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Abstract

Computationally modeling changes in binding free energies upon mutation (inter-

face ∆∆G) allows large-scale prediction and perturbation of protein-protein interac-

tions. Additionally, methods that consider and sample relevant conformational plas-

ticity should be able to achieve higher prediction accuracy over methods that do not.

To test this hypothesis, we developed a method within the Rosetta macromolecular

modeling suite (�ex ddG) that samples conformational diversity using �backrub� to

generate an ensemble of models, then applying torsion minimization, side chain repack-

ing and averaging across this ensemble to estimate interface ∆∆G values. We tested

our method on a curated benchmark set of 1240 mutants, and found the method out-

performed existing methods that sampled conformational space to a lesser degree. We

observed considerable improvements with �ex ddG over existing methods on the subset

of small side chain to large side chain mutations, as well as for multiple simultaneous

non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen inter-

faces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta

energy function; the resulting non-linear reweighting model improved agreement with

experimentally determined interface DDG values, but also highlights the necessity of

future energy function improvements.

Introduction

Protein-protein interactions underlie essentially all biological processes, including signal

transduction and antibody-antigen recognition. Many protein-protein interfaces are sen-

sitive to mutations that can alter interaction a�nity and speci�city. In fact, mutations at

protein-protein interfaces have been reported to be overrepresented within disease-causing

mutations,1 highlighting the central importance of these interactions to biology and human

health. A su�ciently accurate computational method capable of predicting mutations that

strengthen or weaken known protein-protein interactions would hence serve as a useful tool

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221689doi: bioRxiv preprint 

https://doi.org/10.1101/221689
http://creativecommons.org/licenses/by/4.0/


to dissect the role of speci�c protein-protein interactions in important biological processes.

Coupled with state-of-the-art methods for protein engineering and design, such a method

would also enhance our ability to create new and selective interactions, enabling the devel-

opment of improved protein therapeutics, protein-based sensors, and protein materials.

Several prior methods have been developed to predict changes in protein-protein binding

a�nity upon mutation using di�erent approaches to estimating energetic e�ects (scoring) and

modeling structural changes (sampling). Common approaches include weighted energy func-

tions that seek to describe physical interactions underlying protein-protein interactions,2,3

statistical and contact potentials,4�7 a combination of these approaches,8,9 graph-based rep-

resentations,10 methods that sample backbone structure space locally around mutations,11

and machine learning approaches.12

We set out to develop and assess methods for estimating experimentally determined

changes in binding free energy after mutation (interface ∆∆G) within the Rosetta macro-

molecular modeling suite. Rosetta is freely available for academic use, and allows com-

bination of interface ∆∆G predictions with Rosetta's powerful protein design capabili-

ties, which have proven successful in a variety of applications.13,14 Prior projects have ap-

plied Rosetta predictions to dissect determinants of binding speci�city and promiscuity,15,16

enhance protein-protein binding a�nities,17,18 and to design modi�ed19 and new interac-

tions,20�22 but no prior benchmarking e�ort has quantitatively assessed the performance of

predicting changes in binding free energy in Rosetta on a large, diverse benchmark dataset,

in part because such datasets have only become available more recently. The current state-of-

the-art Rosetta ∆∆G method, ddg_monomer,23 has proven e�ective at predicting changes

in stability of monomeric proteins after mutation, but had not yet been tested at predicting

change of binding free energies in protein-protein complexes. Prior �computational alanine

scanning� ∆∆G methods were benchmarked on mutations in protein-protein interfaces, fo-

cusing on mutations to alanine.24�26 The original Rosetta alanine scanning method24 did not

sample backbone degrees of freedom, which is a �rst-order approximation for mutations to
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alanine (that are not expected to cause large backbone perturbations27), but less likely to be

predictive for mutations to larger side chains which might require some degree of backbone

rearrangement to accommodate the change. Inclusion of recent Rosetta energy function and

sampling method developments, including methods that attempt to more aggressively sam-

ple conformational space, has not resulted in signi�cant improvement to the alanine scanning

method.26

We sought to create a method that would take into account aspects of the conformational

plasticity of proteins by representing structures as an ensemble of individual full-atom models

to explore biologically relevant and accessible portions of conformational space near the

crystallographically determined input structures. Ensemble representations have previously

been shown to be e�ective at predicting changes in protein stabilities after mutation and

at predicting the e�ects of mutation on protein-protein binding a�nities,28 as well as at

improving ∆Gbinding calculations between kinases and their inhibitors.29

We chose to sample conformational plasticity using the �backrub� protocol implemented

in Rosetta.30 The backrub method samples local side chain and backbone conformational

changes, similar to those suggested to underlie observed conformational heterogeneity in

high-resolution crystal structures,31 and to accommodate evolved and designed mutations.32

Backrub ensembles have been demonstrated to recapitulate properties of proteins that have

been experimentally determined, such as side chain NMR order parameters,33 tolerated se-

quence pro�les at protein-protein34 and protein-peptide interfaces,35,36 and conformational

variability between protein homologs.37 Backrub has also proved e�ective in design appli-

cations, such as the redesign of protein-protein interfaces19 and recapitulation of mutations

that alter ligand-binding speci�city.38 When compared to ensembles generated via molec-

ular dynamics simulations or the �PertMin� method,39 backrub ensembles were shown to

be the only ensembles capable of generating higher diversity (as measured by RMSD) be-

tween output models than from output models to the original input crystal structure. This

observation suggests that backrub could be uniquely suited to produce diverse ensembles
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that e�ectively explore the local conformational space around an input structure.39 Taken

together, we hypothesized that these previously demonstrated properties of backrub ensem-

bles would also make them an e�ective representation of near-native conformational states

for use in predicting interface ∆∆G values.

Methods

Benchmark datasets

Developing and assessing the accuracy of a new method to predict changes in binding free

energy after mutation requires a large and diverse benchmark set covering single mutations

to all amino acid types, multiple mutations, and mutations across a variety of protein-protein

interfaces. To facilitate comparisons to other methods and to avoid biases speci�c to our

approach, we chose to use an existing benchmark dataset created by Dourado and Flo-

res11 during the development of their ZEMu (Zone Equilibration of Mutants) method. The

ZEMu dataset was curated from the larger SKEMPI database40 by avoiding a bias towards

complexes in which a single position is repeatedly mutated, experimental data that are not

peer-reviewed, redundancy (duplicate experimental values), mutations outside of interfaces,

mutations involved in crystal contacts, and experimental ∆∆G values for which wild-type

and mutant conditions (such as pH) varied. Con�dence in the �known� experimental ∆∆G

values is important, as it has been pointed out that the experimental methodology used can

have a strong e�ect on the performance of predictors of changes in binding free energy.41

The ZEMu dataset was also curated to include a range of both stabilizing and destabilizing

mutants, small side chain to large side chain mutations, single and multiple mutations, and a

diversity of complexes. Small-to-large mutations are de�ned as those dataset cases where all

mutation(s) are at positions where the residue side chain increases in van der Waals volume

post-mutation.42

After a review of the literature from which the known experimental ∆∆G values origi-
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Table 1: ZEMu dataset composition

n Name

1240 Complete dataset
748 Single mutation to alanine
273 Multiple mutations
130 Small-to-large mutation(s)
45 Multiple mutations, none to alanine

nated, we removed one data point from the 1254 point ZEMu set that we could not match

to the originally reported a�nity value. We also removed 5 mutations we determined to be

duplicates, along with 8 mutations that were reverse mutations of other data points, leaving

us with a test set of 1240 mutations (Table 1). We used SAbDab43 to de�ne complexes

that contained at least one antibody binding partner. Our version of the ZEMu dataset is

available in the Supporting Information as Dataset S1. All ∆∆G predictions described in

the paper are available in the Supporting Information.

Rosetta implementation and prediction protocol

Our protocol, called ��ex ddG�, is implemented within the RosettaScripts interface to the

Rosetta macromolecular modeling software suite,44 which makes the protocol easily adapt-

able to future improvements and energy function development. The method can be run using

a Rosetta Scripts XML that is available in the Supporting Information as Listing 1. Version

numbers of tested software are available in Table S1.

Flex ddG method steps are outlined in Fig. 1. Step 1: The protocol begins with an

initial minimization (on backbone φ/ψ and side chain χ torsional degrees of freedom, us-

ing the �lbfgs_armijo_nonmonotone� minimization algorithm option) of the input crystal

structure of the wild-type protein complex. This (and later) minimizations are performed

with constraints that harmonically restrain pairwise atom distance to their values in the

input crystal structure. Minimization is run until convergence (absolute score change upon

minimization of less than one REU (Rosetta Energy Unit)). Step 2: Starting from the

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2017. ; https://doi.org/10.1101/221689doi: bioRxiv preprint 

https://doi.org/10.1101/221689
http://creativecommons.org/licenses/by/4.0/


Wild-Type Mutant

 Step 0 
Input starting structure.

Generate pairwise atom constraints. 

 Step 1 - Minimize 
Global minimization of backbone and side chain torsions.

Pairwise atom constraints from Step 0. 

 1x

 Step 2 - Backrub 
Local sampling of backbone and side chain degrees of freedom of pivot residues,

defined as those with neighbor atoms (C-β) within 8Å of mutation positions. 

 1x

Step 3a - Pack
Optimize side chains globally

on wild-type model.
Generate pairwise atom constraints. 

 50x

 Step 3b- Mutate and Pack 
Optimize side chains globally

on mutant model
(using the mutant sequence).

Generate pairwise atom constraints. 

 50x

Step 4a - Minimize
Global minimization 

of backbone and side chains torsions.
Pairwise atom constraints from Step 3a.

 50x

Step 4b - Minimize
Global minimization 

of backbone and side chains torsions.
Pairwise atom constraints from Step 3b.

 50x

Step 5a - Score
Score wild type complex and unbound partners

using Rosetta's all-atom energy function.

 50x

Step 5b - Score
Score mutant complex and unbound partners

using Rosetta's all-atom energy function.

 50x

 Step 6 
Calculate interface ΔΔG score.

 50x  50x

Figure 1: Schematic of the �ex ddG protocol method.
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minimized input structure, the backrub method in Rosetta30 is used to create an ensemble

of models. In brief, each backrub move is undertaken on a randomly chosen protein segment

consisting of three to twelve adjacent residues in the neighborhood of any mutated posi-

tion. The mutation neighborhood is de�ned by �nding all residues with a C-β atom (C-α

for glycines) within 8 Å of any mutant position, then adding this residue and its adjacent

N and C-terminal residues to the list of neighborhood residues. All atoms in the backrub

segment are rotated locally about an axis de�ned as the vector between the endpoint C-α

atoms. Backrub is run at a temperature of 1.2 kT, for up to 50,000 backrub Monte Carlo

trials/steps (Table S2 shows that using a kT of 1.6 gives similar results to a kT of 1.2). Up

to 50 output models are generated. Step 3A: For each of the 50 models in the ensemble

output by backrub, the Rosetta �packer� is used to optimize side chain conformations for the

wild-type sequence using discrete rotameric conformations45 and simulated annealing. The

packer is run with the multi-cool annealer option,46 which is set to keep a history of the 6

best rotameric states visited during annealing. Step 3B: Independently and in parallel to

step 3A, side chain conformations for the mutant sequence are optimized on all 50 models,

introducing the mutation(s). Step 4A: Each of the 50 wild-type models is minimized, again

adding pairwise atom-atom constraints to the input structure. Minimization is run with

the same parameters as in step 1; the coordinate constraints used in this step are taken

from the coordinates of the Step 3A model. Step 4B: As Step 4A, but for each of the

50 mutant models. Step 5A: Each of the 50 minimized wild-type models are scored in

complex, and the complex partners are scored individually. The scores of the split, unbound

complex partners are obtained simply by moving the complex halves away from each other.

No further minimization or side chain optimization is performed on the unbound partners

before scoring. Step 5B: In the same fashion as Step 5A, each of the 50 minimized mutant

models are scored in complex, and the complex partners are scored individually. Step 6:

The interface ∆∆G score is produced via Eq. 1:
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∆∆Gbind = ∆GMUT
bind −∆GWT

bind

= (∆GMUT
complex −∆GMUT

partnerA −∆GMUT
partnerB)

− (∆GWT
complex −∆GWT

partnerA −∆GWT
partnerB)

(1)

We evaluate performance of the protocol by comparing predicted ∆∆G scores to known

experimental values, using Pearson's correlation (R), Fraction Correct (FC), and Mean Ab-

solute Error (MAE). Fraction Correct is de�ned as the number of cases in the dataset cate-

gorized correctly as stabilizing, neutral, or destabilizing, divided by the total number of cases

in the dataset. Stabilizing mutations are de�ned as those with a ∆∆G <= -1.0 kcal/mol,

neutral as those with -1.0 kcal/mol < ∆∆G < 1.0 kcal/mol, and destabilizing as those with

∆∆G >= 1.0 kcal/mol.

MAE (Mean Absolute Error) is de�ned in Eq. 2 as:

MAE =
1

n

n∑
i=1

|yi − xi| =
1

n

n∑
i=1

|ei| (2)

where yi are the predicted ∆∆G values, xi are the known, experimentally determined

values, and ei is the prediction error.

Rosetta energy function

We utilized Rosetta's Talaris45,47,48 all-atom energy function for the modeling steps. As we

do not modify our models of the unbound state, several terms of the Rosetta energy function

will cancel out in the �nal ∆∆G scoring because the ∆G of folding score of the unbound

partners is subtracted from the total score of the complex (Eq. (1)). After subtraction,

seven score terms remain, and combined, become the �nal interface ∆∆G score, dominated

by solvation (fa_sol using an implicit solvation model49), hydrogen bonding and electrostat-

ics47,48,50 (hbond_sc: side chain-side chain hydrogen bonds; hbond_bb_sc: hydrogen bonds
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between backbone atoms and side chain atoms; hbond_lr_bb: long-range hydrogen bond

interactions between backbone atoms; fa_elec: Coulomb electrostatics), and Lennard-Jones

atomic packing interactions (fa_rep and fa_atr: repulsive and attractive components of the

Lennard-Jones potential).

Score analysis

To investigate potential sources of prediction error on an individual score term basis, we

used a generalized additive model51 approach to �t Rosetta's predicted ∆∆G values to

experimentally known values. First, we apply an unbiased logistic scaling to individual score

terms,

ha,b(x) =
2ea

1 + e−xeb
− ea,

where a is the scaling range of the score, and b is the steepness of the sigmoid scaling. Both

parameters are transformed through an exponential to ensure non-negativity. The scaling

function h does not introduce bias, that is, hθ(0) = 0 for any θ. The scoring model results

in a generalized additive model (GAM) over the M score terms,

f(x) =
M∑
j=1

hai,bi
(x).

The parameters θ = (aj, bj)
M
j=1 for the score terms were simultaneously sampled using a

random walk Metropolis-Hastings MCMC algorithm (the mhsample function in Matlab)

assuming a Gaussian likelihood as the target distribution

p(θ;y) = N(f(xi)|yi, σ
2
n)

with a noise variance set to σ2
n = 1.0, and where (xi,yi)

N
i=1 are the empirical observations yi

that correspond to the protein score terms xi, respectively. We sample for 1000 samples with

a burn-in set to 1000 samples and a thinning parameter of 20. The proposal distribution was
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selected to be a symmetric uniform distribution such that [a(s+1), b(s+1)] ∼ U(a(s) ± 2, b(s) ±

2). The resulting MCMC sample represents all logistics score scalings that reproduce the

empirical measurements assuming an error model with noise variance σ2
n.

Results and discussion

The overall performance of the protocol is summarized in Table 2. We compare 4 prediction

methods: (a) our �ex ddG backrub ensemble method, (b) the prior state-of-the-art Rosetta

methodology, ddg_monomer,23 (c) a control version of our �ex ddG protocol which omits

the backrub ensemble generation step, leaving only the minimization and packing steps, and

(d) published data from the ZEMu (zone equilibration of mutants) method.11 Data split by

input protein-protein complex are shown in Table S3.

The new �ex ddG method outperforms the comparison methods on the complete dataset

in each of the correlation, MAE, and fraction correct metrics (Table 2). In particular, we see

a large increase in performance relative to the other methods on the small-to-large subset

of mutations. This is in accordance with our expectations that backrub ensembles should

be able to sample small backbone conformational adjustments required to accommodate

changes in amino acid residue size. Notably, application of backrub ensembles performs

better than other methods that include backbone minimization steps only, including the

current state-of-the-art Rosetta ddg_monomer method. On the small-to-large mutations

subset, the ddg_monomer method achieves a Pearson correlation of only 0.31 compared to

0.65 with �ex ddg.

Performance of the �ex ddG method on the subset of single mutations to alanine is also

competitive or outperforms the alternative methods. As we do not expect single mutations

to alanine to require intensive backbone sampling, our method's e�ectiveness on this subset

shows that the method is fairly robust to the mutation type. As we chose to perform backrub

sampling prior to introducing mutations, these results could suggest that �ex ddG is e�ective

11
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Table 2: Summary of prediction performance. Flex ddG predictions used 50
models and 35000 backrub steps. ddG monomer predictions used the default of
averaging the ∆∆G scores of the three lowest scoring output models, as imple-
mented in the original method.23 N = number of cases in the dataset or subset.
R = Pearson's R. MAE = Mean Absolute Error. FC = Fraction Correct. Best
performance for each metric and dataset is shown in bold.

Mutation Category Prediction Method N R MAE FC

Complete dataset

�ex ddG

1240

0.63 0.96 0.76
ddG monomer 0.51 1.57 0.64
no backrub control 0.56 1.12 0.73
ZEMu paper 0.61 1.08 0.71

Small-to-large mutation(s)

�ex ddG

130

0.65 0.78 0.71
ddG monomer 0.31 1.55 0.55
no backrub control 0.41 1.11 0.62
ZEMu paper 0.48 1.16 0.65

Mutation(s) to alanine

�ex ddG

939

0.62 0.96 0.78
ddG monomer 0.50 1.55 0.66
no backrub control 0.58 1.06 0.75
ZEMu paper 0.62 1.03 0.73

Single mutation to alanine

�ex ddG

748

0.51 0.75 0.76
ddG monomer 0.36 1.31 0.62
no backrub control 0.44 0.90 0.74
ZEMu paper 0.45 0.86 0.71

Multiple mutations

�ex ddG

273

0.62 1.62 0.78
ddG monomer 0.50 2.44 0.70
no backrub control 0.58 1.73 0.73
ZEMu paper 0.64 1.63 0.75

Multiple mutations, all to alanine

�ex ddG

191

0.47 1.77 0.84
ddG monomer 0.34 2.49 0.80
no backrub control 0.50 1.69 0.81
ZEMu paper 0.55 1.72 0.79

Multiple mutations, none to alanine

�ex ddG

45

0.63 1.38 0.60
ddG monomer 0.40 2.54 0.38
no backrub control 0.44 1.66 0.58
ZEMu paper 0.53 1.59 0.60

Antibodies

�ex ddG

355

0.61 0.93 0.74
ddG monomer 0.50 1.35 0.69
no backrub control 0.49 1.06 0.72
ZEMu paper 0.54 1.06 0.67
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by sampling underlying, relevant plasticity of the input crystal structure instead of distorting

the local structure around a mutation to resolve a clash or poor interaction with a mutant

side chain.

While the �ex ddG method shows improved performance on the subset of multiple mu-

tations as compared to the control and ddg_monomer methods, �ex ddg did not match the

performance of the ZEMu method on this subset. This result could indicate that further re-

�nement of the backrub parameters is required when simultaneously sampling conformational

space around the sites of multiple mutations. However, and remarkably, �ex ddG outper-

forms ZEMu on the subset of cases with multiple mutations where none of the mutations

are to alanine (Table 2). Finally, the �ex ddg method also shows considerable improvements

over other methods on the subset of antibody-antigen complexes (Table 2).

Fig. 2 illustrates the performance for the �ex ddG and control methods on the complete

dataset and small-to-large subsets using scatterplots comparing experimentally determined

and computationally estimated changes in binding free energies for each of the cases in the

datasets. In particular, a notable improvement with �ex ddG over the control can be seen

for the 13 small-to-large mutations that were experimentally determined to stabilize the

protein-protein interface signi�cantly (∆∆G <= -1.0 kcal/mol). For this set, the control

method misclassi�es most stabilizing mutations to have minimal e�ect or to be destabilizing

(9 mutations with predicted Rosetta ∆∆G scores > 0) (Fig. 2d), whereas �ex ddG identi�es

a sizable number (12 of 13 mutations) to have predicted Rosetta ∆∆G < 0 (Fig. 2c),

even though only one of these mutations is predicted to be strongly stabilizing (predicted

∆∆G score < 1). The capability to predict stabilizing mutations is especially important

for challenging design applications to modulate binding a�nity and selectivity, as well as

creating entirely new high-a�nity protein-protein interactions.

In the following sections, we assess how di�erent �ex ddG implementations would a�ect

prediction performance, focusing separately on sampling and scoring.
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(c) Flex ddG - Small-to-large mutation(s)
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(d) Control - Small-to-large mutation(s)

Figure 2: Experimentally determined ∆∆G values (x-axis) versus Rosetta predictions.
Rosetta scores are in Rosetta Energy Units (REU) using the Rosetta Talaris energy func-
tion.45,47,48 (a) �ex ddG method (35000 backrub steps); Complete dataset (n=1240). (b) no
backrub control; Complete dataset (n=1240). (c) �ex ddG method (35000 backrub steps);
Small-to-large mutation(s) (n=130). (d) no backrub control; Small-to-large mutation(s)
(n=130).
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(c) - Multiple mutations, none to alanine
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Figure 3: Correlation (Pearson's R, left y-axis) and MAE (Mean Absolute Error, right y-axis)
vs. number of averaged models (x-axis), on the complete ZEMu set, and subsets. Pearson's
R is shown as circles, and MAE as faded plusses. Predictions generated with the Flex ddG
protocol are shown in blue. Predictions generated with the no backrub control protocol are
shown in green. A selection of key data underlying this �gure can be found in Table S4. Flex
ddG is run with 35000 backrub steps. Structures are sorted by their minimized wild-type
complex energy. (a) Complete dataset (n = 1240) (b) Small-to-large mutation(s) (n = 130)
(c) Multiple mutations, none to alanine (n = 45) (d) Single mutation to alanine (n = 748).
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E�ect of ensemble size

While the results presented above used an ensemble size of 50 members, we next investigated

what the ideal ensemble size would be to maximize the predictive ability of our method. For

example, prior methods used ensemble sizes ranging from ten3 to thousands.28 As the com-

putational time required to run �ex ddG increases linearly with ensemble size, determining

an optimal size is practically relevant. We therefore evaluated the performance of �ex ddG

as we average across an increasing number of models (from 1 to 50, Fig. 3). The models are

�rst sorted by the score of the corresponding repacked and minimized wild type model, such

that producing a ∆∆G with 1 model will only use the lowest (best) scoring model, 2 models

will use the 2 lowest scoring models, and so forth. Fig. 3(a) shows the performance on the

complete dataset. As more models with increasing wild type complex score are averaged,

correlation with known experimental values increases. Conversely, performance for the no

backrub control method stays approximately constant as more models are averaged. This

result indicates that sampling with backrub adds information that improves ∆∆G calcula-

tion even though the additional averaged models have higher scores (average ensemble total

score is shown in Fig. S1). These higher scoring models would be excluded in methods such

as the Rosetta ddg_monomer protocol, which typically use only the lowest scoring wild-type

and mutant models.

Instead of using just the three lowest energy models,23 we �nd that the performance of the

ddg_monomer method also improves as more output models are averaged (Fig. S2, Table S5).

This was somewhat unexpected, as the no-backrub control method, which did not show an

improvement with increasing ensemble size, is conceptually similar to the ddg_monomer

method. However, the di�erence may arise from the fact that the ddg_monomer method

ramps the weight of the repulsive Lennard-Jones term in the energy function during min-

imization. This strategy explores conformational space more broadly in di�erent back-

bone ensemble members than minimization with a fully weighted repulsive term in the

no-backrub control method. In this fashion, including more ensemble members generated
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by the ddg_monomer method increases the conformational plasticity sampled which in turn

increases performance, as seen for the �ex ddg method.

Using �ex ddG, the subset of small-to-large mutations shows the largest increase in

correlation with experimental ∆∆G values as more models are averaged (Fig. 3(b)). This

result is consistent with our reasoning above that improved modeling of conformational

plasticity is important for prediction performance, and that this e�ect is most important for

signi�cant changes in amino acid residue size. For the subset of multiple mutations where

none are mutations to alanine (Fig. 3(c)), performance overall increases substantially initially

when more models are added.

Averaging across increased numbers of models also improves correlation for the subset

of single mutations to alanine (Fig. 3(d)). Here, improvements are seen up to averaging

about 10 models, after which performance stays approximately constant. This observation

indicates that increased sampling, in the very least, is not harmful for cases where one would

expect structural changes to be relatively small on average.

From a practical standpoint, generating 20-30 models should constitute su�cient sam-

pling for most cases. Sorting the generated models by score and selecting the best scoring

20-30 out of 50 models does not appear to be necessary, as not sorting the models by score

(Fig. S3, Table S6) gives similar results to sorting the models (Fig. 3).

E�ect of extent of backrub sampling in each trajectory

The extent of sampling can also be controlled by changing the number of Monte Carlo steps

in the backrub simulations. Fig. 4 shows the e�ect of increasing the number of backrub Monte

Carlo steps (while averaging all 50 models at each output step) on �ex ddG performance,

compared to a control method with zero backrub steps that uses only minimization and side

chain packing. ∆∆G scores are calculated every 2,500 backrub steps.

After an initial increase for the �rst set of 2500 backrub steps, performance stays relatively

constant for the complete dataset (Figure 4a) and for single mutations to alanine (Fig. 4d).
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(c) - Multiple mutations, none to alanine
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Figure 4: Correlation (Pearson's R) and MAE (Mean Absolute Error) vs. number of backrub
steps, on the complete ZEMu set, and subsets. Pearson's R is shown as circles, and MAE
as faded plusses. Predictions generated with the Flex ddG protocol are shown in blue.
Predictions generated with the no backrub control protocol are shown in green. A selection
of key data underlying this �gure can be found in Table S7. (a) Complete dataset (n=1240)
(b) Small-to-large mutation(s) (n=130) (c) Multiple mutations, none to alanine (n=45) (d)
Single mutation to alanine (n=748)
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However, for the subsets of small-to-large mutations (Figure 4b) and multiple mutations,

none to alanine (Fig. 4c), performance increases considerably with increasing numbers of

Monte Carlo steps. This increase in performance is similar to what was observed with

averaging over more models for these subsets (Fig. 3b,c). Performance levels o� at around

30,000 backrub Monte Carlo steps.

The increased performance does not appear to be simply a result of decreasing scores as

the simulation progresses, as the average score of the minimized wild type complexes does not

decrease uniformly across the sampled ensemble as the simulation progresses (Fig. S1). The

pairwise backrub ensemble RMSDs continue to increase throughout the backrub simulation

for all subsets (Fig. S4), indicating that diminishing returns at > 30,000 Monte Carlo steps is

not a result of failure to sample new conformations, but rather might indicate that continued

sampling does not capture additional relevant local changes in structure in this benchmark

set.

Score analysis

As the sampling and scoring problems of protein modeling are generally linked, it is often

the case that improving one enables further improvements in the other.

First, we compared the performance of our �ex ddG method, which was run using

Rosetta's Talaris45,47,48 energy function, to an identical protocol run with the more recently

developed Rosetta Energy Function (REF).52 We did not observe an increase in performance

on the complete ZEMu dataset, and performance decreases were seen for the subsets of small-

to-large mutations and multiple mutations (Table S8). Interestingly, �ex ddG performance

with the REF energy function increased over using the Talaris energy function if the reso-

lution of the input crystal structure was <= 1.5 Å, but this subset of the data was rather

small with only 52 mutations.

Next, we sought to analyze underlying errors of the Rosetta energy function (when ap-

plied to interface ∆∆G) by assessing the individual terms of the energy function. To do
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so, we chose to reweight the terms of the energy function using a non-linear reweighting

scheme similar to Generalized Additive Models (GAMs).51 In this reweighting method, we

used Monte Carlo sampling to �t a sigmoid function to the individual distributions of en-

ergy function terms, with the objective function of reducing the absolute error between our

predictions and known experimental values over the entire dataset.

The e�ect on the predictions is shown in Fig. 5, Fig. S5, and Table S9. In general,

the GAM-adjusted predictions contain fewer outliers. In particular, experimental ∆∆G

values that are relatively neutral (near zero) can sometimes be predicted by �ex ddG to

be highly destabilizing; the GAM model reduces the magnitude of error of many of these

outliers, improving overall performance (Fig. 5). The overall correlation increases from 0.64

to 0.68 (Table 2 and Table S9) when re�tting the values from the Rosetta Talaris energy

function;45,47,48 re�tting values from the Rosetta REF energy function52 leads to a similar

increase from 0.63 to 0.68 (Fig. S5, Table S8, Table S9). The correlation coe�cient also

increases when re�tting the values obtained for the no backrub control, but only to 0.62

(Fig. 5b, Table S9).

The �t functions (�t for Talaris-derived ∆∆G predictions) are shown in Fig. S6. Extreme

values for most score terms are downweighted, especially for the fa_sol and fa_atr terms,

which make the largest contributions to predicted ∆∆G (Fig. S7).

Conclusions

We have shown on a large, curated benchmark dataset that the ��ex ddG� method presented

here is more accurate than previous methods for estimating changes in binding a�nity after

mutation in protein-protein interfaces. Particular improvement in performance is seen on the

subset of small-to-large mutations, indicating that representing backbone �exibility using

backrub motions is e�ective in cases where backbone rearrangements are expected to be

more common. Other notable improvements over previous methods are seen for stabilizing
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Figure 5: Experimentally determined ∆∆G values (x-axis) versus predictions using a Gen-
eralized additive model (GAM). GAM scores are re�t from values in Rosetta Energy Units
(REU) using the Rosetta Talaris45,47,48 energy function. The error bars in gray represent
the range from minimum to maximum �t predicted ∆∆G value for the 1000 sampled GAM
models. (a): Control (no backrub) Rosetta predictions. (b): Flex ddG Rosetta predictions
using 35,000 backrub steps and 50 output models. A line of best �t is shown in each of the
panels.
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mutations, mutations in antibody-antigen interfaces, and for cases with multiple changes

where none of the mutations is to an alanine residue.

We have also shown that more accurate predictions can be obtained by averaging the

predictions across a generated structural ensemble of backrub models, and that the number of

required models is relatively low (20-30). Prior methods that produced ∆∆G predictions by

averaging an ensemble of models required on the order of thousands of models,28 indicating

that backrub sampling can e�ciently sample the local conformational space around an input

wild-type structure that is relevant for interface ∆∆G prediction.

By creating a method that uses backrub to sample conformational space more broadly

than minimization alone, while still staying close to the known wild-type input structure, we

have also generated data that should prove useful for future energy function improvements.

In particular, using Rosetta's newest REF energy function52 does not improve performance

of our method when compared to use of the prior Talaris45,47,53 energy function (Table S8),

indicating that the backrub sampling parameters might require further benchmarking and

adaption to the REF energy function. Our error analysis via GAM-like reweighting also

indicates potential avenues for energy function improvement by identifying imbalances in

predicted energetic contributions leading to overestimation of stabilizing and destabilizing

e�ects. Further improvements might also be obtained by more explicitly including the e�ects

of altering water-mediated interactions54 and of conformational entropy,2,55 as well as by con-

sidering the commonly observed shortcomings of energy functions balancing the magnitudes

of electrostatic interactions and desolvation costs. We expect energy function improvements

to require more accurate representation of subtle conformational changes, as these changes

can have a considerable impact on design predictions.56
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