O 00 N o Uu b W N R

W WWWWWWWWWNNNNNNNNNNRRRPRRPRRERRP PR R
OO NOUDWNPOOLONOOTUBDWNRPOWOVOOLONOGOUD WNPER O

bioRxiv preprint doi: https://doi.org/10.1101/222786; this version posted November 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated

genes

Laura M. Huckins'%3%5 Amanda Dobbyn¥?°, Whitney McFadden®?3, Weiqing Wang'?, Douglas
M. Ruderfer®, Gabriel Hoffman'?# Veera Rajagopal’, Hoang T. Nguyen'?, Panos Roussos'?,
Menachem Fromer®2, Robin Kramer®, Enrico Domenci®, Eric Gamazon®°, CommonMind
Consortium, the Bipolar Disorder Working Group of the Psychiatric Genomics Consortium,
iPSYCH Consortium, Ditte Demontis’, Anders Bgrglum’, Bernie Devlin!!, Solveig K. Sieberts'?,

Nancy Cox®'%, Hae Kyung Im?°, Pamela Sklar®234, Eli A. Stahl¥%34


https://doi.org/10.1101/222786
http://creativecommons.org/licenses/by-nc-nd/4.0/

40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

bioRxiv preprint doi: https://doi.org/10.1101/222786; this version posted November 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Author Affiliations:
1. Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, NYC, NY;

2. Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, NYC, NY;

3. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, NY;

4. Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai,
NYC, NY;

5. Charles R, Bronfman Institute for Personalized Medicine, , Icahn School of Medicine at Mount
Sinai, NYC, NY;

6. Vanderbilt University Medical Center, Nashville, TN;

7. Institut for Biomedicin - Forskning og uddannelse, @st, Aarhus, Denmark

8. Human Brain Collection Core, National Institute of Mental Health, Bethesda, MD, USA,;

9. Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of
Trento, Trento, Italy;

10. Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago,
Illinois, USA

11. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA;

12. Systems Biology, Sage Bionetworks, Seattle, WA, USA;


https://doi.org/10.1101/222786
http://creativecommons.org/licenses/by-nc-nd/4.0/

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

bioRxiv preprint doi: https://doi.org/10.1101/222786; this version posted November 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Abstract

Bipolar disorder is a complex neuropsychiatric disorder presenting with episodic mood
disturbances. In this study we use a transcriptomic imputation approach to identify novel genes
and pathways associated with bipolar disorder, as well as three diagnostically and genetically
distinct subtypes. Transcriptomic imputation approaches leverage well-curated and publicly
available eQTL reference panels to create gene-expression prediction models, which may then
be applied to “impute” genetically regulated gene expression (GREX) in large GWAS datasets.
By testing for association between phenotype and GREX, rather than genotype, we hope to
identify more biologically interpretable associations, and thus elucidate more of the genetic

architecture of bipolar disorder.

We applied GREX prediction models for 13 brain regions (derived from CommonMind
Consortium and GTEx eQTL reference panels) to 21,488 bipolar cases and 54,303 matched
controls, constituting the largest transcriptomic imputation study of bipolar disorder (BPD) to
date. Additionally, we analyzed three specific BPD subtypes, including 14,938 individuals with
subtype 1 (BD-l), 3,543 individuals with subtype 2 (BD-IlI), and 1,500 individuals with

schizoaffective subtype (SAB).

We identified 125 gene-tissue associations with BPD, of which 53 represent independent
associations after FINEMAP analysis. 29/53 associations were novel; i.e., did not lie within 1Mb
of a locus identified in the recent PGC-BD GWAS. We identified 37 independent BD-I gene-
tissue associations (10 novel), 2 BD-II associations, and 2 SAB associations. Our BPD, BD-| and
BD-Il associations were significantly more likely to be differentially expressed in post-mortem
brain tissue of BPD, BD-I and BD-Il cases than we might expect by chance. Together with our
pathway analysis, our results support long-standing hypotheses about bipolar disorder risk,
including a role for oxidative stress and mitochondrial dysfunction, the post-synaptic density,

and an enrichment of circadian rhythm and clock genes within our results.
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88 Introduction

89  Bipolar disorder (BPD) is a serious episodic neuropsychiatric disorder presenting with extreme

90 elation, or mania, and severe depressive states!. In tandem, individuals with bipolar often

91 experience disturbances in thinking and behavior, as well as psychotic features such as

92  delusions and hallucinations!. Estimates of the prevalence of BPD within the general population

93  range from 0.5-1.5%%2. Bipolar disorder is highly heritable, with siblings of probands at an 8-

94  fold increased risk of the disorder??, and twin studies producing strikingly high estimates of

95 heritability, around 89-93%3% More recently, genetic studies of BPD have indicated SNP

96 heritability estimates of 17-23%".

97

98 Bipolar disorder encompasses diagnostically distinct subtypes; bipolar disorder type | (BD-l),

99 characterized by full manic episodes, and bipolar disorder type Il (BD-Il), which includes both
100  hypomania and recurrent depressive episodes>®’. Individuals with diagnostic features of both
101  bipolar disorder and schizophrenia may additionally be diagnosed with schizoaffective disorder
102  (SAB)’. Recent studies have indicated that these diagnostic distinctions may be borne out
103  genetically; for example, BD-I is significantly more heritable than BD-11>8, and there are distinct
104  differences between polygenic risk profiles of individuals with BD-I compared to BD-11%%, These
105 diagnostic and genetic heterogeneities within bipolar disorder contribute to the complexity in
106  identifying genetic associations with bipolar disorder. Additional complications arise due to the
107 complex polygenic nature of the disorder, and the high degree of overlap, both diagnostically
108 and genetically, with other psychiatric disorders such as Schizophrenia and Major Depressive
109  Disorder®t,
110
111  Global collaborative efforts over the last decade have enabled large collections of samples from
112  individuals with BPD. Genome-wide associations studies (GWAS) of these collections have
113  identified multiple BPD-associated loci throughout the genome®'2725, most recently 30 novel
114 loci identified in the PGC-BD GWAS>. Despite these advances in locus discovery, little is
115 understood about the pathogenesis of bipolar disorder. It is likely that, in line with other

116  psychiatric disorders, larger sample sizes will be required in order to identify additional risk
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117  loci?®. However, even elegantly designed and well-powered GWAS studies will not necessarily
118 identify biological mechanisms contributing to disease, as large lists of genomic loci may be
119 uninformative, and require careful dissection and downstream analyses to identify truly
120  disease-causing associations?’.

121

122  Transcriptomic Imputation (TI) analyses offer an opportunity to probe gene expression on a
123  large scale, using eQTL reference panel-derived prediction models?®?°. These approaches have
124  several attractive advantages to researchers studying genetics of complex traits. First, results
125 are readily biologically interpretable. Second, the large scale of GWAS studies means that TI
126  studies are powered to detect even modest changes in gene expression, which likely represent
127  a large portion of the risk in psychiatric disorders3®3!, and which cannot be identified with
128 traditional transcriptome approaches. Third, the use of genetically-regulated gene expression
129  ensures that any associations precede symptom onset, rather than being mediated by disease
130  status®.

131

132  In this study, we present the largest analysis of transcriptomic imputation in Bipolar Disorder.
133 Our analysis included individuals from the most recent PGC-BD GWAS® (19,986 cases/30,992
134  controls), as well as individuals from the iPSYCH consortium (1,502 cases/23,311 controls). We
135 calculated predicted genetically regulated gene expression (GREX) for ~20,000 genes across 13
136  brain regions, using prediction models derived from GTEX?%32 and CommonMind Consortium
137  data333, We sought to identify associations between GREX and a diagnosis of bipolar disorder,
138 or one of three bipolar subtypes (BD-I, BD-II, SAB). We identified 125 significant gene-tissue
139  associations with BPD, constituting 53 independent associations. Of these, 29 gene-tissue
140  associations were novel; i.e., they did not lie within 1MB of a locus identified in the recent PGC-
141  BD GWAS®. Additionally, we identified 80 gene-tissue associations with BD-I (37 independent
142  associations, of which 12 were novel), two gene-tissue associations with BD-Il (both novel), and
143  one gene-tissue association with SAB. Our associations were highly consistent with differential
144  gene expression analyses of bipolar cases and controls in the CommonMind Consortium. We

145 expound upon these results using a number of analyses, including gene set enrichment
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analyses, replication of previous transcriptome-based studies of bipolar disorder?®34, and an
approach analogous to PHEWAS3>3® to identify associations between these genes and specific

endophenotypes of bipolar disorder.
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151 Methods

152

153  Samples

154  Genotype data were obtained from the Psychiatric Genomics Consortium Bipolar Disorder
155 (PGC-BD) collection. These data included 19,986 cases and 30,992 ancestry-matched controls
156  from the PGC-BD collection®. Three of these cohorts were available through summary statistics
157  only (Supplementary Figure 1). 1,502 BPD cases and 23,311 matched controls were additionally
158 analysed by collaborators at iPSYCH (supplementary information).

159

160 In order to be included in the study, cases were required to meet international diagnostic
161  criteria for BPD (ie, DSM-IV, ICD-9, ICD-10), or to have a lifetime diagnosis of BPD according to
162  structured diagnostic instruments®. Genotyping information for these samples can be found in
163  the flagship papers describing the initial sample collection®, and were processed in a
164  standardized manner using “ricopili” °.

165

166  The PGC-BD collection included 14,938 individuals with BD-Il, 3,543 individuals with BD-II, and
167 1,500 individuals with SAB. No subtype data were available for individuals collected through
168  iPSYCH.

169

170  Transcriptomic Imputation

171  We imputed genetically regulated gene expression (GREX) using the CommonMind Consortium
172 (CMC) derived Dorso-lateral pre-frontal cortex (DLPFC) predictor model®3, and GTEx-derived
173  brain tissue prediction models?®32, We imputed GREX in all cohorts for which we had access to
174  raw data using PrediXcan?® (Suppl. Figure 1).

175

176  For three cohorts, raw genotype data was not available. For these cohorts, and two cohorts
177 with a trio structure, genic associations were computed using summary statistics, using
178 MetaXcan®’, a summary-statistic approach analogous to prediXcan?. Previous studies have

179  shown that genic association p-values and effect sizes calculated using MetaXcan and PrediXcan
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180 are highly correlated, provided that ethnically matched reference panels are used®*?’. This was
181 confirmed using three European PGC BD cohorts for which both summary statistics and raw
182  genotype data were available.

183

184  iPsych-Gems Analysis

185  iPSYCH-GEMS GWAS data was genotyped and imputed in 23 waves, and subsequently merged
186  for association analyses. No subtype data were available for iPSYCH-GEMS data. Variants with
187 imputation scores>0.8 were included for the analysis. Genetically regulated gene expression
188 levels were calculated using the CMC DLPFC predictor model33, as well as 12 GTEx-derived brain
189 tissue databases?®32, Association tests on case-control status were carried out using a logistic
190 regressionin R, including wave membership as covariate.

191

192  Principal component analysis was done in order to remove genetic outliers. The phenotype
193  specific PCs that are significantly different between cases and controls were included as
194  covariates as well, to account for the population stratification. Related individuals were
195 identified by pairwise IBD analysis and one of every pair (preferably controls) identified as
196 related (piHAT > 0.2) was removed.

197

198  Regression formula: Disease ~ gene-expression + wavel + wave2 +.....+ wave22 + PC1+PC2+...
199 The association analysis was done using R software.

200

201  Association Tests

202  We tested for association between GREX and case-control status in each cohort separately,
203  using a standard linear regression test in R. We included ten principal components as
204  covariates. We repeated this analysis for BD-l, BD-lIl and SAB, including all controls. We
205  required that a cohort include at least 50 individuals with a given subtype to be included in each
206  analysis, and consequently removed one cohort with only 36 SAB cases.

207
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208 We carried out an analysis comparing bipolar subtypes BD-I, BD-Il, SAB. For each pair of
209  subtypes, we compared GREX in cases only, including all cohorts with more than 50 individuals
210  with each diagnosis.

211

212  Raw genotype-based and summary-statistics based cohorts were meta-analysed using an odds-
213  ratio based approach in METAL3E,

214

215  Establishing a threshold for genome-wide significance

216  We applied two significance thresholds to the data. First, for each tissue, we applied a
217  Bonferroni correction accounting for the total number of genes tested within that tissue (Suppl.
218 table 1). Second, we applied a global genome-wide significance threshold, accounting for all
219  genes tested across all tissues. These are denoted by dashed and solid lines respectively in the
220  manhattan plots throughout this manuscript.

221

222  Identifying independent associations

223  We identified 18 regions with multiple gene-tissue associations; regions were defined based on
224  distance between genes, and were checked using visual inspection of associations across each
225 chromosome. For each of these regions, we applied FINEMAP?*® to identify independently
226  associated genes. We substituted the LD-matrix usually used in FINEMAP with an analogous
227  GREX correlation matrix.

228

229  This matrix was calculated for each cohort with available raw data, and a weighted average
230 calculated across all populations, weighting for effective sample size. We ensured that
231  summary-statistic based cohorts were represented in this weighted average by selecting the
232 geographically nearest cohort as a proxy, and increasing the weighting of that proxy cohort

233 accordingly.

234 Equation 1: Effective Sample Size
4
Ncases Ncontrols
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236 Identifying genes associated with specific behaviours and clinical variables

237  We obtained data on 26 clinical variables relating to BPD, including for example rapid cycling,
238  psychosis, panic attacks, and a variety of comorbid disorders. We used an approach analogous
239  to PHEWAS, and an adaptation to the PHEWAS R package?, to test for associations between
240  BD-I, BD-Il and SAB-associated genes and these 26 endophenotypes.

241

242  Behavioural data was available for ~8,500 individuals, across 14 cohorts. We tested for
243  association between GREX and all 26 endophenotypes in each cohort separately, controlling for
244  ten principal components. Only endophenotypes with at least 20 cases, or 20 quantitative
245  measures, were included within each cohort. Results were meta-analyzed across cohorts using
246  an odds-ratio based approach in METAL%L,

247

248  Comparison with Differential Expression in CommonMind Consortium

249  We sought to compare putatively BPD-associated GREX changes to genes identified as
250 differentially expressed in post-mortem brain samples. We obtained summary statistics on
251  differential expression between Bipolar cases and healthy controls from the CommonMind
252  Consortium Phase Il analysis, across the dorso-lateral pre-frontal cortex (DLPFC; 55 cases, 296
253  controls) and anterior cingulate cortex (ACC; 48 cases, 246 controls).

254

255  We compared association statistics between these two analyses and each of our prediXcan BPD
256  analyses; specifically, we tested whether genes reaching tissue-specific significance in each
257  prediXcan analysis were more likely than expected by chance to be differentially expressed in
258 the CMC analysis. We then repeated this test using all nominally significant genes in the
259  prediXcan analyses. Additionally, we tested whether the degree of replication seen in each
260 tissue was correlated with the number of genes tested, and/or with the sample size of the
261  original eQTL reference panel used.

262

10
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263  Since we did not have access to individual-level RNA-seq data in order to run a BD-I specific
264  differential expression analysis, we compared BD-I DLPFC and ACC prediXcan association
265  statistics to the CMC differential expression analysis.

266

267  We identified a small number of individuals within the CommonMind Consortium sample who
268 were diagnosed with BD-Il subtype. No RNA-seq data was available for these individuals;
269 however, 11 had available microarray data. We therefore compared normalized microarray
270  data between these 11 individuals and 204 controls, for the two top genes in our BD-Il subtype
271  analysis (COLGALT2 and NUP98). No individuals with SAB were available for analysis.

272

273  Pathway Analysis

274  Pathway analysis was carried out using an adaptation to MAGMA*. We performed three
275 pathway analyses, as follows: 1) 174 drug-target gene sets; 2) 76 gene sets with prior evidence
276  of involvement in BD3*!"¥3% including nervous-systems related pathways, gene sets relating to
277  aberrant behavior in mice, circadian clock gene sets, calcium-gated voltage channels, as well as
278  targets of FMRP; 3) ~8,500 pathways collated across six large publicly available datasets*®33
279  We included only gene sets with at least 10 genes.

280

281  For each of the four iterations, we analyzed BIP, BD-I, BD-Il and SAB results separately. Analyses
282  were carried out using genic p-values from our PrediXcan meta-analyses. In instances where a
283  gene had multiple associations across different tissues, the best p-value was selected, and a
284  Bonferroni correction applied to correct for the number of tissues tested. Gene-set enrichment
285  results from the competitive (rather than self-contained) MAGMA analysis were used*?, and
286  FDR correction applied within each stratum of our analysis.

287

288

11
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289  Results

290 Association Tests

291  We calculated predicted gene expression for thirteen brain regions (derived from CMC and
292  GTEx data?®3%545%) in 19,986 cases and 30,992 controls from the PGC-BPD* and 1,502 cases and
293 23,311 controls from the iPsych-GEMS consortium, and tested for association between
294  predicted gene expression (GREX) and case-control status. Additionally, we used a summary-
295  statistic based method to calculate genic associations in cases and controls for which raw
296  genotypes were not available (Suppl. Figure 1A).

297

298 We identified 125 genes-tissue associations reaching tissue-specific significance (Suppl. Table 2;
299  Figure 1A; ~5e-06); 46/125 reached our stricter cross-tissue threshold (4.11e-07). Within these
300 associations, we identified 18 genomic regions with multiple associated genes, and where the
301 same gene was associated across multiple tissues. We applied FINEMAP to each of these
302 regions, and identified 53 independent associations (Table 1; Figure 1B), of which 29 are novel
303 (i.e., they do not lie within 1Mb of a locus identified in the recent PGC-BD GWAS>). It should be
304 noted that our sample includes all of the PGC-BD samples as well as an additional cohort, and
305 so will have greater power to detect signals than the original GWAS.

306

307 Comparison to previous transcriptome studies

308 Two previous studies have already identified BPD-associated genes using transcriptomic
309 approaches, albeit using substantially smaller samples?®34, We sought to replicate these
310 findings using the subset of our data not included in the original PGC-BD GWAS® (Table 2).

311

312 One gene, PTPRE, was identified as associated with Bipolar Disorder in the original prediXcan-
313  based Transcriptomic Imputation analysis. Two genes, SPCS1 and CACNB3, were identified using
314 the SMR method?®, which used eQTLs from peripheral blood. PTPRE reaches nominal
315 significance in the putamen basal ganglia in our replication sample (p=0.024). Both SPCS1 and
316  CACNB3 were significant in our replication sample (after Bonferroni correction); SPCS1 in the

317 caudate basal ganglia (p=0.0011), and CACNB3 in the frontal cortex (p=0.0010). Additionally,

12
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318 CACNB3 reaches nominal significance in seven other tissues. This level of replication is highly
319 unlikely to occur by chance (binomial test: p=1.59x107 at nominal significance threshold,
320 p=0.0012 at Bonferroni-corrected threshold).

321

322  Subtypes

323  Bipolar disorder subtypes BD-I, BD-Il and SAB have previously been shown to be diagnostically
324  and genetically distinct®. We tested for association of GREX with case-control status for each of
325 these three subtypes, using all available matched controls; BD-I (14,983 cases/controls), BD-II
326  (3,543/22,155) and SAB (1,500/8,690).

327

328 We identified 80 BD-lI gene-tissue associations reaching tissue-specific genome-wide
329 significance (~6x107°; Suppl. Table 3), constituting 37 independent associations following
330 FINEMAP (Table 3; Figure 2A). 12 gene-tissue associations across 10 regions were novel, i.e., did
331  not lie within 1Mb of a BD-I locus identified in the PGC-BD GWAS®. In line with our overall BPD
332  analysis, the largest number of associations occur in the cortex and pre-frontal cortex (14
333  associations) and the limbic system (14 associations).

334

335 Two genes were associated with BD-Il subtype, albeit not at the stricter cross-tissue significance
336  threshold (Table 3). First, increased expression NUP98 in the DLPFC was associated with BD-II
337  (p=2.2e-06). Decreased expression of COLGALT2 was associated with BD-Il in the Putamen Basal
338  Ganglia (p=3.5e-06) and neared significance in the Hippocampus (p=7.6e-06), the Caudate Basal
339  Ganglia (p=1.4e-05) and the Nucleus Accumbens Basal Ganglia (p=8.9e-05). Neither of these
340 BD-Il genes lie within 1Mb of a BD-II locus identified in the recent PGC-BD GWAS, although
341  other BD-Il subthreshold associations do (Suppl. Table 4).

342

343  Increased expression of FS/P2 in the Thyroid was associated with SAB (p=1.9e-06; Table 3).
344  Increased expression of ALDH1B1 in the Cerebellar Hemisphere was also associated with SAB,
345  although at slightly below tissue-specific significance (p=8.4e-06). FSIP2 lies ~0.5Mb from a
346 locus also identified as potentially associated with SAB in the PGC-BD GWAS (p=6.9x107). One

13
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347  sub-threshold association (SNX29, in the Hypothalamus; Suppl. Table 4), also lies close to a PGC-
348 BD GWAS SAB locus; all other SAB associations are novel.

349

350 There is a substantial overlap between association signals in our BD and BD-I analyses, likely
351  due to the high proportion of BD-I cases within our sample, and a high proportion of

352  overlapping controls. We examined association statistics (-log10 p-values) of all associated

353  genes across all four analyses (Figure 3) and noted that BD and BD-1 genes tend to be

354  reciprocally associated, whereas genes identified in the BD-2 and SAB analyses tend to be

355 associated only within those particular subtypes.

356

357 Comparison to Differential Expression in the CommonMind Consortium samples

358 We compared our prediXcan GREX results to bipolar disorder differential expression analysis
359 conducted in CommonMind Consortium post-mortem samples. Across all tissues, genes
360 reaching nominal significance in our prediXcan analysis were significantly more likely to be
361 differentially expressed in CMC DLPFC post-mortem samples (binomial test, p<2.8e-73;
362  Supplementary Table 5). The degree of replication was significantly correlated with the sample
363  size of the original eQTL reference panel, even when controlling for the number of genes tested
364 (p=0.03).

365

366 Genes reaching tissue-specific significance (p<0.05/N genes tested) in the DLPFC, ACC, Cortex,
367 and Nucleus Accumbens prediXcan analyses were more likely than expected by chance to be
368 differentially expressed in the DLPFC CMC post-mortem samples (binomial test, p<0.0038).

369 There was no relationship between the likelihood of replication of significant genes and the
370  number of genes tested, or eQTL reference panel sample size.

371

372  The vast majority of BPD cases in the CommonMind Consortium differential expression analysis
373  were BD-I subtype; therefore, we also used the same CMC differential expression analysis to
374  test for replication of our BD-I prediXcan results. As for the overall BPD analysis, nominally

375 significant prediXcan genes were all significantly more likely to be differentially expressed in our
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376  CMC analysis (binomial test, p<4.57e-72), and the degree of replication was correlated with
377 sample size of the original eQTL reference panel (p=0.044). Genes reaching tissue-specific
378 significance in both the DLPFC and the Cortex were significantly more likely to be differentially
379  expressed in the CMC analysis (binomial test, p<0.0016; Supplementary Table 5).

380

381 We identified a small number of individuals within the CommonMind Consortium sample who
382  were diagnosed with BD-Il subtype. No RNA-seq data was available for these individuals;
383 however, 11 had available microarray expression data. We therefore compared normalized
384  microarray data between these 11 individuals and 204 controls, for the two top genes in our
385  BD-Il subtype analysis (COLGALT2 and NUP98). Both genes had the same directions of effect
386 between cases and controls in our CMC Microarray data as in the prediXcan meta-analysis. In
387  particular, the ratio of case:control expression for COLGALT2 was strikingly similar in the
388 microarray data (0.984) to the effect size estimated using prediXcan (0.980), and expression
389 levels were significantly different between cases and controls (p=0.0488). However, the sample
390 sizes in this analysis are small, and results should be taken as preliminary, exploratory findings,
391  and further, larger analysis will be required.

392  Noindividuals with SAB were available for analysis.

393

394 Identifying genes associated with specific behaviours

395 We tested whether any of the genes identified in our subtype analyses were particularly
396 associated with any specific BPD-endophenotype, using an approach analogous to PHEWAS3>:3¢,
397 We included all genes reaching tissue-specific significance in any subtype analysis.

398

399 We identified three significant associations (Table 4). We found that reduced expression of
400 EIFIAD in the DLPFC was associated with mixed states (p=0.00197) and panic attacks
401  (p=0.0004948). In our original analysis, decreased expression of the gene in the DLPFC was
402  associated with BD-I (p=2.55x10%). Additionally, decreased expression of FSIP2 in the Pituitary
403  was associated with having a family history of BPD in our PHEWAS (p=1e-05).

404
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405 Pathway enrichment

406  We tested for pathway enrichment using MAGMA?#, for BD, BD-I, BD-Il and SAB associations.
407  We carried out three stages of pathway analysis including the following gene sets 1) 174 sets of
408 drug targets; 2) 79 hypothesis-driven gene sets including targets of the FMRP protein, calcium-
409 gated voltage channels, pathways involved in aberrant mouse behavior, pathways pertaining to
410 chronotype and circadian rhythms 3) ~8,500 agnostic pathways obtained from large publicly
411  available databases. All FDR-corrected significant results for these analyses are shown in Table
412 5.

413

414  We found significant enrichments between our BD associated genes and GWAS-derived gene
415  sets for schizophrenia (p= 3.69E-13; all p-values shown are FDR-corrected), bipolar disorder (p=
416  2.59E-09) and major mood disorder (p=0.0040). These results are reassuring rather than
417  illuminating, given the known genetic overlap between these disorders, the likely shared
418  samples with the previous BIP GWAS, and the potential for shared controls between all PGC
419  GWAS studies. Similar to the BD results, BD-1 associated genes were significantly enriched for
420 GWAS-derived SCZ (p= 5.39E-12) and BD (p= 1.78E-09) gene sets. BD-Il associated genes were
421 not significantly enriched with previous BP or schizophrenia GWAS results. SAB-associated
422  genes were significantly enriched with bipolar GWAS results (p= 0.027).

423

424  We identified three drug target gene sets enriched in our BPD associated genes; anabolic
425  steroids (p=5.84E-4), androgens (p=0.025) and corticosteroids for systemic use (p=0.012).
426  Corticosteroids when given in high doses can cause symptoms of mania, psychosis, impulsivity,
427  irritability, anxiety, and depression®®>’.

428

429  Four pathways in our ‘hypothesis-driven’ analysis were associated with BPD after FDR
430 correction, including genes associated with self-defined ‘morning person’ chronotype>®, genes
431  that were highly intolerant to deleterious mutation in EXAC, genes with non-synonymous
432  mutations linked to schizophrenia, and targets of the FMRP protein. FMRP pathways have

433  previously been associated with schizophrenia, autism, and intellectual disability33>°%0, We
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434  identified five further pathways with nominally significant competitive MAGMA p-values, but
435  which did not survive FDR-correction, relating to pre- and post- synaptic density, circadian clock
436  genes, and loss of function mutations associated with intellectual disability.

437

438  For BD-l, we identified two associated pathways in the hypothesis-driven analysis after FDR
439  correction; endoplasmic reticulum function (ER; p=0.036) and post synaptic density (PSD;
440 p=0.046). 49/8,500 molecular pathways from public databases were significant after FDR-
441  correction, with the most significant driven by methyltranferase activity (S-adenosylmethionine
442 - dependent methyltransferase activity; p=3.0x103). Four pathways involved in
443  methyltransferase activity are driven by TFB1M, a brain-expressed mitochondrial
444  methyltransferase gene involved in neurosensory mitochondrial deafness®62. Other significant
445  pathways include mitochondrial function (mitochondrial genome maintenance; p=0.032) which
446  was also validated in studies of the PSD proteins and associations with bipolar disorder®3.

447

448  For BD-2 there were no significant hypothesis-driven pathways; however, 34 agnostic pathways
449  were significantly enriched. S-adenosylmethionine-dependent methyltransferase activity
450 pathway was the most significant (p=0.0029), in line with our BD-I analysis. Other significant
451  pathways and potentially interesting pathways include metabolism of porphyrins, heme
452  biosynthesis, abnormal neuronal migration, and negative regulation of systemic arterial blood
453  pressure.

454

455 Three hypothesis-driven pathways were enriched with SAB; including mitochondrion®, non-
456  synonymous mutations associated with intellectual disability, and genes that have low-level
457  intolerance to EXAC mutations. Our large agnostic analysis revealed many neuron specific genes
458 sets including axonal regeneration, Schwann cell differentiation, and neuron projection
459  regeneration. Mitochondrion and mitochondrion localization were also significant further
460 emphasizing the involvement of mitochondrial genes in bipolar disorder®%7. A total of 45
461  pathways were significantly enriched after FDR correction.

462
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463  Discussion

464  In this study, we present the largest analysis to date of transcriptomic imputation in Bipolar

465  Disorder, and three bipolar disorder subtypes. Transcriptomic Imputation approaches leverage
466  carefully curated eQTL reference panels to create prediction models of genetically-regulated
467  gene expression?®323368 (GREX). These models are then used to predict GREX in genotyped

468 samples (for example, those obtained through GWAS), thus providing large, well-powered

469  gene-expression datasets, while circumventing the difficulties and complications inherent in
470 traditional transcriptome studies.

471

472  We applied gene expression predictor models derived from GTEX and CMC data to 21,488

473  bipolar disorder cases and 54,303 controls from the PGC-BD and iPSYCH collections, and

474  obtained predicted genetically regulated gene expression levels (GREX) for 19,661 unique

475  genes, across 13 brain regions. We identified 53 independent BPD gene-tissue associations; of
476  these, 29 were novel, i.e., they did not occur within 1MB of a locus identified in the recent PGC-
477  BD GWAS®. Additionally, we identified 46 independent subtype-specific gene-tissue

478  associations.

479

480  Our study includes an additional 1,503 BPD cases and ~23,000 controls from the iPSYCH

481  consortium, which were not included in the discovery stage of the recent PGC-BD GWAS, and so
482  some proportion of these novel associations likely stem from both the increased power of our
483  sample, as well as the increased power of prediXcan over GWAS?%33, |t should be noted that our
484  BD-Ill, SAB, and cross-subtype analyses are small, and power to detect true associations is

485  therefore low. These analyses should be taken as preliminary, exploratory findings, and larger,
486  more well-powered studies should be carried out.

487

488  BPD- and BD-l-associated genes identified in this study were significantly more likely to be

489  differentially expressed in post-mortem tissue from individuals with bipolar disorder than might
490 be expected by chance. Replication of highly associated genes was tissue-specific; for example,

491  genes discovered in the DLPFC were differentially expressed in the DLPFC. When testing only
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492  nominally significant genes (i.e., all genes reaching p<0.05), replication was highly similar across
493  all tissues, and degree of replication seemed to be driven by the power of the original eQTL

494  reference panel (taking sample size as a proxy). This might indicate a large group of genes with
495  broad, multi-region implications, while smaller groups of genes confer region-specific BPD risk.
496 It is likely that some of the cross-brain signal also arises from highly correlated gene expression
497  patterns and shared eQTLs between brain regions3%>>. We used microarray data from a small
498  sample of individuals with BD-Il to visualize expression of our two BD-Il associated genes,

499  NUP98 and COLGALT1, in cases compared to controls. For both genes, the observed direction of
500 effect matches our prediXcan results. Although these results are encouraging, this analysis is
501 based on a very small number of cases; as such, these results should be interpreted as early,
502  preliminary indications, which should be followed with larger and more detailed investigations.
503

504 An interesting feature of transcriptomic analysis is the ability to probe associations across
505 specific brain regions (Suppl. Table 1). In our BPD meta-analysis, we identified 20 pre-frontal
506 cortex associations (nine in the DLPFC), 13 in the striatum (Caudate, Nucleus Accumbens, and
507 Putamen Basal Ganglia), 11 in the cerebellum and cerebellar hemisphere, and 2 in the
508 hippocampus. These results imply prominent roles for the frontal cortex, striatum and
509 cerebellum in bipolar disorder, consistent with previous neuro-anatomical studies. For

69-71 and

510 example, imaging studies have repeatedly demonstrated enlarged putamen
511  caudate® 72774 regions, decreased cerebellar volumes®7>~77, and structural differences in the
512  prefrontal cortex of individuals with BPD®%78-81,

513

514  We used genic associations for BD, BD-I, BD-Il, and SAB to search for pathway enrichment with
515 MAGMA®* using gene sets for drug targets, hypothesis driven, and agnostic gene sets. Our drug
516 target genes revealed sets for anabolic steroids, corticosteroids, and androgens which have

517 common precursors and similar effects on hormone receptors. Hormone imbalance has been
518 hypothesized in patients with BD and schizophrenia. Altered hypothalamic-pituitary-adrenal

519 (HPA) axis and increased systemic cortisol metabolism was found by measuring cortisol

520 metabolizing enzymes in urine of patients vs controls suggesting the synthesis pathways for
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521 these hormones are altered>’. Corticosteroids themselves are prescribed for a number of

522  different medical conditions and can cause symptoms in patients that include psychosis, mania,
523  depression, mixed features, delirium, and anxiety®2. While these symptoms can arise after
524  corticosteroid use, we cannot be certain the mechanisms are unique and the shared

525 phenotypes in these overlapping gene sets suggest a similar genetic underpinning. Further
526  investigation is warranted to understand the pathways involved in corticosteroid induced

527  psychiatric symptoms and symptoms experienced by patients in bipolar disorder and

528  schizophrenia. Additionally, our pathway analysis results provide support for a number of

529  specific biological hypotheses.

530

531 Oxidative Stress and Mitochondrial Dysfunction

532  Collectively, our results indicate a potential role for oxidative stress and mitochondrial

533  dysfunction in bipolar disorder. This hypothesis has been explored in detail elsewhere®3-86, and
534  has been implicated in BPD 838> as well as a range of psychiatric disorders®”=, including anxiety
535 and panic disorders®?, schizophrenia®?>~24, and major depressive disorder®. Evidence for the
536 involvement of oxidative stress and mitochondrial dysfunction in BPD includes known

537 comorbidities between bipolar disorder and mitochondrial disease®®, the known antioxidant
538 properties of antipsychotic drugs®, and the demonstrated benefit of antioxidant therapies in
539 individuals with schizophrenia and bipolar disorder®3.

540

541 A substantial number of the genes identified in our meta-analyses also have a role in oxidative
542  stress and mitochondrial dysfunction (including for example, AIFM3, CHDH, EDEM2, EIF1AD,
543  FADSI1, TARS2). In particular, our PHEWAS results implicate a gene, EIF1IAD, which has a wel-
544  described role in response to oxidative stress®’. Reduced expression of EIF1AD (eukaryotic

545 translation initiation factor 1A domain containing; also known as haponin) in the DLPFC was
546  associated with panic attacks, mixed states, and BD-I; in line with this, a recent study found
547  increased RNA damage due to oxidative stress in individuals with BD-l and mixed states,

548 compared to controls, and a decrease in levels of RNA damage after remission from an

549  episode®. A large number of associations in our pathway analyses (Table 5) also point to
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550 mitochondrial methyltransferase pathways, endoplasmic reticulum function, mitochondrial

551  function, and mitochondrion location.

552

553 Common with BD-I and BD-IlI are the methyltransferase pathways with the most significant
554  genes involved in mitochondrial methyltransferase. These genes are responsible for
555  neurological phenotypes and associated with bipolar disorder®>. A study of human induced
556  pluripotent stem cells found early mitochondrial abnormalities in lithium responsive patients
557  with bipolar disorder suggesting these mitochondrial abnormalities are present at the earliest
558 stages of cell development®’. SAB significant pathways reinforce the relationship between
559  bipolar disorder with mitochondrial and neuronal function.

560

561  Post-synaptic Density

562  Multiple studies and hypotheses have implicated the post-synaptic density (PSD) as having a
563  role for Bipolar Disorder, Schizophrenia, and other psychiatric disorders®3%4, The PSD is a key
564 location for a host of dopamine and glutamate signaling interactions, and has a key role in
565 axonal growth and guidance. Further, proteins located in the PSD are involved in NMDA
566 receptor trafficking, and underlie energy pathways and mitochondrial function. Our BD-I
567  results are significantly enriched for genes related to PSD-95, a scaffolding protein within the
568 PSD (p=5.2e-04). This enrichment is not driven by a single highly associated gene, but rather a
569 large number of sub-threshold associations. The most significant post synaptic density (PSD)
570 gene PACS1 (p=5.57e-05) codes for MHC-1 removal of membrane proteins in the trans golgi
571 network and is overexpressed in brain; other subthreshold PSD-95 and glutamatergic
572  associations include TUBA1B (p=3.1e-04), SHANK1 (p=5.4e-04), BSN (p=6.5e-04), and AP2B1
573  (p=6.7e-04). Additionally, our results are enriched for targets of the FMRP (fragile-X mental
574  retardation protein; p=0.0015), in line with previous studies of Bipolar Disorder and
575  schizophrenia®®®, as well as the original CommonMind Consortium analysis3'. FMRP is encoded
576 by FMR1, which is required at synapses for normal glutamate receptor signaling®°.

577

578
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579  Circadian Rhythms

580 Longstanding hypotheses implicate the disruption of circadian rhythms in bipolar disorder. In
581  particular, sleep disruption is included among bipolar disorder diagnostic criteria and is cited as
582  a particular concern for individuals with BPD. Addressing circadian rhythm disruption is a key
583 factor in treatment of bipolar disorder®0! and in identifying individuals at risk of relapse!®?~
584 19 Even among healthy individuals, circadian entrainment and sleep patterns are deeply

585  entwined with mood regulation!®107-112 These relationships have been discussed in detail
586 elsewhere, including detailed discussions of plausible neurobiological mechanisms00,113-126,
587  Consequently, studies of the genetics of bipolar disorder have included an emphasis on “clock”
588  genes, i.e., genes involved in regulating circadian rhythmicity09125127.128 ‘and the genetics of
589  chronicity and sleep traits'?4,

590

591  Our BPD-association results include genes with a role in regulation of circadian rhythm; CIART
592  (Circadian Associated Repressor Of Transcription), CNNM4, ZSWIM3, RPRD2, TARS2, HSPD1,
593 VPS45 and PHLPP1, as well as ASCC3 12°,DUSP7, ITGA9, VPS4A, MAPRE2, RRP12 and CSE1L,
594  associated with BD-I; and NUP98, associated with BD-II, as well as ~30 other sub-threshold
595 associated circadian rhythm genes (p<le-03), including genes identified in a recent GWAS of
596 self-identified ‘morning-ness’. These ‘morning-ness’ genes constituted the most significantly
597  enriched set in our hypothesis-driven pathway analysis (p=3.27e-05) within the full bipolar
598 meta-analysis; additionally, we identified enrichments for circadian clock genes (p=0.012) and
599  clock modulators (p=0.023), although these did not remain significant after FDR-correction.
600 ‘Morning-ness’ genes were also enriched among SAB prediXcan associations (p=2.3e-04) and
601  BD-l associations (p=0.0012), although the latter does not survive FDR-correction (p=0.069).
602

603
604
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Figure 1: Genic associations identified across full Bipolar sample
A) 125 gene-tissue associations are identified in the full BPD meta-analysis
B) FINEMAP analysis identifies 53 independent associations
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Figure 2: Genic associations identified in three bipolar subtypes.
A) 80 gene-tissue associations are identified in the Bipolar-I sample.
B) FINEMAP and Stepwise conditional analysis identify 37independent associations
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Figure 3: Substantial overlap between BPD and BP-I associated genes.

-log10 p-values are shown for all genes reaching genome-wide significance in any
discovery analysis. The row side colour bar indicates the original discovery analysis
identifying the gene. The four row values indicate the best p-value achieved by that
gene in each subtype analysis.

e.g.: the bottom row shows a gene (FS/P2) identified in the SAB subtype analysis,
and the best p-value achieved by FSIP2 across all tissues in the overall BPD
analysis, BD-I, BD-II and SAB analyses.
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Supplementary Figure 1: Analysis outline.

A)  Discovery Samples. 27 PGC-SCZ cohorts had available raw genotypes (i). Predicted Ke
DLPFC gene expression was calculated in each cohort using prediXcan (ii) and tested Y Raw Genotype
for association with case-control status (iii). 5 PGC cohorts (2 trio, 3 case-control) had .
only summary statistics available (iv). MetaXcan was used to calculate DLPFC
associations for each cohort (v). iPsych samples were collected in 23 waves (vi). Raw Genotypd
Predicted DLPFC gene expression was calculated in each wave separately using [g] Trigabeseshly)
prediXcan (vii) and merged for association testing. A mega-analysis was run across all summary statistic
23 waves, using wave membership as a covariate in the regression (viii). Results were
meta-analysed across all 32 cohorts and the iPsych MEGA-analysis results(ix). This
procedure was repeated for 12 GTEx prediction models.

B)  Subtype Analyses. Subtype information was available only for PGC-BD samples.
Analysis was carried out in the same way as for the full BD analysis (A), including only
BDI cases.

C)  Cross-subtype analysis. Analysis was carried out for cases only, in the same way as A
and D

Summary Statisti¢s
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Table 1: Gene-Tissue Associations results

Gene name Tissue

DCLK3
MCHR1
FADS1
CDHR1
DDHD2
TARS2
FAM172A
EIF1AD
HLF
ANKRD36
ASIP
RPRD2
NCOA6
LPAR2
GNL3
DDHD2
RP5-1028K7.
ADD3
MCM3AP
KCNN3
ZNF80
DDHD2
CHDH
PLPP5
MED24
CIART
ZNF584
DOCK6

DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
DLPFC_preds2
Hypothalamus
Hypothalamus
Hypothalamus
Hypothalamus
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Cerebellar_Hemisphere
Pituitary

Pituitary

Cortex

Cortex
Putamen_Basal_Ganglia
Putamen_Basal_Ganglia
Hippocampus

CHR

3
22
11
10

8

[EY

posl

36753913
41074754
61567099
85954410
38082736
150459887
92953775
65764016
53342373
97779233
32782375
150335567
33563206
19649057
52715172
38082736
38785049
85954410
47655047
154669931
113953483
38082736
53846362
38082736
37894180
150254953
58912871
11309971

pos2

36781352
41078818
61596790
85979377
38133076
150480078
93447404
65769647
53402426
97930258
32857150
150449042
33590240
19657468
52728508
38133076
38821393
85979377
47706211
154842756
113956425
38133076
53880417
38133076
37903544
150259505
58929694
11373157

BETA
-0.2047
-0.0731
-0.0549
-0.0254
-0.1334
-2.8641
-0.2763
-0.1719
-2.4336
-0.0687
-0.2119

-0.164
-0.0272
0.1546
0.0267
-0.0914
0.1614
0.0217
-0.1719
-0.0539
-0.1061
-0.029
0.1584
-0.0859
0.0285
0.0862
0.0435
0.2862

SE

0.0297
0.0129
0.0105
0.0049
0.0257
0.5865
0.0581
0.0372
0.4688
0.0127
0.0426
0.0331
0.0058
0.0263
0.0046
0.0171
0.0302
0.0045
0.0368

0.012

0.023
0.0055
0.0354
0.0169
0.0061
0.0165
0.0092
0.0535

5.49E-12
1.29E-08
1.68E-07
2.18E-07
2.20E-07
1.04E-06
1.98E-06
3.81E-06
2.10E-07
6.32E-08
6.55E-07
6.96E-07
2.33E-06
3.92E-09
6.68E-09
9.04E-08
9.07E-08
1.42E-06
2.99E-06
7.17E-06
4.07E-06
1.77E-07
7.68E-06
3.48E-07
2.85E-06
1.75E-07
2.47E-06
8.87E-08
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LEO1
PHLPP1
CILP2
AIFM3
ZNF584
MED24
DDHD2
UBR1
CATSPERB

AC024257.1

SEMA4C
RHEBL1
CDHR1
ZNF584
TSSK6
HHLA2
UBE2Q2L
SNTB2
MCHR1
FAM81B
EDEM2
TMEM127
GNL3
PLPP5
ADD3

Hippocampus

Hippocampus
Nucleus_Accumbens_Basal_Ganglia
Nucleus_Accumbens_Basal_Ganglia
Nucleus_Accumbens_Basal_Ganglia
Nucleus_Accumbens_Basal_Ganglia
Caudate_Basal_Ganglia
Caudate_Basal_Ganglia
Caudate_Basal_Ganglia
Frontal_Cortex_ BA9
Frontal_Cortex_BA9
Frontal_Cortex_BA9
Frontal_Cortex_ BA9
Frontal_Cortex_BA9

Thyroid

Thyroid

Thyroid

Thyroid
Anterior_Cingulate_Cortex_BA24
Anterior_Cingulate_Cortex_BA24
Anterior_Cingulate_Cortex_BA24
Anterior_Cingulate_Cortex_BA24
Cerebellum

Cerebellum

Cerebellum

15
18
19
22
19
17

15
14
12

12
10
19
19

15
16
22

20

10

52230222
60382672
19303008
21319396
58912871
37313147
38120648
43235095
92047040
48759919
97525453
49458468
85980254
58912871
19734477
108015376
84841242
69221032
41074754
94727048
33284722
96914254
52715172
38082736
111756126

52264003
60647666
19312678
21335649
58929694
37323737
38126761
43398311
92247051
48761738
97536494
49463808
85985345
58929694
19739739
108097132
84850986
69342955
41078818
94786158
33413452
96931732
52728508
38133076
111895323

-0.1459
-0.0472
0.0949
-0.0914
0.0366
0.0383
-0.0326
-0.1468
-0.0343
0.0693
0.1046
0.1061
-0.036
0.0845
0.1638
0.1106
0.0436
-0.0265
-0.1785
0.4376
-0.0445
-0.0378
0.0368
-0.0427
0.0268

0.0306
0.0102
0.0158
0.0174
0.0075
0.0081
0.0064
0.0298
0.0073

0.013
0.0197

0.021
0.0075
0.0183
0.0292
0.0225
0.0094
0.0058
0.0298
0.0868
0.0097
0.0083
0.0062
0.0085
0.0057

1.86E-06
3.99E-06
1.90E-09
1.50E-07
1.06E-06
2.44E-06
4.37E-07
8.39E-07
2.60E-06
9.78E-08
1.17E-07
4.44E-07
1.87E-06
3.95E-06
2.12E-08
9.23E-07
3.16E-06
5.16E-06
2.10E-09
4.62E-07
4.01E-06
5.09E-06
2.93E-09
5.17E-07
2.36E-06
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Table 2: Replication p-values of genes identified in previous Transcriptome Analysis of BPD

Gene Tissue p-value | Direction of Effect
PTPRE Putamen Basal Ganglia 0.024 |-
SPCS1 Caudate Basal Ganglia 0.0011 | +
CACNBS3 | Frontal Cortex BA9 0.0010 | -
Anterior Cingulate Cortex 0.0032 |-
Whole Blood 0.0042 | +
Cerebellum 0.0044 | -
Cerebellar Hemisphere 0.0080 | -
Caudate Basal Ganglia 0.012 -
DLPFC 0.019 -
Nucleus Accumbens Basal Ganglia | 0.027 -
Putamen Basal Ganglia 0.077 -
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Table 3: Gene-Tissue Associations results for subtype analyses

Analysis
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I

Tissue

Cerebellar Hemisphere

Thyroid

Caudate Basal Ganglia
Anterior Cingulate Cortex BA24

Cerebellum

Nucleus Accumbens Basal Ganglia
Cerebellar Hemisphere
Hippocampus

Cerebellum
Cerebellum

Putamen Basal Ganglia
Nucleus Accumbens Basal Ganglia

DLPFC
DLPFC
Cortex

Putamen Basal Ganglia
Putamen Basal Ganglia
Hypothalamus

Anterior Cingulate Cortex BA25

Thyroid
DLPFC

Caudate Basal Ganglia

Cortex

Anterior Cingulate Cortex BA26

Thyroid
DLPFC

Anterior Cingulate Cortex BA27
Caudate Basal Ganglia

Gene

RP5-1028K7.3
AC110781.3

MIEN1
PACS1
SFMBT1
CILP2
LPAR2
ZC3H3
PLPP5
GNL3
CCDC62
HAPLN4
CDHR1
FAM172A
MED24
ITGA9
FADS1
DUSP7
MCHR1
NEK4
TRANK1
UBR1
ACTR1B
ANKRD23

IGF2BP2-AS1

EIFIAD
FAMS81B
RFT1

CHR POS1
17 38785049
7 1878222
17 37884749
11 65837834
3 52937588
19 19649057
19 19734477
8 144519825
8 38120648
3 52715172
12 123258874
19 19366450
10 85954410
5 92953775
17 38175350
3 37493606
11 61567099
3 52082935
22 41074754
3 52744800
3 36868311
15 43235095
2 98272431
2 97490263
3 185430316
11 65764016
5 94727048
3 53122499

POS2

38821393
1889567
37887040
66012218
53080766
19657468
19739739
144623623
38126761
52728508
123312075
19373605
85979377
93447404
38217468
37865005
61596790
52090566
41078818
52804965
36986548
43398311
98280570
97523671
185447575
65769647
94786158
53164478

BETA

0.1643
0.2924
-0.3695
0.0583
-0.0774
0.08
0.1323
-0.1936
-0.0419
0.0302
-0.0411
0.1086
-0.0236
-0.2788
0.0291
-0.2048
-0.0383
0.0505
-0.1379
0.0305
-0.0637
-0.1353
-0.0339
0.0864
-0.0772
-0.166
0.3838
0.0333

SE

0.0287
0.0512
0.0662
0.0108
0.0145

0.015
0.0248
0.0369
0.0081
0.0059

0.008
0.0214
0.0047
0.0551
0.0058
0.0408
0.0077
0.0102
0.0282
0.0063
0.0132
0.0281
0.0071
0.0182
0.0164
0.0353
0.0818
0.0072

1.06E-08
1.15E-08
2.42E-08
6.45E-08
9.37E-08
9.57E-08
1.01E-07
1.56E-07
2.00E-07
2.74E-07
2.94E-07
3.91E-07
3.95E-07
4.12E-07
4.77€-07
5.35E-07
6.62E-07
7.98E-07
1.06E-06
1.15E-06
1.42E-06
1.50E-06
1.54E-06
2.03E-06
2.28E-06
2.55E-06
2.73E-06
3.27E-06
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BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
SAB
SAB

Nucleus Accumbens Basal Ganglia
Thyroid

DLPFC

Anterior Cingulate Cortex BA28
Anterior Cingulate Cortex BA29
Nucleus Accumbens Basal Ganglia
DLPFC

Nucleus Accumbens Basal Ganglia
Nucleus Accumbens Basal Ganglia
DLPFC

Putamen Basal Ganglia
Hippocampus

Caudate Basal Ganglia

Nucleus Accumbens Basal Ganglia
Pituitary

Cerebellar Hemisphere

BRF2
GCKR
MLH1
LYzL4
CYP1A2 15
CA1
ASCC3
wwp2 16
GLYCTK

NUP98 1
COLGALT2
COLGALT2
COLGALT2
COLGALT2

FSIP2

ALDH1B1

w w N o

o 0o

O N R R R R RPB W

37700786
27719709
37034823
42438570
75041185
86239837
100956070
69796209
52321105
3692313
183898796
183898796
183898796
183898796
186603355
38392661

37707422
27746554
37107380
42452092
75048543
86291243
101329248
69975644
52329272
3819022
184006863
184006863
184006863
184006863
186698017
38398658

0.0299
-0.0349
2.1685
-0.0219
0.0832
-0.1265
0.0854
0.0579
0.1337
9.9344
-0.0206
-0.0234
-0.0238
-0.0221
0.0001
0.1521

0.0065
0.0076
0.4718
0.0048
0.0184

0.028
0.0189
0.0128
0.0297
2.0969
0.0044
0.0052
0.0055
0.0056

0.0342

4.05E-06
4.25E-06
4.30E-06
5.24E-06
6.04E-06
6.20E-06
6.48E-06
6.66E-06
6.80E-06
2.16E-06
3.50E-06
7.55E-06
1.44E-05
8.92E-05
1.86E-06
8.55E-06


https://doi.org/10.1101/222786
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 4: Endophenotype-wide association study (enPHEWAS). All genes reaching tissue-wide significance in any subphenotype-based
analysis were included.

Gene Tissue enPHEWAS Analysis Subtype-specific meta-analysis
Endophenotype | beta se p OR | Subtype | beta se p OR
EIF1AD DLPFC mixedstates -0.3873 | 0.1252 | 1.97E-03 | 0.68 | BD-I -0.166 | 0.0353 | 2.55E-06 | 0.85
EIF1AD DLPFC panic.attacks -0.2861 | 0.0821 | 4.95E-04 | 0.75 | BD-I -0.166 | 0.0353 | 2.55E-06 | 0.85
FAM172A | DLPFC bp2 0.127 0.0393 | 1.24E-03 | 1.14 | BD-I -0.2788 | 0.0551 | 4.12E-07 | 0.76
FSIP2 Pituitary | famhistory -0.0009 | 0.0002 | 1.09E-05 | 1.00 | SAB 0.0001 | O 1.86E-06 | 1.00
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Table 5: Pathway Results

Association statistics Analysis type

BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BPD
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I

Drug targets

Drug targets

Drug targets

Drug targets
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven
Agnostic

Agnostic

Agnostic

Agnostic

Agnostic

Agnostic

Agnostic

Agnostic

SET

ANABOLIC STEROIDS

CORTICOSTEROIDS FOR SYSTEMIC USE PLAIN
ANDROGENS

ANTIFUNGALS FOR TOPICAL USE

MORNING

HIGH

SCZ-NS

FMRP-targets

Pre-synaptic active zone

Circadian clock genes

CLOCK-MODULATORS

PSD-95 (core)

ID-LoF

ARC+NMDAR+PSD95+mGluR5

SCZ-LoF

Cav2::kinases & phosph...

ID-NS

S-adenosylmethionine-dependent methyltransfe
mitochondrial nucleoid

nucleoid

RNA methylation

N-methyltransferase activity

RNA methyltransferase activity

regulation of transcription from RNA polymerase
impaired wound healing

NGENES

34
43
47
92
109
2718
567
735
156
380
254
56
26
122
79
20
116
91
33
34
27
59
26
16
25

COMP P

4.02E-06
8.84E-05
1.72E-04
4.48E-04
3.27E-05
1.08E-03
1.29E-03
1.47E-03
4.20E-03
1.21E-02
2.32E-02
3.52E-02
4.34E-02
5.45E-02
5.79E-02
8.99E-02
9.92E-02
3.76E-08
5.64E-07
8.11E-07
9.35E-07
9.64E-07
9.73E-07
5.25E-06
8.91E-06

0.001
0.013
0.025
0.064
0.003
0.029
0.029
0.029
0.066
0.159
0.262
0.348
0.381
0.416
0.416
0.504
0.504
0.000
0.001
0.001
0.001
0.001
0.001
0.006
0.010
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BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-I
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI

Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Hypothesis driven
Hypothesis driven
Hypothesis driven
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic

Downregulation of ERBB2:ERBB3 signaling
extracellular regulation of signal transduction
extracellular negative regulation of signal transd
abnormal cellular respiration

male meiosis

Fanconi Anemia pathway

Golgi-associated vesicle

regulation of T cell migration

positive regulation of T cell migration

failure of tooth eruption

viral assembly

macromolecule methylation

viral infectious cycle

negative regulation by host of viral transcription
skeletal muscle contraction

toxin metabolic process

granulomatous inflammation

Endoplasmic Reticulum (core)

PSD (human core)

MORNING

S-adenosylmethionine-dependent methyltransfe
negative regulation of systemic arterial blood pr«
Metabolism of porphyrins

RNA polymerase activity

DNA-directed RNA polymerase activity
Endogenous sterols

Heme biosynthesis

protein methyltransferase activity

condensed chromosome

13
15
15
66
32
21
56
13
11
16
29
138
121
12
16
10
24
87
624
109
91
11
15
37
37
15
12
58
145

2.53E-05
2.55E-05
2.55E-05
2.92E-05
3.91E-05
5.83E-05
7.65E-05
8.00E-05
1.01E-04
1.34E-04
1.43E-04
1.61E-04
1.67E-04
1.69E-04
1.93E-04
2.77E-04
2.79E-04
2.04E-04
5.16E-04
1.16E-03
3.46E-07
2.09E-06
4.92E-06
9.47E-06
9.47E-06
1.83E-05
2.38E-05
2.54E-05
4.07E-05

0.020
0.020
0.020
0.021
0.026
0.036
0.043
0.043
0.051
0.064
0.064
0.066
0.066
0.066
0.072
0.096
0.096
0.036
0.046
0.069
0.003
0.009
0.014
0.016
0.016
0.026
0.027
0.027
0.032
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BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI
BD-lI

Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic

mitochondrial genome maintenance

nuclear envelope organization

centrosome localization

abnormal nucleotide metabolism

chondroitin sulfate metabolic process

heme metabolic process

porphyrin-containing compound metabolic proct
protoporphyrinogen IX metabolic process
chondroitin sulfate biosynthetic process
abnormal spinal cord morphology

Heme biosynthesis

N-methyltransferase activity

chondroitin sulfate proteoglycan metabolic proc
abnormal neuronal migration
nucleotidyltransferase activity

Chondroitin sulfate

nucleoside kinase activity

KEGG PYRIMIDINE METABOLISM
oxidoreductase activity

Transport of Mature mRNA Derived from an Inti
nucleoside salvage

neuron spine

protein methylation

protein alkylation

dendritic spine

chondroitin sulfate proteoglycan biosynthetic pr
RNA splicing

mRNA splicing

abnormal mitochondrion morphology

12
52
12
10
50
29
38
10
23
193
10
59
52
75
106
43
11
90
11
34
12
69
82
82
67
26
179
179
55

4.08E-05
4.46E-05
5.04E-05
5.28E-05
5.28E-05
6.75E-05
7.74E-05
7.83E-05
9.52E-05
9.60E-05
9.78E-05
1.01E-04
1.07E-04
1.09E-04
1.10E-04
1.12E-04
1.14E-04
1.50E-04
1.56E-04
1.94E-04
2.06E-04
2.47E-04
2.71E-04
2.71E-04
2.83E-04
2.95E-04
3.66E-04
3.66E-04
3.89E-04

0.032
0.032
0.032
0.032
0.032
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.038
0.048
0.048
0.057
0.059
0.068
0.070
0.070
0.071
0.072
0.085
0.085
0.088
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BD-I
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

Drug targets
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic

THYROID PREPARATIONS

laminin complex

abnormal miniature endplate potential

abb1 a6bb4 integrin pathway

Schwann cell development

astrocyte development

abnormal amacrine cell number

glomerular basement membrane development
cellular amide metabolic process

abnormal PNS synaptic transmission

short photoreceptor inner segment

renal filtration cell differentiation

glomerular visceral epithelial cell differentiation
abnormal photoreceptor inner segment morpho
Schwann cell differentiation

axon regeneration

abnormal Muller cell morphology

glomerular epithelium development

glomerular epithelial cell differentiation
myofilament

striated muscle thin filament

mitochondrion localization

abnormal retinal apoptosis

neuron projection regeneration

abnormal amacrine cell morphology
neuromuscular junction development

integral to lumenal side of endoplasmic reticulur
endoplasmic reticulum-Golgi intermediate comp
negative regulation of ion transmembrane trans;

11
10
21
46
20
12
11
10
138
28
13
13
13
33
26
15
10
14
14
17
14
17
31
21
19
33
24
24
11

1.65E-09
6.64E-08
1.54E-07
1.78E-07
2.59E-07
3.19E-07
4.32E-07
8.59E-07
1.05E-06
1.92E-06
2.74E-06
3.54E-06
3.54E-06
4.01E-06
4.70E-06
4.71E-06
5.16E-06
6.23E-06
6.23E-06
9.13E-06
1.28E-05
2.53E-05
2.79E-05
3.25E-05
3.37E-05
5.04E-05
5.87E-05
8.57E-05
9.33E-05

0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.004
0.005
0.010
0.011
0.012
0.012
0.017
0.019
0.027
0.029
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SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic

biotin metabolic process

Biotin transport and metabolism

Methylation

abnormal retinal rod cell morphology

cell differentiation involved in metanephros dev:
secondary metabolic process

branched-chain amino acid catabolic process
negative regulation of transmembrane transport
metanephric glomerulus development
regulation of DNA-dependent transcription in re:
branched-chain amino acid metabolic process
tropomyosin binding

positive regulation of receptor biosynthetic proc
cellular amino acid biosynthetic process

skeletal muscle fiber development
Branched-chain amino acid catabolism

KEGG TOXOPLASMOSIS

negative regulation of GTPase activity
BIOCARTA ERK5 PATHWAY

decreased cellular sensitivity to gamma-irradiati
astrocyte differentiation

positive regulation of glucose import
photoreceptor connecting cilium

short photoreceptor outer segment

14-3-3 protein binding

protein phosphatase 2A binding

fatty acid derivative metabolic process
icosanoid metabolic process

KEGG GLYCOSYLPHOSPHATIDYLINOSITOL(GPI)-A

10
10
10
36
11
68
18
13
10
41
22
14
10
97
44
16
110
15
17
18
23
27
21
27
16
16
74
74
23

1.06E-04
1.06E-04
1.18E-04
1.30E-04
1.33E-04
1.52E-04
1.76E-04
1.78E-04
2.27E-04
2.32E-04
2.42E-04
2.74E-04
2.85E-04
2.95E-04
3.04E-04
3.07E-04
3.07E-04
3.29E-04
3.35E-04
3.48E-04
3.50E-04
3.82E-04
3.96E-04
4.03E-04
4.51E-04
4.98E-04
5.28E-04
5.28E-04
5.41E-04

0.030
0.030
0.033
0.035
0.035
0.038
0.042
0.042
0.052
0.052
0.053
0.058
0.058
0.058
0.058
0.058
0.058
0.061
0.061
0.061
0.061
0.065
0.066
0.066
0.073
0.079
0.081
0.081
0.081
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SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Agnostic
Hypothesis driven
Hypothesis driven
Hypothesis driven
Hypothesis driven

KEGG HISTIDINE METABOLISM

abnormal physiological response to xenobiotic
regulation of stress-activated MAPK cascade
Metabolism of amino acids and derivatives
epithelial cell differentiation involved in kidney ¢
regulation of stress-activated protein kinase sign
MORNING

LOW

Mitochondrion_(core)

ID-NS

24
402
140
171

20
141
109

8153
174
116

5.54E-04
5.91E-04
5.94E-04
6.39E-04
6.46E-04
7.20E-04
2.29E-04
2.53E-04
2.94E-04
5.62E-04

0.082
0.085
0.085
0.089
0.089
0.098
0.018
0.018
0.018
0.025
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