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Abstract 

Recent investigations have used diffusion-weighted imaging to reveal disturbances in the 

neurocircuitry that underlie cognitive-emotional control in bipolar disorder (BD) and in 

unaffected siblings or children at high genetic risk (HR). It has been difficult to quantify the 

mechanism by which structural changes disrupt the superimposed brain dynamics, leading to 

the emotional lability that is characteristic of BD. Average controllability is a concept from 

network control theory that extends structural connectivity data to estimate the manner in 

which local neuronal fluctuations spread from a node or subnetwork to alter the state of the 

rest of the brain. We used this theory to ask whether structural connectivity deficits 

previously observed in HR (n=84, mean age 22.4) individuals, patients with BD (n=38, mean 

age 23.9), and age- and gender-matched controls (n=96, mean age 22.6) translate to 

differences in the ability of brain systems to be manipulated between states. Localized 

impairments in network controllability were seen in the left parahippocampal, left middle 

occipital, left superior frontal, right inferior frontal, and right precentral gyri in BD and HR 

groups. Subjects with BD had distributed deficits in a subnetwork containing the left superior 

and inferior frontal gyri, postcentral gyrus, and insula (p=0.004). HR participants had 

controllability deficits in a right-lateralized subnetwork involving connections between the 

dorsomedial and ventrolateral prefrontal cortex, the superior temporal pole, putamen, and 

caudate nucleus (p=0.008). Between-group controllability differences were attenuated after 

removal of topological factors by network randomization. Some previously reported 

differences in network connectivity were not associated with controllability-differences, 

likely reflecting the contribution of more complex brain network properties. These analyses 

highlight the potential functional consequences of altered brain networks in BD, and may 

guide future clinical interventions. 
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Highlights 
• Control theory estimates how neuronal fluctuations spread from local networks. 
• We compare brain controllability in bipolar disorder and their high-risk relatives. 

• These groups have impaired controllability in networks supporting cognitive and 
emotional control. 

• Weaker connectivity as well as topological alterations contribute to these changes. 
 
Keywords 

Bipolar disorder, controllability, brain network, cognition, emotion, genetic risk 

 

Abbreviations 

CN = control; HR = high-risk; BD = bipolar disorder; MRI = magnetic resonance imaging; 

fMRI = functional MRI; dMRI = diffusion MRI. 
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1. Introduction 

 
For much of the 20th century, neuroscience was predicated on the notion that individual 

cognitive functions could be attributed to segregated regions of the brain. In recent times, this 

paradigm has shifted toward a connectivity-based approach which emphasizes the crucial role 

of network-mediated functional integration (Sporns, 2013). In parallel, the clinical 

neurosciences have shifted from a predominantly lesion-based approach towards a 

connectomic framework (Fornito et al., 2015). However, disrupted network connections in 

the brain impact not only directly connected regions, but can also influence distant cortical 

regions through complex dynamics (Crofts et al., 2011). To characterize the spread of 

dysfunction in disease states, network connectivity and the superimposed dynamics of brain 

activity must both be considered (Stam, 2014). In human brains, the former is now readily 

accessible through advances in diffusion-weighted imaging and tractography (Jbabdi et al., 

2015; Farquharson and Tournier, 2016). However, the principles of neuronal dynamics, well-

known at the neuron level, remain incompletely understood at the macroscopic scale 

(Breakspear, 2017). 

 

Studies using diffusion-weighted imaging have identified ‘disconnection syndromes’ in 

schizophrenia (Stephan et al., 2009; Zalesky et al., 2011), depression (Bai et al., 2012), 

attention-deficit hyperactivity disorder (Cao et al., 2013), and epilepsy (Widjaja et al., 2015). 

More recently, attention has turned to bipolar disorder (BD), a psychiatric condition 

characterized by episodic disturbances in mood and cognition. While variations in mood 

around the set point of euthymia are intrinsic to human experience, excursions of mood in BD 

reach a magnitude and duration that produces substantial distress, dysfunction, and disability. 

Recent structural imaging studies of BD have consistently reported white matter alterations in 

circuits involving prefrontal, striatal, and limbic regions (Xekardaki et al., 2011; Nortje et al., 

2013; Phillips and Swartz, 2014; Roberts et al., 2016b). The disease also has a strong genetic 

component. Unaffected first-degree relatives often have attenuated affective disturbances and 

are at significantly increased risk of developing the disorder; their odds-ratio is estimated to 

lie between 7 and 14. These relatives are hence considered at high risk (HR), particularly 

younger relatives who have not passed the peak age of onset (Weissman et al., 1986; 

McGuffin et al., 2003; Mortensen et al., 2003; Perlis et al., 2004; Purcell et al., 2009; Perich 

et al., 2015). Identification of structural and functional connectivity differences between BD 

patients, their unaffected relatives, and healthy controls, have permitted a dissociation of 
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genetic, illness-expression, and adaptive influences (Frangou, 2009; Kempton et al., 2009; 

Pompei et al., 2011; Sprooten et al., 2011; Meda et al., 2012; Doucet et al., 2017; Ganzola et 

al., 2017). The neurodevelopmental risk of their first-degree relatives is supported by 

effective and functional connectivity studies that reveal alterations in fronto-limbic networks 

supporting emotion processing and regulation (Pompei et al., 2011; Frangou, 2012; 

Breakspear et al., 2015; Dima et al., 2016). We recently investigated structural network 

disturbances in both BD patients and youth at high genetic risk for the disorder (Roberts et 

al., 2016b). The high-risk (HR) group demonstrated unique disturbances in subnetworks of 

connections centering upon the inferior frontal gyri and insular cortex. These findings speak 

to an endogenous risk, present as these subjects transition through a critical developmental 

period.   

 

Structural connectivity deficits on their own, without an informed understanding of network 

topology or the overlying dynamics, comprise ‘correlation’ rather than ‘causation’. Relating 

structural network disturbances in psychiatric conditions to the illness phenotype is an 

important yet unfulfilled ambition. Whole-brain simulations of large-scale neuronal dynamics 

could theoretically achieve this goal, but their role is challenged by the complex nature of 

spatially heterogeneous local dynamics and limitations in current techniques for inferring 

nonlinear dynamics from noisy imaging data. Here, we tackle this issue with network control 

theory, which combines structural connectivity with a linear spatially homogenous estimate 

of local dynamics to model and predict the spread of neuronal signals within the brain. The 

extent of signal spread is quantified by controllability. Note that this analysis rests 

exclusively upon the mathematical analysis of structural connectivity data. It yields predicted 

changes in brain dynamics under the assumption that stable (linear) approximations serve as a 

useful guide to actual brain dynamics and, by inference, corresponding cognitive processes. 

 

Network control theory has recently been used to predict brain dynamics and stability, with 

the understanding that brain regions whose structural connectivity suggest poor 

controllability over the rest of the brain, will indeed have poorer control over brain states (Gu 

et al., 2015; Betzel et al., 2016). As neuronal activity evolves in time, functional brain states 

undergo transitions, traversing a path through a dynamic state-space landscape. Perturbations 

applied to a set of control nodes, either from an extrinsic source or from internal dynamics, 

can modulate these trajectories (Bassett and Khambhati, 2017). This input energy depends on 

the choice of control nodes, and the strength and pattern of structural connections (Kim et al., 
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2018; Wu-Yan et al., 2018). Recent work has found intriguing links between the average 

controllability of different brain systems and performance during cognitive testing (Betzel et 

al., 2016; Muldoon et al., 2016; Tang et al., 2017). 

 

In general, high brain network controllability appears to reside in those cortical regions 

typically associated with executive function, self-monitoring and emotional control including 

the default, limbic and cognitive control systems (Gu et al., 2015). The notion that 

dysregulation of affect in BD could arise from the structural disturbances impacting upon the 

controllability of these systems has intuitive appeal. We sought to test that hypothesis here. In 

other words, we hypothesize that brain regions whose structural connectivity suggests a lack 

of control over the rest of the brain, actually contribute to the poor emotional control seen in 

BD and in muted form, in their first-degree relatives. We first characterize the network 

underpinnings of average controllability, and then apply controllability analyses to brain 

regions and subnetworks where changes in bipolar and high-risk cohorts were previously 

reported (Roberts et al., 2016b). We hypothesized that the structural dysconnectivity of these 

subnetworks and regions would be associated with impairments in wider network 

controllability, particularly in the neurocircuitry that underlies cognitive-emotional control.  

 

2. Materials and methods 

2.1. Participants 

 
218 participants between 15-30 years of age comprise three richly-phenotyped groups: (i) 84 

participants at high risk (HR) of bipolar disorder (mean age 22.4), (ii) 96 controls (CNs) 

without a family history of mental illness (mean age 22.6), and (iii) 38 bipolar disorder (BD) 

patients (mean age 23.9; 18 bipolar I, 20 bipolar II) (Roberts et al., 2016b). HR and BD 

participants were recruited from families who had previously participated in a BD pedigree 

molecular genetics study or a specialized BD research clinic, as well as from clinicians, 

mental health consumer organisations, and other forms of publicity. Inclusion in the HR 

group was determined by having a first-degree relative with BD, with 19 in the HR group 

having a sibling with BD and 65 having a parent with BD. There were five families in this 

study that included both a participant in the HR group and the BD group. CN subjects were 

recruited via advertisements in print, electronic notices, and noticeboards in universities and 

local communities. Demographic and clinical data are provided in Table 1. Further 
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description of the sample ascertainment and clinical assessments for the current population 

are provided in (Perich et al., 2015).   

 

The study was conducted with approval from the University of New South Wales Human 

Research Ethics Committee (HREC Protocol 09/097) and the South Eastern Sydney Illawarra 

Health Service HREC (Protocol 09/104). Written informed consent was obtained from all 

participants. 

 

Table 1. Demographic and clinical data. 

 Controls High-

risk 

Bipolar 

disorder 

p-

value 

Post-hoc 

Effects 

Number of subjects 96 84 38 -  

Males, n (%) 43 (44.8) 39 (46.4) 15 (39.5) 0.77  

Intelligence Quotient, 

mean (SD) 

117.7 

(10.3) 

116.3 

(10.7) 

117.3 (12.0) 0.69  

Age, mean (SD) 22.6 (3.8) 22.4 (4.7) 23.9 (3.4)  0.13  

 

Lifetime DSM-IV 

diagnosis 

     

Any diagnosis, n (%) 24 (25.0) 39 (46.4) 38 (100.0) <0.001 HR > CN** 

BD > CN*** 

At least one MDE, n (%) 9 (9.4) 22 (26.2) 36 (94.7) <0.001 HR > CN** 

BD > CN*** 

BD > HR*** 

Recurrent MDD, n (%) 1 (1.0) 7 (8.3) - 0.01 HR > CN* 

Any anxiety disorder, n 

(%) 

9 (9.5) 15 (18.3) 15 (39.5) <0.001 BD > CN*** 

BD > HR* 

Any behavioural disorder, 

n (%) 

1 (1.1) 6 (7.4) 7 (18.9) <0.001 HR > CN* 

BD > CN*** 

Any substance disorder, n 

(%) 

6 (6.3) 9 (10.7) 6 (15.8) 0.220 - 

 

Symptom severity scales 

     

22 to 30 years n=51 n=41 n=25   

MADRS, mean (SD) 1.9 (3.2) 2.5 (3.7) 10.1 (9.5) <0.001 BD > CN*** 
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BD > HR*** 

15 to 21 Years n=34 n=33 n=9   

CDI, mean (SD) 

 

6.8 (3.7) 9.0 (6.6) 21.7 (8.7) <0.001 BD > CN*** 

BD > HR*** 

Age at First      

MDE, mean (SD) 19.1 (3.2) 18.5 (4.5) 15.4 (3.7) 

 

0.002 BD < CN** 

BD < HR** 

Manic episode, mean (SD) - - 17.5 (3.2) - - 

Mood episode, mean (SD) 19.1 (3.2) 18.5 (4.5) 14.9 (3.8) <0.001 BD < CN** 

BD < HR** 

Any anxiety disorder 10.3 (6.7) 13.5 (6.4) 13.3 (7.0) 0.277  

 

Psychotropic Medication 

     

Anti-depressants, n (%) 0 (0.0) 0 (0.0) 15 (39.5) - - 

Mood stabilisers, n (%) 0 (0.0) 0 (0.0) 26 (68.4) - - 

Anti-psychotics, n (%) 0 (0.0) 0 (0.0) 11 (28.9) - - 

Significance Levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

 
2.2. Construction of structural networks 

 
Diffusion-weighted images were obtained using a 3T Philips Achieva X MRI scanner and 

analyzed as previously described (Roberts et al., 2016b). In short, pre-processed data 

underwent spherical deconvolution followed by probabilistic tractography to generate 5 

million streamlines. The AAL template (Tzourio-Mazoyer et al., 2002) was subdivided into 

512 regions of uniform volume (Zalesky et al., 2010b) (see 

https://github.com/AlistairPerry/CCA). Weighted structural networks were produced by 

combining each subject’s tractography with their parcellation template (Roberts et al., 

2016b). Edge weights represent the number of streamlines connecting two parcels. Structural 

networks were thresholded to maintain the 10% top-weighted connections, as investigations 

typically analyze brain networks with densities centering upon this value (Sporns, 2013; 

Perry et al., 2015). Analyses of 5%, 15%, and maximum densities are provided in 

Supplementary Table 3, 4 and 5. 

 

2.3. Network control theory 
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Linear control theory quantifies transient responses to brief perturbations of a linearly stable 

system. In this study, structural networks were overlaid with linear dynamics evolving in 

discrete time steps (t=1,2, …) according to, 

 

��� � 1� � ����� � 	
���,      (1) 

 

where ���� is a vector denoting the simulated state of all nodes i at time �. The matrix � is 

the structural connectivity matrix, with element ��� representing the number of white matter 

streamlines connecting regions (or nodes) � and 
. The input matrix 	 specifies the control 

nodes in the brain (those receiving the perturbation), 

 

	 � ��� �� … ���, 

 

where ��  is a column vector with a ‘1’ in the position(s) corresponding to the control node(s). 

The variable 
��� is the energy applied to the set of control nodes 	 at time �.  

 

The simulated states x represent underlying neural states (firing rates, membrane 

conductances, etc.), which in turn support the cognitive, perceptual, and emotional processes 

arising in the corresponding brain networks. Individual subject networks were normalized to 

prevent unstable dynamics (see Supplementary material).  

 

Network control theory thus predicts the response of a complex system to perturbations, such 

as sensory (or physiological) perturbations. This linear system is a simplification of the full 

nonlinear neural dynamics that would more realistically embody the behavior of large-scale 

brain dynamics (Breakspear, 2017). However, linear controllability of a structural network is 

usually sufficient to imply controllability of nonlinear dynamics overlaid on the same 

structure, because linear dynamics are accurate around stable fixed points and periodic 

attractors (local, stable equilibria and oscillations) (Deco et al., 2008). Our choice of discrete-

time dynamics is based on prior work showing that controllability is similar in discrete- and 

continuous-time settings (Gu et al., 2015). Note that the time steps of the model are arbitrary 

in the sense that shorter (or longer) time steps can be accommodated by simply scaling the 

magnitude of the elements of A and B up (or down).   
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Average controllability for a set of control nodes is the average energy needed to steer the 

system to any target state in finite time (Fig. 1). We use the mean impulse response energy as 

a measure of average controllability as it satisfies a relation of inverse proportionality. The 

impulse response is the total magnitude and extent of signal spread when a stimulus signal is 

applied to a node or subnetwork (see Supplementary material for further details). In the rest 

of this paper, we refer to average controllability simply as ‘controllability’ for brevity, noting 

that there are other independent controllability metrics that have been studied in the setting of 

structural brain networks (Wu-Yan et al., 2018). The code pertaining to the calculation of 

average controllability from each participant’s structural network matrix is available for 

download from here (https://www.danisbassett.com/uploads/1/1/8/5/11852336/ave_control-

2.m). 

 

 

Figure 1. Average controllability. (a) Schematic representation of the mean impulse response energy 

required to steer a dynamic network from its base “resting” state (blue ball) to either an easy-to-reach 

state (red) or a hard-to-reach state (green). (b) Schematic representation of corresponding changes 

from the baseline state (centre) to an easy-to-reach state (left, red) or a hard-to-reach state (right, 

green). Arrow depicts the node receiving the perturbation. 
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2.4. Contributors to average controllability 

 
Nodal strength is the weighted sum of each node’s connections to its neighbors on the 

network, and has an important influence on controllability (Gu et al., 2015). However, other 

network features also influence controllability, such as the distribution of paths of different 

lengths as measured by the communicability matrix (Betzel et al., 2016; Gu et al., 2017) and 

the diversity of connections strengths from the controlled node(s) to the target node(s) (Kim 

et al., 2018). Some topological factors, such as scale-freeness, are captured in the distribution 

of node strengths, while others, such as clustering, can occur independently of the strength 

distribution. How much variance each of these statistics accounts for in the controllability 

estimates can depend on the architecture of the specific graph under study (Wu-Yan et al., 

2018). Therefore, we first sought to disambiguate the contribution to network controllability 

of edge strength from higher order measures of network topology in our data. 

 

To examine the impact of strength distribution on variability in controllability for each node 

in structural brain graphs, that node’s controllability was calculated before and after strength-

preserving randomization (Maslov and Sneppen, 2002). If these values are perfectly 

correlated, then strength accounts for all of that node’s controllability: Lower correlations 

imply that other network features influence that node’s controllability. Topological network 

features can contribute to between-subjects and between-nodes variability in controllability. 

We assessed the presence and strength of such relations separately by correlating 

controllability values across subjects or across nodes (see Supplementary material for more 

detail). The coefficient of determination was calculated as the square of the Spearman rank 

correlation coefficient. 

 

We next examined how other widely adopted nodal measures of network topology contribute 

to average controllability; this is important because our intuitions about brain graphs are 

heavily influenced by prior studies using these measures of network topology, independent of 

posited dynamics. To identify which of these measures are correlated with estimates of 

controllability, stepwise linear regression was implemented using entry and removal 

probabilities of 0.05 and 0.10, respectively. The nodal measures that were entered in the 

regression model were node strength, local clustering coefficient, subgraph centrality, local 

efficiency, betweenness centrality, within-module degree z-score, and participation 

coefficient. The latter two measures were calculated based upon the modular decomposition 
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of the group average network from the healthy control participants, detected with a Louvain-

like locally greedy algorithm for maximization of the modularity quality (Rubinov and 

Sporns, 2010). The nodal values for each node were averaged across all CN participants 

before the stepwise regression was performed. 

 

 

 

 

2.5. Controllability at different levels of network granularity 

 
We calculated group differences in average controllability metrics at three levels of network 

granularity: single nodes, subnetworks of nodes, and communities derived from intrinsic 

functional connectivity patterns. 

2.5.1. Node level 

 
Our previous analyses of structural connectivity identified seven brain regions with 

differences in nodal strength between CN, HR, and BD groups (Roberts et al., 2016b). Here, 

we calculated the average controllability of these seven nodes; that is, the ability to control 

whole brain dynamics through a stimulus to each of these individual nodes. 

 

Group differences in average controllability were elicited with a one-way ANOVA for all 

seven nodes with a false discovery rate (FDR) correction. We then performed a one-tailed t-

test of surviving nodes using previously identified group contrasts, and a final FDR 

correction step. The Benjamini-Hochberg procedure (α = 0.05) was used for FDR correction. 

2.5.2. Subnetwork level 

 
We previously analyzed group effects in these data using the network-based statistic (NBS), a 

permutation-based method which employs topological inference to control for family-wise 

error when identifying subnetworks with group-wise differences in connection strength 

(Zalesky et al., 2010a). Connectivity differences between CN, HR, and BD were observed in 

four subnetworks (Roberts et al., 2016b) (Fig. 2). In this study, we calculated the 

controllability of all nodes within these subnetworks. Subnetwork average controllability is 

the sum of average controllability values for all nodes in the subnetwork. Intuitively, this 
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measures the impulse response to a stimulus applied across the subnetwork. This impulse 

response depends on (i) the subnetwork’s external connectivity to surrounding regions, and 

(ii) the internal connections within the subnetwork, which amplify the signal by internal 

excitatory feedback (Fig. 3) (Kim et al., 2018). Because these networks were discovered by 

the NBS, they have, by definition, weaker internal connectivity but relatively preserved 

external connectivity. Hence, subnetwork average controllability here is a surrogate for 

abnormal internal signal amplification. 

 

Figure 2. Subnetworks showing significant between-group differences as identified by the 

network-based statistic in the previous investigation (Roberts et al., 2016b). Connections (lines) 

between nodes (circles) with significant group differences in streamline count, with nodes coloured 

according to their previously identified node degree. Red circles indicate high-degree hub regions (top 

15%), while grey circles represent non-hubs. CN, controls; HR, high risk; BD, bipolar disorder; L, 

left; R, right; α, azimuth. Figure adapted with permission from (Roberts et al., 2016b). 
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Figure 3. Schematic of signal spread from a closed loop of three nodes (purple circles in left 

panels). The size of the circle indicates the corresponding magnitude of activation across the 

subnetwork. Attenuated intranetwork (b) or outgoing connections (c) (grey lines) can diminish the 

impulse response. 

 

To ascertain the influence of network topology on group differences in subnetwork 

controllability, the subnetwork analysis was repeated after strength-preserving randomization. 
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If the group differences were preserved, then these differences could be attributed primarily 

to differences in the strength of the nodes within each subnetwork. Changes in group 

differences following strength-preserving randomization reflect contributions from higher 

order topological features. 

 

The following statistical protocol was used: a one-way ANOVA of group differences in each 

subnetwork’s average controllability, then FDR correction of the four resulting p-values. 

Two-tailed t-tests were then performed for surviving binary contrasts followed by a final 

FDR correction step for the individual possible group effects. 

 

2.5.3. Community level  

 
Nodal-regions were assigned to widely adopted functional network affiliations derived from 

resting state fMRI data (Yeo et al., 2011). The community affiliation of a brain-region was 

identified by its best spatial fit within one of the seven functional networks (Perry et al., 

2017) (see https://github.com/AlistairPerry/CCA). As with the subnetwork controllability, the 

average controllability of a community is the sum of the controllability values for all nodes 

within that community. A one-way ANOVA was first used to test for group-wise differences 

in the controllability of each community, followed by FDR-correction.  

 

3. Results 

3.1. Contributors to controllability 

 
The nodal strength and average controllability of each node were positively correlated 

(R=0.89; p<0.0001, see Supplementary material for a formal derivation). This association is 

consistent with previous analyses of other structural connectomic data in the brain (Gu et al., 

2015) and non-brain graphical models (Wu-Yan et al., 2018). Regions of high average 

controllability, with the potential to shift the rest of the brain easily between states, are 

topologically well-connected regions.  

 

The brain network factors underlying average controllability were probed with a 

randomization scheme that preserved node-strength distribution within the network but 

destroyed higher-order topological properties. Strength distribution accounted for 87% of 
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between-node variability in average controllability within a subject and 68% of between-

subject variability. The remainder can hence be attributed to other topological factors. Figure 

4 demonstrates the shrinkage of the mean and variance of subject-mean controllability values 

after network randomization.   

 
Figure 4. Distribution of average controllability values averaged across nodes in the original data 

(green) and in the random surrogate networks (red). 

 

To quantify the contribution of topological factors to variability in controllability, stepwise 

linear regression was employed to model the putative contributions of various nodal measures 

(Table 2). As expected, nodal strength was the strongest predictor of average nodal 

controllability. However, other network features also make substantial contributions to 

controllability; the next most strongly predictive measure was subgraph centrality, followed 

by the clustering coefficient. Subgraph centrality is defined by the weighted sum of closed 

walks of different path lengths starting and ending at the nodal region (Estrada and 

Rodriguez-Velazquez, 2005). Clustering reflects the number of closed cycles with three 

edges. Average controllability, the impulse response to a stimulus, is hence magnified by 

positive feedback via closed walks and loops (Supplementary Figure 1). 

 

Table 2. Stepwise linear regression of average controllability. 

Variable Standardized 

beta  

Full correlation Partial correlation 

Node strength 0.648** 0.886 0.587 

Subgraph centrality 0.297** 0.608 0.600 
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Clustering coefficient 0.152** 0.388 0.387 

Within-module z-score 0.098* 0.793 0.114 

Adjusted R2 = 0.887.  

Excluded variables: local efficiency, betweenness centrality, participation coefficient. 

Significance levels: * p<0.01, ** p<0.001 

 

3.2. Controllability in high-risk and bipolar disorder subjects 

 
Having established that node strength, subgraph centrality, clustering coefficient, and within-

module z-score contribute to network controllability in our data, we next studied between-

group differences in controllability at the three levels of granularity. 

3.2.1. Node level 

 
Six out of seven regions previously identified as having reduced node strength in HR and BD 

groups also show significant between-group controllability differences. Reductions in 

average controllability were observed in the left insula, left parahippocampal gyrus, left 

middle occipital gyrus, left superior frontal gyrus, right inferior frontal gyrus / pars 

triangularis, and right precentral gyrus (Supplementary Table 1). 

3.2.2. Subnetwork level 

 
We next studied average controllability differences in four lateralized subnetworks (Fig. 2, 

Supplementary Table 2). Significant average controllability differences (p<0.05, corrected) 

were seen in subnetworks A and B, but not C or D (Fig. 5). Controllability of Network A, 

including the left superior/inferior frontal gyri, postcentral gyrus, insula, and pars triangularis 

(Fig. 1A), was reduced in BD compared to CN and HR (�2 =0.043, p<0.004 for BD vs. CN, 

p<0.024 for BD vs. HR). Average controllability of Network B, involving the right 

superior/middle/inferior frontal gyri, superior temporal pole, putamen, caudate, pars 

triangularis, and pars orbitalis (Fig. 1B) was reduced in HR subjects compared to CNs 

(p<0.008, �2 =0.037). Network C showed no significant group differences (p=0.544). 

Average controllability differences approached significance (p=0.059) between CN and the 

BD group in Network D.  
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These effects were very similar across a range of connection densities within the thresholded 

networks. The BD vs. HR contrast of Network A became nonsignificant for connection 

densities of > 15% (p=0.024 vs. 0.027, see Supplementary Table 3, 4 and 5). 

 

Figure 5. Mean average controllability for subnetworks with identified significant group 

differences. Error bars show standard error of the mean. CN, controls; HR, high-risk; BD, bipolar 

disorder.  

 

Group differences in Networks A and B were reduced after strength-preserving 

randomization, highlighting the role of network topology (Table 2), consistent with (Kim et 

al., 2018). 

 

 

Table 2. Differences between cohort-mean controllability values for each group before and 

after strength-preserving randomization. 

 Original Surrogate 

Network A: CN-BD 0.059 0.012 

Network A: HR-BD 0.041 0.008 

Network B: CN-HR 0.043 0.008 

3.2.3. Community level  

 
We finally addressed average controllability at the scale of brain communities whose 

specialized functional roles have been previously documented (Yeo et al., 2011). There were 
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substantial differences in controllability values across these communities, with the limbic and 

frontoparietal modules showing the highest per-node average controllability (Fig. 6). These 

differences reflected, but were not strictly enforced by, differences in average node strength. 

For example, the limbic and frontoparietal communities switch relative positions of strength 

versus controllability. However, no group-wise differences in average controllability of these 

communities survived FDR correction.  

Figure 6. Average controllability of communities across the three groups. (a) Corresponding 

affiliation of each node to the functional communities derived from (Yeo et al., 2011). (b) Mean node 

strength, and (c) average controllability (normalized by community size) in each group and each 

functional module. Errors bars show standard error of the mean.  

CN, controls; HR, high-risk; BD, bipolar disorder. 

 

3.2.4. Auxiliary analyses  
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We observed a significant relationship (after FDR-correction) between age and controllability 

in the CN group (r=0.291, p=0.004). However, for the group contrasts of interest, there were 

no significant age x group interactions for average controllability (Network A CN vs. BD 

p=0.07; Network A HR vs. BD p=0.09; Network B CN vs. HR p=0.93; Supplementary 

Figure 2).  

 

The conversion from HR to BD corresponds to the occurrence of a manic or hypomanic 

episode, the incidence of which peaks in the third decade of life (Saunders and Goodwin, 

2010). Future risk of conversion is therefore higher in our younger HR participants, reducing 

towards the upper age limit of the cohort. To study the network correlates of this effect, we 

stratified HR subjects by age, divided at the mean age of illness onset (< 22 or ≥ 22 years). 

The younger HR sub-cohort had reduced Network B controllability compared to the older 

group (p=0.02, Cohen’s d = 0.52). No difference was observed in Network A.   

 

BD cleaves into two clinical subtypes, with psychotic symptoms occurring in the elevated 

(manic) phase of bipolar Type I but not during the (hypomanic) phase of those with bipolar 

Type II. Interestingly, participants with bipolar Type II had significantly weaker 

controllability for Network A than subjects with bipolar Type I (p=0.01, Cohen’s d = 0.88). 

No significant difference was seen for Network B.  

 

The occurrence of a major depressive episode in HR individuals may represent an important 

early stage in the development of BD (Perich et al., 2015). However, the average 

controllability for Networks A and B in HR individuals was not significantly modulated by a 

history of anxiety or major depression (Supplementary Table 9). Similarly, measures of 

illness severity in the BD group (illness duration and total number of mood episodes) were 

not significantly associated with the average controllability of the two subnetworks 

(Supplementary Table 10).  

 

Even outside of frank mood episodes, patients with BD often describe emotional 

dysregulation. We thus also studied putative associations with the Cognitive Emotion 

Regulation Questionnaire scores (Garnefski and Kraaij, 2007) – a well validated self-rated 

measure of cognitive coping strategies. After FDR correction, two subscales of the CERQ 

were significantly different between groups, with BD subjects having low ‘positive 

refocusing’ and ‘high catastrophizing’ scores. Other subscales – self-blame, rumination, and 
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positive appraisal – approached significance (Supplementary Table 11). Given the CERQ 

subscale scores are highly correlated, principal component analysis (PCA) was employed to 

reduce the dimensionality of the subscales to a smaller number of latent factors. The first 

principal component (i.e. factor), which captures the largest variance in the original CERQ 

subscales scores, was also significantly different between groups (p=0.0004). However, none 

of the subscales, nor the first principal component, was significantly correlated with 

controllability in Network A or in Network B within the HR or BD groups (p>0.327). 

 

4. Discussion 

 
Quantifying brain structural network disturbances in psychiatric conditions provides novel 

insights into their neurobiological correlates, yet lacks a direct explanatory link to the illness 

phenotype. We previously observed structural network changes in those with, or at high 

genetic risk of BD (Roberts et al., 2016b). Here we used network control theory to address 

the theoretical gap between these structural network disturbances and the dysregulation of 

cognitive-emotional function that characterizes BD and those at HR. Specifically, we asked 

whether focal and distributed network disturbances observed in HR and BD subjects 

translated to impaired brain controllability as predicted by linear network control theory. 

Controllability deficits were seen in six out of seven key brain regions and also in two out of 

four subnetworks: a left-sided network involving the insula and postcentral gyrus in BD, and 

in a right-lateralized PFC-striatal subnetwork in HR. Therefore, group differences in network 

strength – seen in all four subnetworks - do not fully account for group differences in 

controllability. There were no group differences in controllability in seven widely studied 

functional communities, suggesting that the controllability deficits in BD originate focally 

rather than diffusely. We now consider the conceptual and clinical implications of these 

findings. 

 

The average controllability quantifies the capacity of input to a subnetwork to manipulate the 

transition of broader brain states (Gu et al., 2015). Given structural connectivity data, it 

predicts the network-wide impulse response to a stimulus applied to a node or subnetwork of 

interest, (Muldoon et al., 2016). This interpretation is instructive, as signal spread depends on 

(i) amplification by positive feedback within the subnetwork, and (ii) links between the 

subnetwork and its surrounds (Kim et al., 2018). We found that the top three predictors of 

average controllability in our data were node strength, subgraph centrality, and local 
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clustering coefficient, highlighting the role of closed motifs such as triangles and larger loops 

in amplifying positive feedback, in addition to the role of strong connections in propagating 

that energy outwards. Topological factors such as these amplifying motifs were responsible 

for 32% of the between-subject variability in controllability. Removal of these topological 

factors by network randomization reduced between-subject and between-group differences. 

Hence the present work builds upon our previous observation of between-group subnetwork 

strength differences (Roberts et al., 2016b) by showing how these, as well as other network 

features, translate into group differences in subnetwork average controllability.  

 

Impaired controllability was seen in six brain regions and two lateralized networks. Although 

Network A (involving the left superior and inferior frontal gyri, insula, and postcentral gyrus) 

had reduced connectivity in HR compared to CN, it showed impaired controllability 

exclusively in the BD group. Despite the loss of power imposed by splitting our clinical BD 

group, Network A showed significantly weaker controllability in BD Type II than BD Type I, 

consistent with recent evidence of disparate underlying etiologies (Song et al., 2018). 

Network A thus represents a putative subgroup biomarker, although this clearly requires 

replication in an independent data set. NBS identifies subnetworks by comparing mean edge 

weights across groups, but is insensitive to topological group differences which would also 

influence controllability. Such effects are also consistent with the loss of significant group 

differences with strength-preserving randomization. The regions and connections of Network 

A overlap with previous demonstrations of changes in fractional anisotropy for tracts 

involving the left superior frontal gyrus (Adler et al., 2006), decreased effective connectivity 

between the left dorsolateral prefrontal cortex (PFC) and the left inferior frontal gyrus 

(Breakspear et al., 2015), hypo-activation in the ventrolateral PFC during emotionally salient 

tasks (Chen et al., 2011; Phillips and Swartz, 2014), and altered reward processing-related 

activity in the left striatum and left ventrolateral PFC (Bermpohl et al., 2010; Nusslock et al., 

2012). Whereas the present study is only concerned with structural imaging data, these latter 

studies highlight corresponding changes in the activity and function of the same networks, 

possibly reflecting the consequences of network controllability. Altered connectivity between 

these frontal areas and the insula, a region involved in interoceptive processes (Critchley et 

al., 2004), may mediate interplay between dysfunctional cognition and emotional homeostasis 

in BD. That is, impaired signal amplification from these circuits, arising from reduced 

controllability, could produce the loss of emotional control that characterizes BD. 
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We also observed reduced controllability in Network B (which encompassed the right frontal 

gyri, superior temporal pole, putamen, and caudate nucleus), in this case, for HR compared to 

CN. Existing research has also noted structural and functional changes in the right frontal 

white matter (Bruno et al., 2008), right ventrolateral PFC (Hajek et al., 2013), putamen and 

caudate (Haller et al., 2011), and right amygdala (Torrisi et al., 2013). PFC dysregulation has 

been a central theme in the psychiatric neuroimaging literature. This region is involved in 

executive function, cognition, planning, and reward. Attenuated controllability of this right-

lateralized frontostriatal reward loop, seen in HR subjects alone, may reflect a marker of 

resilience or risk.  Alternatively, psychotropic medications taken by the BD group may have 

altered structural connectivity (Dusi et al., 2015). However, both the HR and BD groups had 

the same mean controllability for this subnetwork (11.30 vs. 11.30) but only the CN-HR 

contrast was significant while CN-BD was not. The lack of significance for the BD contrast 

may reflect loss of power (associated with the smaller BD cohort) and/or increased inter-

subject variance in the BD group. Also of interest, controllability of Network B was most 

strongly reduced in the younger sub-cohort of HR subjects, who have not yet passed the peak 

age of illness onset and are hence, on average, at higher future risk of BD compared to the 

older HR participants. Longitudinal follow-up will allow us to draw more definitive 

conclusions by seeing if individual differences in controllability predict later conversion to 

BD. 

 

Although we also selected Networks C and D for further analyses based on our prior 

observation of group differences in intra-network connectivity (Roberts et al., 2016b), we did 

not observe group differences in average controllability. Therefore, network strength 

differences alone are not sufficient to confer differences in controllability. 

 

The different network controllability effects in the HR group compared to BD are intriguing. 

Controllability deficits that are specific to BD may reflect a purer form of illness risk and 

expression than those in HR, which rather reflect a mix of risk and resilience but not (yet) BD 

expression. Effects in BD alone may also be state markers of medication exposure or the 

consequences of recurrent mood episodes. The left-hemisphere disturbances seen in BD alone 

may reflect the left-lateralization of autonomic processes in fronto-temporal areas (Guo et al., 

2016). Moreover, the edges in Network A are more distributed across the cortex – potentially 

allowing propagation of fluctuations to cognitive, emotional, interoceptive, and 

somatosensory areas.  
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The objectives of the present study rested on the conjecture that diminished controllability in 

emotional and cognitive control networks would underlie the emotional dysregulation seen in 

BD and HR participants. Because the presence of a frank mood disturbance was an exclusion 

criteria for our study, we studied the Cognitive Emotion Regulation Questionnaire (CERQ) as 

a more nuanced proxy to this construct (in contrast to symptom scores). There were 

significant CERQ subscore differences between BD and CN, and to a lesser degree, between 

HR and CN. These parallel our group differences in controllability. However, controllability 

did not covary with CERQ scores within each group. It is possible that controllability 

captures the gross group differences in cognitive coping strategies between the groups, but 

not the more nuanced differences between individuals within these groups. A larger study 

may provide clarification as statistical power was limited by group size in HR and BD, as 

well as adjustment for multiple testing across both subnetworks and 9 subscales.   

 

Several caveats of this study need to be considered. Interpreting subnetwork controllability as 

a surrogate for signal amplification assumes that external edges are preserved. Edges that are 

outside a subnetwork discovered through statistical testing may be weakened but with 

insufficient magnitude to be included in the final supra-threshold subnetwork. Therefore, 

average controllability should be conservatively interpreted as a combination of subnetwork 

outflows and internal signal amplification (Kim et al., 2018). Selective analysis of 

controllability relies substantially, but not solely, on strength differences in the subnetworks 

identified previously (Roberts et al., 2016b). However, we observed that there was a strong 

influence of topological features, which contribute to 32% of inter-subject variability. 

Subgraph centrality and the clustering coefficient were included as predictors in the 

regression model independent of their collinearity with node strength, demonstrating the 

influence of complex network motifs such as closed walks and loops. Therefore, the present 

analyses provide additional insights not provided through interrogation of edge strength 

alone. 

 

Psychiatric comorbidity in the HR group is a potential confounder, with 8% of this group 

suffering recurrent major depressive episodes. However, controllability in the HR group did 

not co-vary with comorbid anxiety or depressive episodes, illness duration or total number of 

mood episodes. It is also important to note that prior depression or anxiety was not an 

exclusion factor for our control cohort, ensuring that a proportion of these participants also 
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had some psychiatric comorbidity (and hence avoiding a “super-healthy” cohort). The BD 

cohort did not include any subjects with a current mood state of depression, hypomania, or 

mania. This, plus the use of clinically titrated medication, limits the interpretability of any 

putative associations with current symptom severity. Moreover, it seems unlikely that 

controllability, a measure derived from structural connectivity, would be altered in the short 

term by current mood state. Controllability hence appears to speak to trait rather than state 

differences between our three cohorts.  Again, longitudinal follow-up will be useful in 

identifying the controllability precedents to the development of manic symptoms in the HR 

individuals who do transition to BD. Expansion to a larger, multi-disorder cohort – including 

patients with other psychotic disorders such as schizophrenia – would also allow testing for 

the specificity of controllability differences in the present subnetworks. In analogy to findings 

in structural connectivity, controllability differences in schizophrenia may be more 

distributed than those in bipolar disorder, possibly involving core structural networks, such 

the rich club (van den Heuvel et al., 2013). However, any global measure of brain-wide 

controllability would be difficult to detect using the present algorithm, as the network is 

normalized to prevent unstable dynamics before estimating controllability values. 

 

There were 5 families that included a member in the HR and in the BD groups. In the original 

discovery of structural network differences in this cohort, generalized estimating equations 

were used to account for the relatedness of the small number of family members in the cohort 

(Roberts et al., 2016b). However, practically we found use of this more complex statistical 

framework had a negligible effect on the reported group differences. Likewise, removing the 

family members from the analyses had no impact on the significance of the subnetwork 

effects. Therefore, in the present study, we employed a standard general linear model. Future 

work could focus on the subtle nuances of familial relatedness, although the need for a much 

larger cohort size would be mandate a consortia, data-sharing approach.   

 

In addition, controllability is predicated upon the reduction of a complex nonlinear system to 

the simple linear model given in Equation (1). Several points pertain to this simplification. 

First, although fine-grained, fast dynamics bear the fingerprints of highly nonlinear dynamics 

such as multistability (Freyer et al., 2011), linear models have been found to predict much of 

the slow fluctuations and time-averaged variance in empirical recordings (Honey et al., 2009; 

Deco et al., 2013). Second, complex nonlinear dynamics organize around simple underlying 

attractors, including fixed points (Cocchi et al., 2017). Linear models provide a sufficient 
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approximation for the behavior of dynamics in the neighborhood of such fixed points (Hirsch 

et al., 2013). Linear theory, therefore, arguably provides a unique, albeit incomplete, account 

of brain network controllability. Future work could harness the potential of nonlinear control 

theory, although the challenges in doing so remain substantial (Slotine and Li, 1991; 

Cornelius et al., 2013). 

 

Finally, our interrogation of network controllability relied exclusively on predicted changes 

in network function from the analysis of structural connectivity data. Changes in task 

activation and resting state functional connectivity do occur in these same participants, 

overlapping partially with the networks studied here (Roberts et al., 2013; Roberts et al., 

2016a). Correlating group differences in controllability with group differences in functional 

imaging would be instructive as both measures depend on the interplay of structural 

connectivity and local dynamics. However, it is crucial not to conflate the two. Functional 

connectivity reflects signal correlations between brain regions, as seen through the lens of 

hemodynamic responses to intrinsic fluctuations and sensory inputs. Changes in local and 

regional controllability may manifest as changes in distal connections, and may not 

necessarily produce one-to-one changes in regional functional connectivity (Tang et al., 

2018). 

 

Quantifying structural network differences in high risk and psychiatric cohorts is an 

important step in developing novel diagnostic markers for risk and resilience. However, 

computational frameworks are required to understand the link between these illness correlates 

and the phenotype (Fornito et al., 2015). In this vein, control theory can lend early insights 

into distinguishing between state markers of disease, trait markers, and even adaptive changes 

that may be harnessed in future clinical interventions. Network B, a putative frontostriatal 

reward loop, had attenuated controllability in the HR group alone. Longitudinal follow-up of 

the HR group is currently underway to assess whether network changes are protective 

adaptations or reflect trait risk to the disorder. The absence of controllability deficits in 

Networks C and D, despite edge strength deficits, suggests broader compensatory topological 

changes: This conjecture also suggests developmental processes that could be tested through 

longitudinal follow-up. Alternatively, targeted non-invasive stimulation of these brain regions 

in healthy subjects represents another means of testing such predictions. Non-invasive 

stimulation of weakened networks holds theoretical promise to mitigate disease transition in 

high-risk individuals, or perhaps even restore cognitive-emotional control in BD patients. 
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