available functional understanding of genetic 

variants employed as instruments to help resolve ambiguous or paradoxical results and avoid 

naïve interpretation of findings.   

 

Body mass index and incidence of lung cancer 

In contrast to the relationship of adiposity with risk of most cancers, BMI has shown 

consistent inverse associations with incidence of lung cancer, particularly among current and 

former smokers 112,113. As smoking is a robust risk factor for lung cancer and has been shown 

to have an inverse effect on BMI 114, some have argued that residual confounding by smoking 

could account for this apparent protective association 115. Reverse causation (i.e., 

undiagnosed lung cancer or disease processes leading up to lung cancer prior to study entry 

influencing subsequent weight loss), especially in cohorts with insufficient follow-up time, 

has also been proposed as an explanation for this observational finding 116.  

Attempts to address these possible sources of bias have failed to provide clarity. For 

example, studies that reported finely stratifying associations across various dimensions and 

classifications of smoking behaviour (e.g., number of cigarettes smoked per day, “cigarette-

years” smoked, and time since quitting smoking) have found little evidence to support 

residual confounding by smoking influencing this association 112,113. Further, studies 

removing individuals with inadequate follow-up have reported little effect on overall findings 

112,113,117,118, interpreted as suggesting that reverse causation is unlikely to be a major 

contributor to this association. For this reason, some have argued that the inverse association 
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of BMI with lung cancer may not be artefactual but may reflect a real biological phenomenon 

113. 

Given that germline genetic variants associated with BMI cannot be influenced by 

prevalent disease and should not be associated with potential confounding factors, a MR 

approach could be used to assess whether increased BMI is protective against lung cancer 

84,119. For example, Carreras-Torres et al. performed a MR analysis using GWAS results on 

16,572 lung cancer cases and 21,480 controls of European descent 120. 97 SNPs previously 

associated with BMI in a GWAS of 339,224 individuals from the Genetic Investigation of 

Anthropometric Traits consortium were compiled into a GRS to proxy for anthropometrically 

measured BMI. This risk score was associated with measured BMI but not with available 

measures of tobacco exposure, including pack-years, cigarettes smoked per day, or cotinine 

levels, providing some evidence against confounding through measured smoking variables 

114. In two-sample MR analyses, a 1-SD increase in BMI was weakly associated with an 

increased risk of lung cancer (OR: 1.13, 95% CI 0.98-1.30; P =0.10), with strong 

heterogeneity across histological sub-types (Pheterogeneity < 3 x 10-5). Notably, BMI was 

positively associated with risk of both squamous cell (OR: 1.45, 95% CI 1.16-1.62; P = 1.2 x 

10-3) and small cell carcinoma (OR: 1.81, 95% CI 1.14-2.88; P = 0.01) but showed weak 

evidence for a protective effect for adenocarcinoma (OR: 0.82, 95% CI 0.66-1.01; P = 0.06). 

These findings were robust to sensitivity analyses (MR-Egger regression and WME) 121,122 

performed to identify potential directional pleiotropic effects of the GRS (see Box 4). These 

findings thus help to clarify a likely positive risk relationship of genetically-elevated BMI 

with two major histosubtypes of lung cancer. Alongside some genetic evidence to suggest 

that elevated BMI may influence subsequent smoking uptake 123, which itself reduces BMI 

while increasing lung cancer risk 114, these findings collectively suggest a possible 

mechanism that could help to reconcile seemingly conflicting MR and observational findings. 
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Further interrogation of a possible mediating role of smoking on the causal pathway between 

BMI and lung cancer risk using “two-step MR” (discussed in "MR for mediation") may be 

able to help shed further light on the possible intricate relationship between smoking and 

BMI in the aetiology of lung cancer. 
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Box 3: Summarized data and two-sample MR   
 
Two-sample MR 
 

Historically, both gene-exposure and gene-outcome estimates in MR analyses had to be obtained from a 
single sample which relied upon the availability of information on genotype, exposure, and outcome among all 
participants in that dataset. In practice, this not only posed a challenge in that large-scale measurement of a given 
exposure of interest (e.g., many molecular traits) may not only be prohibitively expensive but also that 
measurement of certain exposures may not be possible (e.g., if adequate blood sample collection or preservation 
has not taken place) 124. An extension to the original MR paradigm that has allowed MR analyses to overcome 
some of these challenges is the integration of gene-exposure and gene-outcome estimates from two independent 
(non-overlapping) datasets into a single analysis, an approach called “two-sample MR” analysis 124,125.  
 
Two-sample MR with summarized genetic association data 
 

It is possible and increasingly common practice to perform MR analyses exclusively using summarized 
data on gene-exposure and gene-outcome estimates 125,126. A strength of two-sample MR with summary data is 
that the scope of possible MR analysis can be expanded significantly by exploiting the growing  amount of 
publicly-available summary data from large genome-wide association study (GWAS) consortia 127  and is aided 
by the development of a harmonised MR platform that has collated these datasets (MR-Base) 128. Utilizing data 
from separate exposure and outcome samples can help to bolster statistical power in MR analyses by increasing 
the overall sample size of an analysis, particularly when testing effects on binary disease outcomes like cancer, 
and also reduces the likelihood of “winner’s curse” bias (see Table 1) 125. This increased power also means that 
sensitivity analyses to test pleiotropy assumptions (see Box 4) which are often statistically inefficient are better-
powered to detect violations of these assumptions. Furthermore, whereas in a one-sample MR setting weak 
instruments can bias effect estimates towards the observational effect, resulting in potential false positive 
associations, in a two-sample setting weak instrument bias distorts findings towards the null. Thus, conducting 
both analyses is a form of sensitivity analysis that provides bounds to a possible causal effect. 

To test whether height has a causal effect on risk of colorectal, lung, and prostate cancer, Khankari et 
al. used a two-sample MR approach. This employed: i) summarized gene-exposure estimates from a panel of 
423 single-nucleotide polymorphisms (SNPs) previously found to be associated with height in a large GWAS 
meta-analysis (GIANT consortium; N=253,288) and collectively explaining approximately 16% of variance in 
height; and ii) summarized gene-outcome estimates from a total of 47,800 cancer cases (across the three 
outcomes ascertained) and 81,533 controls from the Genetic Associations and Mechanisms in Oncology 
(GAME-ON) consortium 129. This approach allowed robust causal inference with adequate statistical power. 
While Khankari et al. did not examine the effects of height across stage/grade or histological sub-type of the 
three cancers examined, two-sample approaches enable statistically efficient examination of risk factors across 
such stratified groups which may have limited sample sizes. 

 
Limitations of two-sample MR 

 
While two-sample MR offers some clear advantages over a conventional one-sample approach, it also 

introduces additional assumptions. One important assumption is that the separate datasets from which gene-
exposure and gene-outcome associations are obtained are representative of the same underlying population, for 
example with regard to sex, age, ethnicity, or genetic profile. While most GWAS that have examined sex-
specific associations of traits have often reported at most modest evidence of sexual dimorphism 130,131, given the 
sex-specific nature of certain cancers, care should be taken to ensure that instruments are obtained from sex-
stratified GWAS for analyses of these cancers when available. For example, in examining the effect of waist-
hip-ratio (WHR) on endometrial or ovarian cancer this could involve using the 34 SNPs associated with WHR in 
women exclusively as a primary instrument, then comparing results with those obtained using the 47 SNPs 
associated with WHR across both sexes as a sensitivity analysis 132,133. Concordance of findings between both 
approaches may suggest that directionally-consistent SNPs associated with WHR at genome-significance in 
women, but not men, simply reflected reduced statistical power in sex-stratified GWAS analyses and not 
genuine heterogeneity in SNP-effects between sexes. A second challenge when performing two-sample MR 
using summary data is the difficulty in examining the IV assumption that an instrument used is independent of 
exposure-outcome confounders. While restriction of analyses to ethnically homogenous gene-exposure and 
gene-outcome datasets will reduce the possibility of confounding through population stratification, in lieu of data 
on measured potential confounders, this assumption cannot be directly tested. While one way of approximately 
testing this assumption is performing look-up of associations of SNPs with suspected potential confounders in 
curated GWAS databases, this would not preclude chance confounding relationships arising in the dataset(s) 
from which summary data were obtained. Third, with the use of summary data from large GWAS consortia, it is 
possible that there may be some participant overlap in the datasets from which gene-exposure and gene-outcome 
associations are obtained. If overlap is small, this should not substantially bias effect estimates, however 
substantial overlap will bias MR toward the observational effect 134.  
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Box 4: Genetic risk scores and pleiotropy 
 
Using multiple genetic variants as an instrument 
 

While GWAS over the past decade have been successful at identifying robust associations between 
common genetic variants (usually SNPs) and thousands of phenotypes, the effects of individual variants on traits 
are often modest 135. Consequently, statistical power for MR analyses using single variants as instruments can be 
limited. A common approach of overcoming limited statistical power is to combine multiple variants into a 
genetic risk score (GRS), which increases the variance explained for a trait of interest, improving instrument 
strength 136,137. A GRS can consist of an unweighted summation of risk-factor increasing alleles across variants 
but, more commonly, a weighted approach is used (e.g., weighted by the inverse of the standard error of the 
gene-outcome association – called the “inverse-variance weighted (IVW) method”). In a two-sample setting (see 
Box 3), a GRS will typically be constructed by combining SNPs that are independent (i.e., not in LD with each 
other) into a weighted score. However, it is also possible to combine correlated SNPs in low to moderate LD into 
a GRS, using weighted generalized linear regression for example 136. This requires the creation of a weighting 
matrix which takes into account correlations between SNPs, often with use of a reference panel like the Hapmap 
or the 1,000 Genomes Project 138,139, which is then used to correctly inflate standard error estimates. The latter 
method may be preferable to overcome weak instrument issues when few independent SNPs are available.  
 
Vertical vs horizontal pleiotropy 
 

While construction of a GRS can help to enhance statistical power in MR analyses, increasing the 
number of variants included in a score is accompanied by an increased probability that any of these variants 
could be pleiotropic (i.e., one variant having effects on two or more traits). In a genetic epidemiological context, 
an important distinction is made between vertical and horizontal pleiotropy, each having different effects on the 
interpretation of MR findings. Vertical pleiotropy occurs when one variant has an effect on two or more traits 
that both influence an outcome through the same biological pathway. For example, variants in FTO that not only 
associate with BMI, but also with fasting insulin and glucose concentrations would be consistent with a causal 
effect of BMI on these downstream traits 140. In this case, a MR analysis examining the effect of BMI on T2D 
risk using these FTO variants would be consistent with an instrument (genetic variants associated with BMI) 
influencing an outcome (T2D) exclusively through the exposure of interest (BMI). This form of pleiotropy 
would be expected in complex biological systems and does not pose a threat to the validity of a MR analysis 141. 
In contrast, horizontal pleiotropy occurs when one variant has an effect on two or more traits that influence an 
outcome through independent biological pathways. For example, genetic variants associated with triglyceride 
levels also show substantial overlap with variants associated with LDL-C and HDL-C 142. As a putative effect of 
triglyceride-increasing variants on CHD risk may not only operate through elevation of triglycerides but through 
alternate cholesterol pathways, a naïve MR analysis using all triglyceride-increasing variants without addressing 
pleiotropy in this instance could invalidate the “exclusion restriction criterion” IV assumption. The presence of 
horizontal pleiotropy thus poses a direct threat to the validity of MR findings.  
 
Assessment of horizontal pleiotropy 
 

When using either a single or a small number of genetic variants as IVs, the presence of horizontal 
pleiotropy for any individual variant can be assessed through SNP look-ups in curated GWAS databases with 
complete summary data (e.g., MR-Base 128, PhenoScanner 143, dbGap 144) to examine whether associations for a 
given SNP have been reported for traits other than the exposure of interest. Sensitivity analyses can then be 
performed by dropping variants that are suspected to be horizontally pleiotropic and then carefully interpreting 
pooled causal estimates with and without suspected horizontally pleiotropic SNPs. When an instrument consists 
of multiple genetic variants, an important first step in examining the presence of horizontal pleiotropy in 
analyses is to assess heterogeneity in causal estimates across individual IVs (including visually examining 
heterogeneity using a funnel plot). While substantial heterogeneity in causal estimates may be indicative of the 
presence of horizontal pleiotropy, if there is overall symmetry in the funnel plot, pleiotropic effects will be 
balanced (termed “balanced pleiotropy”) and the overall causal estimate generate will be unbiased. In contrast, if 
there is considerable asymmetry in a funnel plot, this will suggest that horizontal pleiotropic effects of individual 
IVs are not balanced and that overall causal estimates will be biased (termed “directional pleiotropy”). MR-
Egger regression and the weighted median estimator (WME) are two widely implemented approaches for 
detecting and accounting for directional pleiotropy, and are applicable to analyses utilizing individual-level and 
summary-level data 121,122. An additional approach called the mode-based estimate (MBE) has also recently been 
proposed as a method to examine horizontal pleiotropy in MR analyses 145. All of these methods can help to 
detect IV violations while making different assumptions about the nature of horizontal pleiotropy and thus, when 
feasible, using all approaches as sensitivity analyses in a given MR analysis can serve as an important 
mechanism to assess the robustness of findings to pleiotropic bias.  
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Sensitivity analyses to examine horizontal pleiotropy when using multiple genetic variants 
 

MR-Egger regression provides a consistent causal effect estimate even when all genetic variants are 
invalid IVs because they violate the exclusion restriction criterion. This approach performs a weighted linear 
regression of the gene-outcome coefficients on the gene-exposure coefficients with an unconstrained intercept 
term. If the IV assumption that the association of each variant with the outcome is mediated exclusively 
through the exposure of interest is met, this intercept term should be zero. An intercept term that differs from 
zero would suggest the presence of unbalanced pleiotropy, thus providing a test for directional pleiotropy. In 
turn, the slope coefficient in MR-Egger regression will provide an estimate of a causal effect adjusted for 
directional pleiotropy. An important consideration when using MR-Egger is that it works under the InSIDE 
(instrument strength independent of direct effect) assumption. In essence, InSIDE assumes that no association 
exists between the strength of gene-exposure associations and the strength of bias due to horizontal pleiotropy. 
Intuitively, if multiple genetic variants in an MR analysis have horizontally pleiotropic effects through 
unrelated intermediate variables, it would be expected that this assumption should hold 7. However, this 
assumption is unlikely to be satisfied in situations where all pleiotropic effects are due to the presence of a 
single confounder. As such, in lieu of an established method of formally testing the InSIDE assumption, 
interpretation of intercept terms and slope coefficients generated through MR-Egger should be made with this 
assumption in mind. A complementary sensitivity analysis to MR-Egger is the weighted median estimator. 
This approach provides an estimate of the weighted median of a distribution in which individual IV causal 
estimates in a risk score are ordered and weighted by the inverse of their variance. Unlike MR-Egger which can 
provide an unbiased causal effect even when all IVs are invalid, WME requires that at least 50% of the 
information in a risk score is coming from IVs that are valid in order to provide a consistent estimate of a 
causal effect in a MR analysis. However, an advantage of WME is that it provides improved precision as 
compared to MR-Egger and does not rely on the InSIDE assumption. The mode based estimator generates a 
causal effect using the mode of a smoothed empirical density function of individual IV causal estimates in a 
risk score. This approach operates under the assumption that the most common effect estimate of individual 
IVs in a risk score arises from valid instruments (called the Zero Modal Pleiotropy Assumption, or ZEMPA). If 
this assumption holds, the mode can provide a consistent causal estimate even if most of the (non-modal) IVs 
are invalid. Both simple and weighted mode approaches (weighted by the inverse variance of the SNP-outcome 
association) can be utilized. Mode-based approaches have less power to detect a causal effect than the weighted 
median estimator but greater power than MR-Egger regression under the condition of no invalid instruments. 
Similar to the weighted median estimator, mode-based approaches are also (by default) less susceptible to bias 
from outlying variants in a risk score.  
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Recent methodological extensions and future applications  

 

In recent years, the development of various methodological extensions to the original 

MR paradigm have helped to enhance the scope of MR analyses, several of which are 

discussed below with reference to possible applications in cancer epidemiology. 

 

MR for mediation  

Over the past decade, high through-put “omics” technologies have begun to permit 

exhaustive profiling of the epigenome, metabolome, and proteome (as examples), allowing 

the collection of high-dimensional molecular data on increasingly large number of 

individuals 146. Such omics measures may serve as important mediators on causal pathways 

linking macro-level risk factors with cancer incidence or progression. Identification of these 

omics mediators could help to increase scope for pharmacological intervention aimed at 

cancer prevention or progression (e.g., when upstream risk factors are difficult or not feasible 

to intervene on). While conventional mediation analyses exist to examine possible exposure-

mediator-outcome relationships, the validity of these approaches relies upon strong 

assumptions which are unlikely to be met in practice, such as no measurement error and no 

unmeasured confounding 147.  

With the performance of GWAS on large collections of metabolites and other omic 

measures 148,149, this will create opportunity to develop genetic instruments for these traits. To 

establish whether a particular molecular intermediate is on the causal pathway between an 

exposure and cancer, genetic variants can be used as instruments for both exposures and 

putative mediators that influence a disease outcome in a two-step MR framework (Figure 5) 

150.  
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For example, a method of testing the mediating role of methylation changes on cancer 

outcomes would be to exploit the fact that genetic variants (e.g., methylation quantitative trait 

loci, mQTLs) are robustly associated with methylation at CpG sites across the epigenome, 

providing possible instruments for MR analyses 151. Two-step MR could then used to 

examine the potential mediating role of DNA methylation sites associated with exposures 

such as tobacco smoke 152 which have also been found to be strongly associated with lung 

cancer risk 153. To test whether methylation is causally mediating (some, or all of) the effect 

of tobacco exposure on lung cancer risk, in the first step, a SNP could be used to proxy 

smoking behaviour in order to investigate its effect on the intermediate phenotype (DNA 

methylation). In the second step, an independent SNP (not related to the exposure) could then 

be used to proxy the intermediate phenotype (DNA methylation) which could then be 

examined in relation to the disease outcome (lung cancer) 147.  

 

ExE interaction 

Akin to a factorial RCT, factorial MR is a method of testing the independent and 

additive effects of two or more exposures (ExE) on disease outcomes (Figure 6). This 

approach was adopted by Ference et al. who performed a 2x2 factorial MR analysis to 

examine the effect of the LDL cholesterol-lowering drug ezetimibe on risk of CHD, as 

compared to the effect of statins alone or when combined with statins 154. Ference et al. 

examined the effect of natural random allocation to lower LDL-C on the risk of CHD through 

SNPs in NPC1L1 (a target of ezetimibe) alone, HMGCR (a target of statins) alone, or variants 

in both gene regions combined. The authors reported that natural randomization to lower 

LDL-C through SNPs in NPC1L1 and HMGCR alone showed similar decreases in LDL-C 

and CHD and that randomization to lower LDL-C in both groups combined had a linearly 

additive effect on LDL-C lowering and a log-linearly additive effect on CHD risk. These 
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results were corroborated by the ‘Improved Reduction of Outcomes: Vytorin Efficacy 

International Trial,’ which allocated 18,144 participants to ezetimibe, statins, both, or placebo 

155.  

Factorial MR could be used to evaluate the proposed interactions between smoking 

and alcohol consumption on risk of head and neck cancer 156, smoking and BMI on risk of 

oesophageal cancer 112, or vitamin D and calcium on risk of colorectal cancer 157, as 

examples. An important caveat of this approach is that it relies on access to individual-level 

data and requires very large sample sizes to have adequate statistical power to reliably detect 

differences in effect across groups.   

It may also be useful (particularly for exposures that cannot be instrumented) to 

embed MR analyses into randomized trials as another method of simulating a factorial 

randomized trial. For example, data from the Add-Aspirin trial, which is examining whether 

regular aspirin use after curative treatment for early stage solid tumours can prevent disease 

recurrence and survival, could present an opportune setting to examine possible additive 

effects of aspirin and other therapies (proxied by genetic instruments) on cancer outcomes 158. 

Such an embedded MR-in-RCT design would necessitate large sample sizes and would 

require access to individual-level trial data.  

 

GxE interaction 

Studies of gene-environment interactions (GxE) offer the potential to discover both 

novel genetic risk loci and environmental factors for cancer, in addition to gaining insight 

into biological mechanisms that may underlie associations between risk factors and cancer 

159. In turn, these findings can be used to inform risk prediction and the identification of high-

risk populations for targeted prevention strategies 160. As in conventional observational 

studies, the “E” component of GxE studies will still be subject to the same methodological 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2017. ; https://doi.org/10.1101/223966doi: bioRxiv preprint 

https://doi.org/10.1101/223966
http://creativecommons.org/licenses/by/4.0/


28 

 

limitations that undermine robust causal inference. The use of genetic variants to instrument 

the “E” component in these studies can therefore help to circumvent confounding and bias in 

conventional observational analyses 161. Limited statistical power is an important 

consideration in conventional GxE studies and the reduced power that would accompany the 

use of genetically-instrumented exposures should also be considered.  

GxE interaction can also be used to test violations of pleiotropy assumptions in 

certain MR analyses. Specifically, as MR models assume that a genetic instrument is not 

associated with an outcome except through modulation of the exposure of interest, this 

assumption can be tested by stratifying analyses on a supposed interacting variable. For 

example, in a MR analysis of the effect of heaviness of smoking on lung cancer risk, an 

instrument proxying for heaviness of smoking (variants in CHRNA5-A3-B4) 162 should only 

be associated with lung cancer among self-reported smokers and not in never or former 

smokers in an analysis stratified by smoking status 30. Likewise, in a MR analysis of the 

effect of alcohol on oesophageal or head and neck cancer, an instrument proxying for regular 

alcohol consumptions (variants in ALDH2) should only be associated with these cancers 

among those who report regularly consuming alcohol and not among those who refrain from 

consuming alcohol 110,111. Here, the interaction reflects the lack of any pathway through 

which the genotype can operate if the exposure is not present (i.e. a lack horizontal of 

pleiotropy) and allows for the exclusion restriction criterion to be tested. When using GxE to 

test pleiotropy assumptions in this manner, however, it is important to consider the possibility 

of introducing selection bias (see “Selection bias in cancer progression analyses”).  

 

Hypothesis-free MR 

A novel extension to a conventional “hypothesis-driven” MR analysis is a phenome-

wide, “hypothesis-free” MR analysis (termed “MR-PhEWAS”) 163. This approach makes use 
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of genotyped datasets with high-dimensional phenotypic data or summary GWAS association 

statistics to perform hundreds or thousands of statistical tests simultaneously in an agnostic 

manner. For example, the approach can be used to examine the causal effect of a single 

exposure across multiple outcomes or multiple exposures across a single outcome. In contrast 

to hypothesis-driven analyses, hypothesis-free approaches allow for testing hypotheses that 

may not have been considered or tested previously, thus identifying novel risk relationships, 

and can help to address issues of publication bias as all analyses are openly specified and all 

results are presented) 164.  

For example, using a two-sample MR framework with summary data, Haycock et al. 

performed a MR-PheWAS examining the causal effect of telomere length on risk of 35 

cancers and 48 non-cancer diseases in 420,081 cases and 1,093,105 controls 165. After 

correction for multiple-testing, they found that telomere length increased cancer risk across 

most sites and histological sub-types but reduced CVD risk. An important consideration 

when performing hypothesis-free MR analyses using summary data is the need to follow-up 

any putative findings in subsequent independent datasets. This can be a challenge when using 

summary GWAS data to perform such analyses if a large proportion of the available GWAS 

literature was used to provide causal estimates in the original “discovery phase” of an 

analysis.  

 

MR for identifying causality of mutational signatures  

Large-scale analysis of the genomes of thousands of cancer patients has helped to 

reveal somatic “mutational signatures” (distinctive somatic mutational patterns left by unique 

carcinogenic agents) involved in the development of their tumours 166,167. To date, mutational 

signatures have been identified across more than 30 different cancer types, with anywhere 

from two to six distinction mutational processes for each cancer type. Knowledge of the 
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causes of somatic mutations within tumour tissue can improve understanding of the 

mechanisms by which endogenous and exogenous exposures promote the development of a 

cancer. Of the mutational signatures identified across cancer types, a putative cause has been 

proposed for approximately half 166; MR may offer particular promise in helping to identify 

the aetiology of other mutational signatures identified 168.  

Robles-Espinoza et al. examined the effect of germline MC1R status, associated with 

red hair, freckling, and sun sensitivity, on somatic mutation burden in melanoma. Such an 

analysis can be viewed as a MR appraisal of the effect of this sensitivity phenotype on 

somatic mutation burden in melanoma 169. For all six mutational types assessed, there was 

evidence of an increased burden of somatic single nucleotide variants in individuals carrying 

one or two MC1R R alleles (disruptive variants). For one of the six mutational signatures 

characterized by an abundance of somatic C>T single nucleotide variants, each additional R 

allele at MC1R was associated with a 42% (95% CI 15-76%) increase in the C>T single 

nucleotide variant count. This approach therefore highlights the possibility of testing the 

causal effect of suspected carcinogenic agents on mutational burden for various mutational 

signatures across cancer tissues and sub-types.  

 

Drug repurposing and adverse drug effects 

Drug repurposing, applying known drugs to novel indications, can provide a rapid, 

cost-effective mechanism for drug discovery and may hold promise for the development of 

pharmacological interventions for cancer prevention 170,171. In turn, for well-tolerated drugs 

that are considered candidates for repurposing, MR may offer an attractive approach for 

testing their potential chemopreventive efficacy. For example, it is currently possible to 

reliably instrument drugs for which there is a broad understanding of the biological 

mechanism of action: examples that currently exist within cardiovascular disease include 
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proxies for HMG Co-A reductase inhibitors, PCSK9 inhibitors, CETP inhibitors, and sPLA2 

inhibitors 172. For the primary or tertiary prevention of certain cancers, aspirin, metformin, 

and bisphosphonates have all been proposed as possible candidate pharmaceutical agents for 

repurposing  173-175. Using MR as a first step to test drug efficacy for novel cancer indications 

could help to prioritize or deprioritize further investigation of certain drugs (e.g., helping to 

guide which drugs should be taken forward to testing in RCTs for re-purposing).   

MR may also provide a useful approach for predicting adverse effects of 

pharmaceuticals 176. Pre-approval trials are often not able to adequately capture development 

of adverse effects due to the comparatively small number of individuals typically exposed to 

a drug in such trials (unless drug effects are very common or very large), the limited duration 

of most trials, the possibility that recorded data may not include necessary information to 

identify unanticipated drug effects or those unrelated to the drugs’ indication, and unknown 

generalizability of trial participants to the broader population that they are meant to represent. 

While many of these issues can be addressed post-approval of a drug through spontaneous 

reporting systems, these introduce their own limitations including confounding, for example 

by indication, environmental factors, or lifestyle traits. MR studies should be able to 

overcome these limitations and have been employed in some instances to test or anticipate 

adverse effects of interventions in ongoing intervention trials 35,177. For example, MR studies 

examining genetic variants in HMGCR as an instrument for statin exposure have corroborated 

findings from large phase III trials that statins modestly increase risk of type 2 diabetes 

36,178,179.  

While knowledge of biological pathways can help to anticipate some adverse drug 

effects pre-approval of a drug, it may not be possible to correctly predict all such effects 180. 

One possible approach to resolve this would be to use MR-PhEWAS to perform a phenotypic 
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scan of a genetically-instrumented drug exposure across hundreds or thousands of potential 

outcomes, as outlined previously. The identification of possible adverse effects of a drug 

through this approach could then be used to pre-specify and adequately power secondary 

outcome measures or, alternately, to de-prioritize further investigation of a therapeutic target. 

For drugs currently on the market, MR can be used to test for potential adverse effects that 

were not picked up during the trial, in addition to appraising causality of effects that have 

been reported through conventional reporting systems.  

 

Conclusion 

Observational epidemiological studies are prone to various intractable biases which 

can undermine robust causal inference. Mendelian randomization offers a promising 

approach to generate a more reliable evidence-base for cancer prevention and treatment. The 

advent of MR methods using summarized data means that such analyses can now be 

performed more efficiently, rapidly, and with greater statistical power than previously 

possible. Further, the range of methodological extensions to the original MR paradigm now 

available have greatly expanded the scope of this approach, enabling increasingly 

sophisticated causal questions to be interrogated 181. Given optimism surrounding use of the 

method in helping to strengthen evidence for public health and pharmacological interventions 

182, it is likely that there will be a continued proliferation of MR analyses in the literature in 

the near future. Careful design, analysis, and interpretation of such studies with consideration 

of the limitations of the method will provide the greatest opportunity for such studies to 

inform cancer prevention and treatment strategies. 
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Table 1. Limitations of Mendelian randomization and techniques available to address them  

Limitation Description Techniques to Address Limitation 

Limitations to robust causal inference 

Horizontal 
pleiotropy 

A genetic variant affecting an outcome via a 
biological pathway independent of the exposure 
under investigation, violating the “exclusion 
restriction criterion” 

Assessment of heterogeneity across 
individual SNP estimates  
MR-Egger regression and intercept test 
Median-based approaches 
Mode-based approaches 
Sensitivity analysis removing potentially 
pleiotropic SNPs 
Restrict risk score to SNPs in well-
characterized genes 
Stratification by exposure status (e.g., 
ALDH2 and self-reported alcohol intake) 
 

Linkage 
disequilibrium 

Linkage disequilibrium (LD) is the non-random 
association of alleles at different loci that are close 
in proximity on a chromosome. If a certain SNP is 
being used as an instrument for an exposure in a MR 
analysis, and this SNP is in LD with another SNP 
that affects the outcome via an independent 
pathway, then the assumptions for MR will be 
violated 

LD pruning of SNPs prior to MR analysis 
Weighted generalized linear regression 
Perform studies in populations with 
different LD structures 
 

Population 
stratification 

Allele frequencies vary among populations of 
different genetic ancestry, and similarly, disease risk 
often varies among populations of different genetic 
ancestry, which could introduce genetic confounding 
into a MR analysis, potentially resulting in spurious 
causal estimates 

Restricting analyses to individuals of a 
homogenous genetic ancestry 
Genomic inflation factor calculation 
Adjusting MR analysis by genetic 
ancestry or ancestry-informative principal 
components  

Trait 
heterogeneity 

For a given trait (e.g., adiposity), SNPs may 
influence various dimensions of this trait (e.g., both 
overall and visceral adiposity) but GWAS have only 
examined associations with a subset of these 
dimensions (e.g., solely BMI). This may produce 
misleading inferences if the aim of an analysis is to 
ascertain the causal effect of a particular dimension 
of a trait.  

Better understanding of complex 
phenotypes  
Multivariable MR  
 

Limitations that complicate interpretation 

Canalization Developmental compensation against the effect of a 
genetic variant being used as an instrument that 
could attenuate the magnitude of an observed MR 
association towards the null 

Knowledge of the period of life when the 
influence of a genetic variant(s) on an 
exposure may emerge can help guide 
whether developmental compensatory 
processes are plausible. For example, 
behavioural exposures that typically occur 
after fetal development (e.g., alcohol, 
smoking) will be unlikely to be influenced 
by canalization whereas in utero exposure 
may. There are currently no approaches 
for evaluating suspected canalization in 
MR analyses. 

Complexity of 
association  

Misinterpretation of MR results can arise from 
limited biological understanding of genetic variants 
utilised as IVs. Examples include interpretation of 
the effect of the heterozygous ALDH2 genotype on 
oesophageal cancer risk (discussed in “Illustrative 
examples”) and previous MR analyses that have 
examined the effects of interleukin-6 43  and  
extracellular superoxide dismutase 183 on CHD risk 
(discussed in more detail elsewhere 50).  

Improved biological understanding of 
genetic variants with functional 
annotation, pathway analysis, and gene set 
enrichment 
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Dynastic effects In certain circumstances, it is possible that parental 
genotype can confound an association of offspring 
genotype with offspring disease risk. For example, 
genetic variants influencing parental height will not 
only influence offspring height genotype but could 
also influence offspring disease risk via an 
independent effect of maternal height-raising alleles 
on the in utero environment of the offspring 184,185.  

Between-sibling MR design 
Within-family MR design 

Critical period 
effects 

If a biomarker primarily influences disease risk over 
a critical or sensitive period of the life course, a MR 
estimate should capture the causal effect of this 
biomarker but may not be able to distinguish period 
effects  

Negative exposure control design 

Weak 
instrument bias 

If IV is not robustly associated with the exposure, 
estimates will be biased towards the observational 
estimate in a one-sample setting and towards the null 
in a two-sample setting 

Increase sample size  
Genetic risk scores 
Two-sample MR analysis  
  

“Winner’s 
Curse” 

Chance correlation between genetic variants and 
confounders can introduces an overestimation of the 
effect of a “lead” genetic variant on an exposure of 
interest in the discovery stage of a GWAS. The 
effect of this phenomenon will depend on the degree 
of overlap of participants in the GWAS discovery 
dataset and subsequent MR analyses. In a one-
sample MR setting with a binary outcome, winner’s 
curse should not lead to bias if control participants 
were used in the discovery GWAS. If both cases and 
controls were used in the discovery dataset, this will 
lead to weak instrument bias. If the instrument is 
identified in a sample independent to the one in 
which MR analysis is performed, this will lead to an 
underestimate of the causal effect.  

Two-sample MR analysis 
Split-sample MR analysis  
 

Low statistical 
power 

Genetic variants typically explain a small amount of 
variance for a given exposure, thus MR requires 
large sample sizes to test hypotheses with adequate 
power. Furthermore, in finite samples, confounders 
may not be perfectly balanced between genotypic 
groups 

Large GWAS and GWAS consortia 
Genetic risk scores 
Two-sample MR analysis 
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Figure 1. Schematic comparison of the structure of a randomized controlled trial (SELECT) 

and a Mendelian randomization analysis (PRACTICAL)  

 

In SELECT (left), individuals were randomly allocated to the intervention (200 μg daily 

selenium supplementation, which lead to a 114μg/L increase in blood selenium) or control 

group (placebo). In PRACTICAL (right), the additive effects of selenium-raising alleles at 

eleven SNPs, randomly allocated at conception, were scaled to mirror a 114μg/L increase in 

blood selenium. If an RCT trial is adequately sized, randomization should ensure that 

intervention and control groups are comparable in all respects (e.g., distribution of potential 

confounding factors) except for the intervention being tested. In an intention-to-treat analysis, 

any observed differences in outcomes between intervention and control groups can then be 

attributed to the trial arm to which they were allocated. Likewise, in a MR analysis, groups 

defined by genotype should be comparable in all respects (e.g., distribution of both genetic 

and environmental confounding factors) except for their exposure to a trait of interest. Any 

observed differences in outcomes between groups defined by genotype can then be attributed 

to differences in life-long exposure to the trait of interest under study. 
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Figure 2. Illustration of MR methodology  

(A) 

 

(B) 

 

 

(A) A genetic variant (G) is used as a proxy for a modifiable exposure (E) to assess the 

association between E and an outcome of interest (O) without the issues of reverse causation, 

and confounding (U). MR methodology relies on three main assumptions, in that G must (i) 

be reliably associated with E; (ii) not be associated with U; and (iii) not be independently 

associated with O, except through E. This method is exemplified in the context of assessing 

the association of smoking and lung cancer (B), using the CHRNA5-A3-B4 SNP as a genetic 

instrument for heaviness of smoking.  
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Figure 3. Reverse causation within Mendelian randomization studies 

A) 

 

B)  

 

 

 

A) SNPs within APOE are used as instruments for cholesterol to assess the causal effect of 

cholesterol on cancer risk in a MR framework. APOE is a determinant of differential plasma 

cholesterol levels and is fixed at conception; therefore, will not be influenced by cancer (red 

arrow). B) A SNP which primarily influences BMI (e.g. FTO) will also influence CRP due to 

the causal effect of BMI on CRP. However, if this SNP is mistakenly used as an instrument 

for CRP then this will lead to erroneous results (red arrow).  
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Figure 4. Directed acyclic graph for selection bias in prognostic studies  

 

In this example, the square bracket indicates that we are conditioning on pancreatic cancer 

incidence in a survival study by only studying pancreatic cancer cases, thus inducing an 

association between smoking (a factor that is otherwise independent of pancreatic cancer 

survival) and pancreatic cancer survival. This link is broken when conditioning on the factor 

that influences both cancer incidence and survival (e.g., insulin resistance), which can 

otherwise be seen as a confounder of the association between smoking and cancer survival. If 

a factor appears to influence pancreatic cancer survival that is not associated with pancreatic 

cancer incidence (e.g., treatment for pancreatic cancer), selection bias in such an MR analysis 

would not be expected.  
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Figure 5. Two-step Mendelian randomization analysis examining the mediating effect of 

methylation on the association between smoke exposure and lung cancer 

 

 

 

In the first step, a SNP within CHRNA5-A3-B4 is used as an instrument for smoke exposure 

to assess the causal association between smoking and DNA methylation. In the second step, 

an independent cis-SNP is used as an instrument for DNA methylation to assess the causal 

association of DNA methylation with lung cancer risk. The two-step method allows 

interrogation of the mediation effect of DNA methylation in the association between smoking 

and lung cancer risk.  
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Figure 6. Factorial Mendelian randomization applied to the effects of calcium and vitamin D 

on colorectal cancer risk 

 

This hypothetical example of a factorial MR trial uses genetic proxies for calcium (e.g., 

variants in CASR) and vitamin D (e.g., variants in CYP2R1) to examine the possible 

independent and additive effects of these exposures on colorectal cancer risk.   
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