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Abstract

Computationally modeling changes in binding free energies upon mutation (inter-
face AAG) allows large-scale prediction and perturbation of protein-protein interac-
tions. Additionally, methods that consider and sample relevant conformational plas-
ticity should be able to achieve higher prediction accuracy over methods that do not.
To test this hypothesis, we developed a method within the Rosetta macromolecular
modeling suite (flex ddG) that samples conformational diversity using “backrub” to
generate an ensemble of models, then applying torsion minimization, side chain repack-
ing and averaging across this ensemble to estimate interface AAG values. We tested
our method on a curated benchmark set of 1240 mutants, and found the method out-
performed existing methods that sampled conformational space to a lesser degree. We
observed considerable improvements with flex ddG over existing methods on the subset
of small side chain to large side chain mutations, as well as for multiple simultaneous
non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen inter-
faces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta
energy function; the resulting non-linear reweighting model improved agreement with
experimentally determined interface DDG values, but also highlights the necessity of

future energy function improvements.

Introduction

Protein-protein interactions underlie essentially all biological processes, including signal
transduction and antibody-antigen recognition. Many protein-protein interfaces are sen-
sitive to mutations that can alter interaction affinity and specificity. In fact, mutations at
protein-protein interfaces have been reported to be overrepresented within disease-causing
mutations,! highlighting the central importance of these interactions to biology and human
health. A sufficiently accurate computational method capable of predicting mutations that

strengthen or weaken known protein-protein interactions would hence serve as a useful tool
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to dissect the role of specific protein-protein interactions in important biological processes.
Coupled with state-of-the-art methods for protein engineering and design, such a method
would also enhance our ability to create new and selective interactions, enabling the devel-
opment of improved protein therapeutics, protein-based sensors, and protein materials.

Several prior methods have been developed to predict changes in protein-protein binding
affinity upon mutation using different approaches to estimating energetic effects (scoring) and
modeling structural changes (sampling). Common approaches include weighted energy func-
tions that seek to describe physical interactions underlying protein-protein interactions,??
statistical and contact potentials,*” a combination of these approaches,®® graph-based rep-
resentations, '* methods that sample backbone structure space locally around mutations, !
and machine learning approaches.'?

We set out to develop and assess methods for estimating experimentally determined
changes in binding free energy after mutation (interface AAG) within the Rosetta macro-
molecular modeling suite. Rosetta is freely available for academic use, and allows com-
bination of interface AAG predictions with Rosetta’s powerful protein design capabili-
ties, which have proven successful in a variety of applications.'* Prior projects have ap-

plied Rosetta predictions to dissect determinants of binding specificity and promiscuity, %16

1718 and to design modified’® and new interac-

enhance protein-protein binding affinities,
tions, 222 but no prior benchmarking effort has quantitatively assessed the performance of
predicting changes in binding free energy in Rosetta on a large, diverse benchmark dataset,
in part because such datasets have only become available more recently. The current state-of-
the-art Rosetta AAG method, ddg_monomer,?® has proven effective at predicting changes
in stability of monomeric proteins after mutation, but had not yet been tested at predicting
change of binding free energies in protein-protein complexes. Prior “computational alanine
scanning” AAG methods were benchmarked on mutations in protein-protein interfaces, fo-

cusing on mutations to alanine.?*"26 The original Rosetta alanine scanning method?* did not

sample backbone degrees of freedom, which is a first-order approximation for mutations to
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alanine (that are not expected to cause large backbone perturbations?”), but less likely to be
predictive for mutations to larger side chains which might require some degree of backbone
rearrangement to accommodate the change. Inclusion of recent Rosetta energy function and
sampling method developments, including methods that attempt to more aggressively sam-
ple conformational space, has not resulted in significant improvement to the alanine scanning
method.?6

We sought to create a method that would take into account aspects of the conformational
plasticity of proteins by representing structures as an ensemble of individual full-atom models
to explore biologically relevant and accessible portions of conformational space near the
crystallographically determined input structures. Ensemble representations have previously
been shown to be effective at predicting changes in protein stabilities after mutation and

8

at predicting the effects of mutation on protein-protein binding affinities,?® as well as at

improving AGypinaing calculations between kinases and their inhibitors.??

We chose to sample conformational plasticity using the “backrub” protocol implemented
in Rosetta.?® The backrub method samples local side chain and backbone conformational
changes, similar to those suggested to underlie observed conformational heterogeneity in
high-resolution crystal structures,3! and to accommodate evolved and designed mutations.??

Backrub ensembles have been demonstrated to recapitulate properties of proteins that have

been experimentally determined, such as side chain NMR order parameters,? tolerated se-

4 35,36

quence profiles at protein-protein®! and protein-peptide interfaces, and conformational
variability between protein homologs.3” Backrub has also proved effective in design appli-
cations, such as the redesign of protein-protein interfaces!'® and recapitulation of mutations
that alter ligand-binding specificity.*® When compared to ensembles generated via molec-
ular dynamics simulations or the “PertMin” method,? backrub ensembles were shown to
be the only ensembles capable of generating higher diversity (as measured by RMSD) be-

tween output models than from output models to the original input crystal structure. This

observation suggests that backrub could be uniquely suited to produce diverse ensembles
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that effectively explore the local conformational space around an input structure.3® Taken
together, we hypothesized that these previously demonstrated properties of backrub ensem-
bles would also make them an effective representation of near-native conformational states

for use in predicting interface AAG values.

Methods

Benchmark datasets

Developing and assessing the accuracy of a new method to predict changes in binding free
energy after mutation requires a large and diverse benchmark set covering single mutations
to all amino acid types, multiple mutations, and mutations across a variety of protein-protein
interfaces. To facilitate comparisons to other methods and to avoid biases specific to our
approach, we chose to use an existing benchmark dataset created by Dourado and Flo-
res'! during the development of their ZEMu (Zone Equilibration of Mutants) method. The
ZEMu dataset was curated from the larger SKEMPI database®® by avoiding a bias towards
complexes in which a single position is repeatedly mutated, experimental data that are not
peer-reviewed, redundancy (duplicate experimental values), mutations outside of interfaces,
mutations involved in crystal contacts, and experimental AAG values for which wild-type
and mutant conditions (such as pH) varied. Confidence in the “known” experimental AAG
values is important, as it has been pointed out that the experimental methodology used can
have a strong effect on the performance of predictors of changes in binding free energy.*!
The ZEMu dataset was also curated to include a range of both stabilizing and destabilizing
mutants, small side chain to large side chain mutations, single and multiple mutations, and a
diversity of complexes. Small-to-large mutations are defined as those dataset cases where all
mutation(s) are at positions where the residue side chain increases in van der Waals volume
post-mutation. 42

After a review of the literature from which the known experimental AAG values origi-
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Table 1: ZEMu dataset composition

n Name

1240 Complete dataset
748 Single mutation to alanine
273 Multiple mutations
130 Small-to-large mutation(s)
45 Multiple mutations, none to alanine

nated, we removed one data point from the 1254 point ZEMu set that we could not match
to the originally reported affinity value. We also removed 5 mutations we determined to be
duplicates, along with 8 mutations that were reverse mutations of other data points, leaving
us with a test set of 1240 mutations (Table 1). We used SAbDab*® to define complexes
that contained at least one antibody binding partner. Our version of the ZEMu dataset is
available in the Supporting Information as Dataset S1. All AAG predictions described in

the paper are available in the Supporting Information.

Rosetta implementation and prediction protocol

Our protocol, called “flex ddG”, is implemented within the RosettaScripts interface to the
Rosetta macromolecular modeling software suite,* which makes the protocol easily adapt-
able to future improvements and energy function development. The method can be run using
a Rosetta Scripts XML that is available in the Supporting Information as Listing 1. Version
numbers of tested software are available in Table S1.

Flex ddG method steps are outlined in Fig. 1. Step 1: The protocol begins with an
initial minimization (on backbone ¢/v¢ and side chain x torsional degrees of freedom, us-
ing the “lbfgs armijo nonmonotone” minimization algorithm option) of the input crystal
structure of the wild-type protein complex. This (and later) minimizations are performed
with constraints that harmonically restrain pairwise atom distance to their values in the
input crystal structure. Minimization is run until convergence (absolute score change upon

minimization of less than one REU (Rosetta Energy Unit)). Step 2: Starting from the
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Step 0
Input starting structure.
Generate pairwise atom constraints.

1x

Step 1 - Minimize
Global minimization of backbone and side chain torsions.
Pairwise atom constraints from Step 0.

1x

Step 2 - Backrub

Local sampling of backbone and side chain degrees of freedom of pivot residues,
defined as those with neighbor atoms (C-B) within 8A of mutation positions.

50x 50x
Wild-Type / \ Mutant
Step 3a - Pack Step 3b- Mutate and Pack
AR : Optimize side chains globally
Optimize side chains globally
. on mutant model
on wild-type model. .
o . (using the mutant sequence).
Generate pairwise atom constraints. G - .
enerate pairwise atom constraints.
50x 50x
Step 4a - Minimize Step 4b - Minimize
Global minimization Global minimization
of backbone and side chains torsions. of backbone and side chains torsions.
Pairwise atom constraints from Step 3a. Pairwise atom constraints from Step 3b.
50x 50x
Step Sa - Score Step Sb - Score
Score wild type complex and unbound partners Score mutant complex and unbound partners
using Rosetta's all-atom energy function. using Rosetta's all-atom energy function.
50x 50x
Step 6

Calculate interface AAG score.

Figure 1: Schematic of the flex ddG protocol method.
7
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minimized input structure, the backrub method in Rosetta3? is used to create an ensemble
of models. In brief, each backrub move is undertaken on a randomly chosen protein segment
consisting of three to twelve adjacent residues in the neighborhood of any mutated posi-
tion. The mutation neighborhood is defined by finding all residues with a C-f atom (C-«
for glycines) within 8 A of any mutant position, then adding this residue and its adjacent
N and C-terminal residues to the list of neighborhood residues. All atoms in the backrub
segment are rotated locally about an axis defined as the vector between the endpoint C-«
atoms. Backrub is run at a temperature of 1.2 kT, for up to 50,000 backrub Monte Carlo
trials/steps (Table S2 shows that using a kT of 1.6 gives similar results to a kT of 1.2). Up
to 50 output models are generated. Step 3A: For each of the 50 models in the ensemble
output by backrub, the Rosetta “packer” is used to optimize side chain conformations for the
wild-type sequence using discrete rotameric conformations? and simulated annealing. The
packer is run with the multi-cool annealer option,?® which is set to keep a history of the 6
best rotameric states visited during annealing. Step 3B: Independently and in parallel to
step 3A, side chain conformations for the mutant sequence are optimized on all 50 models,
introducing the mutation(s). Step 4A: Each of the 50 wild-type models is minimized, again
adding pairwise atom-atom constraints to the input structure. Minimization is run with
the same parameters as in step 1; the coordinate constraints used in this step are taken
from the coordinates of the Step 3A model. Step 4B: As Step 4A, but for each of the
50 mutant models. Step 5A: Each of the 50 minimized wild-type models are scored in
complex, and the complex partners are scored individually. The scores of the split, unbound
complex partners are obtained simply by moving the complex halves away from each other.
No further minimization or side chain optimization is performed on the unbound partners
before scoring. Step 5B: In the same fashion as Step 5A, each of the 50 minimized mutant
models are scored in complex, and the complex partners are scored individually. Step 6:

The interface AAG score is produced via Eq. 1:
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AAGying = AGHUT — AGHT

_ MUT MUT MUT
- (A complex ~— AGpartnerA - A partnerB) (1)
wT wT wT
- (AGcomplea: - ACTYpartnerA - AGpartnerB)

We evaluate performance of the protocol by comparing predicted AAG scores to known
experimental values, using Pearson’s correlation (R), Fraction Correct (FC), and Mean Ab-
solute Error (MAE). Fraction Correct is defined as the number of cases in the dataset cate-
gorized correctly as stabilizing, neutral, or destabilizing, divided by the total number of cases
in the dataset. Stabilizing mutations are defined as those with a AAG <= -1.0 kcal/mol,
neutral as those with -1.0 keal/mol < AAG < 1.0 kcal/mol, and destabilizing as those with
AAG >= 1.0 kcal/mol.

MAE (Mean Absolute Error) is defined in Eq. 2 as:

n

1 o 1
i=1

i=1
where y; are the predicted AAG values, z; are the known, experimentally determined

values, and e; is the prediction error.

Rosetta energy function

We utilized Rosetta’s Talaris?>*"%® all-atom energy function for the modeling steps. As we
do not modify our models of the unbound state, several terms of the Rosetta energy function
will cancel out in the final AAG scoring because the AG of folding score of the unbound
partners is subtracted from the total score of the complex (Eq. (1)). After subtraction,
seven score terms remain, and combined, become the final interface AAG score, dominated
by solvation (fa_sol using an implicit solvation model*?), hydrogen bonding and electrostat-

icg 47:48,50 (

hbond _sc: side chain-side chain hydrogen bonds; hbond bb_sc: hydrogen bonds
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between backbone atoms and side chain atoms; hbond Ir bb: long-range hydrogen bond
interactions between backbone atoms; fa_elec: Coulomb electrostatics), and Lennard-Jones
atomic packing interactions (fa_rep and fa_atr: repulsive and attractive components of the

Lennard-Jones potential).

Score analysis

To investigate potential sources of prediction error on an individual score term basis, we
used a generalized additive model®' approach to fit Rosetta’s predicted AAG values to
experimentally known values. First, we apply an unbiased logistic scaling to individual score

terms,

hop() = H% _
where a is the scaling range of the score, and b is the steepness of the sigmoid scaling. Both
parameters are transformed through an exponential to ensure non-negativity. The scaling

function h does not introduce bias, that is, hy(0) = 0 for any 6. The scoring model results

in a generalized additive model (GAM) over the M score terms,
M
F(x) =) ham(x).
j=1

The parameters 6 = (a,j,bj)?il for the score terms were simultaneously sampled using a
random walk Metropolis-Hastings MCMC algorithm (the mhsample function in Matlab)

assuming a Gaussian likelihood as the target distribution

p(0;y) = N(f(xi)|y:, 02)

with a noise variance set to o2 = 1.0, and where (x;,y;)N, are the empirical observations y;
that correspond to the protein score terms x;, respectively. We sample for 1000 samples with

a burn-in set to 1000 samples and a thinning parameter of 20. The proposal distribution was

10


https://doi.org/10.1101/221689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/221689; this version posted November 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

selected to be a symmetric uniform distribution such that [a(*D b6+ ~ U(al®) 42,0 £
2). The resulting MCMC sample represents all logistics score scalings that reproduce the

empirical measurements assuming an error model with noise variance o2.

Results and discussion

The overall performance of the protocol is summarized in Table 2. We compare 4 prediction
methods: (a) our flex ddG backrub ensemble method, (b) the prior state-of-the-art Rosetta
methodology, ddg monomer,?* (c) a control version of our flex ddG protocol which omits
the backrub ensemble generation step, leaving only the minimization and packing steps, and
(d) published data from the ZEMu (zone equilibration of mutants) method.!! Data split by
input protein-protein complex are shown in Table S3.

The new flex ddG method outperforms the comparison methods on the complete dataset
in each of the correlation, MAE, and fraction correct metrics (Table 2). In particular, we see
a large increase in performance relative to the other methods on the small-to-large subset
of mutations. This is in accordance with our expectations that backrub ensembles should
be able to sample small backbone conformational adjustments required to accommodate
changes in amino acid residue size. Notably, application of backrub ensembles performs
better than other methods that include backbone minimization steps only, including the
current state-of-the-art Rosetta ddg monomer method. On the small-to-large mutations
subset, the ddg monomer method achieves a Pearson correlation of only 0.31 compared to
0.65 with flex ddg.

Performance of the flex ddG method on the subset of single mutations to alanine is also
competitive or outperforms the alternative methods. As we do not expect single mutations
to alanine to require intensive backbone sampling, our method’s effectiveness on this subset
shows that the method is fairly robust to the mutation type. As we chose to perform backrub

sampling prior to introducing mutations, these results could suggest that flex ddG is effective

11
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Table 2: Summary of prediction performance. Flex ddG predictions used 50
models and 35000 backrub steps. ddG monomer predictions used the default of
averaging the AAG scores of the three lowest scoring output models, as imple-
mented in the original method.?®* N = number of cases in the dataset or subset.
R = Pearson’s R. MAE = Mean Absolute Error. FC = Fraction Correct. Best
performance for each metric and dataset is shown in bold.

Mutation Category Prediction Method N R MAE FC
flex ddG 0.63 0.96 0.76

ddG monomer 0.51 1.57 0.64

Complete dataset no backrub control 1240 0.56 1.12  0.73
ZEMu paper 0.61 1.08 0.71

flex ddG 0.65 0.78 0.71

) ddG monomer 0.31 1.55 0.55

Small-to-large mutation(s) no backrub control 50 041 111 0.62
ZEMu paper 0.48 1.16 0.65

flex ddG 0.62 0.96 0.78

) ) ddG monomer 0.50 1.55 0.66
Mutation(s) to alanine no backrub control 939 0.58 1.06 0.75
ZEMu paper 0.62 1.03 0.73

flex ddG 0.51 0.75 0.76

) ) ) ddG monomer 0.36 1.31 0.62
Single mutation to alanine no backrub control 748 0.44 0.90 0.74
ZEMu paper 0.45 0.86 0.71

flex ddG 0.62 1.62 0.78

; . ddG monomer 0.50 2.44  0.70
Multiple mutations no backrub control 273 0.58 1.73  0.73
ZEMu paper 0.64 1.63 0.75

flex ddG 047 177 0.84

. ) ) ddG monomer 0.34 249 0.80
Multiple mutations, all to alanine 16 backrub control 191 050 1.69 081
ZEMu paper 0.55 1.72 0.79

flex ddG 0.63 1.38 0.60

. . . ddG monomer 0.40 2.54 0.38
Multiple mutations, none to alanine 16 backrub control 45 0.44 166 0.58
ZEMu paper 0.53 1.59 0.60

flex ddG 0.61 0.93 0.74

} ) ddG monomer 0.50 1.35  0.69
Antibodies no backrub control 355 0.49 1.06 0.72
ZEMu paper 0.04 1.06 0.67

12
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by sampling underlying, relevant plasticity of the input crystal structure instead of distorting
the local structure around a mutation to resolve a clash or poor interaction with a mutant
side chain.

While the flex ddG method shows improved performance on the subset of multiple mu-
tations as compared to the control and ddg monomer methods, flex ddg did not match the
performance of the ZEMu method on this subset. This result could indicate that further re-
finement of the backrub parameters is required when simultaneously sampling conformational
space around the sites of multiple mutations. However, and remarkably, flex ddG outper-
forms ZEMu on the subset of cases with multiple mutations where none of the mutations
are to alanine (Table 2). Finally, the flex ddg method also shows considerable improvements
over other methods on the subset of antibody-antigen complexes (Table 2).

Fig. 2 illustrates the performance for the flex ddG and control methods on the complete
dataset and small-to-large subsets using scatterplots comparing experimentally determined
and computationally estimated changes in binding free energies for each of the cases in the
datasets. In particular, a notable improvement with flex ddG over the control can be seen
for the 13 small-to-large mutations that were experimentally determined to stabilize the
protein-protein interface significantly (AAG <= -1.0 kcal/mol). For this set, the control
method misclassifies most stabilizing mutations to have minimal effect or to be destabilizing
(9 mutations with predicted Rosetta AAG scores > 0) (Fig. 2d), whereas flex ddG identifies
a sizable number (12 of 13 mutations) to have predicted Rosetta AAG < 0 (Fig. 2c),
even though only one of these mutations is predicted to be strongly stabilizing (predicted
AAG score < 1). The capability to predict stabilizing mutations is especially important
for challenging design applications to modulate binding affinity and selectivity, as well as
creating entirely new high-affinity protein-protein interactions.

In the following sections, we assess how different flex ddG implementations would affect

prediction performance, focusing separately on sampling and scoring.

13
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(a) Flex ddG - Complete dataset (b) Control - Complete dataset

Rosetta Score

-6 -6
-5 0 5 10 -5 0 5 10
(c) Flex ddG - Small-to-large mutation(s) (d) Control - Small-to-large mutation(s)
10
8 8

Rosetta Score

-5 0 5 10 -5 0 5 10
Experimental AAG Experimental AAG

Figure 2: Experimentally determined AAG values (x-axis) versus Rosetta predictions.
Rosetta scores are in Rosetta Energy Units (REU) using the Rosetta Talaris energy func-
tion. #4748 (a) flex ddG method (35000 backrub steps); Complete dataset (n=1240). (b) no
backrub control; Complete dataset (n=1240). (c) flex ddG method (35000 backrub steps);
Small-to-large mutation(s) (n=130). (d) no backrub control; Small-to-large mutation(s)

(n=130).
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(a) - Complete dataset (b) - Small-to-large mutation(s)
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Figure 3: Correlation (Pearson’s R, left y-axis) and MAE (Mean Absolute Error, right y-axis)
vs. number of averaged models (x-axis), on the complete ZEMu set, and subsets. Pearson’s
R is shown as circles, and MAE as faded plusses. Predictions generated with the Flex ddG
protocol are shown in blue. Predictions generated with the no backrub control protocol are
shown in green. A selection of key data underlying this figure can be found in Table S4. Flex
ddG is run with 35000 backrub steps. Structures are sorted by their minimized wild-type
complex energy. (a) Complete dataset (n = 1240) (b) Small-to-large mutation(s) (n = 130)
(¢) Multiple mutations, none to alanine (n = 45) (d) Single mutation to alanine (n = 748).
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Effect of ensemble size

While the results presented above used an ensemble size of 50 members, we next investigated
what the ideal ensemble size would be to maximize the predictive ability of our method. For
example, prior methods used ensemble sizes ranging from ten?® to thousands.?® As the com-
putational time required to run flex ddG increases linearly with ensemble size, determining
an optimal size is practically relevant. We therefore evaluated the performance of flex ddG
as we average across an increasing number of models (from 1 to 50, Fig. 3). The models are
first sorted by the score of the corresponding repacked and minimized wild type model, such
that producing a AAG with 1 model will only use the lowest (best) scoring model, 2 models
will use the 2 lowest scoring models, and so forth. Fig. 3(a) shows the performance on the
complete dataset. As more models with increasing wild type complex score are averaged,
correlation with known experimental values increases. Conversely, performance for the no
backrub control method stays approximately constant as more models are averaged. This
result indicates that sampling with backrub adds information that improves AAG calcula-
tion even though the additional averaged models have higher scores (average ensemble total
score is shown in Fig. S1). These higher scoring models would be excluded in methods such
as the Rosetta ddg monomer protocol, which typically use only the lowest scoring wild-type
and mutant models.

Instead of using just the three lowest energy models,? we find that the performance of the
ddg_monomer method also improves as more output models are averaged (Fig. S2, Table S5).
This was somewhat unexpected, as the no-backrub control method, which did not show an
improvement with increasing ensemble size, is conceptually similar to the ddg monomer
method. However, the difference may arise from the fact that the ddg monomer method
ramps the weight of the repulsive Lennard-Jones term in the energy function during min-
imization. This strategy explores conformational space more broadly in different back-
bone ensemble members than minimization with a fully weighted repulsive term in the

no-backrub control method. In this fashion, including more ensemble members generated
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by the ddg monomer method increases the conformational plasticity sampled which in turn
increases performance, as seen for the flex ddg method.

Using flex ddG, the subset of small-to-large mutations shows the largest increase in
correlation with experimental AAG values as more models are averaged (Fig. 3(b)). This
result is consistent with our reasoning above that improved modeling of conformational
plasticity is important for prediction performance, and that this effect is most important for
significant changes in amino acid residue size. For the subset of multiple mutations where
none are mutations to alanine (Fig. 3(¢)), performance overall increases substantially initially
when more models are added.

Averaging across increased numbers of models also improves correlation for the subset
of single mutations to alanine (Fig. 3(d)). Here, improvements are seen up to averaging
about 10 models, after which performance stays approximately constant. This observation
indicates that increased sampling, in the very least, is not harmful for cases where one would
expect structural changes to be relatively small on average.

From a practical standpoint, generating 20-30 models should constitute sufficient sam-
pling for most cases. Sorting the generated models by score and selecting the best scoring
20-30 out of 50 models does not appear to be necessary, as not sorting the models by score

(Fig. S3, Table S6) gives similar results to sorting the models (Fig. 3).

Effect of extent of backrub sampling in each trajectory

The extent of sampling can also be controlled by changing the number of Monte Carlo steps
in the backrub simulations. Fig. 4 shows the effect of increasing the number of backrub Monte
Carlo steps (while averaging all 50 models at each output step) on flex ddG performance,
compared to a control method with zero backrub steps that uses only minimization and side
chain packing. AAG scores are calculated every 2,500 backrub steps.

After an initial increase for the first set of 2500 backrub steps, performance stays relatively

constant for the complete dataset (Figure 4a) and for single mutations to alanine (Fig. 4d).
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Figure 4: Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of backrub
steps, on the complete ZEMu set, and subsets. Pearson’s R is shown as circles, and MAE
as faded plusses. Predictions generated with the Flex ddG protocol are shown in blue.
Predictions generated with the no backrub control protocol are shown in green. A selection
of key data underlying this figure can be found in Table S7. (a) Complete dataset (n=1240)
(b) Small-to-large mutation(s) (n=130) (c) Multiple mutations, none to alanine (n=45) (d)
Single mutation to alanine (n=748)
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However, for the subsets of small-to-large mutations (Figure 4b) and multiple mutations,
none to alanine (Fig. 4c¢), performance increases considerably with increasing numbers of
Monte Carlo steps. This increase in performance is similar to what was observed with
averaging over more models for these subsets (Fig. 3b,c). Performance levels off at around
30,000 backrub Monte Carlo steps.

The increased performance does not appear to be simply a result of decreasing scores as
the simulation progresses, as the average score of the minimized wild type complexes does not
decrease uniformly across the sampled ensemble as the simulation progresses (Fig. S1). The
pairwise backrub ensemble RMSDs continue to increase throughout the backrub simulation
for all subsets (Fig. S4), indicating that diminishing returns at > 30,000 Monte Carlo steps is
not a result of failure to sample new conformations, but rather might indicate that continued
sampling does not capture additional relevant local changes in structure in this benchmark

set.

Score analysis

As the sampling and scoring problems of protein modeling are generally linked, it is often
the case that improving one enables further improvements in the other.
First, we compared the performance of our flex ddG method, which was run using

15,471.48 energy function, to an identical protocol run with the more recently

Rosetta’s Talaris
developed Rosetta Energy Function (REF).%? We did not observe an increase in performance
on the complete ZEMu dataset, and performance decreases were seen for the subsets of small-
to-large mutations and multiple mutations (Table S8). Interestingly, flex ddG performance
with the REF energy function increased over using the Talaris energy function if the reso-
lution of the input crystal structure was <= 1.5 A, but this subset of the data was rather
small with only 52 mutations.

Next, we sought to analyze underlying errors of the Rosetta energy function (when ap-

plied to interface AAG) by assessing the individual terms of the energy function. To do
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so, we chose to reweight the terms of the energy function using a non-linear reweighting
scheme similar to Generalized Additive Models (GAMs).5! In this reweighting method, we
used Monte Carlo sampling to fit a sigmoid function to the individual distributions of en-
ergy function terms, with the objective function of reducing the absolute error between our
predictions and known experimental values over the entire dataset.

The effect on the predictions is shown in Fig. 5, Fig. S5, and Table S9. In general,
the GAM-adjusted predictions contain fewer outliers. In particular, experimental AAG
values that are relatively neutral (near zero) can sometimes be predicted by flex ddG to
be highly destabilizing; the GAM model reduces the magnitude of error of many of these
outliers, improving overall performance (Fig. 5). The overall correlation increases from 0.64
to 0.68 (Table 2 and Table S9) when refitting the values from the Rosetta Talaris energy

154748 refitting values from the Rosetta REF energy function®? leads to a similar

function;
increase from 0.63 to 0.68 (Fig. S5, Table S8, Table S9). The correlation coefficient also
increases when refitting the values obtained for the no backrub control, but only to 0.62
(Fig. 5b, Table S9).

The fit functions (fit for Talaris-derived AAG predictions) are shown in Fig. S6. Extreme

values for most score terms are downweighted, especially for the fa sol and fa atr terms,

which make the largest contributions to predicted AAG (Fig. S7).

Conclusions

We have shown on a large, curated benchmark dataset that the “flex ddG” method presented
here is more accurate than previous methods for estimating changes in binding affinity after
mutation in protein-protein interfaces. Particular improvement in performance is seen on the
subset of small-to-large mutations, indicating that representing backbone flexibility using
backrub motions is effective in cases where backbone rearrangements are expected to be

more common. Other notable improvements over previous methods are seen for stabilizing

20


https://doi.org/10.1101/221689
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/221689; this version posted November 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

(a) - GAM No backrub control

10+

GAM Score
N

-5 0 5 10
Experimental AAG

(b) - GAM flex ddG

10 +

GAM Score

-6 L L L L

-5 0 5 10
Experimental AAG

Figure 5: Experimentally determined AAG values (x-axis) versus predictions using a Gen-
eralized additive model (GAM). GAM scores are refit from values in Rosetta Energy Units
(REU) using the Rosetta Talaris®>*748 energy function. The error bars in gray represent
the range from minimum to maximum fit predicted AAG value for the 1000 sampled GAM
models. (a): Control (no backrub) Rosetta predictions. (b): Flex ddG Rosetta predictions
using 35,000 backrub steps and 50 output models. A line of best fit is shown in each of the
panels.
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mutations, mutations in antibody-antigen interfaces, and for cases with multiple changes
where none of the mutations is to an alanine residue.

We have also shown that more accurate predictions can be obtained by averaging the
predictions across a generated structural ensemble of backrub models, and that the number of
required models is relatively low (20-30). Prior methods that produced AAG predictions by
averaging an ensemble of models required on the order of thousands of models,?® indicating
that backrub sampling can efficiently sample the local conformational space around an input
wild-type structure that is relevant for interface AAG prediction.

By creating a method that uses backrub to sample conformational space more broadly
than minimization alone, while still staying close to the known wild-type input structure, we
have also generated data that should prove useful for future energy function improvements.
In particular, using Rosetta’s newest REF energy function® does not improve performance

45,47,53 energy function (Table S8),

of our method when compared to use of the prior Talaris
indicating that the backrub sampling parameters might require further benchmarking and
adaption to the REF energy function. Our error analysis via GAM-like reweighting also
indicates potential avenues for energy function improvement by identifying imbalances in
predicted energetic contributions leading to overestimation of stabilizing and destabilizing
effects. Further improvements might also be obtained by more explicitly including the effects
of altering water-mediated interactions® and of conformational entropy,?°® as well as by con-
sidering the commonly observed shortcomings of energy functions balancing the magnitudes
of electrostatic interactions and desolvation costs. We expect energy function improvements
to require more accurate representation of subtle conformational changes, as these changes

can have a considerable impact on design predictions. 3
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