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ABSTRACT

Target selection is the first and pivotal step in drug discovery. An incorrect choice may not
manifest itself for many years after hundreds of millions of research dollars have been spent. We
collected a set of 332 targets that succeeded or failed in phase Il clinicd trials, and explored
whether Omic features describing the target genes could predict clinical success. We obtained
features from the recently published comprehensive resource: Harmonizome. Nineteen features
appeared to be significantly correlated with phase 111 clinical trial outcomes, but only 4 passed
validation schemes that used bootstrapping or modified permutation tests to assess feature
robustness and generalizability while accounting for target class selection bias. We also used
classifiers to perform multivariate feature selection and found that classifiers with a single
feature performed as well in cross-validation as classifiers with more features (AUROC=0.57
and AUPR=0.81). The two predominantly selected features were mean mRNA expression across
tissues and standard deviation of expression across tissues, where successful targets tended to
have lower mean expression and higher expression variance than failed targets. This finding
supports the conventional wisdom that it is favorable for a target to be present in the tissue(s)
affected by a disease and absent from other tissues. Overall, our results suggest that it is feasible
to construct a model integrating interpretable target features to inform target selection. We
anticipate deeper insights and better models in the future, as researchers can reuse the data we
have provided to improve methods for handling sample biases and learn more informative
features. Code, documentation, and data for this study have been deposited on GitHub at

https://qithub.com/arouillard/omic-features-successful -targets.
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AUTHOR SUMMARY

Drug discovery often begins with a hypothesis that changing the abundance or activity of a
target—a biological molecule, usually a protein—will cure a disease or ameliorate its symptoms.
Whether a target hypothesis trandates into a successful therapy depends in part on the
characteristics of the target, but it is not completely understood which target characteristics are
important for success. We sought to answer this question with a supervised machine learning
approach. We obtained outcomes of target hypotheses tested in clinical trials, scoring targets as
successful or failed, and then obtained thousands of features (i.e. properties or characteristics) of
targets from dozens of biological datasets. We statistically tested which features differed
between successful and failed targets, and built a computational model that used these features to
predict success or failure of targets in clinical trials. We found that successful targets tended to
have more variable mRNA abundance from tissue to tissue and lower average abundance across
tissues than failed targets. Thus, it is probably favorable for a target to be present in the tissue(s)
affected by a disease and absent from other tissues. Our work demonstrates the feasibility of

predicting clinical trial outcomes from target features.
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INTRODUCTION

More than half of drug candidates that advance beyond phase | clinical trials fail due to lack of
efficacy (1, 2). One possible explanation for these failures is sub-optimal target selection (3).
Many factors must be considered when selecting a target for drug discovery (4, 5). Intrinsic
factors include the likelihood of the target to be tractable (can the target’ s activity be altered by a
compound, antibody, or other drug modality?), safe (will altering the target’s activity cause
serious adverse events?), and efficacious (will altering the target’s activity provide significant
benefit to patients?). Extrinsc factors include the availability of investigational reagents and
disease models for preclinical target validation, whether biomarkers are known for measuring
target engagement or therapeutic effect, the duration and complexity of clinical trials required to
prove safety and efficacy, and the unmet need of patients with diseases that might be treated by

modulating the target.

Over the past decade, technologies have matured enabling high-throughput genome-,
transcriptome-, and proteome-wide profiling of cells and tissues in normal, disease, and
experimentally perturbed states. In parallel, researchers have made substantial progress curating
or text-mining biomedical literature to extract and organize information about genes and
proteins, such as molecular functions and signaling pathways, into structured datasets. Taken
together, both efforts have given rise to a vast amount of primary, curated, and text-mined data
about genes and proteins, which are stored in online repositories and amenable to computational

analysis (6, 7).
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86 To improve the success rate of drug discovery projects, researchers have investigated whether
87 any features of genes or proteins are useful for target selection. These computational studies can
88 be categorized according to whether the researchers were trying to predict tractability (8, 9),
89 safety (10-13), efficacy (no publications to our knowledge), or overall success (alternatively
90 termed “drug target likeness’) (8, 13-26). Closealy related efforts include disease gene prediction,
91 where the goal is to predict genes mechanistically involved in a given disease (27-32), and
92  disease target prediction, where the goal is to predict genes that would make successful drug
93 targetsfor agiven disease (33-35).
94
95 To our knowledge, we report the first screen for features of genes or proteins that distinguisn
96 targets of approved drugs from targets of drug candidates that failed in clinical trials. In contrast,
97 related prior studies have searched for features that distinguish targets of approved drugs from
98 the rest of the genome (or a representative subset) (13, 15-25). Using the remainder of the
99 genome for comparison has been useful for finding features enriched among successful targets,
100  but it is uncertain whether these features are specific to successful targets or are enriched among
101 targets of failed drug candidates as well. Our study aims to fill this knowledge gap by directly
102 testing for features that separate targets by clinical outcome, expanding the scope of prior studies
103 that have investigated how genetic disease associations (36) and publication trends (37) of
104  targets correlate with clinical outcome.
105
106  Our work has five additional innovative characteristics. First, we included only targets of drugs
107 that are presumed to be selective (no documented polypharmacology) to reduce ambiguity in

108 assigning clinical trial outcomes to targets. Second, we included only phase I11 failures to enrich
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109 for target efficacy failures, as opposed to safety and target engagement failures, which are more
110 common in phase | and phase Il (2). Third, we excluded targets of assets only indicated for
111  cancer, as studies have observed that features of successful targets for cancer differ from features
112 of successful targets for other indications (22, 23), moreover, cancer trials fail more frequently
113 than trials for other indications (2). Fourth, we interrogated a diverse and comprehensive set of
114  features, over 150,000 features from 67 datasets covering 16 feature types, whereas prior studies
115 have examined only features derived from protein sequence (16-18, 24, 25), protein-protein
116 interactions (13, 15, 18-23), Gene Ontology terms (13, 15, 16), and gene expression profiles (15,
117 19, 21, 25). Fifth, because targets of drugs and drug candidates do not congtitute a random
118 sample of the genome, we implemented a suite of tests to assess the robustness and
119 generalizability of features identified as significantly separating successes from failures in the
120  biased sample.

121

122 A handful of theinitial 150,000+ features passed our tests for robustness and generalizability to
123  new targets or target classes. Interestingly, these features were predominantly derived from gene
124 expression datasets. Notably, two significant features were discovered repeatedly in multiple
125 datasets. successful targets tended to have lower mean mRNA expression across tissues and
126  higher expression variance than failed targets. We also trained a classifier to predict phase I11
127  success probabilities for untested targets (no phase Il clinical trial outcomes reported for drug
128 candidates that selectively modulate these targets). We identified 943 targets with sufficiently
129 unfavorable expression characteristics to be predicted twice as likely to fail in phase 11 clinical
130 triads as past phase Il targets. Furthermore, we identified 2,700,856 target pairs predicted with

131  99% consistency to have a 2-fold difference in success probability. Such pairwise comparisons
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may be useful for prioritizing short lists of targets under consideration for a therapeutic program.
We conclude this paper with a discussion of the biases and limitations faced when attempting to

analyze, model, or interpret data on clinical trial outcomes.
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136 RESULTS

137

138 Examplesof successful and failed targets obtained from phase |1l clinical trial reports

139

140 We extracted phase Ill clinical trial outcomes reported in Pharmaprojects (38) for drug
141  candidates reported to be selective (single documented target) and tested as treatments for non-
142  cancer diseases. We grouped the outcomes by target, scored targets with at least one approved
143 drug as successful (Ns=259), and scored targets with no approved drugs and at least one
144 documented phase Il failure as failed (N=72) (Supplementary Table S1). The target success
145  rate (77%) appears to be inflated relative to typically reported phase 111 success rates (58%) (2)
146  because we scored targets by their best outcome across multiple trials.

147

148 Comprehensive and diver se collection of tar get featur es obtained from the Har monizome
149

150 We obtained target features from the Harmonizome (39), a recently published collection of
151 features of genes and proteins extracted from over 100 Omics datasets. We limited our analysis
152 to 67 datasets that are in the public domain or GSK had independently licensed (Table 1). Each
153 dataset in the Harmonizome is organized into a matrix with genes labeling the rows and features
154  such as diseases, phenotypes, tissues, and pathways labeling the columns. We included the mean
155 and standard deviation calculated along the rows of each dataset as additional target features.
156 These summary statistics provide potentially useful and interpretable information about targets,
157  such as how many pathway associations a target has or how variable a target’s expression is

158 acrosstissues.
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Table 1. Datasetstested for features significantly separating successful tar getsfrom failed tar gets.

Dataset

Roadmap Epigenomics Cell and Tissue
DNA Methylation Profiles

Allen Brain Atlas Adult Human Brain
Tissue Gene Expression Profiles

Allen Brain Atlas Adult Mouse Brain
Tissue Gene Expression Profiles
BioGPS Human Cell Type and Tissue
Gene Expression Profiles

BioGPS Mouse Cell Type and Tissue
Gene Expression Profiles

GTEX Tissue Gene Expression Profiles

GTEX Tissue Sample Gene Expression
Profiles

HPA Cell Line Gene Expression Profiles
HPA Tissue Gene Expression Profiles

HPA Tissue Protein Expression Profiles

HPA Tissue Sample Gene Expression
Profiles

HPM Cell Type and Tissue Protein
Expression Profiles

ProteomicsDB Cell Type and Tissue
Protein Expression Profiles

Roadmap Epigenomics Cell and Tissue
Gene Expression Profiles

TISSUES Curated Tissue Protein
Expression Evidence Scores

TISSUES Experimental Tissue Protein
Expression Evidence Scores

TISSUES Text-mining Tissue Protein
Expression Evidence Scores

ENCODE Histone Modification Site
Profiles

Roadmap Epigenomics Histone
Modification Site Profiles

ENCODE Transcription Factor Binding
Site Profiles

JASPAR Predicted Transcription Factor
Targets

COMPARTMENTS Curated Protein

L ocalization Evidence Scores
COMPARTMENTS Experimental
Protein Localization Evidence Scores
COMPARTMENTS Text-mining Protein
L ocalization Evidence Scores

GO Célular Component Annotations
LOCATE Curated Protein Localization
Annotations

LOCATE Predicted Protein Localization
Annotations

CTD Gene-Chemical Interactions

Guide to Pharmacol ogy Chemical
Ligands of Receptors

Kinativ Kinase Inhibitor Bioactivity
Profiles

KinomeScan Kinase Inhibitor Targets

Feature Type

cell or tissue DNA methylation

cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression
cell or tissue expression

cell or tissue expression

cell or tissue histone
modification sites
cell or tissue histone
modification sites

cell or tissue transcription

factor binding sites

cell or tissue transcription

factor binding sites
cellular compartment
associations

cellular compartment
associations

cellular compartment
associations

cellular compartment
associations

cellular compartment
associations

cellular compartment
associations

chemical interactions
chemical interactions
chemical interactions

chemical interactions

Total
Genes

13835

17979

14248

16383

15443

26005

19250

15868

17496

15788

16742

7274

2776

12824

16216

17922

16184

22382

21032

22845

21547

16738

6495

14375

16757

9639

19747

11125

899

232

287

Covered
Samples

227
287
287
320
313
328
301
259
314
266
300
94

28

164
317
316
330
330
313
330
330
330
73

330
328
269
325
321

209

10

Total
Features

26

416

2234

86

76

31

2920

33
46

123

55

59

645

245

4189

437

385

1681

113

1465

61

2083

1549

80

26

9518

4896

28

75

Covered
Features

26

416

2234

86

76

31

2920

45

33

46

123

55

59

245

244

2974

432

295

1591

80

228

37

877

208

50

23

2222

189

28

75

Reduced
Features

4

2

106

2118

91

282

723

s

105

10

124

20

10

2042

52

25

72
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CMAP Signatures of Differentialy
Expressed Genes for Small Molecules

ClinVar SNP-Phenotype Associations
CTD Gene-Disease Associations

dbGAP Gene-Trait Associations

DISEASES Curated Gene-Disease
Assocation Evidence Scores
DISEASES Experimental Gene-Disease
Assocation Evidence Scores
DISEASES Text-mining Gene-Disease
Assocation Evidence Scores

GAD Gene-Disease Associations

GAD High Level Gene-Disease
Associations

GWAS Catalog Gene-Disease
Associations

GWASdb SNP-Disease Associations
GWASdb SN P-Phenotype Associations

HPO Gene-Disease Associations

HuGE Navigator Gene-Phenotype
Associations

MPO Gene-Phenotype Associations
OMIM Gene-Disease Associations

GeneSigDB Published Gene Signatures

MSigDB Cancer Gene Co-expression
Modules

MiRTarBase microRNA Targets

TargetScan Predicted Conserved
microRNA Targets

TargetScan Predicted Nonconserved
microRNA Targets

GO Biological Process Annotations
GO Molecular Function Annotations
HumanCyc Pathways

KEGG Pathways

PANTHER Pathways

Reactome Pathways

Wikipathways Pathways

DEPOD Substrates of Phosphatases

NURSA Protein Complexes

InterPro Predicted Protein Domain
Annotations

BioGRID Protein-Protein Interactions

DIP Protein-Protein Interactions

Guide to Pharmacology Protein Ligands
of Receptors

chemical perturbation
differentially expressed genes
disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

disease or phenotype
associations

gene signatures or modules
gene signatures or modules
microRNA targets

microRNA targets

microRNA targets

pathway, function, or process
associations

pathway, function, or process
associations

pathway, function, or process
associations

pathway, function, or process
associations

pathway, function, or process
associations

pathway, function, or process
associations

pathway, function, or process
associations

phosphatase interactions

protein complex associations
protein domain associations

protein interactions

protein interactions

protein interactions

12148

2458

21582

5668

2252

4055

15309

10705

8016

4356

11805

12488

3158

12055

7798

4553

19723

4869

12086

14923

18210

15717

15777

932

7016

1962

9005

4958

293

9785

18002

15270
2709

187

300

143

331

147

115

131

330

318

314

127

253

261

171

322

299

209

331

135

218

283

324

328

327

41

298

138

309

263

19
141

329

306
140

46

6102

3293

6327

512

772

352

4630

12780

20

1009

587

824

6844

2755

8581

6177

3517

358

598

1539

1541

13214

4164

288

303

147

1814

301

114

1798

11017

15272
2711

213

5066

2926

51

106

2559

1189

19

30

252

397

1187

1241

2434

1363

135

93

1020

1534

2436

367

11

185

40

289

140

13

1182

119

1191
32

5065

2116

49

49

1850

980

16

28

126

150

667

1153

1444

1313

95

91

791

1236

1215

204

179

39

159

137

1181

63

1163
24

bioRxiv preprint doi: https://doi.org/10.1101/220848; this version posted November 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

10


https://doi.org/10.1101/220848
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220848; this version posted November 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

| IntAct Biomolecular Interactions protein interactions 12303 269 12305 422 417 |
| GTEx eQTL SNP eQTL targets 7898 107 7817 2 1 |
| TOTALS NA NA NA 174228 44092 28562 |

161

162 The datasets contained a total of 174,228 features covering 16 feature types (Table 1). We
163 restricted our analysis to 44,092 features that had at least three non-zero values for targets
164 assigned a phase Il outcome. Many datasets had strong correlations among their features. To
165 reduce feature redundancy and avoid excessive multiple hypothesis testing while maintaining
166 interpretability of features, we replaced each group of highly correlated features with the group
167 mean feature and assigned it a representative label (Fig 1, Supplementary Table S2). The number
168  of features shrunk to 28,562 after reducing redundancy.

169

170  Fig 1. Feature Selection Pipeline. Each dataset took the form of a matrix with genes labeling the rows and features
171  labeling the columns. We appended the mean and standard deviation computed across all features as two additional
172  features. Step 1. We filtered the columns to eliminate redundant features, replacing each group of correlated
173  features with the group average feature, where a group was defined as features with squared pair-wise correlation
174  coefficient r*> 0.5. If the dataset mean feature was included in a group of correlated features, we replaced the group
175  with the dataset mean. Step 2: We filtered the rows for targets with clinical trial outcomes of interest: targets of
176  selective drugs approved for non-cancer indications (successes) and targets of selective drug candidates that failed in
177  phaselll clinical trials for non-cancer indications (failures). Step 3: We tested the significance of each feature as an
178  indicator of success or failure using permutation tests to quantify the significance of the difference between the
179  means of the successful and failed targets. We corrected for multiple hypothesis testing using the Benjamini-
180  Yekutieli method to control the false discovery rate at 0.05 within each dataset. Step 4: We “stressed” the
181  significant features with additional tests to assess their robustness and generalizability. For example, we used

182  bootstrapping to estimate probabilities that the significance findings will replicate on similar sets of targets.

183

184 Target featurestested for correlation with phase Il outcome

11
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185

186 We performed permutation tests (40, 41) on the remaining 28,562 target features to find features
187  with asignificant difference between the successful and failed targets, and we corrected p-values
188 for multiple hypothesis testing using the Benjamini-Y ekutieli method (42) (Fig 1, Supplementary
189 Table S2). We used permutation testing to apply the same significance testing method to all
190 features, since they had heterogeneous data distributions. We detected 19 features correlated with
191 clinical outcome at a within-dataset false discovery rate of 0.05 (Table 2). The significant
192 features were derived from 7 datasets, of which 6 datasets were gene expression atlases: Allen
193 Brain Atlas adult human brain tissues (43, 44), Allen Brain Atlas adult mouse brain tissues (43,
194  45), BioGPS human cell types and tissues (46-48), BioGPS mouse cell types and tissues (46-48),
195 Genotype-Tissue Expression Project (GTEX) human tissues (49, 50), and Human Protein Atlas
196 (HPA) human tissues (51). The remaining dataset, TISSUES (52), was an integration of
197 experimental gene and protein tissue expression evidence from multiple sources. Two
198 correations were significant in multiple datasets: successful targets tended to have lower mean

199  expression across tissues and higher expression variance than failed targets.

200
201 Table?2. Featuressignificantly correlated with phasell outcome.
Repl Prob
Correl- Correlated Repl Prob "
Dataset Feature e ation Target Classes rEg [P (Class Holdout (AL C_:Iass
Pval Sian (and sign) (Bootstrap) Bootstrap) Permutation
_ _ 9 g . Bootstrap)
BioGPS Human Cll Typeand Tissue oy 0001 -1 GPCRs (-1) 0.89 0.98 083
Gene Expression Profiles
BioGPS Human Cell Type and Tissue ) GPCRs (-1),
Gene Expression Profiles =0 Gy f = Integrins (+1) 5 82 e
BioGPS Mouse Cell Type and Tissue
Gene Expression Profiles [mean] 0042 -1 GPCRs (-1) 055 071 0.56
Allen Brain Atlas Adult Human Brain
Tissue Gene Expression Profiles [mean] 0.006 -1 GPCRs (-1) 078 0.80 078
Allen Brain Atlas Adult Mouse Brain
Tissue Gene Expression Profiles r3 roof plate 0.002 -1 None 0.88 1.00 0.89
Allen Brain Atlas Adult Mouse Brain
Tissue Gene Expression Profiles [mean] 0.007 -1 None 076 1.00 079
GTEX Tissue Gene Expression Profiles  [mean] 0.014 -1 GPCRs (-1) 0.65 0.60 0.76
GTEX Tissue Gene Expression Profiles  stdv 0.014 +1 GPCRs (+1) 8:69 0.94 076

12
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HPA Tissue Gene Expression Profiles  [mean] 0.004 -1 GPCRs (-1) 0.80 0.90 0.85
HPA Tissue Gene Expression Profiles  stdv 0.004 +1 None 0.81 1.00 0.81

TISSUES Experimental Tissue Protein

Expression Evidence Scores bone marrow 0.001 -1 GPCRs (-1) 0.92 0.96 0:66

TISSUES Experimental Tissue Protein  [hematopoietic ) GPCRs (-1),

Expression Evidence Scores cellg] e Integrins (+1) e 00 o
TISSUES Experimental Tissue Protein o 0001 -1  GPCRs(-1) 0.85 0.99 076
Expression Evidence Scores

TISSUES Experimental Tissue Protein  [epithalamus and )

Expression Evidence Scores pineal gland] ez - MELS et e i
TISSUES Experimental Tissue Protein .

Expression Evidence Scores erythroid cell 0.015 -1 None 9:68 0.94 8:45
TISSUES Experimental Tissue Protein

Expression Evidence Scores [t-lymphocyte] 0.017 -1 None 0.65 0.95 0.65
Tl SSUE_S Exp_en mental Tissue Protein [_mlscellaneous 0017 -1 GPCRs (-1) 064 064 063
Expression Evidence Scores tissues]

TISSUES Experimental Tissue Protein  [thymus and .

Expression Evidence Scores thorax] e LEL TS — Loz s
TISSUES Experimental Tissue Pratein o oovter 0048 -1 None 0.44 0.62 045

Expression Evidence Scores
Footnotes

Abbreviations: Corr Pval = p-value corrected for multiple hypothesis testing, Repl Prob = replication probability.

[Square brackets] denote groups of features.

[miscellaneous tissues] is a heterogeneous group of digestive, respiratory, urogenital, reproductive, nervous, cardiovascular, and hematopoietic
System tissues.

White background indicates features that passed all tests for robustness and generalizability.

Gray background indicates features that failed at |east one test for robustness or generalizability. Strikethrough-itaties indicates the failed test(s).

Significant features tested for robustness to sample variation and generalization across

target classes

Because targets of drugs and drug candidates do not congtitute a random sample of the genome,

features that separate successful targets from failed targets in our sample may perform poorly as

genome-wide predictors of success versus failure. We performed three analyses to address this

issue (Fig 1).

Robustness to sample variation
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213  We used bootstrapping (53, 54) (sampling with replacement from the original set of examples to
214  construct sets of examples equal in size to the original set) to investigate how robust our
215 significance findings were to variation in the success and failure examples. For each dataset that
216 yielded significant features in our primary analysis, we repeated the analysis on 1000 bootstrap
217 samples and quantified the replication probability (55) of each feature as the fraction of
218 bootstraps yielding a significant correlation with phase Il outcome at a within-dataset false
219 discovery rate of 0.05. Twelve features had less than 80% probability (considered a strong
220 replication probability in (55)) that their correlation with clinical outcome will generalize to new
221 examples(Table2).

222

223  Robustnessto target class variation

224

225 Wetested if any of the significance findings depended upon the presence of targets from asingle
226  target class in our sample. We obtained target class labels (i.e. gene family labels) from the
227 HUGO Gene Nomenclature Committee (56), tested if any target classes were significantly
228  correlated with phase |1l outcome, and then tested if these classes were correlated with any
229 features. The GPCR and integrin classes were correlated with phase Il outcome as well as
230 several features (Table 2). Thisraised the possibility that instead of these features being genome-
231  wideindicators of clinical outcome, they were ssmply reflecting the fact that many GPCRs have
232  succeeded (62/70, p<0.05) or that integrins have failed (3/3, p<0.01). To test this possibility, we
233  repeated the bootstrapping procedure described above to obtain replication probabilities, except

234  excluded GPCRs and integrins from being drawn in the bootstrap samples. Six features had less

14


https://doi.org/10.1101/220848
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220848; this version posted November 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

235  than 80% probability that their correlation with clinical outcome will generalize to new target
236  classes (Table 2).

237

238  Generalization across target classes

239

240  Inthe preceding analysis, we checked one target class at atime for itsimpact on our significance
241  findings. To broadly test whether features generalize across target classes, we repeated the
242  permutation testing described in our initial analysis, but only shuffled the success/failure labels
243 within target classes, inspired by the work of Epstein et a. (57) on correcting for confoundersin
244 permutation testing. By generating a null distribution with preserved ratio of successes to failures
245  within each target class, features must correlate with clinical outcome within multiple classes to
246  be significant, while features that discriminate between classes will not be significant. We
247  repeated the modified permutation tests on 1000 bootstrap samples to obtain replication
248  probabilities. We rejected fifteen features that had less than 80% probability that their correlation
249  with clinical outcome generalizes across target classes (Table 2). This set of fifteen features
250 included all features with less than 80% replication probability in either of the previous two tests.
251 Theremaining robust and generalizable features were: 1) mean mMRNA expression across tissues
252  (HPA and BioGPS human tissue expression datasets), 2) standard deviation of expression across
253  tissues (HPA human tissue expression dataset), and 3) expression in r3 roof plate (Allen Brain
254  Atlas adult mouse brain tissue expression dataset). The r3 roof plate expression profile was
255  correlated with mean expression across tissues in the Allen Brain Atlas dataset (r*=0.47), falling
256  just below the r’=0.5 cut-off that would have grouped r3 roof plate with the mean expression

257  profile during dimensionality reduction.
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258

259 Clasdfier-based assessment of featur e usefulness and inter pr etability

260

261 Statistical significance did not guarantee the remaining features would be useful in practice for
262  discriminating between successes and failures. To test their utility, we trained a classifier to
263  predict target success or failure, using cross-validation to select a model type (Random Forest or
264  logistic regression) and a subset of features useful for prediction. Because we used all targets
265  with phase Il outcomes for the feature selection procedure described above, ssimply using the
266 final set of features to train a classifier on the same data would yield overly optimistic
267 performance, even with cross-validation. Therefore, we implemented a nested cross-validation
268  routine to perform both feature selection and model selection (58).

269

270  Cross-validation routine

271

272  Theouter loop of the cross-validation routine had five steps (Fig 2): 1) separation of targets with
273  phase Ill outcomes into training and testing sets, 2) univariate feature selection using the training
274  set, 3) aggregation of features from different datasets into a single feature matrix, 4) classifier-
275 based feature selection and model selection using the training set, and 5) evaluation of the
276  classifier on the test set. Step 4 used an inner loop with 5-fold cross-validation repeated 20 times
277  to estimate the performance of different classifier types (Random Forest or logistic regression)
278 and feature subsets (created by incremental feature elimination). The simplest classifier (least
279  number of features, with logistic regression considered ssimpler than Random Forest) with cross-

280 validation values for area under the receiver operating characteristic curve (AUROC) and area
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281  under the precison-recall curve (AUPR) within 95% of maximum was selected. The outer loop
282  used 5-fold cross-validation repeated 200 times, which provided 1000 train-test cycles for
283  estimating the generalization performance of the classifier and characterizing the consistency of
284  the sdlected features and model type.

285

286  Fig 2. Modeling Pipeline. We trained a classifier to predict phase 111 clinical trial outcomes, using 5-fold cross-
287  validation repeated 200 times to assess the stability of the classifier and estimate its generalization performance. For
288  eachfold of cross-validation, modeling began with the non-redundant features for each dataset. Step 1: We split the
289  targets with phase Il outcomes into training and testing sets. Step 2: We performed univariate feature selection
290  using permutation tests to quantify the significance of the difference between the means of the successful and failed
291 targetsin the training examples. We controlled for target class as a confounding factor by only shuffling outcomes
292  within target classes. We accepted features with adjusted p-values less than 0.05 after correcting for multiple
293  hypothesis testing using the Benjamini-Y ekutieli method. Step 3: We aggregated significant features from all
294  datasets into a single feature matrix. Step 4: We performed incremental feature elimination with an inner 5-fold
295  cross-validation loop repeated 20 times to select the type of classifier (Random Forest or logistic regression) and
296  smallest subset of features that had cross-validation area under the receiver operating characteristic curve (AUROC)
297  and area under the precision-recall curve (AUPR) values within 95% of maximum. Step 5. We refit the selected

298  model using all the training examples and evaluated its performance on the test examples.

299

300 Classifier consistency

301

302 Simple models were consistently selected for the classifier (Table 3, Supplementary Table S3).
303 In 1000 train-test cycles, alogistic regression model with one feature was selected most the time
304 (66%), followed in frequency by a logistic regression moded with two features (8%), a Random
305 Forest model with two features (8%), and a logistic regression model with three features (6%).

306  Other combinations of model type (logistic regression or Random Forest) and number of features
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307 (ranging from 1 to 8) appeared 11% of the time (each 4% or less). For one of the train-test cycles
308 (0.1%), no significant features were found in the univariate feature selection step, resulting in a
309 null model. Note that the logistic regression models were selected primarily because we imposed
310 a preference for simple and interpretable models, not because they performed better than
311 Random Forest models. The Random Forest model tended to perform as well as the logistic
312  regression model on the inner cross-validation loop, with AUROC = 0.62 + 0.06 for Random

313  Forest and 0.63 + 0.05 for logistic regression (Supplementary Table $4).

314
315 Table3. Distribution of train-test cycles by classifier type and number of selected features.
Selected Model Type
Logistic Regression  Random Forest  Total
1 662 5 667
2 82 84 166
g 3 57 4 9
5
8 a4 2 2 24
g 5 24 1 25
& 6 1 0 1
7 6 0 6
8 2 0 2
Total 866 133 999+
Footnotes
* 1 train-test cycle yielded no significant features for modeling

316

317 Gene expression features were consistently selected for the classifier (Table 4, Supplementary
318 Table S3). Mean mMRNA expression across tissues and standard deviation of expression across
319 tissues had frequencies of 69% and 59%, respectively. More precisaly, 36% of the models used
320 mean MRNA expression across tissues as the only feature, 31% used standard deviation of
321 expression as the only feature, and 12% used mean and standard deviation as the only two

322 features. Other expression features appeared in 21% of the models. These expression features
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323 tended to be corrdated with mean expression across tissues (median r’=0.49). Disease

324  association features appeared in 0.4% of the models.

325
326  Table4. Number of train-test cyclesin which feature was selected for the classifier.
Feature Type Feature Count
cell or tissue expression mean across tissues 685
cell or tissue expression standard deviation across tissues 585
cell or tissue expression other 214
disease or phenotype associations mean across diseases 2
disease or phenotype associations other 2
pathway, function, or process associations any 1

327

328 Classifier performance

329

330 Theclassifier consistently had better than random performance in cross-validation (Fig 3, Table
331 5, Supplementary Table S5). The 2.5, 50", and 97.5™ percentiles for AUROC were 0.51, 0.57,
332 and 0.61. For comparison, a random ordering of targets would yield an AUROC of 0.50. The
333 receiver operating characteristic curve showed that there was no single cut-off that would
334  provide satisfactory discrimination between successes and failures (Fig 3A). For an aternative
335 view, we used kernel density estimation (59) to fit distributions of the probability of success
336 predicted by the classifier for the successful, failed, and unlabeled targets (Fig 3B,
337  Supplementary Table S1). The distributions for successes and failures largely overlapped, except
338 inthetalls.

339

340 Fig 3. Classifier Performance. (A) Receiver operating characteristic (ROC) curve. The solid black line indicates
341  the median performance across 200 repetitions of 5-fold cross-validation and the gray areaindicates the range of the
342 2.5 and 97.5 percentiles. The dotted black line indicates the performance of random rankings. (B) Distributions of
343  the probability of success predicted by the classifier for the successful, failed, and unlabeled targets. (C) Precision-
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344  recal curve for success predictions. (D) Precision-recall curve for failure predictions. (E) Pairwise target
345  comparisons. For each pair of targets, we computed the fraction of repetitions of cross-validation in which Target B
346  had ahigher predicted probability of success greater than Target A. The heatmap illustrates this fraction, thresholded
347  at 0.95 or 0.99, plotted as a function of the median predicted probabilities of success of two targets. The upper left
348  regioniswherethe classifier is 95% (above solid black line) or 99% (above dotted blue line) consistent in predicting
349  greater probability of success of Target B than Target A. (F) Relationship between features and phase 111 outcomes.
350  Heat map showing the projection of the predicted success probabilities onto the two dominant features selected for
351 the classifier: mean expression across tissues and standard deviation of expression across tissues. Red, white, and
352  blue background colors correspond to 1, 0.5, and 0 success probabilities. Red plusses and blue crosses mark the
353 locations of the success and failure examples. It appears the model has learned that failures tend to have high mean
354  expression and low standard deviation of expression across tissues, while successes tend to have low mean
355  expression and high standard deviation of expression. The success and failure examples are not well separated,

356 indicating that we did not discover enough features to fully explain why targets succeed or fail in phase 111 clinical

357  trids.

358

359 Tableb. Classfier performance statistics.
Statistic 2.5 Percentile Median 97.5 Percentile
True Positives (TP) 91 220 243
False Positives (FP) 16 52 65
True Negatives (TN) 5 16 52
False Negatives (FN) 1 24 154
True Positive Rate (TPR) 0.370 0.903 0.995
False Positive Rate (FPR) 0232 0.762 0.928
False Negative Rate (FNR) 0.005 0.096 0.630
True Negative Rate (TNR) 0.072 0.237 0.768
Misclassification Rate (MCR) 0.206 0.241 0.542
Accuracy (ACC) 0.458 0.759 0.794
False Discovery Rate (FDR) 0.149 0.194 0.213
Positive Predictive Value (PPV) 0.787 0.806 0.851
False Omission Rate (FOMR) 0.233 0.583 0.741
Negative Predictive Value (NPV) 0.259 0.417 0.767
Area Under Receiver Operating Characteristic Curve (AUROC) 0512 0.574 0.615
Area Under Precision-Recall Curve (AUPR) 0.777 0.811 0.836
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Positive Likelihood Ratio (PLR) 1.058 1184 1619
Negative Likelihood Ratio (NLR) 0.086 0.402 0.819
Diagnostic Odds Ratio (DOR) 1748 3.066 13.344
Risk Ratio (RR) 1.143 1.387 3.447
Matthews Correlation Coefficient (MCC) 0.100 0.178 0.251

360

361 We attempted to identify subsets of targets with high positive predictive value (PPV) or high
362 negative predictive value (NPV). The median PPV rose as high as 0.99, but uncertainty in the
363 PPV was so large that we could not be confident in identifying any subset of targets with a
364 predicted success rate better than the historical 0.77 (Fig 3C). The median NPV rose to 0.40,
365 roughly twice the historical failure rate of 0.23. Furthermore, at 0.40 median NPV, 99% of the
366 cross-validation repetitions had an NPV greater than the historical failure rate (Fig 3D). Using
367 this cut-off, we identified 943 unlabeled targets expected to be twice as likely to fail in phase I11
368 clinical trials as past phase I11 targets.

369

370  We reasoned that a more practical use of the classifier would be to make pair-wise comparisons
371 among a short list of targets already under consideration for a therapeutic program. To assess the
372  utility of the classifier for this purpose, for every pair of targets Ta and Tg, we computed the
373  fraction of cross-validation runs in which the classifier predicted greater probability of success
374  for Tg than Ta. We identified 67,270,678 target pairs (39%) with at least a 0.1 difference in
375 median success probability where the classifier was 95% consistent in predicting greater
376  probability of success for Tg than Ta. The classifier was 99% consistent for 41528043 target
377  pairs (24%). Requiring at least a 2-fold difference in median success probability between Tg and
378  Ta reduced these counts to 2,730,437 target pairs (1.6%) at 95% consistency and 2,700,856
379 target pairs (1.6%) at 99% consistency. We visualized these results by plotting the 95% and 99%

380 consistency fraction thresholds smoothly interpolated as a function of the median predicted
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381  probabilities of successof To and Tg (Fig 3E). For a median probability of success of Ta around
382 0.2, Tg must have a median probability of success of 0.5 or greater at the 99% threshold. For
383 lower Ta success probabilities, the Tg success probability must be even higher because there is
384  greater uncertainty about the low T, probabilities. For higher T success probabilities, the Tg
385  success probability at the 99% threshold increases steadily until a Ta success probability of about
386 0.6, where the Tg success probability reaches 1. For Ta success probabilities above 0.6, no
387 targets are predicted to have greater probability of success with 99% cons stency.

388

389 Featureinterpretation

390

391 Tointerpret the relationship inferred by the classifier between target features and outcomes, we
392 created a heatmap of the probability of success predicted by the classifier projected onto the two
393 features predominantly selected for the model: mean expression and standard deviation of
394  expression across tissues (Fig 3F). The probability of success was high in the subspace with low
395 mean expression and high standard deviation of expression, and transitioned to low probability in
396 the subspace with high mean expression and low standard deviation of expression. This trend
397 appeared to be consistent with the distribution of the success and failure examples in the space.

398
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399 DISCUSSION

400

401 Geneexpresson predicts phaselll outcome

402

403 We searched over 150,000 target features from 67 datasets covering 16 feature types for
404  predictors of target success or failure in phase Il clinical trials (Table 1, Fig 1). We found
405 severa features significantly correlated with phase 11l outcome, robust to re-sampling, and
406 generaizable across target classes (Table 2). To assess the usefulness of such features, we
407 implemented a nested cross-validation routine to select features, train a classifier to predict the
408 probability a target will succeed in phase Il clinical trials, and estimate the stability and
409 generalization performance of the model (Figs 2 and 3, Tables 3, 4, and 5). Ultimately, we found
410 two features useful for predicting success or failure of targets in phase Il clinical trials.
411  Successful targets tended to have low mean mRNA expression across tissues and high standard
412 deviation of MRNA expression across tissues (Fig 3F). These features were significant in
413  multiple gene expression datasets, which increased our confidence that their relationship to phase
414 11l outcome was real, at least for the targets in our sample, which included only targets of
415  sdective drugsindicated for non-cancer diseases.

416

417  One interpretation of why the gene expression features were predictive of phase |1l outcome is
418 that they are informative of the specificity of a target’s expression across tissues. A target with
419  tissue specific expression would have a high standard deviation relative to its mean expression
420 level. Tissue specific expression has been proposed by us and others as a favorable target

421  characterigtic in the past (4, 14, 60-62), but the hypothesis had not been evaluated empirically
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422  using examples of targets that have succeeded or failed in clinical trials. For agiven disease, if a
423  target is expressed primarily in the disease tissue, it is considered more likely that a drug will be
424  able to exert a therapeutic effect on the disease tissue while avoiding adverse effects on other
425  tissues. Additionally, specific expression of a target in the tissue affected by a disease could be
426  anindicator that dysfunction of the target truly causes the disease.

427

428 The distribution of the success and failure examples in feature space (Fig 3F) partially supports
429 the hypothesis that tissue specific expression is a favorable target feature. Successes were
430 enriched among targets with low mean expression and high standard deviation of expression
431  (tissue specific expression), and failures were enriched among targets with high mean expression
432  and low standard deviation of expression (constitutive expression). However, it does not hold in
433 general that, at any given mean expression level, targets with high standard deviation of
434  expression tend to be more successful than targets with low standard deviation of expression.
435 Nevertheless, our results encourage further investigation of the relationship between tissue
436  specific expression and clinical trial outcomes. Deeper insight may be gleaned from analysis of
437  gene expression features explicitly designed to quantify specificity of atarget’s expression in the
438  tissue(s) affected by the disease treated in each clinical trial.

439

440 Caveatsand limitations

441

442  Latent factors (variables unaccounted for in this analysis) could confound relationships between
443  target features and phase |11 outcomes. For example, diseases pursued vary from target to target,

444  and a target’s expression across tissues may be irrelevant for diseases where drugs can be
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445  delivered locally or for Mendelian loss-of-function diseases where treatment requires systemic
446  replacement of a missing or defective protein. Also, clinical trial failure rates vary across disease
447  classes (2). Although we excluded targets of cancer therapeutics from our analysis, we otherwise
448  did not control for disease class as a confounding explanatory factor. Modalities (e.g. small
449 molecule, antibody, antisense oligonucleotide, gene therapy, or protein replacement) and
450 directions (e.g. activation or inhibition) of target modulation also vary from target to target and
451  could be confounding explanatory factors or alter the dependency between target features and
452  outcomes.

453

454  The potential issues described above are symptoms of the fact that our analysis (and any analysis
455  of clinical trial outcomes) attempts to draw conclusions from a small (roughly 300 targets) and
456 biased sample (63, 64). Latent factors such as target classes, disease classes, modalities, and
457  directions of target modulation are not uniformly represented in the sample, yet correlations
458  between target features and clinical trial outcomes likely depend on these factors. Unfortunately,
459  attempts to stratify, match, or otherwise control for these factors are limited by the sample size.
460 (The number of combinations of target class, disease class, modality, and direction of modulation
461 exceeds the sample size) We employed several tests to build confidence that our findings
462  generalize across target classes, but did not address other latent factors. Consequently, we cannot
463 be sure that conclusions drawn from this study apply equally to targets modulated in any
464  direction, by any means, to treat any disease. For specific cases, expert knowledge and common
465  sense should berelied upon to determine whether conclusions from this study (or similar studies)
466  arerelevant.

467
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468  Another limitation is selection bias (63, 64). Targets of drugs are not randomly selected from the
469 genome and cannot be considered representative of the population of all possible targets.
470 Likewise, diseases treated by drugs are not randomly chosen; therefore, phase 11l clinical trial
471  outcomes for each target cannot be considered representative of the population of all possible
472  outcomes. Although we implemented tests to build confidence that our findings can generalize to
473  new targets and new target classes, ultimately, no matter how we dissect the sample, a degree of
474  uncertainty will always remain about the relevance of any findings for new targets that lack a
475  representative counterpart in the sample.

476

477  Additionally, data processing and modeling decisions have introduced bias into the analysis. For
478 example, we scored each target as successful or failed by its best outcome in all applicable
479  (sdlective drug, non-cancer indication) phase 11 clinical trials. This approach ignores nuances. A
480 target that succeeded in onetrial and failed in all othersistreated as equally successful as atarget
481 that succeeded in al trials. Also, the outcome of a target tested in a single trial is treated as
482  equally certain as the outcome of atarget tested in multiple trials. Representing target outcomes
483  as success rates or probabilities may provide better signal for discovering features predictive of
484  outcomes.

485

486  Another decision was to use datasets of features as we found them, rather than trying to reason
487  about useful features that could be derived from the original data. Because of the breadth of data
488 we interrogated, the effort and expertise necessary to hand engineer features equally well across
489  all datasets exceeded our resources. Others have had success hand engineering features for

490 similar applications in the past, particularly with respect to computing topological properties of
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491  targets in protein-protein interaction networks (18, 20, 21). This analysis could benefit from such
492  efforts, potentially changing a dataset or feature type from yielding no target features correlated
493  with phase Ill outcomes to yielding one or several useful features (22). On a related point,
494  because we placed a priority on discovering interpretable features, we performed dimensionality
495  reduction by averaging groups of highly correlated features and concatenating their (usually
496 semantically related) labels. Dimensionality reduction by principal components analysis (65) or
497 by training a deep auto-encoder (66) could yield more useful features, albeit at the expense of
498 interpretability.

499

500 We cannot stress enough the importance of taking care not to draw broad conclusions from our
501 study, particularly with respect to the apparent dearth of features predictive of target success or
502 failure. We examined only a specific slice of clinical trial outcomes (phase 111 trials of selective
503 drugsindicated for non-cancer diseases) summarized in a particular way (net outcome per target,
504 as opposed to outcome per target-indication pair). Failure of a feature to be significant in our
505 analysis should not be taken to mean it has no bearing on target selection. For example, prior
506 studies have quantitatively shown that genetic evidence of disease association(s) is a favorable
507 target characteristic (3, 36), but we did not find a significant correlation between genetic
508 evidence and target success in phase I1 clinical trials. Our finding is consistent with the work of
509 Neson et a. (36), who investigated the correlation between genetic evidence and drug
510 development outcomes at all phases and found a significant correlation overall and at all phases
511 of development except phase I11. As away of checking our work, we applied our methods to test
512 for features that differ between targets of approved drugs and the remainder of the druggable

513 genome (instead of targets of phase Il failures), and we recovered the finding of Nelson et al.
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514  that targets of approved drugs have significantly more genetic evidence than the remainder of the
515 druggable genome (Supplementary Table S6). This example serves as a reminder to be cognizant
516 of the domain of applicability of research findings. Though we believe we have performed a
517 rigorous and useful analysis, we have shed light on only a small piece of a large and complex
518 puzzle.

519

520  Advances in machine learning enable and embolden us to create potentially powerful predictive
521 models for target selection. However, as described in the limitations, scarce training data are
522  available, the data are far from ideal, and we must be cautious about building models with biased
523 data and interpreting their predictions. For example, many features that appeared to be
524  dignificantly correlated with phase 11 clinical trial outcomesin our primary analysis did not hold
525  up when we accounted for target class selection bias. This study highlights the need for both
526  domain knowledge and modeling expertise to tackle such challenging problems.

527

528 Conclusion

529

530 Our analysis revealed severa features that significantly separated targets of approved drugs from
531 targets of drug candidates that failed in phase Il clinical trials. This suggested that it is feasible
532 to congtruct a model integrating multiple interpretable target features derived from Omics
533 datasets to inform target selection. Only features derived from tissue expression datasets were
534  promising predictors of success versus failure in phase 111, specifically, mean mRNA expression
535 and standard deviation of expression across tissues. Although these features were significant at a

536 falsediscovery rate cut-off of 0.05, their effect sizes were too small to be useful for classification
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537 of the mgority of untested targets, however, even a two-fold improvement in target quality can
538 dramatically increase R&D productivity (67). We identified 943 targets predicted to be twice as
539 likely tofail in phase Il clinical trials as past phase |11 targets, and, therefore, should be flagged
540 as having unfavorable expression characteristics. We also identified 2,700,856 target pairs
541 predicted with 99% consistency to have a 2-fold difference in success probability, which could
542  beuseful for prioritizing short lists of targets with attractive disease relevance.

543

544 It should be noted that our analysis was not designed or powered to show that specific datasets or
545  data types have no bearing on target selection. There are many reasons why a dataset may not
546 have yielded any significant features in our analysis. In particular, data processing and filtering
547  choices could determine whether or not a dataset or data type has predictive value. Also, latent
548 factors, such as target classes, disease classes, modalities, and directions of target modulation,
549  could confound or alter the dependency between target features and clinical trial outcomes.
550 Finaly, although we implemented tests to ensure robustness and generalizability of the target
551 features significantly correlated with phase 111 outcomes, selection bias in the sample of targets
552 available for analysis is a non-negligible limitation of this study and others of its kind.
553  Nevertheless, we are encouraged by our results and anticipate deeper insights and better models
554 in the future, as researchers improve methods for handling sample biases and learn more
555  informative features.

556
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557 METHODS

558

559 Data

560

561 Clinical Outcomes

562

563 We extracted data from Citeline's Pharmaprojects database (38) (downloaded May 27, 2016),
564 reformatting available XML data into a single tab-delimited form having one row for each asset
565 (i.e. drug or drug candidate)/company combination. For each asset, known targets, identified
566  with EntrezGene (68) IDs and symbols, and indications are reported. We obtained 107,120 asset-
567 indication pairs and 37,211 asset-target pairs, correcting a single outdated EntrezGene ID, for
568 SCNZ2A, which we updated from 6325 to 6326.

569

570 An overal pipdine status of each asset (e.g. “Launched”, “Discontinued”, “No Devel opment
571 Reported”) is reported in a single field (“ Status’), and detailed information for each indication
572 being pursued is dispersed throughout several other fields (e.g., “Key Event Detail”,
573 “Overview”, etc.). While many assets have been tried against a single indication, and thus the
574  status of the asset-indication pair is certain, the magjority (N=61,107) of asset-indication pairs are
575  for assets with multiple indications. For those pairs, we used a combination of string searching of
576 these fields and manual review of the results to determine the likely pipeline location and status
577 of each indication. For example, we excluded efforts where a trial of an asset was reported as
578  planned, but no further information was available. Asset-indication pairs were thus assigned a

579 status of Successful (“Launched”, “Registered”, or “Pre-registration”), Failed (“Discontinued”,
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580 “No Development Reported”, “Withdrawn”, or “Suspended’), or In Progress, consisting of
581 9,337, 72,269 and 25,159 pairs, respectively. We then used the pipeline location to assign each
582  asset-indication pair to one of 10 outcomes: Succeeded, In Progress-Preclinical, In Progress-
583 Phase I, In Progress-Phase I, In Progress-Phase |11, Failed-Preclinical, Failed-Phase |, Failed-
584  Phase Il, Failed-Phase Il1l, and Failed-Withdrawn. We discarded indications which were
585  diagnostic in nature or unspecified, mapping the remainder to Medical Subject Headings (MeSH)
586 (69). We aso observed that only 24% of the failures reported in Pharmaprojects are clinical
587 failures, suggesting aclinical successrate of nearly 35%, much higher than typically cited (67).
588

589 Wejoined the list of asset-indication-outcome triples with the list of asset-target pairs to produce
5900 alist of asset-target-indication-outcome quadruples. We then filtered the list to remove: 1) assets
591  with more than one target, 2) non-human targets, 3) cancer indications (indications mapped to
592  MeSH tree C04), and 4) outcomes labeled as In Progress at any stage or Failed prior to Phase lIl.
593  We scored the remaining targets (N=331) as Succeeded (N=259), if the target had at least one
594  successful asset remaining in thelist, or Failed (N=72), otherwise.

595

596 Target Features

597

508 We obtained target features from the Harmonizome (39), a recently published collection of
599 features of genes and proteins extracted from over 100 Omics datasets. We downloaded (on June
600 30, 2016) a subset of Harmonizome datasets that were in the public domain or GSK had
601 independently licensed (Table 1). Each dataset was structured as a matrix with genes labeling the

602 rows and features such as diseases, phenotypes, tissues, and pathways labeling the columns.

31


https://doi.org/10.1101/220848
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220848; this version posted November 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

603  Genes were identified with EntrezGene IDs and symbols, enabling facile integration with the
604 clinical outcome data from Pharmaprojects. Some datasets were available on the Harmonizome
605 as a “cleaned” version and a “standardized” version. In all instances, we used the cleaned
606 version, which preserved the original data values (e.g. gene expression values), as opposed to the
607 standardized version, in which the original data values were transformed into scores indicating
608 relative strengths of gene-feature associations intended to be comparable across datasets. The
609 data matrices were gquantitative and filled-in (e.g. gene expression measured by microarray),
610 quantitative and sparse (e.g. protein expression measured by immunohistochemistry), or
611 categorical (i.e. binary) and sparse (e.g. pathway associations curated by experts). We
612 standardized quantitative, filled-in features by subtracting the mean and then dividing by the
613 standard deviation. We scaled quantitative, sparse features by dividing by the mean. We included
614 the mean and standard deviation calculated along the rows of each dataset as additional target
615 features. We excluded features that had fewer than three non-zero values for the targets with
616 phaselll clinical trial outcomes. The remaining features, upon which our study was based, have

617 been deposited at https:.//qgithub.com/arouillard/omic-features-successful-targets.

618

619 Dimensionality Reduction

620

621  Our goals in performing dimensionality reduction were to identify groups of highly correlated
622 features, avoid excessive multiple hypothesis testing, and maintain interpretability of features.
623  For each dataset, we computed pair-wise feature correlations (r) using the Spearman correlation
624  coefficient (70-72) for quantitative, filled-in datasets, and the cosine coefficient (71, 72) for

625 sparse or categorical datasets. We thresholded the correlation matrix at r’=0.5 (for the Spearman
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626  correlation coefficient, this corresponds to one feature explaining 50% of the variance of another
627 feature, and for the cosine coefficient, this corresponds to one feature being aligned within 45
628  degrees of another feature) and ordered the features by decreasing number of correlated features.
629 We created a group for the first feature and its correlated features. If the dataset mean was
630 included in the group, we replaced the group of features with the dataset mean. Otherwise, we
631 replaced the group of features with the group mean and assigned it the label of the first feature
632 (to indicate that the feature represents the average of features correlated with the first feature),
633 while also retaining a list of the labels of al features included in the group. We continued
634 through the list of features, repeating the grouping process as described for the first feature,
635  except excluding features already assigned to a group from being assigned to a second group.

636

637  Feature Selection

638

639 We performed permutation tests (40, 41) to find features with a significant difference between
640 successful and failed targets. We used permutation testing in order to apply the same significance
641 testing method to all features. The features in our collection had heterogeneous shapes of their
642 digributions and varying degrees of sparsity, and therefore no single parametric test would be
643  appropriate for al features. Furthermore, individual features frequently violated assumptions
644  required for parametric tests, such as normality for the t-test (for continuous-valued features) or
645 having at least five observations in each entry of the contingency table for the Chi-squared test
646  (for categorical features). For each feature, we performed 10° success/failure label permutations
647 toobtain anull distribution for the difference between the means of successful and failed targets,

648 and then calculated an empirical two-tailed p-value as the fraction of permutations that yielded a
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649 difference between means at least as extreme as the actual observed difference. We used the
650 Benjamini-Yekutieli method (42) to correct for multiple hypothesis testing within each dataset
651 and accepted features with corrected p-values less than 0.05 as significantly correlated with
652 phase Il clinical trial outcomes, thus controlling the false discovery rate at 0.05 within each
653 datasdt.

654

655 Feature Robustness and Generalizability

656

657 Robustnessto sample variation

658

659 We used bootstrapping (53, 54) to investigate how robust our significance findings were to
660 variation in the success and failure examples. We created a bootstrap sample by sampling with
661 replacement from the original set of examples to construct an equal sized set of examples. For
662 each dataset that yielded significant featuresin our primary analysis, we repeated the analysis on
663 the bootstrap sample and recorded whether the features were dtill significant at the
664  aforementioned 0.05 false discovery rate cut-off. We performed this procedure on 1000 bootstrap
665 samples and quantified the replication probability (55) of each feature as the fraction of
666 bootstraps showing a significant correlation between the feature and phase Il clinical trial
667 outcomes. We accepted features with replication probabilities greater than 0.8 (55) as robust to
668 sample variation.

669

670 Robustnessto target class variation

671
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672 Wetested if any of the significance findings depended upon the presence of targets from asingle
673 target class in our sample. We obtained target class labels (i.e. gene family labels) from the
674 HUGO Gene Nomenclature Committee (56) (downloaded April 19, 2016) and created binary
675 features indicating target class membership. Using the same permutation testing and multiple
676 hypothesis testing correction methods described above for feature selection, we tested if any
677 target classes were significantly correlated with phase I11 clinical trial outcomes. Then, we tested
678 if the significant target classes were correlated with any significant features. Such features might
679 be correlated with clinical outcome only because they are surrogate indicators for particular
680 target classes that have been historically very successful or unsuccessful, as opposed to the
681 features being predictors of clinical outcome irrespective of target class. To test this possibility,
682  we performed a bootstrapping procedure as described above, except did not allow examples from
683 target classes correlated with clinical outcome to be drawn when re-sampling. Thus, the modified
684  bootstrapping procedure provided replication probabilities conditioned upon missing information
685 about target classes correlated with clinical outcome. We accepted features with replication
686  probabilities greater than 0.8 as robust to target class variation.

687

688  Generalization acrosstarget classes

689

690 We implemented a modified permutation test, inspired by the approach of Epstein et al. (57) to
691 correct for confounders in permutation testing, to select features correlated with phase I11 clinical
692 trial outcomes while controlling for target class as a confounding explanatory factor. In the
693 modified permutation test, success/failure labels were shuffled only within target classes, so the

694  sets of null examples had the same ratios of successes to failures within target classes as in the
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695 set of observed examples. Consequently, features had to correlate with clinical outcome within
696 multiple classes to be significant, while features that discriminated between classes would not be
697 dignificant. We performed bootstrapping as described previousy to obtain replication
698 probabilities for the significant features, in this case conditioned upon including target class asan
699 explanatory factor. We accepted features with replication probabilities greater than 0.8 as
700 generalizable across target classes represented in the sample.

701

702  Clinical Outcome Classfier

703

704  We trained a classfier to predict target success or falure in phase Il clinical trials, using a
705  procedure like the above for initial feature selection, then using cross-validation to select a model
706  type (Random Forest or logistic regression) and subset of features useful for prediction. We used
707  an outer cross-validation loop with 5-folds repeated 200 times, yielding a total of 1000 train-test
708 cycles, to estimate the generalization performance and stability of the feature selection and
709 model selection procedure (58). Each train-test cycle had five steps. 1) splitting examples into
710 training and testing sets, 2) univariate feature selection on the training data, 3) aggregation of
711  significant features from different datasets into a single feature matrix, 4) model selection and
712 model-based (multivariate) feature selection on the training data, and 5) evaluation of the
713  classifier on thetest data.

714

715  Sep 2: Univariate feature selection

716
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717 Beginning with the non-redundant features obtained from dimensionality reduction, we
718 performed modified permutation tests to find features with a significant difference between
719  successful and failed targets in the training examples. As described above, for the modified
720  permutation test, success/failure labels were shuffled only within target classes. This was done to
721  control for target class as a confounding factor that might explain correlations between phase 111
722 outcomes and features. For each feature, we performed 10* success/failure label permutations
723 and calculated an empirical two-tailed p-value. We corrected for multiple hypothesis testing
724  within each dataset and accepted features with corrected p-values less than 0.05.

725

726  Sep 3. Feature aggregation

127

728  Significant features from different datasets, each having different target coverage, had to be
729  aggregated into a single feature matrix prior to training a classifier. When features from many
730 datasets were aggregated, we found that the set of targets with no missing data across all features
731  could become very small. To mitigate this, we excluded features from non-human datasets and
732  small datasets (fewer than 2,000 genes). We also excluded features from the Allen Brain Atlas
733  human brain expression atlas, unless there were no other significant features, because we noticed
734 it had poor coverage of targets with phase Il outcomes (287) compared to other expression
735 atlases, such as BioGPS (320), GTEx (328), and HPA (314), which amost always yielded
736  aternative significant expression-based features. After aggregating features into a single matrix,
737  we min-max scaled the features so that features from different datasets would have the same
738 rangeof values (from 0 to 1).

739
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740  To reduce redundancy in the aggregated feature matrix, we grouped features as described for the
741 primary analysis. We used the cosine coefficient to compute pair-wise feature correlations
742  because some features were sparse. Instead of replacing groups of correlated features with the
743  group mean, we selected the feature in each group that was best correlated with phase il
744  outcomes, because we preferred not to create features derived from multiple datasets.

745

746  Sep 4. Modd selection and model-based feature selection

747

748 We hypothesized that a Random Forest classifier (73) would be a reasonable model choice
749  because the Random Forest model does not make any assumptions about the distributions of the
750 features and can seamlessly handle a mixture of quantitative, categorical, filled-in, or sparse
751 features. Furthermore, we expected each train-test cycle to yield only a handful of significant
752  features. Consequently, we would have 10- to 100-fold more training examples than features and
753  could potentially afford to explore non-linear feature combinations. We also trained logistic
754  regression classifiers and used an inner cross-validation loop (described below) to choose
755  between Random Forest and logistic regression for each train-test cycle of the outer cross-
756 validation loop. We used the implementations of the Random Forest and logistic regression
757 classifiers available in the Scikit-learn machine learning package for Python. To correct for
758 unequal class sizes during training, the loss functions of these models weighted the training
759  examplesinversely proportional to the size of each example's class.

760

761  We performed incremental feature elimination with an inner cross-validation loop to 1) choose

762  thetype of classifier (Random Forest or logistic regression) and 2) choose the smallest subset of
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763  features needed to maximize the performance of the classifier. First, we trained Random Forest
764  and logistic regression models using the significant features aggregated in Step 2, performing 5-
765 fold cross-validation repeated 20 times to obtain averages for the area under the receiver
766  operating characteristic curve (AUROC) and area under the precision recall curve (AUPR). We
767 also obtained average feature importance scores from the Random Forest model. Next, we
768  eliminated the feature with lowest importance score and trained the models using the reduced
769 feature set, performing another round of 5-fold cross-validation repeated 20 times to obtain
770 AUROC, AUPR, and feature importance scores. We continued eiminating features then
771  obtaining cross-validation performance statistics and feature importance scores until no features
772  remained. Then, we found all models with performance within 95% of the maximum AUROC
773 and AUPR. If any logistic regression models satisfied this criterion, we selected the qualifying
774  logistic regresson model with fewest features. Otherwise, we selected the qualifying Random
775  Forest model with fewest features.

776

777  Sepb. Classifier evaluation

778

779  For each train-test cycle, after selecting a set of features and type of model (Random Forest or
780 logistic regression) in Step 4, we re-fit the selected model to the training data and predicted
781  success probabilities for targets in the test set as well as unlabeled targets. For each round of 5-
782 fold cross-validation, we computed the classifier's receiver operating characteristic curve,
783  precision-recall curve, and performance summary statistics, including the true positive rate, false
784  positive rate, positive predictive value, negative predictive value, and Matthews correlation

785  coefficient.
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786

787  We computed distributions of the log odds ratios predicted by the classifier (log of the ratio of
788  the predicted probability of success over the probability of failure) for the successful, failed, and
789  untested (unlabeled) targets, aggregating predicted probabilities from the 200 repetitions of 5-
790 fold cross-validation. Histograms of the log odds ratios for the three groups of targets were
791  roughly bell-shaped, so we fit the distributions using kernel density estimation (59) with a
792 Gaussian kernel and applied Silverman’s rule for the bandwidth. We transformed the fitted
793  digributions from a function of log odds ratio to a function of probability of success using the
794 rule pdf(x) = pdf(y)* |dy/dx]|.

795

796  We created a heatmap of the probability of success predicted by the classifier projected onto the
797  two dominant features in the model: mean mMRNA expression across human tissues and standard
798  deviation of mRNA expression across human tissues. We examined the heatmap to interpret the
799 classifier’sdecision function and assessits plausibility.

800

801 To more concretely assess the usefulness of the classifier, we found the probability cut-off
802  corresponding to the maximum median positive predictive value and determined the number of
803 unlabeled targets predicted to succeed at that cut-off. Likewise, we found the probability cut-off
804  corresponding to the maximum median negative predictive value and determined the number of
805 unlabeled targets predicted to fail at that cut-off. We also created a heatmap illustrating the
806  separation needed between the median predicted success probabilities of two targets in order to

807  beconfident that one target is more likely to succeed than the other. This heatmap was created by
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808 calculating the fraction of times Target B had greater probability of success than Target A across
809  the 200 repetitions of 5-fold cross-validation, for al pairs of targets.

810

811 Implementation

812

813 Computational analyses were written in Python 3.4.5 and have the following package
814  dependencies. Fastcluster 1.1.20, Matplotlib 1.5.1, Numpy 1.11.3, Requests 2.13.0, Scikit-learn
815 0.18.1, Scipy 0.18.1, and Statsmodels 0.6.1. Code, documentation, and data have been deposited

816 on GitHub at https://github.com/arouillard/omic-features-successful -targets.

817

818
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SUPPORTING INFORMATION

S1. Supplementary Table S1. List of targets with their phase |11 outcome labels and predicted

success probabilities for 200 cross-validation repetitions.

S2. Supplementary Table S2. List of non-redundant features with their similar features and p-

values from the basic permutation test.

S3. Supplementary Table S3. List of classifier attributes (selected features, selected model type,

and test performance) for 1000 train-test cycles.

SA. Supplementary Table $4. Comparison of inner cross-validation loop AUROC and AUPR

values between Random Forest and logistic regression models for 1000 train-test cycles.

S5. Supplementary Table Sb. List of classifier test performance statistics for 200 cross-

validation repetitions.

S6. Supplementary Table S6. Casesillustrating how the significance of genetic evidence (and

likely other types of evidence) as a predictor of target success depends on which targets are

compared.
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