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Abstract:

Members of the Mycobacterium tuberculosis complex (MTBC) are the causative
agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC
pathogens is their high degree of genetic identity, yet distinct host tropism. Notably,
while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human
pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that
host preference amongst MTBC members has a basis in host innate immune responses.
To explore MTBC host tropism, we present in-depth profiling of the MTBC reference
strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional
and translational level via RNA-sequencing and SWATH mass spectrometry.
Furthermore, a bovine alveolar macrophage infection time course model was employed
to investigate the shared and divergent host transcriptomic response to infection with
M. tuberculosis or M. bovis. Significant differential expression of virulence-associated
pathways between the two bacilli was revealed, including the ESX-1 secretion system. A
divergent transcriptional response was observed between M. tuberculosis and M. bovis
infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways
at 48 hours post-infection, and highlights a distinct engagement of M. bovis with the
bovine innate immune system. The work presented here therefore provides a basis for
the identification of host innate immune mechanisms subverted by virulent host-

adapted mycobacteria to promote their survival during the early stages of infection.
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Importance:

The Mycobacterium tuberculosis complex (MTBC) includes the most important global
pathogens for humans and animals, namely Mycobacterium tuberculosis and
Mycobacterium bovis, respectively. These two exemplar mycobacterial pathogens share
a high degree of genetic identity, but the molecular basis for their distinct host
preference is unknown. In this work we integrated transcriptomic and proteomic
analyses of the pathogens to elucidate global quantitative differences between them at
the mRNA and protein level. We then integrated this data with transcriptome analysis
of the bovine macrophage response to infection with either pathogen. Increased
expression of the ESX-1 virulence system in M. bovis appeared a key driver of an
increased cytosolic nucleic acid sensing and interferon response in bovine macrophages
infected with M. bovis compared to M. tuberculosis. Our work demonstrates the
specificity of host-pathogen interaction and how the subtle interplay between
mycobacterial phenotype and host response may underpin host specificity amongst

MTBC members.

Keywords: Mycobacterium tuberculosis, Mycobacterium bovis, cattle, gene expression,
RNA-sequencing, SWATH mass spectrometry, transcriptomics, proteomics, host

specificity, host-pathogen interactions, MTBC, infectious disease
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Introduction

The Mycobacterium tuberculosis complex (MTBC) comprises ten mycobacterial
species that cause tuberculosis (TB) in a broad range of mammalian species, including
humans (1-4). Typically, MTBC species show greater than 99% nucleotide sequence
identity and yet exhibit distinct host preference, indicating that this low-level of genetic
divergence holds major implications for host-pathogen interactions (1-3). Divergence in
host tropism is illustrated through the comparison of the human adapted
Mycobacterium tuberculosis with the animal bacillus Mycobacterium bovis. M.
tuberculosis is a highly successful pathogen and is the world’s leading cause of death
from an infectious agent with 1.7 million deaths reported in 2016 (5). M. bovis
predominantly causes disease in cattle and bovine TB exacts a tremendous economic
burden through production loss and control costs (6-8). M. tuberculosis appears unable
to sustain (i.e., through cycles of infection, disease and transmission) in non-human
animal populations, a fact that has been confirmed using an experimental bovine
infection model (1, 9): while cattle infected with M. bovis display characteristic
pathology, cattle infected with M. tuberculosis show minimal pathology despite positive
skin-test and interferon-gamma responses indicative of successful infection. Conversely,
while M. bovis can both infect humans and cause pulmonary disease that is clinically
indistinguishable from M. tuberculosis, it rarely transmits among immunocompetent

hosts (10, 11).
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On a cellular level, the alveolar macrophage is the frontline host immune cell that
encounters both M. tuberculosis and M. bovis, and its role during early stage infection is
well established (12-18). Several studies have highlighted significant differences in the
production of key innate factors, chemokines and cytokines at both the transcript and
protein level in macrophages infected with M. tuberculosis or M. bovis (15-20).
However, these studies evaluated only a subset of the innate response in macrophages
and differences in the global transcript and protein response to infection with
M. tuberculosis or M. bovis remains unknown. The central role of the alveolar
macrophage during infection is also reflected in the fact that pathogenic mycobacteria
have evolved several immune-evasion strategies to circumvent the killing mechanisms
of the macrophage, including inhibition of phagosomal maturation, phagosomal escape
and suppression of innate immune signalling (12-18). This facilitates the dissemination
of the bacilli to other macrophages and ultimately throughout the host, with the
concomitant development of immunopathology. Transmission of infection then occurs
through the rupture of lesions into associated airways and the dispersal of bacilli
(17,18). Thus, it can be hypothesized that the initial interaction between host and
pathogen may be key for the host preference observed between M. tuberculosis and M.
bovis; whether this interaction has roots in host-centric or pathogen-centric processes,

or indeed a combination of both, has yet to be fully elucidated.

M. tuberculosis H37Rv and M. bovis AF2122/97 were the first MTBC genomes to
be fully sequenced and they represent the default reference strains for the human and

animal tubercle bacilli (2, 21, 22). It is hypothesized that host tropism between these
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two species may be explained by differential gene expression profiles as a result of low
genetic divergence (2, 21, 22). So far, functional studies have revealed that genetic
changes between the two pathogens are responsible for differential nitrate reductase
activity, for the loss of phenolic glycolipid production in M. tuberculosis H37Rv in
contrast to M. bovis, and for differences in the PhoPR regulation system that governs
the expression of virulence-related pathways such as EsxA/ESAT-6 secretion and cell
wall lipid biosynthesis (23-26). While these studies highlight important differences
between the two pathogens, host tropism likely involves a combination of events such
as these that affect the expression and regulation of multiple virulence associated
factors and/or the transcriptional regulators that govern their activity. In 2007, two
microarray-based studies highlighted genes encoding the major antigens MPT83 and
MPT70 that were expressed at higher levels in M. bovis and genes involved in SL-1
production that were expressed at a higher level in M. tuberculosis (27, 28). Since these
reports, investigations into species-specific expression profiles of the two pathogens
have been lacking at the global transcriptional level and have yet to be defined at the
proteomic level. Definition of the differential “expressome” between M. tuberculosis
and M. bovis will shed light on how alternate expression of two highly related genomes
impacts on the ultimate success of these pathogens and host specificity within the

MTBC.

As a route to defining host preference between M. tuberculosis and M. bovis, we

have conducted in-depth profiling of M. bovis AF2122/97 and M. tuberculosis H37Rv at
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both the global transcriptional and translational level in vitro using RNA-seq and
Sequential Window Acquisition of all Theoretical Spectra (SWATH) mass spectrometry, a
massively parallel targeting mass spectrometry that provides highly reproducible
guantitative measurements across samples (29). To address how MTBC pathogen
variation impacts on the host innate response, we have performed detailed comparative
transcriptomic analyses of the bovine alveolar macrophage response to infection with
both pathogens using RNA-sequencing (RNA-seq). Through these analyses, we reveal
significant differential expression of virulence-associated pathways between M.
tuberculosis and M. bovis was found, in particular the ESX-1 secretion system, while the
macrophage infection study highlights a distinct engagement of M. bovis with the
bovine innate immune system was found, in particular with the cytosolic DNA-sensing

pathways of the macrophage.
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Methods

Mycobacterial culture for pathogen transcriptomics and proteomics

Exponentially grown mycobacterial liquid cultures were established in Sauton’s basal
media +0.025% tyloxapol. For mid to late-log phase culture, mycobacterial cells were
grown to an optical density (ODggonm) of 0.6 — 0.8 at 37°C prior to harvest. For the
current study, six M. bovis AF2122/97 and six M. tuberculosis H37Rv replicates were
prepared. Matched RNA and protein samples were harvested and prepared for strand-

specific RNA-sequencing or SWATH mass spectrometry.

RNA extraction, RNA-seq library preparation and high-throughput sequencing for M.

bovis and M. tuberculosis

Mycobacterial cells were harvested by centrifugation at 2,500 x g for 10 min and the
pellet was re-suspended in 1 ml of TRIzol® (Life Technologies). The suspension was
transferred to a 2 ml screw cap tube and the cells were lysed by bead-beating for 30 s at
maximum setting using 1 mm glass beads (Sigma) on a MagNaWLyser instrument
(Roche). Samples were placed at 80°C immediately and thawed before use. 20% v/v
chloroform was added, the sample were shaken vigorously for 15 s and incubated for 2-
3 min at room temperature. The samples were centrifuged at 12,000 x g for 15 min at
4°C and the top phase was added to the DNA-free columns from the RNeasy plus kit
(Qiagen). The sample were processed as per the manufacturer’s guidelines with the
following exceptions: 1.5 volumes of 100% ethanol was added to sample prior to its

application to the RNeasy column in order to recover all RNA species. RNA was eluted in
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molecular grade water and its concentration was determined using the NanoDrop
spectrophotometer (NDW1000) prior to DNase treatment. A DNase treatment using
TURBO DNase kit (Thermo Fisher Scientific) was performed by following the vigorous
DNase treatment as per manufacturer’s guidelines; 7 ul of DNase buffer + 1 pul enzyme
at 37°C for 30 min followed by a further 1 pl of enzyme and incubation at 37°C for 30
min. A DNase stopping solution was not added to the samples as they were column-
purified and concentrated using the RNA Clean and Concentrator kit according to
manufacturer’s guidelines (Zymo). RNA was eluted in molecular grade water and its
concentration was determined using the NanoDrop spectrophotometer (NDW1000).
RNA integrity number (RIN) values were assessed for each RNA sample being considered
for RNA-sequencing using the 2100 Bioanalyser (Agilent) and the RNA 6000 Nano kit
(Agilent) according to manufacturer’s guidelines. RIN values are calculated by assessing
the entire electrophoretic trace of an RNA sample, along with the 235/16S rRNA
intensity value. Only samples with a RIN value > 8 were selected for further analysis by
RNA-sequencing. Sequencing libraries were prepared at the Genomics Core, Michigan
State University, Michigan, USA using the lllumina Truseq Stranded Total RNA Library
Prep Kit LT and the Epicenter RiboWZero Magnetic Bacteria kit to deplete ribosomal
RNA. Single-end, strand-specific 50 bp read data was produced with base calling

performed by lllumina Real Time Analysis (RTA) v1.18.64.

Differential gene expression analysis of M. bovis and M. tuberculosis RNA-sequencing

data

Computational analyses were performed on a 32-node Compute Server with Linux

10
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Ubuntu [version 12.04.2]. Briefly, adapter sequence contamination and paired-end
reads of poor quality were removed from the raw data. At each step, read quality was
assessed with FastQC [version 0.10.1] (30). Single-end reads were aligned to the M.
bovis AF2122/97 or M. tuberculosis H37Rv reference genomes with the aligner Stampy
in hybrid mode with BWA (31). Read counts for each gene were calculated using
featureCounts, set to unambiguously assign uniquely aligned single-end reads in a

stranded manner to gene exon annotation (32).

Prior to cross-species differential expression analysis, an Identical/Variable gene
dataset was constructed for M. tuberculosis H37Rv and M. bovis AF2122/97 where
orthologous genes were separated into those genes whose protein products are of
equal length and 100% conserved at the amino acid level (Identical, n = 2,775) from
those that are not (Variable, n = 1,224). (Fig.1A, Supp_I.xIsx). Among the Variable genes
are examples of truncated genes, genes that have been split into two or more as a result
of in-frame sequence variance (leading to some genes being represented in more than
one Variable gene pair), or genes that differ by a non-synonymous SNP resulting in an
amino acid change at the protein level. Negative binomial modelling tools such as
DESeq2 that was used in this instance assume equal feature lengths when calculating
differential expression (DE) of a gene, or in this case between orthologous genes of two
species in a given condition (33). For those annotations whose gene lengths are not
equal, such as in the case of truncated/elongated/frameshift instances found in the M.
bovis AF2122/97 genome with respect to M. tuberculosis H37Rv, analysis with DESeq2

would result in erroneous differential expression results; thus a separate differential

11
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expression analyses was carried out for Variable genes using Transcript per Million
(TPM) values that are normalised for feature length (33, 34). Differential gene
expression analysis for those genes of equal lengths was performed using the DESeq2
pipeline, correcting for multiple testing using the Benjamini-Hochberg method (33). All
further reference to differentially expressed genes between the two mycobacterial
species will be with regards to a gene being expressed at a higher level in one species
with respect to the other, and hence if a gene is upregulated in M. bovis it is
downregulated or expressed at a lower level in M. tuberculosis and vice versa (log, fold

change (Log,FC > 1 and < -1), false discovery rate (FDR) threshold of significance < 0.05).

Transcription factor enrichment analysis

Data relating to the shift in the transcriptional landscape of M. tuberculosis upon
overexpression of 183 transcription factors was used to perform a formal transcription
factor enrichment analysis (35-37). The data represents 9,335 regulatory events and
provides regulatory evidence for over 70% of the annotated genes in the M. tuberculosis
genome (FC > 2, P <0.01) (35-37). This data was analysed alongside the DE genes
identified in this study between M. bovis and M. tuberculosis. Only genes and
transcription factors that are 100% identical in sequence and length between the two
species were considered for this analysis. Over-representation of a transcription factor
with a given set of differentially expressed genes was assessed by gene-regulon
association and calculation of the Rand Index (Log,FC > 1 and P < 0.05 for a given DE

gene).

12
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Protein extraction and SWATH mass spectrometry for M. bovis and M. tuberculosis

Mycobacterial cells were harvested by centrifugation at 2,500 x g for 10 min and the
pellet was re-suspended in 1 ml LB buffer (0.1 M ammonium bicarbonate buffer, 8 M
urea, 0.1% RapiGEST SF (Waters, UK)). The suspension was transferred to a 2-ml screw
cap tube and the cells were lysed by bead-beating for 30 s at maximum setting using 3
mm glass beads (Sigma) and a MagNalyser instrument (Roche). The lysate supernatant
was harvested by centrifugation at 12,000 x g for 10 min and transferred to a clean 1 ml
tube. The remaining pellet was re-suspended in LB buffer and the bead beating cycle
was repeated twice more. Protein lysate samples were stored at -80°C. Protein samples
were removed from -80°C storage and thawed on ice. Total protein content was
measured using the Qubit Protein Assay kit according to manufacturer’s guidelines and
protein concentrations were adjusted to 0.5 mg/ml. Protein disulphide bonds were
reduced by addition of 0.2 M Tris(2-carboxyethyl)phosphine (TCEP) and the resulting
free cysteine residues were alkylated by addition of 0.4 M iodoacetamide (IAA).
Extracted protein samples were diluted with 0.1 M ammonium bicarbonate buffer to
reach a urea concentration of < 2 M and then digested with 1:50 enzyme/substrate ratio
of sequencing grade modified trypsin (Promega). 50% trifluoroaceticacid (TFA) was
added to lower the pH to 2 in order to stop the tryptic digest and to precipitate the
RapiGEST. Water-immiscible degradation products of RapiGEST were pelleted by
centrifugation at 12,000 x g for 10 min. The cleared peptide solution was desalted with

C18 reversed-phase columns (SepWPak Vac C18, Waters). The columns were pre-

13
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conditioned 2-3 times with acetonitrile and equilibrated 3 times with Buffer A (2%
acetonitrile, 0.1% trifluoroacetic acid in H,0) prior to sample loading. The flow-through
was re-loaded onto the column and the column was then washed 3 times with Buffer A.
The peptides were eluted from the column using Buffer B (50% acetonitrile, 0.1%
trifluoroacetic acid in H,0) and the elution step was repeated. The eluate was dried
under vacuum using a rotary evaporator at 45°C. Dried peptide pellets were re-
suspended in MS buffer (2% acetonitrile, 0.1% trifluoroacetic acid in ultra pure H,0) to a
concentration of 1 pg/ul, sonicated in a water bath for 3 min and supernatant was

harvested by centrifugation at 12,000 x g for 10 min.

SWATH mass spectrometry measurements were conducted at the Institute for
Molecular Systems Biology at ETH Zurich. 1 ug of each peptide sample was measured in
SWATH mode on a TripleTOF 5600 mass spectrometer using data-independent
acquisition settings as described earlier (29, 38-40). Resulting raw SWATH data was
analysed using an automated pipeline and the software OpenSWATH with the M.
tuberculosis H37Rv SWATH assay library (38). Differential expression analysis of protein
identified in M. tuberculosis and M. bovis samples was dependent on the detection of
the protein in both species. The difference in protein fold changes and the
corresponding FDR corrections between M. tuberculosis and M. bovis were calculated

using MSstats (39, 41). A |Log,FC| > 0.56 and an FDR < 0.05 was required for a protein

to defined as differentially expressed between M. tuberculosis and M. bovis.

Animals

14
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All animal procedures were performed according to the provisions of the Irish
Cruelty to Animals Act of 1876 with ethical approval from the University College Dublin
(UCD) Animal Ethics Committee (protocol number AREC-13-14-Gordon). Ten unrelated
Holstein-Friesian male calves (7-12 weeks old) were maintained under uniform housing
conditions and nutritional regimens at the UCD Lyons Research Farm (Newcastle,
County Kildare, Ireland). All animals were selected from a tuberculosis-free herd that is

screened annually using the single intradermal comparative tuberculin skin test.

Alveolar macrophage isolation, cell culture and infection

The laboratory methods used to: (1) isolate, culture and infect bovine alveolar
macrophages with M. bovis and M. tuberculosis, and (2) generate strand-specific RNA-
seq libraries using RNA harvested from these cells has been described in detail by us
elsewhere (15, 42). An abridged description of the laboratory methods used in this study
is provided below and the complete bioinformatics pipeline is accessible online

(https://github.com/kerrimalone/AlvMac). Total lung cells were harvested by

pulmonary lavage of lungs obtained post-mortem and stored in freezing solution (10%
DMSO (Sigma-Aldrich Ltd.), 90% FBS) at a density of 2.5 x 10’ cells/ml in 1 ml cell
aliquots at -140°C. When required, the cell pellet was resuspended in 15 ml of R10"
media and placed in a 75 cm? vented culture flask (CELLSTAR®, Greiner Bio-One Ltd.)
and incubated for 24 h at 37°C, 5 % CO,. After incubation, media was removed together
with non-adherent cells, adherent cells were washed with 15 ml HBSS pre-warmed to
37°C and dissociated by adding 10 ml pre-warmed 1x non-enzymatic cell dissociation

solution (Sigma-Aldrich Ltd.) to each culture flask. Cells were then pelleted (200 x g for 5
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min), resuspended in 10 ml pre-warmed R10+ media and counted using a Vi-CELL™ XR
Cell Viability Analyzer and reagent kit (Beckman Coulter Inc.). Mean viable cell recovery
was estimated at ~ 80% for each animal. Cell counts for each animal were adjusted to

5 x 10° cells/ml (based on viable cell counts) using pre-warmed R10+ media, seeded at
5 x 10° cells/well on individual 24-flat well tissue culture plates (Sarstedt Ltd.) and
incubated for a further 24 h at 37°C, 5 % CO,, until required for mycobacterial infection.
The purity of the seeded macrophages for each animal samples was 95% as estimated

by flow cytometry analysis (data not shown).

M. bovis AF2122/97 and M. tuberculosis H37Rv were cultured in Middlebrook
7H9-ADC medium containing either 0.2% v/v glycerol for M. tuberculosis or 10 mM
sodium pyruvate for M. bovis at 37°C until mid-logarithmic phase. Prior to infection,
mycobacterial cultures were pelleted by centrifugation (200 x g, 10 min), pellets were
disrupted with 3 mm sterile glass beads (Sigma-Aldrich Ltd.) by vortexing at top speed,
1 min. Cells were resuspended in pre-warmed R10 media, sonicated at full power
(Branson Ultrasonics Corporation) for 1 min and the cell number was then adjusted to
5 x 10° bacterial cells/ml (ODgoonm 0f 0.1 =1 x 10’ bacterial cells) for a multiplicity of

infection (MOI) of 10 bacilli per alveolar macrophage.

For the infection time course, the R10 media was removed from the macrophages
and replaced with 1 ml R10 media containing M. bovis or M. tuberculosis (5 x 10°
bacilli/ml); parallel non-infected control alveolar macrophages received 1 ml R10 media

only. The alveolar macrophages were incubated at 37°C, 5 % CO, for times of 2, 6, 24
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and 48 hours post-infection (hpi). Following completion of the 2 hpi time point, the 2 hpi
macrophages were lysed (by adding 250 ul RLT-1% B-mercaptoethanol buffer per tissue
culture plate well) and stored at -80°C, while the media for the 6, 24 and 48 hpi
macrophages was replaced with 1 ml fresh R10 media per well and cells were
reincubated at 37°C, 5 % CO, until required for harvesting. CFU were monitored over

the infection time course (Fig.S1).

RNA extraction, RNA-seq library preparation and high-throughput sequencing for

bovine alveolar macrophage samples

For the current study, 117 strand-specific RNA-seq libraries were prepared. These
comprised M. bovis-, M. tuberculosis- and non-infected samples from each time point
(0, 2, 6, 24 and 48 h) across 10 animals (with the exception of one animal that did not
yield sufficient alveolar macrophages for in vitro infection at the 48 hpi time point). RNA
extractions from macrophage lysates included an on-column genomic DNA elimination
step (RNeasy® Plus Mini kit (Qiagen Ltd)). RNA guantity and quality was assessed using a
NanoDrop™ 1000 spectrophotometer (Thermo Fisher Scientific Inc.) and a Bioanalyzer
and an RNA 6000 Nano LabChip kit (Agilent Technologies Ltd). All samples displayed
260/280 ratio > 2.0 and RNA integrity numbers > 8.5. 200 ng total RNA from each
sample was used for RNA-seq library preparation. Poly(A) mRNA enrichment was
performed (Dynabeads® mRNA DIRECT™ Purification Kit (Invitrogen, Life Technologies))
and Poly(A)-enriched mRNA was used to prepared individually barcoded strand-specific
RNA-seq libraries (ScriptSeq™ version 2 RNA-Seq Library Preparation Kit (lllumina, San

Diego, CA, USA)). The libraries were pooled into three sequencing pools and sequenced
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across 24 flow cell lanes (IIIumina® HiSeq2000, Beijing Genomics Institute, Shenzhen,

China).

Differential gene expression analysis of bovine alveolar macrophage RNA-sequencing

data

Computational analyses was performed on a 32-node Compute Server with Linux
Ubuntu [version 12.04.2]. Briefly, pooled libraries were deconvoluted, adapter sequence
contamination and paired-end reads of poor quality were removed. At each step, read
guality was assessed with FastQC [version 0.10.1] (30). Paired-end reads were aligned to
the Bos taurus reference genome (B. taurus UMD3.1.1) with STAR aligner (43). Read
counts for each gene were calculated using featureCounts, set to unambiguously assign
uniquely aligned paired-end reads in a stranded manner to gene exon annotation (32).
Differential gene expression analysis was performed using the edgeR Bioconductor
package that was customized to filter out all bovine rRNA genes, genes displaying
expression levels below one count per million [CPM] in at least ten individual libraries
and identify differentially expressed (DE) genes between all pairs of infection groups
within each time point, correcting for multiple testing using the Benjamini-Hochberg
method with Log,FC > 1 and < -1 and an FDR threshold of significance < 0.05 (44, 45).
Cellular functions and pathways over-represented in DE gene lists were assessed using

the SIGORA R package (46).

Data availability
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375 RNA-seq datasets can be found using accession number PRJEB23469. SWATH MS data
376  and OpenSWATH outputs can be found on PeptideAtlas under identifier PASS00685
377 (http://www.peptideatlas.org/PASS/PASS00685).

378

379
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380  Results

381  Differential RNA and protein expression between M. bovis and M. tuberculosis

382 For this study, 12 strand-specific RNA-seq libraries were prepared from M. bovis
383  AF2122/97 (n = 6) and M. tuberculosis H37Rv (n = 6) grown exponentially in Sauton’s

384  basal media pH 7.0 (Fig.S2; mapping statistics can be found in Supp_Il.csv). An

385 ‘Identical’/’Variable’ gene dataset was constructed where orthologous genes between
386  the two species were separated into those genes whose protein products are of equal
387  length and 100% conserved at the amino acid level (Identical, n = 2,775) from those that
388 are not (Variable, n =1,224). (Fig.1A, Supp_I.xIsx). 170 and 146 differentially expressed
389  (DE) Identical genes and 133 and 124 DE Variable genes were identified for M. bovis and
390 M. tuberculosis respectively, amounting to 573 DE genes in total (Fig.1A, B,

391 Supp_lll.xIsx). Twelve SWATH mass spectrometry (MS) datasets were generated from
392  total protein samples harvested from the same cultures as the RNA (Fig.S2, Fig.S4,

393 Supp_lll.xIsx). Overall, 2,627 proteins were detected using the M. tuberculosis assay

394 library (~70% and ~56% of total Identical and Variable protein, respectively) (Fig.54,

395  Supp_lll.xIsx) (38, 40). Of the 1,937 Identical proteins detected by SWATH MS, 232 and
396 218 proteins were found to be upregulated M. bovis and M. tuberculosis respectively,
397  totalling 450 DE proteins (Fig.1A, B, Supp_lll.xIsx). 133 and 215 Variable proteins were
398  found to be upregulated M. bovis and M. tuberculosis respectively, amounting to 348 DE
399  Variable proteins in total (50.4%) (Fig.1A, B, Supp_lll.xIsx). Overlap of the DE lists for M.

400  bovis and M. tuberculosis revealed 77 and 103 genes that are significantly upregulated
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in either species at both the RNA and protein level respectively (Fig.1D); the top 20 of

these are represented in Fig.1C.

Genes encoding Mpt70 and Mpt83 are the top two genes upregulated at the RNA
and protein level in M. bovis; this is a result of a non-operational anti-SigK protein in M.
bovis leading to constitutive upregulation of the SigK regulon, of which the mpt83 and
mpt70 genes are components (47). Furthermore, Rv0216/Mb0222, a double hotdog
hydratase, is upregulated in M. bovis at both the RNA and protein level as previously
observed by microarray analysis (27). Amongst the genes upregulated at both the RNA
and protein level in M. tuberculosis H37Rv are: ppe51; antitoxin vapB47; and nitrate
reductase associated genes narH and narG, previously reported as upregulated at the
RNA level in M. tuberculosis in comparison to M. bovis as a result of a SNP in the
promoter region of narGHJI (Fig.1C)(25, 26). Incomplete overlap between DE genes at
the transcriptional and translational level seen in this study has been reported in other
studies and can be attributed to post-transcriptional and post-translational regulation
within the cell, but also to more technical aspects, such as differences in detection limits
and particular thresholds chosen to define differentially expressed RNA or protein (48-

50).

Transcription factor enrichment analysis: the PhoP regulon and ESX-1 secretion system

The differential gene expression observed between M. bovis and M. tuberculosis

may be a consequence of differences in global transcriptional network regulation
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between the two species. To address this hypothesis, a formal transcription factor
enrichment analysis was performed and revealed the significant association of 16
transcription factors with the DE Identical genes between M. bovis (n = 146) and M.
tuberculosis (n = 170) (Fig.1E) (37). The association of transcription factors such as
alternate sigma factors SigK and SigF along with cytoplasmic redox sensor WhiB3 with
the DE gene lists indicates that disparate expression of virulence-related pathways
regulated by these transcription factors between the two pathogens could have
significant consequence for infection (47, 51, 52). Furthermore, PhoP, EspR and DosR
are also significantly associated with the DE genes; these transcription factors are
important for adaptation of M. tuberculosis to the intracellular environment and are

functionally linked by such processes (Fig.1E) (53, 54).

The PhoPR two-component system has a major role in regulating the pathogenic
phenotype of M. tuberculosis by controlling the expression of a variety of virulence-
associated pathways including SL-1, DAT and PAT lipid production and the Type-VII
secretion system ESX-1; mutations in the PhoPR system of M. bovis have been
suggested to play a role in the host specificity between the bovine- and human-adapted
mycobacterial species (23, 53, 55-57). Further investigation into the 72-gene regulon of
PhoP identified 33 DE genes between the two species and these are presented in Fig.2A.
The production of lipids SL-1 and PDIM is under PhoP regulation and is coupled within
the M. tuberculosis cell; intriguingly M. bovis is reported to lack SL-1 in the cell envelope
(58-60). In this study, the expression of genes associated with the biosynthesis of SL-1

(e.g. papA1l, papA2, pks2, mmplL8) was at a higher level in M. tuberculosis and
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conversely, genes associated with the biosynthesis of PDIM (e.g. ppsA-E, IppX) were
expressed at a higher level in M. bovis at the RNA and protein level (Fig.S5). SL-1 is one
of the most abundant lipids in the mycobacterial outer membrane, is unique to
pathogenic mycobacteria, is immunogenic, and is implicated in the alteration of phago-
lysosome fusion. Likewise, PDIM is required for mycobacterial virulence, facilitates
macrophage invasion and protects against reactive nitrogen species. The differential
expression of lipid-associated systems between the two species therefore presents
distinct lipid-repertoires to interact with the host that could affect the overall success of

infection (61-67).

The major antigens ESAT-6 and CFP10 are secreted by the ESX-1 secretion system
of M. tuberculosis, a system which has been implicated in mycobacterial escape from
the phagosome to the cytosol that results in a Type-I interferon response within the
infected macrophage (57, 68, 69). PhoP and EspR regulate the expression of ESX-1
secretion system-related genes and as stated are significantly associated with the DE
genes between the two pathogens; despite EspR being expressed to a higher level in M.
tuberculosis (Supp_lll.xIsx), there is a significant upregulation of the ESX-1 secretion
system in M. bovis in comparison to M. tuberculosis, including ESX-1-related proteins
such as EsxA, EspA, EspC, EspD at both the transcriptional and translational level (55-57,
70, 71) (Fig.2B). Furthermore, PhoP was expressed to a higher level in M. bovis; this may
represent an attempt at a compensatory mechanism for aberrant PhoP signalling and
supports previous reports of suboptimal PhoP signalling in M. bovis (23, 59). Seven of 55

genes regulated by DosR were expressed higher at the RNA level in M. tuberculosis,
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likely reflecting the intimate relationship of DosR and its associated regulon with that of

PhoP/EspR/WhiB3 (Supp_IV.xlsx).

A “core” macrophage response common to infection with either species

117 strand-specific RNA-seq libraries were prepared from bovine alveolar
infected macrophages that comprised M. bovis-, M. tuberculosis- and non-infected
samples from each time point (0, 2, 6, 24 and 48 hpi) across 10 animals, with the
exception of one animal that did not yield sufficient alveolar macrophages for in vitro
infection at the 48 hour post-infection time point). Matched non-infected macrophage
control samples were included for all infection time-points (Fig.S2). Quality control and

mapping statistics can be found in Supp_V.csv and Fig.S5.

The comparison of M. bovis- or M. tuberculosis-infected macrophages with
respect to non-infected macrophages revealed a sequential increase in the number of
DE genes across the infection time-course, which peaked at 48 hpi and a larger number
of DE genes were seen in M. bovis-infected macrophages with the exception of 6 hpi
(Fig.3A, B, C, Supp_Vl.csv); similar temporal expression profiles were previously
reported in other in vitro bovine and human macrophage infection studies (42, 72-74).
Comparison of these DE gene lists identified a subset of genes that displayed the same
directionality and a similar magnitude of expression (Fig.4A) (Supp_Vll.csv). The
association of enriched pathways such as Cytokine-cytokine receptor interaction, NOD-

like receptor signalling and Jak-STAT signalling with this gene subset suggests a robust
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“core” macrophage response to infection with either mycobacterial species throughout
the time course (Fig.4B). The core response includes numerous key genes known to be
involved in the innate immune response against pathogenic mycobacteria such as:
CCL20 (75); IL18, which limits the growth of M. tuberculosis in human macrophages (76-
78); anti-inflammatory /L10 (79); and NOS2, polymorphisms of which are associated with
susceptibility of Holstein cattle to bovine TB (80) (Fig.4C). Furthermore, the HIF-1
signalling pathway was significantly enriched for the DE genes common to both infection
series; this pathway is associated with regulating a switch in central glucose metabolism
during high-energy demanding events, such as infection, in neutrophils and

macrophages (81)(Fig.S6A).

DNA sensing and RIG-I like signalling pathways are found in the divergent response to
infection with M. tuberculosis and M. bovis

Aside from the defined “core” response genes, there were larger numbers of DE
genes in M. bovis-infected macrophages in contrast to M. tuberculosis infection, mainly
at 24 hpi (1,313 versus 904 genes respectively) and 48 hpi (2,271 versus 1,037 genes
respectively) (Fig.3A, B). Comparison of the relative change with respect to control
between M. bovis- and M. tuberculosis-infected macrophages at each time-point
revealed a statistically significant divergence in their responses at 48 hpi only associated
with DE signatures from 703 genes (Fig.4A, Supp_VIll.csv). Analysis of the expression
pattern of 576 of these genes with functional annotation across time revealed a greater

magnitude of change in M. bovis- infected macrophages, where DE genes are up- or
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down-regulated to a higher extent in M. bovis-infected macrophages or not significantly
changing at all in M. tuberculosis-infected macrophages (Fig.5C). Pathway enrichment
analysis revealed association of ABC transporters with the divergent annotated gene set
(Fig.5B); these are involved in cholesterol efflux from the cell, and manipulation of host
cell cholesterol transport and metabolism has been documented in M. tuberculosis
containing macrophages (82). A general dampening in the expression of cholesterol-
associated genes was noted in M. bovis-infected macrophages at 48 hpi (Fig.S6B).
Pathway enrichment analysis also associated Cytosolic DNA-sensing and RIG-I-like
receptor signalling with the 576 divergent genes (Fig.5C). Type-l interferons have been
associated with pathogenesis during M. tuberculosis infection and their production has
been found dependent on the mycobacterial ESX-1 secretion system and the cytosolic
sensing of extracellular M. tuberculosis DNA and subsequent cGAS-STING-dependent
signalling (83-86).

Overall, there is a stronger upregulation of genes encoding proteins involved in
RIG-I-like and DNA-sensing signalling in M. bovis-infected macrophages in comparison to
M. tuberculosis-infected macrophages at 48 hpi. These include genes encoding DNA
sensors such as MB21D1/cGAS, MDAS5, IFI16, and DDX58/RIG-I, antiviral and MAVS-TBK1
interacting protein IFIT3, serine/threonine kinase TBK1, and key interferon-I
transcriptional regulators IRF3 and IRF7 that are all known to contribute to STING-
dependent induction of type-Il interferons (Fig.5D, Fig.6) (87-89). Furthermore, genes
LGP2, ISG15 and TRIM25 that encode regulators of DDX58/RIGI gene expression are

upregulated in M. bovis-infected macrophages at 48 hpi (90). Likewise, downstream of
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RIG-1, genes IKBKB and IKB are also expressed higher in M. bovis-infected macrophages
along with NFKB, the gene encoding a key transcription factor that regulates the
expression of inflammatory-related genes (89). Targets of NFKB such as TNF, COX2,
CXC40, MIP1a, IL8, IL12 and IL23a are all expressed to a higher degree in M. bovis-
infected macrophages with respect to M. tuberculosis-infected macrophages at 48 hpi
(Fig.5D, Fig.6). A low level of reads mapped to the type | interferon genes IFNAD
(orthologue of human IFNA1) and IFNB1, and only in a subset of animals at certain time

points excluded these genes from DE analysis based on filtering criteria.

Independent of RIG-I signalling, genes involved in DNA sensing such as TREX1,
which encodes a 3’-5’ exonuclease that senses and degrades cytosolic DNA to prevent
type | interferon production through the TBK1/STING/IRF3 pathway, and OAS2 were
also found expressed to a higher level in M. bovis containing macrophages (91). OAS2 is
a double stranded RNA binding protein that generates 2’-5’- adenosine oligomers which
activate RNase L resulting in the assembly of the NLRP3 inflammasome and IL-1b
production (92, 93); genes RNASEL, NLRP3 and non-canonical activation of the NLRP3
inflammasome CASP4 were all found expressed to a higher level in M. bovis-infected
macrophages 48hpi (94, 95) (Fig.4c, Fig.6). Taken together, these data highlight
dissimilarity in the engagement between M. bovis and M. tuberculosis with the nucleic
acid sensing system of the bovine macrophage, which in turn would influence

downstream immune-related events, and ultimately infection outcome.
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Discussion

The data we present here provides significant insight on the molecular basis of
host tropism between M. tuberculosis and M. bovis in the bovine host. Determining the
differences between the transcriptional and translational profiles of these two hallmark
mycobacterial strains highlighted variable expression of virulence-associated pathways
while a divergent transcriptional response to infection with either species in bovine
alveolar macrophages was observed 48 hpi. The ESX-1 secretion system of M.
tuberculosis is linked to its phagosomal escape during infection, a process that is
coupled to the triggering of DNA-sensing pathways in the cytosol of the host cell (83-
86). In this study, we found that the ESX-1 secretion system was expressed to a higher
level in M. bovis and a substantially stronger induction of DNA-sensing related pathways
was seen in bovine alveolar macrophages infected with M. bovis versus M. tuberculosis.
These data therefore suggest that M. bovis has a distinct engagement with the bovine
immune system and might thus be better able to drive phagosome rupture and

downstream immune signalling, leading to successful infection and ultimately disease.

In this study, we have taken advantage of both RNA-seq and SWATH mass
spectrometry to compare both the global transcriptional and translational expression
profiles of the human and bovine tubercle bacilli for definition of functional variation
between the two species that may explain their exhibited host preference. Other
studies have assessed in isolation either the transcriptome by microarray or the

proteome by shotgun mass spectrometry (27, 28, 96, 97); the resolution afforded by
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both RNA-seq and SWATH mass spectrometry in comparison to previous studies has
allowed for the most complete dataset for M. bovis to date and the most complete
comparative dataset between the two pathogens. Although conducting a dual RNA-
sequencing study may facilitate simultaneous assessment of the transcriptional
response of both the host macrophage and invading mycobacteria during infection, this
technique is limited with regards to the proportion of the bacterial-to-host
transcriptome ratio in the resulting data and it does not allow for the accurate capture
of both the global transcriptomic and proteomic dynamics of the mycobacteria during
infection (98). As we aimed to investigate the early response of the macrophage to
infection with both mycobacterial species, we believe the overall expression profiles
measured in this study in vitro more realistically represent the bacterial phenotypes first
encountered by the host cell. Lastly, we focused on M. tuberculosis H37Rv and M. bovis
AF2122/97 as they are widely used reference strains and they have been previously

used to demonstrate the attenuation of M. tuberculosis in the bovine host (1, 9).

The relatively small number of DE genes at both the RNA and protein level
between M. bovis and M. tuberculosis highlights the close genetic relationship between
the two pathogens. That being said, assessment of these DE genes supports our
hypothesis that subtle genetic changes between the two species result in divergent
phenotypes driven by differential expression of major virulence associated factors and
pathways. We found that transcription factors PhoP, WhiB3 and DosR are significantly

associated with the DE genes between the two species and these are functionally linked
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by processes that govern the adaptation of M. tuberculosis to the intracellular
environment (53, 54). The PhoPR two-component system is important for M.
tuberculosis infection and it has been suggested that mutations in PhoR attenuate
animal-adapted M. bovis in humans (23, 99-105). PhoP regulates the production of
virulence associated cell wall lipids and controls the expression of EspA, an ESX-1
secretion pathway related protein involved in the secretion of the major antigen
EsxA/ESAT6 (55, 56, 70, 71). We found that the ESX-1 secretion system is expressed to a
higher degree at both the RNA and protein level in M. bovis in comparison to M.
tuberculosis; differences in ESX-1 secretion system expression between the two
pathogens may be a consequence of a SNP in the promoter of the whiB6 gene in M.
tuberculosis H37Rv or attributed to attenuated PhoPR signalling in M. bovis (56). There
is an emerging body of evidence showing that M. tuberculosis can rupture the
phagosome membrane through the action of the ESX-1 secretion system and that the
activation of cytosolic DNA-sensing pathways and the production of Type-I interferons is
dependent on ESX-1 expression (83-86). Based on our data, we speculate that alternate
transcriptional regulation between M. tuberculosis and M. bovis as a consequence of
genetic variation may represent differential priming events in preparation for the initial
interactions of both species with their respective host immune systems. For example,
increased expression ESX-1 secretion system may facilitate faster escape of M. bovis
from the phagosome into the cytosol in contrast to M. tuberculosis, triggering DNA-

sensing pathways and increased type | interferon production (68, 85, 106).
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To determine the impact of pathogen variation on host response, we conducted
an experimental infection of primary bovine alveolar macrophages with M. tuberculosis
and M. bovis and tracked the transcriptional response to infection. The bovine alveolar
macrophage response to infection with either pathogen was strikingly similar over the
first 24 hours of infection. Notably, a “core” macrophage response displayed
enrichment for differentially expressed genes involved in pathogen recognition, innate
cell signalling, and cytokine and chemokine production illustrating the initiation of host
innate defence mechanisms in response to infection with M. bovis and M. tuberculosis.
One of the most striking observations is that divergence in macrophage gene expression
profiles between M. bovis and M. tuberculosis infections only occurs after 24 h, with M.
bovis infection eliciting a stronger response in comparison to M. tuberculosis. At 48 hpi,
enrichment for DNA sensing was found for 576 annotated genes that show divergent
expression patterns between the two infection models. The innate immune system
detects exogenous nucleic acid within the cell through pattern recognition receptors
(PRRs) that include Absent in Melanoma 2 (AIM2)-like receptors (ALRs) with Pyrin and
HIN domains (PYHIN proteins), e.g. IFI16 (107-109). Other DNA-sensing proteins include
cytosolic RIG-I-like receptors (RLR), (e.g. RIG-I, MDAS5, LGP2), exonucleases, synthetases,
and cyclic GMP-AMP synthases (e.g. TREX1, OAS2 and cGAS) (83, 91, 93, 110, 111). A
stronger transcriptional induction of genes associated with cGAS-STING dependent
signalling was seen in macrophages infected with M. bovis including MB21D1/cGAS and
downstream effectors TBK1 and IRF3 (Fig.6). cGAS has a central role during M.

tuberculosis infection; 48-72 hpi cGAS senses M. tuberculosis in the host cell cytosol and

31


https://doi.org/10.1101/220624
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/220624; this version posted November 16, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

under aCC-BY 4.0 International license.

in turn signals through STING to drive type-| interferon production (Fig.6) (68, 83-86,
112). Surprisingly, the cGAS-STING axis was not the only PRR pathway found
upregulated during mycobacterial infection as RIG-I like signalling pathway was also
observed to be enriched at 48 hpi, with genes encoding TREX1, OAS2, and RLR receptors
RIG-I, MDAS and LGP2 also found expressed to a higher level in M. bovis-infected
macrophages. As we hypothesised that the variation in host response at 48 hpi, and
ultimately host tropism, is driven by differential expression of virulence factors between
M. bovis and M. tuberculosis, the identification of an increase in expression of DNA-
sensing related pathways in M. bovis-infected macrophages at 48 hpi coincides with the
differential expression of the ESX-1 secretion system between the two pathogens. A
further role for the ESX-1 secretion system in host-pathogen interactions is described
through the activation of the host NLRP3 inflammasome and the production of IL-1b
(113-116). Transcriptional signals associated with the NLRP3 inflammasome were higher
in M. bovis-infected macrophages at 48 hpi along with the increased expression of
CASP4, an NLRP3 inflammasome activator, which has a central role in mediating the
response to Legionella, Yersinia and Salmonella bacterial infection in primary human
macrophages and that has been found upregulated in the necrotic granuloma model of
mice and lymph nodes of TB patients (92, 117-119). Altogether, these data therefore
suggest that not only does mycobacterial infection in the bovine macrophage trigger an
increase in the transcription of the cGAS/STING/IRF3 pathway previously characterised
as responsible for type-I interferon production during M. tuberculosis infection, it also

triggers alteration in the transcription of genes encoding auxiliary DNA sensing RLR
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receptors including RIG-I, MDAS5 and TREX1, that likewise converge to signal through the
STING complex (Fig.6). Furthermore, the data highlights that M. bovis drives a stronger
transcriptional response in the aforementioned pathways in the bovine alveolar
macrophage at 48 hpi in comparison to M. tuberculosis, again highlighting a distinct

relationship between the bovine pathogen and the bovine host.

Altogether, the upregulation of the ESX1 secretion system at both the RNA and
protein level in M. bovis with the observed upregulation of DNA-sensing pathways and
the NLRP3/IL-1b pathway in M. bovis-infected macrophages suggests that the
expression level of virulence factors, rather than the presence or absence of them
between the highly related M. bovis and M. tuberculosis, drives divergent host
responses and influences infection outcome overall. Indeed, the idea of a ‘perfect
balance’ with regards to the expression of mycobacterial virulence factors is reflected in
the findings that production of IFN-B1 in monocyte-derived macrophages is strain
dependent amongst the M. tuberculosis lineages (120). That being said, we cannot
disregard that genetic differences between the bovine and human host may play a
factor. As the innate immune response in different mammals can vary, diversity in the
expression and structure in key innate immune genes and engagement with pathogen
factors must play major roles in host specificity and the outcome of pathogen encounter
(121). In this regard, it is interesting to note that the bovine PYHIN locus contains only
IFI16 (bovine PYHIN) and cattle are the only mammals to date found to encode a single

member of PYHIN protein family; in contrast, humans have four genes, and mice 13
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genes (122). Furthermore, polymorphisms in NLRP3 have been found to influence host
susceptibility to M. tuberculosis infection, its induction is associated with the
mycobacterial ESX-1 secretion system, and bovine and human NLRP3 proteins share
83% sequence identity (123). Further comparative studies of human and bovine genetics
will ultimately aid in unravelling the complex differential host response to infection with
both pathogens. Moreover, we cannot overlook other virulence-associated factors
besides the ESX-1 secretion system that differ in expression or sequence between

M. bovis and M. tuberculosis. Indeed, antigens MBP83 and MBP70, that show
constitutive upregulation in M. bovis versus M. tuberculosis and pathways such as ESX-3
and Mce-1 were also found differentially expressed between the two pathogens at both
the transcriptional and translational level during in vitro growth in this study

(Supp_lll.xIsx) (47, 124).

In conclusion, we found that M. tuberculosis H37Rv and M. bovis AF2122/97
induce divergent responses in infected bovine alveolar macrophages, a consequence of
the differential expression of key mycobacterial virulence-associated pathways. Our
work demonstrates the specificity of mycobacterial host-pathogen interaction and
indicates how the subtle interplay between the phenotype of the invading mycobacteria
and the subsequent host response may underpin host specificity amongst members of

the MTBC.
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Figure 1: A) The number of genes from M. bovis AF2122/97 and M. tuberculosis H37Rv

classified as either “Identical” (100% conserved in length and amino acid sequence, top plot) or

Variable (all other orthologous genes, bottom plot). Colours represent the various gene

categories to which each gene belongs. B) The level of expression (‘Log,FC’) of Identical genes

(top panel) and Variable genes (bottom panel) that are differentially expressed (|Log,FC| > 1,

FDR < 0.05) and upregulated in either M. bovis (blue) or M. tuberculosis (red) at both the RNA

and protein level. The number of genes in each category is indicated on the x-axis (‘#DE genes’).

C) The top 20 differentially expressed genes at the RNA and protein level (| Log,FC| > 1, FDR <

0.05 (“*’)) that are upregulated in M. bovis (blue) or M. tuberculosis (red). D) The overlap of
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genes that are upregulated in either M. bovis (blue) or M. tuberculosis (red) at the RNA and
protein level. Dark blue overlap represents those genes upregulated in M. bovis only, dark red
overlap represents those genes upregulated in M. tuberculosis while purple overlaps represent
those genes that show discordant expression patterns at the RNA and protein level between
the two species. E) The transcription factors enriched for Identical genes (100% conserved in
length and amino acid sequence between the two species) that are differentially expressed

between M. bovis and M. tuberculosis. (Rand Index, P < 0.01).
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Figure 2: The differentially expressed genes (| Log,FC| > 1, FDR < 0.05 (‘*’)) belonging to A) the
PhoP regulon and B) the ESX-1 secretion system that are upregulated in M. bovis (blue) or M.
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macrophages infected with M. bovis (blue) or M. tuberculosis (red) at 2, 6, 24 and 48 hours
post-infection. B) The number (y-axis) and direction of change (up = positive y-space, down =
negative y-space) of differentially expressed genes (|Log,FC| > 1, FDR < 0.05) of bovine alveolar
macrophages infected with M. bovis (blue) or M. tuberculosis (red) at 2, 6, 24 and 48 hours
post-infection (x-axis). C) The top 5 upregulated (positive y-space) and 5 downregulated
(negative y-space) differentially expressed genes (| Log,FC| > 1, FDR < 0.05) of bovine alveolar
macrophages infected with M. bovis or D) M. tuberculosis at 2, 6, 24 and 48 hours post-
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and infected with M. tuberculosis at 2, 6, 24 and 48 hours post-infection. B) Pathways enriched

for 688 genes that are commonly differentially expressed (“core response”) in bovine alveolar
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macrophages infected with M. bovis and M. tuberculosis over the first 24 hours of infection
(FDR < 0.05). C) Genes that are commonly differentially expressed (“core response”) (| Log,FC|
> 1, FDR < 0.05 (“*’)) and associated with the innate immune response in bovine alveolar
macrophages infected with M. bovis (left column) or M. tuberculosis (right column) over 48

hours post-infection.
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Figure 5: A) The number of genes (right y-axis) that are changing (| Log,FC| > 1) and that pass

FDR threshold (FDR< 0.05) from the comparative analysis of M. bovis- or M. tuberculosis-

infected macrophages in contrast to control macrophages and subsequently in contrast to the

other infection series (delta comparison) at 2, 6, 24 and 48 hours post-infection (‘# genes

(delta)’) B) Line graphs represent those differentially expressed functionally annotated genes (n

= 576) that exhibit a higher magnitude of change in M. bovis-infected macrophages versus M.

tuberculosis-infected macrophages in a positive manner (n = 323) (left and right top panel
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respectively) and in a negative manner (n = 253) (left and right bottom panel respectively) at 2,
4, 24 and 48 hours post-infection. C) Pathways that are enriched for 576 functionally annotated
genes that exhibit divergent expression patterns in M. bovis- or M. tuberculosis-infected
macrophages at 48 hours post-infection (FDR < 0.05). D) The differentially expressed genes
(|Log,FC| > 1, FDR < 0.05) associated with RIG-I-like and DNA sensing signalling pathways in
bovine alveolar macrophages infected with M. bovis (blue) or M. tuberculosis (red) at 48 hours

post-infection.
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Figure S1: The number of colony forming units (‘CFU/ml’) recovered from bovine alveolar
macrophages infected with M. bovis (blue) or M. tuberculosis (red) at 2, 6, 24 and 48 hours

post-infection. (Error bars represent standard error of the mean, n = 6)
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Figure S3: A) Pearson correlation plot of reads mapped to 2,775 Identical genes (100% conserved in length and amino acid sequence

between the two species) in the six M. bovis and six M. tuberculosis RNA-seq datasets. Pie charts representing the proportion of B)

Identical (100% conserved in length and amino acid sequence between the two species, green) and C) Variable genes (< 100%

conserved in length and amino acid sequence between the two species, purple) detected and not detected across M. bovis and M.

tuberculosis RNA-seq datasets. RNA expression values (Transcripts per Million (TPM)) were calculated for each gene and gene
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expression within either species was categorised into not expressed (<20 TPM), lowly expressed (20-130 TPM), moderately
expressed (131-280 TPM) and highly expressed (>280 TPM). D) Pearson correlation plot of the intensity values of the 2,627 identified
proteins in the six M. bovis and six M. tuberculosis SWATH MS datasets. Pie charts representing the expression of E) 2775 Identical
genes (100% conserved in length and amino acid sequence) and F) 1224 Variable genes (< 100% conserved in length and amino acid)

in M. bovis and M. tuberculosis detected by SWATH MS.
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Figure S4: The expression of the a) sulfolipid-1 (SL-1) and b) phthiocerol dimycocerosate (PDIM)

synthesis associated genes at the RNA and protein level in M. tuberculosis (red) and M. bovis

(blue). The expression of each gene (“Gene expression”) is presented as Log,TPM at the RNA

level while the relative expression (“Relative expression”) between the two species is presented

as log2FC. Those genes that change significantly at the RNA and protein level (FDR < 0.05) are

denoted (“*’). ¢) Diagrammatic overview of the SL-1 and PDIM biosynthesis pathways in M.

tuberculosis. Blue represents the genes in b) that are upregulated in M. bovis in contrast to M.

tuberculosis and red represents the genes in a) that are upregulated in M. tuberculosis.
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Figure S5: Multidimensional scaling plots of the RNA-seq expression data for individual of

bovine alveolar macrophages infected with M. bovis (‘MB’, blue), M. tuberculosis (“TB’, red) or

none (‘CN’, cyan) at 2, 6, 24 ad 48 hours post-infection.
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Figure S6: The expression of differentially expressed genes (| Log,FC| > 1, FDR < 0.05 (‘*’)
associated with A) glucose metabolism in bovine alveolar macrophages infected with M. bovis
or M. tuberculosis (“MTB"”) at 2, 6, 24 and 48 hours post-infection and B) cholesterol-associated
transport in bovine alveolar macrophages at 48 hours post-infection. Delta comparison shows

genes upregulated in M. bovis in blue and M. tuberculosis in red.
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