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ABSTRACT

Identification of causal drivers behind regulatory gene networks is crucial in understanding
gene function. We developed a method for the large-scale inference of gene-gene
interactions in observational population genomics data that are both directed (using local
genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by
controlling for linkage disequilibrium and pleiotropy). The analysis of genotype and whole-
blood RNA-sequencing data from 3,072 individuals identified 49 genes as drivers of
downstream transcriptional changes (P < 7 x 10™*°), among which transcription factors were
overrepresented (P =3.3 x 107). Our analysis suggests new gene functions and targets
including for SENP7 (zinc-finger genes involved in retroviral repression) and BCL2A1 (novel
target genes possibly involved in auditory dysfunction). Our work highlights the utility of
population genomics data in deriving directed gene expression networks. A resource of
trans-effects for all 6,600 genes with a genetic instrument can be explored individually using
a web-based browser.
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INTRODUCTION

Identification of the causal drivers underlying regulatory gene networks may yield new
insights into gene function™?, possibly leading to the disentanglement of disease
mechanisms characterized by transcriptional dysregulation®. Gene networks are commonly
based on the observed co-expression of genes. However, such networks show only
undirected relationships between genes which makes it impossible to pinpoint the causal
drivers behind these associations. Adding to this, confounding (e.g. due to demographic and
clinical characteristics, technical factors, and batch effects*®) induces spurious correlations
between the expression of genes. Correcting for all confounders may prove difficult as some
may be unknown’. Residual confounding then leads to very large, inter-connected co-
expression networks that do not reflect true biological relationships.

To address these issues, we exploited recent developments in data analysis approaches that
enable the inference of causal relationships through the assignment of directed gene-gene
associations in population-based transcriptome data using genetic instruments®° (Gls).
Analogous to Mendelian Randomization'""” (MR), the use of genetics provides an anchor
from where directed associations can be identified. Moreover, Gls are free from any non-
genetic confounding. Related efforts have used similar methods to identify novel genes
associated with different phenotypes, either using individual level data®® or using publicly
available eQTL and GWAS catalogues'®. However, these efforts have not systematically
taken linkage disequilibrium (LD) and pleiotropy (a genetic locus affecting multiple nearby
genes) into account. As both may lead to correlations between Gls, we aimed to improve
upon these methods in order to minimize the influence of LD and pleiotropy, and would
detect the actual driver genes. This possibly induces non-causal relations®®, precluding the
identification of the specific causal gene involved when not accounted for LD and
pleiotropy.

Here, we combine genotype and expression data of 3,072 unrelated individuals from whole
blood samples to establish a resource of directed gene networks using genetic variation as
an instrument. We use local genetic variation in the population to capture the portion of
expression level variation explained by nearby genetic variants (local genetic component) of
gene expression levels, successfully identifying a predictive genetic instrument (Gl) for the
observed gene expression of 6,600 protein-coding genes. These Gls are then tested for an
association with potential target genes in trans. Applying a robust genome-wide approach
that corrects for linkage disequilibrium and local pleiotropy by modelling nearby Gls as
covariates, we identify 49 index genes each influencing up to 33 target genes (Bonferroni
correction, P < 7 x 10'9). Closer inspection of examples reveals that coherent biological
processes underlie these associations, and we suggest new gene functions based on these
newly identified target genes, e.g. for SENP7 and BCL2A1. An interactive online browser
allows researchers to look-up specific genes of interest while using the appropriate, more
lenient significance threshold.
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RESULTS

Establishing directed associations in transcriptome data

We aim to establish a resource of index genes that causally affect the expression of target
genes in trans using large-scale observational RNA-sequencing data. However, causality
cannot be inferred from the correlation between the observed expression measurements of
genes, and therefore is traditionally addressed by experimental manipulation. Furthermore,
both residual and unknown confounding can induce correlation between genes, possibly
yielding to extensive correlation networks that are not driven by biology. To establish causal
relations between genes, we assume a structural causal model'* describing the relations
between genes and using their genetic components, the local genetic variants predicting
their expression, as genetic instruments®! (Gls). To be able to conclude the presence of a
causal effect of the index gene on the target gene, the potential influence of linkage
disequilibrium (LD) and pleiotropic effects have to be taken into account, as they may cause
Gls of neighbouring genes to be correlated (Figure 1). This is done by blocking the so-called
back-door path'® from the index Gl through the genetic Gls of nearby genes to the target
gene by correcting the association between the Gl and target gene expression for these
other Gls. Note that this path cannot be blocked by adjusting for the observed expression of
the nearby genes, as this may introduce collider bias, resulting in spurious associations.

To assign directed relationships between the expression of genes and establish causality,
the first step in our analysis approach was to identify a Gl for the expression of each gene,
reflecting the local genetic component. To this end, we used data on 3,072 individuals with
available genotype and gene expression data (Table S1), measured in whole blood, where
we focused on at least moderately expressed (see Methods) protein-coding genes (N =
10,781 genes, Figure S1). Using the 1,021 samples in the training set (see Methods), we
obtained a Gl consisting of at least 1 SNP for the expression of 8,976 genes by applying lasso
regression’” to nearby genetic variants while controlling for known (cohort, sex, age, cell
counts) and unknown covariates® (see Methods). Adding distant genetic variants to the
prediction model has been shown to add very little predictive power® and would have
induced the risk of including long-range pleiotropic effects.

The strength of the Gls was evaluated using the 2,051 samples in the test set (see Methods).
Taking LD and local pleiotropy into account by including the Gls of neighbouring genes (< 1
Mb, Figure 1), we identified 6,600 sufficiently strong Gls having at least partly specific
predictive ability (Figure S2A) for the expression its corresponding index gene (F-statistic >
10, Figure S1, Table S2). To evaluate the effects of these 6,600 Gls on target gene
expression, we used all 3,072 samples to test for an association of each of 6,600 Gls with all
of 10,781 expressed, protein-coding genes in trans (> 10Mb, Figure S2B). First, this analysis
was done without accounting for LD and local pleiotropy (i.e., correcting for neighbouring
LD, Figure 1). This genome-wide analysis resulted in 401 directed associations between 134
index genes and 276 target genes after adjustment for multiple testing using the Bonferroni
correction (P < 7 x 10™*°, Figure 2, Table $3). Among them were 134 index genes affecting
the expression of 1 to 33 target genes in trans (3.2 genes on average, median of 1 gene),
totalling 276 identified target genes. As expected, the resulting networks contained many
instances where the same target gene (N = 65) was influenced by multiple neighbouring
index genes, hindering the identification of the causal gene. Repeating the analysis for the
134 identified index genes, but corrected for LD and local pleiotropy by including the Gls of
neighbouring genes (< 1Mb) resulted in the identification of specific directed effects for 49
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index genes on 144 target genes, totalling 156 directed associations (P < 7 x 10™%°, Figure 2),
where the number of target genes affected by an index gene varied from 1 to 33 (Table 1,
3.2 genes on average, median of 1 gene). The number of target genes associated with
multiple neighbouring index genes drops from 65 to 2, underscoring the importance of
correction for LD and local pleiotropy. As this set of 156 directed associations is free from LD
and local pleiotropy, and possibly reflect truly causal relations, we use these in further
analyses.

Validity and stability of the analyses

To ensure the validity and stability of the analyses, we performed several checks regarding
common challenges inherent to these analyses and the assumptions underlying them. First,
by design, the Gls should be independent of most confounding factors, but confounding
may still occur if genetic variants directly affect blood composition, leading to spurious
associations. Therefore, we evaluated the association of the 49 Gls with observed red blood
cell count and white blood cell counts, and found that none of the 49 Gls were significantly
related to any observed cell counts (Figure S3A). In addition, all 156 directed associations
remained significant after further adjustment for nearby genetic variants (< 1Mb) reported
to influence blood composition*”*® (Figure S3B).

To combat any unknown residual confounding and possibly gain statistical power, we added
five latent factors to our models, estimated from the observed expression data using cate®
(see Methods). We re-tested the 156 identified associations without these factors to
evaluate the model sensitivity, showing similar results with slightly attenuated test statistics
(Figure S3C). This indicates that our analysis was not influenced by unknown confounding
and confirmed the independence of Gls from non-genetic confounding, but did help in
reducing the noise in the data, leading to increased statistical power.

Next, to validate the Gls of the 49 index genes, we compared the SNPs constituting the Gls
of the 49 index genes associated with target gene expression with previous cis-eQTL
mapping efforts. While similar sets of genes may be identified using a cis-eQTL approach,
the utility of using multi-SNP Gls over single-SNP Gls (akin to cis-eQTLs) is shown in the
increased predictive ability of multi-SNP Gls (Figure S3D), and thus in the number of
predictive Gls. Only 4,910 single-SNP Gls were predictive of its corresponding index gene (F-
statistic > 10), compared to 6,600 multi-SNP instrumental variables. Of the 49 index genes
corresponding to the 49 Gls, 47 genes (96.1%) were previously identified as harbouring a
cis-eQTL in large subset of the whole blood transcriptome data we analysed here (N =
2,116), using an independent analysis strategy'®. Almost all of the corresponding Gls (98%,
N = 46) were strongly correlated with the corresponding eQTL SNPs (R2 > 0.8). Similarly, 26
of the 49 index genes {53%) were also reported as having a cis-eQTL effect in a much smaller
set of whole blood samples (N = 338) part of GTEx’®, 23 of which also correlated strongly
with the corresponding eQTL-SNPs (R2 > 0.8). When considering all tissues in the GTEx
project, we found 48 of 49 index genes were identified as harbouring a cis-eQTL in any of
the 44 tissues measured.

Next, we compared our identified effects with trans-eQTLs identified earlier in whole-blood
samples®. First, we found 97 target genes identified here (67%) overlapped with those
found by Joehanes et al., 19 of which had their corresponding Gl and lead SNP in close
proximity (< 1Mb, Figure S4), suggesting that the effects are indeed mediated by the index
gene assigned using our approach. Testing for a cis-eQTL of those SNPs identified by
Joehanes et al. on the nearby index genes, we found all 19 index genes indeed had at least
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one nearby lead SNP that influenced its expression (P < 6 x 10™, Table S4). This number
increased to 31 at a look-up threshold for multiple testing in our analysis (P < 4.6 x 10°®),
indicating that limited statistical power of both studies may lead to an underestimation of
the overlap.

As a last check, we investigated potential mediation effects of each of the 49 Gls by
observed index gene expression (Figure 1), meaning the effect of a Gl on target gene
expression should diminish when correcting for the observed index gene expression.
However, small effect sizes and considerable noise in both mediator and outcome lead to
low statistical power to detect mediated effects®*?. Nevertheless, we found 105 of 156
significant directed associations (67%) to show evidence for mediation (Bonferroni
correction: P <0.00031; Table S5).

Exploration of directed networks

To gain insight in the molecular function of 49 index genes affecting target gene expression,
we used Gene Ontology (GO) to annotate our findings. The set of 49 index genes was
overrepresented in the GO terms DNA Binding (P = 5 x 10°®) and Nucleic Acid Binding (P = 2.8
x 107, Table S6), with 43.8% (N = 21) and 47.9% (N = 23) of genes overlapping with those
gene sets, respectively. In line with this finding, we found a significant overrepresentation of
transcription factors (N = 17; odds ratio = 5.7, P = 3.3 x 10”') using a manually curated
database of transcription factors>*. We note that such enrichments are expected a priori
and hence indirectly validate our approach. Of interest, several target genes of two
transcription factors overlapped with those identified in previous studies®>?® (IKZF1: 27% of
its target genes, N = 4; PLAGL1: 15% of its target genes, N = 5). Using a more lenient
significance threshold corresponding to a look-up for each of these 17 transcription factors
(thus correcting for only 10,781 potential target genes; P < 4.6 x 10°®), we identified
overlapping target genes for an additional 3 transcription factors> >® (CREB5, NFKB1, NKX3-
1) and a total of 38 TF-target gene pairs corresponding between our analysis and previous
studies (Table S7).

Finally, we explore the biological processes that are revealed by our analysis for several
index genes that either are known transcription factors®* or affect many genes in trans.
While these results are limited to Bonferroni-significant directed associations (P < 7 x 10'10,
correcting for all possible combinations of the 6,600 index genes and 10,781 target genes),
researchers can interactively explore the whole resource by means of a look-up at a much
more lenient significance threshold (P < 2.9 x 10°®, testing for a gene to have an effect in
trans, or being affected by other genes, totalling 17,381 tests (6,600 + 10,781)) using a
dedicated browser (see URLs).

Sentrin/SUMO-specific proteases 7 (SENP7)

We identified 25 target genes to be affected in trans by sentrin/small ubiquitin-like modifier
(SUMO)-specific proteases 7 (SENP7, Figure 3, Figure 4, Table 1), significantly expanding on
the five previously suspected target genes resulting from an earlier expression QTL
approach®. Increased SENP7 expression resulted in the upregulation of all but one of the
target genes (96%). Remarkably, 23 of the 25 target genes affected by SENP7 are zinc finger
protein (ZFP) genes located on chromosome 19. More specifically, 18 target genes are
located in a 1.5Mb ZFP cluster mapping to 19q13.43 (Figure 3). ZFPs in this cluster are
known transcriptional repressors, particularly involved in the repression of endogenous
retroviruses>’. Parallel to this, SENP7 has also been identified to promote chromatin
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233 relaxation for homologous recombination DNA repair, specifically through interaction with
234 chromatin repressive KRAB-Association Protein (KAP1, also known as TRIM28). KAP1 had
235  already been implicated in transcriptional repression, especially in epigenetic repression and
236  retroviral siIencing31’32, although KAP1 had no predictive Gl (F-statistic = 4.9). Therefore, it
237  has been speculated SENP7 may also play a role in retroviral silencing®®. Given the

238  widespread effects of SENP7 on the transcription of chromosome 19-linked ZFPs involved in
239 retroviral repression3°, it corroborates a role of SENP7 in the repression of retroviruses,

240  specifically through regulation of this ZFP cluster. SENP7 is not a TF and does not bind DNA,
241  but considering it is a SUMOylation enzyme, it possibly has its effect on the ZFP cluster

242 through deSUMOylation of KAP1*".

243

244  SP110 nuclear body protein (SP110)

245  In our genome-wide analysis, we found that the transcription factor SP110 nuclear body
246  protein (SP110) influences three zinc finger proteins (Figure 3, Figure 4). During viral

247  infections in humans, SP110 has been shown to interact with the Remodelling and Spacing
248  Factor 1 {RSF1) and Activating Transcription Factor 7 Interacting Protein (ATF7IP), suggesting
249  itis involved in chromatin remodelling®. Interestingly, all three of the genes targeted by
250 SP110 are also independently influenced by SENP7, although SP110 shows opposite effects
251  (Figure S5), and are located in the same ZFP gene cluster on chromosome 19. A specific

252  look-up (thus relaxing the multiple testing burden; Figure 3b) for SP110 targets show six

253  genes, all also independently affected by SENP7. This overlap of target genes supports the
254 previous suggestion that SP110 is involved in the innate antiviral response®, presumably
255  through regulation of the same ZPF cluster regulated by SENP7.

256

257  Pleiomorphic adenoma gene-like 1 (PLAGL1)

258  The index gene with the most identified target gene effects in trans is Pleiomorphic

259  Adenoma Gene-Like 1 (PLAGL1, also known as LOT1, ZAC). PLAGL1 is a transcription factor
260 and affected 33 genes, 29 of which are positively associated with PLAGL1 expression (88%,
261  Figure 4). PLAGLI1 is part of the imprinted HYMAI/ZAC1 locus, which has a crucial role in fetal
262  development and metabolism®”?%. This locus, and overexpression of PLAGL1 specifically, has
263 been associated with transient neonatal diabetes mellitus®>*° (TNDM) possibly by reducing
264  insulin secretion®™. PLAGL1 is known to be a transcriptional regulator of PACAP-type |

265  receptor! (PACI-R). PACAP, in turn, is a regulator of insulin secretion**®. In line with these
266  findings, we found several target genes to be involved in metabolic processes. Most notably,
267  we identified MAPKAPK3 (MK3) and MAP4K2 to be upregulated by PLAGL1, previously

268 identified as PLAGL1 targets®®, and both part of the mitogen-activated protein kinase

269  (MAPK) pathway. This pathway has been observed to be upregulated in type Il diabetic

270  patients (reviewed in 44). In addition, inhibition of MAPKAP2 and MAPKAP3 in obese, insulin-
271 resistant mice has been shown to result in improved metabolism45, in line with the

272  association between upregulation of PLAGL1 and the development of TNDM. Furthermore,
273 PLAGL1 may be implicated in lipid metabolism and obesity through its effect on ID/1,

274  PNPLA1, JAK3, and RAB37 expression™® ™. While not previously established as target genes,
275  they are in line with the proposed role of PLAGL1 in metabolism®”"*,

276

277  Bcl-related protein A1 (BCL2A1)

278 Increased expression of Bcl-related protein Al (BCL2A1) downregulated all five identified
279  target genes (Figure 4). BCL2A1 encodes a protein part of the B-cell ymphoma 2 (BCL2)
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family, an important family of apoptosis regulators. It has been implicated in the
development of cancer, possibly through the inhibition of apoptosis (reviewed in *°). One
target gene, NEURL1, is known to cause apoptosi551, in line with its strong negative
association with BCL2A1 expression. Similarly, CDKN1C was also downregulated by BCL2A1,
and implicated in the promotion of cell death®*°. However, little is known about the
strongest associated target gene, VMO1 (P = 1.5 x 10°®). It has been implicated in hearing,
due to its highly abundant expression in the mouse inner ear*®, where BCL2A1 may have a
role in the development of hearing loss through apoptosis, since cell death is a known
contributor to hearing loss in mice”’. In line with its role in the inhibition of apoptosis,
BCL2A1 overexpression has a protective effect on inner ear mechanosensory hair cell death
in mice®®. Lastly, the target gene CKB has also been implicated in hearing impairment in
mice™ and Huntington’s disease®, further suggesting a role of BCL2A1 in auditory
dysfunction.

Mediation of target gene expression through local DNA methylation

Previously, genetic variants have been found to influence DNA methylation in trans
Methylation, in turn, can have a causal effect on gene expression (discussed in ®%). This led
us to hypothesize that the directed effects on target gene expression identified here could
be mediated by changes in DNA methylation near those target genes. We investigated this
hypothesis by first obtaining a single score per target gene by summarizing the methylation
of nearby CpGs, similar to the construction of the Gls (see Methods), reflective of the local
methylation landscape of the target gene. Next, we globally tested for mediation of the
identified effects by the methylation scores using Sobel’s test®’. Evidence for mediation by
local changes in DNA methylation were found for 33 effects, pertaining to 8 index genes and
31 target genes {Table S8). Most notably, the mediation analysis showed most of the SENP7
effects on target gene expression are mediated by local changes in methylation (22 genes,
88%). To further investigate which CpGs specifically are responsible for mediating those 33
effects, we tested each CpG constituting the methylation scores separately, identifying 95
CpGs. Most of the 95 CpGs lie adjacent to a CpG island (CGl), in so-called CGI shores®*® (N =
41,0R = 2.9, P = 1.3 x 10). This suggests regulation of several target genes is at least partly
mediated by local changes in DNA methylation or correlated epigenomic markers.

29,61
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DISCUSSION

In this work, we report on an approach that uses population genomics data to generate a
resource of directed gene networks. Our genome-wide analysis of whole-blood
transcriptomes yields strong evidence for 49 index genes to specifically affect the expression
of up to 33 target genes in trans. We suggest previously unknown functions of several index
genes based on the identification of new target genes. Researchers can fully exploit the
utility of the resource to look up trans-effects of a gene of interest using an interactive gene
network browser while using an appropriate, more lenient significance threshold, instead of
the strict significance threshold used in our genome-wide analysis.

The identified directed associations provide novel mechanistic insight into gene function.
Many of the 49 index genes affecting target gene expression are established transcription
factors (TFs), or are known for having DNA binding properties, an anticipated observation
supporting the validity of our analysis. The identification of non-TFs will in part relate to the
fact that the effect of an index gene may regulate the activity of TFs, for example by post-
translational modification. This is illustrated by SENP7 that we observed to concertedly
affect the expression of zinc finger protein genes involved in the repression of retroviruses,
likely by deSUMOylation of the transcription factor KAP1**. Other mechanistic insights that
can be distilled from these results include the potential involvement of BCL2A1 in auditory
dysfunction, conceivably through the regulation of apoptosis.

While observational gene expression data can be used to construct gene co-expression
networks®, which is sometimes complemented with additional experimental information??,
such an approach lacks the ability to assign causal directions. Experimental approaches
using CRISPR-cas9 coupled with single-cell technology®® are in principle able to
demonstrate causality at a large scale, but only in vitro, while the advantage of
observational data is that it reflects in vivo situations. These experimental approaches
currently rely on extensive processing of single-cell data that is associated with high
technical variability®®, complicating the construction of specific gene-gene associations. In
addition, off-target effects of CRISPR-cas9 cannot be excluded®, potentially influencing the
interpretation of these experiments. Finally, such efforts are currently limited in the number
of genes tested®®®?, whereas we were able to perform a genome-wide analysis. Hence,
experimental and population genomics approaches are complementary in identifying causal
gene networks.

Traditional trans-eQTL studies aim to find specific genetic loci associated with distal changes
in gene expression*"’°. The limitation of this approach is that they are not designed to
assign the specific causal gene responsible for the trans-effect because they do not control
for LD and local pleiotropy (a genetic locus affecting multiple nearby genes). Hence, our
approach enriches trans-eQTL approaches by specifying which index gene induces changes
in target gene expression. However, it does not detect trans-effects independent of effects
on local gene expression. In addition, identification of the causal path using a trans-eQTL
approach is difficult to establish. Testing for mediation through local changes in
expression®’! may be limited in statistical power, as these approaches are designed to only
test the mediation effect of one lead SNP*.

The application of related analysis methods was recently used to infer associations between
gene expression and phenotypic outcomes (instead of gene expression as we did here). Two
studies first constructed multi-marker Gls in relatively small sample sets to then apply these
Gls in large datasets without gene expression data®’. A different, summary-data-based
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Mendelian randomization (SMR) approach identifies genes associated with complex traits
based on publicly available GWAS and eQTL catalogues®. However, neither of these
approaches take LD and pleiotropic effects into account, led to many neighbouring, non-
specific effects®™°. We show that correcting for these LD and local pleiotropy will aid in the
identification of the causal gene, as opposed to the identification of multiple, neighbouring
genes, analogous to fine mapping in GWAS. Furthermore, the use of eQTL and GWAS
catalogues are usually the result of genome-wide analyses, where only statistically
significant variants are taken into account. Here, we use the full genetic landscape
surrounding a gene, thereby maximizing the predictive ability of expression measurements
by our Gls®. While we have used our genome-wide approach to identify directed gene
networks, we note this method may also be used to annotate trait-associated variants with
potential target genes, either by using individual level data®’, or by using SMR™.

The analysis approach presented here relies on using Gls of expression of an index gene as a
causal anchor, an approach akin to Mendelian randomization™'. While Gls could provide
directionality to bi-directional associations in observational data, genetic variation generally
explains a relatively small proportion of the variation in expression (Figure S2A). The Gls for
index gene expression identified here are no exception, significantly limiting statistical
power of similar approaches’®’>. Increased sample sizes and improvement on the prediction
of index gene expression will help in identifying more target genes.

Our current analysis strategy aims for causal inference, obviating LD and local pleiotropic
effect by correcting for the Gls of nearby genes. However, we only corrected for Gls of
genes within 1 Mb of the current index gene, leaving the possibility of pleiotropic effects
beyond this threshold. For example, the Gl of an index gene may influence both the
expression of the index gene and another gene, located outside of the 1 Mb window, where
the induced changes in that genes’ expression are the causal factor of the identified target
genes. A related problem arises when a shared genetic component between neighbouring
index genes causes all of them to associate with a single distant target gene, hindering the
identification of the index gene responsible for the induced trans-effect. By correcting for
the Gl of nearby genes, these potentially biologically relevant effects are lost (Figure 1).

As many genetic variants have been shown to affect methylation in trans®>®!, we
hypothesized that the identified trans-effects here may be mediated by target gene
methylation. A limited number of directed associations show evidence for mediation by
target gene methylation. This is in line with earlier observations regarding a limited overlap
between eQTLs and meQTLs®", and suggests changes in transcriptional activity may not
always be reflected by altered methylation levels’. Alternatively, long-range effects’, or
other, uncorrelated epigenetic processes could act as a mediator. Furthermore, a
bidirectional interplay between DNA methylation and gene expression possibly makes their
relationship more intricate than previously appreciated”.

In conclusion, we present a genome-wide approach that identifies causal effects of gene
expression on distal transcriptional activity in population genomics data and showcase
several examples providing new biological insights. The resulting resource is available as an
interactive network browser that can be utilized by researchers for look-ups of specific
genes of interest (see URLs).
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Methods

Cohorts

The Biobank-based Integrative Omics Study (BIOS, Additional SI1) Consortium comprises six
Dutch biobanks: Cohort on Diabetes and Atherosclerosis Maastricht’® (CODAM), LifeLines-
DEEP’’ (LLD), Leiden Longevity Study’® (LLS), Netherlands Twin Registry”**° (NTR),
Rotterdam Study®! (RS), Prospective ALS Study Netherlands® (PAN). The data that were
analysed in this study came from 3,072 unrelated individuals (Supplementary Table 1).
Genotype data, DNA methylation data, and gene expression data were measured in whole
blood for all samples. In addition, sex, age, and cell counts were obtained from the
contributing cohorts. The Human Genotyping facility (HugeF, Erasmus MC, Rotterdam, The
Netherlands, http://www.blimdna.org) generated the methylation and RNA-sequencing
data.

Genotype data

Genotype data were generated within each cohort. Details on the genotyping and quality
control methods have previously been detailed elsewhere (LLD: Tigchelaar et al.”’; LLS:
Deelen et al.®; NTR: Lin et al.®*; RS: Hofman et a/.2%; PAN: Huisman et al.%%.

For each cohort, the genotype data were harmonized towards the Genome of the
Netherlands® (GoNL) using Genotype Harmonizer® and subsequently imputed per cohort
using Impute2®’ and the GoNL reference panel®® (v5). We removed SNPs with an imputation
info-score below 0.5, a HWE P < 10™, a call rate below 95% or a minor allele frequency
smaller than 0.01. These imputation and filtering steps resulted in 7,545,443 SNPs that
passed quality control in each of the datasets.

Gene expression data

A detailed description regarding generation and processing of the gene expression data can
be found elsewhere'®. Briefly, total RNA from whole blood was deprived of globin using
Ambion’s GLOBIN clear kit and subsequently processed for sequencing using Illumina’s
Truseq version 2 library preparation kit. Paired-end sequencing of 2x50bp was performed
using lllumina’s Hiseq2000, pooling 10 samples per lane. Finally, read sets per sample were
generated using CASAVA, retaining only reads passing lllumina’s Chastity Filter for further
processing. Data were generated by the Human Genotyping facility (HugeF) of ErasmusMC
(The Netherlands, see URLs). Initial QC was performed using FastQC (v0.10.1), removal of
adaptors was performed using cutadapt®® (v1.1), and Sickle® (v1.2) was used to trim low
quality ends of the reads (minimum length 25, minimum quality 20). The sequencing reads
were mapped to human genome (HG19) using STAR® (v2.3.0e).

To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/?page_id=9) with
MAF > 0.01 in the reference genome were masked with N. Read pairs with at most 8
mismatches, mapping to as most 5 positions, were used.

Gene expression quantification was determined using base counts'’. The gene definitions
used for quantification were based on Ensembl version 71, with the extension that regions
with overlapping exons were treated as separate genes and reads mapping within these
overlapping parts did not count towards expression of the normal genes.

For data analysis, we used counts per million (CPM), and only used protein coding genes
with sufficient expression levels (median log(CPM) > 0), resulting in a set of 10,781 genes. To
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limit the influence of any outliers still present in the data, the data were transformed using a
rank-based inverse normal transformation within each cohort.

DNA methylation data

The Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) was used to bisulfite-
convert 500 ng of genomic DNA, and 4 pl of bisulfite-converted DNA was measured on the
[lumina HumanMethylation450 array using the manufacturer’s protocol {(lllumina, San
Diego, CA, USA). Preprocessing and normalization of the data were done as described
earlier®. In brief, IDAT files were read using the minfi R package®, while quality control (QC)
was performed using MethylAid>>. Filtering of individual measurements was based on
detection P-value (P < 0.01), number of beads available (< 2) or zero values for signal
intensity, followed by the removal of ambiguously mapped probes®. Normalization was
done using Functional Normalization®® as implemented in the minfi R package®, using five
principal components extracted using the control probes for normalization. All samples or
probes with more than 5% of their values missing were removed. The final dataset consisted
of 440,825 probes measured in 3,072 samples. Similar to the RNA-sequencing data, we also
transformed methylation data using a rank-based inverse normal transformation within
each cohort, to limit the influence of any remaining outliers.

Constructing a local genetic instrumental variable for gene expression

We started by constructing genetic instruments (Gls) for the expression of each gene in our
data. We first split up the genotype and RNA-sequencing data in a training set (one-third of
all samples, N =1,021) and a test set (two-thirds of all samples, N = 2,051), making sure all
cohorts and both sexes were evenly distributed over the train and test sets (57% female), as
well as an even distribution of age (mean =56, sd = 14.8). Using the training set only, we
built a Gl for each gene separately that best predicts its expression levels using lasso®, using
nearby genetic variants only (either within the gene or within 100kb of a gene’s TSS or TES),
while correcting for both known (cohort, sex, age, cell counts) and unknown covariates.
Estimation of the unknown covariates was done by applying cate™ to the observed
expression data, leading to 5 unknown latent factors used. Those factors, together with the
known covariates, were left unpenalised. To estimate the optimal penalization parameter A,
we used five-fold cross-validation as implemented in the R package gimnet®. The obtained
Gl consists of a weighted linear combination of the individual dosage values, weighted by
the shrunken regression coefficients, yielding one value per individual for each GI. We then
evaluated its predictive ability in the test set by employing Analysis of Variance (ANOVA) to
evaluate the added predictive power of the Gl over the covariates and neighbouring Gls
(within 1Mb), as reflected by the F-statistic (F > 10).

Testing for trans-effects

Using linear regression, we tested for an association between each Gl and the expression of
potential target genes in trans (> 10Mb), while correcting for known {(cohort, sex, age, cell
counts) and unknown covariates, as well as Gls of nearby genes (< 1Mb). Missing
observations in the measured red blood cell count (RBC) and white blood cell counts (WBC)
were imputed using the R package pls, as described earlier®. Any inflation or bias in the test-
statistics was estimated and corrected for using the R package bacon®. Correction for
multiple testing was done using Bonferroni (P < 7 x 10™°). The resulting networks were
visualized using the R packages network and ndtv.
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496

497  Mediation analysis

498  To identify CpGs mediating the effect of the genetic instrumental variable (Gl) on the target
499  gene, we first summarised the local methylation landscape around each target gene using a
500 method similar to the creation of the Gls. We used lasso to predict target gene expression
501 based on all nearby CpGs in the train set (either located in the target gene or within 250 Kb),
502  using five-fold cross-validation to optimize the penalization parameter A. This resulted in
503 one score reflecting this methylation landscape, whose predictive ability of the target gene’s
504  expression we assessed using ANOVA in the test set (F > 10).

505 In order to assess the mediation of the Gl on its target gene through DNA methylation, we
506 employed the Sobel test®. This method is based on the notion that the influence of an

507 independent variable (the Gl) on a dependent variable (expression of the target gene)

508 should diminish, or even disappear, when controlling for a mediator (methylation score).
509

510 Enrichment analyses

511  Functional analysis of gene sets was performed for GO Molecular Function annotations

512  using DAVIDY, providing a custom background consisting of all genes with a predictive Gl (F
513 > 10). Fisher’s exact test was employed to specifically test for an enrichment of transcription
514  factors using manually curated database of transcription factors>.

515

516
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URLs

Look-ups can be performed using our interactive gene network browser at http://bios-
vm.bbmrirp3-lumc.surf-hosted.nl:8008/NetworkBrowser/. Data were generated by the
Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands
(http://www.glimDNA.org). Webpages of participating cohorts: LifeLines,
http://lifelines.nl/lifelines-research/general; Leiden Longevity Study, http://www.healthy-
ageing.nl/ and http://www.leidenlangleven.nl/; Netherlands Twin Registry,
http://www.tweelingenregister.org/; Rotterdam Studies,
http://www.erasmusmc.nl/epi/research/The-Rotterdam-Study/; Genetic Research in
Isolated Populations program, http://www.epib.nl/research/geneticepi/research.html#gip;
CODAM study, http://www.carimmaastricht.nl/; PAN study, http://www.alsonderzoek.nl/.

Accession codes
Raw data were submitted to the European Genome-phenome Archive (EGA) under
accession EGAS00001001077.
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Figure 1

Diagram showing the presumed relations between each variable. A directed arrow indicates
the possibility of a causal effect. For instance, the “index genetic instrument” represents
nearby SNPs with a possible effect on the nearby gene (analogous to cis-eQTLs). A double
arrow means the possibility of a causal effect in either direction. The index gene, for
example, could have a causal effect on the target gene, or vice versa. We aim to assess the
presence of a causal effect of the index gene on the target gene using genetic instruments
(Gls) that are free of non-genetic confounding. To do this, we must block the back-door path
from the index Gl through the Gls of nearby genes to the target gene. This back-door path
represents linkage disequilibrium and local pleiotropy and is precluded by correcting for the
Gls of nearby genes. Correction for observed gene expression (either of the index gene or of
nearby genes) does not block this back-door path, but instead possibly leads to a collider
bias, falsely introducing a correlation between the index Gl and the target gene.
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Figure 2

Gene networks showing the directed gene-gene association between genes when not taking
LD and local pleiotropy into account (A) and when these are corrected for (B). Index genes
identified as a transcription factor are indicated by red circles. Blue circles indicate index
genes with DNA binding properties, but are not a known transcription factor®®. Green circles
indicate other index genes. Light grey circles indicate target genes. The uncorrected analysis
shows 134 index genes (colored circles) influencing 276 target genes, where several
neighbouring index genes seemingly influencing the same target gene, which is reflective of
a shared genetic component of those index genes. Specifically, 65 target genes are
associated with multiple index genes which lie in close proximity to one another. The
number of index genes drop sharply from 134 to 49 (2.7-fold decrease) when do taking LD
and local pleiotropy into account. The number of target genes also drops, from 276 to 144
(1.9-fold decrease).
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822  Figure 3
823  SENP7 (chromosome 3) and SP110 (chromosome 2) affect a zinc finger cluster located on

824  chromosome 19 involved in retroviral repression, among others. Blue lines indicate a
825  positive association (upregulation), red lines indicate a negative association

826  (downregulation). Colouring indicates consistent opposite effects of SENP7 and SP110 on
827  their shared target genes.
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832 Identified target genes for SENP7 (A), SP110 (A), PLAGL1 (B), and BCL2A1 (C). Starred and
833 italic gene names indicate previously reported target genes® 2. Blue and red lines indicate
834  positive and negative associations, respectively; line thickness indicates strength of the
835  association.
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839  Figure S1

840  Diagram showing the number of genes and genetic instruments (Gls) in each stage of the
841  analysis.
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Figure S2

Genetic instruments (Gls) account for a moderate amount of index gene expression
variation explained, and are strongly correlated over small distances. A) The proportion of
variance (R?, x-axis) in index gene expression explained by the corresponding genetic
instrumental variable (Gl). The blue line indicates the uncorrected R®, or the total variance
explained by the GI. The red line indicates the R°corrected for the Gls of neighbouring index
genes, or the proportion of variance explained specifically by the current GI. The proportion
of variance explained generally is fairly modest. B) The correlation between genetic
instruments (Gls, y-axis) of different genes strongly decreases as the distance (x-axis)
between the corresponding genes increases. The median R” between any two Gls
corresponding to genes located at least 10Mb (definition of trans, indicated by red dotted
line) away from each otheris 1.5 x 10
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860  Figure S3

861  Several checks indicate the stability of our analysis. A) Quantile-quantile plot of the

862  expected —logio{P-values) (x-axis) and observed —logio(P-values) (y-axis) resulting from

863  associating all GIs with known cell counts. The observed P-values follow the distribution

864  expected under the null hypothesis, indicative of no association between the Gls and known
865  cell counts. B) All 156 directed associations remained after further adjustment for nearby
866  genetic variants (< 1Mb) reported to influence blood composition®”*®. Test statistics before
867  (x-axis) and after adjustment (y-axis) for such nearby SNPs are all along the diagonal,

868 indicating the reported SNPs do not confound the analysis. C) Correcting for latent factors
869 leads to slightly more significant results. Depicted are the test-statistics in the original

870  analysis, corrected for latent factors (x-axis), and the test-statistics without correction for
871  these latent factors (y-axis). D) Multi-SNP Gls outperform single-SNP Gls in terms of

872  predictive ability of index gene expression. The F-statistic calculated in the test set using the
873  main, strongest associated SNP in the Gls is plotted against the F-statistic calculated using
874  the full Gl. Using the full Gl results in 6,600 Gls predictive of the corresponding index gene
875  (F-statistic > 10), whereas a single-SNP approach results in 4,910 predictive Gls.
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880  Diagram comparing the identified effects in the current analysis and those identified by an

881 earlier trans-eQTL mapping effort”.
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885  Figure S5

886  SENP7and SP110 have shared, but opposite effects on the zinc finger protein cluster on
887 chromosome 19. A) Test-statistics for SENP7 and SP110 show consistent opposite effects on
888  the ZNF-cluster. B, C) Test-statistics of the directed effects of SENP7 and SP110 on target
889  genes, correcting for each other’s genetic instruments (Gls). The unchanged test-statistics
890 indicate their effects are independent. D) lllustrations of shared, but opposite effects.
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