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ABSTRACT

Most epigenome-wide association studies to date have been conducted in blood. However,
metabolic syndrome is mediated by a dysregulation of adiposity and therefore it is critical to study
adipose tissue in order to understand the effects of this syndrome on epigenomes. To determine if natural
variation in DNA methylation was associated with metabolic syndrome traits, we profiled global
methylation levels in subcutaneous abdominal adipose tissue. We measured association between 32
clinical traits related to diabetes and obesity in 201 people from the Metabolic Syndrome In Men cohort.
We performed epigenome-wide association studies between DNA methylation levels and traits, and
identified associations for 13 clinical traits in 21 loci. We prioritized candidate genes in these loci using
eQTL, and identified 18 high confidence candidate genes, including known and novel genes associated
with diabetes and obesity traits. Using methylation deconvolution, we examined which cell types may be
mediating the associations, and concluded that most of the loci we identified were specific to adipocytes.
We determined whether the abundance of cell types varies with metabolic traits, and found that
macrophages increased in abundance with the severity of metabolic syndrome traits. Finally, we
developed a DNA methylation based biomarker to assess type Il diabetes risk in adipose tissue. In
conclusion, our results demonstrate that profiling DNA methylation in adipose tissue is a powerful tool
for understanding the molecular effects of metabolic syndrome on adipose tissue, and can be used in
conjunction with traditional genetic analyses to further characterize this disorder.
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INTRODUCTION

Metabolic syndrome traits such as obesity, dyslipidemia, insulin resistance, and hypertension
underlie the common forms of atherosclerosis, type 2 diabetes (T2D) and heart failure, which together
account for the majority of deaths in Western populations. Metabolic syndrome affects 44% of adults over
the age of 50 in the US, and people affected with metabolic syndrome have higher risk of heart attacks,
diabetes and stroke (1). Numerous studies have investigated the genetic basis of metabolic syndrome
traits such as diabetes (2), and accumulating evidence suggests that epigenetics is associated with these
phenotypes (3, 4).

Methylation of DNA cytosine bases is evolutionarily conserved and plays important roles in
development, cell differentiation, imprinting, X-chromosome inactivation, and regulation of gene
expression. Aberrant DNA methylation in mammals is associated with both rare and complex traits
including cancer, aging (5), and imprinting disorders such as Prader-Willi syndrome. Recent studies have
demonstrated that much like genome sequence variation, DNA methylation is variable among individuals
in human (6), plant (7) and mouse (8) populations. Moreover, differences in DNA methylation of
cytosines are in part heritable and controlled by genetics both in cis and in frans. However, sex and
environmental factors such as smoking and diet can also influence DNA methylation differences, leading
to changes in methylation levels over an individual’s lifetime (9).

DNA methylation states have been shown to be associated with biological processes underlying
metabolic syndrome, including obesity, hypertension and diabetes (10). Environment-induced changes in
DNA methylation have also been associated with fetal origins of adult disease (11), and alterations in
maternal diet during pregnancy can affect the methylation levels of the placenta, inducing transcriptional
changes in key metabolic regulatory genes (12, 13). Recent studies have also shown that diet-induced
obesity in adults affects methylation of obesogenic genes such as leptin (14), Scdi (15), and LPK (16).

Similar to genome-wide association studies (GWAS), epigenome-wide association studies
(EWAS) aim to identify candidate genes for traits by using epigenetic factors instead of SNP genotypes in
the association model. EWAS have recently identified associations for gene expression and protein levels
in humans (6), and complex traits such as bone mineral density, obesity, and insulin resistance in mice
(17). However, to date, most EWAS studies have been carried out in blood, which is the tissue that is
most readily collected for large scale studies in humans.

By contrast, in this study we examined the association of DNA methylation with metabolic traits
in humans using adipose tissue samples from the Metabolic Syndrome in Men (METSIM) cohort.
Metabolic syndrome is characterized by a clustering of three or more of the following conditions:
elevated blood pressure, elevated serum triglycerides, elevated blood sugar, low HDL levels, and
abdominal obesity. As adipose is known to be a central organ in metabolic syndrome manifestation,
adipose tissue should be one of the most relevant for defining and studying metabolic syndrome traits
(18). The METSIM cohort has been thoroughly characterized for longitudinal clinical data of metabolic
traits including a 3-point oral glucose tolerance test, cardiovascular disorders, diabetes complications,
drug and diet questionnaire, as well as high density genotyping, and genome-wide expression in adipose
(19, 20). We performed EWAS on clinical traits using reduced representation bisulfite sequencing data
and identified 51 significant associations for metabolic syndrome traits, corresponding to 21 loci. These
associations include previously known genes, FASN (21-23) and RXRA (24-26), as well as loci harboring
22 new candidate genes for diabetes and obesity in humans. We identify the types of cells that are likely
to be mediating these associations, and conclude that adipocytes are involved. We also examine the
abundance of cell types and show that macrophages increase with the severity of metabolic syndrome
traits. Finally, we develop a biomarker for to assess type II diabetes status in adipose tissue. Our results
demonstrate that DNA methylation profiling is both useful and complementary to GWAS for
characterizing the molecular and cellular basis of metabolic syndrome.
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RESULTS

METSIM COHORT

The METSIM cohort consists of 10,197 men from Kuopio Finland between 45-73 years of age.
Laakso and colleagues (20) have characterized this cohort for numerous clinical traits involved in diabetes
and obesity, and genome-wide expression levels in adipose tissue biopsies (19). In this study, we
examined 32 clinical traits related to metabolic syndrome (Table S1), adipose tissue expression levels
using microarrays, and DNA methylation profiles from adipose tissue biopsies in 201 individuals from
the METSIM cohort.

DNA METHYLATION OF ADIPOSE BIOPSIES

To examine methylation patterns in the METSIM cohort we constructed reduced representation
bisulfite sequencing libraries (RRBS) from adipose tissue biopsies, corresponding to 228 individuals. The
sequences obtained from RRBS libraries are enriched in genes and CpG islands, and cover 4.6 million
CpGs out of the ~30 million CpGs in the human genome (~15%). We sequenced the libraries using the
Illumina HiSeq platform and obtained on average 34.3 +/- 6.7 million reads per sample. We aligned the
data to the human genome using BSMAP (27) and obtained on average 21.9 +/- 4.6 million uniquely
aligned reads per sample (Figure S1A), corresponding to 64% average mappability (Figure S1B), and 19x
average coverage (Figure S1B). We focused our analyses on CpGs, since CHG and CHH (H=A, Cor T)
methylation in mammals is on average only 1-2%, which makes it difficult to detect significant variation
in our samples (17, 28). We and others have previously validated RRBS data relative to traditional
bisulfite sequencing by cloning DNA fragments into bacterial colonies followed by Sanger sequencing
and found a high degree of concordance between RRBS and traditional bisulfite sequencing results in
mice (8, 12) and humans (29). RRBS shows limited overlap with the Illumina 450k arrays, a small study
(n=11) found an overlap between 24,000 - 120,000 CpG sites (30).

We filtered our dataset for CpGs with at least 10x coverage, and present in at least 75% of the
samples, corresponding to 2,320,297 CpGs. However, the methylation state of individual CpGs may be
subject to stochastic variation or measurement error, and we observed a single or a few outlier samples
with methylation levels that are very different from the rest of the population (Figure S1C). This
variability is likely to lead to spurious associations between methylation and traits, and we observed that
was indeed the case when we performed EWAS using individual CpGs. In contrast to individual CpGs,
the methylation level of a CpG methylation region (a unit comprised of several CpGs) is a much more
robust measure of DNA methylation levels (for example see Figure S1D). Methylation regions are likely
a more biologically relevant genomic unit than individual CpGs, and methylation levels of proximal
CpGs tend to be correlated over distances of a few hundred bases to 1kb, roughly the typical size of CpG
islands (31). Therefore, we defined 149,191 methylation regions, where each region is defined as the
average methylation of multiple CpGs that are near each other and highly correlated. We require that a
region have a minimum of 2 CpGs whose methylation is correlated (Pearson’s r >= 0.9), and the region
has a maximum size of 3kb. The distribution of methylation levels for these regions is shown in Figure
S1E, with average methylation levels of 58.4% +/- 4.7. The range of methylation across all individuals
can vary between 0 and 100%. The average range was 33% for individual CpGs, and 25% for methylation
regions (Figure S1F). These regions are located throughout the genome with no major gaps in coverage,
with the exception of centromeric and acrocentric regions, and in the y-chromosome where there was
minimal coverage (Figure S2).

EWAS

We performed epigenome-wide association (EWAS) between CpG methylation regions and 32
clinical traits related to obesity and diabetes, including body weight, body mass index (BMI), body fat
percentage, oral glucose tolerance test (OGTT), glucose and insulin measurements (Table S1). All clinical
traits were transformed using inverse normal transformation (see Methods), as is common practice for
genome-wide association studies of quantitative traits (32). We used the linear mixed model package
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pyLMM to determine associations between DNA methylation patterns and phenotypes. Others and we
have previously demonstrated that this approach corrects for spurious associations due to population
structure (17, 33) and tissue heterogeneity (34). Associations were considered significant if the p-value
for the association was below 1x107, based on the Bonferroni correction for the number of CpG regions
tested.

In total, we found 51 significant associations, corresponding to 21 distinct methylation loci and
15 unique phenotypes (Figure 1 and Table 1) where the p-value was below 1x107. Of the 21 distinct loci,
15 methylation loci were intragenic, and 6 loci were intergenic. The distance between intergenic loci and
nearby flanking genes ranged between 23kb and 440kb. Candidate genes listed for each association in
Table 1 correspond to the gene itself for intragenic associations, and the two nearest flanking genes by
distance for intergenic associations, with the distance between the locus and each flanking gene listed for
intergenic associations (Table 1). Figure 1 summarizes the genomic distribution of all EWAS hits, where
each dot represents an association between a phenotype and a methylation region.

Some may argue that a significance threshold of 1x107 is insufficiently low, since we tested for
32 traits. Of the 51 associations described above, 26 associations would remain significant using a
Bonferroni correction (p<1x10™®) which accounts for both CpG regions and the 32 traits. However, we
believe the additional Bonferroni correction for 32 traits would be too stringent given that several of the
traits are not independent, for example BMI and fat mass, or plasma insulin and glucose levels.
Alternatively, 40 associations would remain significant at the commonly used GWAS significance
threshold (p<5x107®).

We found no evidence of inflation in our EWAS results, where the inflation factor lambda was on
average 0.99, and maximum of 1.01 (Table 1). Sample EWAS p-value distributions and ggplots are
shown in Figure S3A-C.

CANDIDATE GENES

We initially identified a total of 24 candidate genes and non-coding RNAs by proximity to an
EWAS signal (Table 1). To prioritize candidate genes, we examined adipose expression associations from
770 individuals of the METSIM cohort previously published by our laboratories (19, 35). We asked if
there were significant expression quantitative trait loci that overlapped with the methylation loci
identified in the EWAS. We narrowed down the candidate gene list from 24 to 18 (75%) high confidence
candidate genes that had significant cis-eQTL in adipose tissue samples from the METSIM cohort (Table
1). The cis-eQTL were significant for the candidate gene reported.

We identified 3 loci where multiple clinical traits mapped to the same methylation region. These
loci include chromosome 17 at the FASN gene (Figure 2A-B), in chromosome 2 near SLC1A44, and in
chromosome 5 near CPEB4 (Figure 1, Table 1). The FASN gene has a cis-eQTL (p=9.3x10"'°, Figure 2C),
suggesting that genetic variation in the population affects expression levels of this gene. One of the traits
associated with this locus is BMI, and we observed a positive correlation between methylation levels in
the FASN locus and BMI (Figure 2D). Remarkably, the observed correlation of 0.4 suggests that the
methylation of FASN alone is able to capture 16% of the variation in BMI observed in our cohort.
Moreover, we also observed an inverse correlation between methylation and FASN expression in adipose
tissue biopsies (Figure 2E), and an inverse correlation between FASN expression and BMI (Figure 2F).

A second locus is located upstream of SLC1A44 and was associated with waist circumference, lean
mass, fat mass, plasma insulin levels, BMI, and indices of insulin resistance and insulin sensitivity
MATSUDA, and HOMAIR (Figure 3A-B). SLC144 has a cis-eQTL (p=1.6x10"°, Figure 3C), and we
observed an inverse correlation between methylation at this locus and the insulin resistance index
HOMAIR (Figure 3D), an inverse correlation between methylation and expression of SLCIA44 (Figure
3E), and a positive correlation between SLC1A44 expression and HOMAIR (Figure 3F). A third locus is
located upstream of CPEB4, and was associated with basal plasma insulin levels, OGTT plasma insulin,
and the indices of insulin resistance and insulin sensitivity MATSUDA, and HOMAIR (Table 1). A cis-
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eQTL for CPEB4 expression in adipose tissue biopsies (p=2.4x10"'"*) makes this gene strong candidate
gene for this locus.

CELL TYPE DECOMPOSITION OF ADIPOSE TISSUE

Whenever we examine molecular phenotypes such as DNA methylation and gene expression in
tissues, the question arises, what cell-types within the tissue are responsible for the signal we observe?
We know that subcutaneous adipose tissue is composed primarily of adipocytes, but also contains
endothelial cells and immune cells such as resident and infiltrating macrophages. Moreover, we know that
obese individuals show increased macrophage content in their adipose tissue, and hence that
heterogeneity in people’s phenotypes can influence cell-type composition in the adipose tissue biopsies
(36). To examine macrophage content in the adipose tissue biopsies, we examined expression levels of
genes expressed in adipocytes, namely PPARG, CFD, ADIPOQ, FABP4, CIDEC, LEP, and TNMD, and
genes highly expressed in macrophages including TLRI, TLR2, TLR3, TLR4, ABCG, IL10, and TNF. We
found high expression levels of adipocyte-specific genes and low expression of macrophage-specific
genes (Figure S3D). These results suggest that there is minimal macrophage content in the adipose
biopsies. However, the genes selected may not fully reflect the transcriptome of adipocytes and
macrophages, or additional cell-types that may be present in adipose tissue.

To further explore the contribution of different cell-types to the METSIM adipose tissue biopsies,
we performed cell-type deconvolution using BS-seq methylation data from our samples and from multiple
reference cell-types including adipocytes, endothelial cells, macrophages, neutrophils, NK-, T-, and B-
cells. Using this approach, we can determine the relative content of different cell types by comparing
DNA methylation at cell-specific methylation markers in our test samples, to DNA methylation signatures
derived from purified cell types (see Methods). Consistent with our previous analysis of gene expression
in adipose- and macrophage-specific genes, we found that the highest cell-type represented in our adipose
biopsies was indeed adipocyte (Figure 4A), but we also found evidence of macrophage and neutrophil
content.

Since highly expressed genes are often correlated with lower methylation levels in their
promoters, we hypothesize that if our genes with significant associations with metabolic syndrome are
expressed in adipose tissue, they will also have lower methylation levels in the cell types in which they
are expressed. When we examine DNA methylation levels in CpG regions associated with traits in our
EWAS, we find that adipocytes tend to have lower methylation levels at these loci, relative to other cell
types, suggesting that many of them may be specific to adipocytes. However, two associated loci at RXRA
and RAPIGAP2 genes also show decreased methylation levels in macrophages and neutrophils,
suggesting that DNA methylation at these loci may be derived from macrophages and/or neutrophils.

Finally, although the relative content of cell-types such as macrophages may be small, they can
still contribute to expression and methylation levels, and to clinical phenotypes. We studied the
correlation between the cell-type content and clinical traits across all individuals, and found that
macrophage content was positively correlated with the clinical traits associated in our EWAS (Figure 4C).
These results support the notion that both adipocytes and macrophages contribute to DNA methylation
signatures, and to associations between DNA methylation and clinical traits. The correlation between
neutrophil content and traits is minimal, suggesting that methylation levels derived from neutrophils are
potentially derived from blood contamination during collection of biopsies.

CHORMATIN STATES AT CANDIDATE LOCI

We used the Roadmap (37) and RegulomeDB databases to examine chromatin marks and
chromatin states in adipocytes or adipose tissue in each of the EWAS loci. The chromatin marks found in
each locus are summarized in Figure S4. The sites group into three clusters. The first represents regions of
active transcription that contain H3K36me3. The third cluster likely contains enhancers, which are
marked by H4K4mel and H3K27ac. The second cluster is more heterogeneous and has generally fewer
marks, with a few sites showing no marks at all.
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DNA METHYLATION BIOMARKER FOR TYPE 11 DIABETES

DNA methylation is a useful biomarker for assessing the age (38, 39) and BMI (4) of an
individual. We asked whether we could develop a biomarker for adipose tissue that could be used to
assess a metabolic health outcome, type II diabetes. To this end, we first developed an aggregate measure
of type Il diabetes by combining multiple clinical traits measured in the METSIM cohort using principal
component analysis. Briefly, we split phenotype data into training (n=6,103) and testing (n=4,069) sets.
We selected traits for inclusion into the aggregate measure of metabolic health using a greedy algorithm
that considered combinations of features that produced the largest Welch’s test statistic in the first
principal component, when comparing healthy individuals to individuals who had received a type Il
diabetes diagnosis at baseline examination in the training dataset. Our final measure consists of a linear
combination of six traits: two measurements of glucose at baseline and at two hours during an oral
glucose tolerance test, a binary measure of elevated blood glucose, two measurements of urine albumin
levels at the start and end of collection, and one measurement of LDL levels (Table 2). We decomposed
the testing data using the trained linear combination of the six selected features.

This first principal component allows us to effectively segregate individuals by type II diabetes
status as baseline (Figure 5A). A follow-up examination was conducted on METSIM participants an
average of 53.2 months (std=12.6) after the baseline examination. This allows us to identify a
subpopulation that was healthy at baseline but develops type II diabetes at follow-up. Based on the PC1
score this group has baseline levels that are intermediate between the healthy and type 2 diabetes group
(Figure 5A). This suggests that our approach is also able to detect individuals at risk of developing type 11
diabetes. Additionally, the first principal component outperforms individual metabolic metrics commonly
used for diagnosis of type Il diabetes (40) in the classification of type II diabetes status at baseline or
follow-up examination (Figure 5B). These results suggest that PC1 is a useful metric for assessing risk of
developing type II diabetes.

Finally, we asked whether we could predict the value of PC1 using DNA methylation, in order to
develop a biomarker to assess type 11 diabetes risk. We split methylation data into a training set (n=213)
and a testing set (n=15) ran the model separately three times. We used randomized lasso to select CpG
sites used to generate a linear model that predicts the PC1 value of each individual, and selected 24 CpG
sites across the runs (supplemental file). We used a five-fold cross validation approach to fit a model with
the training data. We measured the accuracy of this approach using the testing data across three separate
runs, and found that the average R-squared between our predicted and measured PC1 values was 0.4034.
This suggests that using a subset of CpG sites measured in adipose tissue we are able to predict the risk of
developing diabetes.

DISCUSSION

In this study, we utilized natural variation in DNA methylation in the adipose tissue of a human
population to explore the relationship between DNA methylation and complex clinical traits associated
with metabolic syndrome. We chose to focus our analysis on adipose tissue, as it is believed to be the
central tissue mediating metabolic syndrome traits. While metabolic syndrome surely involves a complex
interplay between adipose tissue, liver and immune cells, it is likely that adipose tissue undergoes the
most dramatic epigenetic changes during the advancement of metabolic syndrome. In fact, previous
studies have shown that adipose tissue has significant epigenetic differences between lean and obese
individuals (41).

Using epigenome-wide analysis we identified 21 novel associations for diabetes and obesity
phenotypes, corresponding to 24 candidate genes. We further narrowed our candidates to 18 high
confidence candidate genes based on presence of cis-eQTL for these genes in adipose tissue (Table 1).
Our results demonstrate the power of EWAS to identify significant associations for metabolic traits in
humans using only 201 individuals, and highlight how epigenetic factors such as DNA methylation could
be considered in conjunction with genetic variation to elucidate the complex cellular mechanisms that
ultimately lead to observable phenotypes.
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We found three loci where multiple clinical traits mapped to the same methylation region and
associated gene, SLC1A44 on chromosome 2 (Figure 3), CPEB4 on chromosome 5 (Table 1), and FASN on
chromosome 17 (Figure 2). FASN is a known regulator of fatty acid metabolism (42), and its expression is
associated with mature adipocytes replete with the downstream products of FASN. We observed that
DNA methylation in the FASN gene was correlated with multiple metabolic syndrome clinical traits.
Remarkably, we show that the variation in DNA methylation levels of FASN capture approximately 16%
of the variation of metabolic traits such as BMI (Figure 2D), a significant portion of the variation in the
trait in our population.

The mechanisms by which metabolic syndrome traits affect methylation levels are still
incompletely understood. While transcriptional levels of FASN and other genes likely respond quickly to
insulin release, it is well established that, in contrast, DNA methylation levels are very stable, and change
on a much slower timescale. We expect that methylation levels in the body of a gene change on the
timescale of weeks, in response to the daily changes of insulin signaling. Thus, we hypothesize that DNA
methylation levels at or near genes may reflect the history of insulin signaling during the previous weeks,
and are thus robust markers for the average physiological state of the individuals. We observed that the
expression of FASN decreases with increasing obesity, in agreement with previous multiple studies
showing that obese individuals have lower insulin sensitivity (43), leading to lower FASN expression.
The FASN regions we identified in our study are intragenic, and associated with several histone marks
including H3k36me3, and H3k4me3 and H3k4mel. These marks are often associated with the boundaries
of promoters and transcribed regions. Thus, we speculate that the reduced insulin sensitivity leads to a
hypermethylation of the promoter, which is associated with a decrease in gene expression.

We also observed that the methylation levels near RXRA are associated with metabolic traits.
RXRA is known to form a complex with PPARG, a master regulator of adipogenesis and adipocytes (44).
In contrast to FASN and RXRA, the amino acid transporter SLC1A44, previously linked to metabolite levels
and atherosclerosis (45), is a novel gene associated with both diabetes and obesity traits. The cytoplasmic
polyadenylation element binding protein 4, CPEB4 has been previously associated with obesity (46), and
waist-to-hip ratio (47), but not with diabetes. Here we find that CPEB4 is associated with measures of
insulin sensitivity/ insulin resistance.

We found several other novel gene associations such as LINC01317 which we found to be
associated with insulin sensitivity (MATSUDA index) and TPCNI which was associated with body
weight in our EWAS. In addition, we found Strawberry Notch Homolog 2 (SBNO2) to be associated with
BMI and body weight in our study, and with BMI in a previous EWAS (4). SBNO2 regulates
inflammatory responses (48), and a Shno2 mutant mouse model shows impaired osteoclast fusion,
osteoblastogenesis, osteopetrosis, and increased bone mass (49).

As adipose tissue is a heterogeneous tissue that contains adipocytes, endothelial and immune
cells, among others, we asked whether we could determine which cell types were most significant in our
analyses. We found that most of our significantly associated loci were hypomethylated in adipocytes
compared to other cell types. This suggested that most of the methylation variation we observe is likely
occurring in adipocytes, which constitute the majority of cells in adipose tissue. Using a DNA
methylation based deconvolution approach we also estimated the abundance of each cell type in each
individual. As expected, we found that adipocytes constituted around 80% of the cells in our samples.
Intriguingly, however, we observed that the abundance of macrophages varied across individuals in a
manner that was strongly correlated with metabolic traits. This suggests that obese individuals have
higher macrophage counts in their adipose tissue compared to lean individuals, a result that supports
pervious observations (36).

In previous studies DNA methylation has been used to develop robust biomarkers for multiple
traits such as age (38) and BMI (4). We therefore asked whether we could develop an accurate biomarker
to assess type Il diabetes risk from our data. We first aggregated clinical traits to define a metric of
metabolic health that is associated with the risk of developing type II diabetes, by combining measures of
glucose, LDL and urine albumin. We showed that this metric stratifies the population into healthy and
diabetic individuals. We also showed that high values of this metric strongly associated with the
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development of type 2 diabetes in follow-up measurements in the METSIM cohort. Finally, using a
limited set of CpG sites, we developed a model that accurately predicts the values of this metric. This
result suggests that DNA methylation measurements in adipose tissue can be used to assess the risk of
developing type Il diabetes. It is important to note that an adipose tissue biomarker may not be practical
for clinical use as it necessitates the use of adipose tissue biopsies. Additional work is required to verify
whether the biomarker translates to clinically relevant tissue types such as blood.

The current study outlines the usefulness of examining epigenetics in a disease relevant tissue,
but is constrained by limited genetic variability of the METSIM cohort. The METSIM cohort is
composed of middle-aged Finnish men, and it is likely that some of our results will not extend to other
ethnic populations or to female cohorts. Global methylation patterns are known to differ between males
and females in blood (50), and these sex specific methylation differences and their relationship with
metabolic traits should be explored in future work. Furthermore, an open question is how the epigenetic
profile varies between multiple tissues under the same physiological conditions. Comparing DNA
methylation data from tissues such as liver, muscle, and visceral adipose may elucidate how these respond
differently to metabolic syndrome. Finally, our study population was enriched for healthy individuals,
future work should focus on the epigenetic differences between diabetic/insulin insensitive individuals
and healthy individuals.

In conclusion, our DNA methylation profiles of adipose tissue allowed us to identify loci that are
likely reacting to the metabolic state of an individual, but whose modulation is also likely to affect the
individual’s metabolic profile. Our results demonstrate the usefulness of utilizing population variation in
DNA methylation for identifying genes associated with complex clinical traits. Here, we identified 18
novel candidate genes for metabolic syndrome using the adipose tissue of 201 individuals. None of these
loci could be found using GWAS in 152 individuals of the same cohort. Since DNA methylation in a
fraction of CpGs is heritable and regulated by genetics in cis and in trans (3, 17, 51), EWAS and GWAS
can be used in a complementary manner to uncover heritable factors contributing to the etiology of
complex traits.
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MATERIALS AND METHODS

Data access. RRBS sequencing data and all EWAS association results can be obtained from GEO:
GSE87893.

Clinical phenotypes on human subjects. Ethics Committee of the Northern Savo Hospital District
approved the study. All participants gave written informed consent. Clinical trait phenotypes for the
EWAS study were collected on 201 individuals from the METSIM cohort (19, 20, 35). The population-
based METSIM study included 10,197 men, aged 45 to 73 years, from Kuopio, Finland. After 12 hours of
fasting, a 2 hour oral 75 g glucose tolerance test was performed and the blood samples were drawn at 0,
30, and 120 min. Plasma glucose was measured by enzymatic hexokinase photometric assay (Konelab
Systems reagents; Thermo Fischer Scientific, Vantaa, Finland), and insulin and pro-insulin were
determined by immunoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens Medical Solutions
Diagnostics, Tarrytown, NY, USA). Plasma levels of lipids were determined using enzymatic
colorimetric methods (Konelab System reagents, Thermo Fisher Scientific, Vantaa, Finland). Plasma
adiponectin was measured with Human Adiponectin Elisa Kit (Linco Research, St Charles, USA), C-
reactive protein (CRP) with high sensitive assay (Roche Diagnostics GmbH, Mannheim, Germany), and
interleukin 1 receptor agonist (IL1RA) with immunoassay (ELISA, Quantikine DRAOO Human IL-1RA,
R&D Systems Inc., Minneapolis, USA). Serum creatinine was measured by the Jaffe kinetic method
(Konelab System reagents, Thermo Fisher Scientific, Vantaa, Finland) and was used to calculate the
glomerular filtration rate (GFR). Height and weight were measured to the nearest 0.5 cm and 0.1 kg,
respectively. Waist circumference (at the midpoint between the lateral iliac crest and lowest rib) and hip
circumference (at the level of the trochanter major) were measured to the nearest 0.5 cm. Body
composition was determined by bioelectrical impedance (RJL Systems) in participants in the supine
position. Summary statistics for each phenotype are shown in Table S1. We then transformed the
residuals using rank-based inverse-normal transformation for downstream analyses. This transformation
involves ranking a given phenotype’s values, transforming these ranks into quantiles and, converting the
resulting quantiles into normal deviates. The goal of this transformation is to minimize spurious
associations due deviations from the underlying assumption that data are normally distributed, it is
common practice for GWAS of quantitative traits (32).

Evaluation of insulin sensitivity. We evaluated insulin sensitivity by the Matsuda index and insulin
resistance by the HOMA-IR as previously described (20).

RRBS libraries. We prepared genomic DNA from adipose tissue biopsies with the DNeasy extraction kit
(Qiagen, Valencia, CA, USA). We prepared RRBS libraries as previously described (17, 52), with minor
modifications. Briefly, we isolated genomic DNA from flash frozen adipose biopsies using a phenol-
chloroform extraction, digested 500ng of DNA with Mspl restriction enzyme (NEB, Ipswich, MA, USA),
carried out end-repair/adenylation (NEB) and ligation with TruSeq barcoded adapters (Illumina, San
Diego, CA, USA). We selected DNA fragments of size range 200-300bp with AMPure magnetic beads
(Beckman Coulter, Brea, CA, USA), followed by bisulfite treatment on the DNA (Millipore, Billerica,
MA, USA), and PCR amplification (Bioline, Taunton, MA, USA). We sequenced the libraries by
multiplexing 4 libraries per lane on the [llumina HiSeq2500 sequencer, with 100bp reads.

Sequence alignment. We aligned the reads with BSMAP to the hg19 human reference genome (27). We
trimmed adapters with Trim Galore! (www.bioinformatics.babraham.ac.uk/projects/trim_galore/),
allowed for up to 4 mismatches and selected uniquely aligned reads. We have previously shown that
BSMAP performance is comparable to the BS-Seq aligners BS-Seeker2, and Bsmark in terms of accuracy
and mappability (53).
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Methylation regions. We filtered aligned data to keep only CpG cytosines with 10x coverage or more
across all samples, and with data coverage in at least 75% of the samples. This resulted in 2,320,297
CpGs. From these cytosines, we defined methylation regions grouping nearby cytosines together in
expanding windows using the following rules: 1) We treated each cytosine as a seed cytosine for a
potential methylation region and in order to expand the region methylation levels were required to be
correlated across the cohort at an R2>=0.9 for directly adjacent cytosines, 2) extension of the methylation
region from the seed cytosine was allowed to continue up to 500bp in either direction from the seed
cytosine, 3) after region extension, only regions with greater than 2 cytosines were retained, 4)
overlapping or adjacent regions remaining from (3) were then merged, 5) a methylation region was
limited to 3kb maximum. We chose these parameters since the majority of CpG islands are less than 3kb
in size (54). Methylation for resulting regions was calculated as the average methylation of all included
cytosines. The distribution of region size we observed was a minimum of 3bp, maximum of 3kb, and
median 143bp.

EWAS. We used the linear mixed model package pyLMM (https://github.com/nickFurlotte/pylmm) to
test for association and to account for potential population structure and relatedness among individuals.
This method was previously described as EMMA (33), and we implemented the model in python to allow
for continuous predictors, such as CpG methylation levels that vary between 0 and 1, as previously
described (17). We applied the model: y=ptxp+ute, where u=mean, x=CpG, p=CpG effect, and
u=random effects due to relatedness, with Var(u) = 6,°K and Var(e) = o.’, where K=IBS (identity-by-
state) matrix across all CpG methylation regions. We computed a restricted maximum likelihood estimate
for 6,’K and o¢’, and we performed association based on the estimated variance component with an F-test
to test that B does not equal 0. Associations were considered significant if the p-value for the association
was below 1x107, based on the Bonferroni correction for the number of CpG regions tested.

Inflation. We calculated the inflation factor lambda by taking the chi-squared inverse cumulative
distribution function for the median of the association p-values, with one degree of freedom, and divided
this by the chi-squared probability distribution function of 0.5 (the median expected p-value by chance)
with one degree of freedom. We plotted ggplots for representative phenotypes using the ggplot function in
Matlab, with a theoretical uniform distribution with parameters 0,1.

Adipose expression from human subjects. Expression levels from adipose tissue biopsies were
collected on 770 individuals of the METSIM cohort as previously described (19, 35), and 151 of these
subjects were also represented in the current methylation dataset. Total RNA from METSIM participants
was isolated from adipose tissue using the Qiagen miRNeasy kit, according to the manufacturer's
instructions. RNA integrity number (RIN) values were assessed with the Agilent Bioanalyzer 2100
instrument and 770 samples with RIN >7.0 were used for transcriptional profiling. Expression profiling
using Affymetrix U219 microarray was performed at the Department of Applied Genomics at Bristol-
Myers Squibb according to manufacturer’s protocols. The probe sequences were re-annotated to remove
probes that mapped to multiple locations, contained variants with MAF > 0.01 in the 1,000 Genomes
Project European samples, or did not map to known transcripts based on the RefSeq (version 59) and
Ensembl (version 72) databases; 6,199 probesets were removed in this filtering step. For subsequent
analyses, we used 43,145 probesets that represent 18,155 unique genes. The microarray image data were
processed using the Affymetrix GCOS algorithm using the robust multiarray (RMA) method to determine
the specific hybridizing signal for each gene.

PEER factor analysis. We corrected RMA-normalized expression levels for each gene using
probabilistic estimation of expression residuals (PEER) factors (55). PEER factor correction is designed
to detect the maximum number of cis-eQTL. We then transformed the residuals using rank-based inverse-
normal transformation. We used the inverse normal-transformed PEER-processed residuals after
accounting for 35 factors for downstream eQTL mapping.
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cis-eQTL in adipose expression. cQTL studies from the adipose biopsies of the METSIM cohort have
been previously described (19). Briefly, gene expression in 770 adipose biopsy samples from the
METSIM cohort was measured with Affymetrix U219 microarray. SNP genotyping was performed with
[Mlumina OmniExpress genotyping chip and imputed based on the Haplotype Reference Consortium
reference panel. Association of gene expression and SNPs were calculated with FaST-LMM. eQTL were
defined as cis if the peak association had a p-value of p < 2.46 x 10 corresponding to 1% FDR, and if it
was found within 1 Mb on either side of the exon boundaries of the gene, as previously described (32).

GWAS for methylation loci. We performed GWAS on the same 32 clinical traits, transformed using
inverse normal transformation as described above, and 681,803 genotyped SNPs for 152 METSIM
individuals where we had both genotypes and methylation data. We used a linear model and the R
package MatrixEQTL to perform the association, and selected associations where the p-value was below
1x107".

Published histone marks. We used the Roadmap ChIP-seq datasets to look for any histone marks in
human adipocyte and adipose tissue samples. We used the RegulomeDB database to look for evidence of
transcription factor footprinting, positional weight matrices (PWM), and active transcription. We accessed
the public datasets at (http://www.roadmapepigenomics.org/data/) and (http:/www.regulomedb.org/).

Published GWAS hits. Literature evidence for GWAS hits in candidate genes was obtained from the
NHGRI GWA Catalog.

DNA methylation deconvolution. To estimate the methylation contribution of different leukocytes to the
adipose tissue, we used cell-specific methylation markers from DNA methylation signatures across
different cell types. Cell-specific CpG methylation loci were identified from purified leukocyte
(macrophages, neutrophils, B cells, CD4+ T cells, CD8+ T cells, NK cells) methylation profiles from the
Blueprint epigenome project (56). Since there was only one purified adipocyte primary cell line reference
available, we also included the average methylation profile across all adipose samples using in this study,
which ostensibly consists primarily of adipocytes. The purified adipocyte cell reference was used as a
filter to select cell type-specific CpG loci that are hypomethylated in both the adipocyte cell reference,
and in the mean of the methylation levels for the 201 adipose samples. We filtered all cell methylomes to
CpG loci that are common between the reference methylation profiles and the METSIM adipose tissues
samples. To determine cell-specific methylation across all references, we first used a sliding window to
aggregate the methylation profiles into regions of CpG loci with similar methylation (within 40%
methylation difference across neighboring CpG within 500bp). Regions were selected that were uniquely
hypomethylated for each cell types to provide 279 cell-specific hypomethylated regions. To estimate the
proportion of each cell type within samples, we performed a non-negative least squares regression (57) on
methylation at the cell-specific regions.

Aggregate measure of metabolic health. The METSIM cohort metabolic phenotype data included
10,197 individuals, and 484 traits. We dropped individuals with a type 1 diabetes (n=25) diagnosis from
further analysis, leaving 10,172 individuals. We processed numeric data for downstream analysis by
dropping traits with greater than 10% of data points missing. We imputed missing values using a k
nearest neighbors (kKNN) approach. KNN imputation of phenotype data occurred as follows: (1) neighbors
were ranked on Euclidean distance, and (2) missing values were assigned the average value of the nearest
neighbor (k=5). Following imputation, we scored phenotype data for normality (scipy.stats.normaltest)
(58, 59). We designated the threshold for a normally distributed trait by randomly simulating normally
distributed data of equal length as the METSIM phenotype data 1000 times, scoring the random
distribution, and setting the threshold at the 90th percentile score of the simulated distributions. We
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normalized traits following a normal distribution (mean=0, STD=1), and used rank based inverse
normalization (mean=0, STD=1) for traits from a non-normal distribution.

We manually removed traits directly predictive of type 2 diabetes status, such as family history or
metformin consumption. Following data normalization, we held out 40% of the samples (n=4,069) with
phenotype information from feature selection, including samples with RRBS, for downstream analysis.
We screened features for the remaining 60% of the samples (n=6,103) for incorporation into the meta-
trait using randomized logistic regression model (60). We evaluated selected features on their ability to
distinguish between individuals with and without type 2 diabetes at baseline using Welch’s t-test. Starting
with the feature that had the highest Welch’s test statistic, we considered combinations of traits by
iterating through all traits that passed the initial screen, incorporating the trait with the starting trait,
performing PCA on the combined traits, scoring the Ist principal component using Welch’s t-test, and
returning the set of traits that produced the largest Welch’s test statistic. We repeated the process until
Welch’s test statistic no longer increased. We selected six features for incorporation into the meta-trait
(Table 2). We decomposed the trait matrix for the test samples using the trained linear combination of
selected features.

We implemented trait analysis pipelines in Python3.6.1, utilizing scikit-learn-0.18.1 (61), numpy-
1.13.1 (62), scipy-0.19.1 (63), pandas-0.20.3(64), seaborn-0.8.1(65), and matplotlib-2.0.1 (66) packages.

Metabolic syndrome biomarker model. We pre-processed the methylation matrix for model fitting by
dropping all CpG sites with greater than 10% of data points missing. We imputed missing values using a
kNN sliding window approach. We replaced individual CpG sites with missing data with the average
value of the 5 nearest neighbors by Euclidean distance within a 6Mb window. The resulting matrix
contained 1,633,360 CpG sites. To speed up processing time we only considered CpG sites with variation
greater than 0.05. We then split the complete methylation matrix into a training set and a testing set by
randomly selecting training samples across the PC1 distribution. Samples were placed into 6 equally sized
bins, 95% of samples in each bin were selected for training, resulting in 215 training samples and 17
testing samples. Using the training dataset, we selected CpG sites using randomized lasso regression
implemented in scikit-learn-0.19.1. To control for cell type composition differences between samples
when selecting CpG sites we decomposed he methylation matrix using PCA, and then reconstructed the
methylation matrix without the top three principal components, a method previously shown to control for
cell type composition.(67) We performed randomized lasso regression for multiple subsets (n=100)
composed of 90% of the training samples and selected CpG sites selected in greater than 40% of the runs.
Twenty-four CpG sites were selected across three separate runs. We utilized a five-fold cross validation
strategy for model fitting on the selected CpG sites. The fit model was then used to calculate predicted
PC1 values for the held out testing samples. The final model consists of the average coefficient for each
CpG sites and the average intercept across all cross-validated models. We annotated CpG sites with
GREAT-3.0.0 (68) to generate a list of index genes. See supplemental file 1 for a list of CpG sites,
regression coefficients for the biomarker model, and index genes.

Code Repository. Custom code used in data processing and analysis can be found at
https://github.com/Nuttyl.ogic/METSIM_HMG_Code.
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Metl 2 34545726 34545903 LINC01317, Intergenic, MATSUDA insulin 7.53E-19 39.30 0.99 16.10%
LINC01320 23kb, 356kb sensitivity index
Met2 2 47979865 47980000 MSH2, MSH6 MSH2 cis-eQTL (p=3.3e- Intergenic, Waist circumference 3.26E-08 -4.74 0.99 68.52%
94, 152303425 ), and 350kb, 30kb

MSHG6 cis-eQTL (p=1.1e-
13, rs2134056)

Met2 Fat mass (%) 6.08E-10 -5.27 1.00
Met2 Fat free mass (%) 6.11E-10 5.27 0.99
Met2 Body mass index 7.75E-09 -5.04 1.01
Met3 2 65064793 65064867 AFTPH, SLC1A4 cis-eQTL Intergenic, Waist circumference 4.92E-08 -4.44 0.99 58.28%
SLCI144 (p=1.6e-10, 244Kkb,150kb
chr2:65252385)
Met3 Fat mass (%) 3.89E-09 -4.82 1.00
Met3 Fat free mass (%) 3.57E-09 4.83 0.99
Met3 OGTT fasting plasma 2.25E-09 -4.85 0.97
insulin
Met3 Body mass index 5.71E-10 -5.05 1.01
Met3 MATSUDA insulin 8.30E-09 4.76 0.99
sensitivity index
Met3 HOMAIR Insulin 2.19E-09 -4.85 0.97
resistance index based
on HOMA
Met4 4 7774215 7774379 AFAPI AFAPI cis-eQTL Intragenic Fat mass (%) 4.43E-08 6.59 1.00 78.69%
(p=1.16¢-16, 1s34072960)
Met4 Fat free mass (%) 4.42E-08 -6.59 0.99
Met4 Body mass index 5.57E-08 6.65 1.01
Met5 5 173132627 173132883 BODI, BOD cis-eQTL (p=1.3e- Intergenic, OGTT fasting plasma 1.97E-08 5.95 0.97 77.70%
CPEB4 6,rs60748211). CPEB4 88kb, 182kb insulin
cis-eQTL (p=2.4e-174,
rs72812818)
Met5 OGTT 120 min 2.45E-09 6.07 0.98
plasma insulin
Met5 MATSUDA insulin 4.42E-10 -6.81 0.99
sensitivity index
Met5 HOMAIR Insulin 1.04E-08 6.10 0.97
resistance index based
on HOMA
Met6 6 3132000 3132119 BPHL BPHL cis-eQTL (p=5.0e- Intragenic Weight 9.22E-08 11.16 0.99 19.17%
81, 157765391)
Met7 9 137263485 137263573 RXRA RXRA cis-eQTL (p=1.0e- Intragenic Waist circumference 6.08E-08 341 0.99 85%
09, 1562576325)
Met8 10 75600604 75600822 CAMK2G CAMK2G cis-eQTL Intragenic OGTT 120 min 9.54E-08 18.43 0.96 10.40%
(p=3.9¢-28, 152675671) plasma proinsulin
Met9 10 100183346 100183441 HPS1 HPSI1 cis-eQTL (p=1.1e- Intragenic Waist circumference 1.55E-11 10.02 0.99 30%
53,1s701801)
Met10 11 65248602 65248737 FRMDS, Intergenic, OGTT fasting plasma 6.84E-08 -16.14 0.97 30%
SCYLI 67kb, 43kb insulin
Met10 HOMAIR Insulin 5.45E-08 -16.25 0.97
resistance index based
on HOMA
Metl1 12 42883183 42883320 PRICKLEI Intragenic OGTT 30 min plasma 1.70E-19 -17.20 0.81 17.64%
insulin
Met12 12 113734359 113734579 TPCNI TPCNI cis-eQTL Intragenic Weight 7.24E-08 5.72 0.99 13.24%
(p=1.4¢-6, 1s2004720)
Glomerular filtration 6.24E-08 5.61 0.97 71.39%
rate (e€GFRcockrof)
Metl3 17 2893657 2893829 RAPIGAP2 Intragenic OGTT fasting plasma 2.93E-08 -11.03 0.97 30.25%
insulin
Met13 HOMAIR Insulin 1.96E-08 -11.16 0.97
resistance index based
on HOMA
Met14 17 40913548 40913600 RAMP2 Intragenic OGTT insulin area 6.51E-29 12.06 0.99 32.53%
under the curve
Metl5 17 80041514 80042067 FASN FASN cis-eQTL (p=9.3e- Intragenic Weight 4.07E-09 19.42 0.99 12.18%
10, 54239015 )
Met15 Waist circumference 8.54E-08 17.31 0.99
Metl5 Fat mass (%) 1.36E-08 18.29 1.00
Metl5 Fat free mass (%) 1.40E-08 -18.27 0.99
Metl5 Body mass index 3.05E-10 21.57 1.01
Met16 17 80046324 80047195 FASN Intragenic Body mass index 1.18E-08 16.61 1.01 20.05%
Met17 17 80050198 80050365 FASN Intragenic Body mass index 2.48E-10 8.01 1.01 50.31%
Met18 17 80051500 80053080 FASN Intragenic Weight 4.08E-09 7.95 0.99 67.62%
Met18 Waist circumference 4.29E-10 8.33 0.99
Metl8 Fat mass (%) 1.03E-08 7.85 1.00
Metl8 Fat free mass (%) 9.81E-09 -7.86 0.99
Met18 OGTT fasting plasma 1.08E-08 7.66 0.97
insulin
Met18 OGTT 120 min 5.42E-09 8.03 0.98
plasma insulin
Met18 Body mass index 1.37E-11 9.44 1.01
Met18 MATSUDA insulin 1.79E-08 -8.05 0.99
sensitivity index
Met18 HOMAIR Insulin 3.57E-09 7.94 0.97
resistance index based
on HOMA
Met19 19 1148096 1148232 SBNO2 Intragenic Weight 3.20E-08 8.54 0.99 40.68%
Met19 Body mass index 7.58E-08 8.49 1.01
Met20 21 16661536 16661714 NRIPI, NRIP1 cis-eQTL (p=6.6e- Intergenic, Body mass index 3.27E-08 8.14 1.01 86.15%
USP25 85, 1s2178895) 224kb, 440kb
Met21 22 28151964 28152032 MNI Intragenic OGTT 120 min 9.16E-08 7.64 0.98 30.95%

plasma insulin
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Table 2. PC1 Feature Contribution
Variance Explained = 0.295

Feature Contribution
Glucose Baseline 0.660
Glucose 120min 0.054
Elevated Blood 0191
Glucose

LDL -0.466
Urlne.AIbumln 0.402
Baseline

Urine Albumin

60min -0.367

19


https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/223495; this version posted March 13, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 1. Epigenome-wide association of metabolic clinical traits
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Figure 1. Epigenome-wide association of metabolic clinical traits. Association between DNA CpG methylation
and clinical traits. (A) “PheWAS” plot showing association of each of the methylation loci (Met 1-21) and the
clinical traits. The genomic location of the CpG is on the x-axis and the association significance is on the y-axis.
Different colors represent different traits. (B) The effect size for each association shown in (A). (C) For each
methylation locus on the x-axis, the range of methylation across individuals in the population is shown on the
y-axis.
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Figure 2. FASN is associated with multiple clinical traits
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Figure 2. FASN is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for BMI. Each dot
represents a CpG region with the genomic location of each CpG region on the x-axis and chromosomes shown in alternating
colors. The association significance is on the y-axis and significant hits are shown as red dots. (B) Association results for
multiple phenotypes near the FASN locus. Each dot represents a different association to a CpG region and different colored
points represent distinct clinical traits. The genomic location of each CpG region is on the x-axis and the association signifi-
cance is on the y-axis. Red vertical bars denote the transcription start and end of FASN. The dotted significance threshold
line is drawn at 5x10-8. (C) cis-eQTL results for FASN expression in adipose tissue biopsies. Each dot represents a SNP. the
genomic location of each SNP is on the x-axis and the association significance is on the y-axis. Significant SNPs are shown
as red dots. Red vertical bars denote the transcription start and end of FASN. The dotted significance threshold line is drawn
at 5x10-8. (D)-(F) Each point represents an individual in the cohort, showing correlation between (D) methylation levels for
the peak associated CpG region and BMI, (E) methylation levels for the peak CpG region and expression of FASN, and (F)
expression of FASN and BMI.
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Figure 3. SLC1A4 is associated with multiple clinical traits
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Figure 3. SLC1A4 is associated with multiple clinical traits. (A) Manhattan plot showing EWAS results for insulin resistance index
HOMAIR. Each dot is a CpG region, the genomic location of each CpG region is on the x-axis with chromosomes shown in alternat-
ing colors, the association significance is on the y-axis, significant hits are shown as red dots. (B) Association results for multiple
phenotypes near the SLC1A4 locus. Each dot represents a different association to a CpG region, different colored points represent
distinct clinical traits, the genomic location of each CpG region is on the x-axis, the association significance is on the y-axis. Red
vertical bars denote the transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5x10-8. (C)
cis-eQTL results for SLC1A4 expression in adipose tissue biopsies. Each dot represents a SNP, the genomic location of each SNP is
on the x-axis, the association significance is on the y-axis, significant SNPs are shown as red dots. Red vertical bars denote the
transcription start and end of SLC1A4. The dotted significance threshold line is drawn at 5x10-8. (D)-(F) Each point represents an
individual in the cohort, showing correlation between (D) methylation levels for the peak associated CpG region and HOMAIR, (E)
methylation levels for the peak CpG region and expression of SLC1A4, and (F) expression of SLC1A4 and HOMAIR.
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Figure 4. Cell-type deconvolution
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Figure 4. Cell-type deconvolution. (A) Sample composition by cell-type is shown for different cell types (columns), across all
METSIM samples (rows). The color in the heatmap represents the relative fraction that each cell-type contributes to the total in each
sample. (B) For each methylation locus (rows), the methylation levels in METSIM samples or for different cell-types (columns) are
shown in the heatmap, the color represents the methylation levels. (C) Correlation between cell-type composition and clinical trait.
Traits are plotted in rows, and cell-types are plotted in columns. The color in the heatmap represents spearman correlation between
the fraction derived from each cell-type and a clinical trait for and an individual, across all individuals in the METSIM samples.
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Figure 5. A Methylation Biomarker to Assess Type Il Diabetes
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Figure 5. A methylation biomarker to assess type Il diabetes. (A) Kernel density estimates of principal component 1 by type Il diabetes status
at baseline and follow-up examination for METSIM participants who received follow-up examination in the testing dataset (n=2422). Healthy
individuals had not been diagnosed with type Il diabetes at baseline or follow-up examination, type Il diabetes follow-up individuals had not
received a type |l diabetes diagnosis at baseline but were diagnosed by follow-up examination, and type Il diabetes baseline individuals
received a type |l diabetes diagnosis before or at baseline examination. (B) A combined type Il diabetes feature, PC1, outperforms individual
features for classification of diabetes at baseline or follow-up examination among METSIM participants in the testing dataset who received
follow-up examination (n=2422). (C) Measured and predicted PC1 values for a single cross-validated regression model fit to 18 CpG sites.
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Supplemental Text
OVERLAP OF EWAS RESULTS AND PUBLISHED GWAS AND EWAS

To further examine the role of candidate genes in metabolic syndrome, we queried published
GWAS results in the GWAS catalog (1) to determine if any of our candidate genes had been previously
bookmarked a candidate gene in a GWAS for cardiovascular or metabolic traits. Overall, we found 7
candidate genes associated with EWAS hits in the current study have been previously associated with
metabolic or cardiovascular. For example, we found that LINC01317 is associated with insulin sensitivity
index (MATSUDA) using EWAS, and a GWAS to Glomerular filtration rate reported a significant
association with a SNP (rs10495809) in an intron of LINC01317 (2). CPEB4 is associated OGTT plasma
insulin levels, insulin sensitivity index (MATSUDA), and insulin resistance index (HOMAIR) in the
current EWAS, and was previously reported as a bookmark gene for a SNP ((s7705502) reported in a
GWAS to waist-to-hip ratio adjusted for body mass index (3). CPEB4 is also a strong cis-eQTL in

174

adipose tissue (Tablel, p=2.4x10"""), making it an excellent candidate gene associated with diabetes in
humans. Although the traits associated with the candidate genes are different in the current EWAS and
published GWAS, these findings lend additional support to the involvement of these candidate genes in
diabetes traits. Results for all candidate genes are summarized in Table S2.

In addition, to published GWAS associations, four of the candidate genes have been previously
shown to influence diabetes and/or obesity, including the fatty acid synthase gene FASN and the
transcription factor RXRA, a well-known regulator of metabolism. The mismatch repair genes MSH2 and
MSHG6 were previously linked to BMI in humans (4), and in the current study they are associated with
BMI, waist circumference, and percent fat mass.

A recent EWAS study examined association of BMI and DNA methylation levels measured from
blood using methylation arrays, in a human population of 10,774 individuals (5). They identified 278 in
CpG sites associated with BMI at (p< 1x107), distributed across 207 loci, and replicated 187 of these.

The published EWAS and the current study both examine BMI as a trait, however we used both different

cell-types (blood in the published work, and adipose tissue in our study), and different methods of
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measuring methylation levels (microarrays versus bisulfite sequencing in our study). Hence to be able to
compare our EWAS results with this published study, we focused on the overlap of the nearest candidate
gene to each locus, and found that SBNO2 was associated with BMI in the published EWAS by Wahl and
colleagues, and was associated with both BMI and body weight. Additionally, the disparity in sample size

(201 vs 10,774) suggest the current study is underpowered to detect all overlapping signals.
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Table S2. Overlap between EWAS hits and GWAS for metabolic traits
Candidate Gene in Phenotype in SNP in GWAS L.
EWAS locus | Chr |Bp start Bp end Publication
Genes(s) GWAS catalog [ GWAS catalog |catalog
Glomerular
LINC01317, filtration rate in (Wuttke et al.
Metl 2 34545726 34545903 LINCO1317 o rs11677592
LINC01320 chronic kidney 2016)
disease
Met2 2 47979865 |47980000 MSH2, MSH6
el il (Low et al.
Met3 2 65064793 65064867 AFTPH, SLC1A4 |SLC1A4 Atrial fibrillation | rs2540953 2017)
(Kettunen et al.
. 2016), (Shin et
Metabolite rs2160387,
Met3 2 65064793 65064867 AFTPH, SLC1A4 |SLC1A4 al. 2014),
levels rs10211524
(Inouye et al.
2012)
Metd 4 7774215 7774379 AFAP1
Waist-to-hip
i j 77 2 hungin A
Met5 5 |173132627 [173132883 |BOD1,CPEB4 |CPEB4 ratio adjusted | rs7705502, (Shungin et a
for body mass | rs7705502 2015)
index
Met6 6 3132000 3132119 BPHL
(Simino et al.
Met7 9 137263485 |137263573 RXRA RXRA Blood pressure |rs4841895 2014)
Met8 10 |75600604 [75600822 CAMK2G
Obesity-related (Comuzzie et
Met9 10 100183346 |100183441 HPS1 HPS1 . rs6584202
traits al. 2012)
Met10 11 65248602 65248737 FRMDS, SCYL1
Visceral adipose
tissue/
(Fox et al.
Metll 12 |42883183 42883320 PRICKLE1 PRICKLE1 subcutaneous rs12316797 2012)
adipose tissue
ratio
Response to
fenofi Aslibekyan
Met12 12 |113734359 |113734579 |TPCN1 enofibrate rs2384207 (Aslibekyan et
(adiponectin al. 2013)
levels)
Met13 17 2893657  |2893829 RAP1GAP2
Metl14 17 40913548 40913600 RAMP2
Met15 17 80041514 80042067 FASN
Met16 17 80046324 80047195 FASN
Met17 17 80050198 [80050365 FASN
Met18 17 80051500 80053080 FASN
Met19 19 1148096 1148232 SBNO2
Met20 21 16661536 16661714 NRIP1, USP25
Blood pressure
. (Sung et al.
Met21 22 28151964 28152032 MN1 MN1 smoking rs133980 2015)
interaction
Warfarin
) (Parra et al.
Met21 22 28151964 28152032 MN1 MN1 maintenance rs68043594 2015)
dose
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Table S1. Clinical trait descriptions and lambda
Clinical trait

Body mass index

Glycated Hemoglobin A1C

HOMAIR insulin resistance index based on HOMA
Plasma adiponectin (ug/ml)

Plasma C-reactive protein (mg/l)

Plasma IL1 receptor antagonist (pg/ml)
Plasma IL1 beta (pg/ml)

OGTT fasting plasma free fatty acids (mmol/l)
OGTT fasting plasma glucose (mmol/l)
OGTT fasting plasma insulin (mU/I)

OGTT 120 min plasma insulin (mU/I)

OGTT 30 min plasma insulin (mU/l)

OGTT fasting plasma proinsulin (pmol/l)
OGTT 120 min plasma proinsulin (pmol/l)
Bioimpedance Resistance

HDL cholesterol (mmol/l)

LDL cholesterol (mmol/l)

Total cholesterol (mmol/l)

Total triglycerides (mmol/l)

Waist/hip ratio

Bioimpedance: Reactance

Diastolic blood pressure (mmHg)

Glomerular filtration rate (eGFRcockrof)

Fat free mass (%)

Fat mass (%)

Hip (cm)

OGTT insulin area under the curve (pmol/l * min)
MATSUDA insulin sensitivity index (mg/dl, mU/I)
Muscle mass (%)

Systolic blood pressure (mmHg)

Waist circumference (cm)

Weight (kg)

Mean

26.65
5.61
1.95
7.02
2.14

210.60
0.38
0.36
5.77
7.48

47.56

60.12

13.09

48.04

475.23
1.51
3.46
5.51
1.36
0.96

52.06

88.02

108.78

79.89

20.11

100.50

35118.72
7.35

45.76

134.85

96.55

82.76

SD

3.59
0.31
1.28
3.16
3.75

142.07

0.90
0.14
0.48
4.58
51.72
39.21
6.25
26.49
53.96
0.42
0.73
0.82
0.84
0.06
10.28
8.64
23.51
4.04
4.04
6.46

24130.91

4.07
3.56
14.74
10.37
12.48

Minimum

19.49
4.60
0.44
1.40
0.14

31.00
0.09
0.11
4.60
2.00
3.40

13.40
4.10
9.40

350.00
0.86
212
3.67
0.40
0.81

32.00

64.67

62.74

64.60
9.60

72.00

7587.00
1.10

36.10

107.33

74.00

55.00

Maximum

44.49
6.60
9.53

21.40

42.54

1460.60
7.81
0.89
7.20

32.00

280.70
213.10
44.00
200.10
636.00
3.75
5.44
8.07
8.59
1.19
111.00
118.67
211.92
90.40
35.40
138.00
136008.00
20.06
69.90
180.67
146.00
149.00

EWAS
Inflation
factor A

0.93
1.01
0.90
1.12
1.24
0.79
0.84
0.76
0.83
0.97
0.98
0.81
0.84
0.96
0.90
0.80
0.82
0.84
0.83
0.73
0.89
0.99
1.08
0.99
1.00
0.87
0.82
0.97
0.96
0.99
0.99
0.99
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Figure S1. Sample statistics
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Figure S1. Sample statistics. (A) Total number of reads and aligned reads in all RRBS libraries. (B) Mappa-
bility and coverage in all RRBS libraries. (C-D) Methylation patterns for an (C) individual CpG and (D) a CpG
methylation region. The x-axes are individual samples, where each dot is a sample. The y-axes are the
methylation levels for the CpG in that sample. (E) Histogram showing distribution of average methylation
levels for individual CpGs (blue) and CpG regions (black). (F) Distribution of the range in methylation levels
across samples for individual cytosines (blue) and methylation regions (black). The x-axis is delta methylation
levels across individuals, and the y-axis is the cumulative distribution function F(x).
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Figure S2. Distribution of Cp&TegiGNE iR 'ALASHN'Jéléme (continued)
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Figure S3. Epigenome-wide assocition p-value distribution
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Figure S3. EWAS p-value distributions and expression of tissue specific genes. Histogram of the p-value
distributions in the EWAS for (A) all clinical traits, and (B) oral glucose tolerance test area under the curve.
(C) Q-Q plot between the theoretical uniform distribution (red) and the EWAS p-value distribution (black) for
the trait oral glucose tolerance test area under the curve. (D) Expression levels in adipose tissue biopsies
for samples where we have both methylation and expression data. The y-axis is the median expression
across individuals, and the x-axis are genes known to be expressed in adipocytes or macrophages.


https://doi.org/10.1101/223495
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/223495; this version posted March 13, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure S4. Roadmap and RegulomeDB chromatin marks in loci
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Figure S4. Chromatin marks and chromatin states. Chromatin marks and chromatin states for each
locus based on Roadmap and RegulomeDB databases. Red=present, blue=absent.
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