bioRxiv preprint doi: https://doi.org/10.1101/222216; this version posted March 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Fronto-limbic dysconnectivity leads to impaired brain network
controllability in young people with bipolar disorder and those at high
genetic risk

Jayson Jeganathan™, Alistair Perry*™", Danielle S. Bassett*®"9, Gloria
Roberts™", Philip B. Mitchell®”, Michael Breakspear®

*Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane,
Queensland, Australia

®School of Psychiatry, University of New South Wales, Randwick, NSW, Australia

“Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck
Institute for Human Development, Berlin, Germany

YDepartment of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104 USA

*Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania 19104 USA

"Department of Physics & Astronomy, University of Pennsylvania, Philadelphia,
Pennsylvania 19104 USA

9Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
USA

"Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia

'Metro North Mental Health Service, Brisbane, QLD, Austraia

* The authors contributed equally

Running title: Impaired brain network controllability in bipolar disorder

Corresponding author


https://doi.org/10.1101/222216
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/222216; this version posted March 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Jayson Jeganathan, QIMR Berghofer Medical Research Institute, 300 Herston
Rd, Herston, Queensland 4029, Australia.

Email: jayson.jeganathan@gmail.com

Abstract

Recent investigations have used diffusion-weighted imaging to revea disturbances in the
neurocircuitry that underlie cognitive-emotional control in bipolar disorder (BD) and in
unaffected siblings or children at high genetic risk (HR). It has been difficult to quantify the
mechanism by which structural changes disrupt the superimposed brain dynamics, leading to
the emotional lability that is characteristic of BD. Average controllability is a concept from
network control theory that extends structural connectivity data to estimate the manner in
which local neuronal fluctuations spread from a node or subnetwork to alter the state of the
rest of the brain. We used this theory to ask whether structural connectivity deficits
previously observed in HR (n=84, mean age 22.4) individuals, patients with BD (n=38, mean
age 23.9), and age- and gender-matched controls (n=96, mean age 22.6) translate to
differences in the ability of brain systems to be manipulated between states. Localized
impairments in network controllability were seen in the left parahippocampal, left middie
occipital, left superior frontal, right inferior frontal, and right precentral gyri in BD and HR
groups. Subjects with BD had distributed deficits in a subnetwork containing the left superior
and inferior frontal gyri, postcentral gyrus, and insula (p=0.004). HR participants had
controllability deficits in a right-lateralized subnetwork involving connections between the
dorsomedial and ventrolateral prefrontal cortex, the superior temporal pole, putamen, and
caudate nucleus (p=0.008). Between-group controllability differences were attenuated after
removal of topological factors by network randomization. Some previously reported
differences in network connectivity were not associated with controllability-differences,
likely reflecting the contribution of more complex brain network properties. These analyses
highlight the potential functional consegquences of altered brain networks in BD, and may

guide future clinical interventions.
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Highlights
e Control theory estimates how neurona fluctuations spread from local networks.
e We compare brain controllability in bipolar disorder and their high-risk relatives.
e These groups have impaired controllability in networks supporting cognitive and
emotional control.
e Weaker connectivity as well astopological alterations contribute to these changes.
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1. Introduction

For much of the 20" century, neuroscience was predicated on the notion that individual
cognitive functions could be attributed to segregated regions of the brain. In recent times, this
paradigm has shifted toward a connectivity-based approach which emphasizes the crucial role
of network-mediated functional integration (Sporns, 2013). In paralel, the clinical
neurosciences have shifted from a predominantly lesion-based approach towards a
connectomic framework (Fornito et al., 2015). However, disrupted network connections in
the brain impact not only directly connected regions, but can aso influence distant cortical
regions through complex dynamics (Crofts et al., 2011). To characterize the spread of
dysfunction in disease states, network connectivity and the superimposed dynamics of brain
activity must both be considered (Stam, 2014). In human brains, the former is now readily
accessible through advances in diffusion-weighted imaging and tractography (Jbabdi et al.,
2015; Farquharson and Tournier, 2016). However, the principles of neuronal dynamics, well-
known at the neuron level, remain incompletely understood a the macroscopic scale
(Breakspear, 2017).

Studies using diffusion-weighted imaging have identified ‘disconnection syndromes’ in
schizophrenia (Stephan et al., 2009; Zalesky et al., 2011), depression (Ba et al., 2012),
attention-deficit hyperactivity disorder (Cao et al., 2013), and epilepsy (Widjgja et al., 2015).
More recently, attention has turned to bipolar disorder (BD), a psychiatric condition
characterized by episodic disturbances in mood and cognition. While variations in mood
around the set point of euthymia are intrinsic to human experience, excursions of mood in BD
reach a magnitude and duration that produces substantial distress, dysfunction, and disability.
Recent structural imaging studies of BD have consistently reported white matter alterationsin
circuits involving prefrontal, striatal, and limbic regions (Xekardaki et al., 2011; Nortje et al.,
2013; Phillips and Swartz, 2014; Roberts et al., 2016b). The disease also has a strong genetic
component. Unaffected first-degree relatives often have attenuated affective disturbances and
are at significantly increased risk of developing the disorder; their odds-ratio is estimated to
lie between 7 and 14. These relatives are hence considered at high risk (HR), particularly
younger relatives who have not passed the peak age of onset (Weissman et al., 1986;
McGuffin et al., 2003; Mortensen et al., 2003; Perlis et al., 2004; Purcell et al., 2009; Perich
et al., 2015). Identification of structural and functional connectivity differences between BD
patients, their unaffected relatives, and healthy controls, have permitted a dissociation of
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genetic, illness-expression, and adaptive influences (Frangou, 2009; Kempton et al., 2009;
Pompei et al., 2011; Sprooten et al., 2011; Meda et al., 2012; Doucet et al., 2017; Ganzola et
al., 2017). The neurodevelopmental risk of their first-degree relatives is supported by
effective and functional connectivity studies that reveal aterations in fronto-limbic networks
supporting emotion processing and regulation (Pompel et al., 2011; Frangou, 2012;
Breakspear et al., 2015; Dima et al., 2016). We recently investigated structural network
disturbances in both BD patients and youth at high genetic risk for the disorder (Roberts et
al., 2016b). The high-risk (HR) group demonstrated unique disturbances in subnetworks of
connections centering upon the inferior frontal gyri and insular cortex. These findings speak
to an endogenous risk, present as these subjects transition through a critical developmental

period.

Structural connectivity deficits on their own, without an informed understanding of network
topology or the overlying dynamics, comprise ‘correlation’ rather than ‘ causation’. Relating
structural network disturbances in psychiatric conditions to the illness phenotype is an
important yet unfulfilled ambition. Whole-brain simulations of large-scale neuronal dynamics
could theoretically achieve this goal, but their role is challenged by the complex nature of
gpatially heterogeneous local dynamics and limitations in current techniques for inferring
nonlinear dynamics from noisy imaging data. Here, we tackle this issue with network control
theory, which combines structural connectivity with a linear spatially homogenous estimate
of local dynamics to model and predict the spread of neuronal signals within the brain. The
extent of signal spread is quantified by controllability. Note that this anaysis rests
exclusively upon the mathematical analysis of structural connectivity data. It yields predicted
changes in brain dynamics under the assumption that stable (linear) approximations serve as a

useful guide to actual brain dynamics and, by inference, corresponding cognitive processes.

Network control theory has recently been used to predict brain dynamics and stability, with
the understanding that brain regions whose structural connectivity suggest poor
controllability over the rest of the brain, will indeed have poorer control over brain states (Gu
et al., 2015; Betzel et al., 2016). As neuronal activity evolves in time, functional brain states
undergo transitions, traversing a path through a dynamic state-space landscape. Perturbations
applied to a set of control nodes, either from an extrinsic source or from internal dynamics,
can modulate these trajectories (Bassett and Khambhati, 2017). This input energy depends on

the choice of control nodes, and the strength and pattern of structural connections (Kim et al.,
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2018; Wu-Yan et al., 2018). Recent work has found intriguing links between the average
controllability of different brain systems and performance during cognitive testing (Betzel et
al., 2016; Muldoon et al., 2016; Tang et al., 2017).

In general, high brain network controllability appears to reside in those cortical regions
typically associated with executive function, self-monitoring and emotional control including
the default, limbic and cognitive control systems (Gu et al., 2015). The notion that
dysregulation of affect in BD could arise from the structural disturbances impacting upon the
controllability of these systems has intuitive appeal. We sought to test that hypothesis here. In
other words, we hypothesize that brain regions whose structural connectivity suggests a lack
of control over the rest of the brain, actually contribute to the poor emotional control seen in
BD and in muted form, in their first-degree relatives. We first characterize the network
underpinnings of average controllability, and then apply controllability analyses to brain
regions and subnetworks where changes in bipolar and high-risk cohorts were previously
reported (Roberts et al., 2016b). We hypothesized that the structural dysconnectivity of these
subnetworks and regions would be associated with impairments in wider network

controllability, particularly in the neurocircuitry that underlies cognitive-emotional control.

2. Materialsand methods
2.1. Participants

218 participants between 15-30 years of age comprise three richly-phenotyped groups: (i) 84
participants at high risk (HR) of bipolar disorder (mean age 22.4), (ii) 96 controls (CNSs)
without a family history of mental illness (mean age 22.6), and (iii) 38 bipolar disorder (BD)
patients (mean age 23.9; 18 bipolar 1, 20 bipolar 11) (Roberts et al., 2016b). HR and BD
participants were recruited from families who had previously participated in a BD pedigree
molecular genetics study or a specialized BD research clinic, as well as from clinicians,
mental health consumer organisations, and other forms of publicity. Inclusion in the HR
group was determined by having a first-degree relative with BD, with 19 in the HR group
having a sibling with BD and 65 having a parent with BD. There were five families in this
study that included both a participant in the HR group and the BD group. CN subjects were
recruited via advertisements in print, electronic notices, and noticeboards in universities and

loca communities. Demographic and clinical data are provided in Table 1. Further
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description of the sample ascertainment and clinical assessments for the current population
are provided in (Perich et al., 2015).

The study was conducted with approval from the University of New South Wales Human
Research Ethics Committee (HREC Protocol 09/097) and the South Eastern Sydney Illawarra
Health Service HREC (Protocol 09/104). Written informed consent was obtained from all

participants.

Table 1. Demographic and clinical data.

Controls  High- Bipolar p- Post-hoc
risk disorder value Effects

Number of subjects 96 84 38 -

Males, n (%) 43(44.8)  39(46.4) 15(39.5) 0.77

Intelligence Quotient, 117.7 116.3 117.3 (12.0) 0.69

mean (SD) (10.3) (10.7)

Age, mean (SD) 226(38) 224(47) 239(3.4) 0.13

Lifetime DSM -1V

diagnosis

Any diagnosis, n (%) 24(250) 39(46.4) 38(100.0) <0.001 HR>CN**
BD > CN***

At least one MDE, n (%) 9(9.4) 22(26.2) 36(94.7) <0.001 HR>CN**
BD > CN***
BD > HR***

Recurrent MDD, n (%) 1(1.0) 7(8.3) - 0.01 HR > CN*

Any anxiety disorder, n 9(9.5) 15(18.3) 15(39.5) <0.001 BD > CN***

(%) BD > HR*

Any behavioural disorder, | 1(1.1) 6 (7.4) 7(18.9) <0.001 HR>CN*

n (%) BD > CN***

Any substance disorder,n | 6 (6.3) 9(10.7) 6 (15.8) 0.220 -

(%)

Symptom severity scales

2210 30 years n=51 n=41 n=25

MADRS, mean (SD) 1.9 (3.2) 25(37) 10.1(9.5 <0.001 BD > CN***
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BD > HR***
15to 21 Years n=34 n=33 n=9
CDI, mean (SD) 6.8 (3.7) 9.0(6.6) 21.7(8.7) <0.001 BD > CN***
BD > HR***
Ageat First
MDE, mean (SD) 19.1(32) 185(45) 15.4(3.7) 0.002  BD < CN**
BD < HR**
Manic episode, mean (SD) | - - 175(3.2) - -
Mood episode, mean (SD) | 19.1(3.2) 185(4.5) 14.9(3.8) <0.001 BD < CN**
BD < HR**
Any anxiety disorder 103(6.7) 135(6.4) 13.3(7.0) 0.277
Psychotropic M edication
Anti-depressants, n (%) 0(0.0) 0(0.0) 15 (39.5) - -
Mood stabilisers, n (%) 0(0.0) 0(0.0) 26 (68.4) - -
Anti-psychotics, n (%) 0(0.0) 0(0.0) 11 (28.9) - -

Significance Levels: *** p < 0.001, ** p < 0.01, * p <0.05.
2.2.  Construction of structural networks

Diffusion-weighted images were obtained using a 3T Philips Achieva X MRI scanner and
analyzed as previously described (Roberts et al., 2016b). In short, pre-processed data
underwent spherical deconvolution followed by probabilistic tractography to generate 5
million streamlines. The AAL template (Tzourio-Mazoyer et al., 2002) was subdivided into
512  regions  of uniform  volume  (Zalesky e  al., 2010b) (see
https.//github.com/AlistairPerry/CCA). Weighted structural networks were produced by
combining each subject’s tractography with their parcellation template (Roberts et al.,
2016b). Edge weights represent the number of streamlines connecting two parcels. Structural
networks were thresholded to maintain the 10% top-weighted connections, as investigations
typicaly analyze brain networks with densities centering upon this value (Sporns, 2013;
Perry et al., 2015). Analyses of 5%, 15%, and maximum densities are provided in
Supplementary Table 3, 4 and 5.

2.3.  Network control theory
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Linear control theory quantifies transient responses to brief perturbations of a linearly stable
system. In this study, structural networks were overlaid with linear dynamics evolving in

discrete time steps (t=1,2, ...) according to,

x(t+ 1) = Ax(t) + Bu(t), D

where x(t) is a vector denoting the smulated state of all nodes i at time t. The matrix A is
the structural connectivity matrix, with element 4;; representing the number of white matter
streamlines connecting regions (or nodes) i and j. The input matrix B specifies the control

nodes in the brain (those receiving the perturbation),

B =le; e, ..eyl,

where e; is acolumn vector with a“1’ in the position(s) corresponding to the control node(s).

The variable u(t) isthe energy applied to the set of control nodes B at timet.

The simulated states x represent underlying neural states (firing rates, membrane
conductances, etc.), which in turn support the cognitive, perceptual, and emotional processes
arising in the corresponding brain networks. Individual subject networks were normalized to

prevent unstable dynamics (see Supplementary material).

Network control theory thus predicts the response of a complex system to perturbations, such
as sensory (or physiological) perturbations. This linear system is a smplification of the full
nonlinear neural dynamics that would more realistically embody the behavior of large-scale
brain dynamics (Breakspear, 2017). However, linear controllability of a structural network is
usually sufficient to imply controllability of nonlinear dynamics overlaid on the same
structure, because linear dynamics are accurate around stable fixed points and periodic
attractors (local, stable equilibria and oscillations) (Deco et al., 2008). Our choice of discrete-
time dynamics is based on prior work showing that controllability is similar in discrete- and
continuous-time settings (Gu et al., 2015). Note that the time steps of the model are arbitrary
in the sense that shorter (or longer) time steps can be accommodated by simply scaling the

magnitude of the elements of A and B up (or down).
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Average controllability for a set of control nodes is the average energy needed to steer the
system to any target state in finite time (Fig. 1). We use the mean impulse response energy as
a measure of average controllability as it satisfies a relation of inverse proportionality. The
impulse response is the total magnitude and extent of signal spread when a stimulus signal is
applied to a node or subnetwork (see Supplementary material for further details). In the rest
of this paper, we refer to average controllability simply as ‘ controllability’ for brevity, noting
that there are other independent controllability metrics that have been studied in the setting of
structural brain networks (Wu-Yan et al., 2018). The code pertaining to the calculation of
average controllability from each participant’s structural network matrix is available for
download from here (https://www.danisbassett.com/uploads/1/1/8/5/11852336/ave_control-
2.m).

(b)

Figure 1. Average controllability. (a) Schematic representation of the mean impulse response energy
required to steer a dynamic network fromits base “resting” state (blue ball) to either an easy-to-reach
state (red) or a hard-to-reach state (green). (b) Schematic representation of corresponding changes
from the baseline sate (centre) to an easy-to-reach state (left, red) or a hard-to-reach state (right,

green). Arrow depicts the node receiving the perturbation.
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2.4. Contributorsto average controllability

Nodal strength is the weighted sum of each node's connections to its neighbors on the
network, and has an important influence on controllability (Gu et al., 2015). However, other
network features also influence controllability, such as the distribution of paths of different
lengths as measured by the communicability matrix (Betzel et al., 2016; Gu et al., 2017) and
the diversity of connections strengths from the controlled node(s) to the target node(s) (Kim
et al., 2018). Some topological factors, such as scale-freeness, are captured in the distribution
of node strengths, while others, such as clustering, can occur independently of the strength
distribution. How much variance each of these statistics accounts for in the controllability
estimates can depend on the architecture of the specific graph under study (Wu-Yan et al.,
2018). Therefore, we first sought to disambiguate the contribution to network controllability
of edge strength from higher order measures of network topology in our data.

To examine the impact of strength distribution on variability in controllability for each node
in structural brain graphs, that node’s controllability was calculated before and after strength-
preserving randomization (Maslov and Sneppen, 2002). If these values are perfectly
correlated, then strength accounts for all of that node's controllability: Lower correlations
imply that other network features influence that node’s controllability. Topological network
features can contribute to between-subjects and between-nodes variability in controllability.
We assessed the presence and strength of such relations separately by correlating
controllability values across subjects or across nodes (see Supplementary material for more
detail). The coefficient of determination was calculated as the square of the Spearman rank

correlation coefficient.

We next examined how other widely adopted nodal measures of network topology contribute
to average controllability; this is important because our intuitions about brain graphs are
heavily influenced by prior studies using these measures of network topology, independent of
posited dynamics. To identify which of these measures are correlated with estimates of
controllability, stepwise linear regresson was implemented using entry and removal
probabilities of 0.05 and 0.10, respectively. The nodal measures that were entered in the
regression model were node strength, local clustering coefficient, subgraph centrality, local
efficiency, betweenness centrality, within-module degree z-score, and participation

coefficient. The latter two measures were calculated based upon the modular decomposition

11
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of the group average network from the healthy control participants, detected with a Louvain-
like locally greedy algorithm for maximization of the modularity quality (Rubinov and
Sporns, 2010). The nodal values for each node were averaged across all CN participants

before the stepwise regression was performed.

2.5. Controllability at different levels of network granularity

We calculated group differences in average controllability metrics at three levels of network
granularity: single nodes, subnetworks of nodes, and communities derived from intrinsic

functional connectivity patterns.

25.1. Nodelevd

Our previous analyses of structural connectivity identified seven brain regions with
differences in nodal strength between CN, HR, and BD groups (Roberts et al., 2016b). Here,
we calculated the average controllability of these seven nodes; that is, the ability to control

whole brain dynamics through a stimulus to each of these individual nodes.

Group differences in average controllability were elicited with a one-way ANOVA for all
seven nodes with a false discovery rate (FDR) correction. We then performed a one-tailed t-
test of surviving nodes using previously identified group contrasts, and a finad FDR

correction step. The Benjamini-Hochberg procedure (o = 0.05) was used for FDR correction.

2.5.2. Subnetwork level

We previously analyzed group effects in these data using the network-based statistic (NBS), a
permutation-based method which employs topological inference to control for family-wise
error when identifying subnetworks with group-wise differences in connection strength
(Zalesky et al., 2010a). Connectivity differences between CN, HR, and BD were observed in
four subnetworks (Roberts et al., 2016b) (Fig. 2). In this study, we calculated the
controllability of al nodes within these subnetworks. Subnetwork average controllability is

the sum of average controllability values for all nodes in the subnetwork. Intuitively, this

12
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measures the impulse response to a stimulus applied across the subnetwork. This impulse
response depends on (i) the subnetwork’s external connectivity to surrounding regions, and
(ii) the internal connections within the subnetwork, which amplify the signal by internal
excitatory feedback (Fig. 3) (Kim et al., 2018). Because these networks were discovered by
the NBS, they have, by definition, weaker internal connectivity but relatively preserved
external connectivity. Hence, subnetwork average controllability here is a surrogate for

abnormal internal signal amplification.

Network A CN >HR

Network B CN > HR .
1's By
! B T
R L

Network C CN <HR

R L Network D CN>BD

Figure 2. Subnetworks showing significant between-group differences as identified by the
networ k-based statistic in the previous investigation (Roberts et al., 2016b). Connections (lines)
between nodes (circles) with significant group differences in streamline count, with nodes coloured
according to their previously identified node degree. Red circles indicate high-degree hub regions (top
15%), while grey circles represent non-hubs. CN, controls; HR, high risk; BD, bipolar disorder; L,
left; R, right; a, azimuth. Figure adapted with permission from (Roberts et al., 2016b).
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Figure 3. Schematic of signal spread from a closed loop of three nodes (purple circles in left
panels). The size of the circle indicates the corresponding magnitude of activation across the
subnetwork. Attenuated intranetwork (b) or outgoing connections (c) (grey lines) can diminish the

impul se response.

To ascertain the influence of network topology on group differences in subnetwork

controllability, the subnetwork analysis was repeated after strength-preserving randomization.
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If the group differences were preserved, then these differences could be attributed primarily
to differences in the strength of the nodes within each subnetwork. Changes in group
differences following strength-preserving randomization reflect contributions from higher

order topological features.

The following statistical protocol was used: a one-way ANOVA of group differences in each
subnetwork’s average controllability, then FDR correction of the four resulting p-values.
Two-tailed t-tests were then performed for surviving binary contrasts followed by a fina

FDR correction step for the individual possible group effects.

2.5.3. Community level

Nodal-regions were assigned to widely adopted functional network affiliations derived from
resting state fMRI data (Yeo et al., 2011). The community affiliation of a brain-region was
identified by its best spatial fit within one of the seven functional networks (Perry et al.,
2017) (see https://github.com/AlistairPerry/CCA). As with the subnetwork controllability, the
average controllability of a community is the sum of the controllability values for all nodes
within that community. A one-way ANOVA was first used to test for group-wise differences

in the controllability of each community, followed by FDR-correction.

3. Results
3.1. Contributorsto controllability

The noda strength and average controllability of each node were positively correlated
(R=0.89; p<0.0001, see Supplementary material for a formal derivation). This association is
consistent with previous analyses of other structural connectomic datain the brain (Gu et al.,
2015) and non-brain graphical models (Wu-Yan et al., 2018). Regions of high average
controllability, with the potential to shift the rest of the brain easily between states, are

topologically well-connected regions.
The brain network factors underlying average controllability were probed with a

randomization scheme that preserved node-strength distribution within the network but

destroyed higher-order topological properties. Strength distribution accounted for 87% of
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between-node variability in average controllability within a subject and 68% of between-
subject variability. The remainder can hence be attributed to other topological factors. Figure
4 demonstrates the shrinkage of the mean and variance of subject-mean controllability values

after network randomization.
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Figure 4. Distribution of average controllability values averaged across nodes in the original data

(green) and in the random surrogate networks (red).

To quantify the contribution of topological factors to variability in controllability, stepwise
linear regression was employed to model the putative contributions of various nodal measures
(Table 2). As expected, nodal strength was the strongest predictor of average nodal
controllability. However, other network features also make substantial contributions to
controllability; the next most strongly predictive measure was subgraph centrality, followed
by the clustering coefficient. Subgraph centrality is defined by the weighted sum of closed
walks of different path lengths starting and ending at the nodal region (Estrada and
Rodriguez-Velazquez, 2005). Clustering reflects the number of closed cycles with three
edges. Average controllability, the impulse response to a stimulus, is hence magnified by
positive feedback via closed walks and loops (Supplementary Figure 1).

Table 2. Stepwise linear regression of average controllability.

Variable Standardized Full correlation Partial correlation
beta

Node strength 0.648** 0.886 0.587

Subgraph centrality 0.297** 0.608 0.600
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Clugtering coefficient ~ 0.152** 0.388 0.387
Within-module z-score  0.098* 0.793 0.114
Adjusted R° = 0.887.

Excluded variables: local efficiency, betweenness centrality, participation coefficient.

Significance levels. * p<0.01, ** p<0.001

3.2.  Controllability in high-risk and bipolar disorder subjects

Having established that node strength, subgraph centrality, clustering coefficient, and within-
module z-score contribute to network controllability in our data, we next studied between-

group differencesin controllability at the three levels of granularity.

3.2.1. Nodelevd

Six out of seven regions previously identified as having reduced node strength in HR and BD
groups also show significant between-group controllability differences. Reductions in
average controllability were observed in the left insula, left parahippocampa gyrus, left
middle occipital gyrus, left superior frontal gyrus, right inferior frontal gyrus / pars

triangularis, and right precentral gyrus (Supplementary Table 1).

3.2.2. Subnetwork level

We next studied average controllability differences in four lateralized subnetworks (Fig. 2,
Supplementary Table 2). Significant average controllability differences (p<0.05, corrected)
were seen in subnetworks A and B, but not C or D (Fig. 5). Controllability of Network A,
including the left superior/inferior frontal gyri, postcentral gyrus, insula, and pars triangularis
(Fig. 1A), was reduced in BD compared to CN and HR (/1% =0.043, p<0.004 for BD vs. CN,
p<0.024 for BD vs. HR). Average controllability of Network B, involving the right
superior/middle/inferior frontal gyri, superior temporal pole, putamen, caudate, pars
triangularis, and pars orbitalis (Fig. 1B) was reduced in HR subjects compared to CNs
(p<0.008, 1% =0.037). Network C showed no significant group differences (p=0.544).
Average controllability differences approached significance (p=0.059) between CN and the
BD group in Network D.
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These effects were very similar across a range of connection densities within the thresholded
networks. The BD vs. HR contrast of Network A became nonsignificant for connection
densities of > 15% (p=0.024 vs. 0.027, see Supplementary Table 3, 4 and 5).
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Figure 5. Mean average controllability for subnetworks with identified significant group
differences. Error bars show standard error of the mean. CN, controls, HR, high-risk; BD, bipolar

disorder.

Group differences in Networks A and B were reduced after strength-preserving
randomi zation, highlighting the role of network topology (Table 2), consistent with (Kim et
al., 2018).

Table 2. Differences between cohort-mean controllability values for each group before and

after strength-preserving randomization.

Original Surrogate
Network A: CN-BD 0.059 0.012
Network A: HR-BD 0.041 0.008
Network B: CN-HR 0.043 0.008

3.2.3. Community level

We finally addressed average controllability at the scale of brain communities whose

specialized functional roles have been previously documented (Yeo et al., 2011). There were
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substantial differencesin controllability values across these communities, with the limbic and
frontoparietal modules showing the highest per-node average controllability (Fig. 6). These
differences reflected, but were not strictly enforced by, differences in average node strength.
For example, the limbic and frontoparietal communities switch relative positions of strength
versus controllability. However, no group-wise differences in average controllability of these
communities survived FDR correction.

Visual
Somatomotor
Dorsal attention
Ventral attention
Limbic
Frontoparietal

® Default mode
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HE. = —— HR b o
BD+ —— ED ——
CN+ —— CN *
HR —— HR —-—
BD= —— BD ——
CN= CN
HR = HR
BDA BD
CN= —— CN +
HE = e HR e
BD= —e— BD ——
N - B CN = =
fiR e HR e
BD- r—t— BD ——
(N - —— CN ——
HR = e HR e
BD —— BD ——
CN= —— CN —
HE = —— HR ——
B = —— BD ——
I 1 L ] 1 L T 1
140 160 180 1.02 1.03 1.04 1.05 1.06
Mean node strength Average controllability

Figure 6. Average controllability of communities across the three groups. (a) Corresponding
affiliation of each node to the functional communities derived from (Yeo et al., 2011). (b) Mean node
strength, and (c) average controllability (normalized by community size) in each group and each
functional module. Errors bars show standard error of the mean.

CN, controls, HR, high-risk; BD, bipolar disorder.

3.24. Auxiliary analyses
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We observed a significant relationship (after FDR-correction) between age and controllability
in the CN group (r=0.291, p=0.004). However, for the group contrasts of interest, there were
no significant age x group interactions for average controllability (Network A CN vs. BD
p=0.07; Network A HR vs. BD p=0.09; Network B CN vs. HR p=0.93; Supplementary
Figure 2).

The conversion from HR to BD corresponds to the occurrence of a manic or hypomanic
episode, the incidence of which peaks in the third decade of life (Saunders and Goodwin,
2010). Future risk of conversion is therefore higher in our younger HR participants, reducing
towards the upper age limit of the cohort. To study the network correlates of this effect, we
stratified HR subjects by age, divided at the mean age of illness onset (< 22 or > 22 years).
The younger HR sub-cohort had reduced Network B controllability compared to the older
group (p=0.02, Cohen’s d = 0.52). No difference was observed in Network A.

BD cleaves into two clinical subtypes, with psychotic symptoms occurring in the elevated
(manic) phase of bipolar Type | but not during the (hypomanic) phase of those with bipolar
Type Il. Interestingly, participants with bipolar Type Il had significantly weaker
controllability for Network A than subjects with bipolar Type | (p=0.01, Cohen’s d = 0.88).
No significant difference was seen for Network B.

The occurrence of a major depressive episode in HR individuals may represent an important
early stage in the development of BD (Perich et al., 2015). However, the average
controllability for Networks A and B in HR individuals was not significantly modulated by a
history of anxiety or major depression (Supplementary Table 9). Similarly, measures of
illness severity in the BD group (illness duration and total number of mood episodes) were
not significantly associated with the average controllability of the two subnetworks
(Supplementary Table 10).

Even outside of frank mood episodes, patients with BD often describe emotional
dysregulation. We thus also studied putative associations with the Cognitive Emotion
Regulation Questionnaire scores (Garnefski and Kraaij, 2007) — a well validated self-rated
measure of cognitive coping strategies. After FDR correction, two subscales of the CERQ
were gignificantly different between groups, with BD subjects having low ‘positive

refocusing’ and ‘high catastrophizing’ scores. Other subscales — self-blame, rumination, and
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positive appraisal — approached significance (Supplementary Table 11). Given the CERQ
subscale scores are highly correlated, principal component analysis (PCA) was employed to
reduce the dimensionality of the subscales to a smaller number of latent factors. The first
principal component (i.e. factor), which captures the largest variance in the origina CERQ
subscales scores, was also significantly different between groups (p=0.0004). However, none
of the subscales, nor the first principal component, was significantly correlated with
controllability in Network A or in Network B within the HR or BD groups (p>0.327).

4. Discussion

Quantifying brain structural network disturbances in psychiatric conditions provides novel
insights into their neurobiological correlates, yet lacks a direct explanatory link to the illness
phenotype. We previously observed structural network changes in those with, or at high
genetic risk of BD (Roberts et al., 2016b). Here we used network control theory to address
the theoretical gap between these structural network disturbances and the dysregulation of
cognitive-emotional function that characterizes BD and those at HR. Specifically, we asked
whether focal and distributed network disturbances observed in HR and BD subjects
translated to impaired brain controllability as predicted by linear network control theory.
Controllability deficits were seen in six out of seven key brain regions and also in two out of
four subnetworks: a left-sided network involving the insula and postcentral gyrus in BD, and
in aright-lateralized PFC-striatal subnetwork in HR. Therefore, group differences in network
strength — seen in all four subnetworks - do not fully account for group differences in
controllability. There were no group differences in controllability in seven widely studied
functional communities, suggesting that the controllability deficits in BD originate focally
rather than diffusely. We now consider the conceptual and clinical implications of these

findings.

The average controllability quantifies the capacity of input to a subnetwork to manipulate the
trangition of broader brain states (Gu et al., 2015). Given structural connectivity data, it
predicts the network-wide impulse response to a stimulus applied to a node or subnetwork of
interest, (Muldoon et al., 2016). This interpretation is instructive, as signal spread depends on
(i) amplification by positive feedback within the subnetwork, and (ii) links between the
subnetwork and its surrounds (Kim et al., 2018). We found that the top three predictors of

average controllability in our data were node strength, subgraph centrality, and local
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clustering coefficient, highlighting the role of closed motifs such as triangles and larger loops
in amplifying positive feedback, in addition to the role of strong connections in propagating
that energy outwards. Topological factors such as these amplifying motifs were responsible
for 32% of the between-subject variability in controllability. Removal of these topological
factors by network randomization reduced between-subject and between-group differences.
Hence the present work builds upon our previous observation of between-group subnetwork
strength differences (Roberts et al., 2016b) by showing how these, as well as other network

features, translate into group differences in subnetwork average controllability.

Impaired controllability was seen in six brain regions and two lateralized networks. Although
Network A (involving the left superior and inferior frontal gyri, insula, and postcentral gyrus)
had reduced connectivity in HR compared to CN, it showed impaired controllability
exclusively in the BD group. Despite the loss of power imposed by splitting our clinical BD
group, Network A showed significantly weaker controllability in BD Type Il than BD Typel,
consistent with recent evidence of disparate underlying etiologies (Song et al., 2018).
Network A thus represents a putative subgroup biomarker, although this clearly requires
replication in an independent data set. NBS identifies subnetworks by comparing mean edge
weights across groups, but is insensitive to topological group differences which would also
influence controllability. Such effects are also consistent with the loss of significant group
differences with strength-preserving randomization. The regions and connections of Network
A overlap with previous demonstrations of changes in fractional anisotropy for tracts
involving the left superior frontal gyrus (Adler et al., 2006), decreased effective connectivity
between the left dorsolateral prefrontal cortex (PFC) and the left inferior frontal gyrus
(Breakspear et al., 2015), hypo-activation in the ventrolateral PFC during emotionally salient
tasks (Chen et al., 2011; Phillips and Swartz, 2014), and altered reward processing-related
activity in the left striastum and left ventrolateral PFC (Bermpohl et al., 2010; Nusslock et al.,
2012). Whereas the present study is only concerned with structural imaging data, these latter
studies highlight corresponding changes in the activity and function of the same networks,
possibly reflecting the consequences of network controllability. Altered connectivity between
these frontal areas and the insula, a region involved in interoceptive processes (Critchley et
al., 2004), may mediate interplay between dysfunctional cognition and emotional homeostasis
in BD. That is, impaired signal amplification from these circuits, arising from reduced

controllability, could produce the loss of emotional control that characterizes BD.
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We also observed reduced controllability in Network B (which encompassed the right frontal
gyri, superior temporal pole, putamen, and caudate nucleus), in this case, for HR compared to
CN. Existing research has also noted structural and functional changes in the right frontal
white matter (Bruno et al., 2008), right ventrolateral PFC (Hajek et al., 2013), putamen and
caudate (Haller et al., 2011), and right amygdala (Torrisi et al., 2013). PFC dysregulation has
been a central theme in the psychiatric neuroimaging literature. This region is involved in
executive function, cognition, planning, and reward. Attenuated controllability of this right-
lateralized frontostriatal reward loop, seen in HR subjects alone, may reflect a marker of
resilience or risk. Alternatively, psychotropic medications taken by the BD group may have
altered structural connectivity (Dus et al., 2015). However, both the HR and BD groups had
the same mean controllability for this subnetwork (11.30 vs. 11.30) but only the CN-HR
contrast was significant while CN-BD was not. The lack of significance for the BD contrast
may reflect loss of power (associated with the smaller BD cohort) and/or increased inter-
subject variance in the BD group. Also of interest, controllability of Network B was most
strongly reduced in the younger sub-cohort of HR subjects, who have not yet passed the peak
age of illness onset and are hence, on average, at higher future risk of BD compared to the
older HR participants. Longitudinal follow-up will allow us to draw more definitive
conclusions by seeing if individual differences in controllability predict later conversion to
BD.

Although we also selected Networks C and D for further analyses based on our prior
observation of group differences in intra-network connectivity (Roberts et al., 2016b), we did
not observe group differences in average controllability. Therefore, network strength

differences alone are not sufficient to confer differencesin controllability.

The different network controllability effectsin the HR group compared to BD are intriguing.
Controllability deficits that are specific to BD may reflect a purer form of illness risk and
expression than those in HR, which rather reflect a mix of risk and resilience but not (yet) BD
expression. Effects in BD alone may also be state markers of medication exposure or the
consequences of recurrent mood episodes. The |eft-hemisphere disturbances seen in BD alone
may reflect the |eft-lateralization of autonomic processes in fronto-temporal areas (Guo et al.,
2016). Moreover, the edges in Network A are more distributed across the cortex — potentially
allowing propagation of fluctuations to cognitive, emotional, interoceptive, and

SoMmatosensory areas.
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The objectives of the present study rested on the conjecture that diminished controllability in
emotional and cognitive control networks would underlie the emotional dysregulation seen in
BD and HR participants. Because the presence of a frank mood disturbance was an exclusion
criteria for our study, we studied the Cognitive Emotion Regulation Questionnaire (CERQ) as
a more nuanced proxy to this construct (in contrast to symptom scores). There were
significant CERQ subscore differences between BD and CN, and to a lesser degree, between
HR and CN. These parallel our group differences in controllability. However, controllability
did not covary with CERQ scores within each group. It is possible that controllability
captures the gross group differences in cognitive coping strategies between the groups, but
not the more nuanced differences between individuals within these groups. A larger study
may provide clarification as statistical power was limited by group size in HR and BD, as

well as adjustment for multiple testing across both subnetworks and 9 subscales.

Several caveats of this study need to be considered. Interpreting subnetwork controllability as
a surrogate for signal amplification assumes that external edges are preserved. Edges that are
outside a subnetwork discovered through statistical testing may be weakened but with
insufficient magnitude to be included in the final supra-threshold subnetwork. Therefore,
average controllability should be conservatively interpreted as a combination of subnetwork
outflows and internal signa amplification (Kim et al., 2018). Selective analysis of
controllability relies substantially, but not solely, on strength differences in the subnetworks
identified previously (Roberts et al., 2016b). However, we observed that there was a strong
influence of topological features, which contribute to 32% of inter-subject variability.
Subgraph centrality and the clustering coefficient were included as predictors in the
regression model independent of their collinearity with node strength, demonstrating the
influence of complex network motifs such as closed walks and loops. Therefore, the present
analyses provide additional insights not provided through interrogation of edge strength
alone.

Psychiatric comorbidity in the HR group is a potentia confounder, with 8% of this group
suffering recurrent major depressive episodes. However, controllability in the HR group did
not co-vary with comorbid anxiety or depressive episodes, illness duration or total number of
mood episodes. It is also important to note that prior depression or anxiety was not an

exclusion factor for our control cohort, ensuring that a proportion of these participants aso
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had some psychiatric comorbidity (and hence avoiding a “super-healthy” cohort). The BD
cohort did not include any subjects with a current mood state of depression, hypomania, or
mania. This, plus the use of clinically titrated medication, limits the interpretability of any
putative associations with current symptom severity. Moreover, it seems unlikely that
controllability, a measure derived from structural connectivity, would be altered in the short
term by current mood state. Controllability hence appears to speak to trait rather than state
differences between our three cohorts. Again, longitudinal follow-up will be useful in
identifying the controllability precedents to the development of manic symptoms in the HR
individuals who do transition to BD. Expansion to a larger, multi-disorder cohort — including
patients with other psychotic disorders such as schizophrenia — would also allow testing for
the specificity of controllability differences in the present subnetworks. In analogy to findings
in structural connectivity, controllability differences in schizophrenia may be more
distributed than those in bipolar disorder, possibly involving core structural networks, such
the rich club (van den Heuvel et al., 2013). However, any global measure of brain-wide
controllability would be difficult to detect using the present algorithm, as the network is

normalized to prevent unstable dynamics before estimating controllability values.

There were 5 families that included a member in the HR and in the BD groups. In the original
discovery of structural network differences in this cohort, generalized estimating equations
were used to account for the relatedness of the small number of family members in the cohort
(Roberts et al., 2016b). However, practically we found use of this more complex statistical
framework had a negligible effect on the reported group differences. Likewise, removing the
family members from the analyses had no impact on the significance of the subnetwork
effects. Therefore, in the present study, we employed a standard general linear model. Future
work could focus on the subtle nuances of familial relatedness, although the need for a much

larger cohort size would be mandate a consortia, data-sharing approach.

In addition, controllability is predicated upon the reduction of a complex nonlinear system to
the simple linear model given in Equation (1). Severa points pertain to this simplification.
First, although fine-grained, fast dynamics bear the fingerprints of highly nonlinear dynamics
such as multistability (Freyer et al., 2011), linear models have been found to predict much of
the slow fluctuations and time-averaged variance in empirical recordings (Honey et al., 2009;
Deco et al., 2013). Second, complex nonlinear dynamics organize around simple underlying
attractors, including fixed points (Cocchi et al., 2017). Linear models provide a sufficient
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approximation for the behavior of dynamics in the neighborhood of such fixed points (Hirsch
et al., 2013). Linear theory, therefore, arguably provides a unique, abeit incomplete, account
of brain network controllability. Future work could harness the potential of nonlinear control
theory, although the challenges in doing so remain substantial (Slotine and Li, 1991;
Corneliuset al., 2013).

Finally, our interrogation of network controllability relied exclusively on predicted changes
in network function from the analysis of structural connectivity data Changes in task
activation and resting state functional connectivity do occur in these same participants,
overlapping partially with the networks studied here (Roberts et al., 2013; Roberts et al.,
2016a). Correlating group differences in controllability with group differences in functional
imaging would be instructive as both measures depend on the interplay of structural
connectivity and local dynamics. However, it is crucial not to conflate the two. Functional
connectivity reflects signal correlations between brain regions, as seen through the lens of
hemodynamic responses to intrinsic fluctuations and sensory inputs. Changes in local and
regional controllability may manifest as changes in distal connections, and may not
necessarily produce one-to-one changes in regiona functional connectivity (Tang et al.,
2018).

Quantifying structural network differences in high risk and psychiatric cohorts is an
important step in developing novel diagnostic markers for risk and resilience. However,
computational frameworks are required to understand the link between these illness correlates
and the phenotype (Fornito et al., 2015). In this vein, control theory can lend early insights
into distinguishing between state markers of disease, trait markers, and even adaptive changes
that may be harnessed in future clinica interventions. Network B, a putative frontostriatal
reward loop, had attenuated controllability in the HR group aone. Longitudinal follow-up of
the HR group is currently underway to assess whether network changes are protective
adaptations or reflect trait risk to the disorder. The absence of controllability deficits in
Networks C and D, despite edge strength deficits, suggests broader compensatory topological
changes: This conjecture also suggests developmental processes that could be tested through
longitudinal follow-up. Alternatively, targeted non-invasive stimulation of these brain regions
in healthy subjects represents another means of testing such predictions. Non-invasive
stimulation of weakened networks holds theoretical promise to mitigate disease transition in

high-risk individuals, or perhaps even restore cognitive-emotional control in BD patients.
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