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ABSTRACT 36 

 37 

Identification of causal drivers behind regulatory gene networks is crucial in understanding 38 

gene function. We developed a method for the large-scale inference of gene-gene 39 

interactions in observational population genomics data that are both directed (using local 40 

genetic instruments as causal anchors, akin to Mendelian Randomization) and specific (by 41 

controlling for linkage disequilibrium and pleiotropy). The analysis of genotype and whole-42 

blood RNA-sequencing data from 3,072 individuals identified 49 genes as drivers of 43 

downstream transcriptional changes (P < 7 x 10
-10

), among which transcription factors were 44 

overrepresented (P = 3.3 x 10
-7

). Our analysis suggests new gene functions and targets 45 

including for SENP7 (zinc-finger genes involved in retroviral repression) and BCL2A1 (novel 46 

target genes possibly involved in auditory dysfunction). Our work highlights the utility of 47 

population genomics data in deriving directed gene expression networks. A resource of 48 

trans-effects for all 6,600 genes with a genetic instrument can be explored individually using 49 

a web-based browser.  50 
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INTRODUCTION 51 

 52 

Identification of the causal drivers underlying regulatory gene networks may yield new 53 

insights into gene function
1,2

, possibly leading to the disentanglement of disease 54 

mechanisms characterized by transcriptional dysregulation
3
. Gene networks are commonly 55 

based on the observed co-expression of genes. However, such networks show only 56 

undirected relationships between genes which makes it impossible to pinpoint the causal 57 

drivers behind these associations. Adding to this, confounding (e.g. due to demographic and 58 

clinical characteristics, technical factors, and batch effects
4–6

) induces spurious correlations 59 

between the expression of genes. Correcting for all confounders may prove difficult as some 60 

may be unknown
7
. Residual confounding then leads to very large, inter-connected co-61 

expression networks that do not reflect true biological relationships. 62 

To address these issues, we exploited recent developments in data analysis approaches that 63 

enable the inference of causal relationships through the assignment of directed gene-gene 64 

associations in population-based transcriptome data using genetic instruments
8–10

 (GIs). 65 

Analogous to Mendelian Randomization
11,12

 (MR), the use of genetics provides an anchor 66 

from where directed associations can be identified. Moreover, GIs are free from any non-67 

genetic confounding. Related efforts have used similar methods to identify novel genes 68 

associated with different phenotypes, either using individual level data
8,9

 or using publicly 69 

available eQTL and GWAS catalogues
10

. However, these efforts have not systematically 70 

taken linkage disequilibrium (LD) and pleiotropy (a genetic locus affecting multiple nearby 71 

genes) into account. As both may lead to correlations between GIs, we aimed to improve 72 

upon these methods in order to minimize the influence of LD and pleiotropy, and would 73 

detect the actual driver genes. This possibly induces non-causal relations
13

, precluding the 74 

identification of the specific causal gene involved when not accounted for LD and 75 

pleiotropy. 76 

Here, we combine genotype and expression data of 3,072 unrelated individuals from whole 77 

blood samples to establish a resource of directed gene networks using genetic variation as 78 

an instrument. We use local genetic variation in the population to capture the portion of 79 

expression level variation explained by nearby genetic variants (local genetic component) of 80 

gene expression levels, successfully identifying a predictive genetic instrument (GI) for the 81 

observed gene expression of 6,600 protein-coding genes. These GIs are then tested for an 82 

association with potential target genes in trans. Applying a robust genome-wide approach 83 

that corrects for linkage disequilibrium and local pleiotropy by modelling nearby GIs as 84 

covariates, we identify 49 index genes each influencing up to 33 target genes (Bonferroni 85 

correction, P < 7 x 10
-10

). Closer inspection of examples reveals that coherent biological 86 

processes underlie these associations, and we suggest new gene functions based on these 87 

newly identified target genes, e.g. for SENP7 and BCL2A1. An interactive online browser 88 

allows researchers to look-up specific genes of interest while using the appropriate, more 89 

lenient significance threshold. 90 

  91 
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RESULTS 92 

 93 

Establishing directed associations in transcriptome data 94 

We aim to establish a resource of index genes that causally affect the expression of target 95 

genes in trans using large-scale observational RNA-sequencing data. However, causality 96 

cannot be inferred from the correlation between the observed expression measurements of 97 

genes, and therefore is traditionally addressed by experimental manipulation. Furthermore, 98 

both residual and unknown confounding can induce correlation between genes, possibly 99 

yielding to extensive correlation networks that are not driven by biology. To establish causal 100 

relations between genes, we assume a structural causal model
14

 describing the relations 101 

between genes and using their genetic components, the local genetic variants predicting 102 

their expression, as genetic instruments
11

 (GIs). To be able to conclude the presence of a 103 

causal effect of the index gene on the target gene, the potential influence of linkage 104 

disequilibrium (LD) and pleiotropic effects have to be taken into account, as they may cause 105 

GIs of neighbouring genes to be correlated (Figure 1). This is done by blocking the so-called 106 

back-door path
14

 from the index GI through the genetic GIs of nearby genes to the target 107 

gene by correcting the association between the GI and target gene expression for these 108 

other GIs. Note that this path cannot be blocked by adjusting for the observed expression of 109 

the nearby genes, as this may introduce collider bias, resulting in spurious associations. 110 

To assign directed relationships between the expression of genes and establish causality, 111 

the first step in our analysis approach was to identify a GI for the expression of each gene, 112 

reflecting the local genetic component. To this end, we used data on 3,072 individuals with 113 

available genotype and gene expression data (Table S1), measured in whole blood, where 114 

we focused on at least moderately expressed (see Methods) protein-coding genes (N = 115 

10,781 genes, Figure S1). Using the 1,021 samples in the training set (see Methods), we 116 

obtained a GI consisting of at least 1 SNP for the expression of 8,976 genes by applying lasso 117 

regression
15

 to nearby genetic variants while controlling for known (cohort, sex, age, cell 118 

counts) and unknown covariates
16

 (see Methods). Adding distant genetic variants to the 119 

prediction model has been shown to add very little predictive power
8
 and would have 120 

induced the risk of including long-range pleiotropic effects. 121 

The strength of the GIs was evaluated using the 2,051 samples in the test set (see Methods). 122 

Taking LD and local pleiotropy into account by including the GIs of neighbouring genes (< 1 123 

Mb, Figure 1), we identified 6,600 sufficiently strong GIs having at least partly specific 124 

predictive ability (Figure S2A) for the expression its corresponding index gene (F-statistic > 125 

10, Figure S1, Table S2). To evaluate the effects of these 6,600 GIs on target gene 126 

expression, we used all 3,072 samples to test for an association of each of 6,600 GIs with all 127 

of 10,781 expressed, protein-coding genes in trans (> 10Mb, Figure S2B). First, this analysis 128 

was done without accounting for LD and local pleiotropy (i.e., correcting for neighbouring 129 

LD, Figure 1). This genome-wide analysis resulted in 401 directed associations between 134 130 

index genes and 276 target genes after adjustment for multiple testing using the Bonferroni 131 

correction (P < 7 x 10
-10

, Figure 2, Table S3). Among them were 134 index genes affecting 132 

the expression of 1 to 33 target genes in trans (3.2 genes on average, median of 1 gene), 133 

totalling 276 identified target genes. As expected, the resulting networks contained many 134 

instances where the same target gene (N = 65) was influenced by multiple neighbouring 135 

index genes, hindering the identification of the causal gene. Repeating the analysis for the 136 

134 identified index genes, but corrected for LD and local pleiotropy by including the GIs of 137 

neighbouring genes (< 1Mb) resulted in the identification of specific directed effects for 49 138 
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index genes on 144 target genes, totalling 156 directed associations (P < 7 x 10
-10

, Figure 2), 139 

where the number of target genes affected by an index gene varied from 1 to 33 (Table 1, 140 

3.2 genes on average, median of 1 gene). The number of target genes associated with 141 

multiple neighbouring index genes drops from 65 to 2, underscoring the importance of 142 

correction for LD and local pleiotropy. As this set of 156 directed associations is free from LD 143 

and local pleiotropy, and possibly reflect truly causal relations, we use these in further 144 

analyses. 145 

 146 

Validity and stability of the analyses 147 

To ensure the validity and stability of the analyses, we performed several checks regarding 148 

common challenges inherent to these analyses and the assumptions underlying them. First, 149 

by design, the GIs should be independent of most confounding factors, but confounding 150 

may still occur if genetic variants directly affect blood composition, leading to spurious 151 

associations. Therefore, we evaluated the association of the 49 GIs with observed red blood 152 

cell count and white blood cell counts, and found that none of the 49 GIs were significantly 153 

related to any observed cell counts (Figure S3A). In addition, all 156 directed associations 154 

remained significant after further adjustment for nearby genetic variants (< 1Mb) reported 155 

to influence blood composition
17,18

 (Figure S3B). 156 

To combat any unknown residual confounding and possibly gain statistical power, we added 157 

five latent factors to our models, estimated from the observed expression data using cate
16

 158 

(see Methods). We re-tested the 156 identified associations without these factors to 159 

evaluate the model sensitivity, showing similar results with slightly attenuated test statistics 160 

(Figure S3C). This indicates that our analysis was not influenced by unknown confounding 161 

and confirmed the independence of GIs from non-genetic confounding, but did help in 162 

reducing the noise in the data, leading to increased statistical power. 163 

Next, to validate the GIs of the 49 index genes, we compared the SNPs constituting the GIs 164 

of the 49 index genes associated with target gene expression with previous cis-eQTL 165 

mapping efforts. While similar sets of genes may be identified using a cis-eQTL approach, 166 

the utility of using multi-SNP GIs over single-SNP GIs (akin to cis-eQTLs) is shown in the 167 

increased predictive ability of multi-SNP GIs (Figure S3D), and thus in the number of 168 

predictive GIs. Only 4,910 single-SNP GIs were predictive of its corresponding index gene (F-169 

statistic > 10), compared to 6,600 multi-SNP instrumental variables. Of the 49 index genes 170 

corresponding to the 49 GIs, 47 genes (96.1%) were previously identified as harbouring a 171 

cis-eQTL in large subset of the whole blood transcriptome data we analysed here (N = 172 

2,116), using an independent analysis strategy
19

. Almost all of the corresponding GIs (98%, 173 

N = 46) were strongly correlated with the corresponding eQTL SNPs (R2 > 0.8). Similarly, 26 174 

of the 49 index genes (53%) were also reported as having a cis-eQTL effect in a much smaller 175 

set of whole blood samples (N = 338) part of GTEx
20

, 23 of which also correlated strongly 176 

with the corresponding eQTL-SNPs (R2 > 0.8). When considering all tissues in the GTEx 177 

project, we found 48 of 49 index genes were identified as harbouring a cis-eQTL in any of 178 

the 44 tissues measured. 179 

Next, we compared our identified effects with trans-eQTLs identified earlier in whole-blood 180 

samples
21

. First, we found 97 target genes identified here (67%) overlapped with those 181 

found by Joehanes et al., 19 of which had their corresponding GI and lead SNP in close 182 

proximity (< 1Mb, Figure S4), suggesting that the effects are indeed mediated by the index 183 

gene assigned using our approach. Testing for a cis-eQTL of those SNPs identified by 184 

Joehanes et al. on the nearby index genes, we found all 19 index genes indeed had at least 185 
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one nearby lead SNP that influenced its expression (P < 6 x 10
-4

, Table S4). This number 186 

increased to 31 at a look-up threshold for multiple testing in our analysis (P < 4.6 x 10
-6

), 187 

indicating that limited statistical power of both studies may lead to an underestimation of 188 

the overlap. 189 

As a last check, we investigated potential mediation effects of each of the 49 GIs by 190 

observed index gene expression (Figure 1), meaning the effect of a GI on target gene 191 

expression should diminish when correcting for the observed index gene expression. 192 

However, small effect sizes and considerable noise in both mediator and outcome lead to 193 

low statistical power to detect mediated effects
22,23

. Nevertheless, we found 105 of 156 194 

significant directed associations (67%) to show evidence for mediation (Bonferroni 195 

correction: P < 0.00031; Table S5). 196 

 197 

Exploration of directed networks 198 

To gain insight in the molecular function of 49 index genes affecting target gene expression, 199 

we used Gene Ontology (GO) to annotate our findings. The set of 49 index genes was 200 

overrepresented in the GO terms DNA Binding (P = 5 x 10
-8

) and Nucleic Acid Binding (P = 2.8 201 

x 10
-5

, Table S6), with 43.8% (N = 21) and 47.9% (N = 23) of genes overlapping with those 202 

gene sets, respectively. In line with this finding, we found a significant overrepresentation of 203 

transcription factors (N = 17; odds ratio = 5.7, P = 3.3 x 10
-7

) using a manually curated 204 

database of transcription factors
24

. We note that such enrichments are expected a priori 205 

and hence indirectly validate our approach. Of interest, several target genes of two 206 

transcription factors overlapped with those identified in previous studies
25,26

 (IKZF1: 27% of 207 

its target genes, N = 4; PLAGL1: 15% of its target genes, N = 5). Using a more lenient 208 

significance threshold corresponding to a look-up for each of these 17 transcription factors 209 

(thus correcting for only 10,781 potential target genes; P < 4.6 x 10
-6

), we identified 210 

overlapping target genes for an additional 3 transcription factors
25–28

 (CREB5, NFKB1, NKX3-211 

1) and a total of 38 TF-target gene pairs corresponding between our analysis and previous 212 

studies (Table S7). 213 

Finally, we explore the biological processes that are revealed by our analysis for several 214 

index genes that either are known transcription factors
24

 or affect many genes in trans. 215 

While these results are limited to Bonferroni-significant directed associations (P < 7 x 10
-10

, 216 

correcting for all possible combinations of the 6,600 index genes and 10,781 target genes), 217 

researchers can interactively explore the whole resource by means of a look-up at a much 218 

more lenient significance threshold (P < 2.9 x 10
-6

, testing for a gene to have an effect in 219 

trans, or being affected by other genes, totalling 17,381 tests (6,600 + 10,781)) using a 220 

dedicated browser (see URLs). 221 

 222 

Sentrin/SUMO-specific proteases 7 (SENP7) 223 

We identified 25 target genes to be affected in trans by sentrin/small ubiquitin-like modifier 224 

(SUMO)-specific proteases 7 (SENP7, Figure 3, Figure 4, Table 1), significantly expanding on 225 

the five previously suspected target genes resulting from an earlier expression QTL 226 

approach
29

. Increased SENP7 expression resulted in the upregulation of all but one of the 227 

target genes (96%). Remarkably, 23 of the 25 target genes affected by SENP7 are zinc finger 228 

protein (ZFP) genes located on chromosome 19. More specifically, 18 target genes are 229 

located in a 1.5Mb ZFP cluster mapping to 19q13.43 (Figure 3). ZFPs in this cluster are 230 

known transcriptional repressors, particularly involved in the repression of endogenous 231 

retroviruses
30

. Parallel to this, SENP7 has also been identified to promote chromatin 232 
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relaxation for homologous recombination DNA repair, specifically through interaction with 233 

chromatin repressive KRAB-Association Protein (KAP1, also known as TRIM28). KAP1 had 234 

already been implicated in transcriptional repression, especially in epigenetic repression and 235 

retroviral silencing
31,32

, although KAP1 had no predictive GI (F-statistic = 4.9). Therefore, it 236 

has been speculated SENP7 may also play a role in retroviral silencing
33

. Given the 237 

widespread effects of SENP7 on the transcription of chromosome 19-linked ZFPs involved in 238 

retroviral repression
30

, it corroborates a role of SENP7 in the repression of retroviruses, 239 

specifically through regulation of this ZFP cluster. SENP7 is not a TF and does not bind DNA, 240 

but considering it is a SUMOylation enzyme, it possibly has its effect on the ZFP cluster 241 

through deSUMOylation of KAP1
34

. 242 

 243 

SP110 nuclear body protein (SP110) 244 

In our genome-wide analysis, we found that the transcription factor SP110 nuclear body 245 

protein (SP110) influences three zinc finger proteins (Figure 3, Figure 4). During viral 246 

infections in humans, SP110 has been shown to interact with the Remodelling and Spacing 247 

Factor 1 (RSF1) and Activating Transcription Factor 7 Interacting Protein (ATF7IP), suggesting 248 

it is involved in chromatin remodelling
35

. Interestingly, all three of the genes targeted by 249 

SP110 are also independently influenced by SENP7, although SP110 shows opposite effects 250 

(Figure S5), and are located in the same ZFP gene cluster on chromosome 19. A specific 251 

look-up (thus relaxing the multiple testing burden; Figure 3b) for SP110 targets show six 252 

genes, all also independently affected by SENP7. This overlap of target genes supports the 253 

previous suggestion that SP110 is involved in the innate antiviral response
36

, presumably 254 

through regulation of the same ZPF cluster regulated by SENP7. 255 

 256 

Pleiomorphic adenoma gene-like 1 (PLAGL1) 257 

The index gene with the most identified target gene effects in trans is Pleiomorphic 258 

Adenoma Gene-Like 1 (PLAGL1, also known as LOT1, ZAC). PLAGL1 is a transcription factor 259 

and affected 33 genes, 29 of which are positively associated with PLAGL1 expression (88%, 260 

Figure 4). PLAGL1 is part of the imprinted HYMAI/ZAC1 locus, which has a crucial role in fetal 261 

development and metabolism
37,38

. This locus, and overexpression of PLAGL1 specifically, has 262 

been associated with transient neonatal diabetes mellitus
35,39

 (TNDM) possibly by reducing 263 

insulin secretion
40

. PLAGL1 is known to be a transcriptional regulator of PACAP-type I 264 

receptor
41

 (PAC1-R). PACAP, in turn, is a regulator of insulin secretion
42,43

. In line with these 265 

findings, we found several target genes to be involved in metabolic processes. Most notably, 266 

we identified MAPKAPK3 (MK3) and MAP4K2 to be upregulated by PLAGL1, previously 267 

identified as PLAGL1 targets
28

, and both part of the mitogen-activated protein kinase 268 

(MAPK) pathway. This pathway has been observed to be upregulated in type II diabetic 269 

patients (reviewed in 
44

). In addition, inhibition of MAPKAP2 and MAPKAP3 in obese, insulin-270 

resistant mice has been shown to result in improved metabolism
45

, in line with the 271 

association between upregulation of PLAGL1 and the development of TNDM. Furthermore, 272 

PLAGL1 may be implicated in lipid metabolism and obesity through its effect on IDI1, 273 

PNPLA1, JAK3, and RAB37 expression
46–49

. While not previously established as target genes, 274 

they are in line with the proposed role of PLAGL1 in metabolism
37,38

. 275 

 276 

Bcl-related protein A1 (BCL2A1) 277 

Increased expression of Bcl-related protein A1 (BCL2A1) downregulated all five identified 278 

target genes (Figure 4). BCL2A1 encodes a protein part of the B-cell lymphoma 2 (BCL2) 279 
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family, an important family of apoptosis regulators. It has been implicated in the 280 

development of cancer, possibly through the inhibition of apoptosis (reviewed in 
50

). One 281 

target gene, NEURL1, is known to cause apoptosis
51

, in line with its strong negative 282 

association with BCL2A1 expression. Similarly, CDKN1C was also downregulated by BCL2A1, 283 

and implicated in the promotion of cell death
52–55

. However, little is known about the 284 

strongest associated target gene, VMO1 (P = 1.5 x 10
-8

). It has been implicated in hearing, 285 

due to its highly abundant expression in the mouse inner ear
56

, where BCL2A1 may have a 286 

role in the development of hearing loss through apoptosis, since cell death is a known 287 

contributor to hearing loss in mice
57

. In line with its role in the inhibition of apoptosis, 288 

BCL2A1 overexpression has a protective effect on inner ear mechanosensory hair cell death 289 

in mice
58

. Lastly, the target gene CKB has also been implicated in hearing impairment in 290 

mice
59

 and Huntington’s disease
60

, further suggesting a role of BCL2A1 in auditory 291 

dysfunction. 292 

 293 

Mediation of target gene expression through local DNA methylation 294 

Previously, genetic variants have been found to influence DNA methylation in trans
29,61

. 295 

Methylation, in turn, can have a causal effect on gene expression (discussed in 
62

). This led 296 

us to hypothesize that the directed effects on target gene expression identified here could 297 

be mediated by changes in DNA methylation near those target genes. We investigated this 298 

hypothesis by first obtaining a single score per target gene by summarizing the methylation 299 

of nearby CpGs, similar to the construction of the GIs (see Methods), reflective of the local 300 

methylation landscape of the target gene. Next, we globally tested for mediation of the 301 

identified effects by the methylation scores using Sobel’s test
63

. Evidence for mediation by 302 

local changes in DNA methylation were found for 33 effects, pertaining to 8 index genes and 303 

31 target genes (Table S8). Most notably, the mediation analysis showed most of the SENP7 304 

effects on target gene expression are mediated by local changes in methylation (22 genes, 305 

88%). To further investigate which CpGs specifically are responsible for mediating those 33 306 

effects, we tested each CpG constituting the methylation scores separately, identifying 95 307 

CpGs. Most of the 95 CpGs lie adjacent to a CpG island (CGI), in so-called CGI shores
64,65

 (N = 308 

41, OR = 2.9, P = 1.3 x 10
-5

). This suggests regulation of several target genes is at least partly 309 

mediated by local changes in DNA methylation or correlated epigenomic markers. 310 

  311 
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DISCUSSION 312 

 313 

In this work, we report on an approach that uses population genomics data to generate a 314 

resource of directed gene networks. Our genome-wide analysis of whole-blood 315 

transcriptomes yields strong evidence for 49 index genes to specifically affect the expression 316 

of up to 33 target genes in trans. We suggest previously unknown functions of several index 317 

genes based on the identification of new target genes. Researchers can fully exploit the 318 

utility of the resource to look up trans-effects of a gene of interest using an interactive gene 319 

network browser while using an appropriate, more lenient significance threshold, instead of 320 

the strict significance threshold used in our genome-wide analysis.  321 

The identified directed associations provide novel mechanistic insight into gene function. 322 

Many of the 49 index genes affecting target gene expression are established transcription 323 

factors (TFs), or are known for having DNA binding properties, an anticipated observation 324 

supporting the validity of our analysis. The identification of non-TFs will in part relate to the 325 

fact that the effect of an index gene may regulate the activity of TFs, for example by post-326 

translational modification. This is illustrated by SENP7 that we observed to concertedly 327 

affect the expression of zinc finger protein genes involved in the repression of retroviruses, 328 

likely by deSUMOylation of the transcription factor KAP1
34

. Other mechanistic insights that 329 

can be distilled from these results include the potential involvement of BCL2A1 in auditory 330 

dysfunction, conceivably through the regulation of apoptosis. 331 

While observational gene expression data can be used to construct gene co-expression 332 

networks
60

, which is sometimes complemented with additional experimental information
28

, 333 

such an approach lacks the ability to assign causal directions. Experimental approaches 334 

using CRISPR-cas9 coupled with single-cell technology
66–68

 are in principle able to 335 

demonstrate causality at a large scale, but only in vitro, while the advantage of 336 

observational data is that it reflects in vivo situations. These experimental approaches 337 

currently rely on extensive processing of single-cell data that is associated with high 338 

technical variability
66

, complicating the construction of specific gene-gene associations. In 339 

addition, off-target effects of CRISPR-cas9 cannot be excluded
69

, potentially influencing the 340 

interpretation of these experiments. Finally, such efforts are currently limited in the number 341 

of genes tested
66–68

, whereas we were able to perform a genome-wide analysis. Hence, 342 

experimental and population genomics approaches are complementary in identifying causal 343 

gene networks. 344 

Traditional trans-eQTL studies aim to find specific genetic loci associated with distal changes 345 

in gene expression
21,70

. The limitation of this approach is that they are not designed to 346 

assign the specific causal gene responsible for the trans-effect because they do not control 347 

for LD and local pleiotropy (a genetic locus affecting multiple nearby genes). Hence, our 348 

approach enriches trans-eQTL approaches by specifying which index gene induces changes 349 

in target gene expression. However, it does not detect trans-effects independent of effects 350 

on local gene expression. In addition, identification of the causal path using a trans-eQTL 351 

approach is difficult to establish. Testing for mediation through local changes in 352 

expression
23,71

 may be limited in statistical power, as these approaches are designed to only 353 

test the mediation effect of one lead SNP
23

. 354 

The application of related analysis methods was recently used to infer associations between 355 

gene expression and phenotypic outcomes (instead of gene expression as we did here). Two 356 

studies first constructed multi-marker GIs in relatively small sample sets to then apply these 357 

GIs in large datasets without gene expression data
8,9

. A different, summary-data-based 358 
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Mendelian randomization (SMR) approach identifies genes associated with complex traits 359 

based on publicly available GWAS and eQTL catalogues
10

. However, neither of these 360 

approaches take LD and pleiotropic effects into account, led to many neighbouring, non-361 

specific effects
8–10

. We show that correcting for these LD and local pleiotropy will aid in the 362 

identification of the causal gene, as opposed to the identification of multiple, neighbouring 363 

genes, analogous to fine mapping in GWAS. Furthermore, the use of eQTL and GWAS 364 

catalogues are usually the result of genome-wide analyses, where only statistically 365 

significant variants are taken into account. Here, we use the full genetic landscape 366 

surrounding a gene, thereby maximizing the predictive ability of expression measurements 367 

by our GIs
8
. While we have used our genome-wide approach to identify directed gene 368 

networks, we note this method may also be used to annotate trait-associated variants with 369 

potential target genes, either by using individual level data
8,9

, or by using SMR
10

. 370 

The analysis approach presented here relies on using GIs of expression of an index gene as a 371 

causal anchor, an approach akin to Mendelian randomization
11

. While GIs could provide 372 

directionality to bi-directional associations in observational data, genetic variation generally 373 

explains a relatively small proportion of the variation in expression (Figure S2A). The GIs for 374 

index gene expression identified here are no exception, significantly limiting statistical 375 

power of similar approaches
72,73

. Increased sample sizes and improvement on the prediction 376 

of index gene expression will help in identifying more target genes. 377 

Our current analysis strategy aims for causal inference, obviating LD and local pleiotropic 378 

effect by correcting for the GIs of nearby genes. However, we only corrected for GIs of 379 

genes within 1 Mb of the current index gene, leaving the possibility of pleiotropic effects 380 

beyond this threshold. For example, the GI of an index gene may influence both the 381 

expression of the index gene and another gene, located outside of the 1 Mb window, where 382 

the induced changes in that genes’ expression are the causal factor of the identified target 383 

genes. A related problem arises when a shared genetic component between neighbouring 384 

index genes causes all of them to associate with a single distant target gene, hindering the 385 

identification of the index gene responsible for the induced trans-effect. By correcting for 386 

the GI of nearby genes, these potentially biologically relevant effects are lost (Figure 1). 387 

As many genetic variants have been shown to affect methylation in trans
29,61

, we 388 

hypothesized that the identified trans-effects here may be mediated by target gene 389 

methylation. A limited number of directed associations show evidence for mediation by 390 

target gene methylation. This is in line with earlier observations regarding a limited overlap 391 

between eQTLs and meQTLs
61

, and suggests changes in transcriptional activity may not 392 

always be reflected by altered methylation levels
74

. Alternatively, long-range effects
75

, or 393 

other, uncorrelated epigenetic processes could act as a mediator. Furthermore, a 394 

bidirectional interplay between DNA methylation and gene expression possibly makes their 395 

relationship more intricate than previously appreciated
71

. 396 

In conclusion, we present a genome-wide approach that identifies causal effects of gene 397 

expression on distal transcriptional activity in population genomics data and showcase 398 

several examples providing new biological insights. The resulting resource is available as an 399 

interactive network browser that can be utilized by researchers for look-ups of specific 400 

genes of interest (see URLs). 401 

402 
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Methods 403 

 404 

Cohorts 405 

The Biobank-based Integrative Omics Study (BIOS, Additional SI1) Consortium comprises six 406 

Dutch biobanks: Cohort on Diabetes and Atherosclerosis Maastricht
76

 (CODAM), LifeLines-407 

DEEP
77

 (LLD), Leiden Longevity Study
78

 (LLS), Netherlands Twin Registry
79,80

 (NTR), 408 

Rotterdam Study
81

 (RS), Prospective ALS Study Netherlands
82

 (PAN). The data that were 409 

analysed in this study came from 3,072 unrelated individuals (Supplementary Table 1). 410 

Genotype data, DNA methylation data, and gene expression data were measured in whole 411 

blood for all samples. In addition, sex, age, and cell counts were obtained from the 412 

contributing cohorts. The Human Genotyping facility (HugeF, Erasmus MC, Rotterdam, The 413 

Netherlands, http://www.blimdna.org) generated the methylation and RNA-sequencing 414 

data. 415 

 416 

Genotype data 417 

Genotype data were generated within each cohort. Details on the genotyping and quality 418 

control methods have previously been detailed elsewhere (LLD: Tigchelaar et al.
77

; LLS: 419 

Deelen et al.
83

; NTR: Lin et al.
84

; RS: Hofman et al.
81

; PAN: Huisman et al.
82

. 420 

For each cohort, the genotype data were harmonized towards the Genome of the 421 

Netherlands
85

 (GoNL) using Genotype Harmonizer
86

 and subsequently imputed per cohort 422 

using Impute2
87

 and the GoNL reference panel
85

 (v5). We removed SNPs with an imputation 423 

info-score below 0.5, a HWE P < 10
-4

, a call rate below 95% or a minor allele frequency 424 

smaller than 0.01. These imputation and filtering steps resulted in 7,545,443 SNPs that 425 

passed quality control in each of the datasets. 426 

 427 

Gene expression data 428 

A detailed description regarding generation and processing of the gene expression data can 429 

be found elsewhere
19

. Briefly, total RNA from whole blood was deprived of globin using 430 

Ambion’s GLOBIN clear kit and subsequently processed for sequencing using Illumina’s 431 

Truseq version 2 library preparation kit. Paired-end sequencing of 2x50bp was performed 432 

using Illumina’s Hiseq2000, pooling 10 samples per lane. Finally, read sets per sample were 433 

generated using CASAVA, retaining only reads passing Illumina’s Chastity Filter for further 434 

processing. Data were generated by the Human Genotyping facility (HugeF) of ErasmusMC 435 

(The Netherlands, see URLs). Initial QC was performed using FastQC (v0.10.1), removal of 436 

adaptors was performed using cutadapt
88

 (v1.1), and Sickle
89

 (v1.2) was used to trim low 437 

quality ends of the reads (minimum length 25, minimum quality 20). The sequencing reads 438 

were mapped to human genome (HG19) using STAR
90

 (v2.3.0e). 439 

To avoid reference mapping bias, all GoNL SNPs (http://www.nlgenome.nl/?page_id=9) with 440 

MAF > 0.01 in the reference genome were masked with N. Read pairs with at most 8 441 

mismatches, mapping to as most 5 positions, were used. 442 

Gene expression quantification was determined using base counts
19

. The gene definitions 443 

used for quantification were based on Ensembl version 71, with the extension that regions 444 

with overlapping exons were treated as separate genes and reads mapping within these 445 

overlapping parts did not count towards expression of the normal genes. 446 

For data analysis, we used counts per million (CPM), and only used protein coding genes 447 

with sufficient expression levels (median log(CPM) > 0), resulting in a set of 10,781 genes. To 448 
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limit the influence of any outliers still present in the data, the data were transformed using a 449 

rank-based inverse normal transformation within each cohort. 450 

 451 

DNA methylation data 452 

The Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA, USA) was used to bisulfite-453 

convert 500 ng of genomic DNA, and 4 μl of bisulfite-converted DNA was measured on the 454 

Illumina HumanMethylation450 array using the manufacturer’s protocol (Illumina, San 455 

Diego, CA, USA). Preprocessing and normalization of the data were done as described 456 

earlier
91

. In brief, IDAT files were read using the minfi R package
92

, while quality control (QC) 457 

was performed using MethylAid
93

. Filtering of individual measurements was based on 458 

detection P-value (P < 0.01), number of beads available (≤ 2) or zero values for signal 459 

intensity, followed by the removal of ambiguously mapped probes
94

. Normalization was 460 

done using Functional Normalization
95

 as implemented in the minfi R package
92

, using five 461 

principal components extracted using the control probes for normalization. All samples or 462 

probes with more than 5% of their values missing were removed. The final dataset consisted 463 

of 440,825 probes measured in 3,072 samples. Similar to the RNA-sequencing data, we also 464 

transformed methylation data using a rank-based inverse normal transformation within 465 

each cohort, to limit the influence of any remaining outliers. 466 

 467 

Constructing a local genetic instrumental variable for gene expression 468 

We started by constructing genetic instruments (GIs) for the expression of each gene in our 469 

data. We first split up the genotype and RNA-sequencing data in a training set (one-third of 470 

all samples, N = 1,021) and a test set (two-thirds of all samples, N = 2,051), making sure all 471 

cohorts and both sexes were evenly distributed over the train and test sets (57% female), as 472 

well as an even distribution of age (mean = 56, sd = 14.8). Using the training set only, we 473 

built a GI for each gene separately that best predicts its expression levels using lasso
15

, using 474 

nearby genetic variants only (either within the gene or within 100kb of a gene’s TSS or TES), 475 

while correcting for both known (cohort, sex, age, cell counts) and unknown covariates. 476 

Estimation of the unknown covariates was done by applying cate
16

 to the observed 477 

expression data, leading to 5 unknown latent factors used. Those factors, together with the 478 

known covariates, were left unpenalised. To estimate the optimal penalization parameter λ, 479 

we used five-fold cross-validation as implemented in the R package glmnet
96

. The obtained 480 

GI consists of a weighted linear combination of the individual dosage values, weighted by 481 

the shrunken regression coefficients, yielding one value per individual for each GI. We then 482 

evaluated its predictive ability in the test set by employing Analysis of Variance (ANOVA) to 483 

evaluate the added predictive power of the GI over the covariates and neighbouring GIs 484 

(within 1Mb), as reflected by the F-statistic (F > 10). 485 

 486 

Testing for trans-effects  487 

Using linear regression, we tested for an association between each GI and the expression of 488 

potential target genes in trans (> 10Mb), while correcting for known (cohort, sex, age, cell 489 

counts) and unknown covariates, as well as GIs of nearby genes (< 1Mb). Missing 490 

observations in the measured red blood cell count (RBC) and white blood cell counts (WBC) 491 

were imputed using the R package pls, as described earlier
6
. Any inflation or bias in the test-492 

statistics was estimated and corrected for using the R package bacon
6
. Correction for 493 

multiple testing was done using Bonferroni (P < 7 x 10
-10

). The resulting networks were 494 

visualized using the R packages network and ndtv. 495 
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 496 

Mediation analysis 497 

To identify CpGs mediating the effect of the genetic instrumental variable (GI) on the target 498 

gene, we first summarised the local methylation landscape around each target gene using a 499 

method similar to the creation of the GIs. We used lasso to predict target gene expression 500 

based on all nearby CpGs in the train set (either located in the target gene or within 250 Kb), 501 

using five-fold cross-validation to optimize the penalization parameter λ. This resulted in 502 

one score reflecting this methylation landscape, whose predictive ability of the target gene’s 503 

expression we assessed using ANOVA in the test set (F > 10). 504 

In order to assess the mediation of the GI on its target gene through DNA methylation, we 505 

employed the Sobel test
63

. This method is based on the notion that the influence of an 506 

independent variable (the GI) on a dependent variable (expression of the target gene) 507 

should diminish, or even disappear, when controlling for a mediator (methylation score). 508 

 509 

Enrichment analyses 510 

Functional analysis of gene sets was performed for GO Molecular Function annotations 511 

using DAVID
97

, providing a custom background consisting of all genes with a predictive GI (F 512 

> 10). Fisher’s exact test was employed to specifically test for an enrichment of transcription 513 

factors using manually curated database of transcription factors
24

. 514 

 515 

516 
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URLs 517 

Look-ups can be performed using our interactive gene network browser at http://bios-518 

vm.bbmrirp3-lumc.surf-hosted.nl:8008/NetworkBrowser/. Data were generated by the 519 

Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands 520 

(http://www.glimDNA.org). Webpages of participating cohorts: LifeLines, 521 

http://lifelines.nl/lifelines-research/general; Leiden Longevity Study, http://www.healthy-522 

ageing.nl/ and http://www.leidenlangleven.nl/; Netherlands Twin Registry, 523 

http://www.tweelingenregister.org/; Rotterdam Studies, 524 

http://www.erasmusmc.nl/epi/research/The-Rotterdam-Study/; Genetic Research in 525 

Isolated Populations program, http://www.epib.nl/research/geneticepi/research.html#gip; 526 

CODAM study, http://www.carimmaastricht.nl/; PAN study, http://www.alsonderzoek.nl/. 527 

 528 

Accession codes 529 

Raw data were submitted to the European Genome-phenome Archive (EGA) under 530 

accession EGAS00001001077. 531 
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 788 
 789 

Figure 1 790 

Diagram showing the presumed relations between each variable. A directed arrow indicates 791 

the possibility of a causal effect. For instance, the “index genetic instrument” represents 792 

nearby SNPs with a possible effect on the nearby gene (analogous to cis-eQTLs). A double 793 

arrow means the possibility of a causal effect in either direction. The index gene, for 794 

example, could have a causal effect on the target gene, or vice versa. We aim to assess the 795 

presence of a causal effect of the index gene on the target gene using genetic instruments 796 

(GIs) that are free of non-genetic confounding. To do this, we must block the back-door path 797 

from the index GI through the GIs of nearby genes to the target gene. This back-door path 798 

represents linkage disequilibrium and local pleiotropy and is precluded by correcting for the 799 

GIs of nearby genes. Correction for observed gene expression (either of the index gene or of 800 

nearby genes) does not block this back-door path, but instead possibly leads to a collider 801 

bias, falsely introducing a correlation between the index GI and the target gene. 802 
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 804 
 805 

Figure 2 806 

Gene networks showing the directed gene-gene association between genes when not taking 807 

LD and local pleiotropy into account (A) and when these are corrected for (B). Index genes 808 

identified as a transcription factor are indicated by red circles. Blue circles indicate index 809 

genes with DNA binding properties, but are not a known transcription factor
24

. Green circles 810 

indicate other index genes. Light grey circles indicate target genes. The uncorrected analysis 811 

shows 134 index genes (colored circles) influencing 276 target genes, where several 812 

neighbouring index genes seemingly influencing the same target gene, which is reflective of 813 

a shared genetic component of those index genes. Specifically, 65 target genes are 814 

associated with multiple index genes which lie in close proximity to one another. The 815 

number of index genes drop sharply from 134 to 49 (2.7-fold decrease) when do taking LD 816 

and local pleiotropy into account. The number of target genes also drops, from 276 to 144 817 

(1.9-fold decrease). 818 
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 820 
 821 

Figure 3 822 

SENP7 (chromosome 3) and SP110 (chromosome 2) affect a zinc finger cluster located on 823 

chromosome 19 involved in retroviral repression, among others. Blue lines indicate a 824 

positive association (upregulation), red lines indicate a negative association 825 

(downregulation). Colouring indicates consistent opposite effects of SENP7 and SP110 on 826 

their shared target genes. 827 
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 829 
 830 

Figure 4 831 

Identified target genes for SENP7 (A), SP110 (A), PLAGL1 (B), and BCL2A1 (C). Starred and 832 

italic gene names indicate previously reported target genes
25–28

. Blue and red lines indicate 833 

positive and negative associations, respectively; line thickness indicates strength of the 834 

association. 835 
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 837 
 838 

Figure S1 839 

Diagram showing the number of genes and genetic instruments (GIs) in each stage of the 840 

analysis. 841 
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 843 
 844 

Figure S2 845 

Genetic instruments (GIs) account for a moderate amount of index gene expression 846 

variation explained, and are strongly correlated over small distances. A) The proportion of 847 

variance (R
2
, x-axis) in index gene expression explained by the corresponding genetic 848 

instrumental variable (GI). The blue line indicates the uncorrected R
2
, or the total variance 849 

explained by the GI. The red line indicates the R
2
corrected for the GIs of neighbouring index 850 

genes, or the proportion of variance explained specifically by the current GI. The proportion 851 

of variance explained generally is fairly modest. B) The correlation between genetic 852 

instruments (GIs, y-axis) of different genes strongly decreases as the distance (x-axis) 853 

between the corresponding genes increases. The median R
2
 between any two GIs 854 

corresponding to genes located at least 10Mb (definition of trans, indicated by red dotted 855 

line) away from each other is 1.5 x 10
-4

. 856 
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 858 
 859 

Figure S3 860 

Several checks indicate the stability of our analysis. A) Quantile-quantile plot of the 861 

expected –log10(P-values) (x-axis) and observed –log10(P-values) (y-axis) resulting from 862 

associating all GIs with known cell counts. The observed P-values follow the distribution 863 

expected under the null hypothesis, indicative of no association between the GIs and known 864 

cell counts. B) All 156 directed associations remained after further adjustment for nearby 865 

genetic variants (< 1Mb) reported to influence blood composition
17,18

. Test statistics before 866 

(x-axis) and after adjustment (y-axis) for such nearby SNPs are all along the diagonal, 867 

indicating the reported SNPs do not confound the analysis. C) Correcting for latent factors 868 

leads to slightly more significant results. Depicted are the test-statistics in the original 869 

analysis, corrected for latent factors (x-axis), and the test-statistics without correction for 870 

these latent factors (y-axis). D) Multi-SNP GIs outperform single-SNP GIs in terms of 871 

predictive ability of index gene expression. The F-statistic calculated in the test set using the 872 

main, strongest associated SNP in the GIs is plotted against the F-statistic calculated using 873 

the full GI. Using the full GI results in 6,600 GIs predictive of the corresponding index gene 874 

(F-statistic > 10), whereas a single-SNP approach results in 4,910 predictive GIs. 875 
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 877 
 878 

Figure S4 879 

Diagram comparing the identified effects in the current analysis and those identified by an 880 

earlier trans-eQTL mapping effort
21

. 881 
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 883 
 884 

Figure S5 885 

SENP7 and SP110 have shared, but opposite effects on the zinc finger protein cluster on 886 

chromosome 19. A) Test-statistics for SENP7 and SP110 show consistent opposite effects on 887 

the ZNF-cluster. B, C) Test-statistics of the directed effects of SENP7 and SP110 on target 888 

genes, correcting for each other’s genetic instruments (GIs). The unchanged test-statistics 889 

indicate their effects are independent. D) Illustrations of shared, but opposite effects. 890 
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