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Abstract

Genome-scale metabolic models are instrumental in uncovering operating principles of cellular
metabolism and model-guided re-engineering. Recent applications of metabolic models have also
demonstrated their usefulness in unraveling cross-feeding within microbial communities. Yet, the
application of genome-scale models, especially to microbial communities, is lagging far behind the
availability of sequenced genomes. This is largely due to the time-consuming steps of manual cura-
tion required to obtain good quality models and thus physiologically meaningful simulation results.
Here, we present an automated tool — CarveMe — for reconstruction of species and community level
metabolic models. We introduce the concept of a universal model, which is manually curated and
simulation-ready. Starting with this universal model and annotated genome sequences, CarveMe
uses a top-down approach to build single-species and community models in a fast and scalable
manner. We build reconstructions for two model organisms, Fscherichia coli and Bacillus subtillis,
as well as a collection of human gut bacteria, and show that CarveMe models perform similarly
to manually curated models in reproducing experimental phenotypes. Finally, we demonstrate
the scalability of CarveMe through reconstructing 5587 bacterial models. Overall, CarveMe pro-
vides an open-source and user-friendly tool towards broadening the use of metabolic modeling in

studying microbial species and communities.

Introduction

Linking metabolic phenotype of an organism to environmental and genetic perturbations is
central to several basic and applied research questions. To this end, genome-scale metabolic
models provide a mechanistic basis allowing to predict the effects of, e.g., gene knockouts, or
nutritional changes [II [2]. Indeed, such models are currently used in a wide range of applications,
including rational strain design for industrial biochemical production [3 [], drug discovery for

pathogenic microbes [B], and the study of diseases with associated metabolic traits [6} [7], 8], [@].
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An emerging application of genome-scale models is the study of cross-feeding and nutrient
competition in microbial communities [10, [T}, 12} T3] 14} [I5]. However, a vast majority of relevant
microbial communities, such as those residing in the human microbiota [16], ocean [I7] or soil
[18], still remain inaccessible for metabolic modeling due to the unavailability of the correspond-
ing species-level models. Thus, applications of metabolic modeling lag behind the opportunities
presented by the increasing number of genomics and metagenomics datasets [19]. A major bot-
tleneck is the so-called genome-scale reconstruction process, which often requires laborious and
time-consuming curation, without which the model quality remains low. This becomes an even
more stringent bottleneck considering that microbial communities can contain hundreds of differ-
ent species.

Several metabolic reconstruction tools are currently available, each offering different degrees
of trade-off between automation and human intervention [20] 21, 22 23]. These tools follow a
bottom-up reconstruction approach consisting of the following main steps: 1) annotate genes with
metabolic functions; 2) retrieve the respective biochemical reactions from a reaction database, such
as KEGG [24]; 3) assemble a draft metabolic network; 4) manually curate the draft model. The
last step includes several tasks, such as adding missing reactions required to generate biomass pre-
cursors (gap-filling), correcting elemental balance and directionality of reactions, detecting futile
cycles, and removing blocked reactions and dead-end metabolites (see [25] for a detailed protocol).
If these problems are not resolved, the model can generate unrealistic phenotype predictions, such
as incorrect biomass yields, excessive ATP generation, false gene essentiality, or incorrect nutri-
tional requirements. The manual curation step is time-consuming and includes repetitive tasks
that must be performed for every new reconstruction.

In this work, we present CarveMe, a new reconstruction tool that shifts this paradigm by
implementing a top-down reconstruction approach (Fig. . We begin by reconstructing a uni-
versal metabolic model, which is manually curated for the common problems mentioned above.
Notably, this universal model is simulation-ready: it includes import/export reactions, a universal
biomass equation, and contains no blocked or unbalanced reactions. Following, for every new re-
construction, the universal model is converted to an organism-specific model using a process called
“carving” (see Methods section for details). In essence, this process removes reactions and metabo-
lites not predicted to be present in the given organism, while preserving all the manual curation
and relevant structural properties of the original model. The lack of manual intervention makes
this process easily automatable and the reconstruction of multiple species can be easily parallelized
(see legend Fig. 1). CarveMe can build models from genome sequences alone, but allows users
to optionally provide collected experimental data (in a simple tabular format) as additional input
during reconstruction. Furthermore, it automates the creation of microbial community models by

merging selected sets of single-species models into community-scale networks.
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Figure 1: Workflow comparison between bottom-up and top-down genome-scale metabolic model reconstruction:

a) In the traditional (bottom-up) approach, a draft model is automatically generated from the genome of a given
organism, followed by extensive manual curation; b) In the top-down approach, a universal model is automatically
generated and manually curated. This model is then used as a template for organism-specific model generation
(carving), a process that does not require manual intervention and can be easily parallelizable to automatically
generate a large number of models. Optionally, this automated process can be also applied to the generation of

microbial community models by merging single-species models.
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Results

Universal model of bacterial metabolism

We built an universal model of bacterial metabolism by downloading reaction data from BiGG
[36], a database that integrates data from 79 genome-scale metabolic reconstructions (accessed:
version 1.3). Although BiGG includes a few eukaryotic reconstructions (such as yeast, mouse,
and human), prokaryotes, especially bacteria, are better represented, including species from 14
different genera. The universal model contains all BiGG reactions with the exception of those
exclusive to eukaryotic organisms. The model underwent several curation steps (see Methods for
details), including estimation of thermodynamics, verification of elemental balance, elimination of
energy-generating cycles, and integration of a core biomass composition. The final model includes 3
compartments (cytosol, periplasm, and extracellular), 2383 metabolites (representing 1503 unique
compounds) and 4383 reactions (2463 enzymatic reactions, 1387 transporters, and 473 metabolite
exchanges). From this universal model, we derived two specialized templates for gram-positive and
gram-negative bacteria with modified biomass equations to account for the respective differences
in cell wall/membrane composition. During reconstruction the user can select between the generic
or specialized (or even user-provided) universal models. In addition to the model, we generate a
sequence database with a total of 30814 unique protein sequences derived from the gene-protein-
reaction associations of the original models. These are used to align the input genomes and identify

the respective reactions in the universal model.

Comparison with manually curated metabolic models: Escherichia coli and Bacillus subtilis

The quality of the models generated with CarveMe was evaluated regarding their ability to re-
produce experimental data and compared to previously published manually curated models. Two
reference model organisms were selected as case-studies, namely the gram-negative bacterium FEs-
cherichia coli (strain K-12 MG1655) and the gram-positive bacterium Bacillus subtilis (strain
168). E. coli is among the best-studied organisms and the one with the most highly curated
metabolic models. B. subtilis was chosen as a representative of gram-positive bacteria due to the
availability of experimental data to test model predictions. The genomes of these two species used
to build the models were downloaded from NCBI RefSeq (release 84) [26]. For comparison, the
manually curated models for E. coli (1JO1366) and B. subtilis (i'YO8444) were obtained from the
respective publications [27], 28]. Furthermore, to analyze how CarveMe performs in comparison to
the currently available automated reconstruction tools, the same genomes were used to generate
genome-scale models with the modelSEED pipeline (https://kbase.us/| accessed: August 2017)
[20). Notably, the models generated with CarveMe were able to reproduce growth on M9 minimal

medium from genome data alone, without specifying any growth requirements during reconstruc-
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Figure 2: Phenotype array simulation results: a) E. coli models: CarveMe reconstruction vs modelSEED re-
construction vs 1JO1366 model; b) B. subtilis models: CarveMe reconstruction vs modelSEED reconstruction vs
1Y 0844 model. The dotted lines represent the simulation results for CarveMe models when free diffusion is allowed

for all metabolites without associated transporters.

tion or performing any additional gap-filling after reconstruction. The models generated with
modelSEED required specific gap-filling for M9 minimal medium.

All models were next used to simulate growth on Biolog phenotype arrays (see Methods) and
their predictive ability was assessed with respect to the experimental data in terms of accuracy,
precision, sensitivity, specificity, and Fl-score. It can be observed that the CarveMe E. coli
reconstruction performs very similarly to the iJO1366 model with regard to all the performance
metrics considered, with the exception of slightly decreased specificity (Fig. ) The modelSEED
E. coli model shows higher specificity but lower performance with regard to the other metrics.

In the case of B. subtilis, the CarveMe model performs with high specificity compared to the
iYO844 model but looses on other metrics (Fig. ) The modelSEED model performs worse
than iYO844 with regard to all the metrics. This difference in performance with respect to the
iYO844 model can be explained by the lack of annotated transporters for B. subtilis, which have
been manually curated in this model. To test this hypothesis, we repeated all simulations with the
CarveMe models, this time allowing free diffusion of metabolites without associated transporters
(Fig. dotted lines). It can be observed that, for B. subtilis, the model performs better with
regard to all metrics, whereas for E. coli the results remain practically unaltered.

The reconstructed models were then evaluated for their ability to predict gene essentiality (see
Methods). In the case of E. coli, all models perform similarly (Fig. [3h). On the other hand, the
automated reconstructions for B. subtilis performed with lower precision and sensitivity compared
to the iYO844 model (Fig. [3p). One common pattern for both CarveMe models is a slightly

decreased sensitivity with regard to gene essentiality (i.e. many essential genes reported as false
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Figure 3: Gene essentiality prediction results: a) Gene essentiality for E. coli growing in minimal medium using
glucose or glycerol as carbon source (combined results); b) Gene essentiality for B. subtilis growing in rich medium.
The dotted lines represent the simulation results for CarveMe models when the original biomass composition of the

respective organism is used during reconstruction.

negatives). One possible reason is the utilization of generic biomass templates that exclude non-
universal cofactors [29] and other organism-specific biomass precursors. To test this, we generated
new reconstructions using the biomass composition present in the manually curated models and
repeated the simulations (Fig. |3, dotted lines). Confirming to our hypothesis, we observed a gain
in sensitivity when using organism-specific biomass composition.

A general limitation in building genome-scale metabolic models, given the available data, is the
existence of several equally plausible models. This has been explored by [30], where the authors
show that when gap-filling a model for multiple growth media, the selected order of the media
influences the final network structure. Another source of ambiguity is the degeneracy of solutions
when solving an optimization problem to generate the model itself. To tackle this issue, CarveMe
allows the generation of model ensembles. The user can select the desired ensemble size, and
then use the ensemble model for simulation purposes in order to explore alternative solutions.
We generated model ensembles (N=100) for E. coli and B. subtilis and repeated the phenotype
array simulations and gene essentiality predictions using different voting thresholds (10%, 50%,
90%) to determine a positive prediction (see Methods). To confirm that the ensemble generation
is unbiased, we calculated the Jaccard distance between every pair of models in each ensemble
(Supp. Fig. 1a). The ensemble models show a degree of variability with the pairwise distance
following a normal distribution. The ensemble for B. subtilis shows a much larger variability
compared to E. coli, reflecting a higher degree of uncertainty in the network structure. Regarding
the phenotype array simulations, we observed a general decrease in the specificity for both E. coli

and B. subtilis (Supp. Fig. 1b,c). The difference is more evident for B. subtilis, simultaneously
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displaying a considerable increase in the other metrics. Interestingly, the predictions seem to be
consensual irrespective of the voting threshold applied. This is also evident for the gene essentiality
predictions, where the results are unaltered with regard to the single model simulations (Supp.
Fig. 1d,e). One exception is the B. subtilis ensemble for voting thresholds above 90%, where no
positive consensus is ever obtained.

Taken together, these comparisons demonstrate that, considering the fast and fully automated
procedure, the CarveMe reconstructed models perform on close level to the manually curated

models.

Metabolic models for the human gut bacterial species

The human gut microbiome is of particular interest for metabolic modeling due to its impact on
human health [3T], [32] B3]. In this regard, one major hurdle is the characterization of gut bacterial
species in terms of growth requirements and metabolic potential. In a recent study from our group,
the growth of 96 phylogenetically diverse gut bacteria was characterized across 19 different media
(15 defined and 4 complex media compositions) (Tramontano et al, in revision). From this list,
a total of 47 bacteria are also included in the AGORA collection, a recently published collection
of 773 semi-manually curated models of human gut bacteria [34]. These models, however, could
not reproduce the metabolic needs experimentally observed by Tramontano et al., highlighting the
need for the use of validated growth media for species that are distant from model organisms.

In this work, we used CarveMe to reconstruct the metabolism of 74 bacterial strains that
grew in at least one defined medium in the Tramontano et al. study. We additionally used a
recently published collection of literature-curated uptake/secretion data for human gut species to
further refine the reconstructed models [35]. The resulting models thus represent an up-to-date
and experimentally backed collection for gut bacteria. To understand how the media informa-
tion contributed to the model refinement, we analysed the gap-filling reactions introduced in each
model when these data is provided during reconstruction. Interestingly, we observed that the total
number of gap-filling reactions is negatively correlated with the genome size of the respective or-
ganism (Pearson’s r = -0.49, p < 105; Supp Fig. 2a). This is most likely due to poor annotations
of genes in amino acid metabolism, especially transporters, that are responsible for several of the
gap-filled pathways in models of small-genome species (which usually tend to harbor many aux-
otrophies). We next compared the number of gap-filled reactions between CarveMe and AGORA
models (40 models in common) and observed that they are well correlated (Pearson’s r = 0.52,
p < 10°3; Supp. Fig. 2b). This shows that the quality of the CarveMe models even without the
Tramontano et al data is comparable to the manually-curated AGORA collection, which further

highlights the advantages of our top-down curation approach.
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Large-scale model reconstruction and community models

To demonstrate the scalability of CarveMe, and to provide the research community with a
collection of reconstructed models spanning a wide variety of microbes, we reconstructed 5587
bacterial genome-scale models. These correspond to all bacterial genomes available in NCBI
RefSeq (release 84) [26] that were classified as reference or representative assemblies at the strain
level. This collection of models represents metabolism across all (currently sequenced) bacterial
life and thus can help uncovering principles underlying the architecture and diversity of metabolic
networks.

The smaller metabolic networks belong to the Mycoplasma genus with as few as 238 reactions
(Mycoplasma ovis str Michigan), whereas the larger metabolic networks belong to the Klebsiella
and FEscherichia genera, with up to 2472 reactions (Klebsiella oxytoca str CAV1374). We note
that these numbers are indicative, as they can be biased or restricted by the quality of the gene
annotation and the scope of the reaction databases. Interestingly, the total number of reactions
and metabolites per organism appears to vary by approximately one order of magnitude across all
bacteria (Fig. ) Furthermore, the number of metabolites per species seems to scale linearly with
the number of reactions (average metabolite/reaction ratio of 0.6), albeit with an asymptotic trend
closer to the maximum number of reactions. The latter indicates saturation of metabolite space
relative to the expansion of the reaction space due to, for example, alternative pathways acting
on the same metabolites. This pattern, however, does not completely account for the secondary
metabolism, since it yet remains largely unknown.

We further looked at how frequently individual reactions and metabolites occur across species.
The frequency of reactions shows a negative exponential distribution (Fig. ) with 30% of all
reactions being present in less than 10% of the organisms, and only 5% of reactions being present
more than 90% of the organisms. Interestingly, the metabolite frequency shows instead a bimodal
distribution (Fig. [dk) with peaks below 10% frequency (=~ 20% metabolites) and above 90%
frequency (~~ 25% metabolites). As expected, the high frequency reactions and metabolites are
distributed across the primary metabolism, including carbohydrate, lipid, nucleotide, amino acid
and energy metabolism (Supp. Fig. 3).

Next, we illustrate the use of our model collection to build microbial community models and
explore inter-species interactions. We created random assemblies of microbial communities of
different sizes (up to 20 member species per community, 1000 assemblies for each community
size) and calculated their metabolic interaction potential (MIP score, as defined in [II]). In
brief, the MIP score of a community is a measure of the number of compounds that can be
exchanged between the community members, allowing the community to reduce its dependence
on the environmental supply of nutrients. The results obtained with this collection (Fig. [4{)

closely match those previously obtained with a smaller model collection (1503 bacterial strains,
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Figure 4: NCBI RefSeq reconstruction collection summary: a) Total number of reactions and metabolites per
organism; b) Reaction frequency distribution across all organisms; c¢) Metabolite frequency distributions across
all organisms; d) Metabolic interaction potential of randomly assembled communities of different sizes, including
absolute MIP values (box plots), and average MIP normalized by community size (red dots with 95% confidence

intervals).

generated with modelSEED) [11I]. In particular, while the potential for interaction increases
with the community size, the number of interactions normalized by the community size shows a

maximum at a relatively small community size.

Discussion

CarveMe uses the BiGG database [36] to build universal model templates, which offers some
advantages compared to other commonly used reaction databases such as KEGG, Rhea, or mod-
elSEED [24] 20] B7]. First, it was built by merging several genome-scale reconstructions (ranging
from bacterial to human models), which leverages on the curation efforts that were applied to
these models. Secondly, BiGG reactions contain gene-protein-reaction associations, compartment
assignments, and human-readable identifiers. These aspects facilitate the reconstruction process
and the utilization of the generated models. However, BiGG is limited in size and scope compared
to other databases, which may result in lack of coverage of certain metabolic functions, especially
for secondary metabolism. A comparison between the reaction content of BiGG, modelSEED
and KEGG (Supp. Fig. 4), shows that BiGG contains a large number of reactions which are
not present in the other databases. However, when comparing the total coverage of unique EC
numbers, one can observe that BiGG lags behind modelSEED and KEGG. Furthermore, trans-
port reactions are often missing from these databases due to the lack of functional annotation of

transporter genes [38], which can hamper the correct prediction of metabolic exchanges. In future
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releases, we plan to facilitate the integration of reaction data from multiple databases.

The quality of the universal model used for top-down reconstruction is of paramount impor-
tance. There is a tradeoff between the desired broadness of this “universal” model and the amount
of curation effort required. In this work, we opted to provide a well-curated universal model of
bacterial metabolism, which can be generally used for reconstruction of any bacterial species.
We also provide more refined gram-positive and gram-negative template models, which account
for the differences in membrane/cell wall composition. The models generated with CarveMe are
pre-curated for common structural and biochemical inconsistencies and can be readily used for
simulation. Nonetheless, they should still be considered as drafts subject to further refinement, as
they might require organism-specific curation to reproduce certain phenotypes. In future releases,
we aim to provide a larger collection of templates in order to improve coverage of all domains of
microbial life. This includes other prokaryotes (archaea) and eukaryotes such as yeasts. Currently,
the pipeline allows users to provide their own templates at any desired taxonomic level, and pro-
vides methods to facilitate the creation and curation of such templates (see Methods). Note that
it is also possible to utilize the pipeline in a “traditional” reconstruction approach, i.e. to use the
complete reaction database as a non-curated universal model, and perform the manual curation
of the generated models a posteriori.

In conclusion, CarveMe provides an automated reconstruction solution that uses a manually
curated universal model as a scaffold to generate genome-specific models. The underlying carving
procedure can work with the genetic evidence alone, i.e. without requiring the specification
of a medium composition. This distinguishes CarveMe from other reconstruction algorithms,
and makes it especially suitable for building models for uncultured species and communities.
Furthermore, when experimental data is collected for a given species (such as growth media,
known auxotrophies, metabolic exchanges, presence/absence of reactions) the user can provide
these data in a simple tabular format as additional input to the pipeline. We observe that the
models generated for E. coli and B. subtilis remarkably reproduced growth on M9 minimal medium
without media information or any other data being provided during reconstruction. Our extensive
benchmarking results show that the quality of CarveMe models is highly comparable to those of the
manually curated models. Another salient feature of CarveMe is its speed and easy parallelization.
A single reconstruction required, on average, 3 minutes on a laptop computer (Intel Core i5 2.9
GHz). Indeed, this allowed us to rapidly create one of the largest publicly available metabolic
model collections. Finally, we have given particular attention to making CarveMe an easy-to-use
tool. The pipeline is available as an open-source command line tool, and can be easily installed on
a personal computer as well as on a high-performance computing cluster. It implements a modular
architecture that facilitates modification/integration of new components. For instance, sequence

alignments can be automatically performed with diamond [42] or extracted from the output of
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third-party tools (we currently support eggnog-mapper [43]). Several other features such as direct
download of genome sequences from NCBI RefSeq or GenBank, automatic parallelization for
multiple genomes, and generation of community models, are expected to facilitate the use by a

broad range of researchers.

Methods

Universal model building

CarveMe provides a script to build an universal draft model of metabolism by downloading
all reactions and metabolites in the BiGG database [30] into a single SBML file. All metadata
associated with the reactions and metabolites are stored as SBML annotations. The same script
can be used to additionally perform automated curation tasks to build a final universal model (as

described next). BiGG version 1.3 was used during the course of this work.

Universal bacterial model

The initial draft model built from the entire BiGG database was manually curated to generate
a functioning universal model of bacterial metabolism. In the first step, all reactions and metabo-
lites associated with non-bacterial compartments were removed. The second step consisted on
constraining reaction reversibility in order to eliminate thermodynamically infeasible phenotypes.
Lower and upper bounds for the Gibbs free energy change for each reaction (AG,) were estimated

using the formula:

AG, = AG® + RTInQ

where AG? was calculated using the component contribution method [39]. R is the universal
gas constant, and the temperature T' was set to 298.15 K (25 °C). The reaction quotient (Q)
denotes the product to substrate ratio, which was limited by the physiological bounds imposed
on metabolite concentrations. A recent study showed that absolute metabolite concentrations
are conserved among different kingdoms of life [40]. The concentrations measured in this study
were used as reference and allowed to vary by 10-fold with respect to the measured values. All
other metabolites were allowed to vary between 0.01 and 10 mM. The reactions were set as
irreversible in the thermodynamically feasible direction whenever the estimated bounds for AG,.
were either strictly positive or strictly negative. Since AG? could not be determined for all
reactions, additional heuristic rules were applied: 1) ATP-consuming reactions were not allowed
to proceed in the reverse direction; 2) reactions present in thermodynamically curated models
[41] 27] assumed the reversibility constraints adopted in these models.

In the next step, atomically unbalanced reactions were removed from the model. If not removed,

these reactions can lead to spontaneous mass generation and unrealistic yields. An universal
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biomass equation was then added to the model. This equation was adapted from the E. coli
biomass composition [27] in accordance to a recent study on universal biomass components in
prokaryotes [29]. Subsequently, blocked reactions and dead-end metabolites were determined using
flux variability analysis and removed from the model.

Finally, the model was simulated under different medium compositions, including minimal
medium (M9 with glucose), and complete medium (all uptake reactions allowed to carry flux).
The model was tested for biomass and ATP production. Unrealistic ATP generation was detected
and the reversibility of the reactions involved was manually constrained in an iterative way until
all problematic reactions operated in the most thermodynamically favorable direction.

The draft model and the final curated model are provided as part of the pipeline, as well
as all the intermediate data used for model curation (Gibbs free energy estimations, reference

metabolomics data, and list of manually curated reactions).

Gram-positive and Gram-negative templates

The universal biomass composition does not contain membrane and cell wall components spe-
cific for gram-negative and gram-positive bacteria. This can result in false negative gene essential-
ity predictions for lipid biosynthesis pathways that generate these membrane/cell wall precursors.
Therefore, we generated specialized templates for gram-positive and gram-negative bacteria by
adding these components to the respective biomass composition. The gram positive template
includes glycerol teichoic acids, lipoteichoic acids and a peptidoglycan unit. The gram negative
template includes phosphatidylethanolamines, murein and a lipopolysaccharide unit. In both cases
the final biomass composition is normalized to represent 1 gram of cell dry weight.

During reconstruction, the user can select the universal bacterial template or one of the spe-
cialized templates. Furthermore, a utility to automatically generate customized templates with

user-provided biomass compositions is also included.

Gene annotation

The amino acid sequences for all genes in the BiGG database were downloaded from NCBI
and stored as a single FASTA file. This file is used to align the input genome files given by the
user and find the corresponding homologous genes in the BiGG database. The user can provide
the genome as a DNA or protein FASTA file. Note that raw genome files are not supported, since
open reading frame (ORF) identification is outside the scope of the tool.

By default, gene/protein alignments are performed using DIAMOND [42]. Alternatively, the
user can provide an alignment file externally generated with eggnog-mapper [43], which provides
higher confidence for functional annotation by refining the alignments with orthology (rather than
homology) predictions. However, this requires the utilization of high-performance computing

resources.
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Reaction scoring

The gene alignment scores obtained in the previous step are mapped onto reaction scores using
gene-protein-reaction (GPR) associations. The goal is to score the likelihood that a reaction is
present in the given organism. Gene scores are first converted to protein scores by calculating
the minimum score of all subunits that form a protein complex. If any subunit is missing, the
protein is given a null score. Protein scores are then converted to reaction scores by summing the
scores of all isozymes that can catalyze a given reaction. Customized GPR associations for the
reconstructed organism are generated during this process.

The final scores are normalized to a median value of 1 and typically follow a log-normal
distribution. Other enzyme-catalyzed reactions without genetic evidence are given a negative

score (by default -1), and spontaneous reactions are given a neutral score.

Model carving

Model carving is the process of converting a universal model into an organism-specific model by
removing reactions and metabolites which are unlikely to be present in the given organism. This is
performed by solving a mixed integer linear program (MILP) that simultaneously maximizes the
presence of high-score reactions and minimizes the presence of low-score reactions while enforcing

network connectivity (i.e. gapless pathways):

max w” (y" +y")
s.t.

S-v=0

v>—My" + ey’

v < —ey" + My’

v; >0 Vi€ {forward irreversible}

v; <0 Vi€ {backward irreversible}

vyl <1

"yl €{0,1}"

Ugrowth > Ugtowth

where w is the weighting vector (determined in the previous step), v is the flux vector, y/ and

y" are binary vectors indicating the presence of flux in the forward or backward reaction, .S is the
stoichiometric matrix, € is a minimum flux that must be carried by a reaction to be considered

active (default: 0.001 mmol/gDW /h), M is a maximum flux value (default: 100 mmol/gDW /h),

and vgr’,ﬁg“mh the minimum growth rate (default: 0.1 h'1).
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After solving the MILP problem, all inactive reactions are removed from the model, including
all consequently orphaned genes and metabolites. The final model is then exported as an SBML
file, the standard community format (to maximize compatibility with existing tools, the user can

select between the latest or the legacy version of the standard).

Ensemble generation

CarveMe also provides the option to generate an ensemble of equally plausible models rather
than a single model. This is performed by randomizing the weighting factors of reactions without
genetic evidence. The MILP problem is solved multiple times with the different weighting factors
to generate alternative models. The size of the ensemble (number of models) is selected by the
user. The ensemble is then exported as a single SBML file.

For the purpose of phenotype array simulation and gene essentiality prediction, a voting thresh-
old (T') was used to determine a positive outcome (i.e. a substrate is growth-supporting or a gene
is considered essential, if the percentage of models that agree with such phenotype is larger than

T). Simulation results with multiple thresholds (10%, 50%, 90%) are presented.

Ezperimental constraints

If the user collects experimental data for an organism, these can be provided as additional input
in tabular format during reconstruction and used to further constrain the optimization problem.
According to the level of confidence on the collected data, these can provided as “hard” or “soft”
constraints, which indicate the presence/absence and preferred direction of a given set of reactions
in the model (this includes enzymatic reactions, transport reactions, and metabolite exchanges).

Hard constraints are simply a list of flux bounds that are applied during reconstruction (vi® <
v; < v"®). They can be used to force or block the utilization of any given reaction. (Please note
that hard constraints can make the MILP problem infeasible, so they should be used with care.)

Soft constraints are specified as a mapping from reactions to any of three possible values (1,
-1, 0), which are used to modify the objective function, giving a different weight to the binary

variables associated with the respective reactions:

1: aylf + Oy; (flux occurs in forward direction)
—1: Oylf + oyl (flux occurs in backward direction)
0: —ay! —ay! (absent reaction)

where « is a configurable parameter (default value: 1) that allows the user to fine-tune the

priority given to the experimental evidence relatively to the genetic evidence.
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Gap-filling

CarveMe allows to gap-fill a model to reproduce growth on a set of given media. This is an
optional step performed after the carving process. Its implementation is similar to typical gap-
filling procedures, except that the reactions scores previously calculated are used as weighting
factors. This increases the probability that a reaction with some level of genetic evidence is
selected over an equivalent alternative with lower (or without) genetic evidence. The problem is

formulated as follows:

minZ(ljsi)yi

i€R
s.t.
S-v=0
Ib<v<ub

yilb; <wv; <yub; Vi€ R
y; € {0,1} VieR
Ugrowth =~ ”glrg:;vth
where R is the set of reactions in the universe not present in the model, s; is the annotation
score of reaction i (0 for reactions without score), {b and ub are the lower and upper flux bound

min

growth 1S the same as previously defined.

vectors, and v

Microbial community models

CarveMe provides a script to merge a selected set of single-species models into a microbial com-
munity model. The result is an SBML model where each species is assigned to its own compartment
and the extracellular environment is shared between all species. There are some additional options
provided, such as the creation of a common community biomass reaction, creation of isolated ex-
tracellular compartments connected by an external metabolite pool, and the initialization of the
community environment with a selected growth medium. The model can be readily used for flux
balance analysis (just like a single-species model) to explore the solution space of the community

phenotype, and also for the application of community-specific simulation methods [10} [T].

Simulation of phenotype arrays

Simulation of phenotype arrays was performed by constraining the respective models to M9
minimal medium (with a maximum uptake rate of 10 mmol/gDW /h for every compound). For
each type of array (carbon, nitrogen, sulfur, phosphorus), the default source of the given element
(respectively: glucose, ammonia, sulfate, phosphate) was iteratively replaced with the respective
compounds in the array. The phenotype was considered viable if the growth rate was above 0.01

h't. The experimental data used for validation was obtained from [41] 28].
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Determination of gene essentiality

Gene essentiality was determined by iteratively evaluating the impact of single gene deletions
using the respective gene-protein-reaction associations. The media compositions were defined as
M9 minimal medium (with glucose or glycerol as carbon source) for E. coli and LB medium for

B. subtilis. The results are then validated with experimental data retrieved from [27, [28].

Human gut bacterial species

The reconstructions were performed using the genome sequences and growth media provided in
(Tramontano et al, in revision). The uptake/secretion data collected by [35] were provided as soft
constraints during reconstruction (note that these data are reported at species, rather than strain
level, hence the confidence level is low). Oxygen preferences were extracted from the PATRIC
database [44] and used as hard constraints. Each model was gap-filled for the subset of media

conditions where growth was observed.

Technical details

CarveMe is implemented in Python 2.7. It requires the framed python package (version 0.4)
for metabolic modeling [45], which provides an interface to common solvers (Gurobi, CPLEX),
and import/export of SBML files through the libSBML API [46]. In this work, all MILP problems
were solved using the IBM ILOG CPLEX Optimizer (version 12.7).

Code Availabitity

CarveMe is publicly available with an open source license at https://github.com/cdanielmachado/
carveme. It can be easily installed from a terminal by typing: pip install carveme. All the
scripts used to analyse the data are available upon request during peer-review and will be publicly

available upon publication.

Data Availabitity

The database with the 5587 model collection is publicly available at https://github.com/
cdanielmachado/embl_gems. The FE. coli and B. subtilis models, the human gut species models,
and all intermediate results are available upon request during peer-review and will be publicly
available upon publication. The experimental data used to validate the different models were

obtained from the supplementary materials of the respective publications as cited above.
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Supplementary Figure 1: Ensemble modeling results: a) Pairwise distance between all network structures within
each ensemble for the two ensembles generated (E. coli and B. subtilis); b) E. coli phenotype array simulation
results; ¢) B. subtilis phenotype array simulation results; d) E. coli gene essentiality prediction; e) B. subtilis gene

essentiality prediction. Panels b-e compare single model vs ensemble model simulation, where T denotes the voting
threshold used to determine a positive result.
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Supplementary Figure 2: Gap-filled reactions for gut bacteria: a) Comparison between genome size and the number
of gap-filled reactions per species; b) Comparison of the number of gap-filled reactions between CarveMe and

AGORA models. Pearson correlation is indicated in both panels.

Metabolism of
Cofactors and Vitamins.

‘Xenobiotics Bi
and Metabolism &

Supplementary Figure 3: Global distribution of reaction and metabolite frequency across the bacterial model
reconstruction collection. The frequency of metabolites and reactions is indicated, respectively, by node and edge

width and opacity. Image generated with iPath2 [47].
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Supplementary Figure 4: Comparison of the reaction coverage between different reaction databases: a) Total number
of unique EC numbers present in each database; b) Total number of unique reactions present in each database.

Data obtained from the MetaNetX database (version 3.0) [48].
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