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ABSTRACT 
 
Repeated cycles of infection-associated lower airway inflammation drives the pathogenesis of persistent 
wheezing disease in children. Tracking these events across a birth cohort during their first five years, we 
demonstrate that >80% of infectious events indeed involve viral pathogens, but are accompanied by a 
shift in the nasopharyngeal microbiome (NPM) towards dominance by a small range of pathogenic 
bacterial genera. Unexpectedly, this change in NPM frequently precedes the appearance of viral 
pathogens and acute symptoms. In non-sensitized children these events are associated only with “transient 
wheeze” that resolves after age three. In contrast, in children developing early allergic sensitization, they 
are associated with ensuing development of persistent wheeze, which is the hallmark of the asthma 
phenotype. This suggests underlying pathogenic interactions between allergic sensitization and anti-
bacterial mechanisms. 
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INTRODUCTION 
 
Despite advances in modern medicine, acute respiratory tract illnesses (ARIs) continue to be a global 
health concern. They are a major cause of morbidity and mortality, especially in infants and young 
children whose immune systems have not yet matured (Ferkol and Schraufnagel, 2014; Zar and Ferkol, 
2014), and are the most common reason for antibiotic use in children (Australian Commission on Safety 
and Quality in Health Care, 2017). The upper airway is a reservoir for microbial communities including 
viruses, bacteria and fungi, and these have implications for respiratory health and disease. However, 
current research into the aetiology of ARIs focuses primarily on viruses, most notably respiratory 
syncytial virus (RSV) and human rhinoviruses (RV). The bacterial microbiome is increasingly recognised 
as playing an important role in the susceptibility and severity of ARIs, as well as non-communicable 
respiratory diseases such as asthma (de Steenhuijsen Piters et al., 2015; Durack et al., 2016; Man et al., 
2017; Vissers et al., 2014). Infancy is a critical time when microbial colonization may influence an 
individual’s future respiratory health or disease; indeed, epidemiological data show that repeated ARIs 
during early childhood are a major risk factor for wheeze and asthma that persist into adulthood (Holt and 
Sly, 2012). 
 
In recent years, we and others have described the nasopharyngeal microbiome (NPM) in early life (from 
birth to one or two years of age) (Biesbroek et al., 2014; Bisgaard et al., 2007; Bogaert et al., 2011; Bosch 
et al., 2017; Teo et al., 2015; Tsai et al., 2015). These independent studies in different human populations 
have reported strikingly similar findings. Firstly, the NPM appears to be simple in structure, with distinct 
profiles dominated by a single bacterial operational taxonomic unit (OTU) or genus. A Staphylococcus-
dominated profile can be observed in early infancy (from one week) but its prevalence decreases sharply 
over the first year, to be replaced by Corynebacterium, Alloiococcus (Dolosigranulum) or Moraxella-
dominated profiles, with transient incursions of Streptococcus or Haemophilus-dominated profiles during 
ARIs. Secondly, NPM composition influences both microbiota stability and ARI risk and severity. One 
study of 60 infants from Netherlands in the first two years of life reported a Moraxella-dominated or 
mixed Corynebacterium/Dolosigranulum profile at 1.5 months of age was associated with high NPM 
stability and low frequency of parent reported ARIs in the subsequent period (Biesbroek et al., 2014). Our 
study of 234 infants from Australia in the first year of life also found that Moraxella-dominated and 
Alloiococcus-dominated profiles were more stable than others, but a Moraxella-dominated NPM at two 
months of age was associated with earlier onset of first ARI (Teo et al., 2015). There were also common 
environmental correlates of the NPM which differed slightly across studies but included mode of 
delivery, infant feeding, season, crowding or exposure to other children, recent antibiotic use, and prior 
infections. Many of these studies, however, were limited to samples collected either during illness or 
during periods of health, and none have yet elucidated the dynamics of the NPM over the entire pre-
school period. 
 
Understanding patterns of airway microbial colonization and its association with ARIs and subsequent 
wheeze phenotypes is an important first step towards the potential manipulation of the microbiome in 
treating or preventing acute or chronic respiratory disease. In this study, we performed a comprehensive 
characterization of the largest longitudinal collection of nasopharyngeal samples reported to date – over 
3,000 samples from 244 children collected during periods of respiratory health and acute illness over the 
first five years of life, as part of the prospective Childhood Asthma Study (CAS) (Kusel et al., 2008; 
Kusel et al., 2006; Kusel et al., 2007; Kusel et al., 2012; Teo et al., 2015). We have previously reported 
an association between viral-associated lower respiratory infections (LRIs) in infancy, especially those 
accompanied by fever, and the development of persistent wheeze and asthma in later childhood at five 
and ten years of age in this cohort, particularly for infants who developed allergic sensitization by age two 
(Kusel et al., 2007; Kusel et al., 2012). In addition, we recently reported patterns of bacterial colonization 
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in samples collected during the first year of life, and found that specific NPM profiles were associated 
with ARI symptom severity, independent of the effect of common respiratory viruses (Teo et al., 2015). 
Here, we address several major research gaps: (i) we examine the relationships and longitudinal dynamics 
of NPM colonization within children, in health and during ARI episodes, across the first five years of life; 
(ii) we investigate changes in the association of ARI symptoms with specific NPM taxa over the 
preschool years; (iii) we address whether the appearance of viral pathogens in the NPM is a harbinger of 
change in local bacterial populations, or vice versa; and (iv) we investigate the relationship between NPM 
colonization, early allergic sensitization and future persistent wheeze at five years of age.  
 
 
 
RESULTS 
 
We characterized the bacterial microbiome of 3,014 nasopharyngeal samples from 244 infants in their 
first five years of life, using 16S rRNA V4 region amplicon sequencing (Methods). This included 1,018 
“healthy” samples (sampled regularly at 6- or 12-month intervals in the absence of symptoms of 
respiratory illness; median 5 samples per child, IQR 3-6), 964 samples from upper respiratory illnesses 
(URIs; median 4 samples per child, IQR 2-6), and 1,032 samples from lower respiratory illnesses (LRIs; 
median 4 samples per child, IQR 2-7) (Methods). 
 
Composition of upper airway microbiota in the first five years of life 
Across all 3,014 samples, the dominant bacterial genera were Moraxella (40.1%), Streptococcus (13.3%), 
Corynebacterium (12.1%), Alloiococcus (11.1%), Haemophilus (8.6%), and Staphylococcus (4.2%). 
These made up 89% of all reads, consistent with previously reported results in this cohort for the first 
year of life (Teo et al., 2015) (Figure 1A, S1A). Each of the six major genera was comprised of multiple 
operational taxonomic units (OTUs), although the majority were extremely rare. OTU distributions within 
Moraxella, Alloiococcus and Corynebacterium were less diverse, with ≤5 OTUs making up ≥97% of all 
reads from each respective genus at any time period (Figure S1B). OTU distributions within 
Streptococcus, Haemophilus, and Staphylococcus were more diverse, although still dominated by one or 
two OTUs (Figure S1B). The phylogenetic relationships between OTUs are indicated by the tree in 
Figure 1A, and details of their distribution and predicted species associations are discussed in 
Supplementary Text, Figure S2 and Table S2. 
 
The distribution of the relative abundances of common OTUs across samples was highly structured 
(heatmap in Figure 1A). We used hierarchical clustering to assign each sample to one of 15 microbiome 
profile groups (MPGs) (Figure 1). Most MPGs were dominated by one OTU, which was used to label 
each MPG (Figure 1, Table S1). The exceptions were two ‘mixed’ MPGs. ‘Mixed1’ MPG contains 
samples (n=327) in which the common OTUs were all at low abundance, and the vast majority of mixed1 
samples (97%) were not dominated by any OTU; the rest were mostly ARI samples dominated by genera 
that likely represent known respiratory pathogens (Mycoplasma, Bordatella, Neisseria, Pseudomonas, 
Prevotella). ‘Mixed2’ MPG (n=51) represents a heterogeneous cluster with no distinct profile. The 
distribution of MPGs across ages in healthy samples and during ARI is shown in Figure 1B. 
 
Within-sample (alpha) diversity of the NPM increased with age in both healthy and ARI samples, with a 
noticeable increase after two years of age (GEE linear regression of Shannon’s diversity index vs. age, 
adjusted for symptom status: p = 0.8 before two years, p = 4x10-15 after two years; see Figure 2A). The 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2017. ; https://doi.org/10.1101/222190doi: bioRxiv preprint 

https://doi.org/10.1101/222190
http://creativecommons.org/licenses/by/4.0/


	 5 

increasing diversity after two years of age was due to both increasing number and increasing equitability 
(evenness) of the OTUs (Figure S3A-B), and this trend was observed within all MPGs (Figure S3C). 
 
Upper airway bacteria and respiratory infection 
Consistent with our previously reported observations from the first year of life (Teo et al., 2015), ARI 
was positively associated with MPGs dominated by Haemophilus (OR 4.6, p = 1.9x10-12), Streptococcus 
(OR 3.9, p = 1.7x10-17) or Moraxella (OR 1.3, p = 1.8x10-4) (adjusting for age, gender, season and recent 
antibiotics; see Table S1). Within these MPGs, the relative abundance of the dominant OTU increased, 
and the alpha diversity decreased, with symptom severity (comparing healthy, to URI, to LRI; Figure 2B, 
Table S3). Thus overgrowth of these illness-associated taxa accompanies spread of infection to the lower 
airways, although the direction of causation is not resolvable here.  
 
At the OTU level, the relative abundances of 236 common OTUs (present in >10% of samples) were 
significantly different between ARI and healthy samples (absolute difference >1.5-fold and false-
discovery rate (FDR) adjusted p-value <0.05). However, these associations were age-dependent and 
appeared to shift following the increase in within-sample diversity observed from two years of age. 
Comparing the time periods before year two and on or after the second birthday, a total of 310 OTUs 
were found to be significantly associated with ARI in at least one interval (absolute difference >1.5-fold 
and FDR adjusted p-value <0.025; see Figure S4A). The majority of Moraxella, Haemophilus and 
Streptococcus OTUs were consistently positively associated with ARI in both time periods. 
Staphylococcus, Corynebacterium and Alloiococcus OTUs were negatively associated with ARI in the 
first 2 years, but these associations waned after 2 years, particularly for Corynebacterium and 
Alloiococcus (Figure S4A). Interestingly, we found two Streptococcus OTUs that were negatively 
associated with ARI (OTUs 4365744 and 509773, which show closest match to species gordonnii and 
thermophilus / salivarius / vestibularis, respectively; see Table S2, Figure S2A). These were positively 
correlated with one other, but negatively correlated with Streptococcus OTU 1059655, which has closest 
match to pneumoniae / pseudopneumoniae (Figure S5). The set of five MPGs dominated by ARI-
associated Moraxella, Streptoccocus or Haemophilus OTUs are collectively termed here “illness-
associated MPGs” (Table S1). Amongst the rare OTUs, eight including from genera Nitriliruptor and 
Bacilllus were consistently health-associated and often co-occurred together (at median relative 
abundance 9%) in samples belonging to the Staphylococcus MPG, whilst a further eight OTUs including 
from genera Porphyromonas, Candidatus Aquiluna, Clavibacter, Mycobacterium, Granulicatella and 
Fusobacterium were consistently ARI-associated but generally of low abundance across all MPGs 
(Figure S4B-C). 
 
To more precisely estimate how these associations change with age, we performed time varying analysis 
for eight characteristic OTUs using smoothing splines ANOVA (see Figure 3 and Methods). The results 
showed that the strength of association of Corynebacterium, Alloiococus and Staphylococcus with healthy 
samples was greatest in the first 1-2 years; interestingly the association waned towards the null by three 
years of age for Corynebacterium and four years of age for Staphylococcus, but Alloiococcus changed 
direction and was significantly associated with ARI in the interval 2.8–3.9 years (mean difference 1.8-
fold, p = 0.01) (Figure 3). Alloiococcus otitidis in the ear canal has been implicated in otitis media (OM) 
(Harimaya et al., 2006; Tano et al., 2008), along with S. pneumoniae and H. influenzae (Ngo et al., 2016). 
In this cohort, 11% of ARI episodes co-occurred with OM. Streptococcus OTU 1059655 abundance in 
the NPM during ARI was positively associated with concurrent OM from 18 months (mean difference 
2.4-fold, p=0.01), but Alloiococcus and Haemophilus showed no significant associations with OM. The 
Alloiococcus–illness association is further addressed below.  
   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2017. ; https://doi.org/10.1101/222190doi: bioRxiv preprint 

https://doi.org/10.1101/222190
http://creativecommons.org/licenses/by/4.0/


	 6 

Interactions between bacteria and viruses in the upper airways 
We calculated pairwise correlation networks between common OTUs (those present in >10% of samples) 
using an accelerated FastSpar implementation of the SparCC algorithm (Friedman and Alm, 2012) (see 
Methods). Correlations were calculated separately for samples collected before two years of age and on 
or after the second birthday; values for the eight most common OTUs are shown in Figure 4A. Illness-
associated OTUs of Moraxella, Haemophilus, and Streptococcus formed a group that were all positively 
correlated with one another in both time periods, and negatively correlated with the health-associated 
Streptococcus OTU 509773 and Staphylococcus (Figure 4A). Corynebacterium and Alloiococcus were 
strongly correlated with one another in both periods (SparCC correlation=0.68, p = 0.001). Surprisingly, 
the relationship between these OTUs and those in the illness-associated group (Figure 4A) was complex 
and changed over time, becoming significantly more positively correlated with age (Figure 4B). 
Corynebacterium and Alloiococcus were positively correlated with Moraxella throughout, with 
correlation strength increasing significantly over time (Figure 4A; Fisher’s r to Z transformation 
comparing Moraxella–Corynebacterium and Moraxella–Alloiococcus correlations before and after 2 
years: p = 9 x 10-14 and p = 7 x 10-16 respectively). Corynebacterium and Alloiococcus were negatively 
correlated with the illness-associated Haemophilus and Streptococcus OTUs in early years, but became 
positively correlated (Streptococcus) or uncorrelated (Haemophilus) in later samples (Figure 4A-B). We 
hypothesised the increasing co-occurrence with Moraxella might explain the increasing association of 
Alloiococcus with ARI symptoms in later years; indeed, adjusting for the abundance of Moraxella OTU 
4398454 resulted in attenuation of the positive association of Alloiococcus with ARI after two years, but 
not the negative association with ARI prior to two years (Figure S6). Staphylococcus was positively 
correlated with the health-associated Streptococcus 509773 (SparCC correlation=0.22, p = 0.001) but 
negatively correlated with the illness-associated group as well as Corynebacterium and Alloiococcus.  
 
We tested for common human respiratory viruses in all samples from the first three years of life, using 
PCR and sequencing (see Methods). Viruses were frequently detected in ARI samples (83% and 81% 
amongst URI and LRI, respectively). Interestingly, the same viruses were also detected amongst 34% of 
healthy samples, which had been collected after at least one month without ARI symptoms. The presence 
of virus was significantly associated with illness-associated MPGs (compared to health-associated MPGs) 
irrespective of symptom status (OR 2.4, p = 1.1x10-6 in healthy samples; OR 1.9, p = 1.0x10-3 in ARI 
samples using Fisher’s exact test; see Figure S7), suggesting either mutualism, or synergistic effects on 
symptomatology, between these specific bacterial communities and common respiratory viruses. 
However, Streptococcus, Moraxella and Haemophilus MPGs were also independently associated with 
ARI symptoms amongst samples in which no respiratory viruses were detected, or when adjusting for the 
presence of respiratory viruses or of specific viruses, RSV or RV (Figure 5A-B), suggesting these 
bacteria contribute to illness in the absence of known respiratory viral triggers.  
 
Stability of the upper airway microbiota within individuals 
The NPM is a complex ecosystem that is inherently dynamic as it is continually being shaped by multiple 
factors, including responses to environmental perturbation and disease status of the host. We therefore 
examined the effects of external factors, including ARI and antibiotic exposure, on intra-individual NPM 
dynamics. 
 
We first considered consecutive healthy samples from each individual, excluding sample pairs collected 
more than one year apart. Overall, the probability of the next consecutive healthy sample sharing the 
same (non-mixed) MPG as the current sample (i.e. a stable transition) was greater than expected by 
chance (31% vs 18% for samples collected <6 months apart, binomial test p = 2.3 x 10-7; 23% versus 18% 
for samples collected 6-12 months apart, p = 0.011), indicating some degree of stability of the microbial 
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communities within individuals over time. This stable transition probability was highest for the Moraxella 
(45%) and Alloiococcus-Corynebacterium (32%) MPGs, which were the most common states for healthy 
NPM samples (Figure 4C). Where a sample was assigned to the mixed1 MPG, the probability of the next 
sample also being designated mixed1 was high (30%). However, the composition of such samples can 
vary widely, and Bray-Curtis distances between consecutive mixed1 MPG samples were close to the 
distances between distinct MPGs (Figure S8), indicating that the majority of consecutive pairs assigned 
to mixed1 MPG represent significant shifts in NPM composition rather than stable transitions. The 
probability of a stable transition to the next time point was significantly lower at 2 months of age than at 
6, 12 18 or 24-month time points (Figure 4D; 20% vs 31%; Fisher’s exact test p = 0.03), consistent with 
the observation of a distinct NPM profile at 2 months (Figure 1B). Transition stability declined after 2 
years, and an increasing proportion of transitions involved consecutive samples assigned to the mixed1 
MPG (Figure 4D), consistent with the observed increase in diversity after age 2 (Figure 2A). The 
frequency of persistence of the Staphylococcus MPG dropped after 6 months and increased again in the 
fourth year, consistent with prior observations that maternally-transferred S. aureus can be detected in 
infants, but stable colonisation is not established until the pre-school years (Brown et al., 2014; Jimenez-
Truque et al., 2012; Schaumburg et al., 2014). Taken together, these results show the NPM is highly 
variable in early childhood. Stability of health-associated MPGs was significantly disrupted by the 
occurrence of LRI during the sampling interval, however antibiotic use did not significantly alter the 
probability of stable transitions (Table 1). 
 
Association of upper airway microbiota with lower respiratory illness and subsequent wheeze 
We investigated whether LRIs were associated with prior colonization by the illness-associated 
Moraxella, Streptococcus and Haemophilus MPGs, and how long these MPGs persisted after an incident 
LRI. Healthy samples collected 1-2 weeks prior to an LRI were not enriched for viruses (~30% frequency 
of virus detection, vs 34% across all healthy samples and ~80% during LRI), but were significantly 
enriched for the Moraxella MPG (GEE logistic regression of assignment to Moraxella MPG on time to 
LRI, 1-2 weeks compared to all other healthy samples and adjusted for time post-LRI, gender, age, 
season, recent antibiotics: OR 6.2 [95% CI, 1.4 – 28], p = 0.017; further adjusted for viruses: OR 5.9 [1.3 
– 26], p = 0.019) (Figure 5C), as well as Moraxella abundance (GEE linear regression of log Moraxella 
OTU abundance, p = 0.025; further adjusted for viruses: p = 0.04) (see Methods). There were no 
significant differences in proportions of Streptococcus or Haemophilus MPGs nor Streptococcus or 
Haemophilus abundance, however these MPGs were rare (~7%) in healthy samples. We were unable to 
assess short-term changes in the NPM following LRI, as our criteria for healthy sample collection 
required the absence of ARI symptoms for at least 4 weeks; however, the Moraxella MPG exhibited 
declining frequency with increasing time post-LRI, and remained enriched until six months post-LRI 
(Figure 5C). Interestingly, there was no evidence of a difference in MPG distribution before or after URI 
(Figure S9). 
 
We have previously shown in this cohort that the risk of chronic wheeze at five years of age is 
significantly associated with the number of LRIs in the first year of life. This was especially the case for 
the number of febrile LRIs among children with allergic sensitization by age two (Kusel et al., 2007; 
Kusel et al., 2012; Teo et al., 2015). Here, we investigated whether presence of the illness-associated 
Moraxella, Streptococcus and Haemophilus MPGs during the first four years of life was predictive of LRI 
intensity during the same period, and/or wheeze at age five. For each child, we calculated the combined 
frequency of these MPGs amongst healthy NPM samples over different time periods (Methods). Among 
children with early allergic sensitization (defined as allergen-specific IgE > 0.35 kU/L by two years of 
age, see Methods), frequent ARI-associated MPGs (≥50% of healthy NPM samples) during the first two 
years of life was significantly positively associated with the number of LRIs experienced in the same 
period (Table 2). Importantly, among these early sensitized children, the frequency of illness-associated 
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MPGs in the first two years of life was independently associated with chronic wheeze at five years of age 
(Figure 6A), even after adjusting for LRI frequency and type (Table 3). Notably, among non-sensitized 
children, the frequency of illness-associated MPGs was not associated with chronic wheeze at five years 
but was significantly positively associated with the transient wheeze phenotype (defined as any wheeze in 
the first three years of life but no wheeze in the fifth year) (Figure 6, Table 3).  
 
 
 
 
DISCUSSION 
 
This study presents the first comprehensive, longitudinal characterization of the upper airway microbiome 
in a cohort followed from birth to five years of age, and its association with episodes of ARI, allergic 
sensitization and subsequent wheezing phenotypes. We found the NPM from birth to five years of age 
remains dominated by six common genera (Figure 1) and has yet to converge to an adult-like NPM, 
which is characterised by much greater alpha diversity, lack of Moraxella and Corynebacterium, and 
much lower biomass (Stearns et al., 2015). This is in contrast to the oropharynx (Stearns et al., 2015), or 
the gut microbiome, which matures to an adult-like state by three years of age (Yatsunenko et al., 2012). 
Consistent with previous observations (Biesbroek et al., 2014), we found a constant level of NPM 
diversity over the first two years of life, followed by a period of increasing  diversity – in terms of both 
number and equitability of OTUs – for at least three years (Figures 2A, S2). This increasing diversity 
coincided with a change in the relationship between the NPM and respiratory disease, whereby negative 
associations between MPGs and ARI became attenuated (as in the case of Corynebacterium) or changed 
direction to become positively associated with ARI (Alloiococcus) (Figure 3). In the latter case, this 
appears to be driven by an increasing alliance with Moraxella (Figures 4, S6), which itself was ARI-
associated. Moraxella establishes biofilms that enhance the co-survival of pathogens such as 
Streptococcus pneumoniae and Haemophilus influenzae (Pearson et al., 2006; Perez et al., 2014). It is not 
yet clear whether the negative associations of certain taxa with ARI denote active protective effects, or 
simply the lack of pathogenic drivers of symptoms; however there is some evidence from murine models 
that pre-exposure to Corynebacterium can provide some resistance against RSV infection (Kanmani et 
al., 2017).  
 
Our longitudinal data show the NPM can be highly dynamic within individuals. However there was some 
stability even between samples collected 6 or 12 months apart (Figure 4C-D), especially for the MPGs 
dominated by Moraxella or Alloiococcus and Corynebacterium, which appear to be stable colonizers of 
the nasopharynx of children. Notably, stability of the Alloiococcus–Corynebacterium MPG was 
significantly reduced by LRI episodes, which are typically associated with an influx and/or overgrowth of 
Moraxella, Streptococcus or Haemophilus that can presumably destabilise the bacterial community. This 
is consistent with a recent study that reported reduced stability of the NPM during infancy among 
children who experienced more than two ARIs in the first year of life (Bosch et al., 2017). Ultimately, 
more comprehensive description of natural NPM dynamics, including detailed assessment of resilience to 
exogenous agents, will require higher resolution sampling (weekly or daily) and would also benefit from 
larger cohorts.  
 
Throughout the first five years of life, NPM samples collected during ARIs showed a greater abundance 
of, and were more commonly dominated by, specific Streptococcus, Moraxella and Haemophilus OTUs 
(Figures 1, 3; Table S1), consistent with expectations regarding common respiratory pathogens S. 
pneumoniae, M. catarrhalis and H. influenzae to which these OTU sequences were most closely related 
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(Table S2). The relative abundances of these OTUs were significantly correlated with one another 
(Figure 4A); we hypothesise this is related to the protection provided by the Moraxella biofilm (Tan et 
al., 2007), which can release outer membrane surface proteins that protect other bacteria from 
complement-dependent killing. Other groups have previously reported reduced upper airway microbial 
diversity during or prior to ARIs (Frank et al., 2010; Santee et al., 2016; Yi et al., 2014); our data supports 
this, both in terms of enrichment of a small number of community profiles (MPGs) during ARI, and a 
higher abundance of ARI-associated OTUs and lower alpha diversity within these MPGs compared to 
that observed in the absence of ARI symptoms (Figures 2B, S3; Tables S1, S3). We therefore propose 
that overgrowth of these particular taxa may tip the balance towards respiratory symptomatology, either 
by direct action as invasive pathogens or via indirect dysregulation of the local immunological milieu. 
Such dysregulation may increase the likelihood of a primary viral infection of the nasopharyngeal 
mucosa, or subsequent spread of infection to the lower airways, as suggested in our earlier study on this 
cohort during infancy (Teo et al., 2015). This is further supported by the increased prevalence of 
Moraxella in asymptomatic samples collected 1-2 weeks before an LRI (Figure 5C). Most LRIs (>80%) 
had a known respiratory virus present, and this is likely the trigger for acute symptoms. However, the lack 
of enrichment for viruses, but enrichment for Moraxella, in the 1-2 weeks preceding LRI suggests that 
having the bacteria present when the virus is encountered increases the likelihood of severe respiratory 
illness. While our study had insufficient power to detect similar effects for Streptococcus and 
Haemophilus, due to low colonization frequency in our cohort, there is a large body of evidence 
accumulating around specific mechanisms of interaction between human respiratory viruses (mainly RV, 
RSV and influenza) and Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis; 
including both viral promotion of bacterial colonization and outgrowth (for which we see evidence in the 
form of increased abundance of pathogenic genera in ARIs), and bacterial promotion of viral receptor 
expression on host cells (Bosch et al., 2017; Brealey et al., 2015). While the present study cannot address 
specific mechanisms, it provides evidence for interactions in both directions, and demonstrates that 
bacterial colonization influences subsequent ARI throughout infancy and early childhood.  
 
Finally, we found a significant relationship between asymptomatic colonization of the upper airways by 
certain MPGs (Streptococcus, Haemophilus and Moraxella) in the first two years of life and later 
wheezing phenotypes, conditional on early allergic sensitization (Figure 6, Table 3). In early sensitized 
children, asymptomatic colonization of the upper airways by illness-associated MPGs increased risk of 
chronic wheeze at five years of age; however, in children who had not developed early allergic 
sensitization, it was associated only with transient early wheeze, which resolved by the fourth year of life. 
Furthermore, in the early sensitized children, the frequency of asymptomatic colonization with illness-
associated MPGs was also associated with recurrence of LRIs, particularly those accompanied by fever, 
throughout the first 4 years of life (Table 2). Notably however, whilst frequency of LRI is associated with 
five-year chronic wheeze (Kusel et al., 2007; Teo et al., 2015), the effect of bacterial colonization on five-
year wheeze remained after adjusting for LRI (Table 3). It has been suggested that the pathogenic 
bacterial species S. pneumoniae, H. influenzae and M. catarrhalis induce local immunoinflammatory 
responses in the upper airways of neonates, which in the case of M. catarrhalis and H. influenzae include 
upregulation of a mix of Th1/Th2/Th17 cytokines (Folsgaard et al., 2013). However, how these immune 
responses differ between sensitized and non-sensitized children is incompletely understood. We have 
suggested, based on previous studies in this and other asthma-risk cohorts (Holt & Sly 2012), that the 
increased severity of these episodes in children with allergic sensitization is due in part to interactions 
between infection-associated Type 1 IFN-mediated and allergy-associated Th2-mediated inflammatory 
pathways which compromise their capacity to efficiently clear respiratory pathogens, thus worsening 
ensuing airway inflammation and resultant immunopathology. Conversely, host immune defense 
mechanisms in those who are non-sensitized are not compromised by these interactions, and they 
accordingly experience only transient illnesses. 
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In conclusion, this study suggests that the microbiota of the upper airways is an important determinant of 
the susceptibility, frequency and severity of ARI in early childhood. In conjunction with early allergic 
sensitization, the dominating presence of illness-associated MPGs (Streptococcus, Haemophilus, and 
Moraxella) in the upper airways is a significant risk factor for persistent wheeze in school-age children, 
which is the hallmark of the asthmatic phenotype. This observation is of potential importance in relation 
to early detection and prevention of asthma. In particular, sensitized children in this cohort already 
showed elevated levels of allergen-specific IgE production from six months of age (Holt et al., 2010), 
suggesting a high-risk group could be identified in infancy. Airway microbiome monitoring and 
potentially modification might be beneficial for this high-risk group, in reducing the risk of lower 
respiratory infection, the repeated occurrence of which is closely linked to asthma development.  
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METHODS 
 
Sample and data collection 
This study is part of the Childhood Asthma Study (CAS) – a prospective community-based cohort of 244 
children at high risk of allergic sensitization who were followed prenatally until five years of age with the 
goal of identifying risk factors for allergic diseases, as previously described (Kusel et al., 2006; Kusel et 
al., 2007; Kusel et al., 2012; Teo et al., 2015). Healthy nasopharyngeal (NP) samples were collected at 
planned half-yearly visits (first sample from about 2 months of age, subsequently at 6 months, 1 year, and 
so on), in the absence of any symptoms of acute respiratory illness (ARI) for at least 4 weeks. In addition, 
parents were to contact a study clinician at the onset of any ARI symptoms, at which point a study nurse 
visited the family within 48 hours to collect a NP sample from the child and interview the parents on the 
symptoms and medications used in relation to the illness. ARIs were classified as a lower respiratory 
illness (LRI) if accompanied by wheeze or rattly chest; or an upper respiratory illness (URI) otherwise. A 
total of 1943 healthy samples, 2579 URI samples, and 1056 LRI NP samples were collected and divided 
into aliquots that were cryofrozen for later analysis. Parents kept a daily record of any medication used, 
from which antibiotic exposure information was extracted, and completed yearly questionnaires during 
face-to-face interviews. Blood samples were collected from each child at 6 months, 1, 2, 3, 4 and 5 years 
of age, and positive sensitization status at each timepoint was defined as serum IgE levels > 0.35 kU/L to 
house dust mite, cat epithelium and dander, peanut, foodmix, couch grass, rye grass, mould mix, or infant 
phadiatop (details of which were described in (Holt et al., 2010)). 
 
Bacterial 16S profiling 
One aliquot from each of 1331 healthy, 996 URI and 1055 LRI samples were prepared for bacterial 16S 
rRNA amplicon sequencing. DNA extraction, amplification of the V4 rRNA region, and amplicon 
sequencing via Illumina MiSeq were performed as previously described (Teo et al., 2015). Paired end 
reads were merged using Flash version 1.2.7 (Magoc and Salzberg, 2011) with read length 151 base pairs 
(bp) and expected fragment length 253 bp. The merged reads were quality filtered as follows: ≤3 low-
quality bp (Phred quality score < 3) allowed before truncating a read, ≥189 consecutive high-quality bp, 
sequences with any N characters were discarded. Reads were clustered into operational taxonomic units 
(OTUs) using the closed reference OTU picking method in QIIME v1.7 using the Greengenes 99% 
reference database version 13_05. Mean of 1% of reads per sample had no match to the Greengenes 
database and were excluded from further analysis (except for alpha diversity calculations, as described 
below). Negative control samples had a median of >1500 (taxonomy-assigned) reads (interquartile rage 
900 – 2300), while NP samples had a median of >147K reads (IQR 45K – 230K). We therefore removed 
142 NP samples with <3000 taxonomy-assigned reads, and also 226 healthy samples that did not fulfil the 
criterion of >4 weeks after an illness episode, leaving 3014 samples (1018 healthy samples and 1996 ARI 
samples) for further analysis. Because entries in the Greengenes database may be identical in the V4 
subregion that we sequenced, it is possible for identical read sequences to be assigned to different 
Greengenes OTUs. We therefore merged counts for OTUs that were identical in the sequenced V4 region 
(identified by extracting the sequence between the forward and reverse primer sequences), as shown in 
Figure S2. Read counts were corrected for OTU-specific copy number using Picrust v1.0 (Langille et al., 
2013) using the pre-computed copy number estimates for Greengenes OTUs version 13_05; and relative 
abundances were calculated by normalising to the total taxonomy-assigned reads for each sample. 
Phylogenetic analyses were conducted by BLAST searching the NCBI 16S rRNA database using 
representative V4 region sequences from the common taxa (Figure S1B) to identify similar sequences. 
For each genus, the sequences were aligned using Muscle and a maximum-likelihood tree constructed 
using PhyML (Figure S2); these were used to identify the closest known species for each common OTU 
(Table S2).  
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Clustering into microbiome profile groups (MPGs) 
Samples were assigned to microbiome profile groups (MPGs) based on hierarchical clustering of OTU 
relative abundances, using Bray-Curtis dissimilarity as the distance metric and complete linkage 
(implemented in the R function hclust). These analyses included all common OTUs (defined as mean 
relative abundance >0.1%, present in >20% of samples, and dominating (>50%) at least one sample); 
aggregated counts of other OTUs from each of the major genera (Moraxella, Streptococcus, 
Haemophilus, Alloiococcus, Corynebacterium, Staphylococcus) and family Moraxellaceae; and a final 
group consisting of aggregated counts of all other OTUs (labelled ‘rare OTUs’; see rows in Figure 1). 
The number of clusters (i.e. unique MPGs) was chosen to maximise the median silhouette value. MPGs 
were named based on the dominant genus or OTU, as indicated in Table S1. 
 
Bacterial diversity analysis 
Alpha (within-sample) diversity was assessed using Shannon’s diversity index measure, which takes into 
account both number and relative abundance of the OTUs. For this analysis we processed the merged and 
filtered reads in a different manner. First we ran an additional chimera check using UCHIME, then 
assigned OTUs using the subsampled open reference OTU picking framework in QIIME using the 
Greengenes 97% OTU reference set (Caporaso et al., 2010). Briefly, the input sequences were prefiltered 
against the reference set at a low percent identity (60%) to remove sequences that were likely to be 
sequencing errors. Next, the closed reference OTU picking was applied on the filtered sequences. All 
sequences that did not match a reference at the closed reference step were then de novo clustered at 97% 
similarity. Singleton OTUs (i.e. sequences observed only once across the whole dataset) were discarded. 
Samples were rarefied to 3000 reads prior to diversity calculations; rarefaction was performed 10 times, 
and we report the mean Shannon diversity index for the 10 independent runs for each sample. 
 
Association of bacterial OTUs with symptoms of acute respiratory illness 
We normalized the copy-number-corrected OTU read counts using cumulative sum scaling (CSS) 
(Paulson et al., 2013). Briefly, for each sample, the OTU counts were divided by the cumulative sum of 
counts up to the smallest percentile for which sample-specific count distributions were largely invariant 
(98.9th percentile for our data). We then tested for differential abundance in ARI vs healthy samples, for 
each of 1,090 OTUs that were present in ≥10% of samples. A zero inflated Gaussian mixture model was 
fitted to the log transformed CSS-normalized OTU counts, separately for samples before and after 2 years 
of age (before 2 years: inclusive of samples at 2-year timepoint; after 2 years: from 2.5-year timepoint), 
using the R package metagenomeSeq (Paulson et al., 2013). We summarized the results for OTUs with an 
absolute fold change of >1.5 and FDR adjusted p-value <0.025 in either age strata. We picked eight 
representative OTUs to more precisely investigate how the associations changed over time, and modelled 
the longitudinal structure of the data using smoothing splines ANOVA with 100 permutations to assess 
significance (Paulson et al., 2017). All models for the ARI vs. healthy association were adjusted for age, 
season, gender, and any antibiotics within the last 4 weeks.  
 
Correlations between bacterial OTUs 
We inferred correlation networks among the 1090 common OTUs using FastSpar 
(https://github.com/scwatts/fastspar), an efficient C++ implementation of the SparCC algorithm, which 
was designed to deal specifically with compositional data and produces more reliable and robust 
correlation estimates compared to Pearson or Spearman correlation especially in the case of low diversity 
samples (Friedman and Alm, 2012). SparCC uses a log ratio transformation and calculates correlations 
between OTUs in an iterative manner, under the assumption of a sparse network. Statistical significance 
of the correlation was assessed using 1000 bootstrap samples with exact p-value calculations based on the 
permp function in R package statmod (Phipson and Smyth, 2010). Correlation networks were generated 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2017. ; https://doi.org/10.1101/222190doi: bioRxiv preprint 

https://doi.org/10.1101/222190
http://creativecommons.org/licenses/by/4.0/


	 13 

across all samples, as well as separately for samples before and after 2 years of age, samples within each 
half yearly time periods, and samples with low abundance (<1%) of Moraxella OTU. We assessed 
differences in correlation before and after two years using the Fisher’s r-to-Z transformation (cocor R 
package). 
 
Within-individual dynamics 
We first explored microbiome changes within each child in terms of transitions from a healthy sample to 
the next healthy sample half a year or a year later. Transitions which resulted in a MPG change indicated 
an abrupt shift in the major OTU (termed “unstable transitions”); stable otherwise. We also assessed the 
transitions using the Bray-Curtis dissimilarity calculated on the CSS-transformed OTU count matrix 
using the vegan R package (Oksanen et al., 2017), which represented subtle changes. Transition stability 
and distance were assessed for the effects of intervening ARI, LRI and antibiotics using GEE regression 
(logistic or linear where appropriate), adjusting for the age of first sample and difference in ages between 
samples. 
 
We then investigated whether we could detect changes in the NPM prior to ARI symptoms, and how long 
these changes persisted after the illness. We grouped the healthy samples according to how soon after 
illness occurred (pre-illness: 1-2 weeks, 2-3 week, 3-4 weeks or >4 weeks) and how long after the last 
illness episode (post-illness: 1-2 months, 2-4 months, 4-6 months, 6-12 months, or >12 months). We used 
GEE logistic or linear regression to model (i) assignment to specific illness-associated MPGs or (ii) log 
abundance of specific illness-associated OTUs, against time to ARI/URI/LRI (separately for each pre-
illness time category compared to all other healthy samples), and adjusted for time post-illness, gender, 
age, season, recent antibiotics, and any virus.  
 
Lastly, we examined per child, if the proportion of illness-associated Moraxella, Haemophilus and 
Streptococcus MPGs in their healthy asymptomatic samples over different time periods (6 months to 2 
years, and 2.5 years to 4 years) was associated with LRI frequency and subsequent wheeze phenotypes 
(wheeze at age 5 years or transient wheeze). Logistic regression was used to model (i) the proportion of 
illness-associated MPGs (as a binary: ≥50% versus <50%, excluding children with <2 healthy samples in 
each corresponding time period) against LRI and febrile LRI frequency in years 1, 2, 3 and 4, (ii) wheeze 
phenotypes against proportion of illness-associated MPGs (as quartiles), adjusting for LRI frequency. 
Separate models were fit for children with and without early allergic sensitization by 2 years of age. 
 
Virus detection 
A second aliquot from 736 healthy, 583 URI and 789 LRI samples from the first three years (72%, 76% 
and 60% of all healthy, URI and LRI samples, respectively for which we had 16S profiles), were prepared 
for viral detection via reverse transcriptase polymerase chain reactions (PCR).  Target organisms were: 
human rhinoviruses (RV); other picornaviruses (coxsackie, echo and enteroviruses); coronaviruses 229E 
and OC43; respiratory syncytial virus (RSV); influenza A and B; parainfluenzaviruses 1-3; adenoviruses 
and human metapneumovirus (HMPV). Primers, probes and PCR assay conditions have been previously 
described (Bochkov et al., 2014; Kusel et al., 2006; Kusel et al., 2007).  
 
Statistical Methods 
All statistical analyses were performed using R (R Core Team, 2015) unless otherwise stated. Association 
analyses that involved multiple samples from the same subject were modelled using generalized 
estimating equations (GEE) with unstructured correlation and robust standard errors, where possible. In 
the case of non-convergence due to insufficient sample size, the ordinary logistic regression was used. 
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Potential confounders were included in the model. We used the Benjamini-Hochberg false discovery rate 
method (FDR) (Benjmini, 1995) or Bonferroni correction where multiple testing p-value adjustments 
were needed, as stated. All boxplots shown use the Tukey format, in which the bottom and top of the box 
represents the lower and upper quartiles respectively and the ends of whiskers represents the 
lowest/highest datum still within 1.5 interquartile range of the lower/upper quartile. 
 
Definition of variables used in statistical analyses 

• Wheeze at age 5: Presence of wheeze in the last 12 months recorded in the 5 year questionnaire. 
• Transient wheeze: Any wheeze in the first three years, but no wheeze in the 5th year. 
• Early allergic sensitization: Any allergen-specific IgE levels > 0.35 kU/L by two years of age (at 

any of 6 month, 1 year or 2 years timepoints). 
• Season: According to month of collection: spring (September–November), summer (December–

February), autumn (March–May) or winter (June–August).  
• Recent antibiotics: Any record of antibiotics intake within the last 4 weeks prior to sample 

collection. 
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TABLES 
 

Table 1: Association between MPG instability and intervening illness and antibiotics. We considered 
pairs of consecutive healthy samples from each individual (excluding the 2-month time point and sample 
pairs collected >1 year apart), and classified stable transitions as pairs in which the same (non-mixed) 
MPG present at the first time point was also present at the next healthy sample. Stable transition 
probabilities for individual MPGs are given in Figure 4D. Here we investigate the impact of extrinsic 
factors on instability of different groups of MPGs by using a generalized estimating equation (GEE) 
logistic model with unstructured correlation and robust standard errors, to regress MPG transition 
instability (stable = 0, unstable = 1) against the presence of intervening ARI, LRI or antibiotics, and 
further adjusting for age of first sample and difference in ages between samples. Separate models were fit 
for groups of MPGs associated with acute respiratory illness or respiratory health (as defined in Table 
S1), and for each of the two most common MPGs (Moraxella and Alloiococcus-Corynebacterium). 
Values shown are OR (95% CI) and p-values associated with the intervening factor variable (ARI, LRI, 
antibiotics) in each model; OR >1 indicates increasing instability, OR <1 decreasing instability (i.e. 
increasing stability). 
 

Data subset N Stable 
Instability 

Any ARI Any LRI Any antibiotics 

All samples 513 31% 1.3(0.83-2.1), 
p=0.24 

1.6(0.95-2.5),  
p=0.076 

0.78(0.5-1.2), 
p=0.3 

Illness-associated MPGs 230 41% 1.3(0.62-2.6), 
p=0.52 

0.74(0.41-1.4),  
p=0.33 

0.73(0.41-1.3), 
p=0.3 

Moraxella MPG 201 45% 1.2(0.56-2.8), 
p=0.59 

0.66(0.34-1.3),  
p=0.21 

0.88(0.46-1.7), 
p=0.68 

Health-associated MPGs 190 24% 1.9(0.9-4.1), 
p=0.09 

13(3.2-57),  
p=0.00042 

0.84(0.32-2.2), 
p=0.72 

Alloiococcus-Corynebacterium 
MPG 92 30% 1.6(0.56-4.5), 

p=0.39 
34(3.8-300),  

p=0.0016 
0.44(0.11-1.8), 

p=0.26 
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Table 2: Associations between proportion of illness-associated MPGs in healthy (asymptomatic) 
samples and LRI frequency. We modelled the proportion of illness-associated Moraxella, Haemophilus 
and Streptococcus MPGs present amongst healthy samples (as a binary variable; ≥50% vs. <50%) on LRI 
or febrile LRI frequency using logistic regression. Separate models were fit for different time periods, and 
for children with and without early allergic sensitization by 2 years of age (defined as any allergen-
specific IgE > 0.35 kU/L; allergens tested: house dust mite, cat epithelium / dander, peanut, foodmix, 
couch grass, rye grass, mould mix, infant phadiatop). Values indicate odds ratios (95% CI) and p-values 
for the association between LRI count (during the years specified by the ‘Yr’ column) and illness-
associated MPG frequency ≥50% (amongst healthy samples collected during the period specified in the 
column header, i.e. 6m–2y or 2.5y–4y). 
 

 Yrs 
Early allergic sensitization  All other children  

MPGs 6m–2y 
(N=74) 

MPGs 2.5y–4y 
(N=83) 

MPGs 6m–2y 
(N=65) 

MPGs 2.5y–4y 
(N=65) 

# LRI 

0-1 1.6(1-2.6), 
p = 0.043 

1.1(0.83-1.5), 
p = 0.49 

1.5(0.95-2.3), 
p = 0.081 

1.1(0.79-1.5), 
p = 0.57 

1-2 1.5(1-2.2), 
p = 0.036 

1.1(0.81-1.5), 
p = 0.6 

1.4(0.91-2.1), 
p = 0.12 

1.2(0.81-1.7), 
p = 0.38 

2-4 1.4(1-1.9), 
p = 0.032 

1.1(0.79-1.4), 
p = 0.72 

0.99(0.79-1.2), 
p = 0.93 

1.1(0.87-1.3), 
p = 0.47 

# 
Febrile 

LRI 

0-1 2.5(1-6.3), 
p = 0.049 

1.2(0.63-2.4), 
p = 0.53 

2.2(0.77-6.1), 
p = 0.14 

0.84(0.36-2), 
p = 0.69 

1-2 1.8(0.85-3.6), 
p = 0.13 

0.59(0.3-1.2), 
p = 0.13 

2.4(0.65-8.9), 
p = 0.19 

1.8(0.71-4.6), 
p = 0.21 

2-4 1.8(0.88-3.9), 
p = 0.11 

0.99(0.5-2), 
p = 0.98 

1.6(0.74-3.5), 
p = 0.23 

1.4(0.76-2.5), 
p = 0.3 
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Table 3: Prediction of subsequent wheeze phenotypes based on proportion of illness-associated 
MPGs amongst healthy samples during the first two years of life. Logistic regression of wheeze 
phenotype (Y) against tertiles of the proportion of illness-associated Moraxella, Haemophilus and 
Streptococcus MPGs (%MPG), adjusting for illness frequency (X). Separate models were fit for children 
with and without early allergic sensitization by 2 years of age (defined as any allergen-specific IgE > 0.35 
kU/L; allergens tested: house dust mite, cat epithelium / dander, peanut, foodmix, couch grass, rye grass, 
mould mix, infant phadiatop). 
 

Data 
subset 

Model Estimated OR (95% CI) and p-value 
Y X % MPG X 

Early 
sensitized 
children 
(N = 73) 

Wheeze 
at 5y 

None 2.5 (1.3-4.6), p = 0.0054 NA 
# LRI (yr 1) 2.2 (1.1-4.2), p = 0.018 1.5 (0.94-2.5), p = 0.085 
# LRI (yr 2) 2.3 (1.2-4.3), p = 0.013 1.3 (0.89-1.8), p = 0.18 

# LRI (yr 3-4) 2 (0.94-4.2), p = 0.073 2.4 (1.5-3.9), p = 0.00059 
# febrile LRI (yr 1) 2.1 (1.1-4.1), p = 0.026 2.9 (1.1-7.5), p = 0.032 

Transient 
wheeze 

None 0.5 (0.23-1.1), p = 0.074 NA 
# LRI (yr 1) 0.44 (0.19-0.99), p = 0.047 1.4 (0.8-2.3), p = 0.26 
# LRI (yr 2) 0.41 (0.17-0.96), p = 0.039 1.3 (0.93-1.9), p = 0.12 

# LRI (yr 3-4) 0.54 (0.25-1.2), p = 0.12 0.86 (0.6-1.2), p = 0.39 
# febrile LRI (yr 1) 0.48 (0.22-1.1), p = 0.068 1.3 (0.45-3.5), p = 0.67 

All other 
children 
(N = 64) 

Wheeze 
at 5y 

None 0.94 (0.5-1.8), p = 0.86 NA 
# LRI (yr 1) 0.93 (0.49-1.8), p = 0.83 1.1 (0.73-1.5), p = 0.74 
# LRI (yr 2) 0.91 (0.46-1.8), p = 0.78 1.5 (0.99-2.2), p = 0.059 

# LRI (yr 3-4) 1.2 (0.49-3), p = 0.66 3.8 (1.8-8.3), p = 0.00062 
# febrile LRI (yr 1) 0.94 (0.49-1.8), p = 0.84 1.2 (0.42-3.2), p = 0.76 

Transient 
wheeze 

None 2.2 (1.2-4.1), p = 0.014 NA 
# LRI (yr 1) 2.2 (1.1-4.2), p = 0.022 1.5 (1-2.2), p = 0.027 
# LRI (yr 2) 2.2 (1.2-4.1), p = 0.014 1.1 (0.75-1.6), p = 0.62 

# LRI (yr 3-4) 2.3 (1.2-4.6), p = 0.014 0.53 (0.3-0.92), p = 0.024 
# febrile LRI (yr 1) 2.2 (1.1-4.3), p = 0.018 3.4 (1.2-9.5), p = 0.018 
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FIGURE LEGENDS 
 

Figure 1: Definition and distribution of microbiome profile groups (MPGs).  
(A) Heatmap shows relative abundances of 21 common operational taxonomic units (OTUs); aggregated 
values for other OTUs from the common genera; and aggregated values for all other rare OTUs within 
each sample. Tree to the left shows phylogenetic relationships between the 21 common OTU sequences.  
Dendrogram at the top indicates complete linkage clustering of Bray-Curtis distances between samples; 
coloured bars indicate assignment to MPGs based on this clustering (number of MPGs was chosen to 
maximize the median silhouette value). Barplot to the right shows the total abundance of each OTU or 
group of OTUs within the whole dataset; OTUs that dominate a common MPG are coloured to match that 
MPG. (B) Distribution of MPGs within each time period, shown separately for healthy and ARI (acute 
respiratory illness) samples.  
 
Figure 2: Within-sample diversity is associated with age and acute respiratory illness symptoms.  
(A) Shannon diversity index (SDI) per sample over time, coloured by symptom status as indicated 
(URI=upper respiratory illness; LRI=lower respiratory illness). Solid lines, loess smoothed curves; 
dashed lines, 95% confidence intervals. (B) SDI distributions within common MPGs. *=FDR adjusted p-
value <0.05 in GEE linear regression of SDI against healthy vs. LRI, adjusted for age at collection. (C) 
Relative abundances of the dominant OTU within each MPG (as specified in Table S1). 
 
Figure 3: Time varying associations of bacterial taxa with acute respiratory illness symptoms. 
Log2 fold change (solid lines) and 95% confidence intervals (dashed lines) comparing symptomatic vs. 
healthy samples, estimated using smoothing splines ANOVA, adjusted for age, season, gender, and any 
recent antibiotics. Non-significant segments are coloured grey. 
 
Figure 4: Microbial interaction networks and stability 
(A) Pairwise correlations among eight characteristic OTUs, estimated using the SparCC algorithm, 
calculated separately for samples collected up to and including two years of age (lower triangles), and 
samples collected after two years of age (upper triangles). Cell colours indicate correlation coefficients; 
non-significant correlations (p>0.001) are coloured white. *Bonferroni-corrected p<0.05/28, testing for 
change in correlation before and after 2 years of age using Fisher’s z test. (B) Correlations between 
Alloiococcus or Corynebacterium and Moraxella or Streptococcus or Haemophilus OTUs (bolded black 
box in A) over half-yearly time periods (Filled circles, significant correlations, p=0.001; empty circles, 
non-significant correlations, p>0.001). (C) Transitions between microbiome profile groups (MPGs) for 
consecutive pairs of healthy samples collected from the same individuals 6-12 months apart. MPGs are as 
defined in Figure 1, OTU key: Haemophilus A=240051, B=4469627, C=956702; Moraxellaceae A= 
1057260, B=854899; Corynebacterium A=4474764, B=1049188, C=4376867. (D) Proportion of healthy 
samples collected at each time point, for which the same MPG was detected in the next healthy sample 
from each individual. Colours indicate the specific MPGs involved, coloured as in panel C.  
 
Figure 5: Association of bacteria and viruses with symptoms of acute respiratory illness (ARI). 
(A) Frequency of symptoms (URI=upper respiratory illness, LRI=lower respiratory illness) amongst 
samples stratified by the presence or absence (+/-) of known respiratory viruses (detected by PCR) and 
presence or absence (+/-) of bacterial communities assigned to Moraxella, Streptococcus or Haemophilus 
microbiome profile groups (MPGs). (B) Association of ARI symptoms with specific MPGs, stratified by 
the presence or absence (+/-) of common respiratory viruses (RV=rhinovirus, RSV=respiratory syncitial 
virus, Vir=any virus). Odds ratios (OR) and 95% confidence intervals were estimated using generalized 
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estimating equations (GEE) with unstructured correlation and robust standard errors, adjusting for age, 
gender and season. (C) Proportion of healthy samples assigned to Moraxella, Streptococcus or 
Haemophilus MPGs, stratified by time relative to a recorded LRI episode. Standard error bars are given 
for the Moraxella MPG. We regressed assignment to Moraxella MPG against time to LRI (separate 
models for each time category versus all other healthy samples), and adjusted for time post-LRI, gender, 
age, season and recent antibiotics; this showed healthy samples collected 1-2 weeks before an LRI were 
significantly enriched for Moraxella MPGs (*p<0.05). 
 
Figure 6: NPM associations with wheeze  
(A) Frequency of pre-school wheeze phenotypes (y-axis), stratified by frequency of Moraxella, 
Streptococcus or Haemophilus MPGs amongst healthy samples collected from 6 months to 2 years of age 
(x-axis, in quartiles). Data are shown separately for 73 children who were allergic sensitized by 2 years of 
age, and 64 who were not. (B) Schematic diagram illustrating that among early sensitized children, the 
intensity of asymptomatic colonization by Moraxella, Streptococcus or Haemophilus in the first two years 
of life was associated with increased risk of chronic wheeze at age five; however, in children who were 
not sensitized early, it was associated only with transient early wheeze.  
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Figure 1: Definition and distribution of microbiome profile groups (MPGs).  
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Figure 2: Within-sample diversity is associated with age and acute respiratory illness symptoms.  
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Figure 3: Time varying associations of bacterial taxa with acute respiratory illness symptoms. 
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Figure 4: Microbial interaction networks and stability 
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Figure 5: Association of bacteria and viruses with symptoms of acute respiratory illness (ARI). 
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Figure 6: NPM associations with wheeze  
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