

1
2
3
4 **Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose**
5
6

7 **Chandrasekhar Natarajan¹, Agnieszka Jendroszek², Amit Kumar¹, Roy E. Weber², Jeremy
8 R. H. Tame³, Angela Fago², Jay F. Storz^{1,a}**

9 ¹School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588; ²Department of
10 Bioscience, Zoophysiology, Aarhus University, DK-8000, Aarhus, Denmark; ³Drug Design
11 Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29
12 Suehiro, Yokohama, Kanagawa 230-0045, Japan

13

14 ^aTo whom correspondence should be addressed. E-mail: jstorz2@unl.edu

15

16 **Abstract**

17 During adaptive phenotypic evolution, some selectively fixed mutations may be directly causative and
18 others may be purely compensatory. The relative contribution of these two classes of mutation depends on
19 the form and prevalence of mutational pleiotropy. To investigate the nature of adaptive substitutions and
20 their pleiotropic effects, we used a protein engineering approach to characterize the molecular basis of
21 hemoglobin (Hb) adaptation in the bar-headed goose (*Anser indicus*), a hypoxia-tolerant species
22 renowned for its trans-Himalayan migratory flights. We synthesized and tested all possible mutational
23 intermediates in the line of descent connecting the wildtype bar-headed goose genotype with the most
24 recent common ancestor of bar-headed goose and its lowland relatives. Site-directed mutagenesis
25 experiments revealed effect-size distributions of causative mutations and biophysical mechanisms
26 underlying changes in function. Trade-offs between alternative functional properties revealed the
27 importance of compensating deleterious pleiotropic effects in the adaptive evolution of protein function.

28 **Introduction**

29 During the adaptive evolution of a given trait, some of the selectively fixed mutations will be directly
30 causative (contributing to the adaptive improvement of the trait itself) and some may be purely
31 compensatory (alleviating problems that were created by initial attempts at solution). Little is known
32 about the relative contributions of these two types of substitution in adaptive phenotypic evolution and
33 much depends on the prevalence and magnitude of antagonistic pleiotropy (Burch & Chao, 1999; Cooper,
34 Ostrowski, & Travisano, 2007; Moore, Rozen, & Lenski, 2000; Ostrowski, Rozen, & Lenski, 2005; Otto,
35 2004; Poon & Chao, 2006; Qian, Ma, Xiao, Wang, & Zhang, 2012; Stern, 2000; Szamecz et al., 2014). If
36 mutations that produce an adaptive improvement in one trait have adverse effects on other traits, then the
37 fixation of such mutations will select for compensatory mutations to mitigate the deleterious side effects,
38 and evolution will proceed as a ‘two steps forward, one step back’ process. In systems where it is possible
39 to identify the complete set of potentially causative mutations that are associated with an adaptive change
40 in phenotype, key insights could be obtained by using reverse genetics experiments to measure the direct
41 effects of individual mutations on the selected phenotype in conjunction with assessments of mutational
42 pleiotropy in the same genetic background.

43 To investigate the nature of adaptive mutations and their pleiotropic effects, we used a protein
44 engineering approach to characterize the molecular basis of hemoglobin (Hb) adaptation in the high-
45 flying bar-headed goose (*Anser indicus*). This hypoxia-tolerant species is renowned for its trans-
46 Himalayan migratory flights (Hawkes et al., 2011; Hawkes et al., 2013; Bishop et al., 2015), and its
47 elevated Hb-O₂ affinity is thought to make a key contribution to its capacity for powered flight at extreme
48 elevations of 6000-9000 m (Petschow et al., 1977; Black & Tenney, 1980; Faraci, 1986; Scott & Milsom,
49 2006; Scott & Milsom, 2007; Scott, 2011; Meir & Milsom, 2013; Scott et al., 2015). At such elevations,
50 an increased Hb-O₂ affinity helps safeguard arterial O₂ saturation, thereby compensating for the low O₂
51 tension of inspired air. This can help sustain O₂ delivery to metabolizing tissues because if environmental
52 hypoxia is sufficiently severe, the benefit of increasing pulmonary O₂ loading typically outweighs the cost
53 associated with a lower O₂ unloading pressure in the systemic circulation (Bencowitz, Wagner, & West,
54 1982; Willford, Hill, & Moores, 1982; Storz, 2016).

55 The Hb of birds and other jawed vertebrates is a heterotetramer consisting of two α -chain and two
56 β -chain subunits. The Hb tetramer undergoes an oxygenation-linked transition in quaternary structure,
57 whereby the two semi-rigid $\alpha_1\beta_1$ and $\alpha_2\beta_2$ dimers rotate around one another by 15° during the reversible
58 switch between the deoxy (low-affinity [T]) conformation and the oxy (high-affinity [R]) conformation
59 (Perutz, 1972; Baldwin & Chothia, 1979; Lukin & Ho, 2004; Yuan, Tam, Simplaceanu, & Ho, 2015).
60 Oxygenation-linked shifts in the T↔R equilibrium govern the cooperativity of O₂-binding and are central
61 to Hb’s role in respiratory gas transport.

62 The major Hb isoform of the bar-headed goose has an appreciably higher O₂-affinity than that of
63 the closely related greylag goose (*Anser anser*), a strictly lowland species (Petschow et al., 1977; Rollema
64 & Bauer, 1979). The Hbs of the two species differ at five amino acid sites: three in the α^A -chain subunit
65 and two in the β^A -chain subunit (Oberthur, Braunitzer, & Wurdinger, 1982; McCracken, Barger, &
66 Sorenson, 2010). Of these five amino acid differences, Perutz (Perutz, 1983) predicted that the Pro→Ala
67 replacement at $\alpha 119$ ($\alpha P119A$) is primarily responsible for the adaptive increase in Hb-O₂ affinity in bar-
68 headed goose. This site is located at an intersubunit ($\alpha_1\beta_1/\alpha_2\beta_2$) interface where the ancestral $\alpha 119$ -Pro
69 forms a van der Waals contact with $\beta 55$ -Met on the opposing subunit of the same $\alpha\beta$ dimer. Perutz
70 predicted that the $\alpha P119A$ mutation would eliminate this intradimer contact, thereby destabilizing the T-
71 state and shifting the conformational equilibrium in favor of the high-affinity R-state. Jessen et al. (Jessen,
72 Weber, Fermi, Tame, & Braunitzer, 1991) and Weber et al. (Weber, Jessen, Malte, & Tame, 1993) tested
73 Perutz’s hypothesis using a protein engineering approach based on site-directed mutagenesis, and their
74 experiments confirmed the predicted mechanism.

75 As a result of these experiments, bar-headed goose Hb is often held up as an example of a
76 biochemical adaptation that is attributable to a single, large-effect substitution (Li, 1997; Hochachka &
77 Somero, 2002). However, several key questions remain unanswered: Do the other substitutions also
78 contribute to the change in Hb-O₂ affinity? If not, do they compensate for deleterious pleiotropic effects

79 of the affinity-enhancing α P119A mutation? Given that the substitutions in question involve closely
80 linked sites in the same gene, another possibility is that neutral mutations at the other sites simply
81 hitchhiked to fixation along with the positively selected mutation. Since the other mutations in bar-headed
82 goose Hb have not been tested, we do not know whether α P119A accounts for all or most of the evolved
83 change in O_2 affinity. Moreover, the original studies tested the effect of α P119A by introducing the
84 goose-specific amino acid state into recombinant human Hb. One potential problem with this type of
85 ‘horizontal’ comparison – where residues are swapped between orthologous proteins of contemporary
86 species – is that the focal mutation is introduced into a sequence context that is not evolutionarily
87 relevant. If mutations have context-dependent effects, then introducing goose-specific substitutions into
88 human Hb may not recapitulate the phenotypic effects of the mutations on the genetic background in
89 which they actually occurred (i.e., in the ancestor of bar-headed goose). An alternative ‘vertical’ approach
90 is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic
91 background in which they actually occurred during evolution (Harms & Thornton, 2010; Hochberg &
92 Thornton, 2017).

93 Here we revisit the functional evolution of bar-headed goose Hb, a classic text-book example of
94 biochemical adaptation. We reconstructed the α^A - and β^A -chain Hb sequences of the most recent common
95 ancestor of the bar-headed goose and its closest living relatives, all of which are lowland species in the
96 genus *Anser*. After identifying the particular substitutions that are specific to bar-headed goose, we used a
97 combinatorial approach to test the functional effects of each mutation in all possible multi-site
98 combinations. To examine possible pleiotropic effects of causative mutations, we also measured several
99 properties that potentially trade-off with Hb- O_2 affinity: susceptibility to spontaneous heme oxidation
100 (autoxidation rate), allosteric regulatory capacity (the sensitivity of Hb- O_2 affinity to modulation by
101 anionic effectors), and measures of both secondary and tertiary structural stability. Measuring the direct
102 and indirect effects of these mutations enabled us to address two fundamental questions about molecular
103 adaptation: (i) Do each of the mutations contribute to the increased Hb- O_2 affinity? If so, what are their
104 relative effects? And (ii) Do function-altering mutations have deleterious pleiotropic effects on other
105 aspects of protein structure or function? If so, are these effects compensated by mutations at other sites?
106

107 Results and Discussion

108 Direction of amino acid substitutions

109 Using globin sequences from bar-headed goose, greylag goose, and other waterfowl species in the
110 subfamily Anserinae, we reconstructed the α - and β -chain sequences of the bar-headed goose/greylag
111 goose ancestor, which we call ‘AncAnser’ because it represents the most recent common ancestor of all
112 extant species in the genus *Anser* (Figure 1A). The principle of parsimony clearly indicates that all three
113 of the α -chain substitutions that distinguish the Hbs of bar-headed goose and greylag goose occurred in
114 the bar-headed goose lineage (α G18S, α A63V, and α P119A), whereas each of the two β -globin
115 substitutions occurred in the greylag goose lineage (β T4S and β D125E) (Figures 1A,B).
116

117 Ancestral protein resurrection and functional testing

118 It is often implicitly assumed that the difference in Hb- O_2 affinity between bar-headed goose and greylag
119 goose is attributable to a derived increase in Hb- O_2 affinity in the bar-headed goose lineage (Black &
120 Tenney, 1980; Gillespie, 1991; Li, 1997; Hochachka & Somero, 2002). In principle, however, the pattern
121 could be at least partly attributable to a derived reduction in Hb- O_2 affinity in the greylag goose lineage,
122 even if α P119A does account for the majority of the change in bar-headed goose. To resolve the polarity
123 of character state change, we synthesized, purified, and functionally tested recombinant Hbs (rHbs)
124 representing the wildtype Hb of bar-headed goose, the wildtype Hb of greylag goose, and the
125 reconstructed Hb of their common ancestor, AncAnser. Functional differences between bar-headed goose
126 and AncAnser rHbs reflect the net effect of three substitutions (α G18S, α A63V, and α P119A) and
127 differences between greylag goose and AncAnser reflect the net effect of two substitutions (β T4S and
128 β D125E; Figure 1B).

129 Since genetically based differences in Hb-O₂ affinity may be attributable to differences in
130 intrinsic O₂-affinity and/or changes in sensitivity to allosteric effectors in the red blood cell, we measured
131 O₂-equilibria of purified rHbs under four standardized treatments: (i) in the absence of allosteric effectors
132 (stripped), (ii) in the presence of Cl⁻ ions (added as KCl), (iii) in the presence of inositol hexaphosphate
133 (IHP, a chemical analog of the endogenously produced inositol pentaphosphate), and (iv) in the
134 simultaneous presence of KCl and IHP. This latter treatment is most relevant to *in vivo* conditions in
135 avian red blood cells. In each treatment, we measured P_{50} (the partial pressure of O₂ [PO₂] at which Hb is
136 50% saturated). To complement equilibrium measurements on the set of three rHbs and to gain further
137 insight into functional mechanisms, we also performed stopped-flow kinetic experiments to estimate O₂
138 binding and dissociation rates under the same conditions.

139 The O₂-equilibrium measurements confirmed the results of previous studies (Petschow et al.,
140 1977; Rollema & Bauer, 1979) by demonstrating that the Hb of bar-headed goose has a higher intrinsic
141 O₂-affinity than that of greylag goose (as revealed by the lower P_{50} for stripped Hb) (Figure 2A, Table 1).
142 This difference persisted in the presence of Cl⁻ ions ($P_{50(\text{KCl})}$), in the presence of IHP ($P_{50(\text{IHP})}$), and in the
143 simultaneous presence of both anions ($P_{50(\text{KCl+IHP})}$) (Figure 2A, Table 1). The difference in Hb-O₂ affinity
144 between bar-headed goose and greylag goose is mainly attributable to differences in intrinsic affinity, as
145 there were no appreciable differences in sensitivities to allosteric effectors (Table 1). This is consistent
146 with a previous report that native Hbs of bar-headed goose and greylag goose have identical binding
147 constants for inositol pentaphosphate (Rollema & Bauer, 1979). Pairwise comparisons between each of
148 the two modern-day species and their reconstructed ancestor (AncAnser) revealed that the elevated Hb-O₂
149 affinity of the bar-headed goose is a derived character state. O₂-equilibrium properties of greylag goose
150 and AncAnser rHbs were generally very similar (Figure 2A). The triangulated comparison involving rHbs
151 from the two contemporary species (bar-headed goose and greylag goose) and their reconstructed
152 ancestor (AncAnser) revealed that – in the presence of physiological concentrations of Cl⁻ and IHP – 72%
153 of the difference in Hb-O₂ affinity between bar-headed goose and greylag goose is attributable to a
154 derived increase in the bar-headed goose lineage and the remaining 28% is attributable to a derived
155 reduction in the greylag goose lineage (Figure 2A). This demonstrates the value of ancestral protein
156 resurrection for inferring the direction and magnitude of historical changes in character state.

157 Kinetic measurements demonstrated that the increased O₂-affinity of bar-headed goose rHb (i.e.,
158 the lower ratio of dissociation/association rate constants, $k_{\text{off}}/k_{\text{on}}$) is attributable to a lower rate of
159 dissociation, k_{off} , in combination with a faster rate of O₂-binding, k_{on} , relative to the Hbs of both greylag
160 goose and AncAnser (Figure 2B,C). The Hbs of greylag goose and AncAnser exhibited highly similar
161 rates of both k_{off} and k_{on} (Figure 2B,C).

162 Effects of individual mutations in bar-headed goose Hb

163 In combination with the inferred history of sequence changes (Figure 1A,B), the comparison between the
164 rHbs of bar-headed goose and AncAnser indicates that the derived increase in Hb-O₂ affinity in bar-
165 headed goose must be attributable to the independent or joint effects of the three substitutions at sites α 18,
166 α 63, and α 119. To measure the effects of each individual mutation in all possible multi-site combinations,
167 we used site-directed mutagenesis to synthesize each of the six possible mutational intermediates that
168 connect the ancestral and descendant genotypes (Figure 1B). In similar fashion, we synthesized each of
169 the two possible mutational intermediates that connect AncAnser and the wildtype genotype of greylag
170 goose (Figure 1B).

171 The analysis of the bar-headed goose mutations on the AncAnser background revealed that
172 mutations at each of the three α -chain sites (α G18S, α A63V, and α P119A) produced significant increases
173 in intrinsic Hb-O₂ affinity (indicated by reductions in $P_{50(\text{stripped})}$) (Figure 3, Table 1). The P α 119A
174 mutation had the largest effect on the ancestral background, producing an 18% reduction in $P_{50(\text{stripped})}$
175 (increase in intrinsic Hb-O₂ affinity). On the same background, α G18S or α A63V produced 7% and 14%
176 reductions in $P_{50(\text{stripped})}$, respectively. In the set of six (=3!) possible mutational pathways connecting the
177 low-affinity AncAnser genotype (GAP) and the high-affinity bar-headed goose genotype (SVA), the
178 α P119A mutation produced a significant increase in Hb-O₂ affinity on each of four possible backgrounds

180 (corresponding to the first step in the pathway, two alternative second steps, and the third step; *Figure 3*).
181 When tested on identical backgrounds, α P119A invariably produced a larger increase in intrinsic Hb-O_2
182 affinity than either α G18S or α A63V. Nonetheless, of the six possible forward pathways connecting GAP
183 and SVA, α P119A had the largest effect in four pathways and α A63V had the largest effect in the
184 remaining two. The two pathways in which α A63V had the largest effect were those in which it occurred
185 as the first step. In fact, α G18S or α A63V only produced significant increases in Hb-O_2 affinity when
186 they occurred as the first step. The effects of these two mutations were always smaller in magnitude when
187 they occurred on backgrounds in which the derived α 119-Ala was present. In addition to differences in
188 average effect size, α P119A also exhibited a higher degree of additivity across backgrounds than the other
189 two mutations. For example, the affinity-enhancing effect of α P119A on the AncAnser background is
190 mirrored by a similarly pronounced reduction in O_2 -affinity when the mutation is reverted on the wildtype
191 bar-headed goose background (α A119P). By contrast, forward and reverse mutations at α 18 and α 63 do
192 not show the same symmetry of effect (*Figure 3 – figure supplement 1*).
193

194 **Structural mechanisms underlying the evolved increase in Hb-O_2 affinity in bar-headed goose**
195 Comparison of crystal structures for human and bar-headed goose Hbs (Liang, Hua, Liang, Xu, & Lu,
196 2001) revealed that each of the three bar-headed goose α -chain substitutions have structurally localized
197 effects. As noted by Jessen et al. (Jessen et al., 1991), the α P119A mutation has very little effect on the
198 main-chain formation, and appears to exert its functional effect via the elimination of side chain contacts
199 and increased backbone flexibility. The α A63V mutation is predicted to increase flexibility in the ‘AB
200 corner’ (formed by the juncture between the A and B helices), as the introduction of the valine side chain
201 causes minor steric clashes with two neighboring glycines at α -chain sites 25 and 59 (*Figure 4*). This
202 interaction may increase O_2 -affinity by impinging on the neighboring α 58-His, the ‘distal histidine’ that
203 stabilizes the α -heme Fe-O_2 bond (Olson et al., 1988; Mathews et al., 1989; Rohlf et al., 1990; Lukin,
204 Simplaceanu, Zou, Ho, & Ho, 2000; Birukou, Schweers, & Olson, 2010; Yuan, Simplaceanu, Ho, & Ho,
205 2010).
206

207 **Effects of individual mutations in greylag goose Hb**

208 Given that the AncAnser and greylag goose rHbs exhibit similar equilibrium and kinetic O_2 -binding
209 properties (*Figure 2A,B,C*), the two greylag goose mutations (β T4S and β D125E) obviously do not
210 produce an appreciable net change in combination. Interestingly, however, each mutation by itself
211 produces a slightly reduced sensitivity to IHP (*Table 1*), such that values of $P_{50(\text{IHP})}$ and $P_{50(\text{KCl+IHP})}$ for the
212 single-mutant intermediates were significantly lower than those for AncAnser and the wildtype genotype
213 of greylag goose.
214

215 **Mutational pleiotropy**

216 Since amino acid mutations often affect multiple aspects of protein biochemistry (DePristo, Weinreich, &
217 Hartl, 2005; Harms & Thornton, 2013; Tokuriki et al., 2012; Tokuriki, Stricher, Serrano, & Tawfik,
218 2008), it is of interest to test whether adaptive mutations that improve one aspect of protein function
219 simultaneously compromise other functions. Amino acid mutations that alter the oxygenation properties
220 of Hb often have pleiotropic effects on allosteric regulatory capacity, structural stability, and
221 susceptibility to heme loss and/or heme oxidation (Kim et al., 1994; Olson, Eich, Smith, Warren, &
222 Knowles, 1997; Olson & Maillett, 2005; Bellelli, Brunori, Miele, Panetta, & Vallone, 2006; Bonaventura,
223 Henkens, Alayash, Banerjee, & Crumbliss, 2013; Tam et al., 2013; Varnado et al., 2013; Kumar et al.,
224 2017). Accordingly, we tested whether mutational changes in intrinsic O_2 -affinity are associated with
225 potentially deleterious changes in other structural and functional properties.
226

227 Analysis of the full set of bar-headed goose and greylag goose rHb mutants revealed modest
228 variability in autoxidation rate (*Figure 3 – figure supplement 2A*). This property is physiologically
229 relevant because oxidation of the ferrous (Fe^{2+}) heme iron to the ferric state (Fe^{3+}) releases superoxide
230 (O_2^-) or perhydroxy ($\text{HO}_2\cdot$) radical, and prevents reversible Fe-O_2 binding, rendering Hb inoperative as an
O₂-transport molecule. Although mutational changes in intrinsic O₂ affinity ($\Delta\log P_{50(\text{stripped})}$) were not

231 significantly correlated with changes in autoxidation rate in the full dataset ($r = -0.311$), analysis of the
232 bar-headed goose rHb mutants revealed a striking pairwise interaction between mutations at $\alpha 18$ and $\alpha 63$
233 (residues which are located within 7 Å of one another). The $\alpha A63V$ mutation produced a >2-fold increase
234 in the autoxidation rate on backgrounds in which the ancestral Gly is present at $\alpha 18$ (Figure 5, Figure 3 –
235 figure supplement 2A, source data 1). The adjacent $\alpha 62$ -Val is highly conserved because it plays a critical
236 role in restricting solvent access to the distal heme pocket, thereby preventing water-catalyzed rupture of
237 the Fe-O₂ bond to release a superoxide ion (Egeberg et al., 1990; Tame, Shih, Pagnier, Fermi, & Nagai,
238 199; Quillin et al., 1995; Tam et al., 2013). An increase in side chain volume at $\alpha 63$ may compromise this
239 gating function, resulting in an increased susceptibility to heme oxidation. The increased autoxidation rate
240 caused by $\alpha A63V$ is fully compensated by $\alpha G18S$ (Figure 5), a highly unusual amino acid replacement
241 because glycine is the only amino acid at this site (the C-terminal end of the A helix) that permits the
242 main chain to adopt the typical Ramachandran angles (Figure 4 – figure supplement 1). Introduction of
243 the serine side chain at $\alpha 18$ in bar-headed goose Hb forces this residue to undergo a peptide flip relative to
244 human Hb, so the carbonyl oxygen points in the opposite direction. This unusual replacement at $\alpha 18$ may
245 be required to accommodate the bulkier Val side chain at $\alpha 63$, thereby alleviating conformational stress.

246 Aside from the compensatory interaction between mutations at $\alpha 18$ and $\alpha 63$, we observed no
247 evidence for trade-offs between O₂-affinity and any of the other measured functional or structural
248 properties. There were no significant correlations between $\Delta \log P_{50(\text{stripped})}$ and changes in allosteric
249 regulatory capacity (Table 1), as measured by sensitivity to Cl⁻ ($r = -0.534$), IHP ($r = -0.137$), or both
250 anions in combination ($r = -0.300$). The goose rHbs revealed no appreciable variation in the stability of α -
251 helical secondary structure as measured by circular dichroism spectroscopy (Figure 3 – figure supplement
252 2B, source data 2) and there were no significant correlations between $\Delta \log P_{50(\text{stripped})}$ and changes in
253 stability over the physiological range (pH 6.5, $r = -0.357$; pH 7.5, $r = -0.052$). Likewise, the rHbs
254 exhibited very little variation in the stability of tertiary structure as measured by UV-visible spectroscopy
255 (Figure 3 – figure supplement 2C, source data 3) and there were no significant correlations between $\Delta \log$
256 $P_{50(\text{stripped})}$ and changes in stability over the physiological range (pH 6.5, $r = -0.511$; pH 7.5, $r = -0.338$). In
257 summary, we found no evidence for pleiotropic trade-offs between intrinsic O₂-affinity and any measured
258 properties of Hb structure or function other than autoxidation rate.

259

260 Conclusions

261 We now return to the two questions we posed at the outset:

262 (1) *Do each of the bar-headed goose mutations contribute to the increased Hb-O₂ affinity?*

263 It depends on the order in which the substitutions occur. Our experiments demonstrated that the $\alpha P119A$
264 mutation always produced a significant increase in intrinsic Hb-O₂ affinity regardless of the background
265 in which it occurred. As documented previously (Jessen et al., 1991; Weber et al., 1993), the $\alpha P119A$
266 mutation also produces a significant affinity-enhancing effect on the far more divergent background of
267 human Hb (which differs from bar-headed goose Hb at 89 of 267 amino acid sites in each $\alpha\beta$ half-
268 molecule [33% divergence in protein sequence]). By contrast, $\alpha G18S$ or $\alpha A63V$ only produced
269 significant affinity-enhancing effects when they occurred as the first step in the pathway (on the
270 AncAnser background). If it was advantageous for the ancestor of today's bar-headed geese to have an
271 increased Hb-O₂ affinity, our experiments suggest that any of the three α -chain mutations alone would
272 have conferred a beneficial effect, but only $\alpha P119A$ would have produced the same effect after the other
273 two had already fixed. This illustrates an important point about distributions of mutational effect sizes in
274 adaptive walks: in the presence of epistasis, relative effect sizes may be highly dependent on the
275 sequential order in which the substitutions occur.

276

277 (2) *Do function-altering mutations have deleterious pleiotropic effects on other aspects of protein
278 structure or function?*

279 On the AncAnser background, the affinity-enhancing mutation, $\alpha A63V$, produces a pronounced increase
280 in the autoxidation rate. This is consistent with the fact that engineered Hb and myoglobin mutants with
281 altered affinities often exhibit increased autoxidation rates (Brantley, Smerdon, Wilkinson, Singleton, &

282 Olson, 1993; Olson et al., 1997; Tam et al., 2013; Varnado et al., 2013). In the case of bar-headed goose
283 Hb, the increased autoxidation rate caused by α A63V is completely compensated by a polarity-changing
284 mutation at a spatially proximal site, α G18S. This compensatory interaction suggests that the α G18S
285 mutation may have been fixed by selection not because it produced a beneficial main effect on Hb-O₂
286 affinity, but because it mitigated the deleterious pleiotropic effects of the affinity-altering α A63V
287 mutation. Alternatively, if α G18S preceded α A63V during the evolution of bar-headed goose Hb, then the
288 (conditionally) deleterious side effects of α A63V would not have been manifest.

289 Our experiments revealed no evidence to suggest that the affinity-altering α P1119A mutation
290 perturbed other structural and functional properties of Hb. Data on natural and engineered human Hb
291 mutants have provided important insights into structure-function relationships and the nature of trade-offs
292 between different functional properties (Kim et al., 1994; Olson et al., 1997; Bellelli et al., 2006;
293 Steinberg & Nagel, 2009; Tam et al., 2013; Varnado et al., 2013). An important question concerns the
294 extent to which function-altering spontaneous mutations are generally representative of those that
295 eventually fix and contribute to divergence in protein function between species. There are good reasons to
296 expect that the spectrum of pleiotropic effects among spontaneous mutations or low-frequency variants
297 may be different from the spectrum of effects among evolutionary substitutions (mutations that passed
298 through the filter of purifying selection and eventually increased to a frequency of 1.0)(Streisfeld &
299 Rausher, 2011). The affinity-altering mutations that are most likely to fix (whether due to drift or positive
300 selection) may be those that have minimal pleiotropic effects and therefore do not require compensatory
301 mutations at other sites.

302
303 **Materials and methods**
304 **Sequence data**

305 We took sequence data for the α^A - and β^A -globin genes of all waterfowl species from published sources
306 (Oberthur et al., 1982; McCracken et al., 2010).

307
308 **Vector construction and site-directed mutagenesis**

309 After optimizing nucleotide sequences of AncAnser α^A - and β^A -globin genes in accordance with *E. coli*
310 codon preferences, we synthesized the α^A - β^A -globin cassette (Eurofins MWG Operon). We cloned the
311 globin cassette into a custom pGM vector system (Shen et al., 1993; Natarajan et al., 2011), as described
312 previously (Natarajan et al., 2013; Projecto-Garcia et al., 2013; Cheviron et al., 2014; Galen et al., 2015;
313 Natarajan et al., 2015; Tufts et al., 2015; Natarajan et al., 2016), and we then used site-directed
314 mutagenesis to derive globin sequences of greylag goose, bar-headed goose, and each of the mutational
315 intermediates connecting these wildtype sequences with AncAnser. We conducted the codon mutagenesis
316 using the QuikChange II XL Site-Directed Mutagenesis kit (Agilent Technologies) and we verified all
317 codon changes by DNA sequencing.

318
319 **Expression and purification of recombinant Hbs**

320 We carried out recombinant Hb expression in the *E. coli* JM109 (DE3) strain as described previously
321 (Natarajan et al., 2011). To ensure the complete cleavage of N-terminal methionines from the nascent
322 globin chains, we over-expressed methionine aminopeptidase (MAP) by co-transforming a plasmid (pCO-
323 MAP) along with a kanamycin resistance gene (Shen et al., 1993). We then co-transformed the pGM and
324 pCO-MAP plasmids and subjected them to dual selection in an LB agar plate containing ampicillin and
325 kanamycin. We carried out the over expression of each rHb mutant in 1.5 L of TB medium.

326 We grew bacterial cells at 37°C in an orbital shaker at 200 rpm until absorbance values reached
327 0.6 to 0.8 at 600 nm. We then induced the bacterial cultures with 0.2 mM IPTG and supplemented them
328 with hemin (50 μ g/ml) and glucose (20 g/L). The bacterial culture conditions and the protocol for
329 preparing cell lysates were described previously (Natarajan et al., 2011). We resuspended bacterial cells
330 in lysis buffer (50 mM Tris, 1 mM EDTA, 0.5 mM DTT, pH 7.0) with lysozyme (1 mg/g wet cells) and
331 incubated them in an ice bath for 30 min. Following sonication of the cells, we added 0.5-1.0%
332 polyethyleneimine solution, and we then centrifuged the crude lysate at 13,000 rpm for 45 min at 4°C.

333 We purified the rHbs by means of two-step ion-exchange chromatography. Using high-
334 performance liquid chromatography (Äkta start, GE Healthcare), we passed the samples through a cation
335 exchange-column (SP-Sepharose) followed by passage through an anion-exchange column (Q-
336 Sepharose). We subjected the clarified supernatant to overnight dialysis in Hepes buffer (20 mM Hepes
337 with 0.5mM EDTA, 1 mM DTT, 0.5mM IHP, pH 7.0) at 4°C. We used prepackaged SP-Sepharose
338 columns (HiTrap SPHP, 5 mL, 17-516101; GE Healthcare) equilibrated with Hepes buffer (20 mM Hepes
339 with 0.5mM EDTA, 1 mM DTT, 0.5mM IHP pH 7.0). After passing the samples through the column, we
340 eluted the rHb solutions against a linear gradient of 0-1.0 M NaCl. After desalting the eluted samples, we
341 performed an overnight dialysis against Tris buffer (20 mM Tris, 0.5mM EDTA, 1 mM DTT, pH 8.4) at
342 4°C. We then passed the dialyzed samples through a pre-equilibrated Q-Sepharose column (HiTrap QHP,
343 1 mL, 17-5158-01; GE Healthcare) with Tris buffer (20 mM Tris, 0.5mM EDTA, 1 mM DTT, pH 8.4).
344 We eluted the rHb samples with a linear gradient of 0-1.0 M NaCl. We then concentrated the samples and
345 desalted them by means of overnight dialysis against 10 mM Hepes buffer (pH 7.4). We then stored the
346 purified samples at -80° C prior to the measurement of O₂-equilibria and O₂ dissociation kinetics. We
347 analyzed the purified rHb samples by means of sodium dodecyl sulphate (SDS) polyacrylamide gel
348 electrophoresis and isoelectric focusing. After preparing rHb samples as oxyHb, deoxyHb, and
349 carbonmonoxy derivatives, we measured absorbance at 450-600 nm to confirm the expected absorbance
350 maxima.

351

352 **Measurement of Hb-O₂ equilibria**

353 Using purified rHb solutions (0.3 mM heme), we measured O₂-equilibrium curves at 37°C in 0.1 M
354 Hepes buffer (pH 7.4) in the absence ('stripped') and presence of 0.1 M KCl and IHP (at two-fold molar
355 excess over tetrameric Hb), and in the simultaneous presence of KCl and IHP. We measured O₂-equilibria
356 of 5 µl thin-film samples in a modified diffusion chamber where absorption at 436 nm was monitored
357 during stepwise changes in the equilibration of N₂/O₂ gas mixtures generated by precision Wösthoff
358 mixing pumps (Weber, 1992; Grispo et al., 2012; Weber, Fago, Malte, Storz, & Gorr, 2013). We
359 estimated values of P_{50} and n_{50} (Hill's cooperativity coefficient) by fitting the Hill equation $Y = PO_2^n/(P_{50}^n + PO_2^n)$
360 to the experimental O₂ saturation data by means of nonlinear regression (Y = fractional O₂
361 saturation; n , cooperativity coefficient). The nonlinear fitting was based on 5-8 equilibration steps. Free
362 Cl⁻ concentrations were measured with a model 926S Mark II chloride analyzer (Sherwood Scientific Ltd,
363 Cambridge, UK).

364

365 **Measurement of Hb-O₂ dissociation kinetics**

366 We determined O₂ dissociation constants (k_{off}) of purified rHbs at 37 °C using an OLIS RSM 1000
367 UV/Vis rapid-scanning stopped flow spectrophotometer (OLIS, Bogart, CA) equipped with an OLIS data
368 collection software. Briefly, rHb (10 µM heme) in 200 mM Hepes, pH 7.4, was mixed 1:1 with N₂-
369 equilibrated 200 mM Hepes, pH 7.4, containing 40 mM sodium dithionite (Helbo & Fago, 2012). We
370 monitored absorbance at 431 nm as a function of time and fit the curve to a monoexponential function (r^2
371 > 0.99). We calculated O₂ association rates (k_{on}) from the relationship $k_{on} = k_{off}/K$, where K (µM) is the O₂
372 dissociation equilibrium constant in solution, calculated as the product of P_{50} (torr) and the O₂ solubility
373 coefficient in water at 37° C (1.407 mM torr⁻¹) (Boutilier, Heming, & Iwama, 1984).

374

375 **Measurement of autoxidation rates**

376 To estimate autoxidation rates, we treated purified rHb samples with potassium ferricyanide
377 (K₃[Fe(CN)₆]), and we then reduced rHbs to the ferrous (Fe²⁺) state by treating the samples with sodium
378 dithionite (Na₂S₂O₄). We removed the dithionite by means of chromatography (Sephadex G-50). For each
379 rate measurement, we used 200 µl of 20 µM oxyHb in 100 mM potassium phosphate buffer, pH 7.0,
380 containing 1 mM EDTA and 3 mM catalase and superoxide dismutase per mole oxyHb. To measure the
381 spontaneous conversion of ferrous (Fe²⁺) oxyHb to ferric (Fe³⁺) metHb we recorded the absorbance
382 spectrum at regular intervals over a 90 h period. We collected spectra between 400nm and 700nm using a
383 BioTek Synergy2 multi-mode microplate reader (BioTek Instruments). We estimated autoxidation rates

384 by plotting the A_{541}/A_{630} ratio (ratio of absorbances at 540nm and 630nm) vs time, using IGOR Pro 6.37
385 software (Wavemetrics). We used the exponential offset formula in IGOR to calculate the 50%
386 absorbance per half-life (i.e., 0.5AU/half-life).

387

388 **Measurements of structural stability**

389 We assessed the pH-dependent stability of the rHbs by means of UV-visible spectroscopy. We prepared
390 20 mM filtered buffers spanning the pH range 2.0–11.0. We prepared 20 mM glycine-HCl for pH 2.0–
391 3.5; 20 mM acetate for pH 4.0–5.5; 20 mM phosphate for pH 6.0–8.0; 20 mM glycine-NaOH for pH 8.5–
392 10.0; 20 mM carbonate-NaOH for pH 10.5 and phosphate-NaOH for pH 11.0. We diluted the purified
393 rHb samples in the pH-specific buffers to achieve uniform protein concentrations of 0.15 mg/ml. We
394 incubated the samples for 3–4 h at 25°C prior to spectroscopic measurements, and we maintained this
395 same temperature during the course of the experiments. We measured absorbance in the range 260–700
396 nm using a Cary Varian Bio100 UV-Vis spectrophotometer (Varian) with Quartz cuvettes, and we used
397 IGOR Pro 6.37 (WaveMetrics) to process the raw spectra. For the same set of rHbs, we tested for changes
398 in secondary structure of the globin chains by measuring circular dichroism spectra on a JASCO J-815
399 spectropolarimeter using a quartz cell with a path length of 1 mm. We assessed changes in secondary
400 structure by measuring molar ellipticity in the far UV region between 190 and 260 nm in three
401 consecutive spectral scans per sample.

402

403 **Structural modeling**

404 We modelled structures of goose Hbs and the various mutational intermediates using the program COOT
405 (Emsley, Lohkamp, Scott, & Cowtan, 2010), based on the crystal structures of bar-headed goose Hb
406 (PDB models 1hv4 and 1c40)(Liang, Hua, et al., 2001; Liu et al., 2001), greylag goose Hb (PDB
407 1faw)(Liang, Liu, Liu, & Lu, 2001), and human deoxyHb (PDB 2dn2).

408

409 **Acknowledgements**

410 We thank E. E. Petersen for skilled assistance, H. Moriyama for sharing equipment, and K. G.
411 McCracken for helpful discussion. This work was funded by the National Institutes of Health/National
412 Heart, Lung, and Blood Institute (HL087216 [JFS]), the National Science Foundation (MCB-1517636
413 [JFS] and RII Track-2 FEC-1736249), and the Danish Council for Independent Research, Natural
414 Sciences (4181-00094 [AF]).

415

416 **Figure legends**

417

418

419 **Figure 1.** Inferred history of amino acid substitution at five sites that distinguish the major Hb isoforms
420 of the bar-headed goose (*Anser indicus*) and greylag goose (*Anser anser*). (A) Amino acid states at the
421 same sites are shown for 12 other waterfowl species in the subfamily Anserinae. Of the five amino acid
422 substitutions that distinguish the Hbs of *A. indicus* and *A. anser*, parsimony indicates that three occurred
423 on the branch leading to *A. indicus* (α G18S, α A63V, and α P119A) and two occurred on the branch
424 subtending the clade of all *Anser* species other than *A. indicus* (β T4S and β D125E). ‘AncAnser’
425 represents the reconstructed sequence of the *A. indicus*/*A. anser* common ancestor, which is also the most
426 recent common ancestor of all extant species in the genus *Anser*. (B) Triangulated comparisons involving
427 rHbs of bar-headed goose, greylag goose, and their reconstructed ancestor (AncAnser) reveal the polarity
428 of changes in character state. Differences in Hb function between bar-headed goose and AncAnser reflect
429 the net effect of three substitutions (α G18S, α A63V, and α P119A) and differences between greylag goose
430 and AncAnser reflect the net effect of two substitutions (β T4S and β D125E). All possible mutational
431 intermediates connecting AncAnser with each of the two descendent species are shown to the side of each
432 terminal branch.

433

434 **Figure 2.** Bar-headed goose evolved a significant increase in Hb-O₂ affinity relative to greylag goose and
435 their reconstructed ancestor, AncAnser. Triangulated comparisons of purified rHbs involved diffusion-
436 chamber measurements of O₂-equilibria (A) and stopped-flow measurements of O₂ dissociation kinetics
437 (B). O₂-association rate constants (k_{on} , M⁻¹s⁻¹) derived from data in (A) and (B) are shown in (C). O₂-
438 affinities (P_{50} , torr; ± 1 SE) and dissociation rates (k_{off} , M⁻¹s⁻¹) of purified rHbs were measured at pH 7.4,
439 37° C, in the absence (stripped) and presence of allosteric effectors ([Cl⁻], 0.1 M; [Hepes], 0.1 M; IHP/Hb
440 tetramer ratio = 2.0; [heme], 0.3 mM in equilibrium experiments; [Cl⁻], 1.65 mM; [Hepes], 200 mM;
441 IHP/Hb tetramer ratio = 2.0; [heme], 5 μ M in kinetic experiments).

442

443 **Figure 3.** Trajectories of change in intrinsic Hb-O₂ affinity (indexed by P_{50} , torr) in each of six possible
444 forward pathways that connect the ancestral ‘AncAnser’ genotype (GAP) and the wildtype genotype of
445 bar-headed goose (SVA). Derived amino acid states are indicated by red lettering. Error bars denote 95%
446 confidence intervals.

447

448 **Figure supplement 1.** Effects of forward and reverse mutations on the same backgrounds.

449

450 **Figure supplement 2.** Variation among goose rHb mutants in functional and structural properties that
451 potentially trade-off with intrinsic O₂ affinity.

452

453 **Source data 1.** Autoxidation rates of all rHb mutants.

454 **Source data 2.** Effect of pH on the stability of α -helical secondary structure of rHb mutants,
455 measured by circular dichroism spectroscopy.

456 **Source data 3.** Effect of pH on the stability of tertiary structure of rHb mutants, measured by UV-
457 visible spectroscopy.

458

459 **Figure 4.** Structural model showing bar-headed goose Hb in the deoxy state (PDB1hv4), along with
460 locations of each of the three amino substitutions that occurred in the bar-headed goose lineage after
461 divergence from the common ancestor of other *Anser* species. The inset graphic shows the environment of
462 the α 63-Val residue. When valine replaces the ancestral alanine at this position, the larger volume of the
463 side-chain causes minor steric clashes with two neighboring glycine residues, α 25-Gly and α 59-Gly and is
464 predicted to increase flexibility of the AB corner. The distances between non-hydrogen atoms (depicted
465 by dotted lines) are given in \AA .

466

467 **Figure supplement 1.** Ramachandran plot of deoxyHb from bar-headed goose (PDB 1hv4).

468

469 **Figure 5.** Compensatory interaction between spatially proximal α -chain residues in bar-headed goose Hb.
470 The mutation α A63V produces a >2-fold increase in autoxidation rate (k_{auto}) on genetic backgrounds with
471 the ancestral Gly at residue position α 18. This effect is fully compensated by α G18S, as indicated by two
472 double-mutant cycles (A and B) in which mutations at both sites are tested individually and in pairwise
473 combination. Derived amino acid states are indicated by red lettering.

474 **References**

475 Baldwin, J., & Chothia, C. (1979). Haemoglobin: the structural changes related to ligand binding and its
476 allosteric mechanism. *Journal of Molecular Biology*, 129(2), 175-220.

477 Bellelli, A., Brunori, M., Miele, A. E., Panetta, G., & Vallone, B. (2006). The allosteric properties of
478 hemoglobin: Insights from natural and site directed mutants. *Current Protein and Peptide
479 Science*, 7(1), 17-45. doi: 10.2174/138920306775474121

480 Bencowitz, H. Z., Wagner, P. D., & West, J. B. (1982). Effect of change in P_{50} on exercise tolerance at
481 high-altitude - a theoretical study. *Journal of Applied Physiology*, 53(6), 1487-1495.

482 Birukou, I., Schweers, R. L., & Olson, J. S. (2010). Distal histidine stabilizes bound O_2 and acts as a gate
483 for ligand entry in both subunits of adult human hemoglobin. *Journal of Biological Chemistry*,
484 285(12), 8840-8854. doi: 10.1074/jbc.M109.053934

485 Bishop, C. M., Spivey, R. J., Hawkes, L. A., Batbayar, N., Chua, B., Frappell, P. B., . . . Butler, P. J.
486 (2015). The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan
487 migrations. *Science*, 347(6219), 250-254. doi: 10.1126/science.1258732

488 Black, C. P., & Tenney, S. M. (1980). Oxygen-transport during progressive hypoxia in high-altitude and
489 sea-level waterfowl. *Respiration Physiology*, 39(2), 217-239. doi: 10.1016/0034-5687(80)90046-
490 8

491 Bonaventura, C., Henkens, R., Alayash, A. I., Banerjee, S., & Crumbliss, A. L. (2013). Molecular
492 controls of the oxygenation and redox reactions of hemoglobin. *Antioxidants & Redox Signaling*,
493 18(17), 2298-2313. doi: 10.1089/ars.2012.4947

494 Boutilier, R. G., Heming, T. A., & Iwama, G. K. (1984). Appendix: Physicochemical parameters for use
495 in fish respiratory physiology. In W. S. Hoar & D. J. Randall (Eds.), *Fish Physiology* (Vol. 10A,
496 pp. 403-430). Amsterdam: Elsevier.

497 Brantley, R. E., Smerdon, S. J., Wilkinson, A. J., Singleton, E. W., & Olson, J. S. (1993). The mechanism
498 of autoxidation of myoglobin. *Journal of Biological Chemistry*, 268(10), 6995-7010.

499 Burch, C. L., & Chao, L. (1999). Evolution by small steps and rugged landscapes in the RNA virus phi 6.
500 *Genetics*, 151(3), 921-927.

501 Chevron, Z. A., Natarajan, C., Projecto-Garcia, J., Eddy, D. K., Jones, J., Carling, M. D., . . . Storz, J. F.
502 (2014). Integrating evolutionary and functional tests of adaptive hypotheses: a case study of
503 altitudinal differentiation in hemoglobin function in an Andean sparrow, *Zonotrichia capensis*.
504 *Molecular Biology and Evolution*, 31(11), 2948-2962.

505 Cooper, T. F., Ostrowski, E. A., & Travisano, M. (2007). A negative relationship between mutation
506 pleiotropy and fitness effect in yeast. *Evolution*, 61(6), 1495-1499. doi: 10.1111/j.1558-
507 5646.2007.00109.x

508 DePristo, M. A., Weinreich, D. M., & Hartl, D. L. (2005). Missense meanderings in sequence space: A
509 biophysical view of protein evolution. *Nature Reviews Genetics*, 6(9), 678-687. doi:
510 10.1038/nrg1672

511 Egeberg, K. D., Springer, B. A., Sligar, S. G., Carver, T. E., Rohlfs, R. J., & Olson, J. S. (1990). The role
512 of Val68(11) in ligand-binding to sperm whale myoglobin. *Journal of Biological Chemistry*,
513 265(20), 11788-11795.

514 Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. *Acta
515 Crystallographica Section D-Biological Crystallography*, 66, 486-501. doi:
516 10.1107/s0907444910007493

517 Faraci, F. M. (1986). Circulation during hypoxia in birds. *Comparative Biochemistry and Physiology a-
518 Physiology*, 85(4), 613-620. doi: 10.1016/0300-9629(86)90270-7

519 Galen, S. C., Natarajan, C., Moriyama, H., Weber, R. E., Fago, A., Benham, P. M., . . . Witt, C. C. (2015).
520 Contribution of a mutational hotspot to adaptive changes in hemoglobin function in high-altitude
521 Andean house wrens. *Proceedings of the National Academy of Sciences of the United States of
522 America*, 112(45), 13958-13963.

523 Gillespie, J. H. (1991). *The Causes of Molecular Evolution*. New York: Oxford University Press.

524 Grispo, M. T., Natarajan, C., Projecto-Garcia, J., Moriyama, H., Weber, R. E., & Storz, J. F. (2012). Gene
525 duplication and the evolution of hemoglobin isoform differentiation in birds. *Journal of*
526 *Biological Chemistry*, 287(45), 37647-37658. doi: 10.1074/jbc.M112.375600

527 Harms, M. J., & Thornton, J. W. (2010). Analyzing protein structure and function using ancestral gene
528 reconstruction. *Current Opinion in Structural Biology*, 20(3), 360-366. doi:
529 10.1016/j.sbi.2010.03.005

530 Harms, M. J., & Thornton, J. W. (2013). Evolutionary biochemistry: revealing the historical and physical
531 causes of protein properties. *Nature Reviews Genetics*, 14(8), 559-571. doi: 10.1038/nrg3540

532 Hawkes, L. A., Balachandran, S., Batbayar, N., Butler, P. J., Chua, B., Douglas, D. C., . . . Bishop, C. M.
533 (2013). The paradox of extreme high-altitude migration in bar-headed geese *Anser indicus*.
534 *Proceedings of the Royal Society B-Biological Sciences*, 280(1750). doi: 10.1098/rspb.2012.2114

535 Hawkes, L. A., Balachandran, S., Batbayar, N., Butler, P. J., Frappell, P. B., Milsom, W. K., . . . Bishop,
536 C. M. (2011). The trans-Himalayan flights of bar-headed geese (*Anser indicus*). *Proceedings of*
537 *the National Academy of Sciences of the United States of America*, 108(23), 9516-9519. doi:
538 10.1073/pnas.1017295108

539 Helbo, S., & Fago, A. (2012). Functional properties of myoglobins from five whale species with different
540 diving capacities. *Journal of Experimental Biology*, 215(19), 3403-3410. doi: 10.1242/jeb.073726

541 Hochachka, P. W., & Somero, G. N. (2002). *Biochemical Adaptation*. Oxford: Oxford University Press.

542 Hochberg, G. K. A., & Thornton, J. W. (2017). Reconstructing ancient proteins to understand the causes
543 of structure and function. In K. A. Dill (Ed.), *Annual Review of Biophysics*, Vol 46 (Vol. 46, pp.
544 247-269).

545 Jessen, T. H., Weber, R. E., Fermi, G., Tame, J., & Braunitzer, G. (1991). Adaptation of bird
546 hemoglobins to high-altitudes - demonstration of molecular mechanism by protein engineering.
547 *Proceedings of the National Academy of Sciences of the United States of America*, 88(15), 6519-
548 6522. doi: 10.1073/pnas.88.15.6519

549 Kim, H. W., Shen, T. J., Sun, D. P., Ho, N. T., Madrid, M., Tam, M. F., . . . Ho, C. (1994). Restoring
550 allosterism with compensatory mutations in hemoglobin. *Proceedings of the National Academy of*
551 *Sciences of the United States of America*, 91(24), 11547-11551. doi: 10.1073/pnas.91.24.11547

552 Kumar, A., Natarajan, C., Moriyama, H., Witt, C. C., Weber, R. E., Fago, A., & Storz, J. F. (2017).
553 Stability-mediated epistasis restricts accessible mutational pathways in the functional evolution of
554 avian hemoglobin. *Molecular Biology and Evolution*, 34, 1240-1251.

555 Li, W.-H. (1997). *Molecular Evolution*. Sunderland, MA: Sinauer Associates, Inc.

556 Liang, Y. H., Hua, Z. Q., Liang, X., Xu, Q., & Lu, G. Y. (2001). The crystal structure of bar-headed
557 goose hemoglobin in deoxy form: The allosteric mechanism of a hemoglobin species with high
558 oxygen affinity. *Journal of Molecular Biology*, 313(1), 123-137. doi: 10.1006/jmbi.2001.5028

559 Liang, Y. H., Liu, X. Z., Liu, S. H., & Lu, G. Y. (2001). The structure of greylag goose oxy haemoglobin:
560 the roles of four mutations compared with bar-headed goose haemoglobin. *Acta*
561 *Crystallographica Section D-Biological Crystallography*, 57, 1850-1856. doi:
562 10.1107/s0907444901016493

563 Liu, X. Z., Li, S. L., Jing, H., Liang, Y. H., Hua, Z. Q., & Lu, G. Y. (2001). Avian haemoglobins and
564 structural basis of high affinity for oxygen: structure of bar-headed goose aquomet haemoglobin.
565 *Acta Crystallographica Section D-Biological Crystallography*, 57, 775-783. doi:
566 10.1107/s0907444901004243

567 Lukin, J. A., & Ho, C. (2004). The structure-function relationship of hemoglobin in solution at atomic
568 resolution. *Chemical Reviews*, 104(3), 1219-1230. doi: 10.1021/cr940325w

569 Lukin, J. A., Simplaceanu, V., Zou, M., Ho, N. T., & Ho, C. (2000). NMR reveals hydrogen bonds
570 between oxygen and distal histidines in oxyhemoglobin. *Proceedings of the National Academy of*
571 *Sciences of the United States of America*, 97(19), 10354-10358. doi: 10.1073/pnas.190254697

572 Mathews, A. J., Rohlfs, R. J., Olson, J. S., Tame, J., Renaud, J. P., & Nagai, K. (1989). The effects of E7
573 and E11 mutations on the kinetics of ligand-binding to R-state human hemoglobin. *Journal of*
574 *Biological Chemistry*, 264(28), 16573-16583.

575 McCracken, K. G., Barger, C. P., & Sorenson, M. D. (2010). Phylogenetic and structural analysis of the
576 HbA (α (A)/ α (A)) and HbD (α (D)/ α (A)) hemoglobin genes in two high-altitude waterfowl from
577 the Himalayas and the Andes: bar-headed goose (*Anser indicus*) and Andean goose (*Chloephaga*
578 *melanoptera*). *Molecular Phylogenetics and Evolution*, 56(2), 649-658. doi:
579 10.1016/j.ympev.2010.04.034

580 Meir, J. U., & Milsom, W. K. (2013). High thermal sensitivity of blood enhances oxygen delivery in the
581 high-flying bar-headed goose. *Journal of Experimental Biology*, 216(12), 2172-2175. doi:
582 10.1242/jeb.085282

583 Moore, F. B. G., Rozen, D. E., & Lenski, R. E. (2000). Pervasive compensatory adaptation in *Escherichia*
584 *coli*. *Proceedings of the Royal Society B-Biological Sciences*, 267(1442), 515-522. doi:
585 10.1098/rspb.2000.1030

586 Natarajan, C., Hoffmann, F. G., Weber, R. E., Fago, A., Witt, C. C., & Storz, J. F. (2016). Predictable
587 convergence in hemoglobin function has unpredictable molecular underpinnings. *Science*,
588 354(6310), 336-340.

589 Natarajan, C., Inoguchi, N., Weber, R. E., Fago, A., Moriyama, H., & Storz, J. F. (2013). Epistasis among
590 adaptive mutations in deer mouse hemoglobin. *Science*, 340(6138), 1324-1327. doi:
591 10.1126/science.1236862

592 Natarajan, C., Jiang, X., Fago, A., Weber, R. E., Moriyama, H., & Storz, J. F. (2011). Expression and
593 purification of recombinant hemoglobin in *Escherichia coli*. *Plos One*, 6(5), e20176. doi:
594 10.1371/journal.pone.0020176

595 Natarajan, C., Projecto-Garcia, J., Moriyama, H., Weber, R. E., Munoz-Fuentes, V., Green, A. J., . . .
596 Storz, J. F. (2015). Convergent evolution of hemoglobin function in high-altitude Andean
597 waterfowl involves limited parallelism at the molecular sequence level. *PLoS Genetics*, 11(12),
598 e1005681.

599 Oberthür, W., Braunitzer, G., & Wurdinger, I. (1982). Hemoglobins of the bar-headed goose (*Anser*
600 *indicus*) - primary structure and physiology of respiration, systematics and evolution. *Hoppe-*
601 *Seylers Zeitschrift Fur Physiologische Chemie*, 363(6), 581-590. doi:
602 10.1515/bchm2.1982.363.1.581

603 Olson, J. S., Eich, R. F., Smith, L. P., Warren, J. J., & Knowles, B. C. (1997). Protein engineering
604 strategies for designing more stable hemoglobin-based blood substitutes. *Artificial Cells Blood*
605 *Substitutes and Immobilization Biotechnology*, 25(1-2), 227-241. doi:
606 10.3109/10731199709118912

607 Olson, J. S., & Maillett, D. H. (2005). Designing recombinant hemoglobin for use as a blood substitute. In
608 R. M. Winslow (Ed.), *Blood Substitutes*. San Diego, CA: Academic Press.

609 Olson, J. S., Mathews, A. J., Rohlfs, R. J., Springer, B. A., Egeberg, K. D., Sligar, S. G., . . . Nagai, K.
610 (1988). The role of the distal histidine in myoglobin and hemoglobin. *Nature*, 336(6196), 265-
611 266. doi: 10.1038/336265a0

612 Ostrowski, E. A., Rozen, D. E., & Lenski, R. E. (2005). Pleiotropic effects of beneficial mutations in
613 *Escherichia coli*. *Evolution*, 59(11), 2343-2352.

614 Otto, S. P. (2004). Two steps forward, one step back: the pleiotropic effects of favoured alleles.
615 *Proceedings of the Royal Society B-Biological Sciences*, 271(1540), 705-714. doi:
616 10.1098/rspb.2003.2635

617 Perutz, M. F. (1972). Nature of heme-heme interaction. *Nature*, 237(5357), 495-499. doi:
618 10.1038/237495a0

619 Perutz, M. F. (1983). Species adaptation in a protein molecule. *Molecular Biology and Evolution*, 1(1), 1-
620 28.

621 Petschow, D., Wurdinger, I., Baumann, R., Duhm, J., Braunitzer, G., & Bauer, C. (1977). Causes of high
622 blood O₂ affinity of animals living at high-altitude. *Journal of Applied Physiology*, 42(2), 139-
623 143.

624 Poon, A. F. Y., & Chao, L. (2006). Functional origins of fitness effect-sizes of compensatory mutations in
625 the DNA bacteriophage phi X174. *Evolution*, 60(10), 2032-2043. doi: 10.1111/j.0014-
626 3820.2006.tb01841.x

627 Projecto-Garcia, J., Natarajan, C., Moriyama, H., Weber, R. E., Fago, A., Cheviron, Z. A., . . . Storz, J. F.
628 (2013). Repeated elevational transitions in hemoglobin function during the evolution of Andean
629 hummingbirds. *Proceedings of the National Academy of Sciences of the United States of America*,
630 110(51), 20669-20674. doi: 10.1073/pnas.1315456110

631 Qian, W. F., Ma, D., Xiao, C., Wang, Z., & Zhang, J. Z. (2012). The genomic landscape and evolutionary
632 resolution of antagonistic pleiotropy in yeast. *Cell Reports*, 2(5), 1399-1410. doi:
633 10.1016/j.celrep.2012.09.017

634 Quillin, M. L., Li, T. S., Olson, J. S., Phillips, G. N., Dou, Y., Ikeda Saito, M., . . . Elber, R. (1995).
635 Structural and functional effects of apolar mutations of the distal valine in myoglobin. *Journal of
636 Molecular Biology*, 245(4), 416-436. doi: 10.1006/jmbi.1994.0034

637 Rohlfs, R. J., Mathews, A. J., Carver, T. E., Olson, J. S., Springer, B. A., Egeberg, K. D., & Sligar, S. G.
638 (1990). The effects of amino acid substitution at position E7 (residue 64) on the kinetics of
639 ligand-binding to sperm whale myoglobin. *Journal of Biological Chemistry*, 265(6), 3168-3176.

640 Rollema, H. S., & Bauer, C. (1979). Interaction of inositol pentaphosphate with the hemoglobins of
641 highland and lowland geese. *Journal of Biological Chemistry*, 254(23), 2038-2043.

642 Scott, G. R. (2011). Elevated performance: the unique physiology of birds that fly at high altitudes.
643 *Journal of Experimental Biology*, 214(15), 2455-2462. doi: 10.1242/jeb.052548

644 Scott, G. R., Hawkes, L. A., Frappell, P. B., Butler, P. J., Bishop, C. M., & Milsom, W. K. (2015). How
645 bar-headed geese fly over the Himalayas. *Physiology*, 30(2), 107-115. doi:
646 10.1152/physiol.00050.2014

647 Scott, G. R., & Milsom, W. K. (2006). Flying high: A theoretical analysis of the factors limiting exercise
648 performance in birds at altitude. *Respiratory Physiology and Neurobiology*, 154(1-2), 284-301.
649 doi: 10.1016/j.resp.2006.02.012

650 Scott, G. R., & Milsom, W. K. (2007). Control of breathing and adaptation to high altitude in the bar-
651 headed goose. *American Journal of Physiology-Regulatory Integrative and Comparative
652 Physiology*, 293(1), R379-R391. doi: 10.1152/ajpregu.00161.2007

653 Shen, T. J., Ho, N. T., Simplaceanu, V., Zou, M., Green, B. N., Tam, M. F., & Ho, C. (1993). Production
654 of unmodified human adult hemoglobin in *Escherichia coli*. *Proceedings of the National
655 Academy of Sciences of the United States of America*, 90(17), 8108-8112. doi:
656 10.1073/pnas.90.17.8108

657 Steinberg, M. H., & Nagel, R. L. (2009). Unstable hemoglobins, hemoglobins with altered oxygen
658 affinity, Hemoglobin M, and other variants of clinical and biological interest. In M. H. Steinberg,
659 B. G. Forget, D. R. Higgs & D. J. Weatherall (Eds.), *Disorders of hemoglobin: genetics,
660 pathophysiology, and clinical management*. 2nd edition. Cambridge, UK: Cambridge University
661 Press.

662 Stern, D. L. (2000). Evolutionary developmental biology and the problem of variation. *Evolution*, 54(4),
663 1079-1091. doi: 10.1554/0014-3820(2000)054[1079:pedbat]2.0.co;2

664 Storz, J. F. (2016). Hemoglobin-oxygen affinity in high-altitude vertebrates: Is there evidence for an
665 adaptive trend? *Journal of Experimental Biology*, 219(20), 3190-3203.

666 Streisfeld, M. A., & Rausher, M. D. (2011). Population genetics, pleiotropy, and the preferential fixation
667 of mutations during adaptive evolution. *Evolution*, 65(3), 629-642. doi: 10.1111/j.1558-
668 5646.2010.01165.x

669 Szamecz, B., Boross, G., Kalapis, D., Kovacs, K., Fekete, G., Farkas, Z., . . . Pal, C. (2014). The genomic
670 landscape of compensatory evolution. *Plos Biology*, 12(8). doi: 10.1371/journal.pbio.1001935

671 Tam, M. F., Rice, N. W., Maillett, D. H., Simplaceanu, V., Ho, N. T., Tam, T. C. S., . . . Ho, C. (2013).
672 Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the
673 α Val-62 or β Val-67 position of the distal heme pocket. *Journal of Biological Chemistry*, 288(35),
674 25512-25521. doi: 10.1074/jbc.M113.474841

675 Tame, J., Shih, D. T. B., Pagnier, J., Fermi, G., & Nagai, K. (1991). Functional role of the distal valine
676 (E11) residue of α subunits in human hemoglobin. *Journal of Molecular Biology*, 218(4), 761-
677 767. doi: 10.1016/0022-2836(91)90264-7

678 Tokuriki, N., Jackson, C. J., Afriat-Jurnou, L., Wyganowski, K. T., Tang, R., & Tawfik, D. S. (2012).
679 Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. *Nature
680 Communications*, 3, 1257. doi: 10.1038/ncomms2246

681 Tokuriki, N., Stricher, F., Serrano, L., & Tawfik, D. S. (2008). How protein stability and new functions
682 trade off. *Plos Computational Biology*, 4(2), e1000002. doi: 10.1371/journal.pcbi.1000002

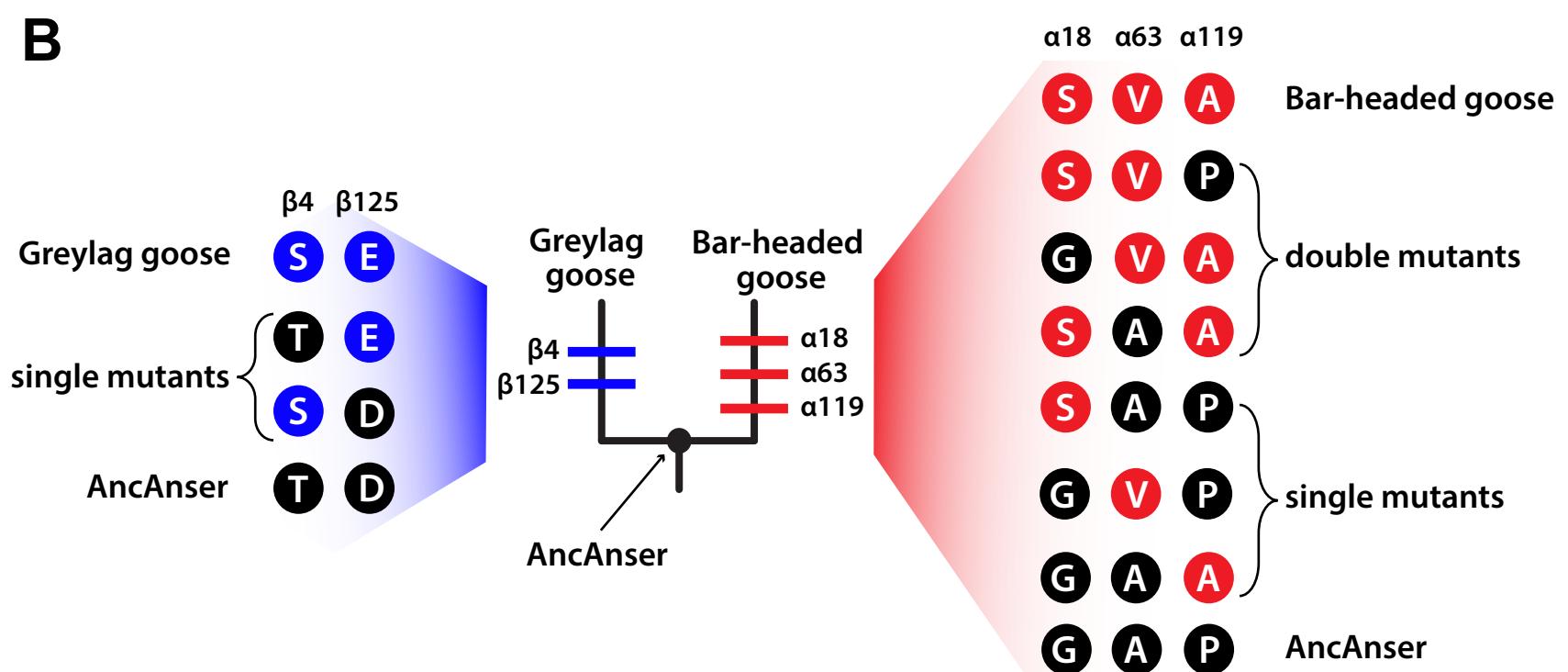
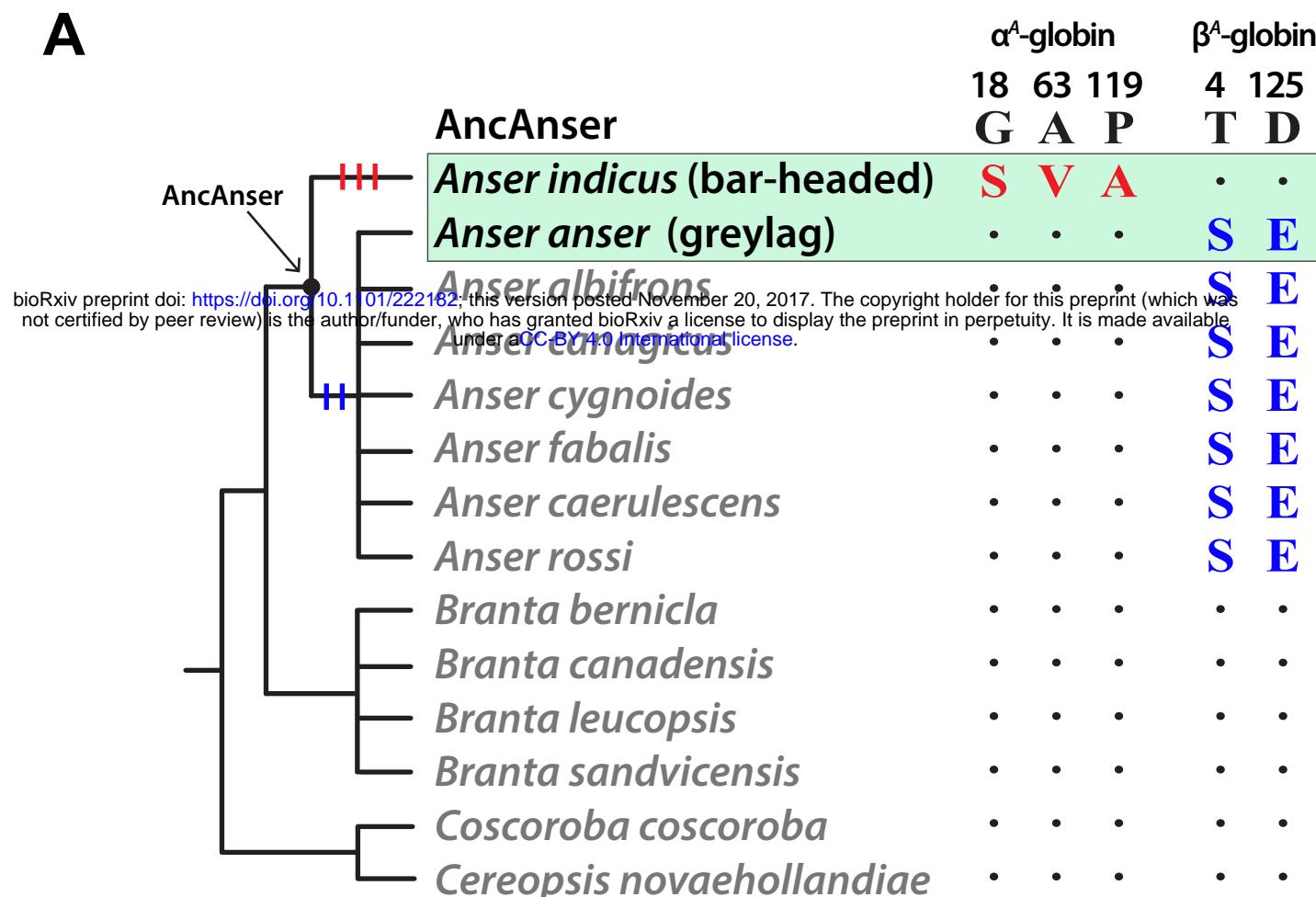
683 Tufts, D. M., Natarajan, C., Revsbech, I. G., Projecto-Garcia, J., Hoffman, F. G., Weber, R. E., . . . Storz,
684 J. F. (2015). Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude
685 pikas. *Molecular Biology and Evolution*, 32(2), 287-298.

686 Varnado, C. L., Mollan, T. L., Birukou, I., Smith, B. J. Z., Henderson, D. P., & Olson, J. S. (2013).
687 Development of recombinant hemoglobin-based oxygen carriers. *Antioxidants & Redox
688 Signaling*, 18(17), 2314-2328. doi: 10.1089/ars.2012.4917

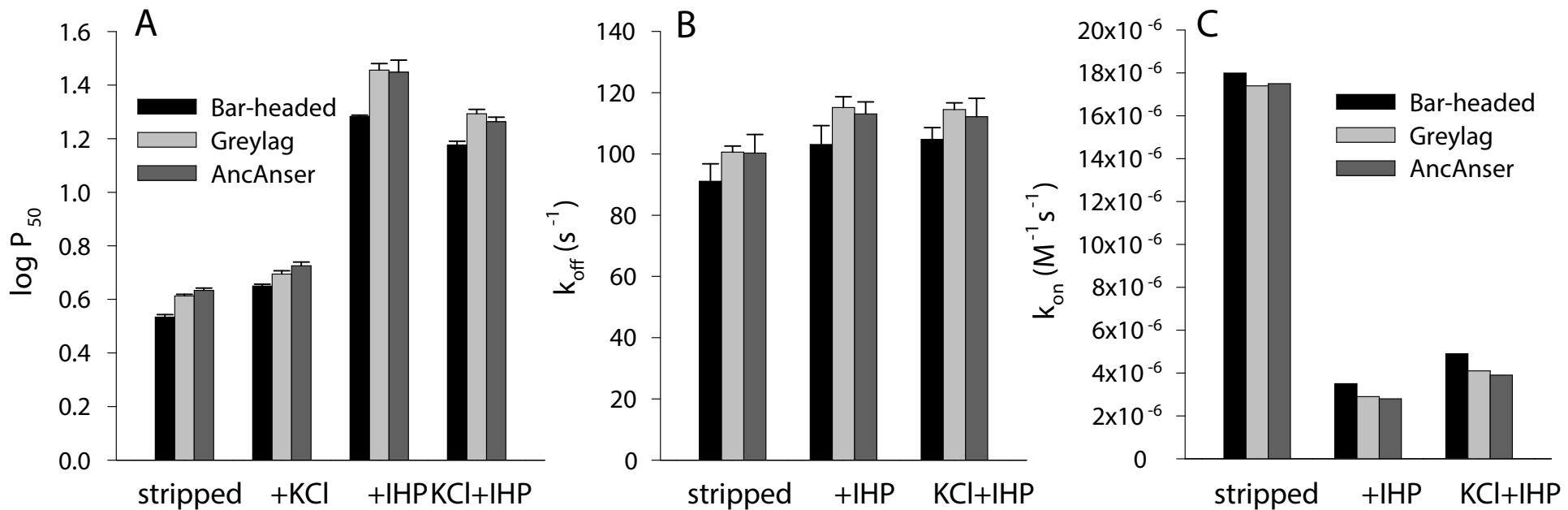
689 Weber, R. E. (1992). Use of ionic and zwitterionic (tris bistris and HEPES) buffers in studies on
690 hemoglobin function. *Journal of Applied Physiology*, 72(4), 1611-1615.

691 Weber, R. E., Fago, A., Malte, H., Storz, J. F., & Gorr, T. A. (2013). Lack of conventional oxygen-linked
692 proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf
693 caiman hemoglobin. *American Journal of Physiology-Regulatory Integrative and Comparative
694 Physiology*, 305(3), R300-R312. doi: 10.1152/ajpregu.00014.2013

695 Weber, R. E., Jessen, T. H., Malte, H., & Tame, J. (1993). Mutant hemoglobins (α (119)-Ala and β (55)-
696 Ser) - functions related to high-altitude respiration in geese. *Journal of Applied Physiology*, 75(6),
697 2646-2655.

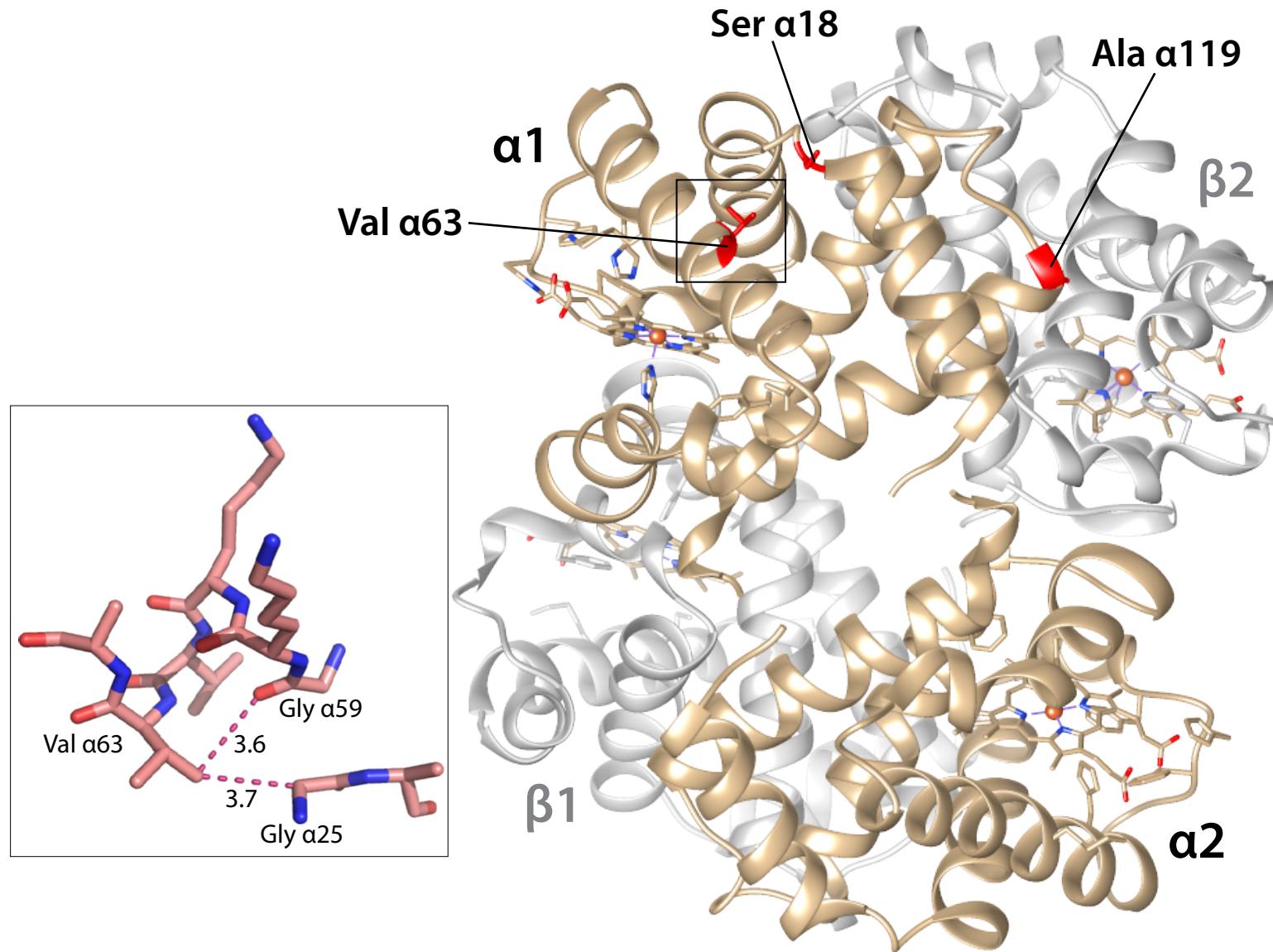


698 Willford, D. C., Hill, E. P., & Moores, W. Y. (1982). Theoretical analysis of optimal P_{50} . *Journal of
699 Applied Physiology*, 52(4), 1043-1048.

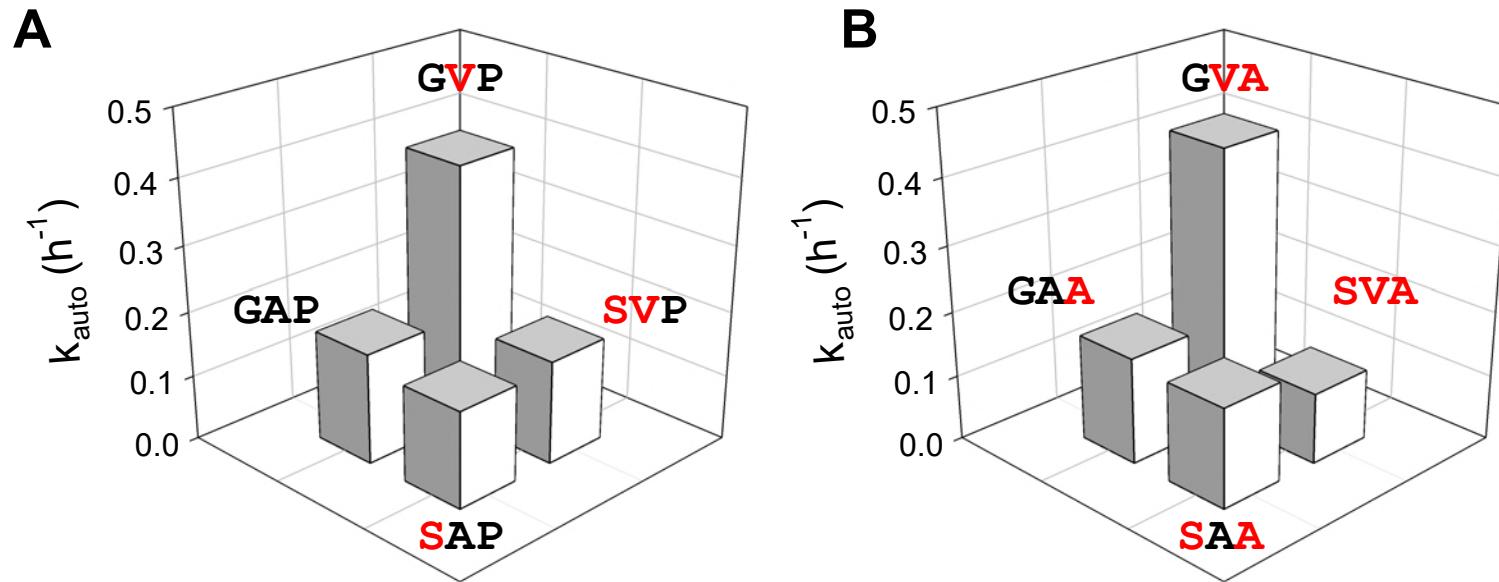
700 Yuan, Y., Simplaceanu, V., Ho, N. T., & Ho, C. (2010). An investigation of the distal histidyl hydrogen
701 bonds in oxyhemoglobin: effects of temperature, pH, and inositol hexaphosphate. *Biochemistry*,
702 49(50), 10606-10615. doi: 10.1021/bi100927p

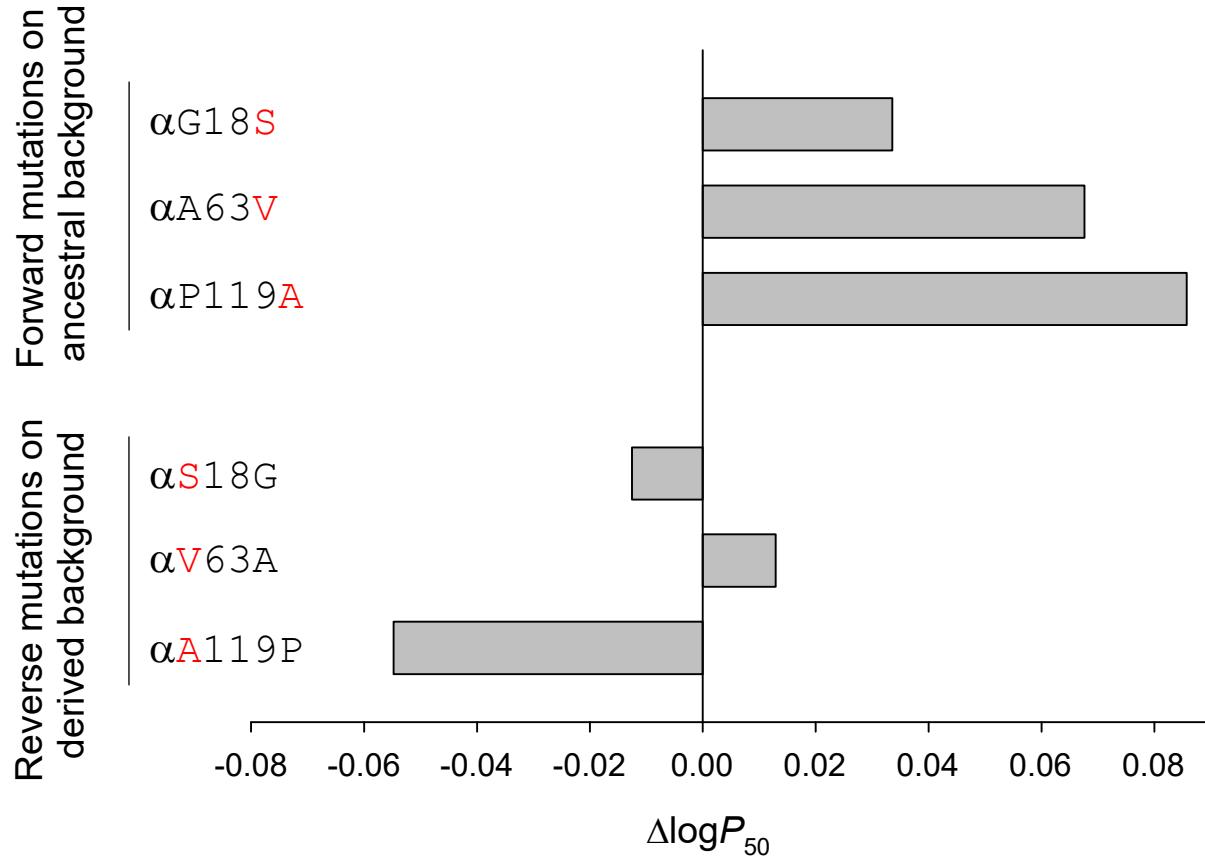

703 Yuan, Y., Tam, M. F., Simplaceanu, V., & Ho, C. (2015). New look at hemoglobin allostery. *Chemical
704 Reviews*, 115(4), 1702-1724. doi: 10.1021/cr500495x

705 **Table 1.** O_2 affinities (P_{50} , torr) and anion sensitivities ($\Delta\log P_{50}$) of rHbs representing bar-headed goose, greylag goose, their
 706 reconstructed ancestor (AncAnser), and all possible mutational intermediates connecting AncAnser with each of the two descendant
 707 species. O_2 equilibria were measured in 0.1 mM Hepes buffer at pH 7.4 (± 0.01) and 37°C in the absence (stripped) and presence of Cl^-
 708 ions (0.1 M KCl) and IHP (at two-fold molar excess over tetrameric Hb). Anion sensitivities are indexed by the difference in log-
 709 transformed values of P_{50} in the presence and absence of Cl^- ions (KCl) and IHP. The higher the $\Delta\log P_{50}$ value, the higher the
 710 sensitivity of Hb- O_2 affinity to the presence of a given anion or combination of anions. For the bar-headed goose mutants (all
 711 mutational intermediates between wildtype bar-headed goose and AncAnser), three-letter genotype codes denote amino acid states at
 712 $\alpha 18$, $\alpha 63$, and $\alpha 119$ (amino acid abbreviations in black lettering = ancestral, red lettering = derived). At these same three sites,
 713 AncAnser is 'GAP' the wildtype genotype of bar-headed goose is 'SVA'. For the greylag goose mutants (all mutational intermediates
 714 between wildtype greylag goose and AncAnser), two-letter genotype codes denote amino acid states at $\beta 4$ and $\beta 125$ (amino acid
 715 abbreviations in black lettering = ancestral, blue lettering = derived). At these same two sites, AncAnser is 'TD' the wildtype genotype
 716 of greylag goose is 'SE'.
 717

rHb	P_{50} (\pm SE)		$\Delta\log P_{50}$		
	Stripped		+KCl	+IHP	KCl+IHP
Bar-headed goose	3.42 ± 0.06		0.115	0.749	0.643
Greylag goose	4.10 ± 0.04		0.082	0.843	0.680
AncAnser	4.30 ± 0.06		0.092	0.815	0.630
Bar-headed goose mutants					
GAA	3.53 ± 0.08		0.111	0.745	0.693
GVP	3.68 ± 0.01		0.072	0.742	0.584
SAP	3.98 ± 0.03		0.098	0.653	0.523
GVA	3.52 ± 0.04		0.079	0.708	0.589
SAA	3.32 ± 0.05		0.156	0.870	0.742
SVP	3.88 ± 0.04		0.027	0.691	0.573
Greylag goose mutants					
SD	4.10 ± 0.05		0.052	0.729	0.601
TE	4.01 ± 0.04		0.104	0.774	0.549


Figure 1. Inferred history of amino acid substitution at five sites that distinguish the major Hb isoforms of the bar-headed goose (*Anser indicus*) and greylag goose (*Anser anser*). (A) Amino acid states at the same sites are shown for 12 other waterfowl species in the subfamily Anserinae. Of the five amino acid substitutions that distinguish the Hbs of *A. indicus* and *A. anser*, parsimony indicates that three occurred on the branch leading to *A. indicus* (α G18S, α A63V, and α P119A) and two occurred on the branch subtending the clade of all *Anser* species other than *A. indicus* (β T4S and β D125E). ‘AncAnser’ represents the reconstructed sequence of the *A. indicus*/*A. anser* common ancestor, which is also the most recent common ancestor of all extant species in the genus *Anser*. The topology of the species tree is taken from McCracken *et al.* (2010). (B) Triangulated comparisons involving rHbs of bar-headed goose, greylag goose, and their reconstructed ancestor (AncAnser) reveal the polarity of changes in character state. Differences in Hb function between bar-headed goose and AncAnser reflect the net effect of three substitutions (α G18S, α A63V, and α P119A) and differences between greylag goose and AncAnser reflect the net effect of two substitutions (β T4S and β D125E). All possible mutational intermediates connecting AncAnser with each of the two descendent species are shown to the side of each terminal branch.


Figure 2. Bar-headed goose evolved a significant increase in Hb-O₂ affinity relative to greylag goose and their reconstructed ancestor, AncAnser. Triangulated comparisons of purified rHbs involved diffusion-chamber measurements of O₂-equilibria (A) and stopped-flow measurements of O₂ dissociation kinetics (B). O₂-association rate constants (k_{on} , M⁻¹s⁻¹) derived from data in (A) and (B) are shown in (C). O₂-affinities (P_{50} , torr; ± 1 SE) and dissociation rates (k_{off} , M⁻¹s⁻¹) of purified rHbs were measured at pH 7.4, 37° C, in the absence (stripped) and presence of allosteric effectors ([Cl⁻], 0.1 M; [Hepes], 0.1 M; IHP/Hb tetramer ratio = 2.0; [heme], 0.3 mM in equilibrium experiments; [Cl⁻], 1.65 mM; [Hepes], 200 mM; IHP/Hb tetramer ratio = 2.0; [heme], 5 μ M in kinetic experiments).


Figure 3. Trajectories of change in intrinsic Hb-O₂ affinity (indexed by P_{50} , torr) in each of six possible forward pathways that connect the ancestral 'AncAnser' genotype (GAP) and the wildtype genotype of bar-headed goose (SVA). Derived amino acid states are indicated by red lettering. Error bars denote 95% confidence intervals.

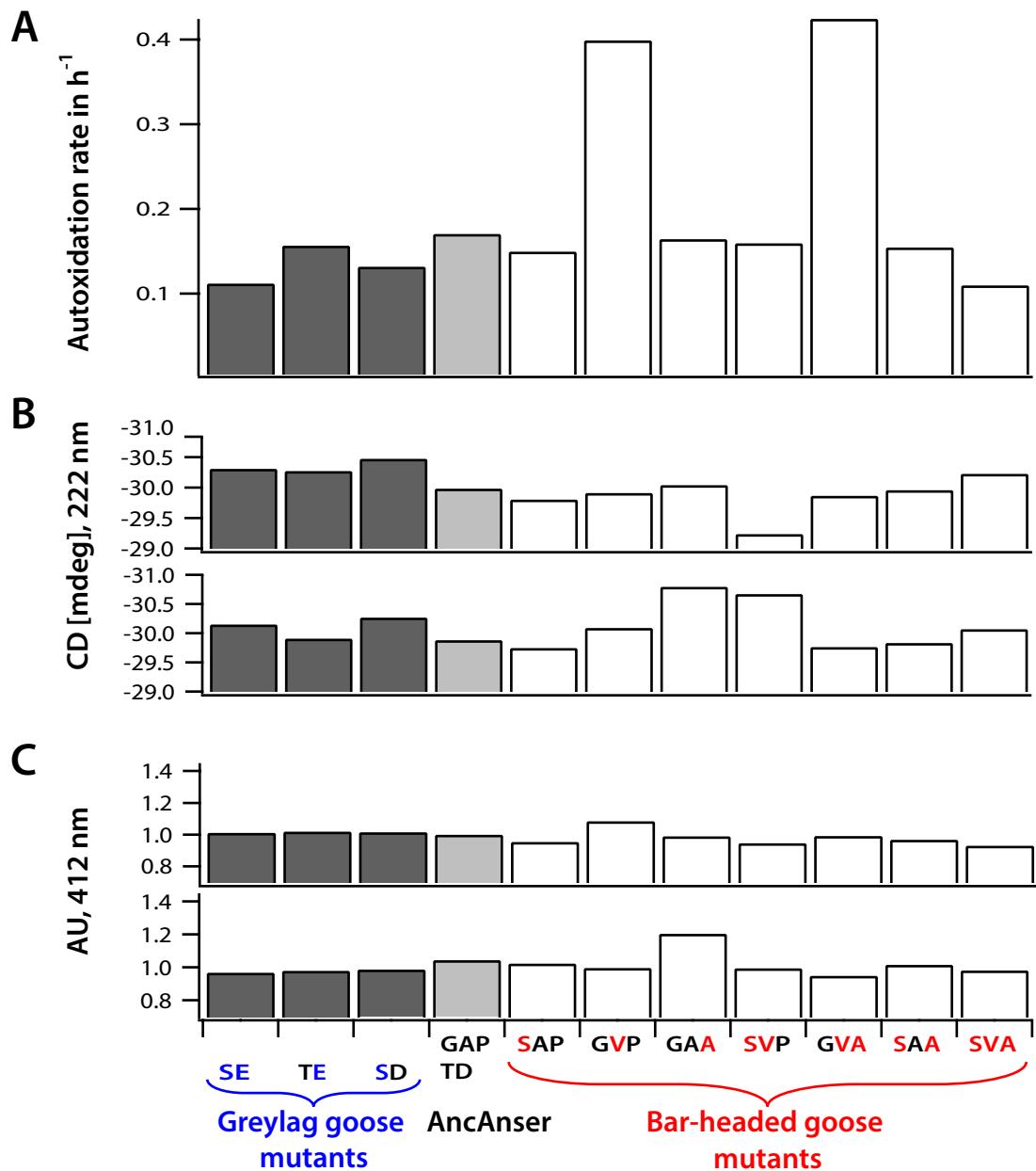

Figure 4. Structural model showing bar-headed goose Hb in the deoxy state (PDB1hv4), along with locations of each of the three amino substitutions that occurred in the bar-headed goose lineage after divergence from the common ancestor of other *Anser* species. The inset graphic shows the environment of the α63-Val residue. When valine replaces the ancestral alanine at this position, the larger volume of the side-chain causes minor steric clashes with two neighboring glycine residues, α25-Gly and α59-Gly and is predicted to increase flexibility of the AB corner. The distances between non-hydrogen atoms (depicted by dotted lines) are given in Å.

Figure 5. Compensatory interaction between spatially proximal α -chain residues in bar-headed goose Hb. The mutation α A63V produces a >2-fold increase in autoxidation rate (k_{auto}) on genetic backgrounds with the ancestral Gly at residue position α 18. This effect is fully compensated by α G18S, as indicated by two double-mutant cycles (A and B) in which mutations at both sites are tested individually and in pairwise combination. Derived amino acid states are indicated by red lettering.

Figure 3 – figure supplement 1. The $\alpha P119A$ mutation has consistent effects on Hb- O_2 affinity on different genetic backgrounds. The affinity-enhancing effect of $\alpha P119A$ on the AncAnser background is mirrored by a similarly pronounced affinity-reducing effect when the mutation is reverted on the wildtype bar-headed goose background ($\alpha A119P$). By contrast, forward and reverse mutations at $\alpha 18$ and $\alpha 63$ do not show the same symmetry of effect, indicating that their effects are conditional on the amino acid state at one or both of the other two sites.

Figure 3 – figure supplement 2. Variation among goose rHb mutants in functional and structural properties that potentially trade-off with intrinsic O_2 affinity. Variation in (A) autoxidation rate (rate at which ferrous heme [Fe^{2+}] spontaneously oxidizes to the ferric state [Fe^{3+}]), (B) stability of secondary structure, as assessed by means of circular dichroism spectra (with ellipticity measured in millidegrees [mdeg], 222 nm) at pH 7.0 and 7.5 (physiological range), and (C) stability of tertiary structure and holoprotein, as assessed by means of UV-visible spectroscopy (absorbance measured at 412 nm) at pH 7.0 and 7.5 (physiological range). For stability measurements over the full pH range, see Data Source Files 1-2.

Figure 4 – figure supplement 1. Ramachandran plot of deoxyHb from bar-headed goose (PDB 1hv4). Glycine residues are denoted by triangles, other residues by squares. One residue, α 18-Ser, is conspicuous by its unusual backbone angles, and is shown as a green square. This position in the Ramachandran plot is highly unusual for any residue other than glycine. The turn in the backbone between the A and B helices can only be accommodated by a glycine, since the lack of a side-chain avoids the strong steric clash that would develop between a C_β atom and the nitrogen atom of residue 19. The serine at α 18 is therefore forced to flip the peptide conformation, such that its carbonyl group points in the opposite direction relative to that of Gly 18.