

1 Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated  
2 genes

3  
4 Laura M. Huckins<sup>1,2,3,4,5</sup>, Amanda Dobbyn<sup>1,2,5</sup>, Whitney McFadden<sup>1,2,3</sup>, Weiqing Wang<sup>1,2</sup>, Douglas  
5 M. Ruderfer<sup>6</sup>, Gabriel Hoffman<sup>1,2,4</sup>, Veera Rajagopal<sup>7</sup>, Hoang T. Nguyen<sup>1,2</sup>, Panos Roussos<sup>1,2</sup>,  
6 Menachem Fromer<sup>1,2</sup>, Robin Kramer<sup>8</sup>, Enrico Domenci<sup>9</sup>, Eric Gamazon<sup>6,10</sup>, CommonMind  
7 Consortium, the Bipolar Disorder Working Group of the Psychiatric Genomics Consortium,  
8 iPSYCH Consortium, Ditte Demontis<sup>7</sup>, Anders Børglum<sup>7</sup>, Bernie Devlin<sup>11</sup>, Solveig K. Sieberts<sup>12</sup>,  
9 Nancy Cox<sup>6,10</sup>, Hae Kyung Im<sup>10</sup>, Pamela Sklar<sup>1,2,3,4</sup>, Eli A. Stahl<sup>1,2,3,4</sup>

10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39

40 **Author Affiliations:**

41 1. Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, NYC, NY;  
42 2. Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, NYC, NY;  
43 3. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, NY;  
44 4. Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai,  
45 NYC, NY;  
46 5. Charles R, Bronfman Institute for Personalized Medicine, , Icahn School of Medicine at Mount  
47 Sinai, NYC, NY;  
48 6. Vanderbilt University Medical Center, Nashville, TN;  
49 7. Institut for Biomedicin - Forskning og uddannelse, Øst, Aarhus, Denmark  
50 8. Human Brain Collection Core, National Institute of Mental Health, Bethesda, MD, USA;  
51 9. Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of  
52 Trento, Trento, Italy;  
53 10. Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago,  
54 Illinois, USA  
55 11. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA;  
56 12. Systems Biology, Sage Bionetworks, Seattle, WA, USA;

57

58

59

60 **Abstract**

61 Bipolar disorder is a complex neuropsychiatric disorder presenting with episodic mood  
62 disturbances. In this study we use a transcriptomic imputation approach to identify novel genes  
63 and pathways associated with bipolar disorder, as well as three diagnostically and genetically  
64 distinct subtypes. Transcriptomic imputation approaches leverage well-curated and publicly  
65 available eQTL reference panels to create gene-expression prediction models, which may then  
66 be applied to “impute” genetically regulated gene expression (GREX) in large GWAS datasets.  
67 By testing for association between phenotype and GREX, rather than genotype, we hope to  
68 identify more biologically interpretable associations, and thus elucidate more of the genetic  
69 architecture of bipolar disorder.

70

71 We applied GREX prediction models for 13 brain regions (derived from CommonMind  
72 Consortium and GTEx eQTL reference panels) to 21,488 bipolar cases and 54,303 matched  
73 controls, constituting the largest transcriptomic imputation study of bipolar disorder (BPD) to  
74 date. Additionally, we analyzed three specific BPD subtypes, including 14,938 individuals with  
75 subtype 1 (BD-I), 3,543 individuals with subtype 2 (BD-II), and 1,500 individuals with  
76 schizoaffective subtype (SAB).

77

78 We identified 125 gene-tissue associations with BPD, of which 53 represent independent  
79 associations after FINEMAP analysis. 29/53 associations were novel; i.e., did not lie within 1Mb  
80 of a locus identified in the recent PGC-BD GWAS. We identified 37 independent BD-I gene-  
81 tissue associations (10 novel), 2 BD-II associations, and 2 SAB associations. Our BPD, BD-I and  
82 BD-II associations were significantly more likely to be differentially expressed in post-mortem  
83 brain tissue of BPD, BD-I and BD-II cases than we might expect by chance. Together with our  
84 pathway analysis, our results support long-standing hypotheses about bipolar disorder risk,  
85 including a role for oxidative stress and mitochondrial dysfunction, the post-synaptic density,  
86 and an enrichment of circadian rhythm and clock genes within our results.

87

88 **Introduction**

89 Bipolar disorder (BPD) is a serious episodic neuropsychiatric disorder presenting with extreme  
90 elation, or mania, and severe depressive states<sup>1</sup>. In tandem, individuals with bipolar often  
91 experience disturbances in thinking and behavior, as well as psychotic features such as  
92 delusions and hallucinations<sup>1</sup>. Estimates of the prevalence of BPD within the general population  
93 range from 0.5-1.5%<sup>1,2</sup>. Bipolar disorder is highly heritable, with siblings of probands at an 8-  
94 fold increased risk of the disorder<sup>1,2</sup>, and twin studies producing strikingly high estimates of  
95 heritability, around 89-93%<sup>1,3,4</sup>. More recently, genetic studies of BPD have indicated SNP  
96 heritability estimates of 17-23%<sup>5</sup>.

97

98 Bipolar disorder encompasses diagnostically distinct subtypes; bipolar disorder type I (BD-I),  
99 characterized by full manic episodes, and bipolar disorder type II (BD-II), which includes both  
100 hypomania and recurrent depressive episodes<sup>1,6,7</sup>. Individuals with diagnostic features of both  
101 bipolar disorder and schizophrenia may additionally be diagnosed with schizoaffective disorder  
102 (SAB)<sup>7</sup>. Recent studies have indicated that these diagnostic distinctions may be borne out  
103 genetically; for example, BD-I is significantly more heritable than BD-II<sup>5,8</sup>, and there are distinct  
104 differences between polygenic risk profiles of individuals with BD-I compared to BD-II<sup>6,8</sup>. These  
105 diagnostic and genetic heterogeneities within bipolar disorder contribute to the complexity in  
106 identifying genetic associations with bipolar disorder. Additional complications arise due to the  
107 complex polygenic nature of the disorder, and the high degree of overlap, both diagnostically  
108 and genetically, with other psychiatric disorders such as Schizophrenia and Major Depressive  
109 Disorder<sup>9-11</sup>.

110

111 Global collaborative efforts over the last decade have enabled large collections of samples from  
112 individuals with BPD. Genome-wide associations studies (GWAS) of these collections have  
113 identified multiple BPD-associated loci throughout the genome<sup>6,12-25</sup>, most recently 30 novel  
114 loci identified in the PGC-BD GWAS<sup>5</sup>. Despite these advances in locus discovery, little is  
115 understood about the pathogenesis of bipolar disorder. It is likely that, in line with other  
116 psychiatric disorders, larger sample sizes will be required in order to identify additional risk

117 loci<sup>26</sup>. However, even elegantly designed and well-powered GWAS studies will not necessarily  
118 identify biological mechanisms contributing to disease, as large lists of genomic loci may be  
119 uninformative, and require careful dissection and downstream analyses to identify truly  
120 disease-causing associations<sup>27</sup>.

121  
122 Transcriptomic Imputation (TI) analyses offer an opportunity to probe gene expression on a  
123 large scale, using eQTL reference panel-derived prediction models<sup>28,29</sup>. These approaches have  
124 several attractive advantages to researchers studying genetics of complex traits. First, results  
125 are readily biologically interpretable. Second, the large scale of GWAS studies means that TI  
126 studies are powered to detect even modest changes in gene expression, which likely represent  
127 a large portion of the risk in psychiatric disorders<sup>30,31</sup>, and which cannot be identified with  
128 traditional transcriptome approaches. Third, the use of genetically-regulated gene expression  
129 ensures that any associations precede symptom onset, rather than being mediated by disease  
130 status<sup>28</sup>.

131  
132 In this study, we present the largest analysis of transcriptomic imputation in Bipolar Disorder.  
133 Our analysis included individuals from the most recent PGC-BD GWAS<sup>5</sup> (19,986 cases/30,992  
134 controls), as well as individuals from the iPSYCH consortium (1,502 cases/23,311 controls). We  
135 calculated predicted genetically regulated gene expression (GREX) for ~20,000 genes across 13  
136 brain regions, using prediction models derived from GTEX<sup>28,32</sup> and CommonMind Consortium  
137 data<sup>31,33</sup>. We sought to identify associations between GREX and a diagnosis of bipolar disorder,  
138 or one of three bipolar subtypes (BD-I, BD-II, SAB). We identified 125 significant gene-tissue  
139 associations with BPD, constituting 53 independent associations. Of these, 29 gene-tissue  
140 associations were novel; i.e., they did not lie within 1MB of a locus identified in the recent PGC-  
141 BD GWAS<sup>5</sup>. Additionally, we identified 80 gene-tissue associations with BD-I (37 independent  
142 associations, of which 12 were novel), two gene-tissue associations with BD-II (both novel), and  
143 one gene-tissue association with SAB. Our associations were highly consistent with differential  
144 gene expression analyses of bipolar cases and controls in the CommonMind Consortium. We  
145 expound upon these results using a number of analyses, including gene set enrichment

146 analyses, replication of previous transcriptome-based studies of bipolar disorder<sup>28,34</sup>, and an  
147 approach analogous to PHEWAS<sup>35,36</sup> to identify associations between these genes and specific  
148 endophenotypes of bipolar disorder.

149

150

151 **Methods**

152

153 **Samples**

154 Genotype data were obtained from the Psychiatric Genomics Consortium Bipolar Disorder  
155 (PGC-BD) collection. These data included 19,986 cases and 30,992 ancestry-matched controls  
156 from the PGC-BD collection<sup>5</sup>. Three of these cohorts were available through summary statistics  
157 only (Supplementary Figure 1). 1,502 BPD cases and 23,311 matched controls were additionally  
158 analysed by collaborators at iPSYCH (supplementary information).

159

160 In order to be included in the study, cases were required to meet international diagnostic  
161 criteria for BPD (ie, DSM-IV, ICD-9, ICD-10), or to have a lifetime diagnosis of BPD according to  
162 structured diagnostic instruments<sup>5</sup>. Genotyping information for these samples can be found in  
163 the flagship papers describing the initial sample collection<sup>5</sup>, and were processed in a  
164 standardized manner using “ricopili”<sup>5</sup>.

165

166 The PGC-BD collection included 14,938 individuals with BD-I, 3,543 individuals with BD-II, and  
167 1,500 individuals with SAB. No subtype data were available for individuals collected through  
168 iPSYCH.

169

170 **Transcriptomic Imputation**

171 We imputed genetically regulated gene expression (GREX) using the CommonMind Consortium  
172 (CMC) derived Dorso-lateral pre-frontal cortex (DLPFC) predictor model<sup>33</sup>, and GTEx-derived  
173 brain tissue prediction models<sup>28,32</sup>. We imputed GREX in all cohorts for which we had access to  
174 raw data using PrediXcan<sup>28</sup> (Suppl. Figure 1).

175

176 For three cohorts, raw genotype data was not available. For these cohorts, and two cohorts  
177 with a trio structure, genic associations were computed using summary statistics, using  
178 MetaXcan<sup>37</sup>, a summary-statistic approach analogous to prediXcan<sup>28</sup>. Previous studies have  
179 shown that genic association p-values and effect sizes calculated using MetaXcan and PrediXcan

180 are highly correlated, provided that ethnically matched reference panels are used<sup>33,37</sup>. This was  
181 confirmed using three European PGC BD cohorts for which both summary statistics and raw  
182 genotype data were available.

183

#### 184 **iPsych-Gems Analysis**

185 iPSYCH-GEMS GWAS data was genotyped and imputed in 23 waves, and subsequently merged  
186 for association analyses. No subtype data were available for iPSYCH-GEMS data. Variants with  
187 imputation scores>0.8 were included for the analysis. Genetically regulated gene expression  
188 levels were calculated using the CMC DLPFC predictor model<sup>33</sup>, as well as 12 GTEx-derived brain  
189 tissue databases<sup>28,32</sup>. Association tests on case-control status were carried out using a logistic  
190 regression in R, including wave membership as covariate.

191

192 Principal component analysis was done in order to remove genetic outliers. The phenotype  
193 specific PCs that are significantly different between cases and controls were included as  
194 covariates as well, to account for the population stratification. Related individuals were  
195 identified by pairwise IBD analysis and one of every pair (preferably controls) identified as  
196 related (piHAT > 0.2) was removed.

197

---

198 Regression formula: Disease ~ gene-expression + wave1 + wave2 +....+ wave22 + PC1+PC2+...

199 The association analysis was done using R software.

200

#### 201 **Association Tests**

202 We tested for association between GREX and case-control status in each cohort separately,  
203 using a standard linear regression test in R. We included ten principal components as  
204 covariates. We repeated this analysis for BD-I, BD-II and SAB, including all controls. We  
205 required that a cohort include at least 50 individuals with a given subtype to be included in each  
206 analysis, and consequently removed one cohort with only 36 SAB cases.

207

208 We carried out an analysis comparing bipolar subtypes BD-I, BD-II, SAB. For each pair of  
209 subtypes, we compared GREX in cases only, including all cohorts with more than 50 individuals  
210 with each diagnosis.

211

212 Raw genotype-based and summary-statistics based cohorts were meta-analysed using an odds-  
213 ratio based approach in METAL<sup>38</sup>.

214

### 215 **Establishing a threshold for genome-wide significance**

216 We applied two significance thresholds to the data. First, for each tissue, we applied a  
217 Bonferroni correction accounting for the total number of genes tested within that tissue (Suppl.  
218 table 1). Second, we applied a global genome-wide significance threshold, accounting for all  
219 genes tested across all tissues. These are denoted by dashed and solid lines respectively in the  
220 manhattan plots throughout this manuscript.

221

### 222 **Identifying independent associations**

223 We identified 18 regions with multiple gene-tissue associations; regions were defined based on  
224 distance between genes, and were checked using visual inspection of associations across each  
225 chromosome. For each of these regions, we applied FINEMAP<sup>39</sup> to identify independently  
226 associated genes. We substituted the LD-matrix usually used in FINEMAP with an analogous  
227 GREX correlation matrix.

228

229 This matrix was calculated for each cohort with available raw data, and a weighted average  
230 calculated across all populations, weighting for effective sample size. We ensured that  
231 summary-statistic based cohorts were represented in this weighted average by selecting the  
232 geographically nearest cohort as a proxy, and increasing the weighting of that proxy cohort  
233 accordingly.

234

*Equation 1: Effective Sample Size*

235

$$N_{eff} = \frac{4}{\left(\frac{1}{N_{cases}} + \frac{1}{N_{controls}}\right)}$$

236 **Identifying genes associated with specific behaviours and clinical variables**

237 We obtained data on 26 clinical variables relating to BPD, including for example rapid cycling,  
238 psychosis, panic attacks, and a variety of comorbid disorders. We used an approach analogous  
239 to PHEWAS, and an adaptation to the PHEWAS R package<sup>40</sup>, to test for associations between  
240 BD-I, BD-II and SAB-associated genes and these 26 endophenotypes.

241

242 Behavioural data was available for ~8,500 individuals, across 14 cohorts. We tested for  
243 association between GREX and all 26 endophenotypes in each cohort separately, controlling for  
244 ten principal components. Only endophenotypes with at least 20 cases, or 20 quantitative  
245 measures, were included within each cohort. Results were meta-analyzed across cohorts using  
246 an odds-ratio based approach in METAL<sup>41</sup>.

247

248 **Comparison with Differential Expression in CommonMind Consortium**

249 We sought to compare putatively BPD-associated GREX changes to genes identified as  
250 differentially expressed in post-mortem brain samples. We obtained summary statistics on  
251 differential expression between Bipolar cases and healthy controls from the CommonMind  
252 Consortium Phase II analysis, across the dorso-lateral pre-frontal cortex (DLPFC; 55 cases, 296  
253 controls) and anterior cingulate cortex (ACC; 48 cases, 246 controls).

254

255 We compared association statistics between these two analyses and each of our prediXcan BPD  
256 analyses; specifically, we tested whether genes reaching tissue-specific significance in each  
257 prediXcan analysis were more likely than expected by chance to be differentially expressed in  
258 the CMC analysis. We then repeated this test using all nominally significant genes in the  
259 prediXcan analyses. Additionally, we tested whether the degree of replication seen in each  
260 tissue was correlated with the number of genes tested, and/or with the sample size of the  
261 original eQTL reference panel used.

262

263 Since we did not have access to individual-level RNA-seq data in order to run a BD-I specific  
264 differential expression analysis, we compared BD-I DLPFC and ACC prediXcan association  
265 statistics to the CMC differential expression analysis.

266

267 We identified a small number of individuals within the CommonMind Consortium sample who  
268 were diagnosed with BD-II subtype. No RNA-seq data was available for these individuals;  
269 however, 11 had available microarray data. We therefore compared normalized microarray  
270 data between these 11 individuals and 204 controls, for the two top genes in our BD-II subtype  
271 analysis (*COLGALT2* and *NUP98*). No individuals with SAB were available for analysis.

272

### 273 **Pathway Analysis**

274 Pathway analysis was carried out using an adaptation to MAGMA<sup>42</sup>. We performed three  
275 pathway analyses, as follows: 1) 174 drug-target gene sets; 2) 76 gene sets with prior evidence  
276 of involvement in BD<sup>31,43–45</sup>, including nervous-systems related pathways, gene sets relating to  
277 aberrant behavior in mice, circadian clock gene sets, calcium-gated voltage channels, as well as  
278 targets of FMRP; 3) ~8,500 pathways collated across six large publicly available datasets<sup>46–53</sup>.  
279 We included only gene sets with at least 10 genes.

280

281 For each of the four iterations, we analyzed BIP, BD-I, BD-II and SAB results separately. Analyses  
282 were carried out using genic p-values from our PrediXcan meta-analyses. In instances where a  
283 gene had multiple associations across different tissues, the best p-value was selected, and a  
284 Bonferroni correction applied to correct for the number of tissues tested. Gene-set enrichment  
285 results from the competitive (rather than self-contained) MAGMA analysis were used<sup>42</sup>, and  
286 FDR correction applied within each stratum of our analysis.

287

288

289 **Results**

290 **Association Tests**

291 We calculated predicted gene expression for thirteen brain regions (derived from CMC and  
292 GTEx data<sup>28,32,54,55</sup>) in 19,986 cases and 30,992 controls from the PGC-BPD<sup>5</sup> and 1,502 cases and  
293 23,311 controls from the iPsych-GEMS consortium, and tested for association between  
294 predicted gene expression (GREX) and case-control status. Additionally, we used a summary-  
295 statistic based method to calculate genic associations in cases and controls for which raw  
296 genotypes were not available (Suppl. Figure 1A).

297

298 We identified 125 genes-tissue associations reaching tissue-specific significance (Suppl. Table 2;  
299 Figure 1A; ~5e-06); 46/125 reached our stricter cross-tissue threshold (4.11e-07). Within these  
300 associations, we identified 18 genomic regions with multiple associated genes, and where the  
301 same gene was associated across multiple tissues. We applied FINEMAP to each of these  
302 regions, and identified 53 independent associations (Table 1; Figure 1B), of which 29 are novel  
303 (i.e., they do not lie within 1Mb of a locus identified in the recent PGC-BD GWAS<sup>5</sup>). It should be  
304 noted that our sample includes all of the PGC-BD samples as well as an additional cohort, and  
305 so will have greater power to detect signals than the original GWAS.

306

307 **Comparison to previous transcriptome studies**

308 Two previous studies have already identified BPD-associated genes using transcriptomic  
309 approaches, albeit using substantially smaller samples<sup>28,34</sup>. We sought to replicate these  
310 findings using the subset of our data not included in the original PGC-BD GWAS<sup>5</sup> (Table 2).

311

312 One gene, *PTPRE*, was identified as associated with Bipolar Disorder in the original prediXcan-  
313 based Transcriptomic Imputation analysis. Two genes, *SPCS1* and *CACNB3*, were identified using  
314 the SMR method<sup>34</sup>, which used eQTLs from peripheral blood. *PTPRE* reaches nominal  
315 significance in the putamen basal ganglia in our replication sample ( $p=0.024$ ). Both *SPCS1* and  
316 *CACNB3* were significant in our replication sample (after Bonferroni correction); *SPCS1* in the  
317 caudate basal ganglia ( $p=0.0011$ ), and *CACNB3* in the frontal cortex ( $p=0.0010$ ). Additionally,

318 *CACNB3* reaches nominal significance in seven other tissues. This level of replication is highly  
319 unlikely to occur by chance (binomial test:  $p=1.59\times10^{-7}$  at nominal significance threshold,  
320  $p=0.0012$  at Bonferroni-corrected threshold).

321

322 **Subtypes**

323 Bipolar disorder subtypes BD-I, BD-II and SAB have previously been shown to be diagnostically  
324 and genetically distinct<sup>6</sup>. We tested for association of GREX with case-control status for each of  
325 these three subtypes, using all available matched controls; BD-I (14,983 cases/controls), BD-II  
326 (3,543/22,155) and SAB (1,500/8,690).

327

328 We identified 80 BD-I gene-tissue associations reaching tissue-specific genome-wide  
329 significance ( $\sim6\times10^{-6}$ ; Suppl. Table 3), constituting 37 independent associations following  
330 FINEMAP (Table 3; Figure 2A). 12 gene-tissue associations across 10 regions were novel, i.e., did  
331 not lie within 1Mb of a BD-I locus identified in the PGC-BD GWAS<sup>5</sup>. In line with our overall BPD  
332 analysis, the largest number of associations occur in the cortex and pre-frontal cortex (14  
333 associations) and the limbic system (14 associations).

334

335 Two genes were associated with BD-II subtype, albeit not at the stricter cross-tissue significance  
336 threshold (Table 3). First, increased expression *NUP98* in the DLPFC was associated with BD-II  
337 ( $p=2.2\times10^{-6}$ ). Decreased expression of *COLGALT2* was associated with BD-II in the Putamen Basal  
338 Ganglia ( $p=3.5\times10^{-6}$ ) and neared significance in the Hippocampus ( $p=7.6\times10^{-6}$ ), the Caudate Basal  
339 Ganglia ( $p=1.4\times10^{-5}$ ) and the Nucleus Accumbens Basal Ganglia ( $p=8.9\times10^{-5}$ ). Neither of these  
340 BD-II genes lie within 1Mb of a BD-II locus identified in the recent PGC-BD GWAS, although  
341 other BD-II subthreshold associations do (Suppl. Table 4).

342

343 Increased expression of *FSIP2* in the Thyroid was associated with SAB ( $p=1.9\times10^{-6}$ ; Table 3).  
344 Increased expression of *ALDH1B1* in the Cerebellar Hemisphere was also associated with SAB,  
345 although at slightly below tissue-specific significance ( $p=8.4\times10^{-6}$ ). *FSIP2* lies  $\sim0.5$  Mb from a  
346 locus also identified as potentially associated with SAB in the PGC-BD GWAS ( $p=6.9\times10^{-7}$ ). One

347 sub-threshold association (*SNX29*, in the Hypothalamus; Suppl. Table 4), also lies close to a PGC-  
348 BD GWAS SAB locus; all other SAB associations are novel.

349

350 There is a substantial overlap between association signals in our BD and BD-I analyses, likely  
351 due to the high proportion of BD-I cases within our sample, and a high proportion of  
352 overlapping controls. We examined association statistics (-log10 p-values) of all associated  
353 genes across all four analyses (Figure 3) and noted that BD and BD-1 genes tend to be  
354 reciprocally associated, whereas genes identified in the BD-2 and SAB analyses tend to be  
355 associated only within those particular subtypes.

356

### 357 **Comparison to Differential Expression in the CommonMind Consortium samples**

358 We compared our prediXcan GREX results to bipolar disorder differential expression analysis  
359 conducted in CommonMind Consortium post-mortem samples. Across all tissues, genes  
360 reaching nominal significance in our prediXcan analysis were significantly more likely to be  
361 differentially expressed in CMC DLPFC post-mortem samples (binomial test,  $p<2.8e-73$ ;  
362 Supplementary Table 5). The degree of replication was significantly correlated with the sample  
363 size of the original eQTL reference panel, even when controlling for the number of genes tested  
364 ( $p=0.03$ ).

365

366 Genes reaching tissue-specific significance ( $p<0.05/N$  genes tested) in the DLPFC, ACC, Cortex,  
367 and Nucleus Accumbens prediXcan analyses were more likely than expected by chance to be  
368 differentially expressed in the DLPFC CMC post-mortem samples (binomial test,  $p<0.0038$ ).  
369 There was no relationship between the likelihood of replication of significant genes and the  
370 number of genes tested, or eQTL reference panel sample size.

371

372 The vast majority of BPD cases in the CommonMind Consortium differential expression analysis  
373 were BD-I subtype; therefore, we also used the same CMC differential expression analysis to  
374 test for replication of our BD-I prediXcan results. As for the overall BPD analysis, nominally  
375 significant prediXcan genes were all significantly more likely to be differentially expressed in our

376 CMC analysis (binomial test,  $p<4.57e-72$ ), and the degree of replication was correlated with  
377 sample size of the original eQTL reference panel ( $p=0.044$ ). Genes reaching tissue-specific  
378 significance in both the DLPFC and the Cortex were significantly more likely to be differentially  
379 expressed in the CMC analysis (binomial test,  $p<0.0016$ ; Supplementary Table 5).

380

381 We identified a small number of individuals within the CommonMind Consortium sample who  
382 were diagnosed with BD-II subtype. No RNA-seq data was available for these individuals;  
383 however, 11 had available microarray expression data. We therefore compared normalized  
384 microarray data between these 11 individuals and 204 controls, for the two top genes in our  
385 BD-II subtype analysis (*COLGALT2* and *NUP98*). Both genes had the same directions of effect  
386 between cases and controls in our CMC Microarray data as in the prediXcan meta-analysis. In  
387 particular, the ratio of case:control expression for *COLGALT2* was strikingly similar in the  
388 microarray data (0.984) to the effect size estimated using prediXcan (0.980), and expression  
389 levels were significantly different between cases and controls ( $p=0.0488$ ). However, the sample  
390 sizes in this analysis are small, and results should be taken as preliminary, exploratory findings,  
391 and further, larger analysis will be required.

392 No individuals with SAB were available for analysis.

393

#### 394 **Identifying genes associated with specific behaviours**

395 We tested whether any of the genes identified in our subtype analyses were particularly  
396 associated with any specific BPD-endophenotype, using an approach analogous to PHEWAS<sup>35,36</sup>.  
397 We included all genes reaching tissue-specific significance in any subtype analysis.

398

399 We identified three significant associations (Table 4). We found that reduced expression of  
400 *EIF1AD* in the DLPFC was associated with mixed states ( $p=0.00197$ ) and panic attacks  
401 ( $p=0.0004948$ ). In our original analysis, decreased expression of the gene in the DLPFC was  
402 associated with BD-I ( $p=2.55\times 10^{-6}$ ). Additionally, decreased expression of *FSIP2* in the Pituitary  
403 was associated with having a family history of BPD in our PHEWAS ( $p=1e-05$ ).

404

405 **Pathway enrichment**

406 We tested for pathway enrichment using MAGMA<sup>42</sup>, for BD, BD-I, BD-II and SAB associations.  
407 We carried out three stages of pathway analysis including the following gene sets 1) 174 sets of  
408 drug targets; 2) 79 hypothesis-driven gene sets including targets of the FMRP protein, calcium-  
409 gated voltage channels, pathways involved in aberrant mouse behavior, pathways pertaining to  
410 chronotype and circadian rhythms 3) ~8,500 agnostic pathways obtained from large publicly  
411 available databases. All FDR-corrected significant results for these analyses are shown in Table  
412 5.

413

414 We found significant enrichments between our BD associated genes and GWAS-derived gene  
415 sets for schizophrenia ( $p= 3.69E-13$ ; all p-values shown are FDR-corrected), bipolar disorder ( $p=$   
416  $2.59E-09$ ) and major mood disorder ( $p=0.0040$ ). These results are reassuring rather than  
417 illuminating, given the known genetic overlap between these disorders, the likely shared  
418 samples with the previous BIP GWAS, and the potential for shared controls between all PGC  
419 GWAS studies. Similar to the BD results, BD-I associated genes were significantly enriched for  
420 GWAS-derived SCZ ( $p= 5.39E-12$ ) and BD ( $p= 1.78E-09$ ) gene sets. BD-II associated genes were  
421 not significantly enriched with previous BP or schizophrenia GWAS results. SAB-associated  
422 genes were significantly enriched with bipolar GWAS results ( $p= 0.027$ ).

423

424 We identified three drug target gene sets enriched in our BPD associated genes; anabolic  
425 steroids ( $p=5.84E-4$ ), androgens ( $p=0.025$ ) and corticosteroids for systemic use ( $p=0.012$ ).  
426 Corticosteroids when given in high doses can cause symptoms of mania, psychosis, impulsivity,  
427 irritability, anxiety, and depression<sup>56,57</sup>.

428

429 Four pathways in our 'hypothesis-driven' analysis were associated with BPD after FDR  
430 correction, including genes associated with self-defined 'morning person' chronotype<sup>58</sup>, genes  
431 that were highly intolerant to deleterious mutation in EXAC, genes with non-synonymous  
432 mutations linked to schizophrenia, and targets of the FMRP protein. FMRP pathways have  
433 previously been associated with schizophrenia, autism, and intellectual disability<sup>33,59,60</sup>. We

434 identified five further pathways with nominally significant competitive MAGMA p-values, but  
435 which did not survive FDR-correction, relating to pre- and post- synaptic density, circadian clock  
436 genes, and loss of function mutations associated with intellectual disability.

437

438 For BD-I, we identified two associated pathways in the hypothesis-driven analysis after FDR  
439 correction; endoplasmic reticulum function (ER;  $p=0.036$ ) and post synaptic density (PSD;  
440  $p=0.046$ ). 49/8,500 molecular pathways from public databases were significant after FDR-  
441 correction, with the most significant driven by methyltransferase activity (S-adenosylmethionine  
442 – dependent methyltransferase activity;  $p=3.0 \times 10^{-3}$ ). Four pathways involved in  
443 methyltransferase activity are driven by TFB1M, a brain-expressed mitochondrial  
444 methyltransferase gene involved in neurosensory mitochondrial deafness<sup>61,62</sup>. Other significant  
445 pathways include mitochondrial function (mitochondrial genome maintenance;  $p=0.032$ ) which  
446 was also validated in studies of the PSD proteins and associations with bipolar disorder<sup>63</sup>.

447

448 For BD-2 there were no significant hypothesis-driven pathways; however, 34 agnostic pathways  
449 were significantly enriched. S-adenosylmethionine-dependent methyltransferase activity  
450 pathway was the most significant ( $p=0.0029$ ), in line with our BD-I analysis. Other significant  
451 pathways and potentially interesting pathways include metabolism of porphyrins, heme  
452 biosynthesis, abnormal neuronal migration, and negative regulation of systemic arterial blood  
453 pressure.

454

455 Three hypothesis-driven pathways were enriched with SAB; including mitochondrion<sup>64</sup>, non-  
456 synonymous mutations associated with intellectual disability, and genes that have low-level  
457 intolerance to EXAC mutations. Our large agnostic analysis revealed many neuron specific genes  
458 sets including axonal regeneration, Schwann cell differentiation, and neuron projection  
459 regeneration. Mitochondrion and mitochondrion localization were also significant further  
460 emphasizing the involvement of mitochondrial genes in bipolar disorder<sup>65–67</sup>. A total of 45  
461 pathways were significantly enriched after FDR correction.

462

463 **Discussion**

464 In this study, we present the largest analysis to date of transcriptomic imputation in Bipolar  
465 Disorder, and three bipolar disorder subtypes. Transcriptomic Imputation approaches leverage  
466 carefully curated eQTL reference panels to create prediction models of genetically-regulated  
467 gene expression<sup>28,32,33,68</sup> (GREX). These models are then used to predict GREX in genotyped  
468 samples (for example, those obtained through GWAS), thus providing large, well-powered  
469 gene-expression datasets, while circumventing the difficulties and complications inherent in  
470 traditional transcriptome studies.

471

472 We applied gene expression predictor models derived from GTEx and CMC data to 21,488  
473 bipolar disorder cases and 54,303 controls from the PGC-BD and iPSYCH collections, and  
474 obtained predicted genetically regulated gene expression levels (GREX) for 19,661 unique  
475 genes, across 13 brain regions. We identified 53 independent BPD gene-tissue associations; of  
476 these, 29 were novel, i.e., they did not occur within 1MB of a locus identified in the recent PGC-  
477 BD GWAS<sup>5</sup>. Additionally, we identified 46 independent subtype-specific gene-tissue  
478 associations.

479

480 Our study includes an additional 1,503 BPD cases and ~23,000 controls from the iPSYCH  
481 consortium, which were not included in the discovery stage of the recent PGC-BD GWAS, and so  
482 some proportion of these novel associations likely stem from both the increased power of our  
483 sample, as well as the increased power of prediXcan over GWAS<sup>28,33</sup>. It should be noted that our  
484 BD-II, SAB, and cross-subtype analyses are small, and power to detect true associations is  
485 therefore low. These analyses should be taken as preliminary, exploratory findings, and larger,  
486 more well-powered studies should be carried out.

487

488 BPD- and BD-I-associated genes identified in this study were significantly more likely to be  
489 differentially expressed in post-mortem tissue from individuals with bipolar disorder than might  
490 be expected by chance. Replication of highly associated genes was tissue-specific; for example,  
491 genes discovered in the DLPFC were differentially expressed in the DLPFC. When testing only

492 nominally significant genes (i.e., all genes reaching  $p < 0.05$ ), replication was highly similar across  
493 all tissues, and degree of replication seemed to be driven by the power of the original eQTL  
494 reference panel (taking sample size as a proxy). This might indicate a large group of genes with  
495 broad, multi-region implications, while smaller groups of genes confer region-specific BPD risk.  
496 It is likely that some of the cross-brain signal also arises from highly correlated gene expression  
497 patterns and shared eQTLs between brain regions<sup>32,55</sup>. We used microarray data from a small  
498 sample of individuals with BD-II to visualize expression of our two BD-II associated genes,  
499 *NUP98* and *COLGALT1*, in cases compared to controls. For both genes, the observed direction of  
500 effect matches our prediXcan results. Although these results are encouraging, this analysis is  
501 based on a very small number of cases; as such, these results should be interpreted as early,  
502 preliminary indications, which should be followed with larger and more detailed investigations.  
503

504 An interesting feature of transcriptomic analysis is the ability to probe associations across  
505 specific brain regions (Suppl. Table 1). In our BPD meta-analysis, we identified 20 pre-frontal  
506 cortex associations (nine in the DLPFC), 13 in the striatum (Caudate, Nucleus Accumbens, and  
507 Putamen Basal Ganglia), 11 in the cerebellum and cerebellar hemisphere, and 2 in the  
508 hippocampus. These results imply prominent roles for the frontal cortex, striatum and  
509 cerebellum in bipolar disorder, consistent with previous neuro-anatomical studies. For  
510 example, imaging studies have repeatedly demonstrated enlarged putamen<sup>69–71</sup> and  
511 caudate<sup>69,72–74</sup> regions, decreased cerebellar volumes<sup>69,75–77</sup>, and structural differences in the  
512 prefrontal cortex of individuals with BPD<sup>69,78–81</sup>.

513  
514 We used genic associations for BD, BD-I, BD-II, and SAB to search for pathway enrichment with  
515 MAGMA<sup>42</sup> using gene sets for drug targets, hypothesis driven, and agnostic gene sets. Our drug  
516 target genes revealed sets for anabolic steroids, corticosteroids, and androgens which have  
517 common precursors and similar effects on hormone receptors. Hormone imbalance has been  
518 hypothesized in patients with BD and schizophrenia. Altered hypothalamic-pituitary-adrenal  
519 (HPA) axis and increased systemic cortisol metabolism was found by measuring cortisol  
520 metabolizing enzymes in urine of patients vs controls suggesting the synthesis pathways for

521 these hormones are altered<sup>57</sup>. Corticosteroids themselves are prescribed for a number of  
522 different medical conditions and can cause symptoms in patients that include psychosis, mania,  
523 depression, mixed features, delirium, and anxiety<sup>82</sup>. While these symptoms can arise after  
524 corticosteroid use, we cannot be certain the mechanisms are unique and the shared  
525 phenotypes in these overlapping gene sets suggest a similar genetic underpinning. Further  
526 investigation is warranted to understand the pathways involved in corticosteroid induced  
527 psychiatric symptoms and symptoms experienced by patients in bipolar disorder and  
528 schizophrenia. Additionally, our pathway analysis results provide support for a number of  
529 specific biological hypotheses.

530

### 531 **Oxidative Stress and Mitochondrial Dysfunction**

532 Collectively, our results indicate a potential role for oxidative stress and mitochondrial  
533 dysfunction in bipolar disorder. This hypothesis has been explored in detail elsewhere<sup>83-86</sup>, and  
534 has been implicated in BPD<sup>83-85</sup> as well as a range of psychiatric disorders<sup>87-90</sup>, including anxiety  
535 and panic disorders<sup>91</sup>, schizophrenia<sup>92-94</sup>, and major depressive disorder<sup>95</sup>. Evidence for the  
536 involvement of oxidative stress and mitochondrial dysfunction in BPD includes known  
537 comorbidities between bipolar disorder and mitochondrial disease<sup>96</sup>, the known antioxidant  
538 properties of antipsychotic drugs<sup>83</sup>, and the demonstrated benefit of antioxidant therapies in  
539 individuals with schizophrenia and bipolar disorder<sup>83</sup>.

540

541 A substantial number of the genes identified in our meta-analyses also have a role in oxidative  
542 stress and mitochondrial dysfunction (including for example, *AIFM3*, *CHDH*, *EDEM2*, *EIF1AD*,  
543 *FADS1*, *TARS2*). In particular, our PHEWAS results implicate a gene, *EIF1AD*, which has a wel-  
544 described role in response to oxidative stress<sup>97</sup>. Reduced expression of *EIF1AD* (eukaryotic  
545 translation initiation factor 1A domain containing; also known as haponin) in the DLPFC was  
546 associated with panic attacks, mixed states, and BD-I; in line with this, a recent study found  
547 increased RNA damage due to oxidative stress in individuals with BD-I and mixed states,  
548 compared to controls, and a decrease in levels of RNA damage after remission from an  
549 episode<sup>84</sup>. A large number of associations in our pathway analyses (Table 5) also point to

550 mitochondrial methyltransferase pathways, endoplasmic reticulum function, mitochondrial  
551 function, and mitochondrion location.

552

553 Common with BD-I and BD-II are the methyltransferase pathways with the most significant  
554 genes involved in mitochondrial methyltransferase. These genes are responsible for  
555 neurological phenotypes and associated with bipolar disorder<sup>65,66</sup>. A study of human induced  
556 pluripotent stem cells found early mitochondrial abnormalities in lithium responsive patients  
557 with bipolar disorder suggesting these mitochondrial abnormalities are present at the earliest  
558 stages of cell development<sup>67</sup>. SAB significant pathways reinforce the relationship between  
559 bipolar disorder with mitochondrial and neuronal function.

560

### 561 **Post-synaptic Density**

562 Multiple studies and hypotheses have implicated the post-synaptic density (PSD) as having a  
563 role for Bipolar Disorder, Schizophrenia, and other psychiatric disorders<sup>63,64</sup>. The PSD is a key  
564 location for a host of dopamine and glutamate signaling interactions, and has a key role in  
565 axonal growth and guidance. Further, proteins located in the PSD are involved in NMDA  
566 receptor trafficking, and underlie energy pathways and mitochondrial function. Our BD-I  
567 results are significantly enriched for genes related to PSD-95, a scaffolding protein within the  
568 PSD ( $p=5.2e-04$ ). This enrichment is not driven by a single highly associated gene, but rather a  
569 large number of sub-threshold associations. The most significant post synaptic density (PSD)  
570 gene PACS1 ( $p=5.57e-05$ ) codes for MHC-1 removal of membrane proteins in the trans golgi  
571 network and is overexpressed in brain; other subthreshold PSD-95 and glutamatergic  
572 associations include *TUBA1B* ( $p=3.1e-04$ ), *SHANK1* ( $p=5.4e-04$ ), *BSN* ( $p=6.5e-04$ ), and *AP2B1*  
573 ( $p=6.7e-04$ ). Additionally, our results are enriched for targets of the FMRP (fragile-X mental  
574 retardation protein;  $p=0.0015$ ), in line with previous studies of Bipolar Disorder and  
575 schizophrenia<sup>59,98</sup>, as well as the original CommonMind Consortium analysis<sup>31</sup>. FMRP is encoded  
576 by *FMR1*, which is required at synapses for normal glutamate receptor signaling<sup>99</sup>.

577

578

579 **Circadian Rhythms**

580 Longstanding hypotheses implicate the disruption of circadian rhythms in bipolar disorder. In  
581 particular, sleep disruption is included among bipolar disorder diagnostic criteria and is cited as  
582 a particular concern for individuals with BPD. Addressing circadian rhythm disruption is a key  
583 factor in treatment of bipolar disorder<sup>100,101</sup>, and in identifying individuals at risk of relapse<sup>102–</sup>  
584 <sup>106</sup>. Even among healthy individuals, circadian entrainment and sleep patterns are deeply  
585 entwined with mood regulation<sup>100,107–112</sup>. These relationships have been discussed in detail  
586 elsewhere, including detailed discussions of plausible neurobiological mechanisms<sup>100,113–126</sup>.  
587 Consequently, studies of the genetics of bipolar disorder have included an emphasis on “clock”  
588 genes, i.e., genes involved in regulating circadian rhythmicity<sup>100,125,127,128</sup>, and the genetics of  
589 chronicity and sleep traits<sup>124</sup>.

590

591 Our BPD-association results include genes with a role in regulation of circadian rhythm; *CIART*  
592 (Circadian Associated Repressor Of Transcription), *CNNM4*, *ZSWIM3*, *RPRD2*, *TARS2*, *HSPD1*,  
593 *VPS45* and *PHLPP1*, as well as *ASCC3*<sup>129</sup>, *DUSP7*, *ITGA9*, *VPS4A*, *MAPRE2*, *RRP12* and *CSE1L*,  
594 associated with BD-I; and *NUP98*, associated with BD-II, as well as ~30 other sub-threshold  
595 associated circadian rhythm genes (p<1e-03), including genes identified in a recent GWAS of  
596 self-identified ‘morning-ness’. These ‘morning-ness’ genes constituted the most significantly  
597 enriched set in our hypothesis-driven pathway analysis (p=3.27e-05) within the full bipolar  
598 meta-analysis; additionally, we identified enrichments for circadian clock genes (p=0.012) and  
599 clock modulators (p=0.023), although these did not remain significant after FDR-correction.  
600 ‘Morning-ness’ genes were also enriched among SAB prediXcan associations (p=2.3e-04) and  
601 BD-I associations (p=0.0012), although the latter does not survive FDR-correction (p=0.069).

602

603

604

605 **Acknowledgements**

606 Data were generated as part of the CommonMind Consortium supported by funding from  
607 Takeda Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd and NIH grants  
608 R01MH085542, R01MH093725, P50MH066392, P50MH080405, R01MH097276, R01-MH-  
609 075916, P50M096891, P50MH084053S1, R37MH057881 and R37MH057881S1,  
610 HHSN271201300031C, AG02219, AG05138 and MH06692.

611

612 Brain tissue for the study was obtained from the following brain bank collections: the Mount  
613 Sinai NIH Brain and Tissue Repository, the University of Pennsylvania Alzheimer's Disease Core  
614 Center, the University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories and the  
615 NIMH Human Brain Collection Core. CMC Leadership: Pamela Sklar, Joseph Buxbaum (Icahn  
616 School of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh),  
617 Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Keisuke Hirai, Hiroyoshi Toyoshiba  
618 (Takeda Pharmaceuticals Company Limited), Enrico Domenici, Laurent Essioux (F. Hoffman-La  
619 Roche Ltd), Lara Mangravite, Mette Peters (Sage Bionetworks), Thomas Lehner, Barbara Lipska  
620 (NIMH).

621

622 The iPSYCH-GEMS team would like to acknowledge funding from the Lundbeck Foundation  
623 (grant no R102-A9118 and R155-2014-1724), the Stanley Medical Research Institute, an  
624 Advanced Grant from the European Research Council (project no: 294838), the Danish Strategic  
625 Research Council the Novo Nordisk Foundation for supporting the Danish National Biobank  
626 resource, and grants from Aarhus and Copenhagen Universities and University Hospitals,  
627 including support to the iSEQ Center, the GenomeDK HPC facility, and the CIRRAU Center.

628

629 The Genotype-Tissue Expression (GTEx) Project was supported by the [Common Fund](#) of the  
630 Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA,  
631 NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained  
632 from the [GTEx Portal](#) on 09/05/16. BrainSpan: Atlas of the Developing Human Brain [Internet].  
633 Funded by ARRA Awards 1RC2MH089921-01, 1RC2MH090047-01, and 1RC2MH089929-01.

634 **CommonMind Consortium Working Group**

635

636 Jessica S Johnson 1, Hardik R Shah 2,3, Lambertus L Klein 4, Kristen K Dang 5, Benjamin A  
637 Logsdon 5, Milind C Mahajan 2,3, Lara M Mangravite 5, Hiroyoshi Toyoshiba 6, Raquel E Gur 7,  
638 Chang-Gyu Hahn 8, Eric Schadt 2,3, David A Lewis 4, Vahram Haroutunian 1,5,9,10, Mette A  
639 Peters 5, Barbara K Lipska 11, Joseph D Buxbaum 1, 12, 13, Keisuke Hirai 14, Thanneer M  
640 Perumal 5, Laurent Essioux 15,

641

- 642 1. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at  
643 Mount Sinai, New York, New York, USA
- 644 2. Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai,  
645 New York, New York, USA
- 646 3. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai,  
647 New York, New York, USA
- 648 4. Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh,  
649 Pennsylvania, USA
- 650 5. Sage Bionetworks, Seattle, Washington, USA
- 651 6. Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda  
652 Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- 653 7. Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine,  
654 University of Pennsylvania, Philadelphia, Pennsylvania, USA
- 655 8. Neuropsychiatric Signaling Program, Department of Psychiatry, Perelman School of  
656 Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- 657 9. Psychiatry, JJ Peters Virginia Medical Center, Bronx, New York, USA.
- 658 10. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New  
659 York, USA
- 660 11. Human Brain Collection Core, National Institutes of Health, NIMH, Bethesda, Maryland, USA
- 661 12. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,  
662 USA.
- 663 13. Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount  
664 Sinai, New York, New York, USA
- 665 14. CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical  
666 Company Limited, Fujisawa, Kanagawa, Japan
- 667 15. F. Hoffman-La Roche Ltd

668

669

670

671

672

673

674

675

676

677

678 **iPSYCH BPD working group**

679

680 Anders D. Børglum 1,2,3, Ditte Demontis 1,2,3, Veera Manikandan Rajagopal 1,2,3, Thomas D. Als 1,2,3, Manuel Mattheisen 1,2,3, Jakob Grove 1,2,3,4, Thomas Werge 1,7,8, Preben Bo Mortensen 1,2,9,10, Carsten Bøcker Pedersen 1,9,10, Esben Agerbo 1,9,10, Marianne Giørtz Pedersen 1, 9, 10, Ole Mors 1,6, Merete Nordentoft 1, 11, David M. Hougaard 1,5, Jonas Bybjerg-Grauholt 1,5, Marie Bækvad-Hansen 1,5, Christine Søholm Hansen 1,5

685

- 686 1. iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
- 688 2. iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- 689 3. Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- 690 4. Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- 691 5. Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- 693 6. Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
- 694 7. Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- 696 8. Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- 697 9. National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- 698 10. Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
- 699 11. Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark

701

702 Potential Conflicts of Interest: TW has acted as advisor and lecturer to H. Lundbeck A/S  
703

704 **PGC-BD Working Group**

705

706 Eli A Stahl 1,2 ; Andreas J Forstner 3,4,5,6 ; Andrew McQuillin 7 ; Stephan Ripke 8,9,10 ; Vassily  
707 Trubetskoy 9 ; Manuel Mattheisen 11,12,13,14,15 ; Weiqing Wang 2,16 ; Yunpeng Wang 17,18 ;  
708 Jonathan R I Coleman 19,20 ; Hélène A Gaspar 19,20 ; Christiaan A de Leeuw 21 ; Jennifer M  
709 Whitehead Pavlides 22 ; Loes M Olde Loohuis 23 ; Anil P S Ori 23 ; Tune H Pers 24,25 ; Peter A  
710 Holmans 26 ; Douglas M Ruderfer 27,27 ; Phil H Lee 8,10,28 ; Alexander W Charney 16,16 ;  
711 Amanda L Dobbyn 2,29 ; Laura Huckins 2,30 ; James Boocock 31,32 ; Claudia Giambartolomei  
712 31,32 ; Panos Roussos 2,16,33 ; Niamh Mullins 19 ; Swapnil Awasthi 9 ; Esben Agerbo 34 ;  
713 Thomas D Als 11,12 ; Carsten Bøcker Pedersen 35 ; Jakob Grove 11,12,36 ; Ralph Kupka 37 ;  
714 Eline J Regeer 38 ; Adebayo Anjorin 39 ; Miquel Casas 40 ; Cristina Sánchez-Mora 40 ; Pamela B  
715 Mahon 41 ; Shaun M Purcell 41 ; Steve McCarroll 8 ; Judith Allardyce 26 ; Valentina Escott-Price  
716 26 ; Liz Forty 26 ; Christine Fraser 26 ; Marian L Hamshere 26 ; George Kirov 26 ; Manolis  
717 Kogevinas 42 ; Josef Frank 43 ; Fabian Streit 43 ; Jana Strohmaier 43 ; Jens Treutlein 43 ;  
718 Stephanie H Witt 43 ; James L Kennedy 44,45 ; John S Strauss 46 ; Julie Garnham 47 ; Claire  
719 O'Donovan 47 ; Claire Slaney 47 ; Stacy Steinberg 48 ; Thorgeir E Thorgeirsson 48 ; Martin  
720 Hautzinger 49 ; Michael Steffens 50 ; Ralph Kupka 51 ; Steve McCarroll 52 ; Roy H Perlis 53 ;  
721 Miquel Casas 54 ; Cristina Sánchez-Mora 54 ; Maria Hipolito 55 ; William B Lawson 55 ; Evaristus  
722 A Nwulia 55 ; Shawn E Levy 56 ; Shaun M Purcell 16 ; Tatiana M Foroud 57 ; Stéphane Jamain 58  
723 ; Allan H Young 59 ; James D McKay 60 ; Thomas D Als 13 ; Carsten Bøcker Pedersen 13 ; Jakob  
724 Grove 13 ; Diego Albani 61 ; Peter Zandi 62 ; Pamela B Mahon 63 ; James B Potash 63 ; Peng  
725 Zhang 64 ; J Raymond DePaulo 65 ; Sarah E Bergen 66 ; Anders Juréus 66 ; Robert Karlsson 66 ;  
726 Radhika Kandaswamy 19 ; Peter McGuffin 19 ; Margarita Rivera 19 ; Jolanta Lissowska 67 ; Roy  
727 H Perlis 68 ; Cristiana Cruceanu 69 ; Susanne Lucae 69 ; Pablo Cervantes 70 ; Monika Budde 71 ;  
728 Katrin Gade 71 ; Urs Heilbronner 71 ; Marianne Giørtz Pedersen 72 ; Carsten Bøcker Pedersen  
729 73 ; Derek W Morris 74 ; Cynthia Shannon Weickert 75 ; Thomas W Weickert 75 ; Donald J  
730 MacIntyre 76 ; Jacob Lawrence 77 ; Torbjørn Elvsåshagen 78,79 ; Olav B Smeland 80 ; Srdjan  
731 Djurovic 81 ; Simon Xi 82 ; Elaine K Green 83 ; Piotr M Czerski 84 ; Joanna Hauser 84 ; Wei Xu 85  
732 ; Helmut Vedder 86 ; Lilijana Oruc 87 ; Anne T Spijker 88 ; Scott D Gordon 89 ; Sarah E Medland  
733 90 ; David Curtis 91 ; Thomas W Mühliesen 92 ; Judith Badner 93 ; William A Scheftner 93 ;  
734 Engilbert Sigurdsson 94 ; Nicholas J Schork 95 ; Alan F Schatzberg 96 ; Marie Bækvad-Hansen 97  
735 ; Jonas Bybjerg-Grauholt 98 ; Christine Søholm Hansen 97 ; James A Knowles 99,100 ; Helena  
736 Medeiros 100 ; Szabolcs Szelingher 101 ; Grant W Montgomery 102 ; Derek W Morris 103 ;  
737 Marco Boks 104 ; Annelie Nordin Adolfsson 105 ; Miquel Casas 106 ; Stéphane Jamain 107 ;  
738 Nicholas Bass 7 ; David Curtis 108 ; Per Hoffmann 109 ; Michael Bauer 110 ; Andrea Pfennig 110  
739 ; Markus Leber 111 ; Sarah Kittel-Schneider 112 ; Andreas Reif 112 ; Katrin Gade 113 ; Jurgen  
740 Del-Favero 114 ; Sascha B Fischer 3 ; Stefan Herms 3 ; Per Hoffmann 3 ; Thomas W Mühliesen 3  
741 ; Céline S Reinbold 3 ; Srdjan Djurovic 115 ; Franziska Degenhardt 5,6 ; Stefan Herms 5,6 ; Per  
742 Hoffmann 5,6 ; Anna C Koller 5,6 ; Anna Maaser 5,6 ; Wolfgang Maier 116 ; Nelson B Freimer 23  
743 ; Anil Ori 23 ; Anders M Dale 117 ; Chun Chieh Fan 118 ; Tiffany A Greenwood 119 ; Caroline M  
744 Nievergelt 119 ; Tatyana Shehktman 120 ; Paul D Shilling 119 ; Olav B Smeland 121 ; William  
745 Byerley 122 ; William Bunney 123 ; Ney Alliey-Rodriguez 124 ; Douglas H R Blackwood 125 ;  
746 Toni-Kim Clarke 125 ; Donald J MacIntyre 126 ; Margarita Rivera 127 ; Chunyu Liu 128 ; William  
747 Coryell 129 ; Huda Akil 130 ; Margit Burmeister 131 ; Matthew Flickinger 132 ; Jun Z Li 133 ;

748 Melvin G McInnis 134 ; Fan Meng 130,134 ; Robert C Thompson 134 ; Stanley J Watson 134 ;  
749 Sebastian Zollner 134 ; Weihua Guan 135 ; Melissa J Green 136 ; Cynthia Shannon  
750 Weickert 136 ; Thomas W Weickert 136 ; Olav B Smeland 137 ; David Craig 138 ; Janet L Sobell  
751 139 ; Lili Milani 140 ; James L Kennedy 141,142 ; John S Strauss 141 ; Wei Xu 143 ; Katherine  
752 Gordon-Smith 144 ; Sarah V Knott 144 ; Amy Perry 144 ; José Guzman Parra 145 ; Fermin  
753 Mayoral 145 ; Fabio Rivas 145 ; Miquel Casas 146 ; Cristina Sánchez-Mora 146 ; Caroline M  
754 Nievergelt 147 ; Ralph Kupka 148 ; John P Rice 149 ; Jack D Barchas 150 ; Anders D Børglum  
755 11,12 ; Preben Bo Mortensen 151 ; Ole Mors 152 ; Maria Grigoriou-Serbanescu 153 ; Frank  
756 Bellivier 154 ; Bruno Etain 154 ; Marion Leboyer 154 ; Josep Antoni Ramos-Quiroga 40 ; Marta  
757 Ribasés 40 ; Tõnu Esko 25 ; Jordan W Smoller 8 ; Nicholas Craddock 26 ; Ian Jones 26 ; Michael J  
758 Owen 26 ; Marcella Rietschel 43 ; Thomas G Schulze 43 ; John Vincent 46 ; Tõnu Esko 155 ;  
759 Eduard Vieta 156 ; Merete Nordentoft 157 ; Martin Alda 47 ; Hreinn Stefansson 48 ; Kari  
760 Stefansson 48 ; Danielle Posthuma 158,159 ; Ingrid Agartz 160 ; Frank Bellivier 161 ;  
761 Tõnu Esko 52 ; Ketil J Oedegaard 162 ; Eystein Stordal 163 ; Josep Antoni Ramos-Quiroga 54 ;  
762 Marta Ribasés 54 ; Richard M Myers 56 ; René S Kahn 16 ; Frank Bellivier 164 ; Bruno Etain 164 ;  
763 Marion Leboyer 165 ; Bruno Etain 166 ; Anders D Børglum 13 ; Ole Mors 167 ; Thomas Werger  
764 168 ; Qingqin S Li 169 ; Thomas G Schulze 63 ; Fernando Goes 65 ; Ingrid Agartz 14 ; Christina M  
765 Hultman 66 ; Mikael Landén 66 ; Patrick F Sullivan 66,66 ; Cathryn M Lewis 19,170 ; Susan L  
766 McElroy 171 ; Jordan W Smoller 172,173 ; Bertram Müller-Myhsok 69 ; Joanna M Biernacka 174  
767 ; Mark Frye 175 ; Gustavo Turecki 176 ; Guy A Rouleau 177 ; Thomas G Schulze 71 ; Thomas  
768 Werger 178 ; Guy A Rouleau 179 ; Bertram Müller-Myhsok 180 ; Martin Alda 181 ; Francis J  
769 McMahon 182 ; Thomas G Schulze 182 ; Janice M Fullerton 75 ; Peter R Schofield 75 ; Eystein  
770 Stordal 183 ; Gunnar Morken 184 ; Ulrik F Malt 185 ; Ingrid Melle 186 ; Sara A Paciga 187 ;  
771 Nicholas G Martin 89 ; Arne E Vaaler 188 ; Gunnar Morken 189 ; David M Hougaard 190 ; Carlos  
772 Pato 100,191 ; Michele T Pato 100 ; Nicholas G Martin 192 ; Aiden Corvin 103 ; Michael Gill 103  
773 ; René S Kahn 104 ; Rolf Adolfsson 105 ; Josep Antoni Ramos-Quiroga 106 ; Frank Bellivier 193 ;  
774 Bruno Etain 193 ; Marion Leboyer 107 ; Thomas G Schulze 113 ; Bernhard T Baune 194 ; Ketil J  
775 Oedegaard 195 ; Alessandro Serretti 196 ; Markus M Nöthen 5,6 ; Elliot S Gershon 124,197 ;  
776 Thomas Werger 198 ; Andrew M McIntosh 125,199 ; Mikael Landén 200 ; Kari Stefansson 201 ;  
777 Bertram Müller-Myhsok 202 ; Michael Boehnke 132 ; Udo Dannlowski 203 ; Janice M  
778 Fullerton 204 ; Philip B Mitchell 136 ; Peter R Schofield 204 ; Patrick F Sullivan 205,206 ; Ingrid  
779 Agartz 207 ; Ingrid Melle 208 ; Wade H Berrettini 209 ; Vishwajit Nimagaonkar 210 ; Tõnu Esko  
780 140 ; Andres Metspalu 140,211 ; Lisa A Jones 144 ; Josep Antoni Ramos-Quiroga 146 ; Marta  
781 Ribasés 146 ; John Nurnberger 212 ; Naomi R Wray 22,102 ; Arianna Di Florio 26,206 ; Michael C  
782 O'Donovan 26 ; Howard Edenberg 213 ; Roel A Ophoff 104,214 ; Laura J Scott 132 ; Sven Cichon  
783 3,5,92,109 ; Ole A Andreassen 80,137 ; Pamela Sklar 2,16,33,215 ; John Kelsoe 119 ; Gerome  
784 Breen 19,20  
785  
786 1. Medical and Population Genetics, Broad Institute, Cambridge, MA, USA  
787 2. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY,  
788 USA  
789 3. Department of Biomedicine, University of Basel, Basel, CH  
790 4. Department of Psychiatry (UPK), University of Basel, Basel, CH  
791 5. Institute of Human Genetics, University of Bonn, Bonn, DE  
792 6. Life&Brain Center, Department of Genomics, University of Bonn, Bonn, DE  
793 7. Division of Psychiatry, University College London, London, GB

794 8. Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA  
795 9. Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, DE  
796 10. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA  
797 11. Department of Biomedicine, Aarhus University, Aarhus, DK  
798 12. iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, DK  
799 13. iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, DK  
800 14. Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, SE  
801 15. Stockholm Health Care Services, Stockholm County Council, Stockholm, SE  
802 16. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA  
803 17. Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen, DK  
804 18. Institute of Clinical Medicine, University of Oslo, Oslo, NO  
805 19. MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB  
806 20. National Institute of Health Research Maudsley Biomedical Research Centre, King's College London, London, GB  
807 21. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research  
808 Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, NL  
809 22. Queensland Brain Institute, The University of Queensland, Brisbane, QLD, AU  
810 23. Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, USA  
811 24. Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA  
812 25. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA  
813 26. Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of  
814 Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, GB  
815 27. Medicine, Psychiatry, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA  
816 28. Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA  
817 29. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA  
818 30. Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA  
819 31. Human Genetics, University of California Los Angeles, New York, NY, USA  
820 32. Human Genetics, University of California Los Angeles, Los Angeles, CA, USA  
821 33. Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA  
822 34. BSS, NCRR, CIRRAU, Aarhus University, Aarhus, DK  
823 35. Centre for Integrated Register-based Research, CIRRAU, Aarhus University, Aarhus, DK  
824 36. Bioinformatics Research Centre (BiRC), Aarhus University, Aarhus, DK  
825 37. Psychiatry, Altrecht, Utrecht, NL  
826 38. Outpatient Clinic for Bipolar Disorder, Altrecht, Utrecht, NL  
827 39. Psychiatry, Berkshire Healthcare NHS Foundation Trust, Bracknell, GB  
828 40. Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, ES  
829 41. Psychiatry, Brigham and Women's Hospital, Boston, MA, USA  
830 42. Center for Research in Environmental Epidemiology (CREAL), Barcelona, ES  
831 43. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty  
832 Mannheim, Heidelberg University, Mannheim, DE  
833 44. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, CA  
834 45. Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON, CA  
835 46. Centre for Addiction and Mental Health, Toronto, ON, CA  
836 47. Department of Psychiatry, Dalhousie University, Halifax, NS, CA  
837 48. deCODE Genetics / Amgen, Reykjavik, IS  
838 49. Department of Psychology, Eberhard Karls Universität Tübingen, Tübingen, DE  
839 50. Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, DE  
840 51. Psychiatry, GGZ inGeest, Amsterdam, NL

847 52. Department of Genetics, Harvard Medical School, Boston, MA, USA  
848 53. Psychiatry, Harvard Medical School, Boston, MA, USA  
849 54. Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain, Barcelona, ES  
850 55. Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, DC, USA  
851 56. HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA  
852 57. Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN, USA  
853 58. Psychiatrie Translationnelle, Inserm U955. Créteil, FR  
854 59. Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, GB  
855 60. Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, FR  
856 61. NEUROSCIENCE, Istituto Di Ricerche Farmacologiche Mario Negri, Milano, IT  
857 62. Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA  
858 63. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA  
859 64. Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA  
860 65. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA  
861 66. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE  
862 67. Cancer Epidemiology and Prevention, M. Skłodowska-Curie Cancer Center and Institute of Oncology, Warsaw, PL  
863 68. Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA  
864 69. Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, DE  
865 70. Department of Psychiatry, Mood Disorders Program, McGill University Health Center, Montreal, QC, CA  
866 71. Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Munich, DE  
867 72. Department of Economics and Business Economics, National Centre for Register-based Research, Aarhus University, Aarhus, DK  
868 73. National Centre for Register-Based Research, Aarhus University, Business and Social Sciences, Aarhus, DK  
869 74. Discipline of Biochemistry, Neuroimaging and Cognitive Genomics (NICOG) Centre, University College Galway, Galway, IE  
870 75. Neuroscience Research Australia, Sydney, NSW, AU  
871 76. Mental Health, NHS 24. Glasgow, GB  
872 77. Psychiatry, North East London NHS Foundation Trust, Ilford, GB  
873 78. Department of Neurology, Oslo University Hospital, Oslo, NO  
874 79. NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, NO  
875 80. Div Mental Health and Addiction, Oslo University Hospital, Oslo, NO  
876 81. Department of Medical Genetics, Oslo University Hospital Ullevål, Oslo, NO  
877 82. Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA  
878 83. School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, GB  
879 84. Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, PL  
880 85. Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, CA  
881 86. Psychiatry, Psychiatrisches Zentrum Nordbaden, Wiesloch, DE  
882 87. Department of Clinical Psychiatry, Psychiatry Clinic, Clinical Center University of Sarajevo, Sarajevo, BA  
883 88. Mood Disorders, PsyQ, Rotterdam, NL  
884 89. Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, AU  
885 90. Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, AU  
886 91. Centre for Psychiatry, Queen Mary University of London, London, GB

900 92. Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, DE  
901 93. Psychiatry, Rush University Medical Center, Chicago, IL, USA  
902 94. Faculty of Medicine, Department of Psychiatry, School of Health Sciences, University of Iceland, Reykjavik, IS  
903 95. Scripps Translational Science Institute, La Jolla, CA, USA  
904 96. Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA  
905 97. Statens Serum Institut, Copenhagen, DK  
906 98. Neonatal Genetik, Statens Serum Institut, Copenhagen, DK  
907 99. Cell Biology, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA  
908 100. Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA  
909 101. Neurogenomics, TGen, Los Angeles, AZ, USA  
910 102. Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, AU  
911 103. Neuropsychiatric Genetics Research Group, Dept of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, IE  
912 104. Psychiatry, UMC Utrecht Hersencentrum Rudolf Magnus, Utrecht, NL  
913 105. Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, SE  
914 106. Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, ES  
915 107. Faculté de Médecine, Université Paris Est, Créteil, FR  
916 108. UCL Genetics Institute, University College London, London, GB  
917 109. Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, CH  
918 110. Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, DE  
919 111. Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, DE  
920 112. Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, DE  
921 113. Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, DE  
922 114. Applied Molecular Genomics Unit, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium  
923 115. NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, NO  
924 116. Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, DE  
925 117. Neurosciences, Radiology, Psychiatry, Cognitive Science, University of California San Diego, La Jolla, CA, USA  
926 118. Cognitive Science, University of California San Diego, La Jolla, CA, USA  
927 119. Department of Psychiatry, University of California San Diego, La Jolla, CA, USA  
928 120. Institute of Genomic Medicine, University of California San Diego, O.  
929 121. Department of Neurosciences, University of California San Diego, La Jolla, CA, USA  
930 122. Psychiatry, University of California San Francisco, San Francisco, CA, USA  
931 123. Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA  
932 124. Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA  
933 125. Division of Psychiatry, University of Edinburgh, Edinburgh, GB  
934 126. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, GB  
935 127. Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, ES  
936 128. Psychiatry, University of Illinois at Chicago College of Medicine, Chicago, IL, USA  
937 129. University of Iowa Hospitals and Clinics, Iowa City, IA, USA  
938 130. Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA  
939 131. Molecular & Behavioral Neuroscience Institute and Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA  
940 132. Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA  
941 133. Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA

953 134. Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA  
954 135. Biostatistics, University of Minnesota System, Minneapolis, MN, USA  
955 136. School of Psychiatry, University of New South Wales, Sydney, NSW, AU  
956 137. NORMENT, University of Oslo, Oslo, NO  
957 138. Translational Genomics, University of Southern California, Los Angeles, CA, USA  
958 139. Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, USA  
959 140. Estonian Genome Center, University of Tartu, Tartu, EE  
960 141. Department of Psychiatry, University of Toronto, Toronto, ON, CA  
961 142. Institute of Medical Sciences, University of Toronto, Toronto, ON, CA  
962 143. Dalla Lana School of Public Health, University of Toronto, Toronto, ON, CA  
963 144. Department of Psychological Medicine, University of Worcester, Worcester, GB  
964 145. Mental Health Department, University Regional Hospital. Biomedicine Institute (IBIMA), Málaga, ES  
965 146. Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d'Hebron Research  
966 Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, ES  
967 147. Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA  
968 148. Psychiatry, VU medisch centrum, Amsterdam, NL  
969 149. Department of Psychiatry, Washington University in Saint Louis, Saint Louis, MO, USA  
970 150. Department of Psychiatry, Weill Cornell Medical College, NY, NY, USA  
971 151. National Centre for Register-based Research, Aarhus University, Aarhus, DK  
972 152. Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, DK  
973 153. Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital,  
974 Bucharest, RO  
975 154. Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, FR  
976 155. Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA  
977 156. Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM,  
978 Barcelona, SP  
979 157. Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, DK  
980 158. Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center,  
981 Amsterdam, NL  
982 159. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research,  
983 Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, NL  
984 160. Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, NO  
985 161. Paris Bipolar and TRD Expert Centres, FondaMental Foundation, Paris, FR  
986 162. Division of Psychiatry, Haukeland Universitetssjukehus, Bergen, NO  
987 163. Department of Psychiatry, Hospital Namsos, Namsos, NO  
988 164. UMR-S1144 Team 1 : Biomarkers of relapse and therapeutic response in addiction and mood  
989 disorders, INSERM, Paris, FR  
990 165. INSERM, Paris, FR  
991 166. Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, London, GB  
992 167. Aarhus University Department of Clinical Medicine, iPSYCH, The Lundbeck Foundation Initiative for  
993 Integrative Psychiatric Research, Aarhus, DK  
994 168. iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, DK  
995 169. Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA  
996 170. Department of Medical & Molecular Genetics, King's College London, London, GB  
997 171. Research Institute, Lindner Center of HOPE, Mason, OH, USA  
998 172. Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA  
999 173. Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston,  
1000 MA, USA  
1001 174. Health Sciences Research, Mayo Clinic, Rochester, MN, USA  
1002 175. Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA  
1003 176. Department of Psychiatry, McGill University, Montreal, QC, CA  
1004 177. Department of Neurology and Neurosurgery, McGill University, Faculty of Medicine, Montreal, QC,  
1005 CA

1006 178. Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital  
1007 Region of Denmark, Copenhagen, DK  
1008 179. Montreal Neurological Institute and Hospital, Montreal, QC, CA  
1009 180. Munich Cluster for Systems Neurology (SyNergy), Munich, DE  
1010 181. National Institute of Mental Health, Klecany, CZ  
1011 182. Human Genetics Branch, Intramural Research Program, National Institute of Mental Health,  
1012 Bethesda, MD, USA  
1013 183. Department of Neuroscience, Norges Teknisk Naturvitenskapelige Universitet Fakultet for  
1014 naturvitenskap og teknologi, Trondheim, NO  
1015 184. Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and  
1016 Technology - NTNU, Trondheim, NO  
1017 185. Research and Education, Division of Clinical Neuroscience, Oslo Universitetssykehus, Oslo, NO  
1018 186. Division of Mental Health and Addiction, Oslo University Hospital, Oslo, NO  
1019 187. Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton,  
1020 CT, USA  
1021 188. Dept of Psychiatry, Sankt Olavs Hospital Universitetssykehuset i Trondheim, Trondheim, NO  
1022 189. Psychiatry, St Olavs University Hospital, Trondheim, NO  
1023 190. Department for Congenital Disorders, Statens Serum Institut, Copenhagen, DK  
1024 191. Dean, College of Medicine Institute for Genomic Health, SUNY Downstate Medical Center College of  
1025 Medicine, Brooklyn, NY, USA  
1026 192. School of Psychology, The University of Queensland, Brisbane, QLD, AU  
1027 193. Psychiatry, Université Paris Diderot, Paris, FR  
1028 194. Discipline of Psychiatry, University of Adelaide, Adelaide, SA, AU  
1029 195. Faculty of Medicine and Dentistry, University of Bergen, Bergen, NO  
1030 196. Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, IT  
1031 197. Department of Human Genetics, University of Chicago, Chicago, IL, USA  
1032 198. Institute of Clinical Medicine, University of Copenhagen, Copenhagen, DK  
1033 199. Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, GB  
1034 200. Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, SE  
1035 201. Faculty of Medicine, University of Iceland, Reykjavik, IS  
1036 202. University of Liverpool, Liverpool, GB  
1037 203. Department of Psychiatry, University of Münster, Münster, DE  
1038 204. School of Medical Sciences, University of New South Wales, Sydney, NSW, AU  
1039 205. Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA  
1040 206. Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA  
1041 207. NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction,  
1042 Institute of Clinical Medicine and Diakonhjemmet Hospital, University of Oslo, Oslo, NO  
1043 208. Division of Mental Health and Addiction, University of Oslo, Institute of Clinical Medicine, Oslo, NO  
1044 209. Psychiatry, University of Pennsylvania, Philadelphia, PA, USA  
1045 210. Psychiatry and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA  
1046 211. Institute of Molecular and Cell Biology, University of Tartu, Tartu, EE  
1047 212. Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA  
1048 213. Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA  
1049 214. Jane and Terry Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA  
1050 215. Departments of Genetics and Genomic Sciences, Psychiatry and Neuroscience, Icahn School of  
1051 Medicine at Mount Sinai, New York, NY, USA

1052 **References**

1053 1 Craddock N, Sklar P. Bipolar Disorder 1 Genetics of bipolar disorder. *Ser 1654*  
1054 [www.thelancet.com](http://www.thelancet.com) 2013. DOI:10.1016/S0140-6736(13)60855-7.

1055 2 Craddock N, Jones I. Genetics of bipolar disorder. *J Med Genet* 1999; **36**: 585–94.

1056 3 McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. The Heritability of Bipolar  
1057 Affective Disorder and the Genetic Relationship to Unipolar Depression. *Arch Gen*  
1058 *Psychiatry* 2003; **60**: 497.

1059 4 Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J. High Concordance of Bipolar I  
1060 Disorder in a Nationwide Sample of Twins. *Am J Psychiatry* 2004; **161**: 1814–21.

1061 5 Stahl E, Forstner A, McQuillin A, *et al.* Genomewide association study identifies 30 loci  
1062 associated with bipolar disorder. *bioRxiv* 2017.

1063 6 Charney AW, Ruderfer DM, Stahl EA, *et al.* Evidence for genetic heterogeneity between  
1064 clinical subtypes of bipolar disorder. *Transl Psychiatry* 2017; **7**: e993.

1065 7 Barnett JH, Smoller JW. The genetics of bipolar disorder. *Neuroscience* 2009; **164**: 331–  
1066 43.

1067 8 Ruderfer DM, Fanous AH, Ripke S, *et al.* Polygenic dissection of diagnosis and clinical  
1068 dimensions of bipolar disorder and schizophrenia. *Mol Psychiatry* 2014; **19**: 1017–24.

1069 9 Lichtenstein P, Yip BH, Björk C, *et al.* Common genetic determinants of schizophrenia and  
1070 bipolar disorder in Swedish families: a population-based study. *Lancet* 2009; **373**: 234–9.

1071 10 Identification of risk loci with shared effects on five major psychiatric disorders: a  
1072 genome-wide analysis. *Lancet* 2013; **381**: 1371–9.

1073 11 Ripke S, Wray NR, Lewis CM, *et al.* A mega-analysis of genome-wide association studies  
1074 for major depressive disorder. *Mol Psychiatry* 2013; **18**: 497–511.

1075 12 Burton PR, Clayton DG, Cardon LR, *et al.* Genome-wide association study of 14,000 cases  
1076 of seven common diseases and 3,000 shared controls. *Nature* 2007; **447**: 661–78.

1077 13 Smith EN, Bloss CS, Badner JA, *et al.* Genome-wide association study of bipolar disorder  
1078 in European American and African American individuals. *Mol Psychiatry* 2009; **14**: 755–  
1079 63.

1080 14 Sklar P, Smoller JW, Fan J, *et al.* Whole-genome association study of bipolar disorder. *Mol*  
1081 *Psychiatry* 2008; **13**: 558–69.

1082 15 Scott LJ, Muglia P, Kong XQ, *et al.* Genome-wide association and meta-analysis of bipolar  
1083 disorder in individuals of European ancestry. *Proc Natl Acad Sci* 2009; **106**: 7501–6.

1084 16 Schulze TG, Detera-Wadleigh SD, Akula N, *et al.* Two variants in Ankyrin 3 (ANK3) are  
1085 independent genetic risk factors for bipolar disorder. *Mol Psychiatry* 2009; **14**: 487–91.

1086 17 Mühlleisen TW, Leber M, Schulze TG, *et al.* Genome-wide association study reveals two  
1087 new risk loci for bipolar disorder. *Nat Commun* 2014; **5**: 3339.

1088 18 Hou L, Bergen SE, Akula N, *et al.* Genome-wide association study of 40,000 individuals  
1089 identifies two novel loci associated with bipolar disorder. *Hum Mol Genet* 2016; **25**:  
1090 3383–94.

1091 19 Green EK, Hamshere M, Forty L, *et al.* Replication of bipolar disorder susceptibility alleles  
1092 and identification of two novel genome-wide significant associations in a new bipolar  
1093 disorder case-control sample. *Mol Psychiatry* 2013; **18**: 1302–7.

1094 20 Green EK, Grozeva D, Forty L, *et al.* Association at SYNE1 in both bipolar disorder and

1095 recurrent major depression. *Mol Psychiatry* 2013; **18**: 614–7.

1096 21 Ferreira MAR, O'Donovan MC, Meng YA, *et al.* Collaborative genome-wide association  
1097 analysis supports a role for ANK3 and CACNA1C in bipolar disorder. *Nat Genet* 2008; **40**:  
1098 1056–8.

1099 22 Cichon S, Mühlleisen TW, Degenhardt FA, *et al.* Genome-wide association study identifies  
1100 genetic variation in neurocan as a susceptibility factor for bipolar disorder. *Am J Hum  
1101 Genet* 2011; **88**: 372–81.

1102 23 Chen DT, Jiang X, Akula N, *et al.* Genome-wide association study meta-analysis of  
1103 European and Asian-ancestry samples identifies three novel loci associated with bipolar  
1104 disorder. *Mol Psychiatry* 2013; **18**: 195–205.

1105 24 Baum AE, Akula N, Cabanero M, *et al.* A genome-wide association study implicates  
1106 diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar  
1107 disorder. *Mol Psychiatry* 2008; **13**: 197–207.

1108 25 Psychiatric GWAS Consortium Bipolar Disorder Working Group P, Ripke S, Scott LJ, *et al.*  
1109 Large-scale genome-wide association analysis of bipolar disorder identifies a new  
1110 susceptibility locus near ODZ4. *Nat Genet* 2011; **43**: 977–83.

1111 26 Collins AL, Sullivan PF. Genome-wide association studies in psychiatry: what have we  
1112 learned? *Br J Psychiatry* 2013; **202**: 1–4.

1113 27 Sekar A, Bialas AR, de Rivera H, *et al.* Schizophrenia risk from complex variation of  
1114 complement component 4. *Nature* 2016; **530**: 177–83.

1115 28 Gamazon ER, Wheeler HE, Shah KP, *et al.* A gene-based association method for mapping  
1116 traits using reference transcriptome data. *Nat Genet* 2015; **47**: 1091–8.

1117 29 Gusev A, Mancuso N, Finucane HK, *et al.* Transcriptome-wide association study of  
1118 schizophrenia and chromatin activity yields mechanistic disease insights. *bioRxiv* 2016; :  
1119 67355.

1120 30 Purcell SM, Moran JL, Fromer M, *et al.* A polygenic burden of rare disruptive mutations in  
1121 schizophrenia. *Nature* 2014; **506**: 185–90.

1122 31 Fromer M, Roussos P, Sieberts SK, *et al.* Gene expression elucidates functional impact of  
1123 polygenic risk for schizophrenia. *Nat Neurosci* 2016; **19**: 1442–53.

1124 32 Ardlie KG, Deluca DS, Segre A V., *et al.* The Genotype-Tissue Expression (GTEx) pilot  
1125 analysis: Multitissue gene regulation in humans. *Science (80- )* 2015; **348**: 648–60.

1126 33 Laura M. Huckins. Gene expression imputation across multiple brain regions reveals  
1127 schizophrenia risk throughout development. *Nat Genet*.

1128 34 Zhu Z, Zhang F, Hu H, *et al.* Integration of summary data from GWAS and eQTL studies  
1129 predicts complex trait gene targets. *Nat Genet* 2016; **48**: 481–7.

1130 35 Pendergrass SA, Brown-Gentry K, Dudek S, *et al.* Phenome-wide association study  
1131 (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics  
1132 and Epidemiology (PAGE) Network. *PLoS Genet* 2013; **9**: e1003087.

1133 36 Denny JC, Bastarache L, Ritchie MD, *et al.* Systematic comparison of phenome-wide  
1134 association study of electronic medical record data and genome-wide association study  
1135 data. *Nat Biotechnol* 2013; **31**: 1102–10.

1136 37 Barbeira A, Shah KP, Torres JM, *et al.* MetaXcan: Summary Statistics Based Gene-Level  
1137 Association Method Infers Accurate PrediXcan Results. *bioRxiv* 2016.

1138 38 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide

1139 association scans. *Bioinformatics* 2010; **26**: 2190–1.

1140 39 Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: Efficient  
1141 variable selection using summary data from genome-wide association studies.  
1142 *Bioinformatics* 2016; **32**: 1493–501.

1143 40 Carroll RJ, Bastarache L, Denny JC. R PheWAS: data analysis and plotting tools for  
1144 phenome-wide association studies in the R environment. *Bioinformatics* 2014; **30**: 2375–  
1145 6.

1146 41 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide  
1147 association scans. *Bioinformatics* 2010; **26**: 2190–1.

1148 42 de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of  
1149 GWAS data. *PLoS Comput Biol* 2015; **11**: e1004219.

1150 43 Pardiñas AF, Holmans P, Pocklington AJ, *et al.* Common schizophrenia alleles are  
1151 enriched in mutation-intolerant genes and maintained by background selection. *bioRxiv*  
1152 2016; : 68593.

1153 44 Szatkiewicz JP, O'Dushlaine C, Chen G, *et al.* Copy number variation in schizophrenia in  
1154 Sweden. *Mol Psychiatry* 2014; **19**: 762–73.

1155 45 Kirov G, Pocklington AJ, Holmans P, *et al.* De novo CNV analysis implicates specific  
1156 abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.  
1157 *Mol Psychiatry* 2012; **17**: 142–53.

1158 46 Ashburner M, Ball CA, Blake JA, *et al.* Gene ontology: tool for the unification of biology.  
1159 The Gene Ontology Consortium. *Nat Genet* 2000; **25**: 25–9.

1160 47 The Gene Ontology Consortium. Gene Ontology Consortium: going forward. *Nucleic Acids  
1161 Res* 2014; **43**: D1049–1056.

1162 48 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res*  
1163 2000; **28**: 27–30.

1164 49 Croft D, Mundo AF, Haw R, *et al.* The Reactome pathway knowledgebase. *Nucleic Acids  
1165 Res* 2014; **42**: D472–7.

1166 50 Thomas PD, Campbell MJ, Kejariwal A, *et al.* PANTHER: a library of protein families and  
1167 subfamilies indexed by function. *Genome Res* 2003; **13**: 2129–41.

1168 51 Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene  
1169 function, and other gene attributes, in the context of phylogenetic trees. *Nucleic Acids  
1170 Res* 2013; **41**: D377–86.

1171 52 BioCarta. MSigDB Collections. 2017.

1172 53 MGI-About the Mouse Genome Informatics database resource.  
1173 <http://www.informatics.jax.org/mgihome/projects/aboutmgi.shtml> (accessed April 12,  
1174 2017).

1175 54 (GTEx Consortium). GTEx Portal. 2015. <http://gtexportal.org/home/documentationPage>  
1176 (accessed Aug 24, 2015).

1177 55 Mele M, Ferreira PG, Reverter F, *et al.* The human transcriptome across tissues and  
1178 individuals. *Science (80- )* 2015; **348**: 660–5.

1179 56 Kenna HA, Poon AW, De Los Angeles CP, Koran LM. Psychiatric complications of  
1180 treatment with corticosteroids: Review with case report. *Psychiatry Clin Neurosci* 2011;  
1181 **65**: 549–60.

1182 57 Steen NE, Methlie P, Lorentzen S, *et al.* Altered systemic cortisol metabolism in bipolar

1183 disorder and schizophrenia spectrum disorders. *J Psychiatr Res* 2014; **52**: 57–62.

1184 58 Hu Y, Shmygelska A, Tran D, Eriksson N, Tung JY, Hinds DA. GWAS of 89,283 individuals  
1185 identifies genetic variants associated with self-reporting of being a morning person. *Nat  
1186 Commun* 2016; **7**: 10448.

1187 59 Darnell JC, Van Driesche SJ, Zhang C, *et al.* FMRP stalls ribosomal translocation on mRNAs  
1188 linked to synaptic function and autism. *Cell* 2011; **146**: 247–61.

1189 60 Purcell SM, Moran JL, Fromer M, *et al.* A polygenic burden of rare disruptive mutations in  
1190 schizophrenia. *Nature* 2014; **506**: 185–90.

1191 61 McCulloch V, Seidel-rogol BL, Shadel GS. A Human Mitochondrial Transcription Factor Is  
1192 Related to RNA Adenine Methyltransferases and Binds S -Adenosylmethionine. *Mol Cell  
1193 Biol* 2002; **22**: 1116–25.

1194 62 O'Sullivan M, Rutland P, Lucas D, *et al.* Mitochondrial m.1584A 12S m62A rRNA  
1195 methylation in families with m.1555A>G associated hearing loss. *Hum Mol Genet* 2015;  
1196 **24**: 1036–44.

1197 63 Föcking M, Dicker P, Lopez LM, *et al.* Proteomic analysis of the postsynaptic density  
1198 implicates synaptic function and energy pathways in bipolar disorder. *Transl Psychiatry*  
1199 2016; **6**: e959.

1200 64 Kristiansen L V., Meador-Woodruff JH. Abnormal striatal expression of transcripts  
1201 encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major  
1202 depression. *Schizophr Res* 2005; **78**: 87–93.

1203 65 Yoshimi N, Futamura T, Bergen SE, *et al.* Cerebrospinal fluid metabolomics identifies a  
1204 key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of  
1205 mitochondrial dysfunction hypothesis. *Mol Psychiatry* 2016; : 1–7.

1206 66 Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, Nascimento JM. Psychiatric disorders  
1207 biochemical pathways unraveled by human brain proteomics. *Eur Arch Psychiatry Clin  
1208 Neurosci* 2017; **267**: 3–17.

1209 67 Mertens J, Wand Q-W, Zheng Y, *et al.* Differential responses to lithium in hyperexcitable  
1210 neurons from patients with bipolar disorder. *Nature* 2016; **527**: 95–9.

1211 68 Gusev A, Ko A, Shi H, *et al.* Integrative approaches for large-scale transcriptome-wide  
1212 association studies. *Nat Genet* 2016; **48**: 245–52.

1213 69 Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder:  
1214 a review of neuroimaging findings. *Mol Psychiatry* 2005; **10**: 105–16.

1215 70 Strakowski SM, DelBello MP, Zimmerman ME, *et al.* Ventricular and Periventricular  
1216 Structural Volumes in First- Versus Multiple-Episode Bipolar Disorder. *Am J Psychiatry*  
1217 2002; **159**: 1841–7.

1218 71 DelBello MP, Zimmerman ME, Mills NP, Getz GE, Strakowski SM. Magnetic resonance  
1219 imaging analysis of amygdala and other subcortical brain regions in adolescents with  
1220 bipolar disorder. *Bipolar Disord* 2004; **6**: 43–52.

1221 72 Aylward EH, Roberts-Twillie J V, Barta PE, *et al.* Basal ganglia volumes and white matter  
1222 hyperintensities in patients with bipolar disorder. *Am J Psychiatry* 1994; **151**: 687–93.

1223 73 Strakowski SM, DelBello MP, Sax KW, *et al.* Brain magnetic resonance imaging of  
1224 structural abnormalities in bipolar disorder. *Arch Gen Psychiatry* 1999; **56**: 254–60.

1225 74 Noga JT, Vladar K, Torrey EF. A volumetric magnetic resonance imaging study of  
1226 monozygotic twins discordant for bipolar disorder. *Psychiatry Res* 2001; **106**: 25–34.

1227 75 DelBello M, Strakowski SM, Zimmerman ME, Hawkins JM, Sax KW. MRI Analysis of the  
1228 Cerebellum in Bipolar Disorder A Pilot Study. *Neuropsychopharmacology* 1999; **21**: 63–8.

1229 76 Strakowski SM, Adler CM, DelBello MP. Volumetric MRI studies of mood disorders: do  
1230 they distinguish unipolar and bipolar disorder? *Bipolar Disord* 2002; **4**: 80–8.

1231 77 Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. *Brain* 1998;  
1232 **121 ( Pt 4)**: 561–79.

1233 78 Sax KW, Strakowski SM, Zimmerman ME, DelBello MP, Keck PE, Hawkins JM.  
1234 Frontosubcortical Neuroanatomy and the Continuous Performance Test in Mania. *Am J  
1235 Psychiatry* 1999; **156**: 139–41.

1236 79 López-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM. Regional  
1237 prefrontal gray and white matter abnormalities in bipolar disorder. *Biol Psychiatry* 2002;  
1238 **52**: 93–100.

1239 80 Brambilla P, Harenski K, Nicoletti MA, et al. Anatomical MRI study of basal ganglia in  
1240 bipolar disorder patients. *Psychiatry Res* 2001; **106**: 65–80.

1241 81 Drevets WC, Price JL, Simpson JR, et al. Subgenual prefrontal cortex abnormalities in  
1242 mood disorders. *Nature* 1997; **386**: 824–7.

1243 82 Patten SB, Neutel CI. Corticosteroid-induced adverse psychiatric effects: incidence,  
1244 diagnosis and management. *Drug Saf* 2000; **22**: 111–22.

1245 83 Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: evidence base  
1246 and therapeutic implications. *Int J Neuropsychopharmacol* 2008; **11**: 851–76.

1247 84 Jacoby A, Vinberg M, Poulsen H, Kessing L, Munkholm K. Increased DNA and RNA damage  
1248 by oxidation in patients with bipolar I disorder. *Transl Psychiatry* 2016; **6**: 1–7.

1249 85 Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in  
1250 bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors.  
*Neurosci Biobehav Rev* 2011; **35**: 804–17.

1252 86 Kato T. Mitochondrial Dysfunction as the Molecular Basis of Bipolar Disorder. *CNS Drugs*  
1253 2007; **21**: 1–11.

1254 87 Chauhan A, Chauhan V. Oxidative stress in autism. *Pathophysiology* 2006; **13**: 171–81.

1255 88 Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: Increased lipid  
1256 peroxidation and reduced serum levels of ceruloplasmin and transferrin - the antioxidant  
1257 proteins. *Life Sci* 2004; **75**: 2539–49.

1258 89 Kuloglu M, Atmaca M, Tezcan E, Gecici O, Tunckol H, Ustundag B. Antioxidant enzyme  
1259 activities and malondialdehyde levels in patients with obsessive-compulsive disorder.  
*Neuropsychobiology* 2002; **46**: 27–32.

1261 90 Chauhan A, Chauhan V. Oxidative stress in autism. *Pathophysiology* 2006; **13**: 171–81.

1262 91 Kuloglu M, Atmaca M, Tezcan E, Ustundag B, Bulut S. Antioxidant enzyme and  
1263 malondialdehyde levels in patients with panic disorder. *Neuropsychobiology* 2002; **46**:  
1264 186–9.

1265 92 Prabakaran S, Swatton JE, Ryan MM, et al. Mitochondrial dysfunction in Schizophrenia:  
1266 evidence for compromised brain metabolism and oxidative stress. *Mol Psychiatry* 2004;  
1267 **9**: 684–97, 643.

1268 93 Abdalla DS, Monteiro HP, Oliveira JA, Bechara EJ. Activities of superoxide dismutase and  
1269 glutathione peroxidase in schizophrenic and manic-depressive patients. *Clin Chem* 1986;  
1270 **32**: 805–7.

1271 94 Yao JK, Reddy RD, van Kammen DP. Oxidative Damage and Schizophrenia. *CNS Drugs*  
1272 2001; **15**: 287–310.

1273 95 Bilici M, Efe H, Koroğlu MA, Uydu HA, Bekaroğlu M, Değer O. Antioxidative enzyme  
1274 activities and lipid peroxidation in major depression: alterations by antidepressant  
1275 treatments. *J Affect Disord* 2001; **64**: 43–51.

1276 96 Toker L, Agam G. Mitochondrial dysfunction in psychiatric morbidity: current evidence  
1277 and therapeutic prospects. *Neuropsychiatr Dis Treat* 2015; **11**: 2441–7.

1278 97 Smirnova E V, Rakitina T V, Bogatova O V, et al. Novel protein haponin regulates cellular  
1279 response to oxidative stress. *Dokl Biochem Biophys* 2011; **440**: 225–7.

1280 98 Sanders SJ. First glimpses of the neurobiology of autism spectrum disorder. *Curr Opin  
1281 Genet Dev* 2015; **33**: 80–92.

1282 99 Neale BM, Sklar P. Genetic analysis of schizophrenia and bipolar disorder reveals  
1283 polygenicity but also suggests new directions for molecular interrogation. *Curr Opin  
1284 Neurobiol* 2015; **30**: 131–8.

1285 100 Murray G, Harvey A. Circadian rhythms and sleep in bipolar disorder. *Bipolar Disord*  
1286 2010; **12**: 459–72.

1287 101 Bunney BG, Li JZ, Walsh DM, et al. Circadian dysregulation of clock genes: clues to rapid  
1288 treatments in major depressive disorder. *Mol Psychiatry* 2015; **20**: 48–55.

1289 102 Murray G. Seasonality, Personality and the Circadian Regulation of Mood. 2006.

1290 103 Jackson A, Cavanagh J, Scott J. A systematic review of manic and depressive prodromes. *J  
1291 Affect Disord* 2003; **74**: 209–17.

1292 104 Bauer M, Grof P, Rasgon N, Bschor T, Glenn T, Whybrow PC. Temporal relation between  
1293 sleep and mood in patients with bipolar disorder. *Bipolar Disord* 2006; **8**: 160–7.

1294 105 Colombo C, Benedetti F, Barbini B, Campori E, Smeraldi E. Rate of switch from depression  
1295 into mania after therapeutic sleep deprivation in bipolar depression. *Psychiatry Res* 1999;  
1296 **86**: 267–70.

1297 106 Hörn M, Schärer L, Walser S, Scherer-Klabunde D, Biedermann C, Walden J. Comparison  
1298 of long-term monitoring methods for bipolar affective disorder. *Neuropsychobiology*  
1299 2002; **45 Suppl 1**: 27–32.

1300 107 Murray G, Allen NB, Trinder J. Mood and the circadian system: investigation of a  
1301 circadian component in positive affect. *Chronobiol Int* 2002; **19**: 1151–69.

1302 108 Murray G, Nicholas CL, Kleiman J, et al. Nature's clocks and human mood: The circadian  
1303 system modulates reward motivation. *Emotion* 2009; **9**: 705–16.

1304 109 Boivin DB, Czeisler CA, Dijk DJ, et al. Complex interaction of the sleep-wake cycle and  
1305 circadian phase modulates mood in healthy subjects. *Arch Gen Psychiatry* 1997; **54**: 145–  
1306 52.

1307 110 Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP. Jet lag: Therapeutic  
1308 use of melatonin and possible application of melatonin analogs. *Travel Med Infect Dis*  
1309 2008; **6**: 17–28.

1310 111 Reinberg A, Ashkenazi I. Internal Desynchronization of Circadian Rhythms and Tolerance  
1311 to Shift Work. *Chronobiol Int* 2008; **25**: 625–43.

1312 112 Meyer R, Demling J, Kornhuber J, Nowak M. Effects of night shifts in bipolar disorders  
1313 and extreme morningness. *Bipolar Disord* 2009; **11**: 897–9.

1314 113 Kripke DF, Mullaney DJ, Atkinson M, Wolf S. Circadian rhythm disorders in manic-

1315                    depressives. *Biol Psychiatry* 1978; **13**: 335–51.

1316    114            Wehr TA, Wirz-Justice A, Goodwin FK, Duncan W, Gillin JC. Phase advance of the  
1317                    circadian sleep-wake cycle as an antidepressant. *Science* 1979; **206**: 710–3.

1318    115            Lewy A, Lewy A. Seasonal Affective Disorders and Phototherapy. 1989.

1319    116            Czeisler CA, Kronauer RE, Mooney JJ, Anderson JL, Allan JS. Biologic rhythm disorders,  
1320                    depression, and phototherapy. A new hypothesis. *Psychiatr Clin North Am* 1987; **10**: 687–  
1321                    709.

1322    117            TEICHER MH, GLOD CA, HARPER D, *et al.* Locomotor Activity in Depressed Children and  
1323                    Adolescents: I. Circadian Dysregulation. *J Am Acad Child Adolesc Psychiatry* 1993; **32**:  
1324                    760–9.

1325    118            Murray G, Allen NB, Trinder J, Burgess H. Is weakened circadian rhythmicity a  
1326                    characteristic of neuroticism? *J Affect Disord* 2002; **72**: 281–9.

1327    119            Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric  
1328                    disorders. *J Psychiatry Neurosci* 2000; **25**: 446–58.

1329    120            Wirz-Justice A. Biological rhythm disturbances in mood disorders. *Int Clin  
1330                    Psychopharmacol* 2006; **21**: S11–5.

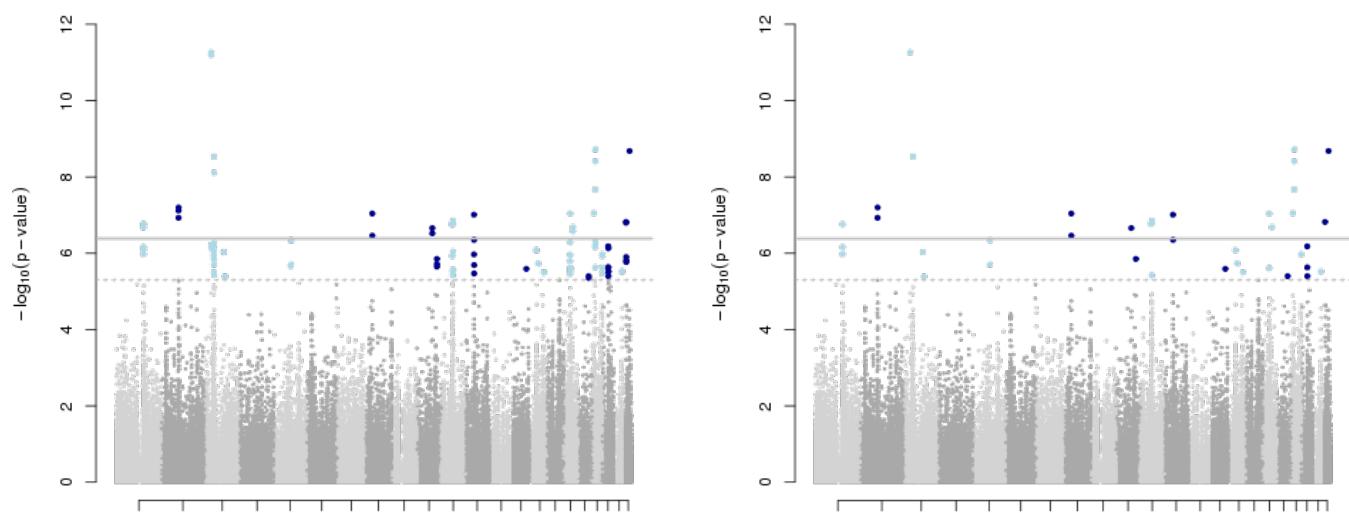
1331    121            Healy D, Waterhouse JM. The circadian system and affective disorders: clocks or  
1332                    rhythms? *Chronobiol Int* 1990; **7**: 5-10-24.

1333    122            Alloy LB, Ng TH, Titone MK, Boland EM. Circadian Rhythm Dysregulation in Bipolar  
1334                    Spectrum Disorders. *Curr Psychiatry Rep* 2017; **19**: 21.

1335    123            Karatsoreos IN. Links between Circadian Rhythms and Psychiatric Disease. *Front Behav  
1336                    Neurosci* 2014; **8**: 162.

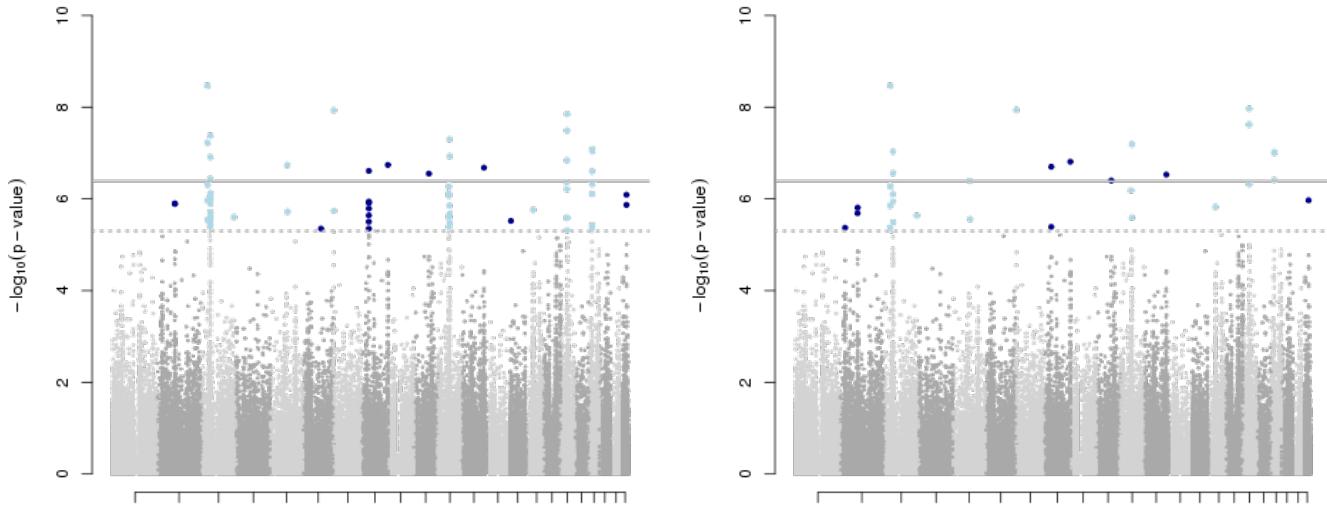
1337    124            Pagani L, Clair PAS, Teshiba TM, *et al.* Genetic contributions to circadian activity rhythm  
1338                    and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder.  
1339                    DOI:10.1073/pnas.1513525113.

1340    125            Etain B, Jamain S, Milhiet V, *et al.* Association between circadian genes, bipolar disorders  
1341                    and chronotypes. *Chronobiol Int* 2014; **31**: 807–14.


1342    126            Bellivier F, Geoffroy P-A, Etain B, Scott J. Sleep- and circadian rhythm–associated  
1343                    pathways as therapeutic targets in bipolar disorder. *Expert Opin Ther Targets* 2015; **19**:  
1344                    747–63.

1345    127            McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A Survey of Genomic Studies Supports  
1346                    Association of Circadian Clock Genes with Bipolar Disorder Spectrum Illnesses and  
1347                    Lithium Response. *PLoS One* 2012; **7**: e32091.

1348    128            McCarthy MJ, Welsh DK. Cellular Circadian Clocks in Mood Disorders. *J Biol Rhythms*  
1349                    2012; **27**: 339–52.


1350    129            Zhang EE, Liu AC, Hirota T, *et al.* A Genome-wide RNAi Screen for Modifiers of the  
1351                    Circadian Clock in Human Cells. *Cell* 2009; **139**: 199–210.

1352



**Figure 1: Genic associations identified across full Bipolar sample**

- A) 125 gene-tissue associations are identified in the full BPD meta-analysis
- B) FINEMAP analysis identifies 53 independent associations



**Figure 2: Genic associations identified in three bipolar subtypes.**

A) 80 gene-tissue associations are identified in the Bipolar-I sample.

B) FINEMAP and Stepwise conditional analysis identify 37 independent associations

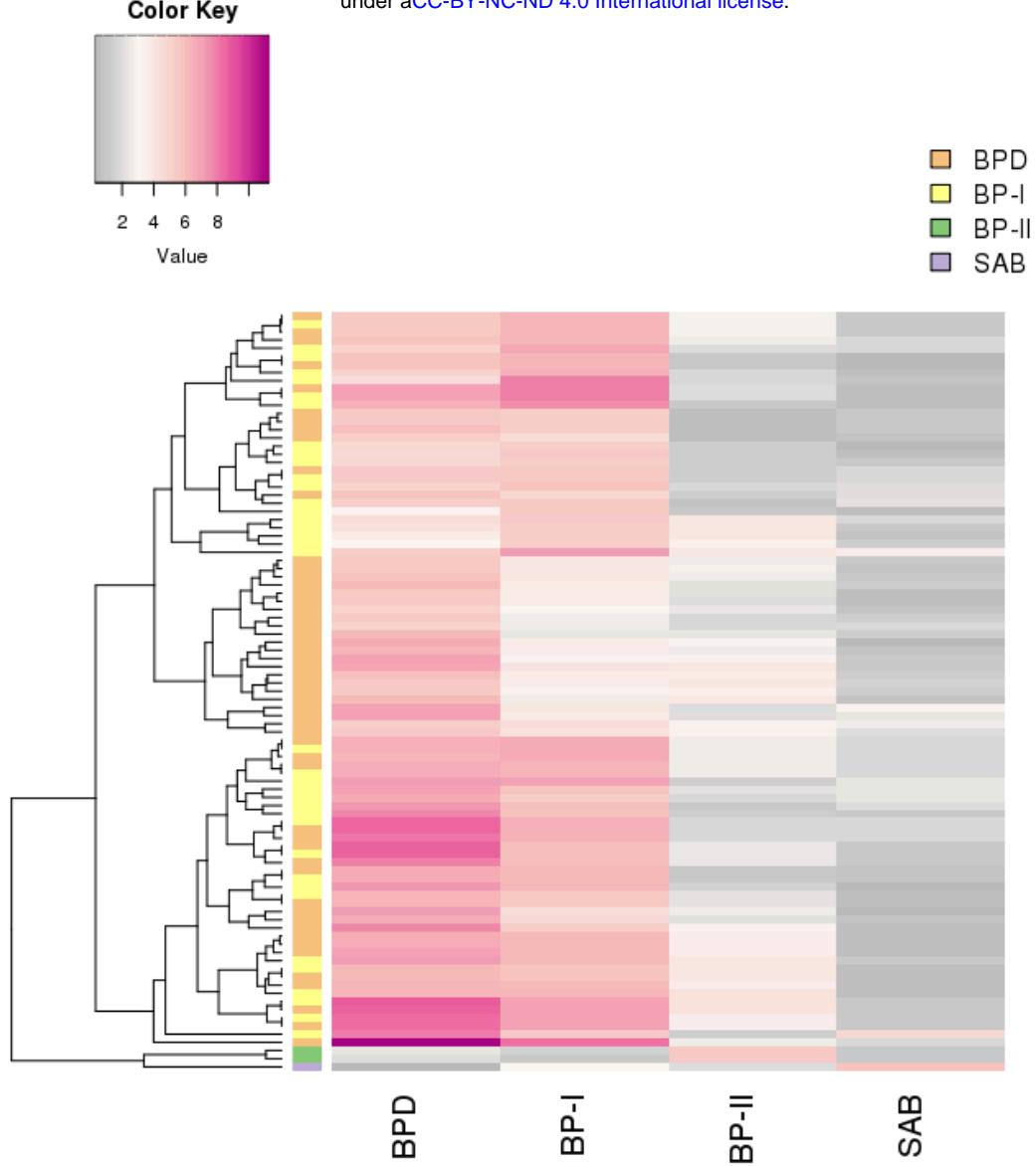
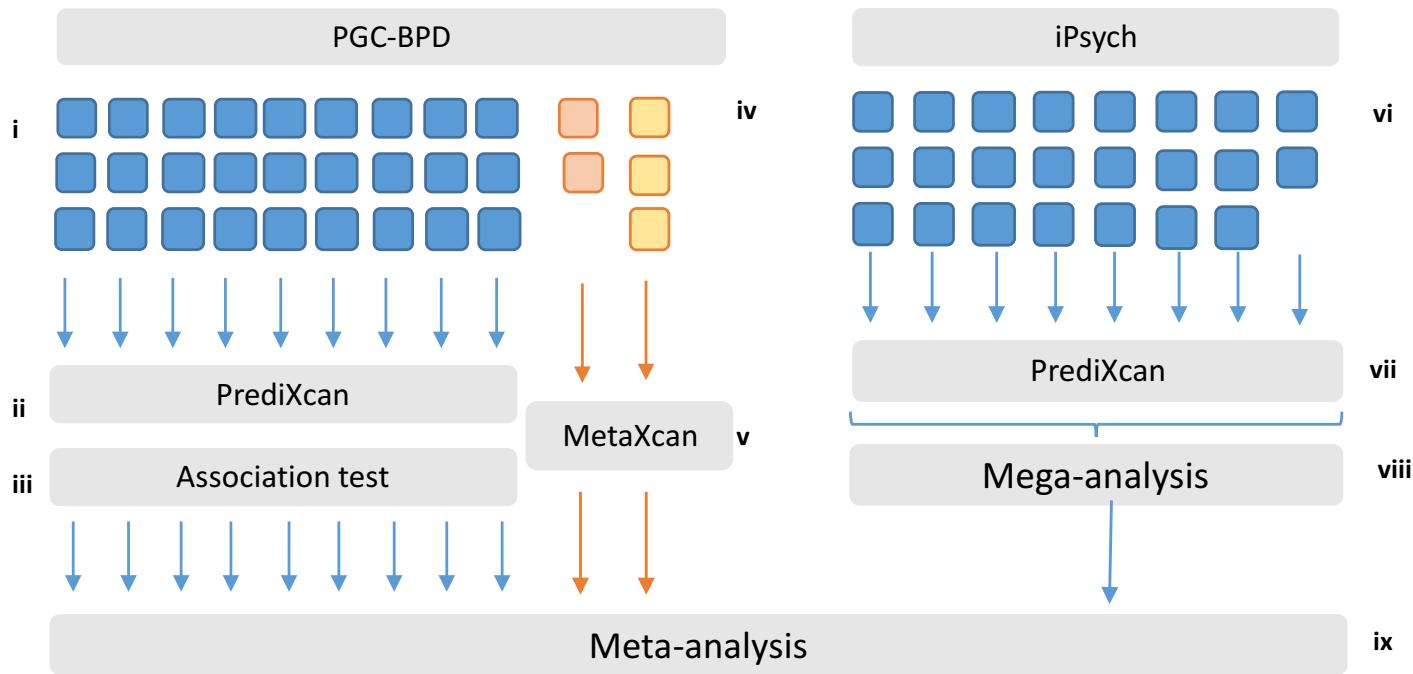
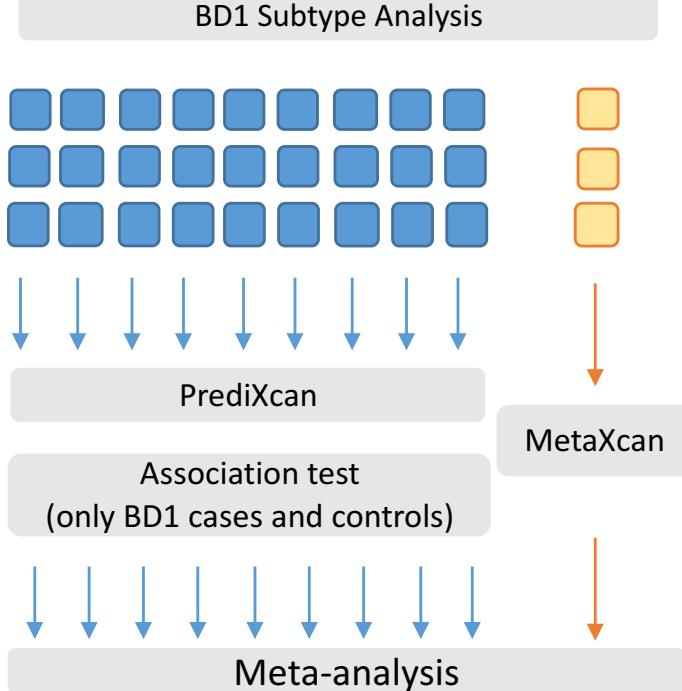
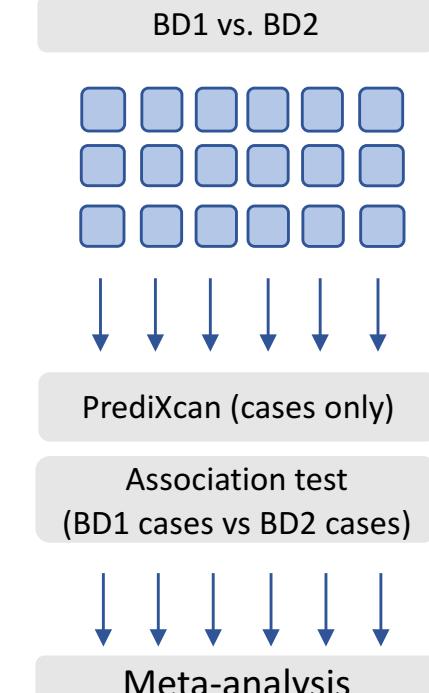




Figure 3: Substantial overlap between BPD and BP-I associated genes.


-log10 p-values are shown for all genes reaching genome-wide significance in any discovery analysis. The row side colour bar indicates the original discovery analysis identifying the gene. The four row values indicate the best p-value achieved by that gene in each subtype analysis.

e.g.: the bottom row shows a gene (*FSIP2*) identified in the SAB subtype analysis, and the best p-value achieved by *FSIP2* across all tissues in the overall BPD analysis, BD-I, BD-II and SAB analyses.


A.



B.



C.



### Supplementary Figure 1: Analysis outline.

A) Discovery Samples. 27 PGC-SCZ cohorts had available raw genotypes (i). Predicted DLPFC gene expression was calculated in each cohort using prediXcan (ii) and tested for association with case-control status (iii). 5 PGC cohorts (2 trio, 3 case-control) had only summary statistics available (iv). MetaXcan was used to calculate DLPFC associations for each cohort (v). iPsych samples were collected in 23 waves (vi). Predicted DLPFC gene expression was calculated in each wave separately using prediXcan (vii) and merged for association testing. A mega-analysis was run across all 23 waves, using wave membership as a covariate in the regression (viii). Results were meta-analysed across all 32 cohorts and the iPsych MEGA-analysis results(ix). This procedure was repeated for 12 GTEx prediction models.

B) Subtype Analyses. Subtype information was available only for PGC-BD samples. Analysis was carried out in the same way as for the full BD analysis (A), including only BD1 cases.

C) Cross-subtype analysis. Analysis was carried out for cases only, in the same way as A and B.

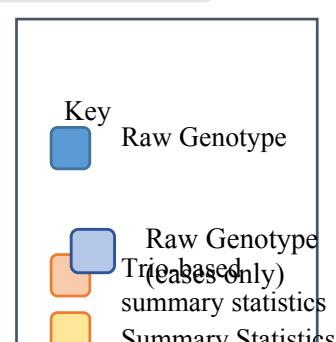



Table 1: Gene-Tissue Associations results

| Gene name         | Tissue                | CHR | pos1      | pos2      | BETA    | SE     | P        |
|-------------------|-----------------------|-----|-----------|-----------|---------|--------|----------|
| DCLK3             | DLPFC_preds2          | 3   | 36753913  | 36781352  | -0.2047 | 0.0297 | 5.49E-12 |
| <b>MCHR1</b>      | DLPFC_preds2          | 22  | 41074754  | 41078818  | -0.0731 | 0.0129 | 1.29E-08 |
| FADS1             | DLPFC_preds2          | 11  | 61567099  | 61596790  | -0.0549 | 0.0105 | 1.68E-07 |
| <b>CDHR1</b>      | DLPFC_preds2          | 10  | 85954410  | 85979377  | -0.0254 | 0.0049 | 2.18E-07 |
| <b>DDHD2</b>      | DLPFC_preds2          | 8   | 38082736  | 38133076  | -0.1334 | 0.0257 | 2.20E-07 |
| TARS2             | DLPFC_preds2          | 1   | 150459887 | 150480078 | -2.8641 | 0.5865 | 1.04E-06 |
| FAM172A           | DLPFC_preds2          | 5   | 92953775  | 93447404  | -0.2763 | 0.0581 | 1.98E-06 |
| EIF1AD            | DLPFC_preds2          | 11  | 65764016  | 65769647  | -0.1719 | 0.0372 | 3.81E-06 |
| <b>HLF</b>        | DLPFC_preds2          | 17  | 53342373  | 53402426  | -2.4336 | 0.4688 | 2.10E-07 |
| ANKRD36           | Hypothalamus          | 2   | 97779233  | 97930258  | -0.0687 | 0.0127 | 6.32E-08 |
| <b>NCOA6</b>      | Hypothalamus          | 20  | 32782375  | 32857150  | -0.2119 | 0.0426 | 6.55E-07 |
| RPRD2             | Hypothalamus          | 1   | 150335567 | 150449042 | -0.164  | 0.0331 | 6.96E-07 |
| GNL3              | Cerebellar_Hemisphere | 3   | 52715172  | 52728508  | 0.0267  | 0.0046 | 6.68E-09 |
| <b>DDHD2</b>      | Cerebellar_Hemisphere | 8   | 38082736  | 38133076  | -0.0914 | 0.0171 | 9.04E-08 |
| <b>RP5-1028K7</b> | Cerebellar_Hemisphere | 17  | 38785049  | 38821393  | 0.1614  | 0.0302 | 9.07E-08 |
| <b>ADD3</b>       | Cerebellar_Hemisphere | 10  | 85954410  | 85979377  | 0.0217  | 0.0045 | 1.42E-06 |
| <b>MCM3AP</b>     | Cerebellar_Hemisphere | 21  | 47655047  | 47706211  | -0.1719 | 0.0368 | 2.99E-06 |
| KCNN3             | Cerebellar_Hemisphere | 1   | 154669931 | 154842756 | -0.0539 | 0.012  | 7.17E-06 |
| <b>ZNF80</b>      | Cerebellar_Hemisphere | 3   | 113953483 | 113956425 | -0.1061 | 0.023  | 4.07E-06 |
| <b>DDHD2</b>      | Pituitary             | 8   | 38082736  | 38133076  | -0.029  | 0.0055 | 1.77E-07 |
| CHDH              | Pituitary             | 3   | 53846362  | 53880417  | 0.1584  | 0.0354 | 7.68E-06 |
| <b>PLPP5</b>      | Cortex                | 8   | 38082736  | 38133076  | -0.0859 | 0.0169 | 3.48E-07 |
| <b>MED24</b>      | Cortex                | 17  | 37894180  | 37903544  | 0.0285  | 0.0061 | 2.85E-06 |
| CIART             | Putamen_Basal_Ganglia | 1   | 150254953 | 150259505 | 0.0862  | 0.0165 | 1.75E-07 |
| <b>ZNF584</b>     | Putamen_Basal_Ganglia | 19  | 58912871  | 58929694  | 0.0435  | 0.0092 | 2.47E-06 |
| <b>DOCK6</b>      | Hippocampus           | 19  | 11309971  | 11373157  | 0.2862  | 0.0535 | 8.87E-08 |

|                   |                                 |    |           |           |         |        |          |
|-------------------|---------------------------------|----|-----------|-----------|---------|--------|----------|
| LEO1              | Hippocampus                     | 15 | 52230222  | 52264003  | -0.1459 | 0.0306 | 1.86E-06 |
| PHLPP1            | Hippocampus                     | 18 | 60382672  | 60647666  | -0.0472 | 0.0102 | 3.99E-06 |
| CILP2             | Nucleus_Accumbens_Basal_Ganglia | 19 | 19303008  | 19312678  | 0.0949  | 0.0158 | 1.90E-09 |
| <b>AIFM3</b>      | Nucleus_Accumbens_Basal_Ganglia | 22 | 21319396  | 21335649  | -0.0914 | 0.0174 | 1.50E-07 |
| <b>ZNF584</b>     | Nucleus_Accumbens_Basal_Ganglia | 19 | 58912871  | 58929694  | 0.0366  | 0.0075 | 1.06E-06 |
| <b>MED24</b>      | Nucleus_Accumbens_Basal_Ganglia | 17 | 37313147  | 37323737  | 0.0383  | 0.0081 | 2.44E-06 |
| <b>DDHD2</b>      | Caudate_Basal_Ganglia           | 8  | 38120648  | 38126761  | -0.0326 | 0.0064 | 4.37E-07 |
| UBR1              | Caudate_Basal_Ganglia           | 15 | 43235095  | 43398311  | -0.1468 | 0.0298 | 8.39E-07 |
| <b>CATSPERB</b>   | Caudate_Basal_Ganglia           | 14 | 92047040  | 92247051  | -0.0343 | 0.0073 | 2.60E-06 |
| <b>AC024257.1</b> | Frontal_Cortex_BA9              | 12 | 48759919  | 48761738  | 0.0693  | 0.013  | 9.78E-08 |
| SEMA4C            | Frontal_Cortex_BA9              | 2  | 97525453  | 97536494  | 0.1046  | 0.0197 | 1.17E-07 |
| <b>RHEBL1</b>     | Frontal_Cortex_BA9              | 12 | 49458468  | 49463808  | 0.1061  | 0.021  | 4.44E-07 |
| <b>CDHR1</b>      | Frontal_Cortex_BA9              | 10 | 85980254  | 85985345  | -0.036  | 0.0075 | 1.87E-06 |
| <b>ZNF584</b>     | Frontal_Cortex_BA9              | 19 | 58912871  | 58929694  | 0.0845  | 0.0183 | 3.95E-06 |
| TSSK6             | Thyroid                         | 19 | 1973477   | 19739739  | 0.1638  | 0.0292 | 2.12E-08 |
| HHLA2             | Thyroid                         | 3  | 108015376 | 108097132 | 0.1106  | 0.0225 | 9.23E-07 |
| UBE2Q2L           | Thyroid                         | 15 | 84841242  | 84850986  | 0.0436  | 0.0094 | 3.16E-06 |
| <b>SNTB2</b>      | Thyroid                         | 16 | 69221032  | 69342955  | -0.0265 | 0.0058 | 5.16E-06 |
| <b>MCHR1</b>      | Anterior_Cingulate_Cortex_BA24  | 22 | 41074754  | 41078818  | -0.1785 | 0.0298 | 2.10E-09 |
| FAM81B            | Anterior_Cingulate_Cortex_BA24  | 5  | 94727048  | 94786158  | 0.4376  | 0.0868 | 4.62E-07 |
| <b>EDEM2</b>      | Anterior_Cingulate_Cortex_BA24  | 20 | 33284722  | 33413452  | -0.0445 | 0.0097 | 4.01E-06 |
| TMEM127           | Anterior_Cingulate_Cortex_BA24  | 2  | 96914254  | 96931732  | -0.0378 | 0.0083 | 5.09E-06 |
| GNL3              | Cerebellum                      | 3  | 52715172  | 52728508  | 0.0368  | 0.0062 | 2.93E-09 |
| <b>PLPP5</b>      | Cerebellum                      | 8  | 38082736  | 38133076  | -0.0427 | 0.0085 | 5.17E-07 |
| ADD3              | Cerebellum                      | 10 | 111756126 | 111895323 | 0.0268  | 0.0057 | 2.36E-06 |

Table 2: Replication p-values of genes identified in previous Transcriptome Analysis of BPD

| Gene   | Tissue                          | p-value       | Direction of Effect |
|--------|---------------------------------|---------------|---------------------|
| PTPRE  | Putamen Basal Ganglia           | 0.024         | -                   |
| SPCS1  | <b>Caudate Basal Ganglia</b>    | <b>0.0011</b> | <b>+</b>            |
| CACNB3 | <b>Frontal Cortex BA9</b>       | <b>0.0010</b> | -                   |
|        | Anterior Cingulate Cortex       | 0.0032        | -                   |
|        | Whole Blood                     | 0.0042        | +                   |
|        | Cerebellum                      | 0.0044        | -                   |
|        | Cerebellar Hemisphere           | 0.0080        | -                   |
|        | Caudate Basal Ganglia           | 0.012         | -                   |
|        | DLPFC                           | 0.019         | -                   |
|        | Nucleus Accumbens Basal Ganglia | 0.027         | -                   |
|        | Putamen Basal Ganglia           | 0.077         | -                   |

Table 3: Gene-Tissue Associations results for subtype analyses

| Analysis | Tissue                          | Gene                | CHR | POS1      | POS2      | BETA    | SE     | P        |
|----------|---------------------------------|---------------------|-----|-----------|-----------|---------|--------|----------|
| BD-I     | Cerebellar Hemisphere           | <i>RP5-1028K7.3</i> | 17  | 38785049  | 38821393  | 0.1643  | 0.0287 | 1.06E-08 |
| BD-I     | Thyroid                         | <i>AC110781.3</i>   | 7   | 1878222   | 1889567   | 0.2924  | 0.0512 | 1.15E-08 |
| BD-I     | Caudate Basal Ganglia           | <i>MEN1</i>         | 17  | 37884749  | 37887040  | -0.3695 | 0.0662 | 2.42E-08 |
| BD-I     | Anterior Cingulate Cortex BA24  | <i>PACS1</i>        | 11  | 65837834  | 66012218  | 0.0583  | 0.0108 | 6.45E-08 |
| BD-I     | Cerebellum                      | <i>SFMBT1</i>       | 3   | 52937588  | 53080766  | -0.0774 | 0.0145 | 9.37E-08 |
| BD-I     | Nucleus Accumbens Basal Ganglia | <i>CILP2</i>        | 19  | 19649057  | 19657468  | 0.08    | 0.015  | 9.57E-08 |
| BD-I     | Cerebellar Hemisphere           | <i>LPAR2</i>        | 19  | 19734477  | 19739739  | 0.1323  | 0.0248 | 1.01E-07 |
| BD-I     | Hippocampus                     | <i>ZC3H3</i>        | 8   | 144519825 | 144623623 | -0.1936 | 0.0369 | 1.56E-07 |
| BD-I     | Cerebellum                      | <i>PLPP5</i>        | 8   | 38120648  | 38126761  | -0.0419 | 0.0081 | 2.00E-07 |
| BD-I     | Cerebellum                      | <i>GNL3</i>         | 3   | 52715172  | 52728508  | 0.0302  | 0.0059 | 2.74E-07 |
| BD-I     | Putamen Basal Ganglia           | <i>CCDC62</i>       | 12  | 123258874 | 123312075 | -0.0411 | 0.008  | 2.94E-07 |
| BD-I     | Nucleus Accumbens Basal Ganglia | <i>HAPLN4</i>       | 19  | 19366450  | 19373605  | 0.1086  | 0.0214 | 3.91E-07 |
| BD-I     | DLPFC                           | <i>CDHR1</i>        | 10  | 85954410  | 85979377  | -0.0236 | 0.0047 | 3.95E-07 |
| BD-I     | DLPFC                           | <i>FAM172A</i>      | 5   | 92953775  | 93447404  | -0.2788 | 0.0551 | 4.12E-07 |
| BD-I     | Cortex                          | <i>MED24</i>        | 17  | 38175350  | 38217468  | 0.0291  | 0.0058 | 4.77E-07 |
| BD-I     | Putamen Basal Ganglia           | <i>ITGA9</i>        | 3   | 37493606  | 37865005  | -0.2048 | 0.0408 | 5.35E-07 |
| BD-I     | Putamen Basal Ganglia           | <i>FADS1</i>        | 11  | 61567099  | 61596790  | -0.0383 | 0.0077 | 6.62E-07 |
| BD-I     | Hypothalamus                    | <i>DUSP7</i>        | 3   | 52082935  | 52090566  | 0.0505  | 0.0102 | 7.98E-07 |
| BD-I     | Anterior Cingulate Cortex BA25  | <i>MCHR1</i>        | 22  | 41074754  | 41078818  | -0.1379 | 0.0282 | 1.06E-06 |
| BD-I     | Thyroid                         | <i>NEK4</i>         | 3   | 52744800  | 52804965  | 0.0305  | 0.0063 | 1.15E-06 |
| BD-I     | DLPFC                           | <i>TRANK1</i>       | 3   | 36868311  | 36986548  | -0.0637 | 0.0132 | 1.42E-06 |
| BD-I     | Caudate Basal Ganglia           | <i>UBR1</i>         | 15  | 43235095  | 43398311  | -0.1353 | 0.0281 | 1.50E-06 |
| BD-I     | Cortex                          | <i>ACTR1B</i>       | 2   | 98272431  | 98280570  | -0.0339 | 0.0071 | 1.54E-06 |
| BD-I     | Anterior Cingulate Cortex BA26  | <i>ANKRD23</i>      | 2   | 97490263  | 97523671  | 0.0864  | 0.0182 | 2.03E-06 |
| BD-I     | Thyroid                         | <i>IGF2BP2-AS1</i>  | 3   | 185430316 | 185447575 | -0.0772 | 0.0164 | 2.28E-06 |
| BD-I     | DLPFC                           | <i>EIF1AD</i>       | 11  | 65764016  | 65769647  | -0.166  | 0.0353 | 2.55E-06 |
| BD-I     | Anterior Cingulate Cortex BA27  | <i>FAM81B</i>       | 5   | 94727048  | 94786158  | 0.3838  | 0.0818 | 2.73E-06 |
| BD-I     | Caudate Basal Ganglia           | <i>RFT1</i>         | 3   | 53122499  | 53164478  | 0.0333  | 0.0072 | 3.27E-06 |

|       |                                 |                 |    |           |           |         |        |          |
|-------|---------------------------------|-----------------|----|-----------|-----------|---------|--------|----------|
| BD-I  | Nucleus Accumbens Basal Ganglia | <i>BRF2</i>     | 8  | 37700786  | 37707422  | 0.0299  | 0.0065 | 4.05E-06 |
| BD-I  | Thyroid                         | <i>GCKR</i>     | 2  | 27719709  | 27746554  | -0.0349 | 0.0076 | 4.25E-06 |
| BD-I  | DLPFC                           | <i>MLH1</i>     | 3  | 37034823  | 37107380  | 2.1685  | 0.4718 | 4.30E-06 |
| BD-I  | Anterior Cingulate Cortex BA28  | <i>LYZL4</i>    | 3  | 42438570  | 42452092  | -0.0219 | 0.0048 | 5.24E-06 |
| BD-I  | Anterior Cingulate Cortex BA29  | <i>CYP1A2</i>   | 15 | 75041185  | 75048543  | 0.0832  | 0.0184 | 6.04E-06 |
| BD-I  | Nucleus Accumbens Basal Ganglia | <i>CA1</i>      | 8  | 86239837  | 86291243  | -0.1265 | 0.028  | 6.20E-06 |
| BD-I  | DLPFC                           | <i>ASCC3</i>    | 6  | 100956070 | 101329248 | 0.0854  | 0.0189 | 6.48E-06 |
| BD-I  | Nucleus Accumbens Basal Ganglia | <i>WWP2</i>     | 16 | 69796209  | 69975644  | 0.0579  | 0.0128 | 6.66E-06 |
| BD-I  | Nucleus Accumbens Basal Ganglia | <i>GLYCTK</i>   | 3  | 52321105  | 52329272  | 0.1337  | 0.0297 | 6.80E-06 |
| BD-II | DLPFC                           | <i>NUP98</i>    | 11 | 3692313   | 3819022   | 9.9344  | 2.0969 | 2.16E-06 |
| BD-II | Putamen Basal Ganglia           | <i>COLGALT2</i> | 1  | 183898796 | 184006863 | -0.0206 | 0.0044 | 3.50E-06 |
| BD-II | Hippocampus                     | <i>COLGALT2</i> | 1  | 183898796 | 184006863 | -0.0234 | 0.0052 | 7.55E-06 |
| BD-II | Caudate Basal Ganglia           | <i>COLGALT2</i> | 1  | 183898796 | 184006863 | -0.0238 | 0.0055 | 1.44E-05 |
| BD-II | Nucleus Accumbens Basal Ganglia | <i>COLGALT2</i> | 1  | 183898796 | 184006863 | -0.0221 | 0.0056 | 8.92E-05 |
| SAB   | Pituitary                       | <i>FSIP2</i>    | 2  | 186603355 | 186698017 | 0.0001  | 0      | 1.86E-06 |
| SAB   | Cerebellar Hemisphere           | <i>ALDH1B1</i>  | 9  | 38392661  | 38398658  | 0.1521  | 0.0342 | 8.55E-06 |

Table 4: Endophenotype-wide association study (enPHEWAS). All genes reaching tissue-wide significance in any subphenotype-based analysis were included.

| Gene           | Tissue    | enPHEWAS Analysis    |         |        |          |      |         | Subtype-specific meta-analysis |        |          |      |  |  |
|----------------|-----------|----------------------|---------|--------|----------|------|---------|--------------------------------|--------|----------|------|--|--|
|                |           | Endophenotype        | beta    | se     | p        | OR   | Subtype | beta                           | se     | p        | OR   |  |  |
| <i>EIF1AD</i>  | DLPFC     | mixedstates          | -0.3873 | 0.1252 | 1.97E-03 | 0.68 | BD-I    | -0.166                         | 0.0353 | 2.55E-06 | 0.85 |  |  |
| <i>EIF1AD</i>  | DLPFC     | panic.attacks        | -0.2861 | 0.0821 | 4.95E-04 | 0.75 | BD-I    | -0.166                         | 0.0353 | 2.55E-06 | 0.85 |  |  |
| <i>FAM172A</i> | DLPFC     | bp2                  | 0.127   | 0.0393 | 1.24E-03 | 1.14 | BD-I    | -0.2788                        | 0.0551 | 4.12E-07 | 0.76 |  |  |
| <i>FSIP2</i>   | Pituitary | <i>familyhistory</i> | -0.0009 | 0.0002 | 1.09E-05 | 1.00 | SAB     | 0.0001                         | 0      | 1.86E-06 | 1.00 |  |  |

Table 5: Pathway Results

| Association statistics | Analysis type     | SET                                             | NGENES | COMP P   | FDR   |
|------------------------|-------------------|-------------------------------------------------|--------|----------|-------|
| BPD                    | Drug targets      | ANABOLIC STEROIDS                               | 34     | 4.02E-06 | 0.001 |
| BPD                    | Drug targets      | CORTICOSTEROIDS FOR SYSTEMIC USE PLAIN          | 43     | 8.84E-05 | 0.013 |
| BPD                    | Drug targets      | ANDROGENS                                       | 47     | 1.72E-04 | 0.025 |
| BPD                    | Drug targets      | ANTIFUNGALS FOR TOPICAL USE                     | 92     | 4.48E-04 | 0.064 |
| BPD                    | Hypothesis driven | MORNING                                         | 109    | 3.27E-05 | 0.003 |
| BPD                    | Hypothesis driven | HIGH                                            | 2718   | 1.08E-03 | 0.029 |
| BPD                    | Hypothesis driven | SCZ-NS                                          | 567    | 1.29E-03 | 0.029 |
| BPD                    | Hypothesis driven | FMRP-targets                                    | 735    | 1.47E-03 | 0.029 |
| BPD                    | Hypothesis driven | Pre-synaptic active zone                        | 156    | 4.20E-03 | 0.066 |
| BPD                    | Hypothesis driven | Circadian clock genes                           | 380    | 1.21E-02 | 0.159 |
| BPD                    | Hypothesis driven | CLOCK-MODULATORS                                | 254    | 2.32E-02 | 0.262 |
| BPD                    | Hypothesis driven | PSD-95 (core)                                   | 56     | 3.52E-02 | 0.348 |
| BPD                    | Hypothesis driven | ID-LoF                                          | 26     | 4.34E-02 | 0.381 |
| BPD                    | Hypothesis driven | ARC+NMNDAR+PSD95+mGluR5                         | 122    | 5.45E-02 | 0.416 |
| BPD                    | Hypothesis driven | SCZ-LoF                                         | 79     | 5.79E-02 | 0.416 |
| BPD                    | Hypothesis driven | Cav2::kinases & phosph...                       | 20     | 8.99E-02 | 0.504 |
| BPD                    | Hypothesis driven | ID-NS                                           | 116    | 9.92E-02 | 0.504 |
| BD-I                   | Agnostic          | S-adenosylmethionine-dependent methyltransfe    | 91     | 3.76E-08 | 0.000 |
| BD-I                   | Agnostic          | mitochondrial nucleoid                          | 33     | 5.64E-07 | 0.001 |
| BD-I                   | Agnostic          | nucleoid                                        | 34     | 8.11E-07 | 0.001 |
| BD-I                   | Agnostic          | RNA methylation                                 | 27     | 9.35E-07 | 0.001 |
| BD-I                   | Agnostic          | N-methyltransferase activity                    | 59     | 9.64E-07 | 0.001 |
| BD-I                   | Agnostic          | RNA methyltransferase activity                  | 26     | 9.73E-07 | 0.001 |
| BD-I                   | Agnostic          | regulation of transcription from RNA polymerase | 16     | 5.25E-06 | 0.006 |
| BD-I                   | Agnostic          | impaired wound healing                          | 25     | 8.91E-06 | 0.010 |

|       |          |                                                          |     |          |       |
|-------|----------|----------------------------------------------------------|-----|----------|-------|
| BD-I  | Agnostic | Downregulation of ERBB2:ERBB3 signaling                  | 13  | 2.53E-05 | 0.020 |
| BD-I  | Agnostic | extracellular regulation of signal transduction          | 15  | 2.55E-05 | 0.020 |
| BD-I  | Agnostic | extracellular negative regulation of signal transduction | 15  | 2.55E-05 | 0.020 |
| BD-I  | Agnostic | abnormal cellular respiration                            | 66  | 2.92E-05 | 0.021 |
| BD-I  | Agnostic | male meiosis                                             | 32  | 3.91E-05 | 0.026 |
| BD-I  | Agnostic | Fancconi Anemia pathway                                  | 21  | 5.83E-05 | 0.036 |
| BD-I  | Agnostic | Golgi-associated vesicle                                 | 56  | 7.65E-05 | 0.043 |
| BD-I  | Agnostic | regulation of T cell migration                           | 13  | 8.00E-05 | 0.043 |
| BD-I  | Agnostic | positive regulation of T cell migration                  | 11  | 1.01E-04 | 0.051 |
| BD-I  | Agnostic | failure of tooth eruption                                | 16  | 1.34E-04 | 0.064 |
| BD-I  | Agnostic | viral assembly                                           | 29  | 1.43E-04 | 0.064 |
| BD-I  | Agnostic | macromolecule methylation                                | 138 | 1.61E-04 | 0.066 |
| BD-I  | Agnostic | viral infectious cycle                                   | 121 | 1.67E-04 | 0.066 |
| BD-I  | Agnostic | negative regulation by host of viral transcription       | 12  | 1.69E-04 | 0.066 |
| BD-I  | Agnostic | skeletal muscle contraction                              | 16  | 1.93E-04 | 0.072 |
| BD-I  | Agnostic | toxin metabolic process                                  | 10  | 2.77E-04 | 0.096 |
| BD-I  | Agnostic | granulomatous inflammation                               | 24  | 2.79E-04 | 0.096 |
| BD-I  | Agnostic | Endoplasmic Reticulum (core)                             | 87  | 2.04E-04 | 0.036 |
| BD-I  | Agnostic | PSD (human core)                                         | 624 | 5.16E-04 | 0.046 |
| BD-I  | Agnostic | MORN1G                                                   | 109 | 1.16E-03 | 0.069 |
| BD-II | Agnostic | S-adenosylmethionine-dependent methyltransferase         | 91  | 3.46E-07 | 0.003 |
| BD-II | Agnostic | negative regulation of systemic arterial blood pressure  | 11  | 2.09E-06 | 0.009 |
| BD-II | Agnostic | Metabolism of porphyrins                                 | 15  | 4.92E-06 | 0.014 |
| BD-II | Agnostic | RNA polymerase activity                                  | 37  | 9.47E-06 | 0.016 |
| BD-II | Agnostic | DNA-directed RNA polymerase activity                     | 37  | 9.47E-06 | 0.016 |
| BD-II | Agnostic | Endogenous sterols                                       | 15  | 1.83E-05 | 0.026 |
| BD-II | Agnostic | Heme biosynthesis                                        | 12  | 2.38E-05 | 0.027 |
| BD-II | Agnostic | protein methyltransferase activity                       | 58  | 2.54E-05 | 0.027 |
| BD-II | Agnostic | condensed chromosome                                     | 145 | 4.07E-05 | 0.032 |

|       |          |                                                  |     |          |       |
|-------|----------|--------------------------------------------------|-----|----------|-------|
| BD-II | Agnostic | mitochondrial genome maintenance                 | 12  | 4.08E-05 | 0.032 |
| BD-II | Agnostic | nuclear envelope organization                    | 52  | 4.46E-05 | 0.032 |
| BD-II | Agnostic | centrosome localization                          | 12  | 5.04E-05 | 0.032 |
| BD-II | Agnostic | abnormal nucleotide metabolism                   | 10  | 5.28E-05 | 0.032 |
| BD-II | Agnostic | chondroitin sulfate metabolic process            | 50  | 5.28E-05 | 0.032 |
| BD-II | Agnostic | heme metabolic process                           | 29  | 6.75E-05 | 0.038 |
| BD-II | Agnostic | porphyrin-containing compound metabolic process  | 38  | 7.74E-05 | 0.038 |
| BD-II | Agnostic | protoporphyrinogen IX metabolic process          | 10  | 7.83E-05 | 0.038 |
| BD-II | Agnostic | chondroitin sulfate biosynthetic process         | 23  | 9.52E-05 | 0.038 |
| BD-II | Agnostic | abnormal spinal cord morphology                  | 193 | 9.60E-05 | 0.038 |
| BD-II | Agnostic | Heme biosynthesis                                | 10  | 9.78E-05 | 0.038 |
| BD-II | Agnostic | N-methyltransferase activity                     | 59  | 1.01E-04 | 0.038 |
| BD-II | Agnostic | chondroitin sulfate proteoglycan metabolic proc  | 52  | 1.07E-04 | 0.038 |
| BD-II | Agnostic | abnormal neuronal migration                      | 75  | 1.09E-04 | 0.038 |
| BD-II | Agnostic | nucleotidyltransferase activity                  | 106 | 1.10E-04 | 0.038 |
| BD-II | Agnostic | chondroitin sulfate                              | 43  | 1.12E-04 | 0.038 |
| BD-II | Agnostic | nucleoside kinase activity                       | 11  | 1.14E-04 | 0.038 |
| BD-II | Agnostic | KEGG PYRIMIDINE METABOLISM                       | 90  | 1.50E-04 | 0.048 |
| BD-II | Agnostic | oxidoreductase activity                          | 11  | 1.56E-04 | 0.048 |
| BD-II | Agnostic | Transport of Mature mRNA Derived from an Int     | 34  | 1.94E-04 | 0.057 |
| BD-II | Agnostic | nucleoside salvage                               | 12  | 2.06E-04 | 0.059 |
| BD-II | Agnostic | neuron spine                                     | 69  | 2.47E-04 | 0.068 |
| BD-II | Agnostic | protein methylation                              | 82  | 2.71E-04 | 0.070 |
| BD-II | Agnostic | protein alkylation                               | 82  | 2.71E-04 | 0.070 |
| BD-II | Agnostic | dendritic spine                                  | 67  | 2.83E-04 | 0.071 |
| BD-II | Agnostic | chondroitin sulfate proteoglycan biosynthetic pr | 26  | 2.95E-04 | 0.072 |
| BD-II | Agnostic | RNA splicing                                     | 179 | 3.66E-04 | 0.085 |
| BD-II | Agnostic | mRNA splicing                                    | 179 | 3.66E-04 | 0.085 |
| BD-II | Agnostic | abnormal mitochondrion morphology                | 55  | 3.89E-04 | 0.088 |

| BD-II | Drug targets | THYROID PREPARATIONS                                | 11  | 1.65E-09 | 0.000 |
|-------|--------------|-----------------------------------------------------|-----|----------|-------|
| SAB   | Agnostic     | laminin complex                                     | 10  | 6.64E-08 | 0.001 |
| SAB   | Agnostic     | abnormal miniature endplate potential               | 21  | 1.54E-07 | 0.001 |
| SAB   | Agnostic     | a6b1 a6b4 integrin pathway                          | 46  | 1.78E-07 | 0.001 |
| SAB   | Agnostic     | Schwann cell development                            | 20  | 2.59E-07 | 0.001 |
| SAB   | Agnostic     | astrocyte development                               | 12  | 3.19E-07 | 0.001 |
| SAB   | Agnostic     | abnormal amacrine cell number                       | 11  | 4.32E-07 | 0.001 |
| SAB   | Agnostic     | glomerular basement membrane development            | 10  | 8.59E-07 | 0.001 |
| SAB   | Agnostic     | cellular amide metabolic process                    | 138 | 1.05E-06 | 0.001 |
| SAB   | Agnostic     | abnormal PNS synaptic transmission                  | 28  | 1.92E-06 | 0.002 |
| SAB   | Agnostic     | short photoreceptor inner segment                   | 13  | 2.74E-06 | 0.002 |
| SAB   | Agnostic     | renal filtration cell differentiation               | 13  | 3.54E-06 | 0.003 |
| SAB   | Agnostic     | glomerular visceral epithelial cell differentiation | 13  | 3.54E-06 | 0.003 |
| SAB   | Agnostic     | abnormal photoreceptor inner segment morpho         | 33  | 4.01E-06 | 0.003 |
| SAB   | Agnostic     | Schwann cell differentiation                        | 26  | 4.70E-06 | 0.003 |
| SAB   | Agnostic     | axon regeneration                                   | 15  | 4.71E-06 | 0.003 |
| SAB   | Agnostic     | abnormal Muller cell morphology                     | 10  | 5.16E-06 | 0.003 |
| SAB   | Agnostic     | glomerular epithelium development                   | 14  | 6.23E-06 | 0.003 |
| SAB   | Agnostic     | glomerular epithelial cell differentiation          | 14  | 6.23E-06 | 0.003 |
| SAB   | Agnostic     | myofilament                                         | 17  | 9.13E-06 | 0.004 |
| SAB   | Agnostic     | striated muscle thin filament                       | 14  | 1.28E-05 | 0.005 |
| SAB   | Agnostic     | mitochondrion localization                          | 17  | 2.53E-05 | 0.010 |
| SAB   | Agnostic     | abnormal retinal apoptosis                          | 31  | 2.79E-05 | 0.011 |
| SAB   | Agnostic     | neuron projection regeneration                      | 21  | 3.25E-05 | 0.012 |
| SAB   | Agnostic     | abnormal amacrine cell morphology                   | 19  | 3.37E-05 | 0.012 |
| SAB   | Agnostic     | neuromuscular junction development                  | 33  | 5.04E-05 | 0.017 |
| SAB   | Agnostic     | integral to lumenal side of endoplasmic reticul     | 24  | 5.87E-05 | 0.019 |
| SAB   | Agnostic     | endoplasmic reticulum-Golgi intermediate comp       | 24  | 8.57E-05 | 0.027 |
| SAB   | Agnostic     | negative regulation of ion transmembrane trans      | 11  | 9.33E-05 | 0.029 |

|     |          |                                                          |     |          |       |
|-----|----------|----------------------------------------------------------|-----|----------|-------|
| SAB | Agnostic | biotin metabolic process                                 | 10  | 1.06E-04 | 0.030 |
| SAB | Agnostic | Biotin transport and metabolism                          | 10  | 1.06E-04 | 0.030 |
| SAB | Agnostic | Methylation                                              | 10  | 1.18E-04 | 0.033 |
| SAB | Agnostic | abnormal retinal rod cell morphology                     | 36  | 1.30E-04 | 0.035 |
| SAB | Agnostic | cell differentiation involved in metanephros development | 11  | 1.33E-04 | 0.035 |
| SAB | Agnostic | secondary metabolic process                              | 68  | 1.52E-04 | 0.038 |
| SAB | Agnostic | branched-chain amino acid catabolic process              | 18  | 1.76E-04 | 0.042 |
| SAB | Agnostic | negative regulation of transmembrane transport           | 13  | 1.78E-04 | 0.042 |
| SAB | Agnostic | metanephric glomerulus development                       | 10  | 2.27E-04 | 0.052 |
| SAB | Agnostic | regulation of DNA-dependent transcription involved in re | 41  | 2.32E-04 | 0.052 |
| SAB | Agnostic | branched-chain amino acid metabolic process              | 22  | 2.42E-04 | 0.053 |
| SAB | Agnostic | tropomyosin binding                                      | 14  | 2.74E-04 | 0.058 |
| SAB | Agnostic | positive regulation of receptor biosynthetic process     | 10  | 2.85E-04 | 0.058 |
| SAB | Agnostic | cellular amino acid biosynthetic process                 | 97  | 2.95E-04 | 0.058 |
| SAB | Agnostic | skeletal muscle fiber development                        | 44  | 3.04E-04 | 0.058 |
| SAB | Agnostic | Branched-chain amino acid catabolism                     | 16  | 3.07E-04 | 0.058 |
| SAB | Agnostic | KEGG TOXOPLASMOSIS                                       | 110 | 3.07E-04 | 0.058 |
| SAB | Agnostic | negative regulation of GTPase activity                   | 15  | 3.29E-04 | 0.061 |
| SAB | Agnostic | BIOCARTA ERK5 PATHWAY                                    | 17  | 3.35E-04 | 0.061 |
| SAB | Agnostic | decreased cellular sensitivity to gamma-irradiation      | 18  | 3.48E-04 | 0.061 |
| SAB | Agnostic | astrocyte differentiation                                | 23  | 3.50E-04 | 0.061 |
| SAB | Agnostic | positive regulation of glucose import                    | 27  | 3.82E-04 | 0.065 |
| SAB | Agnostic | photoreceptor connecting cilium                          | 21  | 3.96E-04 | 0.066 |
| SAB | Agnostic | short photoreceptor outer segment                        | 27  | 4.03E-04 | 0.066 |
| SAB | Agnostic | 14-3-3 protein binding                                   | 16  | 4.51E-04 | 0.073 |
| SAB | Agnostic | protein phosphatase 2A binding                           | 16  | 4.98E-04 | 0.079 |
| SAB | Agnostic | fatty acid derivative metabolic process                  | 74  | 5.28E-04 | 0.081 |
| SAB | Agnostic | icosanoid metabolic process                              | 74  | 5.28E-04 | 0.081 |
| SAB | Agnostic | KEGG GLYCOSYLPHOSPHATIDYLINOSITOL(GPI)-A                 | 23  | 5.41E-04 | 0.081 |

|     |                   |                                                      |      |          |       |
|-----|-------------------|------------------------------------------------------|------|----------|-------|
| SAB | Agnostic          | KEGG HISTIDINE METABOLISM                            | 24   | 5.54E-04 | 0.082 |
| SAB | Agnostic          | abnormal physiological response to xenobiotic        | 402  | 5.91E-04 | 0.085 |
| SAB | Agnostic          | regulation of stress-activated MAPK cascade          | 140  | 5.94E-04 | 0.085 |
| SAB | Agnostic          | Metabolism of amino acids and derivatives            | 171  | 6.39E-04 | 0.089 |
| SAB | Agnostic          | epithelial cell differentiation involved in kidney c | 20   | 6.46E-04 | 0.089 |
| SAB | Agnostic          | regulation of stress-activated protein kinase sign   | 141  | 7.20E-04 | 0.098 |
| SAB | Agnostic          | MORNING                                              | 109  | 2.29E-04 | 0.018 |
| SAB | Hypothesis driven | LOW                                                  | 8153 | 2.53E-04 | 0.018 |
| SAB | Hypothesis driven | Mitochondrion_(core)                                 | 174  | 2.94E-04 | 0.018 |
| SAB | Hypothesis driven | ID-NS                                                | 116  | 5.62E-04 | 0.025 |