

1 **Genome-wide identification of directed gene networks using large-scale
2 population genomics data**

3
4 René Luijk¹, Koen F. Dekkers¹, Maarten van Iterson¹, Wibowo Arindrarto², Annique
5 Claringbould³, Paul Hop¹, BIOS Consortium, Dorret I. Boomsma⁴, Cornelia M. van Duin⁵,
6 Marleen M.J. van Greevenbroek^{6,7}, Jan H. Veldink⁸, Cisca Wijmenga³, Lude Franke³, Peter
7 A.C. 't Hoen⁹, Rick Jansen¹⁰, Joyce van Meurs¹¹, Hailiang Mei², P. Eline Slagboom¹, Bastiaan
8 T. Heijmans^{1,*,}, Erik W. van Zwet^{12,*,}

9
10 ¹ Molecular Epidemiology Section, Department of Medical Statistics and Bioinformatics,
11 Leiden University Medical Center, Leiden, Zuid-Holland, 2333 ZC, The Netherlands

12 ² Sequence Analysis Support Core, Leiden University Medical Center, Leiden, Zuid-Holland,
13 2333 ZC, The Netherlands

14 ³ Department of Genetics, University of Groningen, University Medical Centre Groningen,
15 Groningen, The Netherlands

16 ⁴ Department of Biological Psychology, VU University Amsterdam, Neuroscience Campus
17 Amsterdam, Amsterdam, The Netherlands

18 ⁵ Genetic Epidemiology Unit, Department of Epidemiology, ErasmusMC, Rotterdam, The
19 Netherlands

20 ⁶ Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The
21 Netherlands

22 ⁷ School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center,
23 Maastricht, The Netherlands

24 ⁸ Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht,
25 Utrecht, The Netherlands

26 ⁹ Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland,
27 2333 ZC, The Netherlands

28 ¹⁰ Department of Psychiatry, VU University Medical Center, Neuroscience Campus
29 Amsterdam, Amsterdam, The Netherlands

30 ¹¹ Department of Internal Medicine, ErasmusMC, Rotterdam, The Netherlands

31 ¹² Medical Statistics Section, Department of Medical Statistics and Bioinformatics, Leiden
32 University Medical Center, Leiden, Zuid-Holland, 2333 ZC, The Netherlands

33 ^{*} These authors jointly directed this work

34 ^{*} Correspondence: e.w.van_zwet@lumc.nl, b.t.heijmans@lumc.nl

35

36 **ABSTRACT**

37

38 Identification of causal drivers behind regulatory gene networks is crucial in understanding
39 gene function. We developed a method for the large-scale inference of gene-gene
40 interactions in observational population genomics data that are both directed (using local
41 genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by
42 controlling for linkage disequilibrium and pleiotropy). The analysis of genotype and whole-
43 blood RNA-sequencing data from 3,072 individuals identified 49 genes as drivers of
44 downstream transcriptional changes ($P < 7 \times 10^{-10}$), among which transcription factors were
45 overrepresented ($P = 3.3 \times 10^{-7}$). Our analysis suggests new gene functions and targets
46 including for *SENP7* (zinc-finger genes involved in retroviral repression) and *BCL2A1* (novel
47 target genes possibly involved in auditory dysfunction). Our work highlights the utility of
48 population genomics data in deriving directed gene expression networks. A resource of
49 *trans*-effects for all 6,600 genes with a genetic instrument can be explored individually using
50 a web-based browser.

51 **INTRODUCTION**

52

53 Identification of the causal drivers underlying regulatory gene networks may yield new
54 insights into gene function^{1,2}, possibly leading to the disentanglement of disease
55 mechanisms characterized by transcriptional dysregulation³. Gene networks are commonly
56 based on the observed co-expression of genes. However, such networks show only
57 undirected relationships between genes which makes it impossible to pinpoint the causal
58 drivers behind these associations. Adding to this, confounding (e.g. due to demographic and
59 clinical characteristics, technical factors, and batch effects⁴⁻⁶) induces spurious correlations
60 between the expression of genes. Correcting for all confounders may prove difficult as some
61 may be unknown⁷. Residual confounding then leads to very large, inter-connected co-
62 expression networks that do not reflect true biological relationships.

63 To address these issues, we exploited recent developments in data analysis approaches that
64 enable the inference of causal relationships through the assignment of directed gene-gene
65 associations in population-based transcriptome data using genetic instruments⁸⁻¹⁰ (GIs).

66 Analogous to Mendelian Randomization^{11,12} (MR), the use of genetics provides an anchor
67 from where directed associations can be identified. Moreover, GIs are free from any non-
68 genetic confounding. Related efforts have used similar methods to identify novel genes
69 associated with different phenotypes, either using individual level data^{8,9} or using publicly
70 available eQTL and GWAS catalogues¹⁰. However, these efforts have not systematically
71 taken linkage disequilibrium (LD) and pleiotropy (a genetic locus affecting multiple nearby
72 genes) into account. As both may lead to correlations between GIs, we aimed to improve
73 upon these methods in order to minimize the influence of LD and pleiotropy, and would
74 detect the actual driver genes. This possibly induces non-causal relations¹³, precluding the
75 identification of the specific causal gene involved when not accounted for LD and
76 pleiotropy.

77 Here, we combine genotype and expression data of 3,072 unrelated individuals from whole
78 blood samples to establish a resource of directed gene networks using genetic variation as
79 an instrument. We use local genetic variation in the population to capture the portion of
80 expression level variation explained by nearby genetic variants (local genetic component) of
81 gene expression levels, successfully identifying a predictive genetic instrument (GI) for the
82 observed gene expression of 6,600 protein-coding genes. These GIs are then tested for an
83 association with potential target genes *in trans*. Applying a robust genome-wide approach
84 that corrects for linkage disequilibrium and local pleiotropy by modelling nearby GIs as
85 covariates, we identify 49 index genes each influencing up to 33 target genes (Bonferroni
86 correction, $P < 7 \times 10^{-10}$). Closer inspection of examples reveals that coherent biological
87 processes underlie these associations, and we suggest new gene functions based on these
88 newly identified target genes, e.g. for *SENP7* and *BCL2A1*. An interactive online browser
89 allows researchers to look-up specific genes of interest while using the appropriate, more
90 lenient significance threshold.

91

92 **RESULTS**

93

94 **Establishing directed associations in transcriptome data**

95 We aim to establish a resource of index genes that causally affect the expression of target
96 genes *in trans* using large-scale observational RNA-sequencing data. However, causality
97 cannot be inferred from the correlation between the observed expression measurements of
98 genes, and therefore is traditionally addressed by experimental manipulation. Furthermore,
99 both residual and unknown confounding can induce correlation between genes, possibly
100 yielding to extensive correlation networks that are not driven by biology. To establish causal
101 relations between genes, we assume a structural causal model¹⁴ describing the relations
102 between genes and using their genetic components, the local genetic variants predicting
103 their expression, as genetic instruments¹¹ (GIs). To be able to conclude the presence of a
104 causal effect of the index gene on the target gene, the potential influence of linkage
105 disequilibrium (LD) and pleiotropic effects have to be taken into account, as they may cause
106 GIs of neighbouring genes to be correlated (Figure 1). This is done by blocking the so-called
107 back-door path¹⁴ from the index GI through the genetic GIs of nearby genes to the target
108 gene by correcting the association between the GI and target gene expression for these
109 other GIs. Note that this path cannot be blocked by adjusting for the observed expression of
110 the nearby genes, as this may introduce collider bias, resulting in spurious associations.
111 To assign directed relationships between the expression of genes and establish causality,
112 the first step in our analysis approach was to identify a GI for the expression of each gene,
113 reflecting the local genetic component. To this end, we used data on 3,072 individuals with
114 available genotype and gene expression data (Table S1), measured in whole blood, where
115 we focused on at least moderately expressed (see Methods) protein-coding genes (N =
116 10,781 genes, Figure S1). Using the 1,021 samples in the training set (see Methods), we
117 obtained a GI consisting of at least 1 SNP for the expression of 8,976 genes by applying lasso
118 regression¹⁵ to nearby genetic variants while controlling for known (cohort, sex, age, cell
119 counts) and unknown covariates¹⁶ (see Methods). Adding distant genetic variants to the
120 prediction model has been shown to add very little predictive power⁸ and would have
121 induced the risk of including long-range pleiotropic effects.

122 The strength of the GIs was evaluated using the 2,051 samples in the test set (see Methods).
123 Taking LD and local pleiotropy into account by including the GIs of neighbouring genes (< 1
124 Mb, Figure 1), we identified 6,600 sufficiently strong GIs having at least partly specific
125 predictive ability (Figure S2A) for the expression its corresponding index gene (*F*-statistic >
126 10, Figure S1, Table S2). To evaluate the effects of these 6,600 GIs on target gene
127 expression, we used all 3,072 samples to test for an association of each of 6,600 GIs with all
128 of 10,781 expressed, protein-coding genes *in trans* (> 10Mb, Figure S2B). First, this analysis
129 was done without accounting for LD and local pleiotropy (i.e., correcting for neighbouring
130 LD, Figure 1). This genome-wide analysis resulted in 401 directed associations between 134
131 index genes and 276 target genes after adjustment for multiple testing using the Bonferroni
132 correction ($P < 7 \times 10^{-10}$, Figure 2, Table S3). Among them were 134 index genes affecting
133 the expression of 1 to 33 target genes *in trans* (3.2 genes on average, median of 1 gene),
134 totalling 276 identified target genes. As expected, the resulting networks contained many
135 instances where the same target gene (N = 65) was influenced by multiple neighbouring
136 index genes, hindering the identification of the causal gene. Repeating the analysis for the
137 134 identified index genes, but corrected for LD and local pleiotropy by including the GIs of
138 neighbouring genes (< 1Mb) resulted in the identification of specific directed effects for 49

139 index genes on 144 target genes, totalling 156 directed associations ($P < 7 \times 10^{-10}$, Figure 2),
140 where the number of target genes affected by an index gene varied from 1 to 33 (Table 1,
141 3.2 genes on average, median of 1 gene). The number of target genes associated with
142 multiple neighbouring index genes drops from 65 to 2, underscoring the importance of
143 correction for LD and local pleiotropy. As this set of 156 directed associations is free from LD
144 and local pleiotropy, and possibly reflect truly causal relations, we use these in further
145 analyses.

146

147 **Validity and stability of the analyses**

148 To ensure the validity and stability of the analyses, we performed several checks regarding
149 common challenges inherent to these analyses and the assumptions underlying them. First,
150 by design, the GIs should be independent of most confounding factors, but confounding
151 may still occur if genetic variants directly affect blood composition, leading to spurious
152 associations. Therefore, we evaluated the association of the 49 GIs with observed red blood
153 cell count and white blood cell counts, and found that none of the 49 GIs were significantly
154 related to any observed cell counts (Figure S3A). In addition, all 156 directed associations
155 remained significant after further adjustment for nearby genetic variants (< 1Mb) reported
156 to influence blood composition^{17,18} (Figure S3B).

157 To combat any unknown residual confounding and possibly gain statistical power, we added
158 five latent factors to our models, estimated from the observed expression data using cate¹⁶
159 (see Methods). We re-tested the 156 identified associations without these factors to
160 evaluate the model sensitivity, showing similar results with slightly attenuated test statistics
161 (Figure S3C). This indicates that our analysis was not influenced by unknown confounding
162 and confirmed the independence of GIs from non-genetic confounding, but did help in
163 reducing the noise in the data, leading to increased statistical power.

164 Next, to validate the GIs of the 49 index genes, we compared the SNPs constituting the GIs
165 of the 49 index genes associated with target gene expression with previous *cis*-eQTL
166 mapping efforts. While similar sets of genes may be identified using a *cis*-eQTL approach,
167 the utility of using multi-SNP GIs over single-SNP GIs (akin to *cis*-eQTLs) is shown in the
168 increased predictive ability of multi-SNP GIs (Figure S3D), and thus in the number of
169 predictive GIs. Only 4,910 single-SNP GIs were predictive of its corresponding index gene (F -
170 statistic > 10), compared to 6,600 multi-SNP instrumental variables. Of the 49 index genes
171 corresponding to the 49 GIs, 47 genes (96.1%) were previously identified as harbouring a
172 *cis*-eQTL in large subset of the whole blood transcriptome data we analysed here ($N =$
173 2,116), using an independent analysis strategy¹⁹. Almost all of the corresponding GIs (98%,
174 $N = 46$) were strongly correlated with the corresponding eQTL SNPs ($R^2 > 0.8$). Similarly, 26
175 of the 49 index genes (53%) were also reported as having a *cis*-eQTL effect in a much smaller
176 set of whole blood samples ($N = 338$) part of GTEx²⁰, 23 of which also correlated strongly
177 with the corresponding eQTL-SNPs ($R^2 > 0.8$). When considering all tissues in the GTEx
178 project, we found 48 of 49 index genes were identified as harbouring a *cis*-eQTL in any of
179 the 44 tissues measured.

180 Next, we compared our identified effects with *trans*-eQTLs identified earlier in whole-blood
181 samples²¹. First, we found 97 target genes identified here (67%) overlapped with those
182 found by Joehanes *et al.*, 19 of which had their corresponding GI and lead SNP in close
183 proximity (< 1Mb, Figure S4), suggesting that the effects are indeed mediated by the index
184 gene assigned using our approach. Testing for a *cis*-eQTL of those SNPs identified by
185 Joehanes *et al.* on the nearby index genes, we found all 19 index genes indeed had at least

186 one nearby lead SNP that influenced its expression ($P < 6 \times 10^{-4}$, Table S4). This number
187 increased to 31 at a look-up threshold for multiple testing in our analysis ($P < 4.6 \times 10^{-6}$),
188 indicating that limited statistical power of both studies may lead to an underestimation of
189 the overlap.
190 As a last check, we investigated potential mediation effects of each of the 49 GIs by
191 observed index gene expression (Figure 1), meaning the effect of a GI on target gene
192 expression should diminish when correcting for the observed index gene expression.
193 However, small effect sizes and considerable noise in both mediator and outcome lead to
194 low statistical power to detect mediated effects^{22,23}. Nevertheless, we found 105 of 156
195 significant directed associations (67%) to show evidence for mediation (Bonferroni
196 correction: $P < 0.00031$; Table S5).
197

198 **Exploration of directed networks**

199 To gain insight in the molecular function of 49 index genes affecting target gene expression,
200 we used Gene Ontology (GO) to annotate our findings. The set of 49 index genes was
201 overrepresented in the GO terms DNA Binding ($P = 5 \times 10^{-8}$) and Nucleic Acid Binding ($P = 2.8$
202 $\times 10^{-5}$, Table S6), with 43.8% ($N = 21$) and 47.9% ($N = 23$) of genes overlapping with those
203 gene sets, respectively. In line with this finding, we found a significant overrepresentation of
204 transcription factors ($N = 17$; odds ratio = 5.7, $P = 3.3 \times 10^{-7}$) using a manually curated
205 database of transcription factors²⁴. We note that such enrichments are expected a priori
206 and hence indirectly validate our approach. Of interest, several target genes of two
207 transcription factors overlapped with those identified in previous studies^{25,26} (*IKZF1*: 27% of
208 its target genes, $N = 4$; *PLAGL1*: 15% of its target genes, $N = 5$). Using a more lenient
209 significance threshold corresponding to a look-up for each of these 17 transcription factors
210 (thus correcting for only 10,781 potential target genes; $P < 4.6 \times 10^{-6}$), we identified
211 overlapping target genes for an additional 3 transcription factors^{25–28} (*CREB5*, *NFKB1*, *NKX3-1*)
212 and a total of 38 TF-target gene pairs corresponding between our analysis and previous
213 studies (Table S7).

214 Finally, we explore the biological processes that are revealed by our analysis for several
215 index genes that either are known transcription factors²⁴ or affect many genes *in trans*.
216 While these results are limited to Bonferroni-significant directed associations ($P < 7 \times 10^{-10}$,
217 correcting for all possible combinations of the 6,600 index genes and 10,781 target genes),
218 researchers can interactively explore the whole resource by means of a look-up at a much
219 more lenient significance threshold ($P < 2.9 \times 10^{-6}$, testing for a gene to have an effect *in*
220 *trans*, or being affected by other genes, totalling 17,381 tests (6,600 + 10,781)) using a
221 dedicated browser (see URLs).
222

223 *Sentrin/SUMO-specific proteases 7 (SENP7)*

224 We identified 25 target genes to be affected *in trans* by sentrin/small ubiquitin-like modifier
225 (SUMO)-specific proteases 7 (SENP7, Figure 3, Figure 4, Table 1), significantly expanding on
226 the five previously suspected target genes resulting from an earlier expression QTL
227 approach²⁹. Increased SENP7 expression resulted in the upregulation of all but one of the
228 target genes (96%). Remarkably, 23 of the 25 target genes affected by SENP7 are zinc finger
229 protein (ZFP) genes located on chromosome 19. More specifically, 18 target genes are
230 located in a 1.5 Mb ZFP cluster mapping to 19q13.43 (Figure 3). ZFPs in this cluster are
231 known transcriptional repressors, particularly involved in the repression of endogenous
232 retroviruses³⁰. Parallel to this, SENP7 has also been identified to promote chromatin

233 relaxation for homologous recombination DNA repair, specifically through interaction with
234 chromatin repressive KRAB-Association Protein (*KAP1*, also known as *TRIM28*). *KAP1* had
235 already been implicated in transcriptional repression, especially in epigenetic repression and
236 retroviral silencing^{31,32}, although *KAP1* had no predictive GI (F-statistic = 4.9). Therefore, it
237 has been speculated *SENP7* may also play a role in retroviral silencing³³. Given the
238 widespread effects of *SENP7* on the transcription of chromosome 19-linked ZFPs involved in
239 retroviral repression³⁰, it corroborates a role of *SENP7* in the repression of retroviruses,
240 specifically through regulation of this ZFP cluster. *SENP7* is not a TF and does not bind DNA,
241 but considering it is a SUMOylation enzyme, it possibly has its effect on the ZFP cluster
242 through deSUMOylation of *KAP1*³⁴.

243

244 *SP110 nuclear body protein (SP110)*

245 In our genome-wide analysis, we found that the transcription factor *SP110* nuclear body
246 protein (*SP110*) influences three zinc finger proteins (Figure 3, Figure 4). During viral
247 infections in humans, *SP110* has been shown to interact with the Remodelling and Spacing
248 Factor 1 (*RSF1*) and Activating Transcription Factor 7 Interacting Protein (*ATF7IP*), suggesting
249 it is involved in chromatin remodelling³⁵. Interestingly, all three of the genes targeted by
250 *SP110* are also independently influenced by *SENP7*, although *SP110* shows opposite effects
251 (Figure S5), and are located in the same ZFP gene cluster on chromosome 19. A specific
252 look-up (thus relaxing the multiple testing burden; Figure 3b) for *SP110* targets show six
253 genes, all also independently affected by *SENP7*. This overlap of target genes supports the
254 previous suggestion that *SP110* is involved in the innate antiviral response³⁶, presumably
255 through regulation of the same ZPF cluster regulated by *SENP7*.

256

257 *Pleiomorphic adenoma gene-like 1 (PLAGL1)*

258 The index gene with the most identified target gene effects *in trans* is Pleiomorphic
259 Adenoma Gene-Like 1 (*PLAGL1*, also known as *LOT1*, *ZAC*). *PLAGL1* is a transcription factor
260 and affected 33 genes, 29 of which are positively associated with *PLAGL1* expression (88%,
261 Figure 4). *PLAGL1* is part of the imprinted *HYMA1/ZAC1* locus, which has a crucial role in fetal
262 development and metabolism^{37,38}. This locus, and overexpression of *PLAGL1* specifically, has
263 been associated with transient neonatal diabetes mellitus^{35,39} (TNDM) possibly by reducing
264 insulin secretion⁴⁰. *PLAGL1* is known to be a transcriptional regulator of PACAP-type I
265 receptor⁴¹ (*PAC1-R*). *PACAP*, in turn, is a regulator of insulin secretion^{42,43}. In line with these
266 findings, we found several target genes to be involved in metabolic processes. Most notably,
267 we identified *MAPKAPK3* (*MK3*) and *MAP4K2* to be upregulated by *PLAGL1*, previously
268 identified as *PLAGL1* targets²⁸, and both part of the mitogen-activated protein kinase
269 (MAPK) pathway. This pathway has been observed to be upregulated in type II diabetic
270 patients (reviewed in⁴⁴). In addition, inhibition of *MAPKAP2* and *MAPKAP3* in obese, insulin-
271 resistant mice has been shown to result in improved metabolism⁴⁵, in line with the
272 association between upregulation of *PLAGL1* and the development of TNDM. Furthermore,
273 *PLAGL1* may be implicated in lipid metabolism and obesity through its effect on *ID11*,
274 *PNPLA1*, *JAK3*, and *RAB37* expression⁴⁶⁻⁴⁹. While not previously established as target genes,
275 they are in line with the proposed role of *PLAGL1* in metabolism^{37,38}.

276

277 *Bcl-related protein A1 (BCL2A1)*

278 Increased expression of Bcl-related protein A1 (*BCL2A1*) downregulated all five identified
279 target genes (Figure 4). *BCL2A1* encodes a protein part of the B-cell lymphoma 2 (*BCL2*)

280 family, an important family of apoptosis regulators. It has been implicated in the
281 development of cancer, possibly through the inhibition of apoptosis (reviewed in ⁵⁰). One
282 target gene, *NEURL1*, is known to cause apoptosis⁵¹, in line with its strong negative
283 association with *BCL2A1* expression. Similarly, *CDKN1C* was also downregulated by *BCL2A1*,
284 and implicated in the promotion of cell death⁵²⁻⁵⁵. However, little is known about the
285 strongest associated target gene, *VMO1* ($P = 1.5 \times 10^{-8}$). It has been implicated in hearing,
286 due to its highly abundant expression in the mouse inner ear⁵⁶, where *BCL2A1* may have a
287 role in the development of hearing loss through apoptosis, since cell death is a known
288 contributor to hearing loss in mice⁵⁷. In line with its role in the inhibition of apoptosis,
289 *BCL2A1* overexpression has a protective effect on inner ear mechanosensory hair cell death
290 in mice⁵⁸. Lastly, the target gene *CKB* has also been implicated in hearing impairment in
291 mice⁵⁹ and Huntington's disease⁶⁰, further suggesting a role of *BCL2A1* in auditory
292 dysfunction.

293

294 *Mediation of target gene expression through local DNA methylation*

295 Previously, genetic variants have been found to influence DNA methylation *in trans*^{29,61}.
296 Methylation, in turn, can have a causal effect on gene expression (discussed in ⁶²). This led
297 us to hypothesize that the directed effects on target gene expression identified here could
298 be mediated by changes in DNA methylation near those target genes. We investigated this
299 hypothesis by first obtaining a single score per target gene by summarizing the methylation
300 of nearby CpGs, similar to the construction of the GIs (see Methods), reflective of the local
301 methylation landscape of the target gene. Next, we globally tested for mediation of the
302 identified effects by the methylation scores using Sobel's test⁶³. Evidence for mediation by
303 local changes in DNA methylation were found for 33 effects, pertaining to 8 index genes and
304 31 target genes (Table S8). Most notably, the mediation analysis showed most of the *SENP7*
305 effects on target gene expression are mediated by local changes in methylation (22 genes,
306 88%). To further investigate which CpGs specifically are responsible for mediating those 33
307 effects, we tested each CpG constituting the methylation scores separately, identifying 95
308 CpGs. Most of the 95 CpGs lie adjacent to a CpG island (CGI), in so-called CGI shores^{64,65} ($N =$
309 41, $OR = 2.9$, $P = 1.3 \times 10^{-5}$). This suggests regulation of several target genes is at least partly
310 mediated by local changes in DNA methylation or correlated epigenomic markers.

311

312 **DISCUSSION**

313

314 In this work, we report on an approach that uses population genomics data to generate a
315 resource of directed gene networks. Our genome-wide analysis of whole-blood
316 transcriptomes yields strong evidence for 49 index genes to specifically affect the expression
317 of up to 33 target genes *in trans*. We suggest previously unknown functions of several index
318 genes based on the identification of new target genes. Researchers can fully exploit the
319 utility of the resource to look up *trans*-effects of a gene of interest using an interactive gene
320 network browser while using an appropriate, more lenient significance threshold, instead of
321 the strict significance threshold used in our genome-wide analysis.

322 The identified directed associations provide novel mechanistic insight into gene function.
323 Many of the 49 index genes affecting target gene expression are established transcription
324 factors (TFs), or are known for having DNA binding properties, an anticipated observation
325 supporting the validity of our analysis. The identification of non-TFs will in part relate to the
326 fact that the effect of an index gene may regulate the activity of TFs, for example by post-
327 translational modification. This is illustrated by *SENP7* that we observed to concertedly
328 affect the expression of zinc finger protein genes involved in the repression of retroviruses,
329 likely by deSUMOylation of the transcription factor *KAP1*³⁴. Other mechanistic insights that
330 can be distilled from these results include the potential involvement of *BCL2A1* in auditory
331 dysfunction, conceivably through the regulation of apoptosis.

332 While observational gene expression data can be used to construct gene co-expression
333 networks⁶⁰, which is sometimes complemented with additional experimental information²⁸,
334 such an approach lacks the ability to assign causal directions. Experimental approaches
335 using CRISPR-cas9 coupled with single-cell technology^{66–68} are in principle able to
336 demonstrate causality at a large scale, but only *in vitro*, while the advantage of
337 observational data is that it reflects *in vivo* situations. These experimental approaches
338 currently rely on extensive processing of single-cell data that is associated with high
339 technical variability⁶⁶, complicating the construction of specific gene-gene associations. In
340 addition, off-target effects of CRISPR-cas9 cannot be excluded⁶⁹, potentially influencing the
341 interpretation of these experiments. Finally, such efforts are currently limited in the number
342 of genes tested^{66–68}, whereas we were able to perform a genome-wide analysis. Hence,
343 experimental and population genomics approaches are complementary in identifying causal
344 gene networks.

345 Traditional *trans*-eQTL studies aim to find specific genetic loci associated with distal changes
346 in gene expression^{21,70}. The limitation of this approach is that they are not designed to
347 assign the specific causal gene responsible for the *trans*-effect because they do not control
348 for LD and local pleiotropy (a genetic locus affecting multiple nearby genes). Hence, our
349 approach enriches *trans*-eQTL approaches by specifying which index gene induces changes
350 in target gene expression. However, it does not detect *trans*-effects independent of effects
351 on local gene expression. In addition, identification of the causal path using a *trans*-eQTL
352 approach is difficult to establish. Testing for mediation through local changes in
353 expression^{23,71} may be limited in statistical power, as these approaches are designed to only
354 test the mediation effect of one lead SNP²³.

355 The application of related analysis methods was recently used to infer associations between
356 gene expression and phenotypic outcomes (instead of gene expression as we did here). Two
357 studies first constructed multi-marker GIs in relatively small sample sets to then apply these
358 GIs in large datasets without gene expression data^{8,9}. A different, summary-data-based

359 Mendelian randomization (SMR) approach identifies genes associated with complex traits
360 based on publicly available GWAS and eQTL catalogues¹⁰. However, neither of these
361 approaches take LD and pleiotropic effects into account, led to many neighbouring, non-
362 specific effects⁸⁻¹⁰. We show that correcting for these LD and local pleiotropy will aid in the
363 identification of the causal gene, as opposed to the identification of multiple, neighbouring
364 genes, analogous to fine mapping in GWAS. Furthermore, the use of eQTL and GWAS
365 catalogues are usually the result of genome-wide analyses, where only statistically
366 significant variants are taken into account. Here, we use the full genetic landscape
367 surrounding a gene, thereby maximizing the predictive ability of expression measurements
368 by our GIs⁸. While we have used our genome-wide approach to identify directed gene
369 networks, we note this method may also be used to annotate trait-associated variants with
370 potential target genes, either by using individual level data^{8,9}, or by using SMR¹⁰.
371 The analysis approach presented here relies on using GIs of expression of an index gene as a
372 causal anchor, an approach akin to Mendelian randomization¹¹. While GIs could provide
373 directionality to bi-directional associations in observational data, genetic variation generally
374 explains a relatively small proportion of the variation in expression (Figure S2A). The GIs for
375 index gene expression identified here are no exception, significantly limiting statistical
376 power of similar approaches^{72,73}. Increased sample sizes and improvement on the prediction
377 of index gene expression will help in identifying more target genes.
378 Our current analysis strategy aims for causal inference, obviating LD and local pleiotropic
379 effect by correcting for the GIs of nearby genes. However, we only corrected for GIs of
380 genes within 1 Mb of the current index gene, leaving the possibility of pleiotropic effects
381 beyond this threshold. For example, the GI of an index gene may influence both the
382 expression of the index gene and another gene, located outside of the 1 Mb window, where
383 the induced changes in that genes' expression are the causal factor of the identified target
384 genes. A related problem arises when a shared genetic component between neighbouring
385 index genes causes all of them to associate with a single distant target gene, hindering the
386 identification of the index gene responsible for the induced *trans*-effect. By correcting for
387 the GI of nearby genes, these potentially biologically relevant effects are lost (Figure 1).
388 As many genetic variants have been shown to affect methylation *in trans*^{29,61}, we
389 hypothesized that the identified *trans*-effects here may be mediated by target gene
390 methylation. A limited number of directed associations show evidence for mediation by
391 target gene methylation. This is in line with earlier observations regarding a limited overlap
392 between eQTLs and meQTLs⁶¹, and suggests changes in transcriptional activity may not
393 always be reflected by altered methylation levels⁷⁴. Alternatively, long-range effects⁷⁵, or
394 other, uncorrelated epigenetic processes could act as a mediator. Furthermore, a
395 bidirectional interplay between DNA methylation and gene expression possibly makes their
396 relationship more intricate than previously appreciated⁷¹.
397 In conclusion, we present a genome-wide approach that identifies causal effects of gene
398 expression on distal transcriptional activity in population genomics data and showcase
399 several examples providing new biological insights. The resulting resource is available as an
400 interactive network browser that can be utilized by researchers for look-ups of specific
401 genes of interest (see URLs).
402

403 **Methods**

404

405 **Cohorts**

406 The Biobank-based Integrative Omics Study (BIOS, Additional SI1) Consortium comprises six
407 Dutch biobanks: Cohort on Diabetes and Atherosclerosis Maastricht⁷⁶ (CODAM), LifeLines-
408 DEEP⁷⁷ (LLD), Leiden Longevity Study⁷⁸ (LLS), Netherlands Twin Registry^{79,80} (NTR),
409 Rotterdam Study⁸¹ (RS), Prospective ALS Study Netherlands⁸² (PAN). The data that were
410 analysed in this study came from 3,072 unrelated individuals (Supplementary Table 1).
411 Genotype data, DNA methylation data, and gene expression data were measured in whole
412 blood for all samples. In addition, sex, age, and cell counts were obtained from the
413 contributing cohorts. The Human Genotyping facility (HugeF, Erasmus MC, Rotterdam, The
414 Netherlands, <http://www.blimdna.org>) generated the methylation and RNA-sequencing
415 data.

416

417 **Genotype data**

418 Genotype data were generated within each cohort. Details on the genotyping and quality
419 control methods have previously been detailed elsewhere (LLD: Tigchelaar *et al.*⁷⁷; LLS:
420 Deelen *et al.*⁸³; NTR: Lin *et al.*⁸⁴; RS: Hofman *et al.*⁸¹; PAN: Huisman *et al.*⁸²).
421 For each cohort, the genotype data were harmonized towards the Genome of the
422 Netherlands⁸⁵ (GoNL) using Genotype Harmonizer⁸⁶ and subsequently imputed per cohort
423 using Impute2⁸⁷ and the GoNL reference panel⁸⁵ (v5). We removed SNPs with an imputation
424 info-score below 0.5, a HWE $P < 10^{-4}$, a call rate below 95% or a minor allele frequency
425 smaller than 0.01. These imputation and filtering steps resulted in 7,545,443 SNPs that
426 passed quality control in each of the datasets.

427

428 **Gene expression data**

429 A detailed description regarding generation and processing of the gene expression data can
430 be found elsewhere¹⁹. Briefly, total RNA from whole blood was deprived of globin using
431 Ambion's GLOBIN clear kit and subsequently processed for sequencing using Illumina's
432 Truseq version 2 library preparation kit. Paired-end sequencing of 2x50bp was performed
433 using Illumina's Hiseq2000, pooling 10 samples per lane. Finally, read sets per sample were
434 generated using CASAVA, retaining only reads passing Illumina's Chastity Filter for further
435 processing. Data were generated by the Human Genotyping facility (HugeF) of ErasmusMC
436 (The Netherlands, see URLs). Initial QC was performed using FastQC (v0.10.1), removal of
437 adaptors was performed using cutadapt⁸⁸ (v1.1), and Sickle⁸⁹ (v1.2) was used to trim low
438 quality ends of the reads (minimum length 25, minimum quality 20). The sequencing reads
439 were mapped to human genome (HG19) using STAR⁹⁰ (v2.3.0e).

440 To avoid reference mapping bias, all GoNL SNPs (<http://www.ncbi.nlm.nih.gov/variation/tools/gatk/>) with
441 MAF > 0.01 in the reference genome were masked with N. Read pairs with at most 8
442 mismatches, mapping to at most 5 positions, were used.

443 Gene expression quantification was determined using base counts¹⁹. The gene definitions
444 used for quantification were based on Ensembl version 71, with the extension that regions
445 with overlapping exons were treated as separate genes and reads mapping within these
446 overlapping parts did not count towards expression of the normal genes.

447 For data analysis, we used counts per million (CPM), and only used protein coding genes
448 with sufficient expression levels (median log(CPM) > 0), resulting in a set of 10,781 genes. To

449 limit the influence of any outliers still present in the data, the data were transformed using a
450 rank-based inverse normal transformation within each cohort.

451

452 **DNA methylation data**

453 The Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) was used to bisulfite-
454 convert 500 ng of genomic DNA, and 4 μ l of bisulfite-converted DNA was measured on the
455 Illumina HumanMethylation450 array using the manufacturer's protocol (Illumina, San
456 Diego, CA, USA). Preprocessing and normalization of the data were done as described
457 earlier⁹¹. In brief, IDAT files were read using the *minfi* R package⁹², while quality control (QC)
458 was performed using *MethylAid*⁹³. Filtering of individual measurements was based on
459 detection *P*-value ($P < 0.01$), number of beads available (≤ 2) or zero values for signal
460 intensity, followed by the removal of ambiguously mapped probes⁹⁴. Normalization was
461 done using Functional Normalization⁹⁵ as implemented in the *minfi* R package⁹², using five
462 principal components extracted using the control probes for normalization. All samples or
463 probes with more than 5% of their values missing were removed. The final dataset consisted
464 of 440,825 probes measured in 3,072 samples. Similar to the RNA-sequencing data, we also
465 transformed methylation data using a rank-based inverse normal transformation within
466 each cohort, to limit the influence of any remaining outliers.

467

468 **Constructing a local genetic instrumental variable for gene expression**

469 We started by constructing genetic instruments (GIs) for the expression of each gene in our
470 data. We first split up the genotype and RNA-sequencing data in a training set (one-third of
471 all samples, $N = 1,021$) and a test set (two-thirds of all samples, $N = 2,051$), making sure all
472 cohorts and both sexes were evenly distributed over the train and test sets (57% female), as
473 well as an even distribution of age (mean = 56, $sd = 14.8$). Using the training set only, we
474 built a GI for each gene separately that best predicts its expression levels using lasso¹⁵, using
475 nearby genetic variants only (either within the gene or within 100kb of a gene's TSS or TES),
476 while correcting for both known (cohort, sex, age, cell counts) and unknown covariates.

477 Estimation of the unknown covariates was done by applying *cate*¹⁶ to the observed
478 expression data, leading to 5 unknown latent factors used. Those factors, together with the
479 known covariates, were left unpenalised. To estimate the optimal penalization parameter λ ,
480 we used five-fold cross-validation as implemented in the R package *glmnet*⁹⁶. The obtained
481 GI consists of a weighted linear combination of the individual dosage values, weighted by
482 the shrunken regression coefficients, yielding one value per individual for each GI. We then
483 evaluated its predictive ability in the test set by employing Analysis of Variance (ANOVA) to
484 evaluate the added predictive power of the GI over the covariates and neighbouring GIs
485 (within 1Mb), as reflected by the *F*-statistic ($F > 10$).

486

487 **Testing for *trans*-effects**

488 Using linear regression, we tested for an association between each GI and the expression of
489 potential target genes *in trans* (> 10Mb), while correcting for known (cohort, sex, age, cell
490 counts) and unknown covariates, as well as GIs of nearby genes (< 1Mb). Missing
491 observations in the measured red blood cell count (RBC) and white blood cell counts (WBC)
492 were imputed using the R package *pls*, as described earlier⁶. Any inflation or bias in the test-
493 statistics was estimated and corrected for using the R package *bacon*⁶. Correction for
494 multiple testing was done using Bonferroni ($P < 7 \times 10^{-10}$). The resulting networks were
495 visualized using the R packages *network* and *ndtv*.

496

497 **Mediation analysis**

498 To identify CpGs mediating the effect of the genetic instrumental variable (GI) on the target
499 gene, we first summarised the local methylation landscape around each target gene using a
500 method similar to the creation of the GIs. We used lasso to predict target gene expression
501 based on all nearby CpGs in the train set (either located in the target gene or within 250 Kb),
502 using five-fold cross-validation to optimize the penalization parameter λ . This resulted in
503 one score reflecting this methylation landscape, whose predictive ability of the target gene's
504 expression we assessed using ANOVA in the test set ($F > 10$).

505 In order to assess the mediation of the GI on its target gene through DNA methylation, we
506 employed the Sobel test⁶³. This method is based on the notion that the influence of an
507 independent variable (the GI) on a dependent variable (expression of the target gene)
508 should diminish, or even disappear, when controlling for a mediator (methylation score).

509

510 **Enrichment analyses**

511 Functional analysis of gene sets was performed for GO Molecular Function annotations
512 using DAVID⁹⁷, providing a custom background consisting of all genes with a predictive GI (F
513 > 10). Fisher's exact test was employed to specifically test for an enrichment of transcription
514 factors using manually curated database of transcription factors²⁴.

515

516

517 **URLs**

518 Look-ups can be performed using our interactive gene network browser at <http://bios->
519 <http://bbmrirp3-lumc.surf-hosted.nl:8008/NetworkBrowser/>. Data were generated by the
520 Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands
(<http://www.glimDNA.org>). Webpages of participating cohorts: LifeLines,
521 <http://lifelines.nl/lifelines-research/general>; Leiden Longevity Study, <http://www.healthy->
522 <http://www.healthy-ageing.nl/> and <http://www.leidenlangleven.nl/>; Netherlands Twin Registry,
523 <http://www.tweelingenregister.org/>; Rotterdam Studies,
524 <http://www.erasmusmc.nl/epi/research/The-Rotterdam-Study/>; Genetic Research in
525 Isolated Populations program, <http://www.epib.nl/research/geneticepi/research.html#gip>;
526 CODAM study, <http://www.carimmaastricht.nl/>; PAN study, <http://www.alsonderzoek.nl/>.
527

528

529 **Accession codes**

530 Raw data were submitted to the European Genome-phenome Archive (EGA) under
531 accession EGAS00001001077.

532

533 **Acknowledgments**

534 This research was financially supported by BBMRI-NL, a Research Infrastructure financed by
535 the Dutch government (NWO, numbers 184.021.007 and 184.033.111). Samples were
536 contributed by LifeLines, the Leiden Longevity Study, the Netherlands Twin Registry (NTR),
537 the Rotterdam Study, the Genetic Research in Isolated Populations program, the Cohort on
538 Diabetes and Atherosclerosis Maastricht (CODAM) study and the Prospective ALS study
539 Netherlands (PAN). We thank the participants of all aforementioned biobanks and
540 acknowledge the contributions of the investigators to this study. This work was carried out
541 on the Dutch national e-infrastructure with the support of SURF Cooperative. We
542 acknowledge the support from the Netherlands CardioVascular Research Initiative (the
543 Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands
544 Organisation for Health Research and Development, and the Royal Netherlands Academy of
545 Sciences) for the GENIUS project “Generating the best evidence-based pharmaceutical
546 targets for atherosclerosis” (CVON2011-19).

547

548 **Author contributions**

549 Conceptualization, BTH, EWvZ, RL, KFD, Mvl; Methodology, RL, WEvZ, Mvl; Formal Analysis,
550 RL; Resources, WA, AC, DIB, CMvD, MMJvG, JHV, CW, LF, PACtH, RJ, JvM, HM, PES; Writing –
551 Original Draft, RL; Writing – Review & Editing, RL, BTH, EWvZ, PH AC, DIB, CMvD, MMJvG,
552 JHV, CW, PACtH, RJ, JvM, HM, PES; Visualization, RL, BTH; Supervision, BTH, EWvZ
553

554

555

556 **References**

557

- 558 1. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global
559 discovery of conserved genetic modules. *Science (80-.)* **302**, 249–255 (2003).
- 560 2. de la Fuente, A. From 'differential expression' to 'differential networking' –
561 identification of dysfunctional regulatory networks in diseases. *Trends Genet.* **26**,
562 326–333 (2010).
- 563 3. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease.
564 *Cell* **152**, 1237–1251 (2013).
- 565 4. Eklund, A. C. & Szallasi, Z. Correction of technical bias in clinical microarray data
566 improves concordance with known biological information. *Genome Biol* **9**, R26 (2008).
- 567 5. Bruning, O. *et al.* Confounding Factors in the Transcriptome Analysis of an In-Vivo
568 Exposure Experiment. *PLoS One* **11**, e0145252 (2016).
- 569 6. van Iterson, M., van Zwet, E. W., Consortium, B. & Heijmans, B. T. Controlling bias and
570 inflation in epigenome- and transcriptome-wide association studies using the
571 empirical null distribution. *Genome Biol* **18**, 19 (2017).
- 572 7. McGregor, K. *et al.* An evaluation of methods correcting for cell-type heterogeneity in
573 DNA methylation studies. *Genome Biol* **17**, 84 (2016).
- 574 8. Gamazon, E. R. *et al.* A gene-based association method for mapping traits using
575 reference transcriptome data. *Nat. Genet.* **47**, 1091–1098 (2015).
- 576 9. Gusev, A. *et al.* Integrative approaches for large-scale transcriptome-wide association
577 studies. *Nat. Genet.* **48**, 245–252 (2016).
- 578 10. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts
579 complex trait gene targets. *Nat. Genet.* **48**, 481–487 (2016).
- 580 11. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal
581 inference in epidemiological studies. *Hum Mol Genet* **23**, R89–98 (2014).
- 582 12. Evans, D. M. & Davey Smith, G. Mendelian Randomization: New Applications in the
583 Coming Age of Hypothesis-Free Causality. *Annu. Rev. Genomics Hum. Genet.* **16**, 327–
584 350 (2015).
- 585 13. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in
586 complex traits: challenges and strategies. *Nat. Rev. Genet.* **14**, 483–495 (2013).
- 587 14. Pearl, J. *Causality: Models, Reasoning, and Inference*. (Cambridge University Press,
588 2009).
- 589 15. Tibshirani, R. Regression shrinkage and selection via the lasso. *J. R. Stat. Soc. Ser. B*
590 **58**, 267–288 (1996).
- 591 16. Wang Zhao, W, Hastie, T., Owe, A.B., J. Confounder Adjustment in Multiple
592 Hypothesis Testing. *arXiv:1508.04178* (2015).
- 593 17. Orru, V. *et al.* Genetic variants regulating immune cell levels in health and disease.
594 *Cell* **155**, 242–256 (2013).
- 595 18. Roederer, M. *et al.* The genetic architecture of the human immune system: a
596 bioresource for autoimmunity and disease pathogenesis. *Cell* **161**, 387–403 (2015).
- 597 19. Zhernakova, D. V *et al.* Identification of context-dependent expression quantitative
598 trait loci in whole blood. *Nat. Genet.* **49**, 139–145 (2017).
- 599 20. GTEx. Local genetic effects on gene expression across 44 human tissues. *Biorxiv*
600 (2016).
- 601 21. Joehanes, R. *et al.* Integrated genome-wide analysis of expression quantitative trait
602 loci aids interpretation of genomic association studies. *Genome Biol.* **18**, 16 (2017).

603 22. Fritz, M. S. & MacKinnon, D. P. Required Sample Size to Detect the Mediated Effect. *Psychol. Sci.* **18**, 233–239 (2007).

604 23. Pierce, B. L. *et al.* Mediation Analysis Demonstrates That Trans-eQTLs Are Often
605 Explained by Cis-Mediation: A Genome-Wide Analysis among 1,800 South Asians. *PLOS Genet.* **10**, e1004818 (2014).

606 24. Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of
607 human transcription factors: function, expression and evolution. *Nat Rev Genet* **10**,
608 252–263 (2009).

609 25. Jiang, C., Xuan, Z., Zhao, F. & Zhang, M. Q. TRED: a transcriptional regulatory element
610 database, new entries and other development. *Nucleic Acids Res.* **35**, D137–D140
611 (2007).

612 26. Zheng, G. *et al.* ITPP: an integrated platform of mammalian transcription factors. *Bioinformatics* **24**, 2416–2417 (2008).

613 27. Han, H. *et al.* TRRUST: a reference database of human transcriptional regulatory
614 interactions. *Sci. Rep.* **5**, 11432 (2015).

615 28. Marbach, D. *et al.* Tissue-specific regulatory circuits reveal variable modular
616 perturbations across complex diseases. *Nat Methods* **13**, 366–370 (2016).

617 29. Lemire, M. *et al.* Long-range epigenetic regulation is conferred by genetic variation
618 located at thousands of independent loci. *Nat Commun* **6**, 6326 (2015).

619 30. Lukic, S., Nicolas, J. C. & Levine, A. J. The diversity of zinc-finger genes on human
620 chromosome 19 provides an evolutionary mechanism for defense against inherited
621 endogenous retroviruses. *Cell Death Differ* **21**, 381–387 (2014).

622 31. Iyengar, S. & Farnham, P. J. KAP1 protein: an enigmatic master regulator of the
623 genome. *J Biol Chem* **286**, 26267–26276 (2011).

624 32. Fasching, L. *et al.* TRIM28 represses transcription of endogenous retroviruses in
625 neural progenitor cells. *Cell Rep* **10**, 20–28 (2015).

626 33. Garvin, A. J. *et al.* The deSUMOylase SENP7 promotes chromatin relaxation for
627 homologous recombination DNA repair. *EMBO Rep* **14**, 975–983 (2013).

628 34. Li, X. *et al.* Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation
629 switch in regulating KAP1-mediated transcriptional repression. *J Biol Chem* **282**,
630 36177–36189 (2007).

631 35. Cai, L., Wang, Y., Wang, J. F. & Chou, K. C. Identification of proteins interacting with
632 human SP110 during the process of viral infections. *Med Chem* **7**, 121–126 (2011).

633 36. Lee, M. N. *et al.* Identification of regulators of the innate immune response to
634 cytosolic DNA and retroviral infection by an integrative approach. *Nat Immunol* **14**,
635 179–185 (2013).

636 37. Valente, T., Junyent, F. & Auladell, C. Zac1 is expressed in progenitor/stem cells of the
637 neuroectoderm and mesoderm during embryogenesis: differential phenotype of the
638 Zac1-expressing cells during development. *Dev Dyn* **233**, 667–679 (2005).

639 38. Varrault, A. *et al.* Zac1 regulates an imprinted gene network critically involved in the
640 control of embryonic growth. *Dev Cell* **11**, 711–722 (2006).

641 39. Kamiya, M. The cell cycle control gene ZAC/PLAGL1 is imprinted--a strong candidate
642 gene for transient neonatal diabetes. *Hum. Mol. Genet.* **9**, 453–460 (2000).

643 40. Hoffmann, A. & Spengler, D. Transient neonatal diabetes mellitus gene Zac1 impairs
644 insulin secretion in mice through Rasgrf1. *Mol Cell Biol* **32**, 2549–2560 (2012).

645 41. Ciani, E., Hoffmann, A., Schmidt, P., Journot, L. & Spengler, D. Induction of the PAC1-R
646 (PACAP-type I receptor) gene by p53 and Zac. *Mol. Brain Res.* **69**, 290–294 (1999).

647

648

649

650 42. Yada, T. *et al.* Autocrine Action of PACAP in Islets Augments Glucose-Induced Insulin
651 Secretion. *Ann. N. Y. Acad. Sci.* **865**, 451–457 (1998).

652 43. Filipsson, K., Sundler, F. & Ahren, B. PACAP is an islet neuropeptide which contributes
653 to glucose-stimulated insulin secretion. *Biochem Biophys Res Commun* **256**, 664–667
654 (1999).

655 44. Frojdo, S., Vidal, H. & Pirola, L. Alterations of insulin signaling in type 2 diabetes: a
656 review of the current evidence from humans. *Biochim Biophys Acta* **1792**, 83–92
657 (2009).

658 45. Ozcan, L. *et al.* Treatment of Obese Insulin-Resistant Mice With an Allosteric
659 MAPKAPK2/3 Inhibitor Lowers Blood Glucose and Improves Insulin Sensitivity.
660 *Diabetes* **64**, 3396–3405 (2015).

661 46. Vock, C., Doring, F. & Nitz, I. Transcriptional regulation of HMG-CoA synthase and
662 HMG-CoA reductase genes by human ACBP. *Cell Physiol Biochem* **22**, 515–524 (2008).

663 47. Chang, P. A. *et al.* Identification of human patatin-like phospholipase domain-
664 containing protein 1 and a mutant in human cervical cancer HeLa cells. *Mol Biol Rep*
665 **40**, 5597–5605 (2013).

666 48. Xu, D., Yin, C., Wang, S. & Xiao, Y. JAK-STAT in lipid metabolism of adipocytes.
667 *JAKSTAT* **2**, e27203 (2013).

668 49. Mishra, J., Verma, R. K., Alpini, G., Meng, F. & Kumar, N. Role of Janus Kinase 3 in
669 Predisposition to Obesity-associated Metabolic Syndrome. *J Biol Chem* **290**, 29301–
670 29312 (2015).

671 50. Vogler, M. BCL2A1: the underdog in the BCL2 family. *Cell Death Differ* **19**, 67–74
672 (2012).

673 51. Teider, N. *et al.* Neuralized1 causes apoptosis and downregulates Notch target genes
674 in medulloblastoma. *Neuro Oncol* **12**, 1244–1256 (2010).

675 52. Yan, Y., Frisen, J., Lee, M. H., Massague, J. & Barbacid, M. Ablation of the CDK
676 inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during
677 mouse development. *Genes Dev.* **11**, 973–983 (1997).

678 53. Berro, A. I., Perry, G. A. & Agrawal, D. K. Increased expression and activation of CD30
679 induce apoptosis in human blood eosinophils. *J Immunol* **173**, 2174–2183 (2004).

680 54. Hubinger, G. *et al.* CD30-induced up-regulation of the inhibitor of apoptosis genes
681 cIAP1 and cIAP2 in anaplastic large cell lymphoma cells. *Exp Hematol* **32**, 382–389
682 (2004).

683 55. Vlachos, P., Nyman, U., Hajji, N. & Joseph, B. The cell cycle inhibitor p57(Kip2)
684 promotes cell death via the mitochondrial apoptotic pathway. *Cell Death Differ* **14**,
685 1497–1507 (2007).

686 56. Peters, L. M. *et al.* Signatures from tissue-specific MPSS libraries identify transcripts
687 preferentially expressed in the mouse inner ear. *Genomics* **89**, 197–206 (2007).

688 57. Tadros, S. F., D’Souza, M., Zhu, X. & Frisina, R. D. Apoptosis-related genes change
689 their expression with age and hearing loss in the mouse cochlea. *Apoptosis* **13**, 1303–
690 1321 (2008).

691 58. Cunningham, L. L., Matsui, J. I., Warchol, M. E. & Rubel, E. W. Overexpression of Bcl-2
692 prevents neomycin-induced hair cell death and caspase-9 activation in the adult
693 mouse utricle in vitro. *J Neurobiol* **60**, 89–100 (2004).

694 59. Shin, J. B. *et al.* Hair bundles are specialized for ATP delivery via creatine kinase.
695 *Neuron* **53**, 371–386 (2007).

696 60. Lin, Y. S. *et al.* Dysregulated brain creatine kinase is associated with hearing

697 impairment in mouse models of Huntington disease. *J Clin Invest* **121**, 1519–1523
698 (2011).

699 61. Bonder, M. J. *et al.* Disease variants alter transcription factor levels and methylation
700 of their binding sites. *Nat. Genet.* **49**, 131–138 (2017).

701 62. Wilkinson, M. F. Evidence that DNA methylation engenders dynamic gene regulation.
702 *Proc Natl Acad Sci U S A* **112**, E2116 (2015).

703 63. Sobel, M. E. Asymptotic Confidence Intervals for Indirect Effects in Structural
704 Equation Models. *Sociol. Methodol.* **13**, 290 (1982).

705 64. Irizarry, R. A. *et al.* The human colon cancer methylome shows similar hypo- and
706 hypermethylation at conserved tissue-specific CpG island shores. *Nat. Genet.* **41**,
707 178–186 (2009).

708 65. Slieker, R. C. *et al.* Identification and systematic annotation of tissue-specific
709 differentially methylated regions using the Illumina 450k array. *Epigenetics Chromatin*
710 **6**, 26 (2013).

711 66. Adamson, B. *et al.* A Multiplexed Single-Cell CRISPR Screening Platform Enables
712 Systematic Dissection of the Unfolded Protein Response. *Cell* **167**, 1867–1882 e21
713 (2016).

714 67. Dixit, A. *et al.* Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA
715 Profiling of Pooled Genetic Screens. *Cell* **167**, 1853–1866 e17 (2016).

716 68. Jaitin, D. A. *et al.* Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with
717 Single-Cell RNA-Seq. *Cell* **167**, 1883–1896 e15 (2016).

718 69. Schaefer, K. A. *et al.* Unexpected mutations after CRISPR-Cas9 editing in vivo. *Nat
719 Meth* **14**, 547–548 (2017).

720 70. Westra, H. J. *et al.* Systematic identification of trans eQTLs as putative drivers of
721 known disease associations. *Nat. Genet.* **45**, 1238–1243 (2013).

722 71. Battle, A. *et al.* Characterizing the genetic basis of transcriptome diversity through
723 RNA-sequencing of 922 individuals. *Genome Res* **24**, 14–24 (2014).

724 72. Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in
725 Mendelian randomization studies. *Int J Epidemiol* **42**, 1497–1501 (2013).

726 73. Freeman, G., Cowling, B. J. & Schooling, C. M. Power and sample size calculations for
727 Mendelian randomization studies using one genetic instrument. *Int J Epidemiol* **42**,
728 1157–1163 (2013).

729 74. Gutierrez-Arcelus, M. *et al.* Passive and active DNA methylation and the interplay
730 with genetic variation in gene regulation. *Elife* **2**, e00523 (2013).

731 75. Javierre, B. M. *et al.* Lineage-Specific Genome Architecture Links Enhancers and Non-
732 coding Disease Variants to Target Gene Promoters. *Cell* **167**, 1369–1384 e19 (2016).

733 76. van Greevenbroek, M. M. J. *et al.* The cross-sectional association between insulin
734 resistance and circulating complement C3 is partly explained by plasma alanine
735 aminotransferase, independent of central obesity and general inflammation (the
736 CODAM study). *Eur. J. Clin. Invest.* **41**, 372–379 (2011).

737 77. Tigchelaar, E. F. *et al.* Cohort profile: LifeLines DEEP, a prospective, general
738 population cohort study in the northern Netherlands: study design and baseline
739 characteristics. *BMJ Open* **5**, e006772 (2015).

740 78. Schoenmaker, M. *et al.* Evidence of genetic enrichment for exceptional survival using
741 a family approach: the Leiden Longevity Study. *Eur. J. Hum. Genet.* (2005).
742 doi:10.1038/sj.ejhg.5201508

743 79. Boomsma, D. I. *et al.* Netherlands Twin Register: A Focus on Longitudinal Research.

744 744 *Twin Res.* **5**, 401–406 (2002).

745 745 80. Willemsen, G. *et al.* The Adult Netherlands Twin Register: Twenty-Five Years of Survey
746 746 and Biological Data Collection. *Twin Res. Hum. Genet.* **16**, 271–281 (2013).

747 747 81. Hofman, A. *et al.* The Rotterdam Study: 2014 objectives and design update. *Eur. J.
748 748 Epidemiol.* **28**, 889–926 (2013).

749 749 82. Huisman, M. H. *et al.* Population based epidemiology of amyotrophic lateral sclerosis
750 750 using capture-recapture methodology. *J Neurol Neurosurg Psychiatry* **82**, 1165–1170
751 751 (2011).

752 752 83. Deelen, J. *et al.* Genome-wide association meta-analysis of human longevity identifies
753 753 a novel locus conferring survival beyond 90 years of age. *Hum. Mol. Genet.* **23**, 4420–
754 754 4432 (2014).

755 755 84. Lin, B. D. *et al.* The Genetic Overlap Between Hair and Eye Color. *Twin Res. Hum.
756 756 Genet.* **19**, 595–599 (2016).

757 757 85. Consortium, T. G. of the N. *et al.* Whole-genome sequence variation, population
758 758 structure and demographic history of the Dutch population. *Nat. Genet.* **46**, 818–825
759 759 (2014).

760 760 86. Deelen, P. *et al.* Genotype harmonizer: automatic strand alignment and format
761 761 conversion for genotype data integration. *BMC Res. Notes* **7**, 901 (2014).

762 762 87. Howie, B. N., Donnelly, P. & Marchini, J. A Flexible and Accurate Genotype Imputation
763 763 Method for the Next Generation of Genome-Wide Association Studies. *plos Genet.* **5**,
764 764 (2009).

765 765 88. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing
766 766 reads. *EMBnet.journal* **17**, 10 (2011).

767 767 89. Joshi Fass, J., N. Sickle: a sliding-window, adaptive, quality-based trimming tool for
768 768 FastQ files (version 1.33). (2011).

769 769 90. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
770 770 (2013).

771 771 91. Tobi, E. W. *et al.* Early gestation as the critical time-window for changes in the
772 772 prenatal environment to affect the adult human blood methylome. *Int J Epidemiol* **44**,
773 773 1211–1223 (2015).

774 774 92. Aryee, M. J. *et al.* Minfi: a flexible and comprehensive Bioconductor package for the
775 775 analysis of Infinium DNA methylation microarrays. *Bioinformatics* **30**, 1363–1369
776 776 (2014).

777 777 93. van Iterson, M. *et al.* MethylAid: visual and interactive quality control of large
778 778 Illumina 450k datasets. *Bioinformatics* **30**, 3435–3437 (2014).

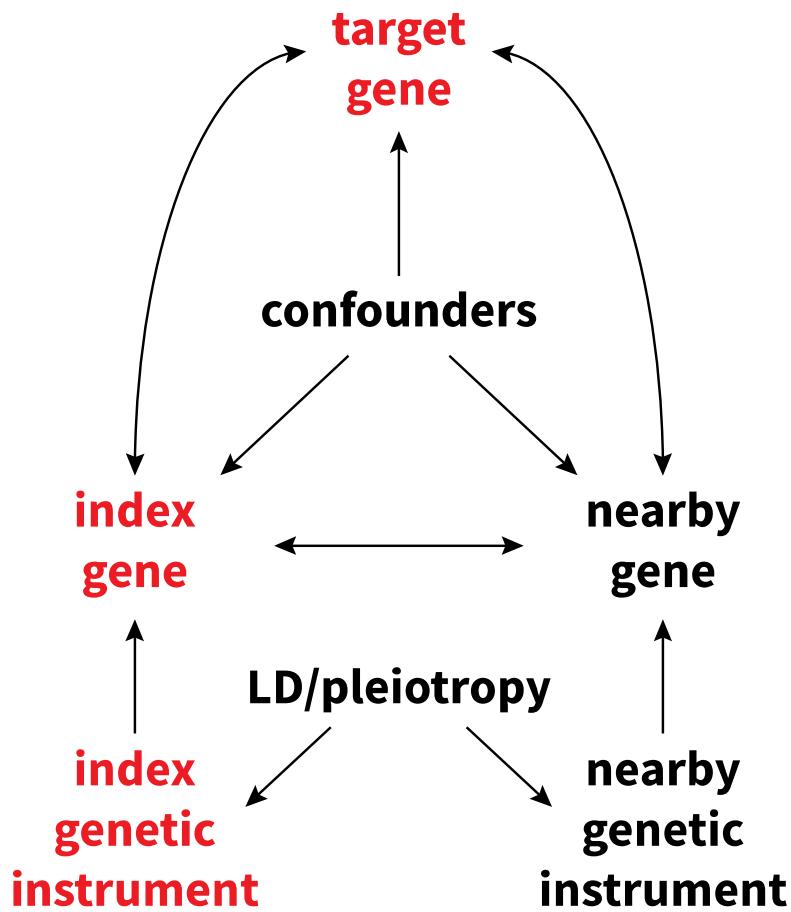
779 779 94. Chen, Y. A. *et al.* Discovery of cross-reactive probes and polymorphic CpGs in the
780 780 Illumina Infinium HumanMethylation450 microarray. *Epigenetics* **8**, 203–209 (2013).

781 781 95. Fortin, J. P. *et al.* Functional normalization of 450k methylation array data improves
782 782 replication in large cancer studies. *Genome Biol* **15**, 503 (2014).

783 783 96. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear
784 784 Models via Coordinate Descent. *J. Stat. Softw.* **33**, (2010).

785 785 97. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of
786 786 large gene lists using DAVID bioinformatics resources. *Nat Protoc* **4**, 44–57 (2009).

787



788
789

790 *Figure 1*

791 Diagram showing the presumed relations between each variable. A directed arrow indicates
792 the possibility of a causal effect. For instance, the “index genetic instrument” represents
793 nearby SNPs with a possible effect on the nearby gene (analogous to *cis*-eQTLs). A double
794 arrow means the possibility of a causal effect in either direction. The index gene, for
795 example, could have a causal effect on the target gene, or vice versa. We aim to assess the
796 presence of a causal effect of the index gene on the target gene using genetic instruments
797 (GIs) that are free of non-genetic confounding. To do this, we must block the back-door path
798 from the index GI through the GIs of nearby genes to the target gene. This back-door path
799 represents linkage disequilibrium and local pleiotropy and is precluded by correcting for the
800 GIs of nearby genes. Correction for observed gene expression (either of the index gene or of
801 nearby genes) does not block this back-door path, but instead possibly leads to a collider
802 bias, falsely introducing a correlation between the index GI and the target gene.
803

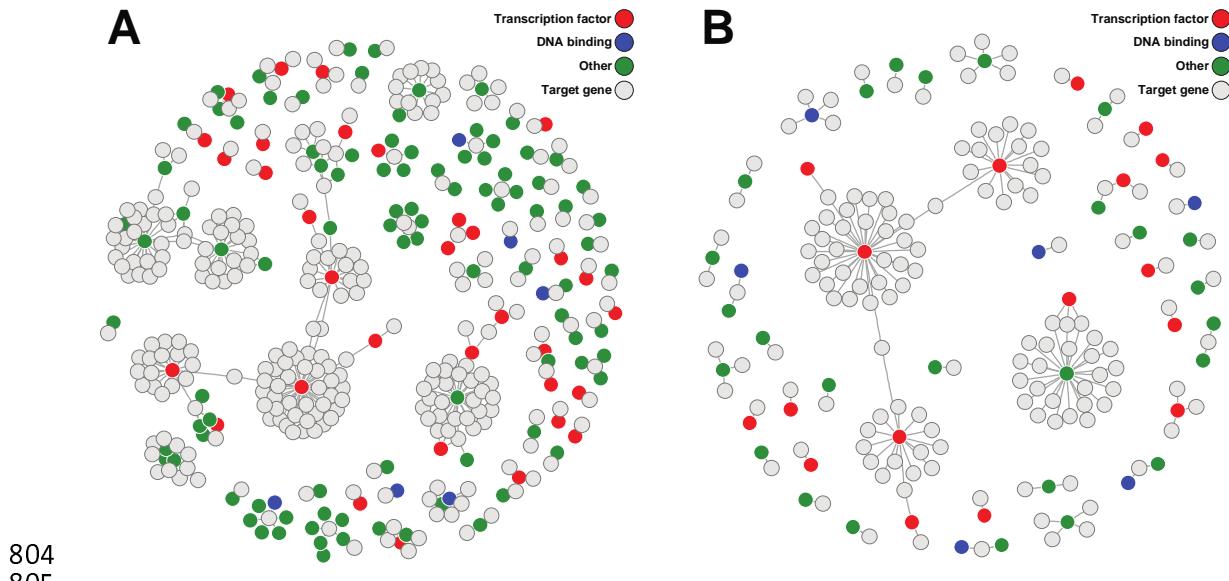
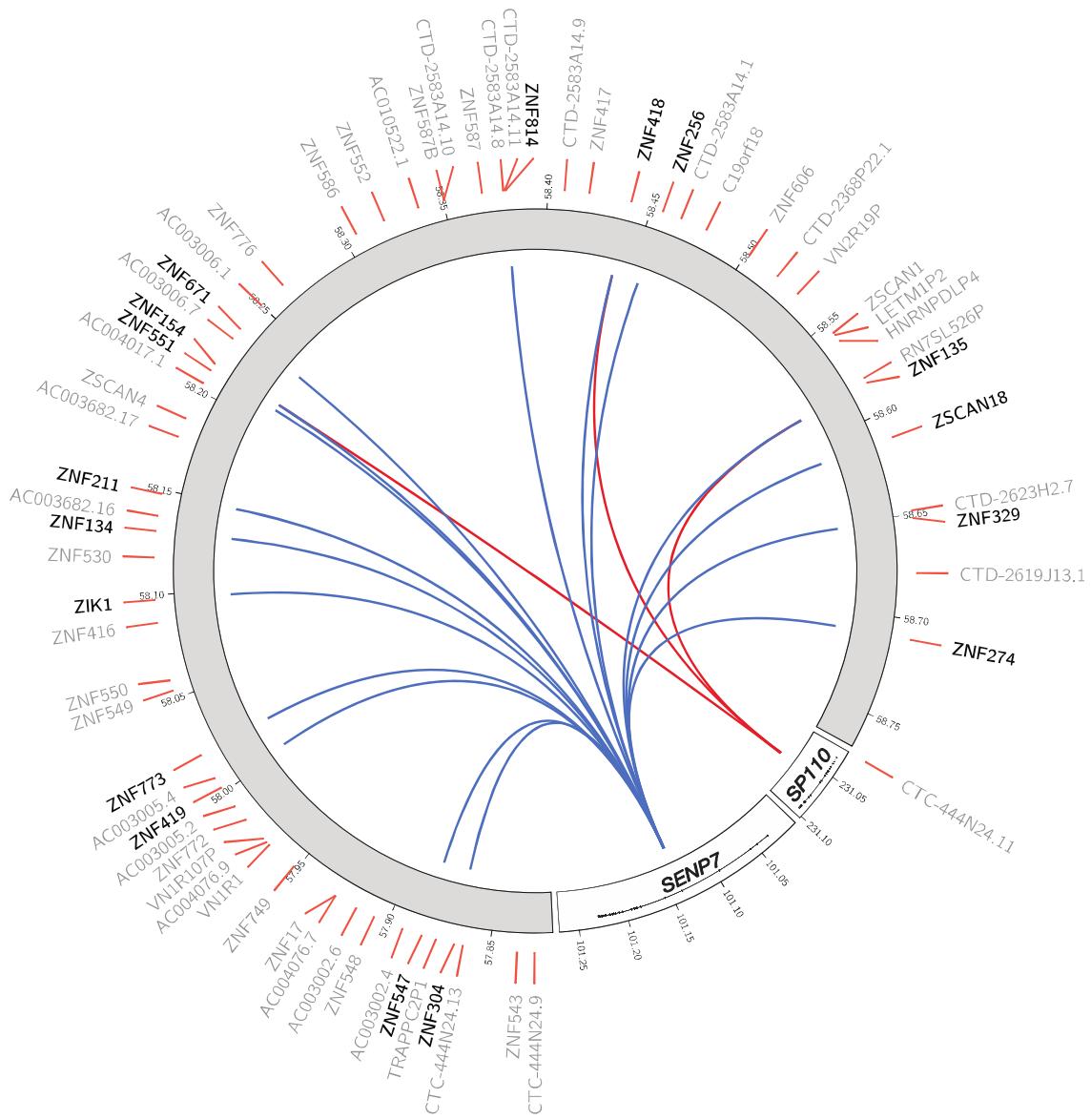


Figure 2

Gene networks showing the directed gene-gene association between genes when not taking LD and local pleiotropy into account (A) and when these are corrected for (B). Index genes identified as a transcription factor are indicated by red circles. Blue circles indicate index genes with DNA binding properties, but are not a known transcription factor²⁴. Green circles indicate other index genes. Light grey circles indicate target genes. The uncorrected analysis shows 134 index genes (colored circles) influencing 276 target genes, where several neighbouring index genes seemingly influencing the same target gene, which is reflective of a shared genetic component of those index genes. Specifically, 65 target genes are associated with multiple index genes which lie in close proximity to one another. The number of index genes drop sharply from 134 to 49 (2.7-fold decrease) when do taking LD and local pleiotropy into account. The number of target genes also drops, from 276 to 144 (1.9-fold decrease).

819



820
821

822

Figure 3

823

SEN¹P7 (chromosome 3) and SP110 (chromosome 2) affect a zinc finger cluster located on chromosome 19 involved in retroviral repression, among others. Blue lines indicate a positive association (upregulation), red lines indicate a negative association (downregulation). Colouring indicates consistent opposite effects of SENP7 and SP110 on their shared target genes.

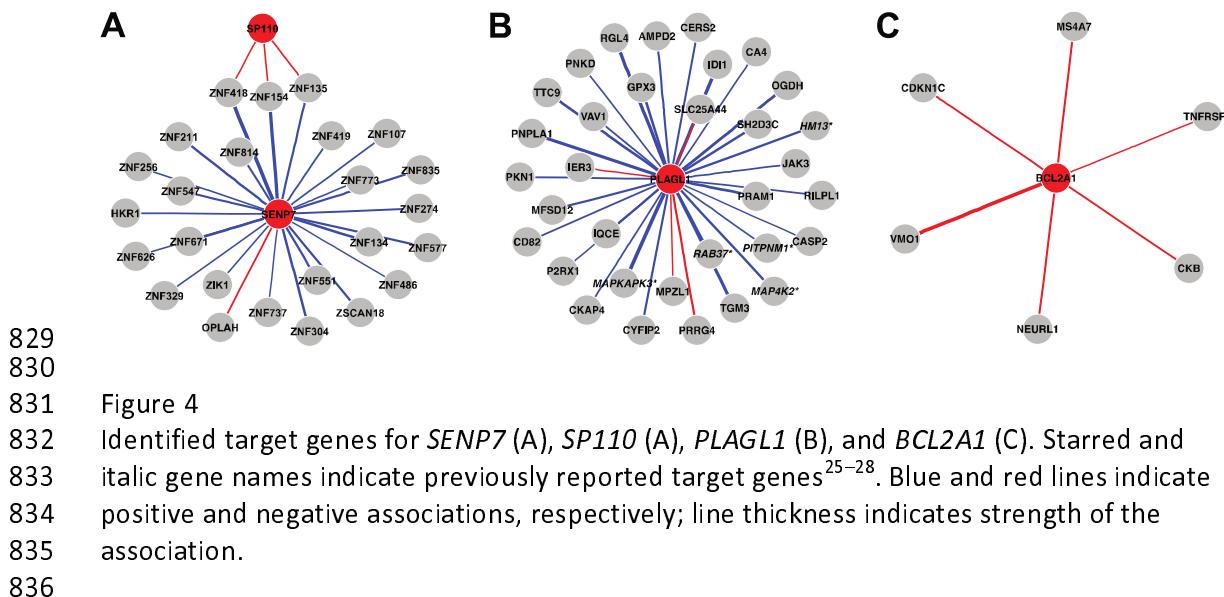
824

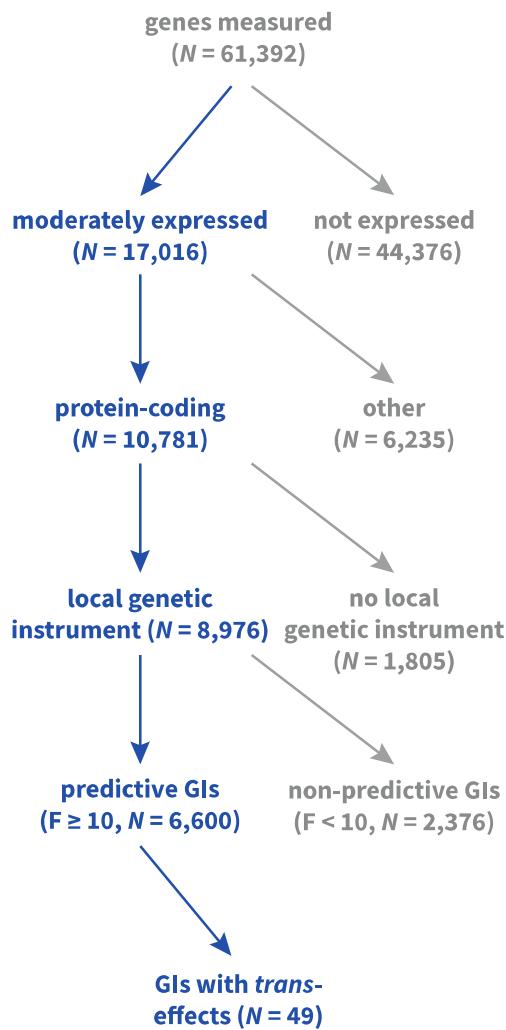
825

826

827

828





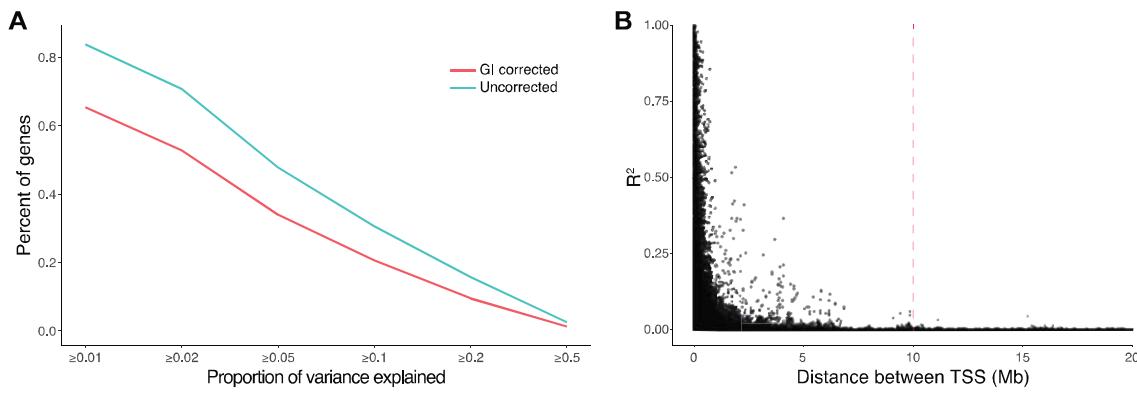
837

838

839 *Figure S1*

840 Diagram showing the number of genes and genetic instruments (GIs) in each stage of the
841 analysis.

842

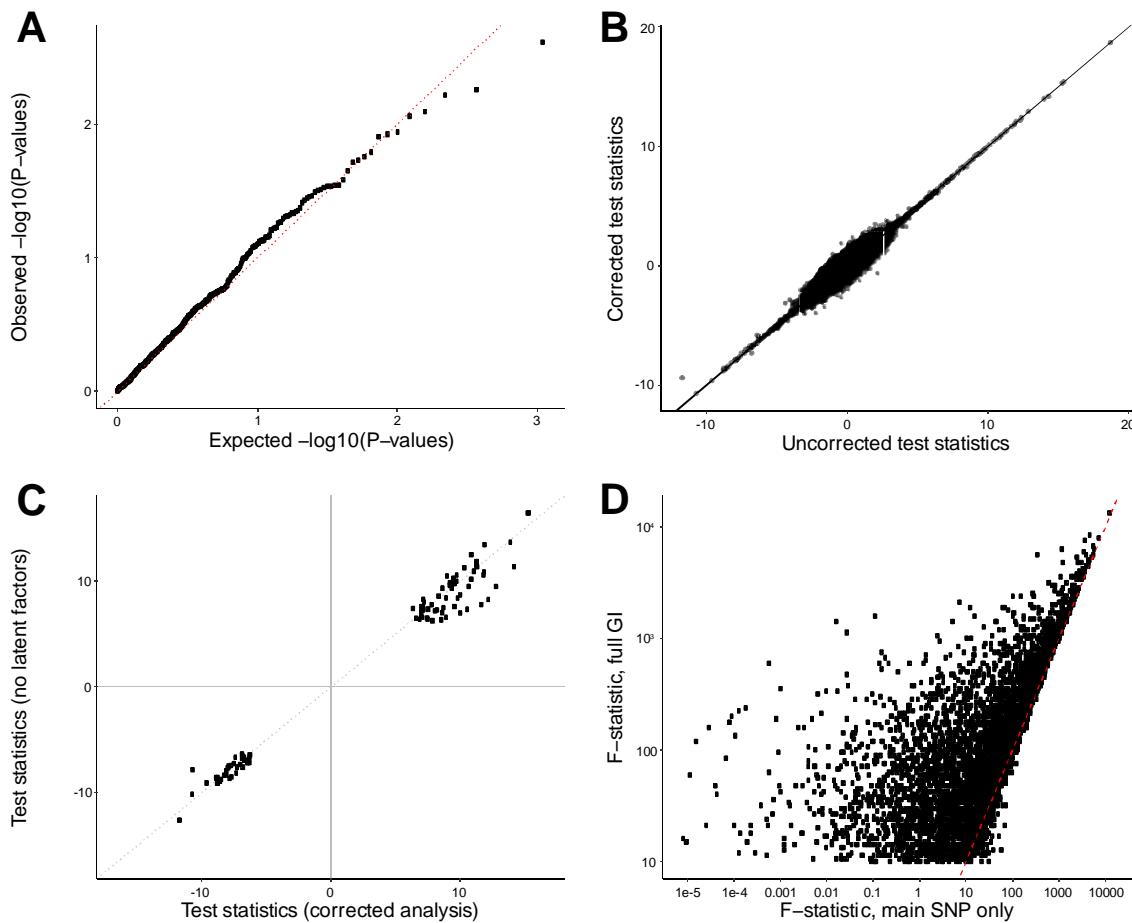


843

844

845 *Figure S2*

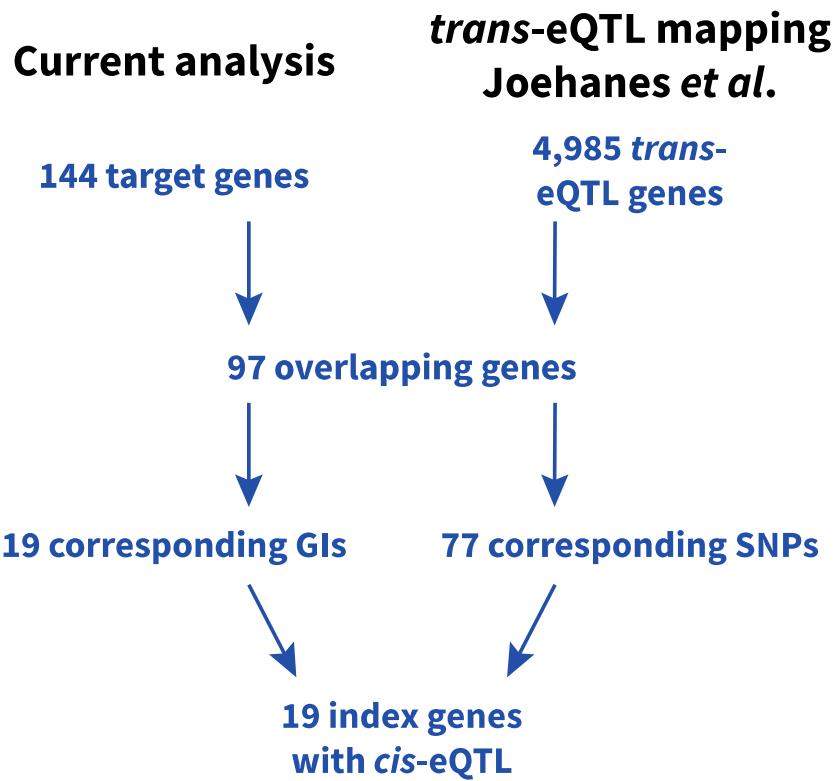
846 Genetic instruments (GIs) account for a moderate amount of index gene expression
847 variation explained, and are strongly correlated over small distances. A) The proportion of
848 variance explained (R^2 , x-axis) in index gene expression explained by the corresponding genetic
849 instrumental variable (GI). The blue line indicates the uncorrected R^2 , or the total variance
850 explained by the GI. The red line indicates the R^2 corrected for the GIs of neighbouring index
851 genes, or the proportion of variance explained specifically by the current GI. The proportion
852 of variance explained generally is fairly modest. B) The correlation between genetic
853 instruments (GIs, y-axis) of different genes strongly decreases as the distance (x-axis)
854 between the corresponding genes increases. The median R^2 between any two GIs
855 corresponding to genes located at least 10Mb (definition of trans, indicated by red dotted
856 line) away from each other is 1.5×10^{-4} .
857



858
859

860 **Figure S3**

861 Several checks indicate the stability of our analysis. A) Quantile-quantile plot of the
862 expected $-\log_{10}(P\text{-values})$ (x-axis) and observed $-\log_{10}(P\text{-values})$ (y-axis) resulting from
863 associating all GIs with known cell counts. The observed P -values follow the distribution
864 expected under the null hypothesis, indicative of no association between the GIs and known
865 cell counts. B) All 156 directed associations remained after further adjustment for nearby
866 genetic variants (< 1Mb) reported to influence blood composition^{17,18}. Test statistics before
867 (x-axis) and after adjustment (y-axis) for such nearby SNPs are all along the diagonal,
868 indicating the reported SNPs do not confound the analysis. C) Correcting for latent factors
869 leads to slightly more significant results. Depicted are the test-statistics in the original
870 analysis, corrected for latent factors (x-axis), and the test-statistics without correction for
871 these latent factors (y-axis). D) Multi-SNP GIs outperform single-SNP GIs in terms of
872 predictive ability of index gene expression. The F -statistic calculated in the test set using the
873 main, strongest associated SNP in the GIs is plotted against the F -statistic calculated using
874 the full GI. Using the full GI results in 6,600 GIs predictive of the corresponding index gene
875 (F -statistic > 10), whereas a single-SNP approach results in 4,910 predictive GIs.
876



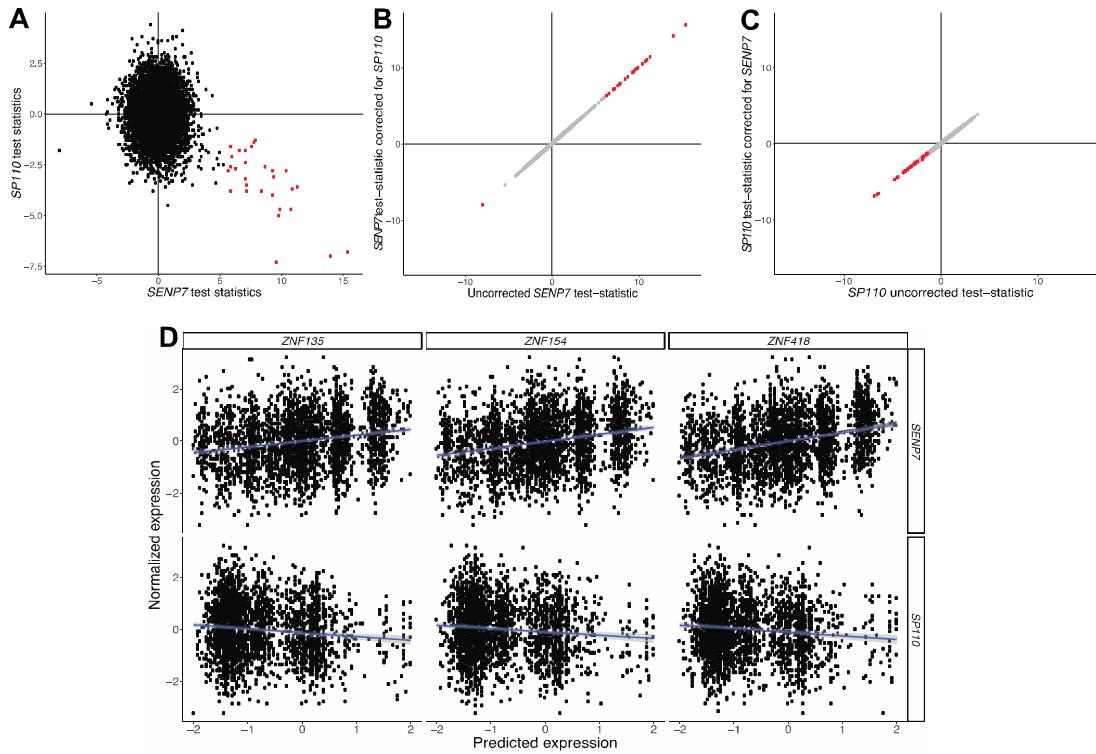
877

878

879 *Figure S4*

880 Diagram comparing the identified effects in the current analysis and those identified by an
881 earlier *trans*-eQTL mapping effort²¹.

882



883

884

885 *Figure S5*

886 *SENP7* and *SP110* have shared, but opposite effects on the zinc finger protein cluster on
887 chromosome 19. A) Test-statistics for *SENP7* and *SP110* show consistent opposite effects on
888 the ZNF-cluster. B, C) Test-statistics of the directed effects of *SENP7* and *SP110* on target
889 genes, correcting for each other's genetic instruments (GIs). The unchanged test-statistics
890 indicate their effects are independent. D) Illustrations of shared, but opposite effects.