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Summary

Feedback regulation is pervasive in biology at both the organismal and cellular level. In this
article, we explore the properties of a particular biomolecular feedback mechanism implemented
using the sequestration binding of two molecules. Our work develops an analytic framework for
understanding the hard limits, performance tradeoffs, and architectural properties of this simple

10 model of biological feedback control. Using tools from control theory, we show that there are
simple parametric relationships that determine both the stability and the performance of these
systems in terms of speed, robustness, steady-state error, and leakiness. These findings yield a
holistic understanding of the behavior of sequestration feedback and contribute to a more general
theory of biological control systems.

1 Introduction

One of the central goals of systems biology is to gain insight into the design, function, and architecture
of biomolecular circuits. When systems biology emerged as a field, there was a focus on the precise mea-
surement of parameters in canonical pathways, for example those that govern glucose metabolism [1]
and developmental signaling [2,3]. As both our understanding of these pathways and our quantitative

20 measurements improved, it became apparent that many of the underlying circuit parameters are sub-
ject to large amounts of variability, despite the circuit’s overall performance being robust [4-7]. These
observations led to the important insight that signaling networks have evolved sophisticated feedback
control mechanisms that confer robustness, similar to those developed for classical engineering sys-
tems [8-12]. To this end, understanding the architecture and constraints of these regulatory processes
is essential both to assessing the range of biological functions that they can implement and to building
functional synthetic systems [13-15].

For many systems, the key to achieving robust performance is feedback control, which can provide
robustness to both external noise and disturbances and to internal system variability [9,16-18]. When
the system undergoes a change, such as an external disturbance or a variation in parameters, feedback

s0 can ensure that the system returns to its desired steady state with a small error [18]. Additionally,
feedback control can stabilize and speedup unstable or slow processes [8,19,20]. However, feedback must
be correctly designed and tuned, as it can inadvertently amplify noise and exacerbate instability [18,21].
Despite some limitations, feedback control is ubiquitous in natural biological systems, where it serves
to regulate diverse processes such as body temperature, circadian rhythms, calcium dynamics, and
glycolysis [8,16,17,22,23].
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There are often a variety of circuit architectures capable of implementing feedback control in a
biomolecular network. However, the time scale and dynamic range of their response can vary greatly
depending on implementation details, such as whether the circuit relies on gene regulation [24] or post-
translational modification [7]. Similarly, some circuits are robust over a broad range of inputs [25],

20 while others may have a more modest functional range of response [4].

A particularly interesting class of biological control circuits was recently proposed by Briat et
al. [26]. The authors showed that feedback implemented with a molecular sequestration mechanism
is equivalent to integral feedback control [18], which guarantees perfect steady-state adaptation of the
output of a network to an input signal [16]. An endogenous biological system that uses sequestra-
tion feedback to achieve perfect adaptation relies on the binding of sigma factor ¢7° to anti-sigma
factor Rsd [27]. Examples of synthetic biological systems that employ sequestration feedback include
a concentration tracker [28,29], two bacterial cell growth controllers [30], and a gene expression con-
troller [31].

While integral control is a powerful tool, its stability and performance are not guaranteed to be

so well-behaved. Even if both the controller and the network being controlled are stable, their closed-loop
dynamics may be either stable (figure 1A) or unstable (figure 1B). If the closed-loop system is stable,
performance can be characterized by metrics such as tracking error, response time, leakiness, and
sensitivity to disturbances. Although these metrics can be optimized individually, they can rarely all
yield good results simultaneously due the constraints imposed by performance tradeoffs. These hard
limits have been studied in a variety of contexts, for example in general stochastic biological control
systems [32] and in the particular context of metabolic control in the yeast glycolysis system [8,12].

Though many biomolecular circuits of interest are too complex to yield clear theoretical results that
describe system-level dynamics and performance, we show in section 2.2 that a class of sequestration
feedback networks can be precisely analyzed using techniques from control theory. In particular, we find

e that there exists an analytic stability criterion for a class of sequestration feedback systems (described
in figure 1C). This stability criterion gives rise to performance tradeoffs, for example between speed
and sensitivity, since fast responding controllers are intrinsically less robust. We prove these results
both in the case where there is no controller degradation (section 2.3), as in the model from [26], and
in the more biologically realistic context where there is such degradation (section 2.4) [33]. Though
we determine many different classes of tradeoffs for the circuit, we find that they can all be viewed
as different aspects of Bode’s integral theorem, which states a conservation law for the sensitivity of
feedback control systems [18]. We also provide a less technical description of these results, as well as
an analysis of noise in the system and simulations of synthetic circuit performance, in a companion
piece [34].

70 These theoretical tools provide novel insight into both the analysis of endogenous biological systems
and the design of synthetic systems, which we demonstrate by applying our results to a synthetic
bacterial growth control circuit in section 2.5. Finally, we demonstrate in section 2.6 that it is possible
to develop control architectures that will stabilize an otherwise unstable chemical reaction process.
This result points towards new application domains, such as autocatalytic metabolic networks, for
sequestration-based controllers that have yet to be explored in detail.

2 Results

Our goal here will be to develop a mathematical framework to investigate the general constraints that
shape the structure of the closed-loop sequestration feedback network. For the sake of clarity we focus
the results here on the simplest examples of a network regulated by sequestration feedback, however

so many of the results presented in this section generalize to a broader class of systems (e.g. the case
with more network species and the case with controller degradation).
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2.1 Model Description
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Figure 1: The Sequestration Feedback Network. A) Stable dynamics of a sequestration feedback system,
where the output (solid line) precisely adapts to a reference signal (dashed line). B) Unstable dynamics of
the same circuit, where the system is now in a parameter regime that results in sustained oscillations. C) A
class of sequestration feedback networks. This general model has two control species, z; and z2, and n process
species. The two controller species are subject to a sequestration reaction with binding rate n. Additionally,
we assume that the binding of the two controller species is much faster than their unbinding. The process
species production rates are denoted as 01,02, k1, ..., kn,—1. For simplicity, the process species degradation rate
~p is assumed to be equal for each x;, as is the controller species degradation rate 7.. This class of networks is
defined by a simple set of possible processes where each species is only involved in the production of the next
species.

We first describe the simple sequestration feedback model proposed by Briat et al. [26] with two control
species (z; and z3) and two species in the open-loop network (z; and x3), which corresponds to the
case of n = 2 in the general circuit diagram presented in Figure 1C with . = 0. In the control theory
literature the network being controlled is often referred to as the process, a convention we will use in
the rest of the paper.

We model the full closed-loop network using the following system of ordinary differential equations:

1 = bhz1 — Yp2, (1a)
&g = kx1 — Ypa, (1b)
Z1 = P —nZ122, (Ic)
29 = B9 — 21 20. (1d)

The rates k and -y, are production and degradation rates that are internal to the process. The
parameters 0, and 0y are production rates that provide an interface between the network and the

o0 controller. An external reference inducer p determines production rate of z;, and the two control
species z1 and 2o sequester each other at the rate 7.

While realistic models of biological circuits often have both more complex interactions and many
more states, this model captures much of the important structural information about the sequestration
feedback system. In particular, Briat et al. found that the network defined by (1) implements precise
adaptation of x5 via integral feedback [26], as shown by the following relationship

5= g Oams = (21— 2)(t) = O /Ot <9‘; _ asg(t’)> . )

This ensures that, if the system is stable (i.e. 21 — 22 — 0), then at steady state (denoted with a x)
a3 = pu/0s. The parametric conditions that guarantee stability are not, however, obvious at first glance.
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Briat et al. showed general algebraic conditions that prove the existence of both stable and unstable
dynamics of the linearized sequestration feedback system (using Descartes’ rule of sign), however it is
100 not trivial to use their methods to explicitly describe stability in general.

We find that, in the limit of strong feedback (large 7), there is a simple closed-form criterion
for system-level stability. Later, we will show that a one-state network is intrinsically stable for all
parameters, and that there exists a simple stability criterion for the general class of networks with many
states represented in figure 1C. For the analysis, we assume both that a set of process parameters (k
and 7y,) and a desired set point (determined by p and ) are given, and we study how stability and
performance relate to the rest of the control parameters (6; and 7).

2.2 Linear Stability Analysis

In this section, we derive an analytic criterion for the stability of sequestration feedback networks.
For simplicity, we assume strong sequestration binding of the controller species (which we define
110 mathematically later in the section).

A key difficulty in studying sequestration is the nonlinear term 7z;2o that mediates feedback in
equations (1c) and (1d). Though there exist techniques to study nonlinear feedback systems, there
are far more general tools available to study linear ones. While analysis of the linear system does not
give guarantees about global behavior, it does allow us to characterize the local stability of the steady
state to which we would like x5 to adapt. To this end, we linearize the sequestration feedback network
around the non-zero steady-state value derived from equation (1):

x = Mx,
X1 —Tp 0 91 0
ez kB = 0 0
T M= 0 0 —-a —-B/a|’ (3)
2o 0 0 —a —-f/a

where a = 6,10:k/ 75 and 5 = nu. We can think of « as representing the open-loop gain of the system,
and [ as representing the feedback gain.

120 In general, stability of linear systems is determined by the sign of the real parts of its eigenvalues.
If they are all strictly negative, then the dynamical system is stable and the system will converge to
the equilibrium point. Ideally, we would be able to directly compute the eigenvalues of M, however
this computation corresponds to finding the roots of a fourth-order polynomial p(s) = det(sl — M).
While this is difficult to do in general, it is possible to study stability by finding what has to be true
of the parameters for the system to have a pair of purely imaginary eigenvalues, which characterizes
the boundary between stable and unstable behavior. We find that, in the limit of strong sequestration
(specifically n > max(«, vp) - a/p), M will have purely imaginary eigenvalues A = £iw when w =, =

{/ W. More generally, we find that the criterion for stability is

3/ 0102k
122 < ps (4)

a relationship we refer to as the production-degradation inequality (proved in section S4.1). In [34],
130 we expand on the role of 7 and how it may affect design decisions.

This implies that the closed-loop system will be stable so long as the degradation rate is larger
than a constant that is proportional to the geometric mean of the production rates (¢/6;602k). We note
that, in this strong sequestration limit, inequality (4) is independent of the controller variables p and
1. Thus, this relationship tells us that stability is purely a function of the parameters describing the
process and its connection to the controller, and is independent of the controller itself. Intuitively, the
degradation rate sets the rate of adaptation of z1 and z, so inequality (4) tells us that, so long as the
species have a rate of adaptation that is faster than the rate of change in production, the system will
be stable.
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Through a more technical argument (also in section S4.1), we find that a generalized system with
140 a chain of n process species has a production-degradation inequality of the form

w1 0102 TT02 b
yolellar ko )

where (2, is a constant that is only a function of the number of process species. When the system has
purely imaginary eigenvalues, each species will oscillate at the frequency

tan (5,)
w=tan | — .
2n T

For n =1 we get w = tan(m/2)y, = 0o, corresponding to an intrinsically stable system (i.e. it cannot
oscillate or become otherwise unstable). At n = 2 we find w = 7,, so the frequency of oscillation is
equal to the process degradation rate. Since tan(n/(2n)) is a decreasing function of n, the frequency
of oscillation will monotonically decrease as the system grows (assuming a fixed value of ).

Alternatively, we can interpret the parameter o as the open-loop gain between z; and z;. Rear-
ranging inequality (5), we get the inequality

a < Qnp,

which says that the degradation rate v, sets a bound on how large o can be, which can be interpreted
150 as the open-loop gain between z; and 2o, while still maintaining stability.
For simplicity, the results so far focus only on the strong feedback regime. However, we show in
the supplement that there are also tractable and interesting results in the regime of weak feedback (n
small). The results have a similar form to that of the strong feedback limit, however the direction of
the inequality is reversed. The stability condition for weak feedback is:

o1 | 0,010 TT K
1 1 2?11 > 'Yp-

One interpretation of these results as a whole is that stability is achieved when either feedback or
process degradation are sufficiently large, but not when both are.
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Bode’s integral theorem and The Anatomy of a Sensitivity Function

The primary goal of any control system is to en-
sure that a process has a desirable response to

an input signal, while minimizing the effect of 1 Sen S|t|v|ty Function

external disturbances (such as noise and system-

atic modeling errors). While we often think of 10 reference

the time evolution of the full state of a dynam- output

ical system z(t), it is often useful to study the ” S H o reference
input-output relationship of a dynamical system INMNVIVNA output

using the (one-sided) Laplace transform

X(s) = /Ooo o(t)e—*tdt,

— 0
where it becomes straightforward to mathemat- 3 10 reference
ically analyze the input-output relationship of = output
given process. s}
We call functions that describe the input-output  —
response of a system in the Laplace domain
transfer functions, and in particular the
transfer function between a reference and the :Jffprj? e
output error of a system is the sensitivity -1
function of a system S(s). If we take y(t) as 10
the output state of the system (in the sequestra- /\ N
tion circuit y(t) = x2(t)), we denote the Laplace
transform of the output Y (s). We can similarly 0.00 0.75 1.50 2.25
define an input or reference signal r(t) (cor- Frequency ( h—l)

responding to p) with a corresponding trans-

formed signal R(s). We then define the error of . e . . ..
the closed-loop system as E(s) = R(s) — Y (s), Figure 2: The Sensitivity Function. The sensitiv-

and ask how large the error of the system will be ity function for a system, with simulations of reference
when tracking a given reference. This is given tracking dynamics for various inputs. We see that when

by the function |S(iw)| < 1, the system has small error and performs well
E(s) 1 (blue and green). At the peak |S(iw)| = ||S]|es (red), we
S(s) = R(s) = 1+ P(s)C(s)’ see that the output magnitude is not only amplified, but

also phase shifted such that it is almost exactly out of
sync with the reference. At high frequencies (purple),
the reference is changing so quickly that the system can

where P(s) and C(s) are the transfer functions
for the open-loop process and controller, respec-
tively.

Intuitively, when the magnitude of this func- barely track it.

tion |S(s)| is small, then there will be a small

tracking error between the reference signal r(t)

and the output y(t). Conversely when |S(s)| is large, then there is a large tracking error. If we assume
r(t) = Asin(wt), then we can study the frequency response of the system |S(iw)| to a sinusoidal input with
frequency w.

|S(iw)| provides a way to measure system robustness, by quantifying how well a system attenuates errors to
a given input. The worst-case robustness can be described by the maximum value of |S(iw)|, denoted ||.S||oo-
Ideally we would have |S(iw)| < 1 for all w. However, a deep result known as Bode’s integral theorem (proved
by Hendrik Bode in 1945 [35]) states that, for an open-loop stable process, the following is true of the closed-loop
response:

/0 ™ log (S (iw))|dw = 0. ©6)

This implies that in order to reduce error in one frequency range, it must be increased elsewhere. This is known
as the waterbed effect, and sets a fundamental limitation on the performance of any feedback control system.

2.3 Performance Tradeoffs and Hard Limits

While inequality (4) gives us a binary condition that determines stability, it does not directly tell
10 us about overall performance of the system. We know when the system becomes unstable, but it is
unclear how the system behaves as it approaches instability. Let

0102k

275

M=1-
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be a measure of how far the system is from going unstable that we will refer to as a stability measure
of the system. For simplicity the analysis here will focus on the n = 2 species case, however the results
naturally generalize for arbitrary n. From inequality (4), we have that M = 0 implies instability, and
that the larger M is the further the system is from becoming unstable. Intuitively it seems that the
system should become increasingly fragile to disturbances as M approaches zero. Conversely, we can
increase M by decreasing the production rates 61, 62, and k, but this will slow down the dynamics of
the system and could potentially hurt performance.
To analyze this problem, we will study the sensitivity function S(s), which is the transfer function
170 between the reference signal and the output error of the system [18]. This transfer function captures
the effect of external disturbances on the output error of a system, in this case, xo. The sensitivity
function is described in greater detail in the box above.
While there are many different ways to characterize robustness, generally we consider a system
to be robust if there no small change in parameters that would cause it to become unstable. A
mathematically equivalent interpretation is that a system is robust when its worst-case error when
tracking references (i.e. the maximum value of S) is small [18]. For the n = 2 case of the circuit in
figure 1, we have (see section S4.2):
2 4,2
1S(iw)] = i . ™)
\/(%Glﬂzk — 2w7p) + (’yg —w?)?

The robustness of a system can be formally quantified by ||S]|s = max,, |S(iw)|, the maximum magni-
tude of the sensitivity function across all frequencies (in mathematics, the quantity || - || is referred to
10 as the infinity norm of a function). The quantity ||.S||c describes the worst-case disturbance amplifi-
cation for the system to an oscillatory input. If ||.S]| is in some sense small enough to be manageable,
then values of |S| across all frequencies are also small and the system is robust to any disturbance.
If ||S||co is large enough to be problematic, then there is at least one disturbance against which the
system is fragile.
Directly computing ||S]|« in terms of the parameters of a system is difficult in general, but it is
sometimes possible to compute good lower bounds that yield insight into a system’s robustness. To
this end, we find that (see Section S4.2 for a detailed proof):

o

1] > F = L+ 5 7 273 + 010:k

- ?
1-— ﬁ 2’)/1?)’ — 9192k

3/ 0102k
M=0 = = % <~ ||Slec = F = 0.

The fragility bound F is constructive, in that we can write down the frequency w* that achieves it:

(8)

with equality when

1S(iw*)| = F <= w* = %

10 For a given constant reference /6y, we use equation (8) to derive a tradeoff between fragility and
response time (which we quantify with 1/6;). Figure 3A shows this tradeoff curve for a particular
set of parameters as 6 varies, with the corresponding dynamics shown in figure 3B. We see from
the latter plots that the response time (1/6;) and fragility (F) correspond directly to the rise times
and oscillatory behavior of simulations in figure 3B. Figure 3C shows the corresponding sensitivity
functions, with colored dots corresponding to values of F. Here we can clearly see Bode’s integral
theorem (equation (6)) at work, in that the area above and below the dashed line (corresponding to
log |S(iw)| = 0) is always equal. We see that, as dynamics become more oscillatory, ||S||s becomes
large.

Because we have fixed 11/60s and assumed that 7 is large, the only remaining control parameter to

200 vary is 61, so there will only ever be one meaningful tradeoff dimension to study for this system. In the
next section, we present results for the case with non-zero controller degradation rates. This model is
both more biologically realistic and provides a richer tradeoff space to analyze.
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Figure 3: Hard Limits and Performance Tradeoffs in Sequestration Feedback Circuits. A) We see
the relationship between speed and fragility in the sequestration feedback system. Speed can be characterized
in terms of any of the production rates of the system (here we vary 6; 1), where higher production rates lead
to a faster response. Fragility is defined as a lower bound on the maximum value of the sensitivity function
||S||oo as defined in equation (8). B) Time-domain simulations corresponding to different points on the tradeoff
curve in A. We see that speed and fragility naturally relate to the rise time and settling time of the system.
C) Sensitivity functions for various parameter values. We see what is known in control theory as a waterbed
effect, where better attenuation of disturbances at low frequencies necessarily implies worse amplification of
disturbances at higher frequencies as a result of equation (6). The colored dots correspond to values of F
computed using equation (8). D) Here we set 7. > 0 and observe the effects of controller degradation being
varied on its own. We set ; = 2 h™! so that, if 7. = 0, the system would be unstable. We see that increasing
~e decreases fragility, at the cost of introducing steady-state error, which is illustrated in the dynamics shown
in panel E. F) The corresponding sensitivity functions also illustrate the tradeoff, where the peak of |S(iw)]
(fragility) decreases as the value of |S(0)| (steady-state error) increases. F is now computed using equation (13).
G-I) In these plots we vary both «. and 61 such that 61/v. = 9, corresponding to € = .1 in equation (11).
We now observe a tradeoff between fragility and leakiness, the latter being captured by how much turnover
of z1 and z2 is introduced by 7.. K-L) Finally, we can instead hold F constant and numerically solve for 64
given a value of .. This introduces a tradeoff between steady-state error and leakiness. In all simulations
k=6:=v,=1h"' 5=1000 h " *nM ™!, 4 =100 nMh~!.

8
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2.4 The Effects of Controller Species Degradation

In the previous sections, we assumed that the controller species does not degrade and we derived

an analytic stability criterion for closed-loop sequestration feedback networks. Fulfilling the stabil-

ity criterion ensures that the sequestration feedback network precisely adapts. As discussed, perfect

adaptation is a desirable property because it facilitates disturbance rejection and robustness despite

variability process dynamics. However, the literature suggests that implementing sequestration feed-

back with no controller species degradation is challenging [36,37]. Because of this, we will now extend

210 our analysis of stability, performance, and tradeoffs to sequestration feedback networks with nonzero
controller species degradation rates.

To model the effects of controller species degradation, we modify equations (1c¢) and (1d) such that,

21 = [ — NZ122 — V21, (9a)
Zg = bawa — Mz122 — Ve22, (9b)

where 7, is the degradation rate of the control species z; and zs.

Including the controller species degradation rate in the sequestration feedback network model
changes its properties of stability and performance. In particular, the closed-loop sequestration feed-
back network has zero steady-state error for v, = 0, whereas if 7. > 0 then there will generally be
some Non-zero error in Ts.

In the limit of strong sequestration, we can analytically compute the steady-state values of the
system species and bound its sensitivity function. While it is somewhat more complicated to compute
even the steady-state values of each species for this system, we show (see section S4.3.1) that, in the

220 limit of large 7, it is possible to derive a simple approximate formula for z3:

oo b1
TR ———— 10

270,14 L (10)
from which all other steady-state values can be derived. Under the strong feedback assumption, x4 no
longer precisely adapts to the set point p/6s, but rather will have some amount of steady-state error
determined by the ratio ./«. The relative error in % can be quantified by the relationship

_ W02 — a3 1

€= /05 =17 (11)

We see that v, = 0 = & = 0, corresponding to our previously results that precise adaptation is
achieved when there is no controller degradation. Using this simplified expression, the relative steady-
state error function can be bounded. For example, if we are interested in obtaining ¢ < .1, then we
can choose a controller degradation rate such that v. < g-.

Moreover, we can also derive the corresponding stability criterion (see section S4.3.3). Here we
present the stability criterion for the two process species case:

0102k

5~ < W+ W) (12)

230 This reduces to inequality (4) when 7. = 0, and shows that 7. > 0 leads to a increased stability measure.
If we only consider variations in 7., then the combination of equation (11) and inequality (12) yields
yet another tradeoff. As ~. increases, the system becomes increasingly stable at the cost of worse
steady-state error (see figure 3D and E).

In section S4.3, we derive a general stability criterion that depends on comparing the controller and
the process species degradation rates for n > 2 process species. When the process degradation rate is
much larger that the controller degradation rate or the two are comparable, then the stability criterion
is the same as the production-degradation inequality. However, when the process degradation rate is
much smaller than the controller degradation rate, then the stability criterion relies on the controller
degradation term to compensate for the slow process degradation rate. Since the process network is
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220 slow, the sequestration feedback network is challenging to stabilize and its performance can be very
poor.

We now focus on analyzing the properties of the sensitivity function and the tradeoff it introduces.

Figure 3F shows the corresponding sensitivity function for this system. One major difference between

these sensitivity functions and those in figure 3C is that we now have |S(0)] > 0. This is directly

related to the steady-state error in equation (10), as we can think of a signal with frequency w = 0

as a constant reference. A convenient property of the sensitivity function is that |S(0)| = ¢, so the
previously mentioned tradeoff between robustness and steady-state error can be recast as a tradeoff
between |S(0)| and ||S||oo. In figure 3C we see that log|S(0)] = —oo, corresponding to |S(0)] = 0,

implying € = 0 steady-state error. Because of the waterbed effect, increasing |S(0)| has a tendency to
20 reduce ||S]|oo. This can be seen directly by deriving a bound similar to the one in equation (8) for the
case v, > 0:

(o + Y1+ ()’
(7 = w*?) + 27%

* [ o+
w' = _ 14
e 29 + e ( )

Though F is now more complicated, we can see that it will scale as O(1/7.) for small 7.. This
tells us that increasingly 7. has the potential to reduce F. In figure 3D we see this effect, where F
asymptotically decreases to 1 as 7. (and consequently ¢) increases. It is also straightforward to check
that F reduces to equation (8) when ~. = 0.

So far we have shown what happens when the control parameters 6; and -, are varied individually,
however it is also interesting to study what happens when they are varied such that a particular
performance characteristic is held constant. Figure 3G, H and I demonstrate the system’s response
when we vary #; and <. such that the steady-state error ¢ is fixed. This sort of variation can be

260 interpreted as changing the turnover rate, and consequently the leakiness, of the controller. This
leakiness can also be thought of decreasing efficiency, as it means that control molecules are degraded
before ever being involved in feedback. By increasing ~., we make the system less efficient because
the controller spends resources producing and then degrading molecules of z; and z,. Figure 3G
shows that highly efficient controllers are more fragile than less efficient ones. We can also see this
in figure 31, where the integrated area of |S(iw)| gets spread out over high frequencies, rather than
having a large and narrow peak. This leads to a lower value of ||S]|» and a corresponding increase
in robustness. Conversely, we can fix F and see how ¢ changes with leakiness. In figure 3J and K
we see that highly efficient controllers have worse steady-state error, and as the controller becomes
less efficient & improves. This can be observed in figure 3L, Where |S(0)] is reduced as 7. increases.

270 Because |S(0)] is decreasing and ||S||o is fixed, we see that |S(iw)| stays large at higher frequencies
rather than falling off quickly after its peak.

While any of these tradeoffs could be studied in their own right, the important conceptual takeaway
is that what underlies all of them is Bode’s integral theorem. In the same way that conservation
laws provide a broad understanding the constraints on physic quantities (like momentum and energy),
Equation (6) gives us a unifying framework for understanding the fundamental performance limitations
of control systems. With this result in hand, we see that the performance tradeoffs shown here are
simply different ways of tuning parameters to shape the function |S(iw)|. In the next section, we will
apply some of these theoretical concepts to a particular biological circuit model. Though this model
is more complex and nonlinear than those we have discussed so far, we will see that the same essential

280 theoretical approach applies.

[5lloc > F = (13)

10
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2.5 A Synthetic Growth Control Circuit

asRNATY mRNA

Figure 4: A Synthetic Growth Control Circuit. A) The circuit diagram for the dynamics described in
equation (15). This circuit controls the growth of a bacterial population via the toxin CcdB. The concentration
of CcdB is in turn regulated by a quorum sensing molecule AHL, whose mRNA can be sequestered by an
antisense RNA [38]. This circuit is inspired by the work in [39] and has been implemented in [30]. This figure
is adapted from [34].

Here we will use the results from previous sections to study a simple model of a synthetic sequestration
feedback circuit based on the work in [30,39], illustrated in figure 4A. The intended function of this
circuit is to regulate the population level of a colony of E. coli via an external reference signal such as
an inducer. We model the circuit with the following set of differential equations:

%[cch} — k) [MRNA] — 7,[CedB] (15a)
%N =N (1 - z\]r\;> — 7[CedB|N (15b)
%[mRNA] = krGoN — n[mRNA][asRNA] — vg[mRNA] (15¢)
%[aSRNA] = u — n[mRNA][asRNA] — yg[asRNA]. (15d)

Quantities of the form [-] represent intracellular concentrations for each cell, and N represents the
total number of cells. N follows logistic dynamics with an additional death rate due to toxicity 7
proportional to the concentration of [CcdB| per cell. [CedB] is a protein that is toxic to the cell,
[mRNA] is the corresponding messenger RNA, the transcription of which we model as being induced
200 by a quorum sensing ligand that is produced at a rate proportional to N, and [asRNA] is a short
antisense RNA that has a complementary sequence to the CcdB mRNA, thus acting as a sequestering
partner. The term G, = 1076 nM captures the gain between N and mRNA induction mediated by
the quorum-sensing molecule AHL.
As before, we will analyze a linearized version of this circuit. To do this we must first compute the
steady-state values, shown in table 1. The linearized dynamics can now be written as

% = Mx,

11
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Species | Steady State | Exact Solutions, yg = 0 | Approximate Solutions, yg > 0
s YR
* Nmk o
N/N, N*/Np, N:fm 71+R’YTR
T N* T N r_ 1 N

[CCdB] T (1 N N’m) T (1 B N?VL’I;:R) T 1+% (1 N N?rLfVR>

p * T 2 p" 1 2
mRNA] | 2[CedB] o (1 - N‘ikﬁ) hor I+ (1 B Nvi];?l?)
psRNA] | ol | e (1 >_1 T (14 22) (1 - 2 )_1

7 [MRNA]* YT Nonkr T 2 Nmkr

Table 1: Steady state parameter values derive from equation (15). For the case yr = 0 these solutions are
exact, while they are approximated (assuming 7 large) for yg > 0.

where
[CcdB] - 0 kp 0
% = N M= =T _:YN 0 0
T |[mRNAJ["TT | 0 kr —-v—1r —p ’
[asRNA] 0 0 —v —pP—R

and kg = krGa, T = TN*, yx = rN* /Ny, a = (kgrTN,,)/(yrr), v = [asRNAJ*, and p = [mRNAJ*.

From this, we can again derive stability results in the limit of large 1. In terms of the parameters

in M, we get a similar relationship to that of inequality (12), with the introduction of heterogeneous
300 degradation rates:

kpkrT < (v +7R) (0 +78) (% + 1), (16)
and the corresponding stability measure
kykrT

M= R O 7RG T )

A notable difference about this circuit is that stability is implicitly dependent on . This is because p
appears in N*, which determines the values of 75 and T. Given that the function of this circuit is to
control cell proliferation, it is natural to ask what steady-state levels of N* are achievable for a given
set of parameters. Because the scale of N* is set by N,,, we can non-dimensionalize the population
size with the term N*/N,,. In the case yr = 0, we can recast equation (16) as:

N*: 12 >k7kaRNm_’y7p-
Nm  kgN,, VW 12 r

(17)

One immediate result of inequality (17) is that, if the following holds:

7 7 2

@TkRsz <o ThkrNm, < 771’7

Yp T r r kp
then the steady-state N* is stable for any p such that icﬂ < N, (the steady-state value of N* cannot

R
exceed the carrying capacity N, in equation (15b) from the nonlinear model). This constraint is also
a0 implicit in the steady-state value [asRNAJ*, which is infinite if ]%“ = N,,. Because the right-hand side
R

of the inequality has a factor of ’yﬁ /kp, it is possible to improve performance without changing the
steady-state concentration of [CcdB] by increasing both k, and -, simultaneously, effectively increasing
the protein’s turnover rate. If the right-hand side of inequality (17) is positive, then we see that the
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system’s performance is constrained, in that there is a certain population threshold below which N*
cannot be set. Just as in the previous section, as the system approaches this threshold it will become
increasingly oscillatory. These effects were observed experimentally in [40], which uses the same general
growth control architecture as in [39].

This section illustrates two key points, the first being that the general theoretical results from our

initial analysis can be adapted to specific biological-motivated models of control. The second more

20 general takeaway is that systems that look on the surface to be both biologically and mathematical
distinct, e.g. a linear model of a chemical reaction network and a nonlinear population-level growth
control circuit, have the same underlying structure. We often think of linearization simply as a method
of approximation, but its real power often lies in showing us the connection between seemingly different
mathematical models. In this case, it becomes clear what the analogous production and degradation
rates are in equation (1) and equation (15).

This type of system-level theory allows us to abstract away details to see that seemingly different
problems can be tackled with the same class of tools. In [34], we delve into simulations using biologically
plausible parameter values and demonstrate that controller degradation can dramatically improve the
circuit’s performance at relatively little cost.

0 2.6 Controlling Autocatalytic Processes

The general approach of the results presented so far has been to analyze in detail the simplest classes of
networks that can be controlled by sequestration feedback. Going forward, it will be important to study
networks where both the process and controller have more complex architecture. At the controller level,
the sequestration mechanism alone only implements integral feedback. It will be useful to investigate
mechanisms that could robustly implement proportional and derivative control mechanisms with the
ultimate goal of synthesizing full proportional-integral-derivative (PID) controller [18,41] in synthetic
circuits.

It will also likely be essential to explore other mechanisms of implementing feedback control in
living systems. Several mechanisms for biological control that are currently being explored include:

a0 paradoxical extracellular signaling inspired by process regulation [42] and post-translation mechanisms
such as multi-protease regulation. Using control theoretical tools, it will be important to develop
models for these biological controllers and assess their stability and performance. Researchers in
bioengineering will likely benefit from having multiple mechanisms of feedback control to choose from,
depending on the particular application.

Our results thus far has focused on the application of sequestration feedback to processes that are
open-loop stable. It will likely be important to study the case of unstable processes, which can occur
in autocatalytic networks such as the one involved in glycolysis and other metabolic processes. In
control theory, unstable processes lead to a modified version of Bode’s integral theorem:

/Ooo In(|S(iw)))dw = 7 3 Re(p), (18)
k

where Re(py) is the real part of the unstable eigenvalues. Larger values of w ), Re(py) correspond to
ss0 more global sensitivity to disturbances and harsher performance tradeoffs.
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Figure 5: Using Sequestration to Control an Unstable Network. Here we take an unstable process
(center) and study two different sequestration-based control architectures (left and right). This network is
unstable so long as ki1kas > 2. The repressive architecture on the left is intrinsically unstable, in that there are
no values of the the control parameters that lead to the system reaching a stable steady state. A representative
simulation of the unstable dynamics is presented below the architecture diagram. In contrast, the repressive
architecture on the right is not only stabilizing, but intrinsically stabilizing. Any non-zero parameter values
that result in positive steady-state concentrations of species will yield a stable closed-loop network. Panel A
shows the sensitivity function as @; varies for a fixed value of k; = 4 h™'. In this case, equation (6) tells us
that the integrated area of the |S(iw)| will be constant as 6, varies, because 6; does not effect the location of
unstable poles. In panel B, §; = 1 h™! is fixed and k; varies. This will change the location of the unstable
pole, and we see a consequent change in integrated area of |S(iw)|, with large values of k1 leading to higher
overall sensitivity of the system. In all simulations we take #2 = k2 = v, = 1 h™', 5 = 1000 h~'nM™*,
pu1 =10 nMh™! and pe = 110 nMh™?t.

To demonstrate the nuance and complexity added by unstable processes, we demonstrate two
seemingly similar control architectures that yield diametrically opposed behavior. As a simple model
of an unstable process, we will use the process described in figure 5, which has the following dynamics:

1 = koo — Yp1,

Lt'g = klxl — YpT2-

Since the system is linear, it is straightforward to check that the system is unstable when kiks > ’yg.
Because of the instability of the process, our controller will need to be repressive rather than activating,
as it has been throughout the paper. The left panel of Figure 5 describes a plausible control architecture
for such a system:

) koo
I = —— — 1,
1 1 +9121 TpT1

g = k121 — Y22,
21 = 1 — Nz122,
H2

2= 1 +921’2

— nz122.

Here z; represses x1 and x5 represses zo. Intuitively, if x5 is large then z; will be reduced, increasing
the amount of z; which in turns reduces the amount of x; and x5. We prove that this controller is
se0 actually incapable of stabilizing an unstable process, in that there are no parameters for which the
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closed-loop system is stable (section S4.4). If, however, we instead have z; directly repress x5 (figure 5,
right):

L1 = koo — YpT1,

. kyxq
L9 = ——— — VX

2 1+ 6012 YpT2,
21 = 1 — NZ122,

2 17 0oz 122.

it is not only possible to stabilize the closed-loop system, but the system is intrinsically stable. So long
as the system has positive parameter values and steady-state concentrations, we recover robust precise
adaptation as presented in the earlier sections (section S4.4). While the stable process architecture
could either be stable or unstable in closed-loop, this unstable process architecture confers a sort of
inherent closed-loop stability that is quite surprising. If the system were linear, this would not be
possible. Stability is a direct result of the nonlinearity introduced by repression. There is, however,
a limitation: equation (18) tells us that a very unstable process (kiks > ~7) must exhibit extreme
370 disturbance amplification. In terms of reference tracking, this implies that even the intrinsically stable
controller will potentially have very bad transient behavior (e.g. extreme overshoot and ringing as the
system stabilizes). While we can use the techniques developed in this paper to mathematically prove
why these two architectures behave so differently, we have little biological insight into the architectural
requirements for a stabilizing sequestration feedback controller. In the future we hope to develop a
more general theoretical understanding of which architectures can confer stability to unstable networks.

3 Discussion

The development of synthetic biomolecular controllers could enable bioengineering to yield new solu-
tions to problems in drug synthesis, immune system engineering, waste management and industrial
fermentation [43-45]. In their current state, however, most current synthetic circuits lack the requisite

sso robustness and scalability required of industrial technologies. The application of control theory to
synthetic biological controllers aims to ensure that they function robustly in different host organisms
and signaling contexts, despite perturbations from an uncertain environments.

The recent development of sequestration feedback controllers represents a promising step towards
a general framework for implementing control in biological networks. This is best demonstrated by
the rapid experimental progress towards implementing these controllers in a variety of contexts and
with different sequestration mechanisms [28,30,46—-48]. As these controllers become widely used, we
believe that the theoretical results in this paper will not only provide a broad theoretical perspective
on how the parameters of these networks interact to determine circuit performance, but also provide
practical design rules that will tune circuit behavior in order to meet performance requirements. We

300 begin to investigate these rules in [34], where we recast some of the results presented here (as well as
some standalone results) as high-level architectural principles for understanding the performance of
sequestration feedback circuits.

In the first half of the 20th century, the development of a cohesive theory of feedback control by
Hendrik Bode, Harry Nyquist, and many other foundational thinkers facilitated the rapid development
and proliferation of control systems in fields such as aerospace, electrical, and chemical engineering.
The work presented here provides a link between the tools from classical control theory and contem-
porary problems in synthetic biology. In particular, we showed that it is possible to explicitly describe
parametric conditions that determine stability, performance tradeoffs, and hard limits for a class of
sequestration feedback controllers. While these limits can each be evaluated on their own, we observe

a0 that they can all be interpreted as different aspect of Bode’s integral theorem. This result acts like a
fundamental conservation law for the performance of feedback control systems. By understanding these
general theoretical constraints, we can gain a broad understanding of what is and is not achievable
with a given control architecture.
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S4 Supplemental Information

S4.1 The Stability Criterion

We consider the mathematical model of the sequestration network described in equation (1). This
mathematical model has a nonlinear term introduced by the sequestration dynamics. To evaluate its

a20 properties of stability and performance, we first linearize its dynamics. We can then describe the block
structure of the linearized system in terms of the following matrices:

—Yp 0 0 9, 0
kl 7’)/]3 0
A: . . aB: : )
0 i i
0 0
0 kn—l —p
C = 0 0 o —f/a
|0 02’ —a —B/a|’

w-[#43)

n—1g,
where a = W and 8 = . The linearized dynamics will then be of the form
P
x = Mx,
where
1
x= |z
21
22

To prove our main stability result, we will analyze the characteristic polynomial of M, p(s). The roots
of p(s) correspond to eigenvalues of M. In general it is difficult to analyze these roots, however we
will see that the p(s) has a great deal of useful structure which we can exploit. First, we have to write
down what p(s) actually is.
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a0 Lemma S1. The characteristic polynomial of M 1is

p(s) =det(sl — M) = (s+7,)" [52 + (a + g) s] + 75 8.

Proof. We start by using the result that, for a block matrix such as M, we can use the classical result
from linear algebra

p(s) = det(sI — M)
sI— A ‘ -B
-C ‘ sI — D

= det(sI — A)det[(s] — D) — C(sI — A)"'B].

= det

Since A is lower-triangular, we see immediately that the first term is
det(sI —A) = (s+ )"

To analyze the second term, we first focus on computing C(sI — A)~! B. Because of the sparse structure
of B and C, we have
0 0

_ -1 —
BlsI=A)C =1 gy(s1— A)1 ol

where (sI — A) | is the bottom-left most entry of (sI — A)~!. Using Cramer’s rule, we can compute

ki s+ 0
1 . . .
(sI — A)t = ——(—1)"*+! det : ;
! (8 + Vp)n . 7]6”_2 s+ Yp
0 0 .
-1
_ 1 (_1)n+1(_1)n71 "1_[ kz
(s + )" el
ey
(s +'7p)n'

Combing these results, we see that

s+«
01017 ks
(s+7p)"

= (s +7)" [(8“‘) (”i) _ﬁ+ﬁ5)"}

p(s) = (s +7p)" det

= (s+7)" [52+ (a+ i) s] + 0B (S1)

We can now use this result about p(s) to analyze the stability of the linearized sequestration
feedback system.
Theorem S2 (Eigenvalue Classification Theorem). For a given n and B > o2, ayp, the eigenvalues
A of M has a parameter-independent classification of the form ’arg <%) + arg (% + 1)‘ = mm, for
P p

an integer m.

a0 Proof. To study the eigenvalues of M, we will analyze the roots of p(s). We begin by by substituting
s = 7,0 in equation (S1) and setting p(c) = 0:

= 8.

ol +0)" [o+ o’ W}

ayp
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Taking the limit of strong feedback (8 > o2, aryp), this equation reduces to

o(l+o)" [1—1—00[;1)] = —%.

From this relationship we see that p(c) has one large real root at o ~ —O%p. If we plug this into the

phase constraint equation, this gives a phase of (n + 1)m. We will say the index of this root is n + 1.
If |o| < %, we get the simplified magnitude constraint
p

«
ol o] ==
Vp

and the phase constraint
arg(o) +narg(l+ o) =7 + 2kr = (2k + 1)7.

We can see from this that the maximum phase possible is n + 1 and that any each of the indices
will be of the form 2k + 1 (i.e., odd integers). Because the magnitude constraint is independent of &,
fundamentally we can have phase indices for any odd integer m such that |m| < n+ 1.

as0 First we will see what conditions can produce purely real roots. If ¢ is real and ¢ > 0, then

arg(o) +narg(l+o0) =0,

which violates the phase constraint. This implies that, if there are unstable roots, they are not purely
real. If —1 < o < 0, then
arg(o) + narg(l+o0) =,

and we can have stable real roots with index 1. The magnitude constraint tells us that we will have
a pair of these real roots if ,% < (nﬁw (which have index 1) with a bifurcation that generates
p

conjugate pairs of roots when % > # These conjugate roots will have indices £1.
An immediate result of these observations is that, for any positive odd integer m such that 1 <
m < n+1, roots cannot be purely real and must come in conjugate pairs +m. If n is odd, then we will
have a conjugate pair of roots for each m € [3,n — 1], either a pair of small real roots or a conjugate
pair for m = 1, and a single large negative real root for m =n + 1.
460 If n is odd, then the situation will be almost the same except for the fact that there will be a second
real root with index n 4+ 1. By some simple accounting, this analysis accounts for all n + 1 roots of
p(o), which correspond to roots of p(s) by a simple rescaling by % O

Theorem S3 (Production-Degradation Inequality). Let M be the matriz corresponding to a lineariza-
tion of the sequestration feedback system with two control molecules (z1 and z3) and n process species.

n—1 .
In the limit of strong feedback (B > o2, ay,), the system is stable if and only if "/ %jﬁlk' < Yp;
where Q, is a constant that only depends on n. Further, when the system has purely imaginary eigen-
values the frequency of oscillation will be w = tan(5- ).

Proof. We will prove the results by finding parametric conditions that will result in purely imaginary
eigenvalues, and then study what happens to the stability of the system when those parametric condi-

a7o  tions do not hold (i.e. equalities become inequalities). To do this, we generalize a technique from [26],
where we evaluate p(s) = 0 on the imaginary axis. In particular, we pick the change of variable
$ = iw*y,, where w* is a positive real number (which we can assume without loss of generality because
complex roots come in conjugate pairs), and evaluate p(w*). This yields the equations

pw*)=0 = ’yf,iw*(l +iw*)" (¢ +iw*) = =8, (S2)

where ¢ = @’+8 If we take the magnitude and phase of the the left-hand side of equation (S2), we

aYp
Vow* (1 +w*) 2 /2 + w*2 = 3 (S3)

get the constraints
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2

From theorem S2 we know that, in the limit of strong feedback, all complex eigenvalues have mag-
nitude much less than ¢, therefore tan=!(w*/¢) — 0. From these observations, we get the simplified
relationship

ntan™!(w*) + tan™? (2) — T 4 okn. (S4)

2k
ntan!(w*) = = + 2k7 = w* = tan (W + 7r) .
noon

a0 and equation (S3) becomes

. 90 nlk
= 7= Tkﬁ%%—i, (S5)

where Q,, = w*(1 + w*?)3. We can think of the parametric constrain equation (S5) as the boundary
between stable and unstable behavior in the system. Because the left-hand side of equation (S3) is
monotone in w*, we can infer that w* is unique and consequently there can only be one point in
parameter space where there exist purely imaginary eigenvalues.

The final step is to study what happens when equation (S5) does not hold. First we look at the

regime "'/ % < 7p. Again using the uniqueness of w*, if we understand the stability behavior

of the system for a particular value of <y, in this regime, the same stability behavior must hold for
all 7, in this range. Because of this, we can first examine the range where v, is large. Intuitively,

a0 if degradation is sufficiently stronger than production then all species subject to degradation should
converge to 0. To prove this rigorously, we will first search for roots with a large magnitude. If we
apply the strong feedback limit to the characteristic equation from equation (S1), we get

p(s) = 5(s+2)"(s + 0) 4258 = 0

(1) (22 1) o

When |s| > 7,0, the characteristic equation will have the approximate form

(;H)n (3720‘“) —0,

which gives us n roots at —7, and one root at ——. Since equation (S1) is order n+2, we know there is

one remaining root outside of this regime. Nex‘c7 we search for the final small root (|s| < min(v,, %)
p
which gives relationship
s+ ypa =0,

which gives a final small root at —y,c. Since each of the n + 2 roots is negative, the system is stable

1
for all "*y/ ngnk < Yp-

500 Now we examine the regime Qs ~ > 7y,. Here we will use a different technique, as taking
the analogous limit of very small v, is less stralght forward to analyze. To start, we will perform a
change of variable s = 7,0, where ¢ € C. We will again using the strong feedback limit, and study
roots near the stability boundary, such that the characteristic equation still has the general form

n+1 9192 l_[

o1+ o) =2, (S6)
Tp
If we write 0 = a + ib, we have the magnitude constraint

(a®> +0*)[(1+a)® +b°" = (;)2 > Q2.
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We also get the phase relationship

Combining these relationships, we get

[a? + w*? (1 + a)?](1 + w*)"(1 4+ a)*™ > Q2.

— {(5)2 +(1 +a)2} (1+a)*" > 1.

*

Since a = 0 at the stability boundary, there must be a regime of parameters sufficiently close to the
s10 boundary such that |a| < w*, for which we have the relationship

(14+a)?" >1 = >0,

n—1 .
This proves the existence of an unstable point when "'y/ % > 7p, which implies that all
parameters in this regime will yield unstable dynamics (so long as the strong feedback assumption still
holds). O

We note that, though previous results studied the regime of strong feedback (5 large), the core
assumption that was made is that the quantity

a?+ B

avyp

> 1.

We note that there is an entirely different way to achieve this, by making a? > 8, ay,. In this regime,
all of the previous results follow in almost exactly the same way, except for changes to the constants
involved. It is relatively straightforward to show that the characteristic equation for the system reduces

to 8
o(l+o)" = ey
o
520 Following the same steps from the previous proofs, we can find that instability now occurs when

| Q0105 T10 ] K
# el ’yp.

Interestingly, the stable regime is now

et | Q00102 10 ks
- - ot=a > s
\/f Tp

the opposite of what occurs in the strong feedback limit. One interpretation of these results as a
whole is that stability is achievable when either controller sequestration or process degradation are
individually large, but not when both are large simultaneously.

S4.2 The Sensitivity Function

The sensitivity function S(s),s € C is the transfer function between an input reference to a system

and output error [18]. It is particularly useful to examine |S(iw)|, which corresponds to the magnitude

of S given a purely oscillatory disturbance. If |[S(iw)| > 1, then the system will amplify disturbances

at a frequency w. Conversely, if |S(iw)| < 1 then the system will attenuate disturbances at frequency
530 (W.
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Define P(s) and C(s) to be the transfer function between inputs and outputs of the process and
controller, respectively. It is a standard result in control theory that

1
=1 + PC”
In general, for a linear system
& = Ax+ Bu
y = Cu,
the transfer function has the form H(s) = C(sI — A)~'B. For the sequestration feedback system, we
have that
0 T10 K
P(s)=1[0,--- ,1](sI—A)~ | : | = 11_[#7
. (s+ )"
01
where just as before we use
- 0 0
U
0 .
0 k/’nfl —Tp
Similarly, we have that
1 022
Ce) = 01T = D) || =1 —2e o
)

where

p=[0 o

Note that C(s) has a factor if %, indicating that it corresponds to an integrator. From P and C, we
sa0  see that

S(s) 1 s(s 4+ )" {er (O&Jrg)]
s) = . = .
1+ s(ﬁj;?: E:g;f:lg)] s(s+ )" [s + (a + g)} + By

(x+§

If we again take the limit > 1 and substitute s = y,0 we get the approximation

1 n
o(l+o)"+ =
Ideally we would like to analyze ||S(iw)||occ = max,, |S(iw)|, however this is difficult to compute in
general. A lower bound for this term can, however, be easily computed by evaluating a particular
value of w close to the maximum. Specifically, we will use w = tan(g-)y, = w*y,. At 0 = iw*, we get

. w*(1+w*?) Q,
|:S (iw )‘%w*(l—i—w“)%—g —Q _ a
Tp n Yp

From our previous results, we know that the system is purely oscillatory when €2, = ,%, which
P

corresponds to |S(iw*)| = ||S(iw)||cc = 0o. This gives the intuitive result that the system is infinitely
sensitive to a periodic disturbance at w = w*~y, when Q,, = % In general, we will have that
p

Qy

a

"_'yp

18 oo > o (7)
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For the special case of n = 2, we can explicitly derive an even tighter bound than the one in
inequality (S7). First, we can explicitly compute

liw* (1 + iw*)?|

S(iw)| = 5w
liw* (1 + dw*) +%|
_ w*(1+w*2)
’(% - 2w*2) +iw*(1 — w*?)

\/(,‘; - 2w*2)2 + (w*(1 — w*2))2.

Much of the complexity in this equation comes from the denominator, which can be simplified if we
pick w* such that either the real or imaginary part is 0. If we plug in w* = tan(7/4) = 1, the complex
sso  part of the denominator vanishes and we recover the original bound:

2 1

> )| = = .
18l 2 IS0 = 5= = 1=

To set the real part to zero, it must be the case that

L 9= = w*z”ﬂ.
Tp 2%
Plugging this in, we get that

' 1+ 55~ 1
I8l 2 |5 (iv/a/2n, )| = 22 > = (s8)

27p 2vp

We see that this new bound is strictly greater than the one derived in inequality (S7) , and therefore
is a better approximation of ||S||c. While inequality (S7) generalizes to all value of n, the latter
bound unfortunately requires us to find real roots of order n polynomials, which scales poorly for this
problem.

S4.3 Sequestration Feedback with Controller Species Degradation
S4.3.1 Steady state analysis

Following the same notation as the previous sections, we can model the role of controller degradation

as
.’kl = 912’1 — VpT1 (Sga)
ig = klxl — YpT2 (Sgb)
Ep = kn_1Tn—1 — Yptn (S9c)
Z1 = p—nz1z2 — Y21 (S9d)
29 = O3, — N2122 — Ye2o, (S9e)

where v, is the degradation of the process species x; and ~. is the degradation rate of the control

se0  Species z; and z. At a high level we will proceed much in the same way as we did previously, however
we will see that nonzero controller degradation leads to several technical challenges that do no appear
when v, = 0. The first of theses arises from simply solving for the steady values around which we will
linearize the model. Where previously we used the fact that 2, — 20 = 0 = x = p/03, where
denotes a steady-state value. to subsequently solve for all other steady-state concentrations, we are
now left with the messier relationship
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miy=0 = ot =L Jer ),
0, 05

This implies that, for v, > 0, we expect z,, to differ from the desired steady-state p/6 by some
error that depends on the values of 2] and z5. Since this error is almost surely a function of many

other parameters, we essentially lose the robust precise adaptation property where x; is completely

independent of the network’s parameters. We will first calculate a general form for z}, then derive a

s70  large 7 limit thats make further calculations tractable.
To begin, we use equations (S9d) and (S9e) to derive the relationships

p=2z1(nz +v.) = 22<*’Yc>
n\*

*

1 * *
T, = 6*22(7721 +7e)-
2

Combining these equations, we find that

S N 100 S O
n 92 7]92 Z’f 92 1 7]92

Finally, we observe that
* ’Y]TQL * 02 *
Z1 = = Ty = — Ty,
1 61 H’L ki n a n

which yields the relationship
S U 7 00 S (O

"0 paxy o oy
2
— (1+k> or? = (“— Te )x;+%”. (S10)
@ 0>  nbs no
While this quadratic can be solved explicitly, the result can be greatly simplified by again taking
2

the limit of large 7. Here the sense in which we take this limit is such that - > 777902 and 1> %
These reduce to the condition

2

p > Je JB
[T

Combined with the previous assumption about the size of n we now have a large number of conditions

to fulfill, however we find that in practice we rarely are in parameter regimes where a great deal

of tuning needs to be done to satisfy everything. That being said, we can use this limit to reduce

ss0  equation (S10) to

Ve * 2 mooy * 1% 1

1+—)x o s . S11
( « " 92 " " 92 1 + % ( )

Using the same approximation, we can also compute

* 02 % ~
2= FrL R g (S12)

* % * Ay

2= nz{i% xk A % (S13)

These will be useful for computing the linearized dynamics of the system in the next section.

As a sanity check, we can immediately see that x! = p/02 when . = 0, as expected. For
~e > 0, equation (S11) captures the steady-state error relative to the set point 1/0 induced by non-
zero controller degradation. We see that, so long as the ratio 7./« < 1, error will be negligible. What
is unclear at this point is under what conditions this can be achieved while still ensuring stability of
the overall system. To this end, we will now characterize stability and performance for v, > 0.
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S4.3.2 Linearized dynamics and characteristic equation

Here we present results analogous to those in section S4.1, omitting detailed proofs since the structure

seo  Of the argument from this point on is essentially identical to what was show in the previous section.
Because the only nonlinear terms in our system are in equations (S9d) and (S9e), the only matrix to
change in our linearization from section S4.1 is

—n25 —nzT — e - —B/(a+7e) — e

Using this D matrix and proceeding with precisely the same calculation as before, we can derive the
characteristic equation for the system:

D= {_7)25 —Ye —nz] } ~ [—a — Ve —B/(a+7e)

(0%

atye

(s +7p)" (s + ) [84-% +a+ ]4—7;5 0. (S14)
a+ e
We again take the appropriate limit of 8 > (v, + @)7p, (7 + @)? to follow the same argument as in

section S4.1 to get the simplified expression in terms of o = s/7,:

«a
(1+0)" (%—i—a) =2 (S15)
Tp Yp
First we note that, when 7. = 0, we recover equation (S6) as expected. Proceeding as before, we
can write the characteristic polynomial in terms of phase and magnitude constraints for o = iw*:

n 2 o
1+w)z, [l o2 =— S16
( ) \/73 . (S16)

ntan™!(w*) + tan~! <3pw*> =7 (S17)

S4.3.3 Stability analysis.

s0o Unfortunately, the additional complexity in equation (S17) makes it challenging to write down the sort
of explicit closed-form expressions for stability seen in theorem S3. While we can write out explicit
stability conditions for n = 2, we will need to study particular parameter regimes for n > 2 as the
summation relationship for tan=! scales poorly.
To solve for w* in equation (S17) we make use of the inverse trigonometric identity

tan"!(a) 4 tan~'(b) = tan™* (1a+(fb) (mod 7).

Applying this identity twice yields the relationship

2tan" ! (w*) + tan™? <’pr*) =7

Ye
2 *
— tan ' [ 2 ) 4 tant [ 2w ) = (mod )
1—w*? Ve
2w+ 2wt (1 - w?)
= tan T+ YTP)M*Q =0 (mod 7).

Since the only value for which tan™!(x) = 0 is # = 0, the problem reduces to solving the equation

2w* + ﬁw*(l —w?) =0

Ve

— 2+ (1w =0

— W= 270 11,
Tp
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Combining this with equation (S16) yields the stability criterion

0,02k
2

< Yp(Ye + 1) (S18)

If we assume that we have full freedom to set control parameters, then inequality (S18) that it is
possible to make the production rates #; and 65 large, so long as there is a compensatory increase in
~.. This implies that we can, in a sense, sidestep the performance tradeoffs between speed and stability
if we are willing pay a price in terms of efficiency, measured by the turnover rates of z; and zs.

610 Next we will study what happens when n > 2. We note that there is an interesting topological
distinction going from n = 2 to n > 2 which yields qualitatively different stability results. To see why
this is the case, we return to equation (S17):

ntan~!(w*) + tan~! <%w*> =.
e

Recall that tan=1(x) < 7/2 for all z. Because this is the case, when n = 2 it is always the case
that 2tan~!(w*) < 7, implying that satisfying the phase condition is strictly contingent of the value
of the term tan='((7,/v.)w*). On the other hand, for n > 2, there exist values of w* such that
ntan~!(w*) > 7, so depending on the relative magnitude of the ratio vp/7Ve satisfying the phase
condition may or may not depend strongly on ~,.

If we look again at equation (S15):

(1+0)" (70 —|—a) S

Tp

we notice that the only place in which +, appears is in the ratio 7./7,. One natural approach to
e20 studying the solutions to this equation is to examine what happens at various limits, namely . < vp,
Ye = Vp, and v > 7. Here we will present results without going into formal detail, however the
analysis can be made rigorous by analyzing equation (S17).
Case I v, < 7p: This case is fairly straightforward, as it is it reduces to the case of no controller
degradation. We recover the characteristic polynomial

a
c(l+o)"=——,
Tp

which has the same exact stability condition as in theorem S3.

Case II ~. = ,: This case is representative of what happens when controller and process degra-
dation have the same order of magnitude. We use v, /7. = 1 in equation (S17) to find that the stability
boundary is characterized by:

ntan™! (w*) + tan™! <pr*> =7

Ye
= (4 1) tan M (w*) =7

" ™
— w =tan .
(n+1>

Here it is useful to define the quantity

- 2\ 2
Q, = <1 + tan (f) ) ,
n

where Q,, differs from the previously defined €, by a factor of 1 /2 in the argument of the tangent
term. Using this expression, we can use equation (S16) to derive the stability criterion
@

- 6,6 ks
L My L0 | EL

Y-
Yp Qi1 P
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This condition is qualitatively the same as the one in theorem S3 up to a constant difference accounted

for by the Qn+1 term.
Case III v, > +,: Following a similar line of reasoning as in the previous case, taking the limit

Yp/ve < 1 in equation (S17) to show that

ntan~!(w*) + tan ! <%w*) =
Ye
=g ntan ' (w*) =7

N ™
- w :tan(f).
n

We again use equation (S16) to find that the stability boundary is set by the following relationship:

2

(14+w*?)2 l; o=
rYp Tp

Te2yr g Je &

Yo Mp

— 0, =2

Ve

This implies that the stability criterion for this case is

~ 6,6 ks
220, — o[ 010211 ki <

Yp-
Ve Yelln ?

Notice that in the n = 2 case, w* is a function of 7. and the subsequent stability criterion depends on
the term (7;,+.)?. This is quite different from the n > 2 cases where in each regime, the ~. dependence
in w* disappears. Similarly, in the stability criterion we see a linear (rather than quadratic) dependence
on .. This is a direct result of the previously mentioned topological difference between the n = 2 and

n > 2 cases.
One interesting side effect of this results is that, when the system is purely oscillatory (on the sta-

bility boundary), the frequencies of oscillation may be dramatically different depending on n. Consider
the case where v, > 7, If n = 2, this frequency will be

* Ve
W = Ypw zvp,/2fy——|—1ﬁd\/2'yp’yc.
D

If n > 2, we use the results from Case III above to find
" m
w = Ypw = yptan (g) .

In the former case, w scales with ,/¥,, whereas in the latter case w is independent of ~.. This implies
that for large controller degradation rates we would expect much faster oscillatory modes for n = 2
than for n > 2.

S4.3.4 The effects of degradation on sensitivity and performance

Just as in section S4.2, we can write the generic sensitivity function for the linearized sequestration
feedback system with degradation in terms of the variable o = ~,s as

(140 (2 +0)

(I+o)n (;’i + O’) + (519

S(o) =

&
Tp
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For the case n = 2, we can again derive an explicit lower bound for ||S(iw*)||eo:

|1+ iw)?(22 + )

S (iw™)| =

)
o*¥)2 [ Je iy [e]
‘(1+zw) (7p+zw)+%

(1 + w*?), /@ + w*?
- L: (520)

‘(k(l —w*?) —2w*?) +14 (QW*;’% +w*(1 - w*2)) ‘

Tp

We can again solve for w* such that the real part of the denominator is zero:

k(1—@)*2)—2w*220 S B e
Tp 27+

If we evaluate equation (S20) at w*, we can write the bound

2
*2 Ye
(I +w™)y /14 (w*vp)
%2 Qe
(1-w )+27p

[Slloe > |S(w™)| = F = (S21)

It is easy to check that, for 7. = 0, we recover the bound from inequality (S8). As w* approaches

oo 14+ 27:/7p, ||S]leo Will asymptotically increase to co. Alternatively, increasing 7. will decrease sensi-
tivity, and consequently improve robustness. We can think of 7. as capturing the inefficiency of our
controller (higher degradation means the control species are degraded before being used in a seques-
tration reaction). In these terms, we see that increasing 7. will reduce F at the cost of increased
steady-state error (see figure 3D-F). If we hold e constant by varying both ~y. and 61, the we can de-
crease F at the cost of on decreasing efficiency of the controller (see figure 3G-I). Finally, we can vary
. and 67 such that F is constant, which leads to a tradeoff between steady-state error and efficiency
(see figure 3J-L).

S4.4 Controlling an Unstable Process

In all prior sections, we have assumed that the underlying process being controlled is open-loop stable.
Here we will examine a simple model of an open-loop unstable process and describe which control
architectures are capable of stabilizing the closed-loop system. To start, we will use a simple linear
system as our process:

1 = kaxo — Yp11,

Itg = kl.’El - VpT2-

This system will be unstable when at least one eigenvalue of the matrix:

— k
A=| ]
{ k1 _W’p]

es0 has positive real part. With some straightforward linear algebra we can find that the eigenvalues of A
are,

A+ = —p £V kiks.

Because k1, k2,7, > 0, we know that A_ < 0 for all parameters. A;, however, can be either positive
or negative. In particular,

Vkiks >y <= Ay >0.

To facilitate our study of unstable processes, we will assume /k1k2 > 7, for the rest of the section.
One immediate difference is that, due to the unstable process, any controller must now be repressive.
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To model this, we will first study the following architecture (described in equation (19) and the left
panels of figure 5):

B koxo
14612
o = k1x1 — Y22,
21 = p1 — nz12e,
_ K2

o 1 + 921‘2

1 — YpT1,

?;“2 —MnNzi1z2.

If 6; = 05 = 0, then this architecture reduces to the open-loop system described above. The controller
topology is essentially the same as in the stable case, with the core difference that z; represses x;
and xo represses za, where before these interactions were activating. Since now there is no reaction
synthesizing zo, we must add in some external production rate ps. We will again proceed by solving for
the steady-state concentrations of each species and linearizing around these values. The steady-state
concentrations are as follows:

1

* 2 2 T
) — | Y po—p1 1 po—p Fiko—v, pa 017,

25 k102 p1 702 p1 0 01y 7 om kika—v7
Z

If we now linearize around this fixed point, we can define a new set of parameters:

oo 4 ((kem Ny
Q_dmg 146121 z{_/ﬁ’

G, — d ( koo > _91 ’Yf; M2 — p1
1= |5 |\ 7% — ==
dzy \14+6121/ . .| 02 kiks

)y = 4 <'u2> — QQ'ﬁ
dry \1+ 6223/ pe’
a=mnzy = 7M1917§
2 kl ]{72 — /712) )
B =B
670 which characterize the linearized set of dynamics:
x = Mx,
1 —Yp ky —6, 0
|22 o ]ﬂl —Vp 0 0
= a M = 0 0 —-a —fla|’
29 0 -6 —a —-B/a
Following the same methods in section S4.1, we can derive the characteristic polynomial for M,

po) = st =205 =3 (s a+ 2) 4 D,

where we now use Ay = —y, £V k‘llzzg. If we plug in ]%2, we see that Ay = 0 and A_ = —2v,. The
fact that the process’s eigenvalues change when comparing the open- and closed-loop systems is a
byproduct of the fact that our original model was nonlinear, and is something that would not occur
for a strictly linear system.
Again taking the limit of strong feedback, which here takes the form 8 > a?,2a7,, and setting
p(s) = 0, we get the equation
82(8 —+ Q’Yp) = 7@1@2]171.
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The corresponding phase constraint for this equation when s = iw is (after some algebra):

fant () =T
2y,) 2

Since tan~!(z) < /2, there are no parameter values for which this phase constraint is achieved.

Next, we consider an alternative architecture, shown in figure 5 and equation (20). This system is
described by the same dynamics as before, except we now have z; directly repressing x5 (rather than
indirectly doing so via x1):

1 = koo — Yp1,

) k1z1

Lo = ———— — Y, Ta,
2 1+012’1 Tp2

21 = p1 — nz12e,

30 — _ M2 212
2 1+ 0s29 2122

The steady-state values are almost identical to those of section S4.4, except we now have that

o ko p2 — piy
! ’Yp92 H1

We can define another set of linearized parameters,
o= 4 (R _ %
! d.’tl 1+ 0121 2 kQ ’

d( k! )
d21 1+ 9121 zt, 2t

with ég, «, and (B the same as before. Our linearized dynamics are now described by the matrix

g, — b ’Yg M2 — 1
1= L o

T O kiky

N S

kl —Tp —91 0

0 0 -—-a —-fla|’
0 -6 —a —-B/a

with a corresponding characteristic polynomial

p5) = (s =)o = A) (st 2) 4 Zada(ot ),

with Ay = —yp £V kiks. The limiting form of the characteristic equation is now

s2(s + 27p) = —élég(s + ),

tan™! (w) = tan~* <w> .
27 Tp

Unlike in the previous architecture, this constraint is achievable for w = 0. this leads to a stability
criterion of the form

with the phase constraint

016,

Tv

which implies that the linear system is intrinsically stable so long as the parameters are set such that
the system has a positive steady-state concentrations (ug > i, k1ks > 'y;‘j). The in turn implies that
the nonlinear system will be locally stable near the fixed point independent of the model’s parameters.

0<
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690 Finally, we can find the sensitivity function for the stabilizing architecture. This is somewhat
complicated by the fact that the process transfer function varies with control parameters, so it is
difficult to separate the process and the controller transfer functions. However we can use a convenient

form
S(S — pOl(s)7
pcl(s)
where pq(s) is the characteristic equations for the closed-loop systems, and p,l(s) = limg, 0 pei(s)
[8,49]. Using

pe(s) = 32(5 + 2v,) <s + a4+ i) + gélég(s + ),

we get the sensitivity function (assuming large 3):

5(s +vp — Vkik2)(s +7p + Vk1k2)

S(s) = 5 —
$2(s+ 27vp) + 0102(s + p)

Note that it is important the we take care with the limits, as the roots of p,(s) should reflect the

eigenvalues of the unstable open-loop system. This is used to generate the right-hand plots in figure 5A
and B.
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